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Abstract 

Identification and Characterization of Inerolysin, the Cholesterol Dependent Cytolysin produced by 
Lactobacillus iners 

Ryan Rampersaud 

 

 

 Lactobacillus iners, is a gram positive organism recently identified through the use of culture 

independent techniques.  Identified as a major constituent of the vaginal microbiota, epidemiological 

studies have suggested that this organism may not provide the protective effects ascribed to other 

vaginal lactobacilli.  Our work here has identified and characterized a pore forming toxin, Inerolysin, 

produced by this organism.  This pore forming toxin was present in all strains of L. iners tested and 

possessed characteristics which firmly categorize it as a member of the Cholesterol Dependent Cytolsin 

superfamily.    

Additionally, we identified pH as a regulatory factor for the activity of Inerolysin as well as other CDCs.  

Inerolysin was shown to had optimal activity at acidic pH, while other toxins such as pneumolysin and 

arcanolysin had optimal activity at basic pH.  We demonstrate that pH induced changes in activity were 

reversible, suggesting that a reversible conformational change takes place in the protein.  Furthermore, 

our results show that it is the last step in pore formation, the transition from pre-pore to pore, which is 

impaired.  Our attempts to localize this to particular residues were unsuccessful. 

Finally, we sought to understand what the vaginal environment of a Lactobacillus dominated flora would 

look like.  We demonstrate that L. iners induced unique signaling in the vaginal epithelium, leading to 

the production of a unique profile of proinflammatory cytokines as well as antimicrobial peptides.  We 

further demonstrate that some of these responses are mediated by the activity of the pore forming 

toxin of L. iners, Inerolysin.   
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Chapter 1: Introduction 

1.1 Normal Microbiota of the Vaginal Tract 

The microbial inhabitants of the female genital tract and the contribution of these organisms to 

health and disease have been investigated for well over a century, yet they remain 

incompletely understood.  The first studies which yielded information about the complexity of 

this anatomical niche were focused on determining whether puerperal sepsis (also known as 

childbed fever, a bacterial infection acquired during childbirth) resulted from the contamination 

of normally sterile sites or whether the necessary agents already existed in the vagina.  In 1887, 

Döderlein attempted to address this issue by examining the vaginal secretions and uterine 

cavity samples of pregnant women[1, 2].  He found that uterine samples were sterile, but 

vaginal secretions frequently contained pyogenic cocci.  This work was important in 

demonstrating the presence of bacterial species in the vaginal tract, and more importantly 

introduced us to the first descriptions and images of lactobacilli, which was referred to as the 

Döderlein bacillus (and would later be identified as Lactobacillus acidophilus)[3].   

These early studies were dependent upon the growth of these bacteria in rich media and 

identification and characterization based on observable characteristics (shape, Gram stain, and 

arrangement of cells).  With advances in the bacteriological culture strategies, scientific 

understanding of the vaginal microbiota became significantly more nuanced.  While yielding 

important information about the composition of the colonizing microbiota, this approach was 

inherently biasing the picture obtained, as only a small fraction of the colonizing microbiota 
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could be cultured in the laboratory, either because they could not grow on traditional media or 

because they were present in such low abundance.   

In the 1980’s, several groups demonstrated that the phylogenetic relationships of several 

bacteria could be determined by the comparison of a stable part of the genetic code.   The 16S 

rRNA gene was chosen because of its length (large enough to be sequenced directly) and 

because the amount of sequence change is a product of the rate of change and the time (so 

greater sequence change correlates to the phylogenetic distance of two sequences since they 

diverged from their last common ancestor)[4].   Contained within the 16SrRNA gene are “hot 

spots” that show larger number of mutations.  As our understanding grew, it became clear that 

these short regions could also yield significant phylogenetic information and allow for a higher 

resolution between species (as these regions contained more changes between species).  

Briefly, primers are generated to the conserved regions of the 16S rRNA gene, producing a 

polymerase chain reaction (PCR) product that spans one or more of these hypervariable 

regions. These products can then be analyzed in several ways to assess community structure. 

These methods include terminal restriction fragment length polymorphism (T-RFLP) analysis, in 

which PCR products are generated and digested with restriction enzymes, yielding patterns of 

fragments used for identification. The PCR products may also be analyzed by denaturing 

gradient gel electrophoresis (DGGE) in which they are separated based on sequence differences 

by subjecting them to the activity of a gradient of denaturing chemicals. Whereas T-RFLP and 

DGGE are useful and economical techniques, direct sequencing of 16S PCR products yields the 

most detailed information and, as sequencing costs have decreased, has become the most 

commonly used technique. The recent transition from low-throughput clone library sequencing 
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studies to deep sequencing of PCR amplicons has led to a rapid accumulation of data regarding 

human-associated microbial communities and has been crucial in furthering our understanding 

of the composition and dynamics of the microbiota of the genital tract and their role in health 

and disease[5-8]. 

As deep sequencing has become more cost effective and commonplace, we have gained further 

insight into the diversity that is present between individuals.  One study demonstrated that 

rather than having a core set of microbial species present in the vaginal tract common to all 

women, there were actually five “community state types”, characterized by the dominant 

species present[9]. This work found that community state types I, II, III, and V were dominated 

by a single vaginal Lactobacillus species (either L. crispatus, L. gasseri, L. iners, and L. jensenii 

respectively) while community state type IV was characterized by a high diversity and no single 

dominant Lactobacillus species.  This work and others utilizing culture-independent techniques 

have greatly expanded the census of vaginal microbes.  Among the aerobes and facultative 

organisms, lactobacilli, other Gram-positive rods, staphylococci and streptococci (of both 

pathogenic and non-pathogenic varieties), and Gram-negative enteric organisms can all be 

found at high prevalence in vaginal samples. Likewise, a variety of cultivable anaerobes 

including Prevotella spp., Fusobacteria spp., and others are present in substantial numbers at 

the vaginal mucosal surface[10].  The identification of the high level of diversity in the vaginal 

tract is a first step, and further work is required to understand how these species contribute to 

vaginal health and disease[11].   
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1.1.1 Role of “Protective” Lactobacilli in the Vaginal Tract 

Döderlein’s work not only established the dominance of vaginal lactobacilli in the vaginal tract, 

but established an important concept with regards to their role in the vaginal tract.  In his study 

of puperal sepsis he suggested that in normal secretions, vaginal lactobacilli were crucial to 

keeping the vagina free of pathogenic bacteria[2].  This crucial concept continued to inform 

studies into the 20th century, and it was later demonstrated that the growth of Lactobacillus 

acidophilus antagonized the growth of Neisseria gonorrhoeae[12].  It has been suggested that 

the protective effects of vaginal lactobacilli can be attributed to several mechanisms, including 

the production of hydrogen peroxide[13] and lactic acid (that maintains the vaginal tract at an 

acidic pH), the production of bacteriocins (small peptides with microbicidal activity) and 

competition for nutrients or receptors at the epithelial cell surface, a phenomenon known as 

bacterial interference.  There has been significant work in understanding the protective effects 

of these organisms and their specific identity in the hopes of developing various probiotics for 

the treatment and prevention of urogenital infections.   

