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Abstract

Mixed Methods for Mixed Models

Vincent Dorie

This work bridges the frequentist and Bayesian approaches to mixed models by bor-

rowing the best features from both camps: point estimation procedures are combined

with priors to obtain accurate, fast inference while posterior simulation techniques are

developed that approximate the likelihood with great precision for the purposes of

assessing uncertainty. These allow flexible inferences without the need to rely on ex-

pensive Markov chain Monte Carlo simulation techniques. Default priors are developed

and evaluated in a variety of simulation and real-world settings with the end result that

we propose a new set of standard approaches that yield superior performance at little

computational cost.
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Figure 1: Cognitive assessment (Raven’s scores) after controlling for the effect of treatment
and starting age by fitting a simple linear model. Adjusted scores are the raw scores minus the
estimate of the treatment effect from the linear model. The left figure shows two schools, the
scores in which seem to be drawn from different distributions, with school 2 on average having
a higher mean than school 8. On the right is the collection of the average residuals within
the schools taken from the linear model and 95% confidence intervals for the corresponding
expected value.

1 Introduction

1.1 Motivating Example

Whaley et al. (2003) report the results of a cluster-randomized experiment of the impact

of diet on cognitive development in schools in rural Kenya. Twelve schools were randomly

assigned one of four different treatments and children within the schools took cognitive

assessments (Raven’s score) at multiple time points over the course of several months. As

the intervention was designed to last 21 months, we consider only the last observation for

those that completed the treatment. In terms of data, for each child we have their Raven’s

score, what treatment the school received, and an additional child-level covariate of their

age at the beginning of the study.

We can fit a simple linear model to attempt to predict a child’s score as a function

of the treatment they received and our child-level covariate. After having done so, one

might ask what variation remains and if any might be due to differences in schools. Different
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schools in different areas of rural Kenya should be expected to represent different populations.

Figure 1 starts to address this by showing the scores after controling for treatment using

the aforementioned linear model. While a great deal of uncertainty exists with regards to

any estimate of the true average for a school, there is considerable evidence that the school

themselves vary.

Unfortunately, for data sets such as this the traditional methods break down. The prob-

lem itself suggests a hierarchical/mixed effects model, particularly as there are colinearity

issues with a fixed-effects approach and some of the schools have small sample sizes. Max-

imum likelihood estimation of a hierarchical linear model, however, yields an estimate of

0 variation at the school level. While we can use this to estimate the true average of any

school, if we carry it to its logical conclusion then all schools have the same true average

and this is stated with 100% certainty. If the goal had been to understand how the effects

of the treatment vary across different populations, using the maximum likelihood estimate

we would be unable to say anything constructive.

In light of all of this, the statistical concerns that we wish to address are simply to

estimate the difference between the schools and to quantify our uncertainty in the estimate.

To do so, the problem can be decomposed into “point” and “interval” estimation tasks. In

point estimation, we are trying to obtain an accurate, non-zero estimate of the hierarchical

variance parameters. Using this, one can obtain an estimate for estimands such as the

difference between schools that is also non-zero. Interval estimation corresponds to assessing

the uncertainty in the fitted parameters, which can be used to create intervals for the quantity

of interest.

To this, we further add the constraints that our methods must be of low computational

cost and easy to use. We alternatively use maximization and marginalization when address-

ing the former and have developed open-source, well documented software for the latter.
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Figure 2: Graphical representation of approach to the twin problems of point (left branch)
and interval estimation (right). From the same base object - the likelihood or marginal
distribution of the data - successive analytic optimization yields a profiled function while
successive integration yields a marginal posterior.

1.2 Overview

We tackle the point and interval estimation problems in turns. Figure 2 provides an outline

of our twin approaches. For the first, we investigate classes of penalty functions on the

covariance of the hierarchical components that produce estimates that are away from the

boundary, yet are close to the MLE when it is positive definite. In the Bayesian paradigm,

this amounts to applying a prior and estimating the posterior mode.

As for the second concern, we pivot entirely and apply flat priors to all of the parameters of

the model, marginalize the resulting posterior, and develop a high quality/low computational

cost approximation. This approximation can be used to simulate independent realizations

of the covariance matrix, which can in turn be used to simulate the other parameters. Given

a single set of simulations, any estimand of interest can be computed. Given a collection

of simulations, their empirical quantiles represent intervals with good frequentist coverage

probabilities.

We call these “mixed methods” because they sit between standard Bayesian and frequen-

tist practice. In neither case are the priors applied those that a Bayesian might use when

deriving a full posterior. Alternatively, they represent new penalty functions applied to the
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likelihood. At the same time, after applying a prior a Bayesian statistician does not often

settle for a point estimate, while conversely a frequentist generally obtains replications from

an empirical distribution and not the likelihood itself.

And yet, what we propose not only works, but is justifiable from either perspective. For a

frequentist, with moderately large samples the effects of a suitably chosen, weak prior will be

small and leave the posterior mode close to the maximum likelihood estimate. In addition,

we directly show that our simulation approach performs well under frequentist evaluation.

A Bayesian, however, might use either method as a quick approximation or a set of starting

points to a posterior distribution sampler.

1.3 Related Work

Variance Priors

The concept of placing a prior over the covariance of the modeled coefficients in a hierarchical

model certainly is not new - every fully Bayesian approach requires this and a healthy debate

exists over prior choice. However, most Bayesian solutions are centered around deriving the

whole posterior, particularly a sequence of samples from a Gibbs or Markov Chain-Monte

Carlo (MCMC) sampler. In contrast, selecting a prior based on deriving the posterior mode

seems to be rare within the literature. A thorough investigation of producing simulations

from a marginal posterior in a hierarchical model also does not exist. For the most part, what

distinguishes this work from its predecessors is that the goals differ although the framework

is the same. These different goals have motivated novel methods.

In the history of priors on the hierarchical variance in multilevel models, the use of

an inverse-gamma/inverse-Wishart has long been a popular choice, in large part due to its

conditional conjugacy (Hill, 1965; Gelfand et al., 1990; Spiegelhalter et al., 1995). Conversely,

there has been considerable effort to develop a suitably vague, “objective” or reference prior

including the uniform shrinkage prior (Daniels, 1999; Natarajan and Kass, 2000), a Jeffreys

or proper Jeffreys prior (Berger and Deely, 1988; Berger and Strawderman, 1996), and a form
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between the two (DuMouchel, 1994). Other approaches include uniform on variance scale

with bounded support, or similarly uniform on the scale of the logarithm of the variance

(Spiegelhalter, 2001). More recently, has been the use of half-t prior on standard deviations

(Gelman, 2006) and a generalization to a scale-mixture of inverse-Wisharts (Huang and

Wand, 2013).

This last method of Gelman, Huang, and Wand deserves additional attention as the

priors used are simplifications of the matrix variate beta prime that we introduce in section

8.2. However those authors use the prior in the traditional Bayesian context of a posterior

sampler, while our focus is on approximating the marginal posterior distribution of the

hierarchical variance parameter under flat priors. It may be that this close connection makes

the distribution a natural choice for the full Bayes solution.

Finally, the gamma prior proposed in section 3 was first proposed in the related work,

(Chung et al., 2013). Theorem 1 appears there as well, albeit without proof. The multivariate

generalization to the Wishart is forthcoming.

Marginal Simulations

The use of simulations from marginal distributions has a long history although it is not often

explicated directly. Within Bayesian contexts, it arises most frequently as an embedded

component of a Gibbs sampler, also known as part of a “collapsing” strategy (Liu, 1994;

Van Dyk and Park, 2008). When the posterior of a set of parameters can be reduced to a

marginal and a sequence of conditional distributions, all of which are inexpensive to sample,

then a Bayesian would simply do so without much comment.

Another technique used is sampling/reimportance sampling, abbreviated as SIR (Rubin,

1987, 1988). SIR increases the accuracy of an approximate distribution that is easy to sample

from by simply increasing the pool of available simulations.

In some sense, the approach used herein is a spiritual successor to Gelman and Rubin

(1992), which tackles the problem from an iterative perspective and uses a MCMC sampler.
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Despite that difference, both make an extensive effort to approximate the target distribution

for the sake of easing subsequent computation.
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2 Hierarchical Models

As all of our work takes place in the setting of hierarchical models, we start by defining them

and discussing their relevant features.

2.1 Background

Overview

A hierarchical model is one in which the response variables exhibit some sort of natural

grouping and that the groups themselves have structured variation. In the example of

section 1.1, there were students grouped in schools and it is plausible that there are average

cognitive abilities for schools such that these averages are draws from a common distribution.

Under the interpretation of a linear model as attempting to fit a straight line through

the data, a hierarchical model consists of varying the intercept and slope of this line in a

particular fashion, depending on group membership. If yi is the ith observed response, xi

a corresponding covariate, and j[i] the group number of the ith observation, a comparison

between simple and hierarchical linear models is outlined by:

Simple linear model “Fixed effect” model

yi = β1 + β2xi + εi yi = (β1 + β1,j[i]) + (β2 + β2,j[i])xi + εi

Hierarchical linear model

yi = (β1 + θ1,j[i]) + (β2 + θ2,j[i])xi + εi and θj ∼ F

where F stands for an arbitrary distribution. In the typical hierarchical linear model, the

error terms and the hierarchical variation are assumed to be Gaussian.

Hierarchical models and their components are known by different names in different

contexts. The models themselves are also called “multilevel” or “mixed effect.” We will

stick with “hierarchical models,” although a strict hierarchy is not necessarily implied. The

coefficients that are not under any modeling assumption, β above, are commonly called
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“fixed effects.” The modeled coefficients, θ, go by “random effects” and are a form of “latent

variables.” As we move futher into the Bayesian paradigm, all of the coefficients and other

parameters in the model may be given prior distributions. In spite of this, we continue to

use the term “unmodeled coefficients” when referring to β and “modeled coefficients” when

referring to θ, so that our treatment is not limited by context.

The linear hierarchical model as it is used in this context was introduced by Laird and

Ware (1982). Modern references include the books (Skrondal and Rabe-Hesketh, 2004),

(Gelman and Hill, 2007), and (Goldstein, 2011).

Modeled Coefficients

Our primary interest is in the modeled coefficients themselves, although the methods we

develop have wider applicability. Inferences for the modeled coefficients are somewhat com-

plicated by the fact that they are not parameters in the classical sense, nor are they observed

quantities. Instead, estimation typically proceeds by first averaging out the modeled coeffi-

cients, leaving a “marginal likelihood” for the response. This integration step and the use of

a marginal distribution are at the root of the point and interval estimation problems.

The marginal model could have been defined simply by itself or even arisen from a

different integration process, so that the marginal likelihood remains well defined even if the

matrix that corresponds to the covariance of the modeled coefficients is negative definite.

It is the insistence on a hierarchical interpretation that constrains this matrix to be a valid

covariance - i.e. positive semidefinite - and introduces a boundary into the parameter space.

The integration step also compounds the interval estimation problem by requiring that

inferences about the modeled coefficients be based on an estimate of their posterior distri-

bution. This leads to a procedure known as “Empirical Bayes,” or EB. Building intervals

for EB estimates is unusually difficult, as the “naive” approach of using plug-in estimators

ignores uncertainty in how those estimates were obtained in the first place and produces

results that are on average too narrow. Recapturing this estimation uncertainty is the key

8



to building intervals with good coverage properties.

2.2 Simple Model

Here we introduce a simple hierarchical model with most of the complexity stripped away

for the sake of inspiration and explanation.

Definition

Suppose that we have a random sample of N observations evenly divided into J groups,

with n = N/J in each group. All of the observations are normally distributed around some

common mean, although individuals with the same group have an offset particular to that

group. The offsets are all also normally distributed with a mean of 0. Specifically:

yij | θj
iid∼ N(µ+ θj, σ

2
y) i = 1, . . . , n,

θj
iid∼ N(0, σ2

yσ
2
θ) j = 1, . . . , J. (1)

Furthermore, observations between groups are assumed to be independent. Note that we have

adopted the convention of using the residual variance (σ2
y) when modeling the hierarchical

coefficients, such that it can be called a “common scale” factor. This is exclusively for

mathematical convenience.

Within a frequentist framework, the parameters of this model that need to be estimated

are µ - the overall average, σ2
y - the residual variance or common scale, and σ2

θ - the scaled

variance of the modeled coefficients. From the Empirical Bayes perspective, these are the

“hyperparameters.”

The point estimation problem is when the MLE of σ2
θ is zero, which requires developing

a class of estimators that are non-degenerate or strictly positive. The interval estimation

problem is to quantify the uncertainty in any estimate of the parameters, which can then be
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used to build intervals for estimates of θ.

Likelihood

In order to obtain the likelihood, the joint distribution of the response and the modeled

coefficients, y and θ respectively, must first be integrated with respect to θ. It is:

p(y, θ;σ2
y, σ

2
θ , µ) = (2πσ2

y)
−(N+J)/2(σ2

θ)
−J/2 exp

{
− 1

2σ2
y

∑
j

[∑
i

(yij − θj − µ)2 +
1

σ2
θ

θ2
j

]}
.

(2)

From this it is apparent that each θj has the conditional distribution:

θj | y
ind∼ N

(
(ȳj − µ)

σ2
θ

σ2
θ + 1/n

, σ2
y

σ2
θ/n

σ2
θ + 1/n

)
j = 1, . . . , J, (3)

where ȳj = 1
n

∑
i yij is the average within group j. When the average for those in group j

needs to be estimated, the weighted average E[θj | y] + µ =
σ2
θ

σ2
θ+1/n

ȳj + 1/n

σ2
θ+1/n

µ is useful.

Integrating the joint distribution with respect to these conditionals produces the likeli-

hood, which is:

L(σ2
y, σ

2
θ , µ) = (2π)−N/2(σ2

y)
−N/2n−J/2(σ2

θ + 1/n)−J/2

exp

{
− 1

2σ2
y

∑
j

[∑
i

(yij − ȳj)2 +
1

σ2
θ + 1/n

(ȳj − µ)2

]}
. (4)

This is equivalent to the marginal model:

yij ∼ N
(
µ, σ2

yσ
2
θ + σ2

y

)
i = 1, . . . n, j = 1, . . . , J, (5)

COV(yij, ykl) =


σ2
yσ

2
θ i 6= k, j = l

0 j 6= l

. (6)
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Maximum Likelihood

With the introduction of the simplified model, we formally describe how the point and

interval problems arise. With regards to the first, we note that the marginal model is

valid for a greater range of values for σ2
θ as the parameter is merely a “variance component.”

Specifically, the hierarchical interpretation constrains the within-group covariance to be non-

negative while within the marginal this is a possibiltiy.

We can go further and derive the maximum likelihood estimator σ̂2
θ . If S2

w =
∑

j

∑
i(yij−

ȳj)
2 is the sum of the squares within groups, S2

b =
∑

j(ȳj − ȳ)2 is the between groups

sum of squares, and S2
t = S2

w + nS2
b =

∑
j

∑
i(yij − ȳ)2 is the total sum of squares, then

σ̂2
θ =

[
N−J
J

nS2
b

S2
w
− 1

n

]+

. As the different sums of squares result from successive projecting the

data onto a vector and then projecting the residuals, this quantity is related to an F statistic

and has an easily calculated probability of being 0.

Put another way, provided that the within group sum of squares is proportionally no more

than N
N−J of the total sum of squares, then the MLE of the residual variance is 1

N−JS
2
w, while

the MLE of hierarchical variance - the product σ2
θσ

2
y - is 1

N
S2
t − 1

N−JS
2
w. If not, σ̂2

y = 1
N
S2
t . A

competition of sorts exists between the two parameters to partition the total sum of squares

with priority given to the residual variance.

Finally, as the within group sample size n increases, the probability of a zero estimate

arising decreases, provided that the hierarchical model assumption is correct and σθ > 0.

Returning to the interval estimation problem, using the MLE of the model parameters

it is possible to estimate the posterior means of θj. To create an interval, one can “naively”

use the MLE to estimate the posterior variance. When the σ̂2
θ is 0, so is this estimate. When

σ̂2
θ is not, a consequence of theorem 1 in section 3 is that it can be shown that it is biased

downwards.

The variance estimate is biased first because the MLEs themselves are biased, but also due

to failing to incorporate all sources of uncertainty. Considering the decomposition VAR(θ̂) =

E[VAR(θ̂ | y)] + VAR[E(θ̂ | y)], the naive approach uses an estimate of the first quantity on

11



the right hand side while ignoring the second.

2.3 General Model

A hierarchical linear model in its full generality expands on the simple model introduced

above to allow multiple intercepts and slopes, all of which can vary at more than one grouping

factor. To extend the example of section 1.1, the schools could have been grouped within

regions which themselves had structured variation, or the children could have been grouped

non-hierarchically based on individual characteristics.

To write out the model concisely, we use matrix notation. Specifically, let y be an N

dimensional vector, X an N × P dimensional matrix of response level covariates, and Z

a group level covariate matrix with N rows and a number of columns determined by the

structure of the hierarchy. β is a P -vector of unmodeled coefficients and θ a vector of

modeled coefficients.

The structure of Z and θ is determined by the number of grouping factors, the number

of groups within each factor, and the number of items that can vary at each level. For every

group within a factor, we can have an intercept and as many varying slopes as there are

groups. Z is a sparse matrix consistenting of mostly 0s that “selects” and multiplies in the

covariates for the appropriate elements of θ. Let there be K grouping factors and, within

the kth factor, Jk groups and Qk different types of varying coefficients. Then the modeled

coefficients at the kth level form Jk different vectors each of length Qk - i.e. a vector θkj, so

that there are Q =
∑

kQk × Jk modeled coefficients in total. This also gives the number of

columns of Z and the length of θ, itself a concatenation of all of the various θkjs.

Given all of this, the model is specified as:

y | θ ∼ N(Xβ + Zθ, σ2
yIN),

θ ∼ N(0, σ2
yΣθ).

12



In more verbose fashion, the second line can also be written as:

θkj
iid∼ N(0, σ2

yΣk) j = 1, . . . , Jk, k = 1 . . . , K,

This lets us highlight the structure of Σθ as:

Σθ =



IJ1 ⊗ Σ1 0 · · · 0

0 IJ2 ⊗ Σ2 · · · 0

...
...

. . .
...

0 0 · · · IJK ⊗ ΣK


.

Working with the first specification is more convenient for intermediate calculations, but

in future sections it will be necessary to map from the block diagonal version of the covariance

matrix back down to the free parameters. When useful, these parameters will be denoted as

the vector σθ.
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3 Boundary Avoiding Prior

The simplified model described in section 2.2 is small enough to be mathematically tractable.

In this section, we present an asymptotic expansion for the maximizer in σθ under an arbi-

trary prior/penalty function as the number of groups increases.

3.1 Optimal Prior

Assuming that the simple model specified by equation 1 is true, then we can apply a prior

to σθ and obtain an asymptotic expansion for the posterior mode as the number of groups

increases.

Theorem 1. Under an arbitrary prior p(σθ) that does not depend on the data and whose

log-density is twice differentiable, the following asymptotic expansion for the posterior mode

σ̂θ holds:

σ̂θ − σθ = − 1

2σθ
T − 1

8σ3
θ

T 2 − 1

2σ2
θ

n

n− 1

(
σ2
θ + 1/n

)2
U(σθ)

1

J
+Op(J

−3/2) (7)

where U(σθ) = d
dσθ

log p(σθ) and T = σ2
θ + 1

n
− n−1

n

nS2
b

S2
w

. Furthermore, as J varies σ̂θ is

uniformly integrable.

The proof of this is in the appendix, section 12.2. This expansion can be used to derive

optimal penalty functions/priors for different criterion. An example is given by taking the

expected value of both sides, which shows

O(J−2) = 3
n− 2

2
+

1

2

1

σ2
θ

− n

σθ

(
σ2
θ + 1/n

)
U(σθ). (8)

Isolating U(σθ), integrating, and exponentiating yields the result:

Corollary 1. The bias term at order 1/J is eliminated by the improper prior

p(σθ) ∝ σ
1/2
θ

(σ2
θ + 1/n)1/2

(σ2
θ + 1/n)3/2n

.
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Figure 3: Simulation study assessing the bias in the maximum likelihood estimate and the
correction given by the corollary to 1. Each point on graph corresponds to an average of
1000 repetitions for an experiment with the given values of n and J , as well as σθ = 0.5,
σy = 1, and µ = 0.

For large n, the bias correcting prior limits to p(σθ) ∝ σ
3/2
θ .