1.2 Bacterial Vaginosis 

Bacterial vaginosis (BV) is a condition characterized by replacement of the normally protective 

Lactobacillus spp. and a massive overgrowth of anaerobic and facultative organisms including 

Gardnerella vaginalis, Atopobium vaginae, Bacteroides spp., Mobiluncus spp., and genital 

mycoplasmas[14, 15].  With the loss of the Lactobacillus species, we also see an elevation of the 

vaginal pH due to their lactic acid producing capability[16, 17].  This alteration in vaginal 

microbiology may lead to symptomatic vaginitis. However, the vast majority of affected women 
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remain asymptomatic[18].   Regardless of clinical presentation, BV is associated with significant 

adverse consequences including miscarriage, preterm birth, chorioamnionitis[19], postpartum 

endometritis and an increased risk of HIV/STD acquisition[12, 20, 21]. This complex disorder is 

exceedingly common, with prevalence rates ranging from 10% to 40%(reviewed in [22]).  

Suboptimal methods of diagnosis reflect the inherent difficulties in precisely defining this 

condition and make the true prevalence difficult to ascertain. 

 

1.2.1 Etiology of Disease 

Despite an understanding of the changes that occur during an episode of BV, the etiology of this 

disease remains unclear and the cause of disease has yet to be identified.  Studies of this 

disease state have yielded several potential candidates as contributing to disease.  In 1955, 

Gardner and Dukes isolated Haemophilus vaginalis, now known as G. vaginalis, from women 

with ‘nonspecific vaginitis’ and postulated that this was the primary etiological agent[23]. Their 

attempts to induce infection in healthy volunteers by inoculating pure cultures of G. vaginalis 

were largely unsuccessful (only one of 13 volunteers infected)[24].  They were, however, able 

to induce vaginitis in 11 of 15 volunteers by inoculating vaginal secretions from affected 

women, suggesting that G. vaginalis alone was not sufficient to induce disease and that 

additional factors/organisms were necessary. Since that time, numerous BV-associated bacteria 

have been identified using both standard culture and cultivation- independent techniques and 

BV is generally regarded as a polymicrobial disease. Nevertheless, G. vaginalis remains one of 

the most frequently isolated organisms in women with BV[25] and its cytotoxicity and ability to 
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produce an adherent biofilm suggests a greater virulence potential relative to other BV-

associated organisms[26-28]. 

Culture based studies have implicated a number of different organisms in the etiology of this 

disease.  Several studies have demonstrated an association between Mobiluncus curtisii[21] 

and BV, with prevalence rates approaching 77%  in BV patients as compared to healthy controls 

where Mobiluncus species were identified in about 6% of samples.  Several studies have also 

identified Mycoplasma hominis as a highly associated BV organism, being present in 24-75% of 

women with BV and only 13-22% of women without BV[29-32]  

The use of cultivation-independent techniques has further enhanced our understanding of the 

microbiology of BV.  Fredricks et al.[33] used 16S rDNA PCR to characterize and compare the 

bacterial communities found in women with and without BV.  They demonstrated that those 

subjects with BV exhibited considerably greater bacterial diversity, with 35 bacterial phylotypes 

detected, 16 of which were newly recognized.  Collectively, these organisms, belonging to the 

Clostridiales group, were referred to as BVAB1, BVAB2, and BVAB3[34].  While there is no 

evidence that these organisms are the causative agents of BV (possibly because of their 

fastidious nature making them difficult to study in a laboratory setting), they are highly specific 

markers of BV[35].  By contrast, women without BV were noted to have relatively 

homogeneous vaginal microbiota, predominantly comprised of lactobacilli.  Despite the 

identification of several BV-associated organisms, a clear link between these species and the 

onset of a BV episode has not been explicitly demonstrated.  Furthermore, these species are 

also notably present in healthy patients, calling into question whether they are each 
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individually the cause of this disease.  To date, no single organism has been implicated in the 

development of this disease and the sequence of events in the progression of BV remains 

unclear.  Figure 1.1 shows two competing models for the etiology of bacterial vaginosis[36]. 

 

 

 

Figure 1.1 Two competing models for the etiology of bacterial vaginosis 

1.2.2 Diagnosis and Clinical Outcome 

Historically, BV was a diagnosis of exclusion.  Women who presented with a discharge but 

lacked detectable yeast cells or Trichomonas infection were given the diagnosis of bacterial 
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vaginosis (then referred to as nonspecific vaginitis).  The use of clinical symptoms for diagnosis 

became more standardized by Amsel[18] who defined BV as having three of the four following 

clinical signs: (i) vaginal fluid with a pH of >4.5, (ii)A homogenous grey discharge,(iii) fishy odor 

after the addition of 10% KOH, and (iv) presence of clue cells on wet mount (shed epithelial 

cells coated with bacterial cells).  Since then, these criteria are still in wide use because of the 

ease with which they can be performed in a clinical setting.  However, a number of studies 

since then have suggested that the use of these subjective criteria can result in misdiagnosis, 

either seeing BV where it is not, or missing it altogether in other patients.  This is particularly 

concerning for women who have an altered vaginal microbiota but lack observable symptoms, 

and thus are currently not treated.  These women, despite having no frank discharge or other 

symptoms, could still suffer from some of the negative consequences associated with BV, 

although the connection between asymptomatic BV and BV associated consequences has not 

yet been examined.     

 

Alternatively, BV may be diagnosed using the Nugent scoring system for interpretation of 

Gram-stained vaginal smears[37]. This method assesses the number of lactobacilli relative to 

BV-associated bacterial morphotypes in order to characterize vaginal microbiota as normal, 

intermediate or abnormal (BV).  A major criticism of this diagnostic strategy is that although 

women with high numbers of Lactobacillus spp. generally do not have BV, it may be incorrect to 

conclude that women with few or no Lactobacillus spp. have BV.  In the study by Ravel et al., 

nearly 25% of asymptomatic reproductive-age women had vaginal bacterial communities in the 
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‘diversity group’ (i.e. not dominated by Lactobacillus spp.)[9].  Additionally, the data we present 

here demonstrates that the presence of lactobacilli in a vaginal smear is not synonymous with 

health, depending on the Lactobacillus species present.   

 

In recent years, there has been an increasing appreciation for bacterial vaginosis as an 

important clinical entity, because of the significant adverse sequelae associated with it.  These 

include an increased risk for pelvic inflammatory disease, increased risk for postpartum 

endometritis, an increased risk for the acquisition of HIV and other STDs, as well as an increased 

risk for low birth weight[38] and preterm birth[39-43]  

Preterm birth is defined as delivery of an infant before 37 weeks.  In the US, it occurs in 11% of 

all pregnancies, and is associated with high costs (in excess of $4 billion/year) and a high rate of 

neonatal morbidity and mortality[44].  Various studies have demonstrated the association 

between BV and the incidence of preterm birth although the exact assessment of the increase 

in risk varies from 1.5-3 fold[42, 45].  The exact mechanism linking BV and preterm birth is 

currently unclear.  However, it has been suggested that BV associated organisms can ascend to 

the upper genital tract and initiate preterm labor via inflammatory processes at this site[40].  

Studies of term labors have yielded a wealth of information about the processes which occur to 

induce the appropriate sequence of events, and these processes may be activated in an 

untimely manner in the setting of vaginal infection.  Specifically, it is thought that bacterial 

PAMPs (Pathogen Associated Molecular Patterns) can activate proinflammatory signaling 

resulting in the production of IL-1β, TNF-α, IL-6, IL-8 and others.  These cytokines can augment 
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their own production as well as result in the production of prostaglandins, matrix 

metalloproteinases, and recruitment of neutrophils and macrophages to the maternal fetal 

membranes, cervix, and myometrium[46].  Additionally, several studies have implicated 

elevated defensin levels during episodes of BV with an increased risk for preterm labor[42, 47].  

Whether these defensins play an active part in initiating preterm labor, or are a marker of some 

other event (such as neutrophil influx) remains unclear.  Figure 1.2 is a proposed model for how 

BV is linked to preterm labor.   Interestingly, despite the association of increased 

proinflammatory cytokines, BV is not a state characterized by high proinflammatory cytokine 

production (IL-8, IL-6, and TNFα) in vaginal fluids[48-51],  and attempts to treat the infection 

and limit the incidence of preterm labor have been highly unsuccessful[52-57].  This is 

suggestive of a state that precedes BV which is high in proinflammatory cytokines that is the 

main driver for BV associated preterm labor.    
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Figure 1.2 Proposed model for link between bacterial vaginosis and preterm birth 

1.3 Identification of a novel Lactobacillus species, Lactobacillus iners 

Although the dominance of vaginal lactobacilli has been noted for over a century, culture 

independent techniques continue to expand our knowledge.  Recently, the use of these 
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techniques expanded the repertoire of lactobacilli to include a novel species, L. iners[58].  This 

species has subsequently been shown to be a common constituent of the vaginal tract[59, 60], 

and in fact is the dominant species in approximately 30% of women[9].  Although ubiquitous in 

the vaginal tract, this organism was initially overlooked because the media used to isolate 

vaginal lactobacilli, de Man-Rogosa-Sharpe (MRS) agar[61], does not support the growth of L. 

iners.  This inability to grow on media used to support most lactobacilli foreshadowed the 

unique and strange behavior of this organism in the vaginal tract.       

1.3.1 Taxonomy and Physiology 

Figure 1.3 shows a phylogenetic tree demonstrating the relatedness of L. iners to other 

lactobacilli.  Like other lactobacilli, this organism is a Gram positive, facultatively anaerobic rod.  

Growth did not take place on MRS agar, and required blood agar.  Interestingly, unlike other 

vaginal lactobacilli, this organism is noticeably shorter and fatter[58].  The genome of this 

organism is significantly reduced, being the smallest Lactobacillus genome to date with a single 

chromosome of approximately 1.3Mbp.  Contained within the genome are several proteins 

which contribute to its ability to persist in the vaginal tract: several alkaline shock proteins as 

well as alternative sigma factors which aid in tolerating altered pHs as well as stress associated 

with infection.  The genome also possesses iron-sulfur cluster assembly systems which are 

important for moving iron and sulfur to the appropriate locations within the cell as well as 

acting as sensors which can initiate responses to environmental changes[62].  
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Figure 1.3 Phylogenetic relationships between L. iners and other Lactobacillus species 

1.3.2 Role in the Vaginal Tract  

Although this organism is a member of the genus Lactobacillus and closely related to other 

vaginal lactobacilli, it seems to lack the protective effects traditionally ascribed to this group.   

Ravel et al. demonstrated that women with a microbiota dominated by this organism showed 

elevated and variable pH as well elevated and variable Nugent scores as compared to an L. 

crispatus dominated microbiota which had a lower and more homogenous pH and Nugent 

score profile.  This large study suggests that a microbiota that is dominated by L. iners is less 

stable, and more prone to alterations of its composition, as would be seen with BV.  It has also 

been suggested that L. iners represents a transitional species, present after treatment with 
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antibiotics[63] or after administration of exogenous estrogen[64].  Given that 70% of women 

who are treated for bacterial vaginosis will recur, the dominance of L. iners post treatment 

suggests that this organism contributes in some way to an imbalance in the vaginal tract.  

Several groups have taken this link one step further, to demonstrate an association between 

the presence of L. iners and the presence of other BV associated organisms[65].  This result is 

also consistent with other published work demonstrating that L. iners persists during episodes 

of BV, a condition in which Lactobacillus species are normally lost.  While this does not 

necessarily link L. iners to causing changes in the vaginal microbiota, it is peculiar that this 

organism shows a positive association with BV associated microbiota.  All of these data are 

further supported in a study by Srinivasan et. al, where it was demonstrated that the presence 

of L. iners is not associated with the absence of BV [36].  Another clear demonstration of the 

ability of L. iners to stimulate alterations of the microbiota was a study which examined the 

microbiota of pregnant women over time as a function of Lactobacillus status.  In this cohort, 

they demonstrated that women with a vaginal micromicrobiota dominated by L. iners had a 

tenfold increased risk for conversion to an “abnormal vaginal micromicrobiota” as indicated by 

Gram stain[66].  While there is much to learn about the physiology of this organism and its role 

in the vagina, these data suggest that this organism does not adhere to the traditional view of 

vaginal lactobacilli as stabilizing, protective species.   