3.2 Validation

In order to test the sensitivity of theorem 1 to sample sizes, we conducted a simulation study

and calculated bias and root-mean squared error in estimating σθ. The results are shown in

figure 3. It appears that the first order bias correction is effective even for small numbers of

groups (J = 5).

In addition, the approximation that results as we take n tending to ∞, p(σθ) ∝ σ
3/2
θ ,

enjoys performance superior to the maximum likelihood estimate and quickly reduces the

bias. Examining equation 8 shows that this prior consistently overstates σθ at order 1/J ,

yielding conservative estimates of uncertainty. In addition, it enjoys the results of the next
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param n β1 β2 β3 β4 σy σiθ ρi1θ ρi2θ ρi3θ
value 25 -4 0.5 0.2 -0.4 1 2 0.2 -0.5 0

1.5 0.3 0.15
1 -0.2

0.75

cov x1 x2 x3 x4

dist 1 N(0, 1) N(0, 1) Bern(0.5)

Table 1: Parameters for a multivariate, hierarchical model simulation. And equal number of
observations per group were used with group sizes varying from 5 to 25. Σθ is listed in the
form of its standard deviations and correlations under σiθ and ρijθ respectively.

section in that it is easily generalizabile.

3.3 Generalization

The bias correcting penalty of p(σθ) ∝ σ3/2 corresponds to an improper gamma prior on

σθ with shape equal to 2.5. The results of section 7.3 show that the posterior is proper in

the vast majority of cases, although when it is not using a proper gamma prior with a large

mode produces similar results.

The gamma family of distributions can be extended to covariance matrices by the use

of the Wishart distribution. We propose using an improper prior with degrees of freedom

set to the dimension of the covariance matrix plus 2.5. While theorem 1 was proven for

estimates of standard deviations, the use of an improper prior eliminates the ambiguity of

the choice of scale. For the full model of section 2.3, this is equivalent to using the penalty

term p(Σk) ∝ |Σk|3/4.

Extending theorem 1 to higher dimensions has thus far proven to be difficult, but we

can assess the utility of the Wishart prior through the use of simulation. We arbitrarily

set the parameters for a 4 dimensional, single grouping factor according to table 1. For a

chosen number of groups with 25 observations in each group, and then for 500 repetitions,

covariates are simulated, modeled coefficients and a response are created, and the maximum

likelihood estimate and posterior mode are obtained and evaluated.
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Figure 4: Average of biases (top) and root-mean squared errors (bottom) for the simula-
tion study of section 3.3. Results were computed for each coordinate separately and then
averaged. Standard deviations were rescaled before doing so.

In terms of bias and root-mean squared error, the results are reported in figure 4 sep-

arately for standard deviations and correlations. In terms of loss, the two methods are

comparable. In terms of bias, the posterior mode estimates the standard deviations more

accurately and in a positively biased, conservative fashion. Correlations seem to be estimated

more-or-less consistently by both methods, as their bias is small compared to the scale of

the parameters.
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Figure 5: Illustration of a profiled likelihood. The left panel shows the likelihood for a
simple hierarchical linear model (section 2.2) as a function of σθ and σy (µ has already been
maximized). The gray line corresponds to the maximum in σy as a function of σθ, and
following the contour along this line produces the profiled likelihood of σθ in the right panel.
The profiled likelihood goes through the joint mode, so that maximizing it is sufficient to
maximize the likelihood.

4 Profiled Posterior

Section 3 describes an approach to produce superior estimates of the modeled coefficient

covariance in a hierarchical model. In this section, we discuss how to efficiently derive the

maximum likelihood estimate and the possible priors that lead to similarly computationally

simple posteriors. This permits implementation of the bias-reducing penalty function, as

well as the application of priors to all of the model components for a more fully-Bayesian

solution.

4.1 Profiling

A profiled likelihood is one over several parameters, some of which have been optimized

analytically. Once a maximizer for one or more parameters has been derived, these estimators

can be plugged back into the likelihood and the resulting equation optimized instead.

Figure 5 demonstrates this phenomenon for a simple hierarchical model of the form of

section 2.2. The likelihood is a function of the three parameters µ, σθ, and σy, but by
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equation 4 the maximizer of this function in terms of µ is always the total average of the

data, ȳ. ȳ is plugged in, yielding a likelihood with µ profiled out. In turn, σy can be profiled

out although this time as a function of σθ. After these two steps a profiled likelihood over

only the hierarchical variance components remains.

4.2 General Model

For the simple model, the profiled likelihood of σθ can be solved directly. For the general

model of section 2.3 we will show that it is again possible to profile down to the hierarchical

variance but that numeric techniques are necessary thereafter.

To show this, we need first to derive the likelihood by integrating θ from the joint distri-

bution. That density is

p(y, θ; Σθ, β, σ
2
y) = (2πσ2

y)
−(N+Q)/2|Σθ|−1/2 exp

{
− 1

2σ2
y

[
‖y −Xβ − Zθ‖2 + θ>Σ−1

θ θ
]}

. (9)

Making the change of variables θ = Lθθ
′, where LθL

>
θ = Σθ is a Cholesky factorization

yields

p(y, θ′; Σθ, β, σ
2
y) = (2πσ2

y)
−(N+Q)/2 exp

{
− 1

2σ2
y

[
‖y −Xβ − ZLθθ′‖2 + ‖θ′‖2

]}

= (2πσ2
y)
−(N+Q)/2 exp

− 1

2σ2
y

∥∥∥∥∥∥∥
y

0

−
ZLθ X

IQ 0


θ′
β


∥∥∥∥∥∥∥

2 .

Writing the joint distribution in this fashion demonstrates that θ′ and β together enjoy the

standard role of coefficients in a linear model with an “augmented” design and response

matrix,

ZLθ X

IQ 0

 and

y
0

 respectively.

To integrate out θ′, we first opt to complete the square with regards to both θ′ and β, as
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their joint mode has subsequent utility. We denote these quantities as θ̃ and β̃ and they are

obtained in the standard fashion of inverting the crossproduct of the now augmented design

matrix, detailed in appendix section 12.3. This operation changes the joint distribution to

p(y, θ′; Σθ, β, σ
2
y) = (2πσ2

y)
−(N+Q)/2 exp

− 1

2σ2
y


θ′ − θ̃
β − β̃


> L>θ Z>ZLθ + IQ L>θ Z

>X

X>ZLθ X>X


θ′ − θ̃
β − β̃

+

∥∥∥∥∥∥∥
y

0

−
ZLθ X

IQ 0


θ̃
β̃


∥∥∥∥∥∥∥

2
 .

We now block-wise decompose the crossproduct of the augmented design matrix in the

following fashion. Let

LZL
>
Z = L>θ Z

>ZLθ + IQ,

LZX = X>ZLθL
−>
Z ,

LXL
>
X = X>X − LZXL>ZX .

so that  LZ 0

LZX LX


L>Z L>ZX

0 L>X

 =

L>θ Z>ZLθ + IQ L>θ Z
>X

X>ZLθ X>X

 .
LZ depends on Σθ, so if not for brevity we would write LZ(σθ).

Rotating θ′s covariance with β into its mean by letting µθ|β = θ̃−L−>Z L>ZX(β− β̃) yields
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p(y, θ; Σθ, β, σ
2
y) = (2πσ2

y)
−Q/2 exp

− 1

2σ2
y

θ′ − µθ|β
β − β̃


> LZL>Z 0

0 LXL
>
X


θ′ − µθ|β
β − β̃


×

(2πσ2
y)
−N/2 exp

− 1

2σ2
y

∥∥∥∥∥∥∥
y

0

−
ZLθ X

IQ 0


θ̃
β̃


∥∥∥∥∥∥∥

2 .

Finally, we arive at the likelihood which is:

p(y; Σθ, β, σ
2
y) = (2πσ2

y)
−N/2|LZ |−1 exp

{
− 1

2σ2
y

[
(β − β̃)>LXL

>
X(β − β̃)+∥∥∥∥∥∥∥

y
0

−
ZLθ X

IQ 0


θ̃
β̃


∥∥∥∥∥∥∥

2
 . (10)

Noting that y appears in the exponential as a quadratic, it must have a distribution that

is Gaussian. Taking its expected value and covariance yields the marginal model:

y ∼ N
(
Xβ, σ2

yIN + σ2
yZΣθZ

>) . (11)

4.3 Profiled Likelihood

Given the equation of the likelihood for the general model, it is possible to profile it. Direct

examination of (10) demonstrates that the global mode with respect to β is that of the joint

mode, β̃. Plugging in this produces the first-stage profiled equation

p(y; Σθ, β̂, σ
2
y) = (2πσ2

y)
−N/2|LZ |−1 exp

− 1

2σ2
y

∥∥∥∥∥∥∥
y

0

−
ZLθ X

IQ 0


θ̃
β̃


∥∥∥∥∥∥∥

2 .
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The mode in σ2
y can again be determined by inspection, namely σ̂2

y = 1
N

∥∥∥∥∥∥∥
y

0

−
ZLθ X

IQ 0


θ̃
β̃


∥∥∥∥∥∥∥

2

.

Finally, we obtain the profiled likelihood

p(y; Σθ, β̂, σ̂
2
y) =

(
2πσ̂2

y(σθ)
)−N/2 |LZ(σθ)|−1 e−N/2, (12)

where we have highlighted the dependencies on the free parameters of Σθ.

The derivation of this function hints at an efficient algorithm for calculating the maximum

likelihood estimate for the general model. For any value of σθ, first compute the joint mode

in θ′ and β, with a side effect of obtaining the maximal value of β. Use this mode to compute

the augmented sum of squared residuals and thus calculate the maximizer of σ2
y. Finally,

compute the profiled likelihood and use this in numerical optimization routine.

4.4 First Bayesian Extensions

Now that the general formula for profiling the likelihood has been outlined, it is possible

to consider extensions to the model. The application of various priors represent different

amounts of work, and here we discuss those those that can be applied with minimal additional

complexity. Other priors are considered in section 12.4 of the appendix.

As priors are successively applied to model components, it becomes important to em-

phasize the quantity of interest. For example, after placing a prior over β but not the other

parameters, the posterior distribution p(θ, β | y; Σθ, σ
2
y) represents a traditional Bayesian

estimand. Point estimation in this setting corresponds to estimating the posterior means of

θ, β, or E[(θ, β) | y; Σ̂θ, σ̂
2
y ].

Conversely, the “likelihood” could be redefined. Once β has been modeled, to be strictly

frequentist it should be integrated out from the joint distribution to yield p(y; Σθ, σ
2
y). For

linear coefficients there is justification for taking this integral - the family of Restricted

Maximum Likelihood (REML) estimates arise from applying and averaging β over flat prior.
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However, little precedent exists for doing similarly with the variance components so we tend

to avoid this approach. REML estimates are discussed in the appendix, also in section 12.4.

Alternatively, if the perspective of the penalized likelihood is accepted, then putting

a prior on β is equivalent to maximizing p(β | y; Σθ, σ
2
y) to find p(β̂ | y; Σ̂θ, σ̂

2
y). While

this hybrid quantity may be unusual to the Bayesian, it represents a stop-gap on the way

to a full posterior mode obtained by placing priors over all model components. It is this

penalized approach that we adopt, treating the marginal likelihood of equation 10 and model

of equation 11 as the fundamental objects.

Unmodeled Coefficients Priors

A Gaussian prior over β can be incorporated with minimial difficulty by treating it as

“pseudo data” and futher augmenting the design matrix. For example, if we assume that

β ∼ N(0, σ2
yΣβ) for Σβ known and LβL

>
β = Σβ, then the joint distribution becomes

p(y, θ, β; Σθ, σ
2
y) = (2πσ2

y)
−(N+Q+P )/2|Σβ|−1/2×

exp

{
− 1

2σ2
y

[
‖y −Xβ − ZLθθ′‖2 + θ>Σ−1

θ θ + β>Σ−1
β β
]}

.

Making the same change of variables to θ = Lθθ
′ yields

p(y, θ′, β; Σθ, σ
2
y) = (2πσ2

y)
−(N+Q+P )/2|Σβ|−1/2 exp

−
1

2σ2
y

∥∥∥∥∥∥∥∥∥∥


y

0

0

−

ZLθ X

0 L−1
β

IQ 0


θ′
β


∥∥∥∥∥∥∥∥∥∥

2 .

At this point, we procede as before with the differences that LXL
>
X is now set to X>X +

Σ−1
β −LZXL>ZX and that the degrees of freedom for σ2

y have increased. The marginal posterior

that is to be optimized is:
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p(β | y; Σθ, σ
2
y) ∝ (σ2

y)
−(N+P )/2|LZ |−1×

exp

−
1

2σ2
y

(β − β̃)>LXL
>
X(β − β̃) +

∥∥∥∥∥∥∥∥∥∥


y

0

0

−

ZLθ X

0 L−1
β

IQ 0


θ̃
β̃


∥∥∥∥∥∥∥∥∥∥

2
 ,

where θ̃ and β̃ are, as before, the joint mode.

This section highlights an unfortunate consequence of modeling the hierarchical variance

as being times the common scale, i.e. VAR(θ) = σ2
yΣθ, namely that how other compo-

nents are modeled now requires similar treatment or else the optimization problem becomes

considerably more difficult. If substantive knowledge about the distribution of β is to be

incorporated, say that the intercept has a standard deviation of 2 or correlation with a slope

of 0.2, to specify this requires knowledge of σ2
y . This can either be estimated, or in the ap-

pendix we consider how to relax this requirement and perform efficient numeric optimization

of σ2
y in an inner-loop.

Common Scale Priors

After substituting in the maximizer of unmodeled coefficients, the profiled likelihood as a

function of σ2
y is of the form:

(σ2
y)
−df/2e

− 1

2σ2y
S2

for “df” a degrees of freedom term and S2 a sum of squares. Taking the derivative of the

logarithm of this with respect to σ2
y yields a linear equation so that optimizing is straight-

forward.

A conjugate prior, σ2
y ∼ Inv −Gamma, again yields a linear optimization by adjusting

the degree of freedom and sum of squares by the shape and scale of the prior respectively.
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Specifically, if the shape of the prior is α and the scale is γ, then σ̂2
y = 1

df+2α+2
(S2 + 2γ).

For two additional prior distribution types optimization of the log-posterior is quadratic.

If σ2
y ∼ Gamma with a shape of α and a scale of γ, then the profiled log-posterior is of them

form:

(σ2
y)
−df/2+α−1 exp

{
− 1

2σ2
y

S2 −
σ2
y

γ

}
and the posterior mode of σ2

y is

σ̂2
y =

γ

4

(√
(df − 2α + 2)2 + 8S2/γ − (df − 2α + 2)

)
.

Treating the parameter as a standard deviation and placing an inverse gamma prior on

σy with shape α and scale γ also yields a quadratic optimization. The respective profiled

posterior and modes are:

(σ2
y)
−(df+α+1)/2 exp

{
− 1

2σ2
y

S2 − γ

σy

}
,

σ̂y =
γ +

√
γ2 + 4(df + α + 1)S2

2(df + α + 1)
.

Covariance Priors

The first concern in imposing a prior over the covariance of the modeled coefficients is that

Σθ is itself comprised of many submatrices, as outlined in section 2.3. For each grouping

factor in the model, a different prior can be used so that a prior over Σθ is really a collection

of priors over Σ1, . . . ,ΣK . How relationships between the levels can be modeled is a topic

for future work.

For the most part, placing a prior on any Σk is no more complicated than applying a

penalty function to the likelihood after the other parameters have been profiled out. The

profiled likelihood of equation 12 becomes
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p(Σθ | y; β̂, σ̂2
y) ∝ σ̂2

y(σθ)
−N/2|LZ(σθ)|−1p(Σθ).

As optimization typically proceeds numerically, one need only modify the result passed to

the optimizer to include the presence of the prior.

Modeling becomes slightly more difficult if substantive information about the distribution

of the covariance of the modeled coefficients is to be incorporated. As it appears in the

likelihood only as a covariance modulo the common scale, to impose a real-world valued

prior is equivalent to imposing a prior on both parameters.

For example, if Σ̃ = σ2
yΣ = σ2

yΣ1 is the absolute covariance of the modeled coefficients

for a model with a single grouping factor and of dimension Q = Q1, and furthermore it is

desired to model Σ̃ as having an inverse Wishart distribution with degrees of freedom ν and

scale matrix Φ, then posterior to be optimized is:

p(Σ̃ | y;σ2
y, β) ∝ (σ2

y)
−N/2|LZ |−1|Σ̃|−(ν+Q+1)/2 exp

{
−1

2
tr
(

ΦΣ̃−1
)}
×

exp

− 1

2σ2
y

(β − β̃)>LXL
>
X(β − β̃) +

∥∥∥∥∥∥∥
y

0

−
ZLθ X

IQ 0


θ
β


∥∥∥∥∥∥∥

 ,

= (σ2
y)
−(N+ν+Q+1)/2|LZ |−1|Σ|−(ν+Q+1)/2×

exp

− 1

2σ2
y

(β − β̃)>LXL
>
X(β − β̃) +

∥∥∥∥∥∥∥
y

0

−
ZLθ X

IQ 0


θ
β


∥∥∥∥∥∥∥+ tr

(
ΦΣ−1

)
 .

The essential point of this equation is that, when taken point-wise, an inverse Wishart

distribution on Σ̃ increases the degrees of freedom for σ2
y and adjusts its scale - a change

that is equivalent to an inverse gamma prior. Straightfoward profiling steps for priors on the

covariance of the modeled coefficients when not on the common scale exist only in the cases of

the preceeding section, namely if that matrix has an inverse or regular Wishart distribution.
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Modeled Coefficient Unmodeled Coefficients Common Scale
Covariance

Σk β σ2
y

p(Σk) arbitary β ∼ N(0, σ2
yΣβ) σ2

y ∼ Inv −Gamma
σy ∼ Inv −Gamma

Σ̃k = σ2
yΣk, σ2

y ∼ Gamma

Σ̃k
ind∼ Wish/Inv −Wish

Σ̃
1/2
k

ind∼ Inv −Wish

Table 2: Priors for hierarchical model components that present minimal complication for
profiled optimization.

Additionally, imposing an inverse Wishart on the matrix’s square root works as well. Finally,

as there may be more than one covariance matrix, when mixing and matching different kinds

of priors it is important to be careful to leave a straightforward optimization in σ2
y .

4.5 Summary

Table 2 condenses the results of the previous sections to those priors which can be applied

without drastically altering the approach. Choices are constrained by the necessity for

conjugacy that parameters have variances that factor in the common scale. This can be

easily relaxed only when the resulting prior leaves a linear or quadratic optimization in σ2
y.

In all cases, the profiling algorithm is given by:

1. Determine the maximizer of the joint density in (θ′, β) for θ = LZθ
′.

2. After plugging in the maximizer β̂, compute the mode in σ2
y. This will be either a

linear or quadratic optimization depending on the choices of priors.

3. Plug in σ̂2
y and numerically optimize over the resulting function.

4.6 Generalized Linear Hierarchical Models

In general, analytic profiling is impossible for generalized linear hierarchical models. There

is no direct benefit in including a common scale factor so it is not traditionally done, and
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for the unmodeled coefficients to have a simple maximizer requires an exponential form that

is quadratic - i.e. the simple linear hierarchical model. Consequently, optimization is done

over the entire parameter set after approximating the integral over the modeled coefficients

and the posterior is obtained by directly penalizing this function.
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5 Optimization Software

We have written a software package blme for the R programming language that does profiled

posterior maximization in hierarchical linear and generalized linear models. blme extends

the popular package lme4 by Bates et al. (2012).

5.1 Calling blmer

blme was designed to be familiar to users of lme4. A bmer S4 object extends the merMod class,

and consequently inherits all of the same functionality. Hierarchical linear models are fit

using the lmer function, while generalized linear models are fit with glmer. Fitting a model

in blmer is achieved by modifying a call to one of these two function with the addition of

several new arguments, or simply replicating the call and using the default priors.

The prototype for the blmer and bglmer functions are given below:

blmer(formula, data, REML = TRUE,

control = lmerControl(), start = NULL, verbose = 0L,

subset, weights, na.action, offset, contrasts = NULL,

devFunOnly = FALSE, cov.prior = wishart,

fixef.prior = NULL, resid.prior = NULL, ...)

bglmer(formula, data, family = gaussian,

control = glmerControl(), start = NULL, verbose = 0L,

nAGQ = 1L, subset, weights, na.action, offset,

contrasts = NULL, mustart, etastart,

devFunOnly = FALSE, cov.prior = wishart,

fixef.prior = NULL, ...)