1.4 Bacterial toxins 

A wide variety of pathogenic organisms produce toxins.  Broadly, toxins can be characterized as 

endotoxin and exotoxins.  Endotoxins are a common feature of all Gram negative organisms, 
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and are non-proteinaceous components of the cell wall.  The major endotoxin present in Gram 

negatives is Lipopolysaccharide (LPS), and is released as bacteria die and lyse.  These endotoxins 

are able to activate the immune system via toll-like receptors (TLRs), resulting in cytokine 

release which, left uninhibited can result in fever, shock, and death.  The other major classes of 

toxins are the exotoxins.  These proteins are a group of proteinaceous toxins which are 

secreted by the organisms in response to a number of cues.   In characterizing their activity, we 

can broadly classify exotoxins into three categories: those which act intracellularly (which 

includes cholera toxin and diphtheria toxin) and have enzymatic activity, those which have 

membrane damaging activity (including the CDCs), and those which are able to 

activate/stimulate the immune system inappropriately (pyrogenic exotoxins).  These toxins play 

important roles in the pathogenesis of the organisms which produce them, conferring some 

sort of advantage over the host.  The best known and studied toxin is diphtheria toxin, 

produced by Corynebacterium diphtheria.  First discovered in 1888 by Yersin and Roux, this 

toxin is of the A/B type, which possess two components.  For this group of toxins, the toxic 

activity is contained within the A subunit, and the B subunit is involved in binding to target cells 

and delivering the A subunit intracellularly.  Diptheria toxin is secreted as a single 

polypeptide[67] and the B subunit interacts with heparin binding protein[68] which is then 

internalized via receptor mediated endocytosis.  The A subunit possesses ADP-

ribosyltransferase activity and transfers an ADP-ribose group on to elongation factor 2 (EF2), 

which results in inhibition of protein synthesis and ultimately localized cell death[69].  The 

membrane damaging toxins can destabilize membranes in a variety of ways: enzymatic activity 

against membrane lipids (exemplified by α-toxin of C. perfringens which has phospholipase C 
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activity), toxins with surfactant like activity allowing disruption of membranes (such as delta 

toxin of S. aureus)[70], and those which produce holes in cell membranes resulting in leakage of 

intracellular contents,  influx of water, and ultimately cell lysis.  This latter class, the pore 

forming toxins, are the largest class of bacterial toxins and are often important virulence 

factors[71].  These toxins are secreted as monomeric proteins, interact with target membranes 

via a membrane receptor, and then oligomerize to form the pore.  This ability to diffuse within 

the lipid bilayer and oligomerize is the unifying feature of this class of toxins[72].  The PFTs can 

be categorized as α-PFTs and β-PFTs, based on the secondary structure utilized for membrane 

insertion.  The α-PFTs insert amphipathic α helices into the membrane whereas β-PFTs insert an 

amphipatic β- barrel structure into the membrane[73].  For a more in-depth understanding of 

the α-PFTs, see the reviews cited here[74, 75].  The cholesterol dependent cytolysins are a 

major group within the larger family of β-PFTs and are discussed further below. 

1.4.1 Regulation of toxin activity  

Toxin activity is important for the pathogenesis of many organisms, conferring some advantage 

over the host.  However, production of these bacterial toxins can be energetically costly, and 

often toxin production is required only at a particular time in the life cycle of the organism.  

Regulation of toxin activity can occur at the level of expression or post-translationally at the 

level of the function of the protein itself.  Throughout the class of bacterial exotoxins, 

regulation can occur at both of these levels.  Outlined here are just a few examples, to provide 

some context for studies carried out here examining regulation of CDC activity.  As mentioned 

above, diphtheria toxin is one of the most widely studied toxins, and demonstrates regulation 

not only at the level of transcription but also at the level of activity of the protein itself.  
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Expression of diphtheria toxin is regulated by the availability of iron.  When iron is abundant, 

the DtxR protein is expressed.  This protein can then bind to regulatory sequences upstream of 

the tox gene encoding diphtheria toxin, preventing transcription[76, 77].  A similar mechanism 

has been noted for Shiga toxin as well as Shiga-like toxin[78].  Despite the sequencing of a 

number of CDC genes and their surrounding regions, no known regulatory sequences have been 

identified for these toxins.  To date, no one has reported any environmental regulation of CDC 

expression, except for the CDC produced by B. anthracis[79].  At the level of actual protein 

function, pH can be an important regulator of toxin activity.  This has been demonstrated for 

diphtheria toxin, where acidic pH has been shown to facilitate translocation of the toxin from 

the acidified endosome into the cytoplasm.  Structural studies have demonstrated that upon 

exposure to acidic pH, conformational changes take place in the protein which “activate” the 

protein, exposing regions which will insert into the membrane[80].  The activity of some 

members of the CDC family (PFO and LLO) have been shown to be regulated by pH as well.  The 

role that pH plays in regulating the activity of these CDCs is discussed further below.  Overall, 

pH seems to be an important regulator of activity of bacterial toxins, and is investigated in the 

work presented here.    

1.5 Cholesterol Dependent Cytolysins (CDCs) 

The CDCs are a family of pore-forming toxins belonging to a larger class of β-barrel pore 

forming toxins.  These β-PFTs are distinguished from the other major class of PFTs, the α-PFTs,  

by their use of amphipatic β-hairpins to create a β-barrel structure.  The CDCs are distinguished 

within this larger group because of their absolute requirement for cholesterol in target 



18 
 

membranes, making them specific for eukaryotic cells.  This unifying characteristic has been 

demonstrated in several studies as toxin activity can be inhibited by the addition of exogenous 

cholesterol[81] as well as by the depletion of membrane cholesterol[82].  Additionally, they are 

known to form extraordinarily large pores in target membranes, with diameters exceeding 

15nm.   

The events of pore formation and their molecular mechanisms have been extensively 

investigated over the past 50 years, and while a more complete picture has emerged, there is 

still much that is unknown about the pore formation and toxin activity.  As noted before, there 

is an absolute requirement for cholesterol in target membranes, which affords these toxins a 

cellular receptor.  Interestingly, a few toxins have been identified that require cholesterol for 

activity, but make use of an additional protein receptor to mediate initial membrane binding 

activity. These toxins, Vaginolysin (VLY) and Intermedilysin (ILY), and the revised role of 

cholesterol in pore formation will be discussed later.  Upon membrane binding, an elegant and 

concerted series of events results in the oligomerization of monomeric toxins into a pore 

structure, leading to cell lysis. 

 

The first CDCs were discovered more than a century ago [83] and as the number of cultivatable 

organisms grows and methods for looking at the genomes of cultivated and uncultivated 

organisms grows, we have greatly expanded the family to include 25 members produced by 

Gram positive organisms (Table 1.1).  These toxins play crucial roles in the pathogenesis of 

diseases caused by these organisms and are required in various stages/roles in disease 
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progression.  Initially thought to be a feature unique to Gram positive organisms, recent work 

has demonstrated the identification of two putative CDCs in two Gram negative organisms, 

desulfolysin (DLY) and enterolysin (ELY)[84].  Interestingly, unlike the Gram positive CDC 

producing organisms, for which the human body is a physiological niche, the Gram negative 

CDC producing organisms predominantly inhabit sediments and soils.  This finding suggests 

roles in more than just disease pathogenesis, but also in protection against eukaryotic 

predators.   

Whatever the role these toxins may play, a deeper understanding of these toxins and the 

mechanisms by which they make pore is critical to developing targeted therapies to combat 

these toxins.  With the increasing emergence of antibiotic resistance and a better appreciation 

for the crucial protective role the normal micromicrobiota plays in health, it has become 

increasingly important to tailor therapies to these crucial virulence factors.  These targeted 

therapies can disarm the offending organisms, while preserving the normal micromicrobiota 

and provide weaker selective pressure on the development of antimicrobial resistance.   
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Table 1.1 Family of Cholesterol Dependent Cytolysins (CDCs) 

 

Table 1.1 The Family of Cholesterol Dependent Cytolysins 

 

1.5.1 Monomer Structure 

CDCs are secreted as water soluble monomers, and range in size from about 50-60kDa.  These 

protein toxins all show high identity and similarity at the primary amino acid level, ranging from 

Bacterial genus Species CDC Abbreviation

Gram Positive

Arcanobacterium A. pyogenes Pyolysin PLO

B. alvei Alveolysin ALY

B. anthracis Anthrolysin O ALO

B. cereus Cereolysin O CLY

B. laterosporus Latersporolysin LSL

B. thuringensis Thuringiolysin O TLO

C. bifermentans Bifermentolysin BFL

C. botulinum Botulinolysin BLY

C. chauvcei Chauveolysin CVL

C. histolyticum Histolyticolysin O HTL

C. novyi type A Novyilysin O NVL

C. perfringens Perfringolysin O PFO

C. sordellii Sordellilysin SDL

C. septicum Septicolysin O SPL

C. tetani Tetanolysin TLO

Gardnerella G. vaginalis Vaginolysin VLY

L. ivanovii Ivanolysin ILO

L. monocytogenes Listeriolysin O LLO

L. seeligeri Seeligerolysin LSO

S. canis Streptolysin O SLO

S. equisimilis Streptolysin O SLO

S. intermedius Intermedilysin ILY

S. pneumoniae Pneumolysin PLY

S. pyogenes Streptolysin O SLO

S. suis Suilysin SLY

Gram Negative

Desulfobulbus D. propionicus Desulfolysin DLY

Enterobacter E. lignolyticus Enterolysin ELY

Streptococcus

Listeria

Clostridium

Bacillus
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40-70%[85].  Given this high degree of identity, it is likely that this entire family of toxins fold 

into similar three dimensional structures.  Much of the structural data we have is based on PFO, 

and to date, only two of the members in this entire family have been crystallized, the other 

being ILY.  Overall, CDC monomers have a four domain structure, which is discontinuous.  Much 

work has been done in assigning various functions to each of these domains.  While certain 

activities are localized to particular domains, it is very clear that individual domains are in 

communication with each other and pore formation requires concerted events between 

domains for functional pore formation.  The most highly conserved portion of the protein is at 

the C-terminus, an 11 amino acid stretch known as the undecapeptide, or Trp-rich region.  

Figure 1.4 shows a comparison of the region in several members of this family.  The 

role/function of this portion of the protein is discussed further below.   
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Figure 1.4 Comparison of the undecapeptide region 

1.5.2 Mechanism of pore formation 

Fig 1.5 shows the overall process of pore formation for the cholesterol dependent 

cytolysins[86].   

Figure

 
1.5 Model of CDC pore forming mechanismDC pore forming mechanism 

1.4.2.1 Membrane Binding 

As mentioned previously, for most of the CDCs (with the exception of ILY and VLY) cholesterol 

serves as the receptor for initial membrane interaction.  Various pieces of evidence have 

implicated domain 4 in this membrane binding activity, and over the years the data has 

suggested different portions of this domain to be implicated in this activity, much of which was 

localized to the undecapeptide region.  One group demonstrated modification of the conserved 

cysteine residue (in all CDCs except PLO and ILY) resulted in reduced membrane binding 
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activity[87].  It was later determined that this cysteine residue was not necessarily involved in 

membrane binding, but upon oxidation was then blocked by undefined molecules from the 

culture medium or from bacterial metabolism.  Additional studies targeted the tryptophan 

residues present in the undecapeptide.  The mutation of these residues initially seemed to alter 

membrane binding[88].  Additional studies revealed that rather than being involved in initial 

membrane binding to cholesterol in target membranes, these residues were important for 

initiating conformational changes in the protein that were important for pore formation.  The 

actual portion of the protein which mediated cholesterol binding remained elusive until a study 

by Soltani et. al [89] demonstrated the importance of three hydrophobic loops L1-L3 in 

mediating cholesterol binding  in target membranes.  Further study into the mechanisms of 

membrane recognition then identified the cholesterol recognition motif (CRM) as a Threonine-

Leucine pair in loop 1 which was found to be conserved in all known CDCs[90] .  Figure 1.6 

shows the conservation of this ThrLeu Pair in several CDCs.      
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Figure 1.6 Comparions of the L1 loop in several known CDCsFigure 1.6 Comparison of the L1 loop in severalknown CDCs 

 

1.4.2.2  Oligomerization 

After membrane binding, the next step in the process of pore formation is oligomerization.  For 

some time, it was unclear whether insertion of transmembrane helices in the protein occurred 

before or after oligomerization of monomeric toxin.  After much examination, several groups 

using fluorescent probes and disulfide trapping [91] as well as modulating the temperature[92] 

confirmed the correct sequence of events.  Upon membrane binding, via this Thr-Leu pair, 

membrane insertion of L2 and L3 as well as the undecapeptide occurs.  It was initially thought 

that this was the region that then contributed to the final formation of the pore[93].  However, 

it was later shown that this region, although inserting did not embed itself deeply into the 
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membrane making it unlikely to be the portion which contributed to the final pore.  This 

insertion event is crucial to pore formation, but because it then initiated further structural 

changes in the protein, not because it contributed anything to the ultimate pore structure.  