All but the last lines are identical to the prototypes for lmer and glmer respectively.

The formats for the new arguments are all delayed function calls of syntax that will be

described below, but as an overview, the new arguments are:
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family restriction posterior options & defaults
mode

p(Σk) ∝ 1 none Σk none

gamma dim Σk = 1 σ2
k or shape = 2.5,

Σk := σ2
k σk rate = 0,

posterior.scale = 'sd',
common.scale = TRUE,

invgamma shape = 0.001,
scale = shape + 0.05,
posterior.scale = 'var',
common.scale = TRUE

wishart dim Σk > 1 Σk df = dim(sigma.k) + 2.5,
scale = Inf,
posterior.scale = 'cov',
common.scale = TRUE

invwishart df = level.dim + 1 - 0.02,
scale = diag(df + 1, level.dim),
posterior.scale = 'cov',
common.scale = TRUE

Table 3: Types, families, and options for priors on the covariance of the modeled coefficients.
Rates/scales are chosen so that the mode of the prior is at 100 for standard deviations and
104 for variances.

• cov.prior: priors on the covariance matrices of the modeled coefficients, Σθ. Applies

to calls to both blmer and bglmer.

• fixef.prior: a prior on the unmodeled regression coefficients, β. Also applies to both

functions.

• resid.prior: prior on the residual variance or common scale, σ2
y. Only applies to calls

to blmer as generalized linear models do not have this parameter.

As priors require hyperparameters of their own, we have adopted a delayed function

evaluation system so that they can be provided in the named-list syntax.

5.2 Covariance Priors

From an interface perspective, the principal difficulty in specifying a prior on Σθ is that there

are separately estimated covariance matrices for each of the K grouping factors. To afford

the user more flexibility, priors can be specified as a default that will apply to all grouping

factors or applied directly by the level name. To specify a prior that applies to a specific,

named grouping factor, one passes to blmer an argument conforming to the format:
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factor.name ~ distribution.name(options.list)

Conversely, to specify a default prior that should apply to all grouping factors, the correct

format is simply: distribution.name(options.list). The different prior types, options, and

defaults are enumerated in table 3 and described below

Specifying a direct, multivariate prior type with the default parameterization enables

that prior to apply to the univariate case as well. Conseqently, the Wishart can be used

to specify a Gamma distribution and the inverse-Wishart the inverse-Gamma, although this

implies that the posterior mode to be calculated on the variance scale.

blme permits fine tuning of the prior specification via a list of options placed in parentheses

subsequent to naming the prior type. For a direct prior, the options should consist of prior

parameters, such as the shape or scale of the distribution. For decompositions, the options

should specify the names of the families to be applied to the individual components. These

distributional families can be further controled in the same fashion as a directly-applied

prior.

The options for covariance priors are:

1. shape/df/scale/rate - standard parameters for named distributions

2. posterior.scale - whether or not the prior is on the scale of a standard devia-

tion/square root or a variance/covariance matrix, and consequently how the posterior

should be interpretted. In the univariate setting, this is a choice between 'sd' and

'var', while for the multivariate the options are named 'sqrt' and 'cov'

3. common.scale - TRUE or FALSE determining if the prior is to be interpretted modulo

residual variance or is specified in an absolute sense

5.3 Covariance Examples

For the purposes of illustrating the means by which a covariance prior is specified in blme,

suppose that we have data consisting of a single predictor and two grouping factors. The
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outcomes are stored in y, the predictor in x, and the grouping factors are g.1 and g.2.

Further suppose that it makes sense to model a different intercept for each of the different

groups in the first factor, while we expect the intercept and the slope to vary in the second.

Likelihood fit

To fit a model in lme4, one might call:

lmer(y ~ 1 + x + (1 | g.1) + (1 + x | g.2));

By default, blmer applies a prior to the covariance of the modeled coefficients, so to

recover the likelihood fit the following call must be used:

blmer(y ~ 1 + x + (1 | g.1) + (1 + x | g.2),

cov.prior = NULL);

Univariate, default prior, standard deviation scale

The following places a univariate prior on the standard deviation of the contributions to the

intercept for the first grouping factor:

blmer(y ~ 1 + x + (1 | g.1) + (1 + x | g.2),

cov.prior = gamma);

As gamma distributions are univariate, the prior does not extend to the second factor,

which instead receives no modeling. If a third grouping factor with a single varying coefficient

existsed, the gamma prior would apply to that as well.

Multivariate, default prior, variance scale

If we install a Wishart prior as a default, it will downgrade to a gamma for the univariate

case and consequently apply to the variances for groups 1 and 2.

blmer(y ~ 1 + x + (1 | g.1) + (1 + x | g.2),

cov.prior = wishart);
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Named grouping factors

We can mix the above by naming the grouping factors. We also change the prior on the first

group so that this differs from the previous example.

blmer(y ~ 1 + x + (1 | g.1) + (1 + x | g.2),

cov.prior = list(g.1 ~ invgamma, g.2 ~ wishart));

Default priors with options

For univariate families, it is easy to specify options for the default that will apply in more

than one case.

blmer(y ~ 1 + x + (1 | g.1) + (1 | g.2),

cov.prior = gamma(shape = 3, rate = 1,

posterior.scale = 'var'));

Expressions as parameters

Finally, the function to create a prior is evaluated in the environment that calls blmer. It is

thus possible to pass in variables or entire computations.

test.covar <- rwish(df = 3, scale = diag(2));

blmer(y ~ 1 + x + (1 | g.1) + (1 + x | g.2),

cov.prior = g.2 ~ wishart(scale = test.covar)));

A few variables are defined for when expressions are evaluated, so that complex defaults

can be defined. These include

• level.dim - dimension of Σk, or how many items varying at the kth grouping factor.

• n/n.obs - number of observations

• p/n.fixef - number of unmodeled coefficients
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In addition, as the priors are created by function calls, it is possible for arguments to

refer to each other. For the priors above, these include

• gamma - shape and rate

• invgamma - shape and scale

• wishart - df and scale

• invwishart - df and scale

For example, to change the default degrees of freedom for the Wishart:

blmer(y ~ 1 + x + (1 | g.1) + (1 + x | g.2),

cov.prior = wishart(df = level.dim + 2));

5.4 Unmodeled Coefficient Priors

At present, only two different types of priors exist for priors on the unmodeled coefficients, the

flat prior and multivariate normal. In the future, the addition of t priors may be investigated.

Unmodeled coefficient priors are specified in similar fashion to those over covariance

matrices - by character strings containing a named distribution with an optional named-list

of hyper parameters. That is, by passing the fixef.prior argument to blmer or bglmer a

string containing:

family.name(options.list)

A normal prior has the following options:

1. common.scale - true or false, depending on whether or not the prior’s covariance should

be multiplied by the common scale factor, σ2
y, when it exists
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2. sd - either a single value to be used for all unmodeled coefficients, a vector with two

values where the first is for the intercept and the second is replicated for all slopes,

or a vector of length equal to the number of unmodeled coefficients that contains the

standard deviations for each coefficient

3. cov - largely equivalent to the sd option but can also be used to specify a full matrix

The default is a normal prior with a standard deviation of 10 for the intercept and 2.5

for all slopes, that is then multiplied by the common scale and scaled further by the data.

If the prior is not on the common scale, as discussed in section 4.4 and the appendix 12.4,

profiling the common scale requires numeric techniques.

By default lmer peforms restricted maximum likelihood, or REML estimation. This is

equivalent to imposing a flat prior on the unmodeled coefficients and integrating them out

of the likelihood. If the REML option stays at the default and a Gaussian prior is used, the

integration will still take place. If this is undesirable, pass the argument of REML = FALSE to

blmer.

Example

An example demonstrating most of the options for a normal prior is:

blmer(y ~ 1 + x + (1 | g.1) + (1 + x | g.2), REML = FALSE,

fixef.prior = normal(cov = diag(c(8^2, 2^2)),

common.scale = FALSE));

5.5 Common Scale Priors

Common scale priors follow the formula above, specified by giving a text string of the form:

family.name(options.list). Potential family names are specified in table 4. Note that, in

accordance with the discussion of section 4.4, imposing a gamma prior on σy without setting

the rate to 0 will result in a non-trivial profiling step.
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family options & defaults

none none
gamma shape = 0,

rate = 0,
posterior.scale = 'var'

invgamma shape = 0,
scale = 0,
posterior.scale = 'var'

point value = 1.0,
posterior.scale = 'sd'

Table 4: Families and options for priors on the residual variance parameter/common scale,
σ2
y.
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6 Covariance Priors Compared

In this section we consider real and simulated data sets under a variety of priors on the

covariance of the modeled coefficients. Lambert et al. (2005) made a similar comparison

for hierarchical models when fit using MCMC, and this is designed to serve a similar role

for the posterior mode setting. As that analysis was done for meta-analysis in which the

residual variance, σ2
y is known, we first operate under those assumptions. The question of

using REML estimates with covariance penalties has not yet satisfactorily been addressed,

so we also make an initial investigation into that direction.

Our main goal in this analysis is to provide practical advice for the fitting of hierarchical

models. In connection with the preceeding results, we focus primarily on point estimation.

However, as future sections are concerned with uncertainty estimation, we include some

results on posterior credible intervals as well.

The main results of the investigation can be broken down into cases. When it is plausible

that the variance of the modeled coefficients is close to 0, maximum likelihood or restricted

ML (REML) produce perfectly adequate point estimates. No prior tested produces an ad-

equate credible interval in this scenario, and further investigation is required. When 0

estimates are unacceptable or it is believed that the variance is positive, the gamma family

of priors that penalize by σα−1
θ , for α between 2 and 3 either reduce the bias or at least

make it positive, so that they enable conservative inference. The various priors based on the

notion of shrinkage or Jeffrey’s invariance do a good job capturing the uncertainty for large

parameter values, but some additional work is necessary with regards to the behavior near

the origin. Finally, REML estimates are in general superior to maximum likelihood, however

they are not sufficient to remove the downward bias nor necessarily pull the estimate away

from the boundary.
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6.1 Prior Scale

Before any comparison can be made, the issue of prior and posterior scaling needs to be

addressed. For example, in the study done by Lambert uniform priors are compared when

applied to the logarithm of the modeled coefficient variance, the variance itself, and to

the square root/standard deviation. In order to make the results of the various priors

comparable, the posteriors are all computed in the same parameterization. When using

MCMC, this happens automatically: a Markov chain producing samples from the posterior

σθ | y can be transformed to one sampling from σ2
θ | y by simply squaring the samples.

The situation for maximization is slightly more complicated. In general, the posterior

mode under a prior on one scale cannot simply be transformed to obtain the posterior mode

under another. Consider a simple hierarchical model with a prior on p(σ2
θ) on the variance

scale. The function which is numerically optimized, the log profiled posterior, is:

log p(σ2
θ | y) ∝ l(σ2

θ) + log p(σ2
θ).

To obtain a posterior mode for the standard deviation we would need to multiply by a term

corresponding to a change of variables and instead be plugging in values to the equation:

log p(σθ | y) ∝ l
(
(σθ)

2
)

+ log p
(
(σθ)

2
)

+ log σθ.

From the perspective of usable software, it would be awkward if the supposedly optimal

variance is not the square of the best standard deviation, not to mention the computational

costs incurred by having to optimize a new set of equations for every desired transformation.

With this in mind, we opt to express all priors in a common parameterization and focus

on the functional form of the penalty term. While treating all priors on the scale of standard

deviation has an intuitively understandable appeal, we opt for variances as they enable future

comparisons in higher dimensions.

One side-effect of this treatment is that a prior that was originally expressed on the scale
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study log odds-ratio standard error
1 -0.05 0.45
2 -0.22 0.29
3 1.02 0.52
4 0.96 0.27
5 0.42 0.24

Table 5: Log odds ratios for a meta-analysis of 5 studies on the rate of failure when comparing
two treatment regimes and their associated standard errors.

of a standard deviation may become unusuable when transformed to a prior on a variance.

This is particularly true of the half-distributions, such as half-Cauchy or half-normal. Those

distributions limit to a finite point at 0, but after including the Jacobian of the transformation

behave like 1/σθ near the origin. To circumvent this, we assume that it was the functional

form itself that recommended these priors to their supporters and include them without the

change-of-variables adjustment. This is backed up by the subsequent results, which were of

a uniformly inferior quality when the priors were interpretted literally.

Finally, while Lambert includes a variety of uniform priors on different scales, the above

discussion demonstrates that these will all produce identical results - assuming that the

maximum of the likelihood is not too extreme. As our primary goal is to investigate priors

with universal applicability, we omit uniform priors or consider their unbounded, transformed

versions instead.

6.2 Meta-Analysis Study

Lambert et al. (2005) start with a meta-analysis study of log-odds ratio data for failure

between two treatment regimes taken from Glasziou et al. (2004). The data are reproduced

in table 5. The model used is:

39



yj | θj
ind∼ N(θj, σ

2
y,j), j = 1, . . . , 5,

θj
iid∼ N(µ, σ2

θ),

µ ∼ N(0, 1002),

with p(σ2
θ) taking on different forms and σ2

y,j known.

In the original work, 13 different priors were implemented. Draws from the joint posterior

of σ2
θ and µ were obtained for each by using the BUGS program, which implements a Gibbs

sampler (Spiegelhalter et al., 1996). Point estimates and 95% credible intervals for µ and σθ

were created from these samples by taking their mean and using empirical quantiles.

Taking inspiration from Lambert et al. and various other works in the hierarchical model

literature, we selected 12 priors of our own which are subsequently described. For each, we

calculate the joint posterior mode for µ and σ2
θ . To obtain uncertainty estimates, we use

a slice-sampler on the marginal posterior of σ2
θ | y. As such, the width of intervals should

be directly comparable to Lambert et al.’s analysis when the priors are the same. In fact,

those samples could be used to find the posterior mean which would then make the point

estimates comparable as well.

This raises the issue that many of the priors tested were originally recommended for their

utility in full-posterior estimation. As such, there is no expectation that they will be useful

in maximization - in fact, the opposite supposition is more likely. We include these priors

here to provide some continuity with previous work and to hopefully gain insight into what

an optimal prior might look like.

Priors

Prior 0
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Figure 6: From left to right, top to bottom: priors, “likelihood” (profiled posterior under
flat prior), and profiled posterior of σ2

θ , µ̂ | y for priors 1 through 12 in the meta-analysis
study of section 6.2. The horizontal scale is that of a variance, so that the priors are
characterized by their penalty terms. The vertical axis is taken so that the visible graph
integrates approximately to 1.

p(σ2
θ) ∝ 1

We start with a “flat” prior corresponding to no penalty or maximum likelihood. This is

also equivalent to a uniform prior on the variance scale, except that it does not arbitrarily

exclude extreme parameters values. It produces a proper posterior given that there are more

than 2 groups, and thus is a perfectly valid option for consideration. Being proportional to

the likelihood (rather, here the posterior µ | y;σ2
θ), it also represents a baseline on which

every other prior must operate.
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Prior 1

p(σ2
θ) ∝

(
σ2
θ

)−(0.001+1)
e
− 0.001

σ2
θ

This corresponds to an inverse-gamma distribution on the variance scale and also results

from rescaling a gamma prior on the precision scale. It is notable for being used in Win-

BUGS examples (Spiegelhalter et al., 1995), and can be considered an example of the inverse

gamma (ε, ε) family in which both hyperparameters are the same. The prior technically goes

to 0 at the origin, but has a large amount of probability density on small values of σ2
θ .

Prior 2

p(σ2
θ) ∝

(
σ2
θ

)−(0.1+1)
e
− 0.1

σ2
θ

This is a simple variant on the first prior, included by Lambert et al. as a test of the inverse-

gamma’s sensitivity to its hyperparameters. For simulated data, it is particularly useful as

it demonstrates how the two tails of the distribution impact the posterior, as the true value

moves above and below the prior mode.

Prior 3

p(σ2
θ) ∝ 1/σ2

θ

A standard non-informative prior for variance components in simple linear models, it has

been noted to yield improper posteriors if there are an insufficient number of groups (Du-

Mouchel and Waternaux, 1992). It arises from a uniform prior on the scale of the logarithm

of the variance/standard deviation. It is the only prior considered here that is not bounded

near 0, and is included largely as a cautionary tale.
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Prior 4

p(σ2
θ) ∝ e−

1
2

σ2θ
102

A gamma prior on σ2
θ (shape = 1, scale = 200), it also corresponds to placing a half-normal

distribution on σθ centered at 0 with a standard deviation of 10 and then ignoring the Ja-

cobian. Given that it is effectively flat near the origin, it should have little impact on point

estimation. However, the tails of the distribution may be useful in penalizing large estimates,

provided external knowledge exists.

Prior 5

p(σ2
θ) ∝ e−

1
2
σ2
θ

A variant on the previous, it arises from a half-normal distribution on σθ with a variance of

1. While of little practical use as a default for optimization, the shape of the tail plays a

role in sampling.

Prior 6

p(σ2
θ) ∝

h

(h+ σθ)2

where h2 = J/
∑
σ−2
j is the harmonic mean of the observed variances. This is equivalent

to a log-logistic distribution on the standard deviation and has been used by DuMouchel

and Normand (2000). While not deriving from any formal source it has the advantage of a

proven track record.

Prior 7
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p(σ2
θ) ∝

h2

(h2 + σ2
θ)

2

with h as defined in prior 6.

This is an approximate uniform shrinkage prior. In the empirical-Bayes literature, the

hierarchical structure “shrinks” the estimate of a group’s mean towards the prior mean. The

estimate of any θj is taken from the posterior mean of θj | y, which has the form of a weighted

average between prior and data means:

E(θj | y) =
σ2
θ

σ2
y,j + σ2

θ

yj +
σ2
y,j

σ2
y,j + σ2

θ

µ

When all σ2
y,j are equal, placing a uniform (0, 1) prior on the coefficent of the prior mean

and transforming to the variance scale yields the uniform shrinkage prior. The use of the

harmonic mean for unequal variances is suggested by DuMouchel (1994) and the form itself

appears in a work by Daniels (1999).

Prior 8

p(σ2
θ) ∝

J∏
j=1

1(
σ2
y,j + σ2

θ

)1/J

A variant on the Jeffrey’s prior -to which it reduces if σy,j are all equal - it was discussed

by Berger and Deely (1988).

Prior 9

p(σ2
θ) ∝

(
1 +

σ2
θ

102

)−1

The half-Cauchy prior on the standard deviation of the modeled coefficients is recom-

mended by Gelman (2006). There it appears with a scale of 25, which unnecessarily vague
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for the standard errors here.

Prior 10

p(σ2
θ) ∝ σ

3/2
θ

An improper gamma distribution on the variance with a shape of 7/4, and our recom-

mendation from section 3. It also corresponds to an improper gamma prior on σθ with a

shape of 1.5.

Priors 11 and 12

To test the sensitivity of the gamma to its shape parameter and the impact of using an

improper prior, we include the following:

p(σ2
θ) ∝ σθ

p(σ2
θ) ∝ σ

3/2
θ e−σ

2
θ/100

The first is equivalent to a gamma prior on the scale of σθ with a shape of 2, while the second

is a vaguely proper version of prior 10.

Methods

For each of the 12 priors above, as well as the likelihood, the joint posterior mode of σ2
θ , µ | y

was calculated by numeric optimization. For priors that are directly supported by blme, it

was used without modification by fixing the residual standard deviation to 1 with a point

prior, apply a Gaussian to the unmodeled coefficient, and adding observation weights equal

to the inverse of the study’s squared standard error.

As when the residual standard deviation is known a prior on the covariance of the modeled

coefficients influences the estimating equation strictly as a penalty, it is possible to use blmer
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to calculate the likelihood portion directly (here, actually p(µ | y;σ2
θ)). Wrapping this in a

function that includes the penalty term permits numeric optimization, and was completed

using a quasi-Newton method. For some data sets, the likelihood can contain multiple

extrema with one at 0. blmer contains an automatic correction for this scenario, but to

prevent the generic optimizer from getting stuck starting values were used that were either

the true value or obtained from other, similar methods.

To obtain uncertainty estimates, a slice sampler was implemented and used on the

marginal posterior of σ2
θ | y, obtained by integrating out µ from the joint. When the

joint mode of σ2
θ was away from 0, samples were obtained from the marginal posterior of

log σ2
θ instead. The number of iterations varied depending on the context, but in all cases

a burn-in of 100 samples was used. Once samples of σ2
θ were obtained, µ | y, σ2

θ was drawn

directly. Posterior 95% credible intervals for each parameter were obtained by looking at the

empirical quantiles of the samples.

Results

Figure 7 shows the point estimates and 95% credible intervals for the various priors in the

meta analysis study. Intervals were based on the empirical quantiles of 500 samples.

While the prior on σ2
θ has little impact on the point estimate of the log-odds ratio µ, the

uncertainty in the posterior over the first parameter translates into significant variation in

the posterior over the second. Accurate estimation of the uncertainty in σ2
θ is important not

just for its owns sake, but also because it may change the statistical significance of the rest

of the model.

Furthermore, the choice of prior had significant impact on the posterior mode. In the

original study, priors uniform on the variance scale produced posterior means around 0.8,

while ones uniform on the standard deviation scale were close to 0.5. Here, with the exception

of the gamma family priors (10-12), the inverse gamma with a small prior mode (1), and prior

3, most of the modes are tightly distributed around a between study standard deviation of
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Figure 7: From left to right: point estimates and 95% credible intervals for the grand mean
parameter µ and the modeled coefficient standard deviation, σθ, for the meta-analysis study
of section 6.2. Error bars for the mean extending beyond the plot range are (−2.0, 2.7) for
prior 0, (−39, 53) for 10, (−6.6, 9.3) for 11, and (−3.2, 4.2) for 12. Unplotted upper bounds
for the standard deviation are 8.2 for prior 0, 288 for 10, 34 for 11, and 11 for 12. Draws from
the posterior under prior 3 were unable to be obtained in a reasonable amount of time, as
the sampler got stuck near the origin. For this case, we assume that every posterior sample
is 0 and build intervals accordingly.

0.5. We forgo discussion of the subjective quality of these results for the following objective

comparison using simulated data, but this roughly shows how to obtain an modal estimate

close to a mean estimate for different priors.

6.3 Meta-Analysis Simulation

Again following Lambert et al. (2005), we conduct a simulation study of meta-analyses,

varying the number of studies and the between study standard deviation. For each of σθ =

0.001, 0.3, or 0.8 and each of J = 5, 10, or 30, data are generated according to the following

model:
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θj
iid∼ N(0, σ2

θ) j = 1, . . . , J,

logit(p0j) = 0,

logit(p1j) = µ+ θj,

r0j ∼ Bin(n0j, p0j),

r1j ∼ Bin(n1j, p1j),

yj = log
r1j/(n1j − r1j)

r0j/(n0j − r0j)
,

σy,j =

√
1

r0j

+
1

n0j − r0j

+
1

r1j

+
1

n1j − r1j

,

where µ = 0.323. The number of subjects per trial runs from 100 to 500 in 100 unit

increments, as per the original design. As it was not specified, we split subjects evenly

between the two treatment arms so that nkj varies from 50 to 250. The data represent

various experimental runs with similar, but varying probabilities of “successes” or events.

Hierarchical linear models are fit to the resulting log-odds ratios, weighted by the inverse of

the squares of the estimated standard errors.

For each experimental condition, 1000 data sets were generated. For each data set, and

for each prior from 0 to 12 above, the profiled posterior mode of σ2
θ , µ | y was calculated.

Additionally, 200 simulations were drawn from the marginal posterior of σ2
θ | y using a slice

sampler, again using a 100 sample burn-in. As before, the empirical quantiles of these were

transformed into a 95% credible interval for σθ, and the samples themselves used to do similar

for µ.

Sampling Distributions

To assess the bias and variability in the estimates, the modes themselves were recorded for

each of the 1000 simulations. Figure 8 summarizes the point estimates for the underlying log-
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Figure 8: Sampling distributions of µ̂ under the various experimental conditions of section
6.3. The points are the mean of posterior modes for 1000 simulated data sets and are an
estimate of its expected value. The error bars are empirical 95% intervals. The gray dotted
line at 0.383 corresponds to the true value of µ.

odds ratio across all experimental conditions and various priors, while figure 9 does similar

for the between study standard deviation. Corresponding with the results of Lambert et

al., regardless of estimation technique, µ̂ appears to be relatively stable. Furthermore, the

various gamma priors significantly reduce the bias in the estimate when the true between-

study standard deviation is away from the boundary. Note that these graphs show the

sampling distributions of estimates under the model, and not what any individual fit says

about the uncertainty in the parameter.

The poor performance of the inverse gamma priors, priors 1 and 2, highlight a major
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Figure 9: Similar to figure 8, the sampling distributions of σ̂θ under the various experimental
conditions. The gray dotted lines correspond to the true values of σθ.

drawback to their use and echoes the concerns of Gelman (2006). For small values of the

parameter, the prior decreases to 0 at a rate faster than that for which the likelihood can

compensate. Figure 10 shows this effect up close, wherein the maximizer of the likelihood

is on a strongly negative slope of the prior. Increasing the certainty of the 0 estimate, e.g.

increasing the number of studies, has little effect so that to use an inverse gamma prior is to

effectively specify a soft minumum for the between study standard deviation. Were that the

only effect the prior might have its uses, but it also exhibits a strong pull when the likelihood

peaks to the right of the prior mode.
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Figure 10: Prior, profiled likelihood, and posterior for 3 simulation runs of section 6.3 with
σθ = 0.001, J = 5, and prior 2 (σ2

θ ∼ Γ−1(0.1, 0.1)). The vertical axis is scaled so that
the likelihood and posterior integrate to 1, while the prior is 10 times the density so as to
facilitate visual comparison.

Posterior Uncertainty

Figures 11 and 12 show the coverage rates and average interval widths for 95% intervals for

the parameters based off of the posterior samples under various priors.

The results raise a few issues. The first of which is that the only prior to obtain any

coverage for the case in which σθ = 0.001 was the otherwise-unusuable p(σ2
θ) ∝ 1/σ2

θ . In

order for central 95% intervals to capture this value, a full 2.5% of the probability mass for

a posterior would have to lie to the left of 0.0012. To build intervals that are valid for values

close to or at 0, the posterior should include some positive probability of generating 0, and

hence a “spike and slab” style prior might be appropriate.

For the case where the true between study standard deviation is away from 0, we see a

clustering of sorts among the various priors:

• The “flat” priors, including the likelihood (0), the half-normal with standard deviation

10 (4), and the half-Cauchy (9) all tend to miss-estimate the variability in σθ for small

sample sizes. Analysis of the intervals shows that they tend to encapsulate values that

are too large, i.e. when the value σθ lies outside of the interval it does so more often

on the left.

• The gamma family priors (10-12) all significantly over-estimate the probability of large
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Figure 11: Coverage rates and average interval widths for 95% credible intervals for the true
log-odds ratio, µ, as the number of groups increases in the simulation study of section 6.3.

values of the between study standard deviation. Poor coverage in small samples for σθ

is obtained due to large tails of the posterior pulling the bulk of probability mass far

away from 0. For the log-odds ratio, this over-estimation yields overly-wide intervals

and excessive coverage probability.

• The various subjective priors, including the half-normal with standard deviation 1 (5),

inverse gammas (1 and 2) can all be situationally useful but in the general case caution

must be exercised.

• Approaches based around Jeffrey’s and the uniform shrinkage priors (6, 7, and 8) all

enjoy superior coverage for both model parameters.

To further illustrate these points, figure 13 shows the marginal posteriors for select priors

using multiple draws from the model.
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Figure 12: Coverage rates and average interval widths for 95% credible intervals for the true
between study standard deviation, σθ, as the number of groups increases. The only prior to
achieve any coverage when σθ was 0.001 was p(σ2

θ) ∝ 1/σ2
θ , so that plot was suppressed.

6.4 Restricted Maximum Likelihood

The restricted maximum likelihood (REML) method for fitting hierarchical models incorpo-

rates a penalty term that corresponds to the estimation of the unmodeled coefficients, β, and

serves to reduce the bias in the estimation of the residual variance, σ2
y (Lindstrom and Bates,

1990; Harville, 1974). A side effect of using REML is that the penalty also reduces the bias

in estimation of σ2
θ . Penalties being equivalent to priors, here we broaden our comparison to

include the REML estimate. Replacing the maximization step for µ with integration in the

proof of theorem 1 shows that the REML estimate is also biased downward. Given this and

the correcting tendencies of the improper gamma prior we include that as a baseline.

The REML penalty itself can be seen as arising from an integration of the modeled
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Figure 13: 20 draws from the marginal posterior corresponding to the simulation of section
6.3 for priors representative of different approaches in hierarchical modeling.

coefficients out of the likelihood using a flat prior. For the general model of section 2.3, as

well as adjusting the degrees of freedom this introduces the normalizing constant:

∣∣∣X> (I + ZΣθZ
>)−1

X
∣∣∣ .

In fact, directly adding this term and including the prior p(σ2
y) ∝ σPy yields a model with an

identical mode, albeit a different interpretation.

As before, we conduct a simulation study. Here, our main interest is point estimation

so we forgo addressing the impact of REML on posterior credible intervals. We consider 5

different models:

1. ML - maximum likelihood

2. REML - restricted maximum likelihood

3. σθ - ML penalized by p(σ2
θ) ∝ σθ

4. σθ + REML - REML penalized by p(σ2
θ) ∝ σθ

5. σθ + DF - ML penalized by p(σ2
θ) ∝ σθ, but also the degree of freedom adjustment

p(σ2
y) ∝ σPy
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While the REML estimate can be computed for a meta-analysis, it primarily is used when

σ2
y is unknown. Thus, we move away from the meta-analysis scenario in our simulations to

a full-fledged hierarchical linear model and now include two additional axes of variation:

a within group sample size that largely determines the accuracy in estimating of σ2
y , and

additional linear coefficients that serve to introduce bias. The data generating model is a

limited expansion of the balanced case from section 2.2 and is given by:

yij | θj
ind∼ N(β1 + xi1β2 + · · · xiPβP + θj, σ

2
y) i = 1, . . . , N,

θj
iid∼ N(0, σ2

yσ
2
θ) j = 1, . . . , J.

As before, J is one of 5, 10, or 30 and σθ is one of 0.001, 0.3, or 0.8. n takes on values

5, 10, or 30 as well, while P can be 2, 4, or 6. σy is fixed at 1, as any change to it will

only linearly scale the results. Finally, β itself takes on the first P values of the vector

(0.5,−0.5, 0.1, 1,−1.25,−1.5). For each simulation setting, 300 data sets were generated.

Each covariate was drawn as i.i.d. standard normals. The five different models all were fit

directly by blmer and the estimates of the parameters recorded.

The average of the point estimates of σθ over simulation runs are presented in figures 14

through 16. For the most part, the estimates follow a strict ordering across all simulation

settings. Furthermore, when σθ is positive the REML estimate is in general negatively

biased, while the various σθ penalized estimates are show a positive bias. A similar kind of

ordering takes place for σy. The use of the degree of freedom correction in prior 5 seems to

have a significant impact on any given estimate estimate of β, however it does not appear

to introduce any bias. Representative plots for these parameters are shown in figure 17.
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6.5 Recommendations

Point Estimation

For the purposes of point estimation, when the true hierarchical/modeled coefficient variation

is 0 the best course of action is naturally to fix the parameter to that value and drop the

corresponding coefficients from the model. This situation being unknowable, when 0 is

both acceptable and plausible there is little reason to prefer an alternative to the maximum

likelihood estimator. If estimating the residual standard deviation in an unbiased fashion is

also important, the restricted maximum likelihood estimator recommends itself.

However, as soon as the 0 variance estimate becomes implausible or impractial, an im-

proper gamma prior can serve to reduce the bias in the estimate of the modeled coefficient

variance. Shape parameters producing priors between p(σ2
θ) ∝ σθ and p(σ2

θ) ∝ σ1.5
θ are all

viable. Borrowing the notion from REML estimation that it is important to compensate

for a loss in degrees of freedom leads to further improvement. Combining this with our

generalization to the Wishart in section 3.3, we recommend the following default prior

p(Σ1, . . . ,Σk, σ
2
y) ∝ σPy

K∏
k=1

|Σk|ν/2,

where P is the number of unmodeled coefficients and ν is between 1 and 1.5. Setting ν to

1 is not enough to guarantee a conservative estimate, while the result of setting ν to 1.5 is

often too much so.

Interval Estimation

With regards to interval estimation, the situation becomes murkier. In the context of a single

varying coefficient and a meta-analysis, the approximate uniform shrinkage prior, Jeffrey’s,

or DuMouchel and Normand’s all yield reasonably accurate intervals when the true standard

variance is away from the boundary. In order to come up with a “one-size fits all” approach,

the following issues have to be addressed:
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• multiple varying coefficients at any level

• multiple levels of variation

• having a positive probability of 0 in the posterior, not just positive density

The following sections detail an approximation that enables the efficien sampling from

the posterior of an arbitrary hierarchical linear model under a flat prior. This will hopefully

serve as a first step, as any prior can be tacked onto the approximation and the efficiency

gains preserved.

For discussion on possible multivariate priors, Natarajan and Kass (2000) construct an

approximate uniform shrinkage and an approximate Jeffrey’s prior. They subsequently rec-

ommend the use of an inverse Wishart distribution using the covariates to set the scale (Kass

and Natarajan, 2006). Huang and Wand (2013) generalize the inverse Wishart by using a

mixture of scale parameters.
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Figure 14: Average of point estimates for the standard deviation of the modeled coefficients,
σθ, corresponding to the simulation of section 6.4. For this set of results, the true value is
σθ = 0.001, and is highlighted by the dotted red line. At number of groups equal to 5, 10,
and 30, the line is estimated using 300 randomly generated data sets.
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Figure 15: Average of point estimates of σθ for when the true value, highlighted in red, is
σθ = 0.3.
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Figure 16: Average of point estimates of σθ for when the true value, highlighted in red, is
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7 Marginal Posterior/Simulation

Simulations from posterior distributions of parameters are a convenient way to assess uncer-

tainty in a model fit, while marginal posteriors are a low-cost way to derive such simulations.

Here we discuss both concepts and consider their application to the simple hierarchical linear

model of section 2.2 under flat priors on the parameters.

7.1 Overview

The traditional Bayesian estimand for data modeled parametrically is the entire posterior

distribution of the parameters given the data. That is, if y is the data, θ is a set of parameters,

y | θ has density p(y | θ), and θ has the prior p(θ), then the quantity of interest is the function

p(θ | y). This is typically summarized by some set of draws from this distribution, from which

further inferences can be made. For example, if θ is univariate and θ̃(1), . . . , θ̃(L) are L such

draws, then a 95% credible interval for θ is given by the empirical 95% quantiles of the

samples and an estimate of the posterior mean E[θ | y] is the average of the samples.

Considerable Bayesian literature exists concerning finding “non-informative” priors, so

that the prior is in some sense the least subjective and the posterior the most faithful to the

data. A good overview of the various principles or rules one might adopt in selecting a prior

is given by Kass and Wasserman (1996).

Once a prior has been chosen, and hence a posterior is calculable, marginalization repre-

sents a simple way to draw samples from the posterior when there is more than one parameter.

In the context of the simple hierarchical linear model, if one can obtain a draw from the

marginal posterior σ2
θ | y, it is possible to use this value to obtain a draw from σ2

y | y, σ2
θ .

In turn, it is possible to plug in this value as well to obtain a draw from µ | y, σ2
θ , σ

2
y, and

so forth. This sequence of samples combined is a draw from the full posterior distribu-

tion θ, µ, σ2
y, σ

2
θ | y and hence a complex, high-dimensional operation is reducible to simple

sampling operations.
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This procedure rests on being able to efficiently sample from some marginal posterior at

the end of a chain of integrals. The distribution that we have chosen is that of the covariance

of the modeled coefficients, Σθ in the general case. For hierarchical linear models, conditioned

on this covariance matrix the other parameters have simple distributions. For generalized

linear models, a Gaussian approximation can be used. The main complication in drawing

samples from this marginal posterior is largely due to the structure that the covariance has

as a function of its free parameters: in general, the marginal posterior does not seem to

match any known distribution.

Our approach is to approximate the marginal posterior using a class of distributions that

we develop. This class is inspired by results in the simplified model for which an exact

solution can be obtained, namely the beta prime distribution. A generalization of this, the

Matrix-Variate Beta Prime (MVBP), has similar tail behavior as the marginal posterior. To

provide a good approximation about the mode, both it and the second derivative at the mode

are matched to the target distribution, yielding the Curvature-adjusted Matrix-Variate Beta

Prime (CMVBP).

Once we have a high quality approximation, we can use ideas such as sampling/importance

resampling to obtain independent simulations from the full posterior, or any number of

Monte-Carlo based techniques if some degree of dependence is acceptable.

7.2 Simplified Model

As under an arbitrary hierarchical linear model the distribution of interest is unwieldy, we

first look to the simplified model of section 2.2 for inspiration.

The joint posterior density under flat priors has the same functional form as the joint

distribution of θ and y - that is equation 2. Integrating out θ from this function, we find

that the joint posterior of µ, σ2
y, σ

2
θ | y is proportional to the likelihood, equation 4. That is:
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p(µ, σ2
y, σ

2
θ | y) ∝ (σ2

y)
−N/2 (σ2

θ + 1/n
)−J/2×

exp

{
−1

2

1

σ2
y

∑
j

[∑
i

(yij − ȳj)2 +
1

σ2
θ + 1/n

(ȳj − µ)2

]}
.

To make the above more concise, we use our notation of S2
w =

∑
j

∑
i(yij − ȳj)2 as the

within-group sum of squares and S2
b =

∑
j(ȳj − ȳ)2 as the between-groups sum of squares.

After integrating out µ as a Gaussian we obtain:

p(σ2
y, σ

2
θ | y) ∝ (σ2

y)
−(N−1)/2

(
σ2
θ + 1/n

)−(J−1)/2
exp

{
−1

2

1

σ2
y

[
S2
w +

1

σ2
θ + 1/n

S2
b

]}
.

At this point, σ2
y can be integrated out as having an inverse gamma distribution. We

finally obtain, after some rearrangement,

p(σ2
θ | y) ∝ (σ2

θ + 1/n)(N−J)/2−1

(σ2
θ + 1/n+

S2
b

S2
w

)(N−1)/2−1
. (13)

7.3 Beta-Prime Distribution

The marginal posterior distribution can be identified as a shifted, truncated beta prime. As

n → ∞, the shift and truncation both vanish. The beta prime family is also known as a

Pearson Type VI or beta distribution of the second kind.

For our purposes, there are two key ways of thinking about a random variable with

such a distribution. The beta prime arises when one takes a random variable with a beta

distribution and divides it by 1 minus itself. Equivalently, the beta prime also arises as a

sample from an inverse gamma distribution whose scale is itself sampled from a gamma, or

to say a scale-mixture of inverse gammas. As this relates to the simple hierarchical model,
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Figure 18: a) Left - Comparison of inverse gamma with a shape parameter of 2 and a mode
of 1 (thick black line) and beta prime distributions (thin black and gray). For the beta
prime, the shape parameter at the inverse gamma level is fixed and the scale determined to
fix the mode at 1, while the remaining shape parameter, µ, varies. b) Right - 20 simulated
marginal posteriors, p(σ2

θ | y), for n = 5, J = 8 and σθ = σy = 1.

β ∼ beta

(
N − J

2
,
J − 1

2
− 1

)
,

σ2 =
S2
b

S2
w

β

1− β
,

σ2
θ | y = σ2 − 1/n given σ2 ≥ 1/n,

or,

γ ∼ gamma

(
N − J

2
, scale =

S2
b

S2
w

)
,

σ2 | γ ∼ inv − gamma

(
J − 1

2
− 1, scale = γ

)
,

σ2
θ | y = σ2 − 1/n given σ2 ≥ 1/n.

The first perspective is useful in mathematical proofs, as integrals over the marginal

posterior density can be related to the familiar form of the beta function. It also permits
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inverse-CDF sampling when desired. The second gives a simple, generalizable approach that

is useful when considering more complicated models. Figure 18a highlights the connection

with the inverse gamma, while part b shows several samples of the marginal posterior for

repetitions of a simulation study.

After having identified the marginal posterior, it can be noted that it will be proper

under mild conditions, namely that the sample size exceed the number of groups, and that

the number of groups is greater than 3.

7.4 Simplified Model Simulation Procedure

Given that we can sample directly from the marginal posterior in this case, that suggests

the following procedure to obtain samples from the full posterior:

0. Calculate the sums of squares, S2
w and S2

b .