Specifically, the insertion of this protein then maintains the monomer in an orientation 

perpendicular to the membrane[94-96].  Additionally, insertion of the arginine residue present 

at the end of the undecapeptide is crucial for coupling membrane binding to the structural 

changes needed for the oligomerization process.  Specifically, upon insertion of the 

undecapeptide, and this arginine residue, changes are transmitted to D3 of the protein, and 

specifically to the four β sheets that contribute to the final pore. The β4 sheet is normally not 

exposed due to hydrogen bonding to a short hydrophobic region termed the β5 loop.   Upon 

membrane binding, insertion of a tryptophan in domain 3 into the membrane initiates the 

movement of the β5 loop away from the β4 sheet by virtue of a flexible glycine linker[97].  This 

exposes β4 which then allows it to interact with the exposed surface of the β1 sheet allowing 

for oligomerization into a prepore complex[98].  Figure 1.7 shows the proposed mechanism for 

these structural changes[99].  This prepore however must undergo further structural changes 

to form the final pore structure. 
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Figure 1.7 Membrane binding initiates conformation changes promoting oligomerization 

1.4.2.3 Pore Formation 

The rate limiting step for pore formation is the formation of this prepore complex.  Studies 

using disulfide locked mutants demonstrated that toxins could oligomerize on the surface, and 

upon reduction of the disulfide, pore formation proceeded with faster kinetics then if these 

toxins were pre-reduced in solution before being incubated with membranes[91].  The 

interaction between adjacent monomers is crucial to the final steps of pore formation: the 

disruption of the domain 2 and domain 3 interface, and insertion of the transmembrane helices 

(TMHs) present in domain 3.  The events between oligomerization and insertion of TMHs have 

not been completely worked out, but it is clear that monomers must align their transmembrane 

helices and in a concerted manner insert these TMHs to produce the final pore[100].       
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1.5.3 Properties of Specific Cholesterol Dependent Cytolysins 

Despite the high level of sequence similarity/identity and the seemingly similar mechanisms of 

action, further study of these toxins has demonstrated the evolution of specific and unique 

activities to the members of this family.  The unique characteristics of a few of these toxins are 

outlined below. 

1.5.3.1 Listerolysin O (LLO) 

Listeriolysin O (LLO) is the cholesterol dependent cytolysin produced by L. monocytogenes.  This 

organism is particularly interesting as it is one of the few CDC producing organisms known to 

have an intracellular lifestyle.  Various studies have demonstrated the importance of this pore 

forming toxin in phagosomal escape[101, 102], and intracellular survival and replication.  This 

toxin has evolved specific mechanisms making it perfectly suited to its intracellular lifestyle, 

operating maximally at acidic pH and rapidly losing activity at neutral pH, as would be 

experienced upon escape from the acidified phagosome and into the more neutral cytosol.  

Extensive investigation has led to the identification of a triad of acidic residues in domain 3 of 

the protein.  This triad of charged residues acts a sensor, detecting an increase in pH and 

causing a rapid and irreversible unfolding of the protein and loss of activity[103].  The 

importance of this pH dependent activity has been shown to be crucial to the lifestyle of this 

organism, as replacement with the pH “insensitive” toxin, PFO, completely inhibited the growth 

and propagation of this organism[101].  
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1.5.3.2 Perfringolysin O (PFO) 

Perfringolysin O is perhaps one of the most studied CDC and is the basis for many of the 

structural studies that have been carried out to date.   Given that it is one of two toxins in this 

family which have been crystallized and for which the structure has been solved, it forms the 

logical basis for a number of studies examining structural aspects of the pore forming 

mechanism.  Recently, this organism was shown to possess an intracellular component to its 

lifestyle[104].  As with LLO, this toxin has also evolved mechanisms making it well suited to its 

role in the acidified phagosome, showing enhanced activity at low pH. Unlike LLO, this toxin 

maintains hemolytic activity at more neutral pH, and to date the mechanism for this 

enhancement at low pH has not been elucidated.  It has been suggested that the enhancement 

of activity at low pH is due to a partial unfolding event of the TMHs that primes the protein for 

membrane insertion[105].   

1.5.3.3 Vaginolysin (VLY) 

VLY is the CDC produced by the vaginal bacterium (and potential pathogen) G. vaginalis.  It is 

hypothesized that this organism (and its toxin) plays a role in the pathogenesis of bacterial 

infections, specifically in the etiology of bacterial vaginosis (BV).  This toxin was initially 

identified in crude extracts of bacterial preparations of G. vaginalis.  Despite possessing 

characteristics comparable to that of PFO, this toxin was initially thought not to be a part of the 

CDC superfamily as it was inactivated by β-mercaptoethanol[106].  It was later discovered, after 

genomic data became available and recombinant protein was produced, that the basis for this 

was the absence of the cysteine residue in the undecapeptide region.  This toxin, as well as 
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Intermedilysin produced by Streptotoccus intermedius, represents the species specific members 

of the cholesterol dependent cytolysin superfamily, showing a restriction for human derived 

targets[26].  The basis for this was discovered to be an alteration in the molecule that mediated 

initial interaction with target membranes.  While it is accepted that the non-species specific 

toxins utilize cholesterol to mediate initial membrane interactions, the human specific toxins, 

VLY and ILY, utilize the GPI linked protein CD59 to mediate membrane recognition.  

Interestingly, despite the initial interaction being mediated by this protein receptor, cholesterol 

is absolutely crucial to the activity of the protein, and it has been shown that the Thr-Leu pair 

which mediates cholesterol recognition is conserved in these species specific toxins.   

1.5.3.4 Streptolysin O 

Streptolysin O is produced by several members of the genus Streptococcus.  This toxin 

possesses several of the features common to the non-species specific CDCs, including an 

invariant undecapeptide sequence (ECTGLAWEWWR) and the conserved Thr-Leu pair which 

mediates cholesterol binding.   It has been most extensively studied in the context of S. 

pyogenes infection, which is mainly associated with wound infections.  This toxin is the largest 

member of this family, on the basis of primary amino acid sequence, with 571 residues.  This 

toxin was crucial in suggesting that CDCs do more than just punch holes in target membranes 

and cause cell lysis.  It was discovered that SLO, after pore formation translocated the bacterial 

protein NADH-glycohydrolase into the target cells, and this required an N-terminal region that 

was missing in all other CDCs[107, 108].  To date, translocation of other factors or translocation 
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by other toxins has not yet been demonstrated, although it has been shown that the pore can 

facilitate the translocation of peptidoglycan (but probably not in a specific manner)[109] 

 

1.5.3.5 Pneumolysin 

Pneumolysin (PLY) is produced by the Gram positive organism Streptococcus pneumoniae.  This 

organism is responsible for a number of different diseases including pneumonia, meningitis, 

and otitis media.  The importance of this virulence factor to disease pathogenesis has been 

highlighted in several studies[110-113].  Unlike other members of the cholesterol dependent 

cytolysin family, this toxin lacks the N-terminal secretion signal.  PLY is seen to accumulate in 

the cytoplasm of the bacterium and is released upon autolysis of the cell.  PLY is also unique in 

its ability to activate complement[114].  Interestingly, unlike many other toxins, PLY can form 

oligomeric structures in solution with no exogenous membranes or cholesterol.  The 

importance of this activity in disease pathogenesis is not yet clear.   

 

1.6 Statement of Hypothesis 

 Lactobacillus iners is a newly identified constituent of the vaginal tract.  Lactobacillus 

species are thought to provide a protective effect within the vaginal tract, maintaining proper 

pH and preventing overgrowth by potentially pathogenic species.  Epidemiological data 

suggests that Lactobacillus iners rather than contributing to stability of the vaginal tract may 

actually contribute to alterations of the vaginal microbiota (as seen in BV).  Furthermore, 
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attempts to treat BV and limit the adverse outcomes associated with it have been highly 

unsuccessful.  Given L. iners ability to persist in both BV and non-BV states, as well as its 

association with increased incidence of BV, we speculate that L. iners has pathogenic potential 

and can contribute to BV pathogenesis and BV associated outcomes.  We sought to identify and 

characterize virulence factors produced by L. iners and understand their role in BV and BV 

associated preterm labor. Specifically we, 

1. Identified and characterized a putative pore forming toxin produced by Lactobacillus 

iners described in Chapter 2 

2. Investigate the mechanism by which activity of this toxin is regulated described in 

Chapter 3 

3. Characterize the responses of the vaginal epithelium to the bacteria and its toxin 

described in Chapter 4 
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Chapter 2: Identification and Characterization of Inerolysin, the Cholesterol Dependent 

Cytolysin produced by Lactobacillus iners 

 

Adapted from Rampersaud et. al (2010) 

2.1 Introduction 

The cholesterol-dependent cytolysins (CDCs) are a family of protein toxins produced by a wide 

range of Gram-positive bacteria. CDCs share several characteristics, including a four- domain 

structure, a requirement for membrane cholesterol for efficient activity, and an ability to form 

large pores in host cells, exceeding 150 Å in diameter[86]. In general, soluble CDC monomers 

are secreted into the extracellular environment and bind to target cell membranes through 

direct recognition of cholesterol or, in the cases of the human-specific toxins vaginolysin (VLY) 

from Gardnerella vaginalis and intermedilysin (ILY) from Streptococcus intermedius, via 

recognition of human CD59 on the target cell surface[26, 115].  Following membrane 

association, CDCs oligomerize to form a prepore structure, a process that is dependent upon 

the availability of cholesterol [89, 99, 115, 116].  In many cases, CDCs are required for virulence 

for their cognate organisms, and rather than acting solely as cytolytic toxins, CDCs may have 

more sophisticated roles in disease pathogenesis [102, 117, 118]. Understanding CDC evolution 

and host specificity is of considerable interest and has been limited by incomplete knowledge of 

the diversity of the CDC family. In particular, characterization of cytolysins most closely related 

to those in which host specificity has evolved may provide additional insights into the 

mechanism and effects of such restriction.  Lactobacillus iners is a relatively recently recognized 

member of the human vaginal microbiota[58-60] that was initially overlooked because of its 
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inability to grow on de Man- Rogosa-Sharpe agar, which is normally used to isolate vaginal 

lactobacilli. In healthy women, the vaginal microbiota is dominated by Lactobacillus species, 

with L. crispatus, L. gasseri, and L. jensenii being the most commonly cultivated[119]. These 

organisms are thought to play a role in resistance of the vaginal tract to colonization by 

pathogens, possibly through the production of lactic acid. L. iners is unusual among lactobacilli 

in that it may be detected during bacterial vaginosis (BV), a state in which G. vaginalis generally 

predominates and other Lactobacillus species are only rarely found at the vaginal mucosal 

surface[63, 66, 120, 121]. More recently, culture-independent studies of the vaginal microbiota 

have demonstrated that L. iners vaginal colonization may be considerably more prevalent than 

previously recognized, and in some cases it may be the most abundant organism detected[122, 

123].  Other sequenced Lactobacillus strains lack identifiable CDC genes. Given the unusual 

biology of L. iners and its similarities to G. vaginalis, we performed a bioinformatic search for 

genes that might encode a CDC in the L. iners genome. Here we report the identification, 

cloning, and characterization of inerolysin (INY), the L. iners CDC. The description of INY 

expands the CDC family to include a nonspecific toxin with the greatest sequence similarity to 

VLY and ILY, the two species- specific members of the CDC family. Further study of this newly 

identified CDC will increase our understanding of the evolution of the CDC family and the role 

of L. iners in vaginal physiology. 
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2.2 Materials and Methods 

2.2.1 Bacterial strains and cell lines  

L. iners strains were grown on human blood bilayer-Tween agar. L. iners type strain DSM 13335, 

the genome of which has been sequenced, was obtained from the Deutsche Sammlung von 

Mikroorganismen und Zellkulturen. L. iners clinical isolates CCUG38955A, CCUG44023, 

CCUG44137, CCUG44284, CCUG46933, CCUG28746, CCUG32387, CCUG24626, and 

CCUG35443B were obtained from the Culture Collection of the University of Göteborg.  L. iners 

strain ATCC 55195 was obtained from the American Type Culture Collection. Eukaryotic cell 

lines HeLa (ATCC CCL-2) and COS-7 (CRL-1651) were maintained in minimum essential medium 

(MEM) supplemented with 10% fetal bovine serum (Invitrogen), 1 mM sodium pyruvate, and 10 

g/ml ciprofloxacin. 