1. Sample a scale γ from a gamma distribution with shape equal to (N − J)/2 and scale

equal to S2
b /S

2
w.

2. Sample σ2
θ | y by drawing from an inverse gamma distribution with shape equal to

(J − 1)/2− 1 and scale equal to γ. Subtract from this 1/n. If the result is less than or

equal to 0, go back to 1.

3. Sample a value of σ2
y | σ2

θ , y from an inverse gamma distribution with shape (N−1)/2−1

and scale 1
2

(S2
w + (σ2

θ + 1/n)−1S2
b ).

4. Sample µ | σ2
θ , σ

2
y, y as normal with mean ȳ and variance σ2

y(σ
2
θ + 1/n)/J .

5. Finally, sample each θj | σ2
θ , σ

2
y, µ, y as independently normal with a mean of (ȳj −

µ)
σ2
θ

σ2
θ+1/n

and a variance of
σ2
y

n

σ2
θ

σ2
θ+1/n

.

The last two steps can be easily combined by sampling µ and θ together from their jointly

normal, conditional posterior.

66



8 General Model Posterior Simulations

The results of the preceeding section let us to sample directly from the marginal posterior

in the simplified case and guarantee that the operation has a valid statistical interpretation

provided there are a sufficient number of observations. In order to do similar for the general

model, we derive the marginal posterior and several of its properties, after which we scale up

the beta prime generate a reasonable approximation. We can then pin this approximating

distribution so that it has the same mode as the marginal posterior, and adjust its second

derivative at the mode in the same fashion.

8.1 Marginal Posterior

Once again applying flat priors to the parameters, the marginal posterior of Σθ can be

obtained through a sequence of integrations. Starting with the likelihood in equation 10

we can proceed as in the simple model, first integrating out β as Gaussian and then σ2
y as

an inverse gamma. The details of this are in the appendix. The result, after some careful

rearrangements, is of the form:

p(Σθ | y) ∝ |Σ−1
θ |1/2∣∣Σ−1

θ + Z>(I−X(X>X)−1X>)Z
∣∣1/2×∥∥∥∥∥∥∥

y
0

−
 Z X

Σ
−1/2
θ 0


Z>Z + Σ−1

θ Z>X

X>Z X>X


−1 Z> Σ

−>/2
θ

X> 0


y

0


∥∥∥∥∥∥∥
−(n−p−2)

To make this expression cleaner and to assist analysis, we denote as Hx the matrix

that enables one to project a vector onto the column space of its subscript, e.g. HX =

X(X>X)−1X>. This is also known as the “hat” matrix. Let H⊥x = I−Hx be the orthogonal

complement to Hx. Furthermore, let ỹ be the augmented response vector, (y, 0), and X̃(σθ)

be the augmented design matrix above. Then we have:
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p(Σθ | y) ∝ |Σ−1
θ |1/2

|Σ−1
θ + Z>H⊥XZ|1/2

‖ỹ −HX̃(σθ)ỹ‖
−(n−p−2). (14)

At this point, the posterior is comprised of two distinct parts that we will refer to as, on

the left, a determinant term and on the right a sum of squared residuals term.

The residual term arises from projecting the vector ỹ onto the column space of the

augmented design, so it is bounded above by the sum of the squares of y and below by

a constant that is only zero if the observations are perfectly predictable - a measure 0 set

that we ignore. Taking limits as the eigenvalues of Σθ go to infinity show that it is the

determinant term that drives the behaviors in the tails of the distribution.

Considering this determinant term, it bears similarities to a simple generalization of the

beta prime distribution that we consider in the next section. The generalization would be

exactly equal to the determinant term if it were not for the complicated way in which Σθ

depends on its free parameters.

Finally, whether or not this marginal posterior is proper depends, in a non-trivial fashion,

on Z>H⊥XZ. Results from simulation show that the main criterion seems to be that there

are a sufficient number of groups at any level to estimate the number of varying coefficients.

Marginal Posterior Derivatives

In order to approximate the marginal posterior, we calculate the first and second derivatives

of its logarithm. We have opted for an analytic result due to our experience that there is

often little information about the components of Σθ, leading to poor numeric estimates. The

corresponding calculations are contained in the appendix, but we provide an overview due

to the wider applicability of some of the intermediate steps. Practically speaking the main

consequence is that we are able to obtain these matrices in an accurate and efficient fashion.

The derivatives are taken in two broad stages, the first corresponding to Σθ as an abstract

quantity and the second determining how the components of Σθ vary along with its free

parameters. For the first step, given any function f(Σθ), df/dΣθ follows directly from any
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suitable definition of a matrix derivative. Furthermore, the result is specific to the specific

marginal model and thus has little general applicability.

The second calculation, dΣθ/dσθ, depends only on the structure of Σθ and is consequently

a sparse matrix of 0s and 1s. To go from taking a derivative with respect to Σθ to one with

respect to σθ then involves multiplying by this matrix, which is equivalent to taking particular

summations of the elements of the former. This derivative can be used in any problem with

an equivalent matrix structure.

dΣθ/dσθ also procedes in stages. If “diag” is an operator constructing a block diagonal

matrix of its arguments, from the model specification we have that Σθ = diag (IJ1 ⊗ Σ1, . . . , IJK ⊗ ΣK).

To take a derivative with respect to each Kronecker product-block as a whole is relatively

straightforward. With the context of the model, this corresponds to taking a derivative of

the joint covariance with respect to the covariance of a grouping factor.

Within any grouping factor, by writing out the pattern of repetitions of the elements of

Σk, the appropriate pattern of 0s and 1s can be derived. Combining this with the above

then yields the derivative.

dΣθ/dσθ itself is a large, sparse matrix that could itself be coded up and multiplied di-

rectly. Obtaining the correct indicies for non-zeroes is largely a matter of careful calculation.

However, as multiplication by this matrix results in a summation, further simplification is

possible. Within the derivatives of the marginal posterior, two kinds of terms exist: Kro-

necker products of arbitrary matrices, A⊗ B, and the outer product of a vector, vv>. As a

final step in calculating the total derivative, we determine what summations are required to

compute [dΣθ/dσθ]
>(A ⊗ B)dΣθ/dσθ and [dΣθ/dσθ]

>vv>dΣθ/dσθ. This allows us to avoid

having to explicitly compute the Kronecker and outer products respectively.

8.2 Matrix-Variate Beta Prime

To approximate the marginal posterior, we generalize the beta prime distribution to the class

of covariance matrices by utilizing the scale-mixture of inverse-gammas interpretation. After
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having done so we consider a change of variables that permits us to generate samples with

the same mode and second derivative at the mode as the marginal posterior.

Definition

Much as the beta prime distribution can be seen as a scale mixture of inverse-gamma random

variables, a generalization of the beta prime distribution can be given by a scale mixture of

inverse Wishart random variables. An early instance and generalization of this distribution

is given by Mathai (2005). If Σ̃ is a d× d covariance matrix and

Σ̃ | Ψ ∼ inv −Wishart (ν, scale = Ψ) ,

Ψ ∼Wishart (µ, scale = C) ,

then

p(Σ̃) =
|Σ̃−1|(ν+d+1)/2

|Σ̃−1 + C−1|(ν+µ)/2

1

|C|µ/2Bd(ν/2, µ/2)
.

In this last expression, the normalizing constant is a multivariate generalization of the beta

function, Bd(a, b) = Γd(a)Γd(b)/Γd(a+ b). Γd(a) is the normalizing constant for the Wishart

distribution, the multivariate gamma function. We call a random covariance matrix with

this density a Matrix-Variate Beta Prime (MVPB).

Figure 19 shows the marginal distributions over the variances and the correlation induced

by an MVBP. The two degrees of freedom parameters permit more mass to be placed in the

tails of the distribution than the inverse Wishart otherwise allows. As the degrees of freedom

at the scale level (µ) go to infinity, the scale matrix itself is drawn with infinite precision

and the simple inverse Wishart is recovered.
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Figure 19: Marginal distributions of variances (left) and correlation (right) for the inverse
Wishart distribution and matrix-variate beta prime (MVBP). The inverse Wishart shown is
over a two dimensional covariance with a mode at the identity matrix and has three degrees
of freedom. The MVBP similarly has its mode at the identity and three degrees of freedom
at the inverse Wishart level (ν), but has varying degrees of freedom at the scale level (µ).

Matching the Marginal Posterior

In the following, we use the term “curvature” to refer to the second derivative of the log

density at its mode. In order to make the MVBP match the marginal posterior as closely as

possible, we match the two at their modes and adjust the curvature. By taking the gradient

of the log-density and setting it equal to the 0 vector, we find that the matrix-variate beta

prime is maximized at M = µ−d−1
ν+d+1

C. For convenience in matching modes we reparameterize

in terms of this matrix.

At this point, we would like to be able to set the curvature of the MVBP to that of the

marginal posterior at the mode and somehow solve the resulting equation. Setting aside for

the moment concerns over the parameterization of Σ as a covariance, the second derivative

of the log density is a d2× d2 matrix. Having fixed the mode at M , the MVBP has only two

free parameters with which to solve a system of d4 equations. To address this, we consider

a change of variables.

A curvature adjusting transformation for a random vector is any one such the second
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derivative of the log density at the mode is set to a specific matrix. This broad category

of transformations can be limited by a sequence of assumptions, in practice generally being

reduced to a linear function. If η̃ is a random vector whose distribution is maximized at

η̂, then for the appropriate choice of matrix A, η = A(η̃ − η̂) + η̂ will have the desired

distribution. This procedure is also known as a “whitening” transformation, followed by a

“coloring” one.

Attempting to apply a linear transformation to Σ as a matrix only nets an additional d2

parameters - not enough to equate curvatures. In order to apply a full-rank linear transfor-

mation to a matrix-valued random variable, the matrix must first be vectorized. That is, we

find the matrix A such that

vec Σ = A vec(Σ̃−M) + vecM

has a distribution whose second derivative at M is equal to a fixed matrix.

This transformation gives us the Curvature-Adjusted Matrix Variate Beta Prime, or

CMVBP. If A is invertible and Σ̃(Σ) is the inverse transformation, the CMVBP has the

density

p(Σ) =

∣∣∣Σ̃(Σ)−1
∣∣∣(ν+d+1)/2

∣∣∣Σ̃(Σ)−1 + µ−d−1
ν+d+1

M−1

∣∣∣(ν+µ)/2

|A|−1
(
µ−d−1
ν+d+1

)dµ/2
|M |µ/2Bd(ν/2, µ/2)

. (15)

As in the simplified model the result was exact, attempting to match curvatures will leave

the distribution unchanged. By adopting the transformation in the general case, we remain

able to sample directly from the marginal posterior. As before, it is also the case that Σ

may not be positive semi-definite so that in sampling, a rejection step is required.
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8.3 Applying the CMVBP

Grouping Factors

As for hierarchical linear model there is no restriction on the number of grouping factors,

the posterior over Σθ is often over multiple matrices: Σ1, . . . ,Σk. On the other hand, the

CMVBP enables us to produce samples for only single covariance matrices.

To bridge the gap, we propose two different methods. In the first, we relax our re-

quirement that samples be derived independently and implement a Gibbs-within-Metropolis

sampler, taking draws succesively from the conditional distributions Σk | Σ[−k], y.

The second method is to independently draw K different matrices from MVBPs, vectorize

them all, and then simultaneously adjust their curvatures. We adopt this method when

describing a simulation procedure, and detail its specifics below.

Degrees of Freedom

In having gone from the matrix-variate beta prime on a d × d covariance matrix to the

curvature adjusted version, an additional d4 parameters were introduced. Consequently, the

degrees of freedom parameters ν and µ now are free to be specified.

In picking them, we again look to the simplified model. For that case, and using the scale-

mixture of inverse gammas interpretation, the scale level variate had a gamma distribution

with a shape parameter of (N−J)/2. Given this, the variance was then drawn with this scale

from an inverse gamma with shape (J − 1)/2− 1. Here the 1 in J − 1 arose from integrating

out the mean parameter which generalizes to the number of unmodeled coefficients, P . In

terms of the full model, there is one grouping factor having J1 members and Q1 = 1 types

of modeled coefficients.

One possible generalization would be to generate a scale matrix from a Wishart distri-

bution with degrees of freedom µ = N − Q1 × J1 + Q1 − 1 and then a covariance from an

inverse Wishart with ν = J1 − P − Qk − 1. As we are approximating at each of K levels,
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this gives the decision rules to set parameters as:

µk := N −Qk × (Jk − 1)− 1,

νk := Jk −Qk − P − 1.

As a consequence of this approach, the simulation procedure is only valid provided that

Jk > Qk+P +1, or that for each factor, there are a sufficient number of groups. The efficacy

of setting the parameters in this fashion is evaluated in section 8.5.

8.4 Full Model Simulation Procedure

We arrange σθ so that it is of the form (vec(Σ1)>, . . . , vec(ΣK)>)>. Using the second method

described above, we can obtain importance samples from the marginal posterior by taking

the following steps:

0. Find the marginal posterior mode, σ̂θ, and calculate the curvature:

−I(σ̂θ) =
d2

(dσθ)2
log p(σθ | y)

∣∣∣∣
σθ=σ̂θ

.

The mode can be obtained by first finding the MLE of σθ and using that as a starting

point for an optimization routine.

1. Sample K scale matrices from Wishart distributions with degrees of freedom µk =

N −Qk × (Jk − 1)− 1 and mode Σ̂k.

2. Sample matrices Σ̃1, . . . , Σ̃K independently from inverse Wisharts with degrees of free-

dom νk = QK × (Jk − 1)− P − 1.

3. Adjust the curvature of the MVBP random variables just sampled.
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(a) Create the matrix

Ψ = diag
(

2
ν1+Q1+1

ν1+µ1
µ1−Q1−1

Σ̂1 ⊗ Σ̂1, . . . , 2
νK+QK+1

νK+µK
µK−QK−1

Σ̂K ⊗ Σ̂K

)
,

deriving from the curvature of the MVBP.

(b) Create the vector σ̃ = (vec(Σ̃1)>, . . . , vec(Σ̃K)>)>.

(c) Create the matrix A = I(σ̂θ)
−1/2Ψ−1/2.

(d) Apply the transformation

σ = A(σ̃ − σ̂) + σ̂.

(e) Reconstitute sampled matrices Σ1, . . . ,Σk from the vector σ.

4. Ensure that all the resulting matrices are positive semi-definite. If not, go back to step

1.

5. Compute the importance weight log p(Σθ | y)/ log p(Σθ).

From this, we can generate a large number of importance samples and their weights. To

produce a draw from the full posterior, we then

1. Sample a Σθ | y from the pool of importance samples.

2. Sample σ2
y | Σθ, y from an inverse gamma distribution with shape (N − P )/2− 1 and

inverse-scale 1/2 times the sum of the squared residuals for that Σθ.

3. Sample (β, θ)> | σ2
y,Σθ, y as jointly normal with a mean of the projection of ỹ onto the

column space of X̃(σθ) and a covariance of σ2
y

(
X̃>(σθ)X̃(σθ)

)−1

.

For a model fit under a boundary-avoiding prior, as recommended previously, the above

procedure will always be valid. When fit against, the likelihood alone, it is possible that

marginal mode or the information fail to be invertible. Handling these cases is an issue of

ongoing concern, however simulating from a slightly penalized version may be viable.
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8.5 Simulation Study

To test our procedure, we conduct a simulation study and compare the approximate with the

exact posterior. In addition, as the setting is fabricated it permits us to evaluate inferences

made using the simulations in an exact fashion. We compare coverage rates for interval

estimates of the modeled coefficients using our simulation technique with other methods.

Popular interval estimation techniques for hierarchical models often fall under the name

of empirical Bayes confidence intervals. A catalog of early efforts including a reasonably

accurate, ad hoc approach is given by Morris (1983). Laird and Louis (1987) presents the

parametric bootstrap, which combines resampling with the parametric model. An offshoot

of this literature is the estimation of uncertainty for small-area estimators, including Prasad

and Rao (1990); Jiang et al. (2002); Hall and Maiti (2006). The most fundamental approach

is the naive EB estimate.

Many techniques are designed around simple sampling models and cannot directly be

extended to the case with mulitple grouping factors. With this in mind, we limit ourselves

the naive EB estimator and the type III parametric bootstrap of Laird and Louis. For the

parametric bootstrap, we use the refitted parameter estimates when plugging into the EB

covariance estimate, which the accounts for the uncertainty in estimating Σθ. Because these

methods rely on point estimates that are known to be down-ward biased, we also include

variants that use the mode calculated from a penalized likelihood with the recommended

prior from section 6.5, p(σ2
y ,Σθ) ∝ σPy |Σθ|1/2. For comparison with simulation based tech-

niques, we include an approach that does not account for the uncertainty in Σθ, and thus

requires no approximation. We call this an “estimated posterior” approach. Finally we

include the full simulation technique proposed here.

We use a simple varying intercepts/varying slopes model with a single covariate and

balanced group membership. Rather than write θ as the totality of the modeled coefficients,
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EB EB+ Par Boot PBS+ Est Post CMVBP
Coverage (95%) Intercept 0.75 0.75 0.72 0.73 0.91 0.96

Slope 0.77 0.84 0.67 0.73 0.85 0.96
Ave Width Intercept 2.06 2.08 1.95 1.98 3.22 4.22

Slope 1.77 1.94 1.46 1.61 2.14 2.87

Table 6: Results of a simulation study showing coverage percentages of 95% intervals as well
as average interval widths for various techniques. “EB” are naive empirical Bayes intervals,
“Par Boot” is a type III parametric boot strap, and “Est Post” estimates the posterior by
using the maximum likelihood estimate of Σθ. The “+” versions of the first two techniques
use estimates of parameters from a penalized version using the recommendations of section
6.5. Coverages and widths were averaged together for the multiple J = 10 intercept and
slope coefficients.

we denote the slopes by γ. Then we have

yij | θ, γ
ind∼ N

(
β0 + θj + (β1 + γj)xij, σ

2
y

)
i = 1, . . . , n,θj

γj

 iid∼ N(0, σ2
yΣθ) j = 1, . . . , J.

In arbitrary fashion, we construct Σθ from standard deviations σ1 = 1.5 and σ2 = 0.75

with correlation ρ = 0.16. x is generated for each sample run as independent standard

normals. n = 8, J = 10, and finally, β0 = 3, β1 = −0.5, and σy = 1.5. 500 repetitions in

total are generated. To assess the practical utility of the procedure, we recorded coverage

rates of 95% intervals for the modeled coefficients. For any method that requires it, 100

iterations were used.

Figure 20 demonstrates the quality of the approximate solution by overlaying the marginal

distributions of the variances for both the posterior and the CMVBP.

Table 6 contains the results of coverage rates as well as the average interval width. Results

are further broken down into those for intercept coefficients and those for slopes, as the type

of quantity had a significant impact on coverage. Unsurprisingly, the additional uncertainty

added by drawing simulations over the covariance of the modeled coefficients increased both

the widths of the intervals, and the coverage probabilities.
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Figure 20: Comparison of marginal posterior (black lines) and CMVBP (gray lines) for 20
random samples from the model in section 8.5. In addition to integrating out the other
model parameters, the correlation in Σθ was marginalized over as well so that the contours
represent the distributions over variances alone.

The peformance of the naive empirical Bayes confidence interval is not surprising, it being

well known that the method fails to account for uncertainty in estimating the parameters.

The results for the type III parametric bootstrap are less expected. By design, it should

account for uncertainty in estimating Σθ by refitting the parameters from fake data generated

using the maximum-likelihood fit. Since the MLE is downward biased, using the corrective

measures of previous sections can, and does, improve the quality of the approximation. We

can further improve accuracy by using these for the refit steps as well, yielding coverages

of 0.74 and 0.82 for the intercept and slope respectively. Since these remain deficient, we

are left noting that the procedure of bootstrapping the EB intervals is itself guaranteed
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to under-estimate the uncertainty, and that bootstrapping a corrected interval would yield

better results.

Finally, we wish to note that by chosing essentially a point-prior for Σθ and then assuming

a flat one, we have constructed as adversarial a simulation setting as possible. As the truth

becomes more like our model, we would expect even better results.
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9 Simulation Software

The sim function in the R programming language implements the hierarchical model posterior

simulation technique of section 8 and is available in the arm package.

9.1 Calling sim

The sim function is a generic operating on different kinds of model fits. For those fit by

lme4, it has two arguments: 1) a fitted model S4 object of class mer, and 2) optionally the

number of simulations required, defaulting to 100. It returns an object of class sim.mer with

the following attributes:

1. fixef - a matrix of random samples of the unmodeled coefficients with dimension equal

to the number of samples times the number of unmodeled coefficients

2. ranef - a named list of elements corresponding to the grouping factors in the model,

each being a array of samples of the modeled coefficients with dimension equal to the

number of samples times the number of groups within the factor times the number of

coefficients varying at that level

3. resid.var - a vector of samples of the residual variance, when applicable and NULL

otherwise

4. ranef.cov - a named list of with elements corresponding to the grouping factors and

each item being an array with the leading dimension being of size equal to the number

of samples and each sub-indexed item being a randomly sampled matrix

9.2 Examples

We illustrate the use of sim in the context of a simple hierarchical linear model. To generate

the data:
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> set.seed(0);

> J <- 8;

> n <- 5;

> N <- n * J;

> beta <- c(3, -0.5);

> g <- rep(1:J, rep(n, J));

> sigma.y <- 1.5;

> sigma.the.11 <- 2^2;

> sigma.the.22 <- 0.75^2;

> rho <- 0.2;

> sigma.the.21 <- rho / sqrt(sigma.the.11 * sigma.the.22);

> Sigma.the <- matrix(c(sigma.the.11, sigma.the.21,

sigma.the.21, sigma.the.22), 2, 2);

> theta <- sigma.y * t(chol(Sigma.the)) %*% matrix(rnorm(2 * J), 2, J);

> x <- rnorm(N);

> y <- (beta[1] + theta[1,g]) + (beta[2] + theta[2,g]) * x +

rnorm(N, 0, sigma.y);

To obtain the maximum likelihood fit:

> M1 <- lmer(y ~ 1 + x + (1 + x | g), REML = FALSE);

> display(M1);

lmer(formula = y ~ 1 + x + (1 + x | g), REML = FALSE)

coef.est coef.se

(Intercept) 3.47 0.84

x -0.24 0.61
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Error terms:

Groups Name Std.Dev. Corr

g (Intercept) 2.30

x 1.58 0.12

Residual 1.05

---

number of obs: 40, groups: g, 8

AIC = 170.9, DIC = 159

deviance = 158.9

To generate 100 samples from the marginal posterior, simply pass the mer object to sim().

> M1.sim <- sim(M1);

sim() Output

To access the results from sim, use the operator.

> print(names(attributes(M1.sim)));

[1] "fixef" "ranef" "resid.var" "ranef.cov"

[5] "class"

By illustration, the first 5 rows of the samples of the unmodeled coefficients are given by:

> M1.sim@fixef[1:5,];

(Intercept) x

[1,] 1.4 -0.028
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[2,] 4.0 2.155

[3,] 2.4 -1.117

[4,] 1.5 -3.284

[5,] 6.3 0.513

The modeled coefficients are accessed similarly:

> names(M1.sim@ranef);

[1] "g"

> dim(M1.sim@ranef$g);

[1] 100 8 2

> M1.sim@ranef$g[1:5,,"(Intercept)"];

1 2 3 4 5 6 7 8

[1,] 4.29 5.01 2.817 -0.57 0.14 5.37 -0.47 0.017

[2,] 2.39 1.66 0.011 -3.28 -1.61 2.42 -2.78 -2.590

[3,] 3.09 3.48 0.923 -2.57 -0.60 4.33 -1.61 -0.479

[4,] 3.79 5.28 2.841 -1.10 -0.36 5.96 0.14 0.015

[5,] -0.18 -0.58 -2.819 -6.21 -3.95 -0.18 -5.86 -4.119

> M1.sim@ranef$g[1:5,,"x"];

1 2 3 4 5 6 7 8

[1,] 0.066 1.90 -2.14 -0.43 2.75 1.19 -1.66 -0.66

[2,] -2.561 0.75 -4.82 -1.64 -0.04 -2.05 -2.74 -2.76

[3,] 1.224 3.39 -1.66 2.54 3.70 1.60 -0.25 0.37

[4,] 1.841 5.33 0.53 2.99 6.03 3.88 2.32 2.58
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Figure 21: a) Estimates and 95% credible intervals for random effects, and b) estimates and
95% credible intervals for predictions.

[5,] -2.491 1.44 -3.46 0.21 1.22 -0.88 -2.04 -1.69

9.3 Assessing Uncertainty in Parameters

Using the simulations, we can directly assess our uncertainty in the estimates of the modeled

coefficients. For example, to construct a 95% confidence interval for the difference in averages

for the first two groups:

> quantile(M1.sim@ranef$g[,1,"(Intercept)"] -

M1.sim@ranef$g[,2,"(Intercept)"],

c(0.025, 0.975));

2.5% 98%

-1.6 1.6

As an example of the utility of posterior samples, the following code snippet estimates

the standard errors of latent intercepts to produce Figure 21a.
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> lower <- apply(M1.sim@ranef$g[,,"(Intercept)"], 2, quantile, 0.025);

> upper <- apply(M1.sim@ranef$g[,,"(Intercept)"], 2, quantile, 0.975);

> estimates <- ranef(M1)$g[,"(Intercept)"];

> numGroups <- length(estimates);

> xValues <- rbind(1:numGroups, 1:numGroups, rep(NA, numGroups));

> yValues <- rbind( ower, upper, rep(NA, numGroups));

> plot(xValues, yValues, type = "l",

main = "Random Effects", xlab = "Group ID", ylab = "Group Intercept");

> points(1:numGroups, estimates);

Assessing Uncertainty in Predictions

When passed a sim.mer object and the mer object used to create it, the fitted function

uses the samples to generate a collection of model predictions corresponding to the observed

covariates. For as many simulations were generated, there are as many predictions as obser-

vations, so that in the example above with 40 data points:

> M1.fitted <- fitted(M1.sim, M1);

> dim(M1.fitted);

[1] 40 100

We can quickly and simply display the estimates and their uncertainty as a function of

the continuous covariate. The result of the following is in Figure 21b.

> lower <- apply(M1.fitted, 1, quantile, 0.025);

> upper <- apply(M1.fitted, 1, quantile, 0.975);

> estimates <- fitted(M1);
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> numObsv <- length(estimates);

> xValues <- rbind( x, x, rep(NA, numObsv));

> yValues <- rbind(lower, upper, rep(NA, numObsv));

> plot(xValues, yValues, type = "l",

main = "Predictions", xlab = "x", ylab = "Predicted Value");

> points(x, estimates);
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10 Example

In order to demonstrate the results of the preceeding sections, we work through a compre-

hensive example. For this, a working copy of R is required as are the blme and arm packages,

as well as all of their prerequisites.

10.1 Cognitive Assessments in Rural Kenya

We return to the motivating example of section 1.1, of using cognitive assessments to evaluate

the effect of dietary treatments in rural Kenya as published by Neumann et al. (2003). The

data have been made available by Weiss (2005).

Cleaning the Data

> dataURL <-

"http://rem.ph.ucla.edu/mld/data/tabdelimiteddata/cognitive.txt"

> kenya <- read.csv(dataURL, sep = "\t");

To replicate the 0 variance estimate, we clean the data to include only those children

who have been in the study for more than 20 months.

> ids <- unique(kenya$id);

> numChildren <- length(ids);

> lastObsRows <- sapply(1:numChildren, function(i) {

childRows <- kenya$id == ids[i];

child <- kenya[childRows,];

maxTime <- max(child$relmonth, na.rm = TRUE);

if (maxTime <= 20) return(rep(FALSE, nrow(child)));
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return (child$relmonth == maxTime);

});

> lastObsRows <- unlist(lastObsRows);

> children <- kenya[lastObsRows & !is.na(kenya$ravens),];

Finally, we standardize the regression inputs.

> standardize <- function(x) (x - mean(x)) / sd(x);

> children$ravens.z <- standardize(children$ravens);

> children$age_at_time0.z <- standardize(children$age_at_time0);

Model Fitting

In order to make a direct comparison with the pure-likelihood inference from section 1.1,

we start by fitting a varying intercepts model with “dummy variables” for the different

treatments and a covariate for the age at the beginning of the study. We can obtain the

maximum likelihood estimate by running:

> M0 <- lmer(ravens.z ~ treatment + age_at_time0.z + (1 | schoolid),

children, REML = FALSE);

> display(M0);

lmer(formula = ravens.z ~ treatment + age_at_time0.z + (1 | schoolid),

data = children, REML = FALSE)

coef.est coef.se

(Intercept) -0.05 0.09

treatmentcontrol 0.09 0.13

treatmentmeat 0.25 0.13

treatmentmilk -0.10 0.12
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age_at_time0.z 0.01 0.04

Error terms:

Groups Name Std.Dev.

schoolid (Intercept) 0.00

Residual 0.99

---

number of obs: 496, groups: schoolid, 12

AIC = 1412.1, DIC = 1398

deviance = 1398.1

Σθ is reported under error terms above, specifically schoolid (Intercept).

To find a non-degenerate estimate, we can use blmer. As we are not interested in priors

on the unmodeled coefficients, we leave that as flat and use the default of p(σ2
y ,Σθ) ∝ σ2

yσ
1.5
θ .

Given the high sample size and low number of unmodeled coefficients, the prior on the

modeled coefficient covariance alone is probably sufficient.

> M1 <- blmer(ravens.z ~ treatment + age_at_time0.z + (1 | schoolid),

children, REML = FALSE,

cov.prior = gamma(2.5, 0),

resid.prior = gamma(3, 0, 'sd;'));

> display(M1);

blmer(formula = ravens.z ~ treatment + age_at_time0.z + (1 |

schoolid), data = children, REML = FALSE, cov.prior = "gamma(shape = 2.5, rate = 0)",

fixef.prior = NULL, var.prior = "gamma(3, 0, 'sd')")

coef.est coef.se

(Intercept) -0.03 0.11
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Figure 22: Left: the profiled likelihood and posterior as a function of Σθ, which here re-
duces to a single variance and right: the marginal posterior, the matrix-variate beta prime
approximation, and importance samples.

treatmentcontrol 0.06 0.16

treatmentmeat 0.23 0.16

treatmentmilk -0.13 0.15

age_at_time0.z 0.01 0.05

Error terms:

Groups Name Std.Dev.

schoolid (Intercept) 0.10

Residual 0.99

---

number of obs: 496, groups: schoolid, 12

AIC = 1413.5, DIC = 1400

deviance = 1399.5

The hierarchical standard deviations and variances reported above have the common scale

factor multiplied in so that the can be interpreted directly, that is 0.1 = σyΣ
1/2
θ .
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The estimates are quite similar except for the now-positive variance component. A vi-

sual comparison of the profiled likelihood and posterior of Σθ is shown in the left panel of

figure 22, which demonstrates that the posterior mode is consistent and that the estimate

of 0 is premature. In fact, if we conduct a sequence of point-null hypothesis tests against

an otherwise unconstrained alternative, negative 2 times the difference between the two log

likelihoods will have an approximate chi-squared distribution with one degree of freedom.

Inverting this yields a 95% confidence interval which we truncate to [0, 0.026]. The posterior

mode found by blme is Σθ = 0.011.

Uncertainty

The marginal posterior, inherently representing the uncertainty accumulated from the esti-

mation of the other parameters, has considerably heavier tails. It, and the approximating

distribution used in simulation is graphed in figure 22b. We can take samples from this using

sim to generate a to obtain a one-sided 95% credible interval for Σθ in the following fashion:

> M0.sims <- sim(M0);

> quantile(M0.sims@ranef.cov$schoolid, 0.95);

95%

0.18

Inferences

Figure 23a shows the prediction lines for the two schools originally highlighted in figure 1.

The posterior mode leads to similar inference in this sense, but enables further comparisions.

A graph similar to figure 23b for the maximum likelihood model would consist of 12 dots at 0

with 0 width intervals. In similar fashion, we can now make statements about the hierarchical

components that would before have been non-sensical. For example, a 95% credible interval

for the difference in intercepts between school 2 and school 8 is given by [−0.14, 0.69].

91



●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

7 8 9 10 11

15
20

25
30

Model Predictions

Age at Start

R
av

en
's

 S
co

re

●

●

School 2
School 8
MLE

●

●

●

●

●

●

●

●

●

●

●

●

0 1

School Offsets

θj

Scl 12
Scl 11
Scl 10
Scl 9
Scl 8
Scl 7
Scl 6
Scl 5
Scl 4
Scl 3
Scl 2
Scl 1

Figure 23: a) Comparison of the maximum likelihood estimated regression and the posterior
mode. The MLE is unable to capture that a difference between might exist, while the
Bayesian method finds them to be similar, but distinct. b) The estimated school offsets and
uncertainties. These compare favorably to the empirical averages shown in figure 1.

Varying Intercepts/Varying Slopes

The simply varying intercepts model is used largely to show the procedure for fitting in blme

and using sim. More practically of interest, albeit less graphically compelling, is the varying

intercept and slope model. Proceeding as before with the maximum likelihood fit:

> M0 <- lmer(ravens.z ~ treatment + age_at_time0.z +

(1 + age_at_time0.z | schoolid),

children, REML = FALSE);

> display(M0);

lmer(formula = ravens.z ~ treatment + age_at_time0.z + (1 + age_at_time0.z |

schoolid), data = children, REML = FALSE)

coef.est coef.se

(Intercept) -0.04 0.10

treatmentcontrol 0.09 0.13

treatmentmeat 0.26 0.14

treatmentmilk -0.07 0.13
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Figure 24: a) Fitted regression lines from the degenerate, maximum likelihood varying in-
tercept/varying slope model exhibiting the fitted perfect correlation. To demonstrate this
more effectively, the treatment coefficient is ignored. b) The MLE lines for groups 2 and 8.

age_at_time0.z 0.05 0.08

Error terms:

Groups Name Std.Dev. Corr

schoolid (Intercept) 0.11

age_at_time0.z 0.20 1.00

Residual 0.97

---

number of obs: 496, groups: schoolid, 12

AIC = 1410.5, DIC = 1392

deviance = 1392.5

This estimate is also degenerate, although in a less-obvious fashion. Correlations of ±1

correspond to covariances on the boundary but lack the simple interpetation of an estimate

of zero variance. Instead, they imply that as a group’s intercept “moves up” in value, its

slope moves up in a perfectly proportional fashion. Similar to the zero variance case, this

yields an unwieldy regression object and overstates the confidence in some comparisons.
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This perfect correlation is exemplified in figure 24a, in which the different group regres-

sions are graphed while having subtracted out the treatment effect. Figure 24b shows the

lines for just groups 2 and 8, along with the data. While a positive correlation seems justified,

a perfect one is extreme.

Finally, the blmer fit slightly walks back from perfect correlation and assessing uncertainty

is straightforward with sim:

> M1 <- blmer(ravens.z ~ treatment + age_at_time0.z +

(1 + age_at_time0.z | schoolid), children, REML = FALSE,

cov.prior = wishart(3.5, Inf),

resid.prior = gamma(3, 0, 'sd'));

> display(M1);

blmer(formula = ravens.z ~ treatment + age_at_time0.z + (1 +

age_at_time0.z | schoolid), data = children, REML = FALSE,

cov.prior = "wishart(df = 3.5, scale = Inf)", fixef.prior = NULL,

var.prior = "gamma(3, 0, 'sd')")

coef.est coef.se

(Intercept) -0.03 0.10

treatmentcontrol 0.09 0.14

treatmentmeat 0.25 0.15

treatmentmilk -0.07 0.14

age_at_time0.z 0.05 0.08

Error terms:

Groups Name Std.Dev. Corr

schoolid (Intercept) 0.12

age_at_time0.z 0.21 0.93
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Residual 0.97

---

number of obs: 496, groups: schoolid, 12

AIC = 1411, DIC = 1393

deviance = 1393.0

> M0.sims <- sim(M0);

> quantile(sqrt(M0.sims@ranef.cov$schoolid[,1,1]), 0.95);

> quantile(sqrt(M0.sims@ranef.cov$schoolid[,2,2]), 0.95);

95%

0.49

95%

0.63

The approximation used to obtain simulations is detailed in figure 25.
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Figure 25: Matrix-variate beta prime approximation to the marginal posterior of the vari-
ances for the bivariate Raven’s score hierarhical model. Contours are obtained by numeri-
cally integrating out the correlation. In this case, as the marginal posterior mode is at the
boundary the approximation was hand-tuned in the following fashion: 1) a marginal mode
was estimated by penalizing the likelihood with a term of |Σ1|0.05, 2) the second derivative
was obtained using this penalized model, and 3) the maximum eigenvalue from the second
derivative was divided by 10 so that its magnitude was roughly that of the second derivative
obtained from the marginal mode in the un-penalized model.
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12 Appendix

12.1 Distribution of Simple Model MLE

The MLE for the simple model is used in subsequent proofs and an analysis of it promotes

insight into other useful quantities. Equation 4 gives the likelihood for µ, σ2
y, and σ2

θ for

the simple model. From it, the maximizer in µ is seen to be ȳ, and the maximizer in σ2
y

1
N

(S2
w + (σ2 + 1/n)−1S2

b ). Plugging these in yields the profiled likelihood:

p(σ2
θ , µ̂, σ̂

2
y; y) = (2π)−N/2

[
1

N

(
S2
w +

1

σ2
θ + 1/n

S2
b

)]−N/2
n−J/2(σ2

θ + 1/n)−J/2e−N/2. (16)

Taking a derivative of the logarithm of this with respect to σ2
θ and setting it equal to 0

leads to

σ̂2
θ,MLE =

[
N − J
N

S2
b

S2
w/n
− 1

n

]+

. (17)

At this point, it is more convenient to consider the version that is not constrained to be

positive. After deriving the distribution of this it can be seen that, so long as σθ is greater

than 0, the probability of truncation goes to 0 as n or J go to infinity.

Sums of Squares

A sufficient statistic for σθ is the ratio of sums of squares R =
S2
b

S2
w/n

. To determine the

individual distributions of the sums involved, first condition on θ and consider the vector

composed of yij − θj, u = y − [θ ⊗ 1n]. By the model, every element is independently and

identically normal with mean µ and variance σ2
y . If we take this vector and project it onto

the matrix X = IJ ⊗ 1n (block repetitions of a 1s vector), we obtain:
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û = X(X>X)−1X>(y − θ ⊗ 1n)

= X
(
(IJ ⊗ 1>n )(IJ ⊗ 1n)

)−1
X(y − θ ⊗ 1n),

=
1

n
(IJ ⊗ 1n)(IJ ⊗ 1>n )(y − θ ⊗ 1n),

=
1

n
(Ij ⊗ 1n1>n )y − θ ⊗ 1n.

This produces a vector of residuals

u− û = y − θ ⊗ 1n −
(

1

n
(Ij ⊗ 1n1>n )y − θ ⊗ 1n

)
,

= y − (ȳ1, . . . , ȳJ)⊗ 1n.

This vector simply contains the elements yij − ȳj, so that summing the squares yields S2
w.

By the standard theory for linear models, this quantity is σ2
y times a random variable with a

chi-squared distribution and N − J degrees of freedom. All of these calculations took place

given θ, but as the residuals don’t involve θ they have the same distribution unconditionally.

Furthermore, the residuals are independent of their projections, but the projections are

just repetitions of group averages. Given θ, the vector of group averages is independent of

the residuals, but the residuals are independent of θ so unconditional independence holds as

well.

Finally, to determine the distribution of the between group sum of squares, marginally

each ȳj is independent of the others and is distributted normally with mean µ and variance

σ2
y(σ

2
θ + 1/n).

In summary,
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S2
w =

J∑
j=1

n∑
i=1

(yij − ȳj)2,

∼ σ2
yχ

2
N−J ,

S2
b =

J∑
j=1

(ȳj − ȳ)2,

∼ σ2
y(σ

2
θ + 1/n)χ2

J−1,

S2
w ⊥ S2

b .

Ratio of Sums of Squares

As the ratio of scaled sums of squares, themselves independent χ2 random variables, R has

a scaled F distribution. Specifically,

R =
S2
b

S2
w/n

,

=
S2
b

J

/
S2
w

N
,

=
σ2
y(σ

2
θ + 1/n)

σ2
y(σ

2
θ + 1/n)

J − 1

J

S2
b

J − 1

/
σ2
y

σ2
y

N − J
N

S2
w

N − J
,

d
=

(
σ2
θ +

1

n

)
N − n
N − J

FJ−1,N−J ,

where FJ−1,N−J is a random variable with the corresponding F distribution.

MLE

Putting this together with the functional form of the MLE, we find

σ̂2
θ,MLE

d
=

[(
σ2
θ +

1

n

)
J − 1

J
FJ−1,N−J −

1

n

]+

.
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Of principal interest are the asymptotics of σ̂θ,MLE. Considering the right-hand side of

equation 17 without the truncation and appliying the law of large numbers as J goes to

infinity, we see that it has the almost-sure limit of σ2
θ . Instead applying the central limit

theorem and multiplying by
√
J , we obtain an asymptotically normal distribution with

a stable variance. Taking this and using Slutsky’s theorem to map back to the original

estimator, we have that σ̂2
θ,MLE ∈ Op(J

−1/2). Finally, the transformation that results from

taking the square root adds a term that is Op(J
−1), so that σ̂θ,MLE ∈ Op(J

−1/2) as well.

12.2 Proof of Theorem 1

Overview

We obtain an asymptotic expansion for the posterior mode under the frequentist assumptions

that there exists a true parameter value and that it is greater than 0. To do this, we take

a sequence of Taylor series approximations to an estimating equation for σθ, Ψ(σθ). If we

expand the equation at its root in a neighborhood of the true value of the parameter, then

we can complete the square to isolate σ̂θ − σθ in:

Ψ(σ̂θ) = Ψ(σθ) + Ψ′(σθ)(σ̂θ − σθ) +
1

2!
Ψ′′(σθ)(σ̂θ − σθ)2 +

1

3!
Ψ′′′(σ∗θ)(σ̂θ − σθ)3,

for σ∗θ in between σ̂θ and σθ.

To achieve this, we need to be able to bound the remainder term, which involves de-

termining the asymptotic order of σ̂θ. Further determining the order of Ψ′′(σθ) enables a

more precise, higher order expansion. Finally, consistency of σ̂θ is necessary to take the

appropriate root after completing the square.

As in the end we are interested not so much in the expansion as in the expected value of

functions of it, it is helpful to have it in a form that lends itself to further analysis. This is

done by focusing on a particular statistic with a straightforward distribution, itself a function
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of R detailed above.

Estimating Equation

Penalizing this by an prior p(σθ) produces the profiled posterior p(σθ | y; µ̂, σ̂2
y). For simplic-

ity, we assume that the prior is:

1. not data-dependent, including y, n, and J

2. four times log continuously differentiable in a neighborhood of σθ

3. with support in a neighborhood of σθ

The first two of these can easily be weakened, but without greatly benefitting our purpose.

Taking a logarithm of the posterior followed by a derivative yields the initial estimating

equation:

log p(σθ | y; µ̂, σ̂2
y) ∝ −

N

2

(
S2
w +

1

σ2
θ + 1/n

S2
b

)
− J

2
(σ2

θ + 1/n) + log p(σθ),

d

dσθ
log p(σθ | y; µ̂, σ̂2

y) = N
σθ(σ

2
θ + 1/n)−2S2

b

S2
w + (σ2

θ + 1/n)−1S2
b

− J σθ
σ2
θ + 1/n

+ U(σθ),

where U(σθ) = d
dσθ

log p(σθ). As multiplying this by a non-zero, finite expression does not

change its roots, we do so with − 1
J

1
σθ

1
S2
w

(σ2
θ + 1/n)2 (S2

w + (σ2
θ + 1/n)−1S2

b ) and proceed ig-

noring the possible trivial root at 0. After some rearrangement, we obtain the estimating

equation:

Ψ(σθ) =
(
σ2
θ + 1/n

)
− (n− 1)

S2
b

S2
w

− 1

J

1

σθ
U(σθ)

(
σ2
θ + 1/n

)(
σ2
θ + 1/n+

S2
b

S2
w

)
.

To simplify this, we note the reappearance of the ratio R =
S2
b

S2
w/n

and define the statistic

T = σ2
θ + 1

n
− n−1

n
R. Recalling the discussion above, we have that T ∈ Op(J

−1/2). Using
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this, we can decompose Ψ into its asymptotically distinct components:

Ψ(σθ) = T − 1

J

1

σθ

n

n− 1
(σ2

θ + 1/n)2U(σθ) +
T

J

1

σθ

1

n− 1
(σ2

θ + 1/n)U(σθ). (18)

One feature of this equation that we wish to highlight is that it has a constant part (which

happens to be zero), a term times T that is thus Op(J
−1/2), one times 1/J , and finally a T/J

term in Op(J
−3/2). In addition, its derivatives with respect to σθ have the same arrangement.

For simplicity denote these coefficients as ak, bk, ck, and dk respectively, where k refers to the

order of derivative. More specifically, these are functions of σθ although that dependence is

ignored for the moment. Filling in only the most simple of coefficients, we have:

Ψ(σθ) = 0 + T + c0
1

J
+ d0

T

J
,

Ψ′(σθ) = 2σθ + 0 + c1
1

J
+d1

T

J
,

Ψ′′(σθ) = 2 + 0 + c2
1

J
+ d2

T

J
.

The remaining coefficients can be derived by calculation, although we note that c0 =

− 1
σθ

n
n−1

(σ2
θ + 1/n)2U(σθ).

The lack of σθ in the leading terms of the second derivative of the estimating equation

implies that all future derivatives are Op(J
−1). By assumption, Ψ and its first three deriva-

tives are continuous functions of σθ, so that by the continuous mapping theorem JΨ′′′(σ∗θ)

converges in probability to a constant and Ψ′′′(σ∗θ) ∈ Op(J
−1). As such, a Taylor series

expansion that truncates at the third term is valid to a higher order. This requires the as-

sumption of the existence fourth derivative of the log of the prior. Without it, the expansion

remains valid but only to a lower asymptotic order.

Finally, under our restrictions on priors the posterior mode will have the same asymptotics

as the MLE. To apply a result such as Walker (1969), we note that even though yij are not

independent, they are equal in distribution to random variables that can be expressed as

105



independent and identically distributed observations. Consequently, σ̂θ ∈ Op(J
−1/2) and σ̂θ

is consistent for σθ.

Taylor Series Approximation

Expanding Ψ(σ̂θ) around σθ produces:

Ψ(σ̂θ) = Ψ(σθ) + Ψ′(σθ)(σ̂θ − σθ) +
1

2!
Ψ′′(σθ)(σ̂θ − σθ)2 +

1

3!
Ψ′′′(σ∗θ)(σ̂θ − σθ)3,

0 = Ψ(σθ) + Ψ′(σθ)(σ̂θ − σθ) +
1

2
Ψ′′(σθ)(σ̂θ − σθ)2 +Op(J

−5/2),

where the truncation follows from Ψ′′′(σ∗θ) ∈ Op(J
−1), σ̂θ ∈ Op(J

−1/2), and |σ̂θ − σθ|3 ∈

Op(J
−3/2).

For now we omit the notational dependence on σθ and complete the square to find

σ̂θ − σθ =
−Ψ′ ±

√
Ψ′2 − 2ΨΨ′′ − 2Ψ′′Op(J−5/2)

Ψ′′
.

From here we successively approximate the square root, and then divide by Ψ′′.

Denoting the term under the square root as ∆ and noting that Ψ′′(σθ) ∈ Op(1),

∆ = Ψ′2 − 2ΨΨ′′ +Op(J
−5/2),

=

(
a1 + c1

1

J
+ d1

T

J

)2

− 2

(
b0T + c0

1

J
+ d0

T

J

)(
a2 + c2

1

J
+ d2

T

J

)
+Op(J

−5/2),

= a2
1 + 2a1c1

1

J
+ 2a1d1

T

J
+ c2

1

1

J2
−

2a2b0T − 2a2c0
1

J
− 2a2d0

T

J
− 2b0c2

T

J
− 2c0c2

1

J2
− 2b0d2

T 2

J
+Op(J

−5/2),

= a2
1 − 2a2b0T + 2 (a1c1 − a2c0)

1

J
+ 2 (a1d1 − a2d0 − b0c2)

T

J
+ 2

(
0.5c2

1 − c0c2

) 1

J2
−

2b0d2
T 2

J
+Op(J

−5/2).
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For this, we have used that a0 = b1 = b2 = 0.

Using the expansion about 0

f(x) =
√
a2 + x,

= a+
1

2

x

a
− 1

8

x2

a3
+

1

16

x3

a5
− 5

128

x4

a7
+ o(x5)

we can produce an expansion for
√

∆. However, additionally noting that σ̂ is consistent, we

determine that we must have σ̂θ − σθ = Ψ′′−1(−Ψ′ +
√

∆). Writing this out produces:

−Ψ′ +
√

∆ = −a2b0

a1

T − a2c0

a1

1

J
−
(
a2d0

a1

+
b0c2

a1

)
T

J
+

(
1

2

c2
1

a1

− c0c2

a1

)
1

J2
− 1

2

a2
2b

2
0

a3
1

T 2+(
a2b0c0

a2
1

− a2
2b0c0

a3
1

)
T

J
−
(

1

2

c2
1

a1
− a2c0c1

a2
1

+
1

2

a2
2c

2
0

a3
1

)
1

J2
+(

a2b0d1

a2
1

− a2
2b0d0

a3
1

− a2b
2
0c2

a3
1

− b0d2

a1

)
T 2

J
− 1

2

a3
2b

3
0

a5
1

T 3+

3

2

(
a2

2b
2
0c1

a4
1

− a3
2b

2
0c0

a5
1

)
T 2

J
− 5

8

a4
2b

4
0

a7
1

T 4 +Op(J
−5/2),

= −a2b0

a1

T − 1

2

a2
2b

2
0

a3
1

T 2 − a2c0

a1

1

J
− 1

2

a3
2b

3
0

a5
1

T 3 +

(
a2b0c1

a2
1

− a2d0

a1

− b0c2

a1

− a2
2b0c0

a3
1

)
T

J
−

5

8

a4
2b

4
0

a7
1

T 4 +

(
a2c0c1

a2
1

− 1

2

a2
2c

2
0

a3
1

− c0c2

a1

)
1

J2
+(

a2b0d1

a2
1

− a2
2b0d0

a3
1

− a2b
2
0c2

a3
1

+
3

2

a2
2b

2
0c1

a4
1

− 3

2

a3
2b

2
0c0

a5
1

− b0d2

a1

)
T 2

J
+Op(J

−5/2).

Expanding the denominator around 0,
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f(x) =
1

a+ x
,

=
1

a
− x

a2
+ o(x2),

1

Ψ′′
=

1

a2 + c2
1
J

+ d2
T
J

,

=
1

a2

− c2

a2
2

1

J
− d2

a2
2

T

J
+Op(J

−2),

we arrive at:

σ̂θ − σθ =
−Ψ′ +

√
∆

Ψ′′
,

= − b0

a1

T − 1

2

a2b
2
0

a3
1

T 2 − c0

a1

1

J
− 1

2

a2
2b

3
0

a5
1

T 3 +

(
b0c1

a2
1

− d0

a1

− a2b0c0

a3
1

)
T

J
− 5

8

a3
2b

4
0

a7
1

T 4+(
c0c1

a2
1

− 1

2

a2c
2
0

a3
1

)
1

J2
+

(
b0d1

a2
1

− a2b0d0

a3
1

− 1

2

b2
0c2

a3
1

+
3

2

a2b
2
0c1

a4
1

− 3

2

a2
2b

2
0c0

a5
1

)
T 2

J
+Op(J

−5/2).

If we plug in our definitions of a and b, we have:

σ̂θ − σθ = − 1

2σθ
T − 1

8σ3
θ

T 2 − c0

2σθ

1

J
− 1

16σ5
θ

T 3 +

(
c1

4σ2
θ

− d0

2σθ
− c0

4σ3
θ

)
T

J
− 5

128σ7
θ

T 4+(
c0c1

4σ2
θ

− c2
0

8σ3
θ

)
1

J2
+

(
d1

4σ2
θ

− d0

4σ3
θ

− c2

16σ3
θ

+
3c1

16σ4
θ

− 3c0

16σ5
θ

)
T 2

J
+Op(J

−5/2).

Dropping the terms that are Op(J
−3/2) and plugging in the definition of c0 yields the

expansion in 3.

Expected Value

Uniform integrability of σ̂θ is obtained by bounding the distance between it and σ̂θ,MLE. If

we write Ψ(σθ) = m(σθ) + u(σθ) such that m(σ̂θ,MLE) = 0 and take the expansions:
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m(σ) + u(σ) = m(σ̂θ) + u(σ̂θ) + r1(σ)(σ − σ̂θ),

m(σ) = m(σ̂θ,MLE) + r2(σ)(σ − σ̂θ,MLE),

σ̂θ − σ̂θ,MLE =
m(σ)

r2(σ)
− m(σ) + u(σ)

r1(σ)

we obtain an expression that is a polynomial in T with coefficients given by the unknown

remainder functions. As T is just a linear transformation of a random variable with an

F distribution, which in turn has moments of all orders, so does the difference between the

estimators. As σ̂θ,MLE similarly has moments of all orders, σ̂θ must as well and is consequently

uniformly integrable.

Armed with the ability to pass to the limit under the integral, it is possible to obtain

meaningful expressions for the expected value of the asymptotic expansion solely in terms

of the expected value of the powers of T . They are:
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E[T ] =

(
σ2
θ +

1

n

)
n− 3

N − J − 2
,

=

(
σ2
θ +

1

n

)[
n− 3

n− 1

1

J
+ 2

n− 3

(n− 1)2

1

J2

]
+O(J−3),

E[T 2] =

(
σ2
θ +

1

n

)2 [
2Jn(n− 1)

(N − J − 2)(N − J − 4)
− n2 + 6n− 15

(N − J − 2)(N − J − 4)

]
,

=

(
σ2
θ +

1

n

)2 [
2

n

n− 1

1

J
− n2 − 6n− 15

(n− 1)2

1

J2

]
+O(J−3),

E[T 3] =

(
σ2
θ +

1

n

)3 [−2J(n− 1)n(n+ 13) + 3n3 + 9n2 + 45n− 105

(N − J − 2)(N − J − 4)(N − J − 6)

]
,

= −2

(
σ2
θ +

1

n

)3
n(n+ 13)

(n− 1)2

1

J2
+O(J−3),

E[T 4] =

(
σ2
θ +

1

n

)4
(n− 1)4(12J2 + 4J − 15) + (n− 1)3(24J2 + 52J − 46)

(N − J − 2)(N − J − 4)(N − J − 6)(N − J − 8)
×

(n− 1)2(12J2 + 416J − 288) + (n− 1)(368J − 768) + 384

(N − J − 2)(N − J − 4)(N − J − 6)(N − J − 8)
,

= 12

(
σ2
θ +

1

n

)4
n2

(n− 1)2

1

J2
+O(J−3).

We can plug this into the expansion for the estimator to obtain:

E[σ̂θ − σθ] = − 1

J

1

2σθ

[
1

n− 1

(
σ2
θ +

1

n

)(
3
n− 2

2
+

1

2

1

σ2
θ

)
+ c0

]
−

σθ
32(n− 1)2

(
σ2
θ +

1

n

)[
15n2 − n

(
40− 41

σ2
θ

)
− 156− 128

σ2
θ

+
41

σ4
θ

− 1

nσ2
θ

(
60 +

52

σ2
θ

− 15

σ4
θ

)]
1

J2
+

2c0c1σθ − c2
0

8σ3
θ

1

J2
+
n− 3

n− 1

(
σθ +

1

nσθ

)(
c1σθ − 2d0σ

2
θ − c0

4σ2
θ

)
1

J2
+

1

8

n

n− 1

(
σθ +

1

nσθ

)2 [
4d1σ

3
θ − 4d0σ

2
θ − c2σ

2
θ + 3c1σθ − 3c0

] 1

J2
+O(J−5/2).

Truncating at O(J−1) produces equation 8, while the solving for the prior produces

corollary 1.
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12.3 Joint Mode Calculation

As one of the principal advantages to using hierarchical models is the ability to use sparse

design matrices for the modeled coefficients, the matrix inversion step used to calculate the

mode in θ′ of the joint distribution y, θ′ must be completed carefully. In section 4.2 we have

the following:

p(y, θ′; Σθ, β, σ
2
y) = (2πσ2

y)
−(N+Q)/2 exp

− 1

2σ2
y

∥∥∥∥∥∥∥
y

0

−
ZLθ X

IQ 0


θ′
β


∥∥∥∥∥∥∥

2 ,

and we derive the decompositions

 LZ 0

LZX LX


L>Z L>ZX

0 L>X

 =

L>θ Z> IQ

X> 0


ZLθ X

IQ 0

 .
Z can be stored as a sparse matrix given that each row has Q =

∑K
k=1QkJk elements

but only
∑K

k=1Qk are non-zero. Similar Lθ is sparse as it is a left factor of a block diagonal

matrix. The pattern of non-zeroes in each makes their product have a structure similar to Z

itself. Given this, it is possible to compute LZ using sparse matrix decomposition techniques.

LZX and LX are generally dense.

For the ordinary linear regression problem of minimizing ‖u − Aη‖2, we have that η̂ =

(A>A)−1A>u. Similarly,
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θ̃
β̃

 =

L−>Z −L−>Z L>ZXL
−>
X

0 L−>X


 L−1

Z 0

−L−1
X LZXL

−1
Z L−1

X


L>θ Z> IQ

X> 0


y

0

 ,
=

L−>Z −L−>Z L>ZXL
−>
X

0 L−>X


 L−1

Z L>θ Z
>y

L−1
X X>y − L−1

X LZXL
−1
Z L>θ Z

>y

 ,
=

L−>Z −L−>Z L>ZXL
−>
X

0 L−>X


 θ˜
L−1
X

(
X>y − LZXθ˜)

 , θ˜ = L−1
Z L>θ Z

>y,

=

L−>Z −L−>Z L>ZXL
−>
X

0 L−>X


θ
β̃˜
 , β˜ = L−1

X

(
X>y − LZXθ˜

)
,

=

L−>Z
(
θ˜− L>ZXL−>X β˜

)
L−>X β˜

 .
To find the joint mode from the block-wise decomposition, one then computes in order θ˜, β˜, β̃,
and finally θ̃.

θ˜ and β˜ are further useful for calculating the penalized sum of squared residuals. Again

analogizing to an ordinary linear regression, with η˜ = L−1
A A>u, LAL

>
A = A>A:

u>u− η˜>η˜ = u>u− u>AL−>A L−1
A A>u,

= u>u− u>Aη̂,

= ‖u− Aη̂‖2.

Consequently,

y>y − θ˜>θ˜− β˜>β˜ =

∥∥∥∥∥∥∥
y

0

−
ZLθ X

IQ 0


θ̃
β̃


∥∥∥∥∥∥∥

2

.
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If one is profiling σ2
y linearly, it is thus possible to reuse this calculation.

Finally, we note that these steps are applicable for simple linear regressions that include

potentially sparse and dense design matrices, as occurs in fixed effect models.

12.4 Additional Optimization Schemes

Completely arbitrary priors can be placed on any model parameter and optimization done

at the possible expense of the two profiling steps, β, and σ2
y.

Unmodeled Coefficient Prior

In section 4.4 a Gaussian prior was placed on β that utilized σ2
y and hence was “on the

common scale”. It is possible to place a Gaussian prior with a real-world, absolute covariance

if one is willing to add σ2
y to the optimization parameter set.

Assume that β ∼ N(0,Σβ) with Σβ known and LβL
>
β = Σβ. The joint distribution in

spherical modeled coefficients given by:

p(y, θ′, β; Σθ, σ
2
y) = (2πσ2

y)
−(N+Q+P )/2|Σβ|−1/2 exp

−
1

2σ2
y

∥∥∥∥∥∥∥∥∥∥


y

0

0

−

ZLθ X

0 σyL
−1
β

IQ 0


θ′
β


∥∥∥∥∥∥∥∥∥∥

2 .

Defining LZ and LZX as before and setting LXL
>
X = X>X + σ2

yΣ
−1
β − LZXL

>
ZX , it is

possible to integrate out θ′ and obtain the posterior:
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p(β | y; Σβ, σ
2
y) ∝ (σ2

y)
−(N+P )/2|LZ |−1×

exp

−
1

2σ2
y

(β − β̃(σ2
y))
>LX(σ2

y)LX(σ2
y)
>(β − β̃(σ2

y)) +

∥∥∥∥∥∥∥∥∥∥


y

0

0

−

ZLθ X

0 σyL
−1
β

IQ 0


θ̃(σ2

y)

β̃(σ2
y)


∥∥∥∥∥∥∥∥∥∥

2
 .

As before, β̃ and θ̃ are the joint modes although now they depend on the value of σ2
y. β

can be profiled directly, which leaves for optimization:

p(β̂ | y; Σβ, σ
2
y) ∝ (σ2

y)
−(N+P )/2|LZ |−1 × exp

−
1

2σ2
y

∥∥∥∥∥∥∥∥∥∥


y

0

0

−

ZLθ X

0 σyL
−1
β

IQ 0


θ̃(σ2

y)

β̃(σ2
y)


∥∥∥∥∥∥∥∥∥∥

2 .

REML Estimates

Restricted maximum likelihood can be viewed as a particular form of penalty function, or

prior. In the most direct sense, it is what arises from modeling β with a flat distribution. From

the likelihood perspective, inference requires that β be integrated out. Having previously

found the joint mode of θ′ and β in our profiling step, it is trivial to compute this integral.

Returning to equation 10 in section 4.2, the conditional distribution of β under a flat

prior is Gaussian. Integrating it out yields:

p(y; Σθ, σ
2
y) = (2πσ2

y)
−(N−P )/2|LZ |−1|LX |−1 exp

− 1

2σ2
y

∥∥∥∥∥∥∥
y

0

−
ZLθ X

IQ 0


θ̃
β̃


∥∥∥∥∥∥∥

2 .

σ̂2
y can be directly computed as the exponential term divided by N − P . This leaves the
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profiled REML equation:

p(y; Σθ, σ̂
2
y) =

(
2πσ̂2

y(σθ)
)−(N−P )/2 |LZ(σθ)|−1|LX(σθ)|−1e−(N−P )/2.

It is furthermore possible to extend these considerations to the prior β ∼ N(0, σ2
yΣβ),

yielding the likelihood:

p(y; Σθ, σ
2
y) = (2πσ2

y)
−N/2|LZ |−1|LX |−1 exp

−
1

2σ2
y

∥∥∥∥∥∥∥∥∥∥


y

0

0

−

ZLθ X

0  L−1
β

IQ 0


θ̃
β̃


∥∥∥∥∥∥∥∥∥∥

2 .

Thus, σ̂2
y is the exponential term divided by N and the profiled likelihood is:

p(y; Σθ, σ̂
2
y) =

(
2πσ̂2

y(σθ)
)−N/2 |LZ(σθ)|−1|LX(σθ)|−1eN/2.

If we assume β ∼ N(0,Σβ), we obtain a likelihood similar to the non-REML case but

with the addition of the penalty |LX(σθ, σ
2
y)|−1 and an adjustment in degrees of freedom.

12.5 Marginal Posterior Derivation

Starting from the joint distribution of y and θ′ for the full model and assuming flat priors

on all parameters, we have

p(σ2
y, β,Σθ, θ

′ | y) ∝ (σ2
y)
−(N+Q)/2 exp

− 1

2σ2
y

∥∥∥∥∥∥∥
y

0

−
ZLθ X

IQ 0


θ
β


∥∥∥∥∥∥∥

2 .

Let A =

ZLθ X

IQ 0


θ
β

, and u = (y, 0)>, and η = (θ′, β)>. Then we have:
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p(σ2
y, β,Σθ, θ

′ | y) ∝ (σ2
y)
−(N+Q)/2 exp

{
− 1

2σ2
y

(
η − (A>A)−1A>u

)>
A>A

(
η − (A>A)−1A>u

)}
×

exp

{
− 1

2σ2
y

[
u>u− u>A(A>A)−1A>u

]}
,

= (σ2
y)
−(N+Q)/2 |A>A|1/2

|A>A|1/2
exp

{
− 1

2σ2
y

[
(η − η̂)>A>A(η − η̂) + u>H⊥Au

]}
.

Simultaneously integrating out θ′ and β as jointly normal leaves

p(σ2
y,Σθ | y) ∝ (σ2

y)
−(N−P )/2|A>A|−1/2 exp

{
− 1

2σ2
y

‖u− Aη̂‖2

}
,

= (σ2
y)
−(N−P−2)/2−1‖u− Aη̂‖N−P−2

‖u− Aη̂‖N−P−2
, exp

{
− 1

2σ2
y

‖u− Aη̂‖2

}
× |A>A|−1/2.

From here, σ2
y has an inverse gamma distribution with a shape of (N −P )/2 and a scale

of one half of the sum of squared residuals. Integrating it yields

p(Σθ | y) ∝

∣∣∣∣∣∣∣
L>θ Z

>ZLθ + IQ L>θ Z
>X

X>ZLθ X>X

∣∣∣∣∣∣∣
−1/2

×

∥∥∥∥∥∥∥
y

0

−
ZLθ X

IQ 0


L>θ Z>ZLθ + IQ L>θ Z

>X

X>ZLθ X>X


−1 L>θ Z> IQ

X> 0


y

0


∥∥∥∥∥∥∥
−(N−P−2)

Determinant Rearrangement

Denote the determinant term as D. So long as Σθ is positive definite we have:
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D =

∣∣∣∣∣∣∣
L>θ 0

0 IP


Z>Z + Σ−1

θ Z>X

X>Z X>X


Lθ 0

0 IP


∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣
LθL

>
θ 0

0 IP

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
Z>Z + εIQ Z>X

X>Z X>X

+

Σ−1
θ − εIQ 0

0 0


∣∣∣∣∣∣∣ ,

where ε is chosen so that ε > 0 and Σθ − εIQ is still invertible. This is necessary as Z>Z

may be of less than full rank. Denote the Cholesky factors

L−>ε L−1
ε = Σ−1

θ − εIQ,

A>ε Aε =

Z>Z + εI Z>X

X>Z X>X

 .
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D = |Σθ||A>ε Aε|

∣∣∣∣∣∣∣IQ+P + A−>ε

L−>ε 0

0 0


L−1

ε 0

0 0

A−1
ε

∣∣∣∣∣∣∣ ,

= |Σθ||A>ε Aε|

∣∣∣∣∣∣∣IQ+P +

L−1
ε 0

0 0


Z>Z + εIQ Z>X

X>Z X>X


−1 L−>ε 0

0 0


∣∣∣∣∣∣∣ , Slyvester’s thm,

= |Σθ||A>ε Aε|
∣∣∣IQ+P + L−1

ε

(
Z>Z + εIQ − Z>X(X>X)−1X>Z

)−1
L−>ε

∣∣∣ , block inv,

= |Σθ|
|A>ε Aε|

|Z>H⊥XZ + εIQ|
|Z>HXZ + εIQ + L−>ε L−1

ε |, Slyvester,

= |Σθ||Σ−1
θ + Z>H⊥XZ|

∣∣∣∣∣∣∣
Z>Z + εIQ Z>X

X>Z X>X

∣∣∣∣∣∣∣
|Z>H⊥XZ + εIQ|

,

= |Σθ||Σ−1
θ + Z>H⊥XZ||X>X|

|Z>H⊥XZ + εIQ|
|Z>H⊥XZ + εIQ|

,

= |Σθ||Σ−1
θ + Z>H⊥XZ||X>X|.

If necessary, this can be re-written as |IQ + L>θ Z
>H⊥XZLθ||X>X|, an expression that, by

continuity, remains valid even at the boundary of the parameter space.

This yields equation 14.

Sum of Squares Rearrangement

For the purposes of taking derivatives, we write the sum of squares in a more-tractible

expression.

Let S be the Schur complement of the lower-right block for matrix that needs to be

inverted, S = L>θ Z
>ZLθ + IQ − L>θ Z>X(X>X)−1X>ZLθ = L>θ Z

>H⊥XZLθ + IQ. Taking a

block-wise inverse,
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L>θ Z>ZLθ + IQ L>θ Z
>X

X>ZLθ X>X


−1

=

 S−1 −S−1L>θ Z
>X(X>X)−1

−(X>X)−1X>ZLθS
−1 (X>X)−1 + (X>X)−1X>ZLθS

−1L>θ Z
>X(X>X)−1

 .
If we denote ZLθS

−1L>θ Z
> as M , we have

ZLθ X

IQ 0


L>θ Z>ZLθ + IQ L>θ Z

>X

X>ZLθ X>X


−1 L>θ Z> IQ

X> 0

 =

HX +H⊥XMH⊥X H⊥XZLθS
−1

S−1L>θ Z
>H⊥X S−1

 .
Finally, incorporating the vector (y, 0)>:

∥∥∥∥∥∥∥
y

0

−
ZLθ X

IQ 0


θ̃
β̃


∥∥∥∥∥∥∥

2

= y>H⊥Xy − y>H⊥XZ
(
Z>H⊥XZ + Σ−1

θ

)−1
Z>H⊥Xy.

If we were to replace both y and Z with their residuals from a projection onto the column

space of X, i.e. H⊥Xy and H⊥XZ, this is the sum of the squares of the residuals when projected

again while including a penalty term.

12.6 Marginal Posterior Derivatives

We take derivatives first with respect to Σθ, and later with respect to Σ1, . . . ,Σk. Finally,

we change to the free parameters σθ.
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Matrix derivatives are taken by column-vectorizing the target function and variable being

differenced. The result is a matrix with the number of rows equal to the length of the function

output and columns equal to the length of the input.

Determinant Derivative

Let f(Σ) = log |Σ|+log |Σ−1 +A| where A is a symmetric matrix of suitable dimension, then

df

dΣ
= vec(Σ−1)> − vec

((
Σ−1 + A

)−1
)>

(Σ−1 ⊗ Σ−1),

=
[
vec(Σ−1)− (Σ−1 ⊗ Σ−1) vec

((
Σ−1 + A

)−1
)]>

,

= vec
[
Σ−1 − Σ−1

(
Σ−1 + A

)−1
Σ−1

]>
.

If A is invertible, this equals vec
(

(Σ + A−1)
−1
)>

.

Taking another derivative yields:

d2f

dΣdΣ
= −(Σ−1 ⊗ Σ−1) +

(
Σ−1(Σ−1 + A)−1Σ−1 ⊗ Σ−1

)
+
(
Σ−1 ⊗ Σ−1(Σ−1 + A)−1Σ−1

)
−(

Σ−1(Σ−1 + A)−1Σ−1 ⊗ Σ−1(Σ−1 + A)−1Σ−1
)
,

= −
[
Σ−1 − Σ−1(Σ−1 + A)−1Σ−1 ⊗ Σ−1 − Σ−1(Σ−1 + A)−1Σ−1

]
.

And again, if A is invertible this reduces to − [(Σ + A−1)−1 ⊗ (Σ + A−1)−1].

In the context of a hierarchical model, we have:
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d

dΣθ

log
|Σ−1

θ |1/2

|Σ−1
θ + Z>H⊥XZ|1/2

= vec
[
Σ−1
θ − Σ−1

θ

(
Σ−1
θ + Z>H⊥XZ

)−1
Σ−1
θ

]>
,

d2

dΣθdΣθ

log
|Σ−1

θ |1/2

|Σ−1
θ + Z>H⊥XZ|1/2

=

−
[
Σ−1
θ − Σ−1

θ

(
Σ−1
θ + Z>H⊥XZ

)−1
Σ−1
θ ⊗ Σ−1

θ − Σ−1
θ

(
Σ−1
θ + Z>H⊥XZ

)−1
Σ−1
θ

]
.

Sum of Squares Derivative

For g(Σ) = log
(
a− b>(Σ−1 + C)−1b

)
where a is a constant, b is vector, and C is a symmetric

matrix, the derivative is given by:

dg

dΣ
= −(b> ⊗ b>) ((Σ−1 + C)−1 ⊗ (Σ−1 + C)−1) (Σ−1 ⊗ Σ−1)

a− b>(Σ−1 + C)−1b
,

= −
vec
[
Σ−1(Σ−1 + C)−1bb>(Σ−1 + C)−1Σ−1

]>
a− b>(Σ−1 + C)−1b

.

Denoting s = exp(g(Σ)) as the sum of squares and d = Σ−1(Σ−1 + C)−1b, the second

derivative is:

d2g

dΣdΣ
= −1

s

d

dΣ

[
Σ−1(Σ−1 + C)−1bb>(Σ−1 + C)−1Σ−1

]
−

1

s2
vec
[
Σ−1(Σ−1 + C)−1bb>(Σ−1 + C)−1Σ−1

]
vec
[
Σ−1(Σ−1 + C)−1bb>(Σ−1 + C)−1Σ−1

]>
,

= −1

s

[
−(Σ−1 − Σ−1(Σ−1 + C)−1Σ−1 ⊗ dd>)− (dd> ⊗ Σ−1 − Σ−1(Σ−1 + C)−1Σ−1)

]
−

1

s2

(
dd> ⊗ dd>

)
,

= − 1

s2

[(
dd> ⊗ dd> − s

(
Σ−1 − Σ−1(Σ−1 + C)−1Σ−1

))
+(

dd> − s
(
Σ−1 − Σ−1(Σ−1 + C)−1Σ−1

)
⊗ dd>

)]
.
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For hierarchical models, we have:

a = y>H⊥Xy,

b = Z>H⊥Xy,

C = Z>H⊥XZ,

d = Σ−1
θ

(
Σ−1
θ + Z>H⊥XZ

)−1
Z>H⊥Xy.

12.7 Matrix-Variate Beta Prime

Density

Assume the following model for a d dimensional covariance matrix:

Σ̃ | Ψ ∼ inv −Wishart(ν,Ψ),

Ψ ∼Wishart(ν, C).

The joint density of Σ and Ψ is:

p(Σ̃,Ψ) =
|Ψ|ν/2|Σ̃|−(ν+d+1)/2

2νd/2Γd(ν/2)
etr

{
−1

2
ΨΣ̃−1

}
× |C|

−µ/2|Ψ|(µ−d−1)/2

2µd/2Γd(µ/2)
etr

{
−1

2
ΨC−1

}
,

=
|Ψ|(ν+µ−d−1)/2|Σ−1 + C−1|(ν+µ)/2

2(ν+µ)d/2Γd ((ν + µ)/2)
etr

{
−1

2
Ψ(Σ̃−1 + C−1)

}
×

Γd ((ν + µ)/2)

|Σ̃−1 + C−1|(ν+µ)/2

|Σ̃−1|(ν+d+1)/2

|C|µ/2Γd(ν/2)Γd(µ/2)
.

The conditional distribution of Ψ | Σ̃ is Wishart with ν + µ degrees of freedom and a scale

of (Σ̃−1 + C−1)−1 so that the leading part integrates to 1. Consequently,
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p(Σ̃) =
|Σ̃−1|(ν+d+1)/2

|Σ̃−1 + C−1|(ν+µ)/2

1

|C|µ/2Bd(ν/2, µ/2)
.

First Derivative

Denote l(Σ̃) = log p(Σ̃). Then,

dl(Σ̃)

dΣ̃
= −ν + d+ 1

2
vec(Σ−1)> +

ν + µ

2
vec
(
Σ−1(Σ−1 + C−1)−1Σ−1

)>
.

Setting this equal to the 0 vector demonstrates that it is maximized at ̂̃Σ = µ−d−1
ν+d+1

C. Had

we wished to parameterize the distribution by its mode, say M , we would have:

Σ̃ | Ψ ∼ inv −Wishart(ν,Ψ),

Ψ ∼Wishart

(
µ,
ν + d+ 1

µ− d− 1
M

)
,

p(Σ̃) =
|Σ̃−1|(ν+d+1)/2

|Σ̃−1 + µ−d−1
ν+d+1

M−1|(ν+µ)/2

(
µ−d−1
ν+d+1

)µd/2
|M |µ/2Bd(ν/2, µ/2)

.

Second Derivative

d2l(Σ̃)

dΣ̃dΣ̃
=
ν + d+ 1

2
(Σ̃⊗ Σ̃)− ν + µ

2

[(
Σ̃−1 ⊗ Σ̃−1(Σ̃−1 + C−1)−1Σ̃−1

)
+(

Σ̃−1(Σ̃−1 + C−1)−1Σ̃−1 ⊗ Σ̃−1
)
−
(

Σ̃−1(Σ̃−1 + C−1)−1Σ̃−1 ⊗ Σ̃−1(Σ̃−1 + C−1)−1Σ̃−1
)]
.

When evaluated at the mode, we have

l′′(M) =
ν + d+ 1

2
(M−1 ⊗M−1)− ν + µ

2

[
2
ν + d+ 1

ν + µ
(M−1 ⊗M−1)−

(
ν + d+ 1

ν + µ

)2

(M−1 ⊗M−1)

]
,

= −ν + d+ 1

2

µ− d− 1

ν + µ
(M−1 ⊗M−1).
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12.8 Change of Variables

In this section, we demonstrate the specific set of assumptions that lead to a linear trans-

formation for the purposes of adjusting the second derivative of the MVBP.

Derivation

Suppose that Σ is a d× d dimensional covariance matrix and it has the density pΣ(Σ), while

Ψ = Ψ(Σ) is a one-to-one transformation with density pΨ(Ψ). Similarly, the logarithms of

the density will be lΣ and lΨ respectively. Denote differentiation with respect to Ψ by a ‘′’

and differentation with respect to Σ by an over-set ‘·’. Writing Σ(Ψ) = Σ, we have:

lΨ(Ψ) = lΣ(Σ) + log |Σ′|,

l′Ψ(Ψ) = l̇Σ(Σ)Σ′ + vec
(
Σ′−1

)>
Σ′′,

l′′Ψ(Ψ) = Σ′>l̈Σ(Σ)Σ′ + (l̇Σ(Σ)⊗ Id2)Td4,d4Σ
′′ + Σ′′>(Σ′−> ⊗ Σ′−1)Σ′′+(

vec(Σ′−1)> ⊗ Id2
)
Td6,d6Σ

′′′.

In the above, Tm,n is a permutation matrix with the property that for A with dimensions

m× n, vec(A)> = Tm,n vec(A).

If l̇(Σ̂) = 0 is the unique mode of pΣ and we make the following assumptions,

1. Ψ(Σ̂) = Σ̂ - i.e. the transformed variable has the same mode,

2. Σ′′(Σ̂) = 0 - the transformed variable has the same information,

3. Σ′′′(Ψ) = 0,

then the linear transformation follows and we are able to directly adjust the second derivative

of the transformed density at its mode. In fact, by 1 and 2,

l′Ψ(Σ̂) = l̇Σ(Σ̂)Σ′(Σ̂) + vec(Σ′(Σ̂))>Σ′′(Σ̂) = 0.
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By 1 and 3,

l′′Ψ(Σ̂) = Σ′(Σ̂)>l̈(Σ̂)Σ′(Σ̂).

In deriving a transformation, we find the first assumption to be natural. It alone prompts

that vec(Σ′(Σ̂))>Σ′′(Σ̂) = 0. The first term cannot be 0 as that would imply that Ψ is actually

a constant. While components of each term could be zero such that the total product is as

well, a-priori no rationale for doing so seems to exist. That leaves that the second term must

be zero, or assumption 2. Finally, the third assumption is simply a matter of convenience.

Specificaly, the third assumption makes the adjusting the second derivative at the mode

a simple matter of solving a bi-linear equation. If we want l′′Ψ(Σ̂) = C,

C = Σ′(Σ̂)>l̈Σ(Σ̂)Σ′(Σ̂),

C1/2 = l̈Σ(Σ̂)1/2Σ′(Σ̂),

Σ′(Σ̂) = l̈(Σ̂)−1/2C1/2.

Because Σ(Ψ) must be a linear transformation, we then have vec(Σ(Ψ)) = l̈Σ(Σ̂)−1/2C1/2 vec(Ψ)+

const. In order to preserve the mode,

vec(Σ(Ψ)) = l̈Σ(Σ̂)−1/2C1/2 vec(Ψ− Σ̂) + vec(Σ̂),

vec(Ψ(Σ)) = C−1/2l̈Σ(Σ̂)1/2 vec(Σ− Σ̂) + vec(Σ̂).

Application

Finally, we can connect this to the previous section and utilize the second derivative of

the MVBP at its mode. If I is the second derivative of the log marginal posterior at its

mode, or any desired second derivative for that matter, and M is that mode, then desired
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transformations are:

vec(Σ̃(Σ)) =

√
2

ν + d+ 1

ν + µ

µ− d− 1
(M1/2 ⊗M1/2)I1/2 vec(Σ−M) + vec(M),

vec(Σ(Σ̃)) =

√
ν + d+ 1

2

µ− d− 1

ν + µ
I−1/2(M−1/2 ⊗M−1/2) vec(Σ̃−M) + vec(M),

and we have moved from Σ̃ to Σ while maintaining the desired properties that l′′Σ(M) = I

and l′Σ(M) = 0.
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