 

2.2.2 Cloning and expression of CDCs 

The open reading frame (ORF) containing INY lacking its predicted signal sequence was 

amplified by PCR from L. iners DSM 13335 genomic DNA using primers NheI-INY-F 

(GCCGCCGCTAGCA ATACTGAGCCAAAAACAGCTATTG) and XhoI-INY-R (GCCGCCCTCG 

AGTTAGTCATTTTTTACTTCTTCTTTG; restriction sites are underlined). The pneumolysin (PLY) ORF 

was amplified from Streptococcus pneumoniae strain D39 genomic DNA using primers NdeI-

PLY-F (GCCGCCC ATATGGCAAATAAAGCAGTAAATGAC) and PLY-R-XhoI (GCCGCCCT 
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CGAGCTAGTCATTTTCTACCTTATCTTC). The products were cloned via the indicated restriction 

sites into the pET28a vector (Novagen) in order to generate N-terminally hexahistidine- tagged 

constructs, verified by sequencing, and transformed into T7 Express Iq competent E. coli (New 

England BioLabs).  Expression strains were grown in LB with 50 g/ml kanamycin for 5 h, and 

protein expression was induced with 1 mM isopropyl-β-D-thiogalactopyranoside (IPTG) for 4.5 

h. Bacterial cells were pelleted by centrifugation and lysed in a buffer (50 mM NaH2PO4, 300 

mM NaCl, 10 mM imidazole) containing a protease inhibitor cocktail and Benzonase nuclease. 

Lysates were cleared by centrifugation, and supernatants containing His-tagged proteins were 

purified with Ni-nitrilotriacetic acid agarose beads (Qiagen) according to the manufacturer’s 

instructions. Purified proteins were dialyzed against lipopolysaccharide-free phosphate-

buffered saline (PBS) with 1 mM CaCl2 and 1 mM MgCl2 overnight at 4°C, and protein 

concentrations were determined by a modified Bradford assay (Bio-Rad). 

 

2.2.3 Detection of the INY gene in isolates of L. iners  

The presence of the gene for INY in several clinical isolates of L. iners was detected by PCR from 

genomic DNA using primers INY-test-F (CAGCAACACCTGGGTTAGAACTATC) and INY-test-R 

(CAGGTGCTCTTTTCAAGGCAGAC), targeting an internal region of the INY ORF. Amplification was 

carried out using Taq DNA polymerase (NEB). 
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2.2.4 Bioinformatic analysis 

Protein sequence prediction and alignment were carried out using MacVector software (version 

11; MacVector Inc.). Other sequences were obtained from the GenBank/Entrez Protein 

database (National Center for Biotechnology Information [NCBI]). N-terminal signal sequences 

were predicted with SignalP (version 3.0, available at http://www.cbs.dtu.dk 

/services/SignalP/)[124].   Alignments for phylogenetic analysis were done in BioEdit v7.04 (Ibis 

Therapeutics) using ClustalW for amino acids and then toggled back to nucleotides for further 

analysis. 

 

2.2.5 Phylogenetic analyses 

Phylogenetic analyses were performed using three methods: neighbor joining (NJ), maximum 

parsimony (MP), and maximum likelihood (ML). The optimal trees obtained by all of these 

techniques were almost identical. NJ analysis was done with PAUP[125] by using the minimum 

evolution criterion, allowing branch length to be negative except when calculating tree scores 

(for which they were set to zero) and breaking ties randomly. MP analyses were also done in 

PAUP using 1,000 random addition (RA) steps, followed by tree branch reconnection (TBR) 

swapping using the Multrees option in PAUP. Gaps were treated as a state, and all characters 

and state transformations were weighted equally. Bootstrap values were calculated using 100 

bootstrap iterations using 100 replicates of RA, followed by TBR, in each iteration. ML analyses 

were performed with RAxML Blackbox (http://phylobench.vital-it.ch/raxml-bb/index .php) 
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using a GTRGamma I model. Node support was assessed with 100 rapid bootstrap replicates 

using RAxML. 

 

2.2.6 INY Western blotting 

The indicated L. iners strains were grown in Columbia broth with 5% defibrinated sheep blood 

and 10% fetal bovine serum for 2 days at 37°C in 5%CO2. Bacterial cells were pelleted by 

centrifugation and lysed with BugBuster Protein Extraction Reagent (Novagen) containing 

Benzonase nuclease. Supernatants were concentrated from 5 ml to 500 μl using an Amicon 10-

kDa centrifugal filtration device (Millipore). Supernatants were run on a 4 to 12% gradient 

polyacrylamide gel (Invitrogen). Proteins were transferred to polyvinylidene difluoride (PVDF) 

membrane, blocked with 5% milk, and probed with one of two murine anti-PLY monoclonal 

antibodies as indicated below (Santa Cruz Biotechnology, 1:1,000 dilution, or Novacastra, 

1:250,000 dilution). The primary antibody was detected with horseradish peroxidase-

conjugated anti- mouse IgG by enhanced chemiluminescence. 

 

2.2.7 Live-cell imaging of phalloidin entry into epithelial cells 

HeLa cells were grown to confluence on uncoated glass bottom culture dishes (MatTek) and 

washed in PBS with 1 mM CaCl2 and 1 mM MgCl2. Phalloidin-Alexa Fluor 568 (Invitrogen) was 

added to a final concentration of 3.3 nM, and the cells were treated with INY (final 
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concentration, 1.8 µg/ml) or a vehicle control. Images were acquired on a Zeiss Axio Observer 

inverted microscope with appropriate filters every 30 s.  

2.2.8 Erythrocyte lysis assays 

The use of human erythrocytes from healthy adult volunteers after verbal informed consent 

was obtained was approved by the Columbia University Institutional Review Board (protocol 

IRB-AAAC5641). Defibrinated sheep and horse blood was obtained from Fisher Scientific. 

Erythrocytes were washed in sterile PBS with 1 mM CaCl2 and 1 mM MgCl2. For endpoint 

assays, 100 µl of a 1% washed erythrocyte solution was mixed with 100 µl of toxin in a 96-well V 

bottom plate and incubated for 30 min at 37°C and 5% CO2. After 30 min, the plates were spun 

at 2,000 rpm to pellet erythrocytes. Supernatant was removed, and the optical density at 415 

nm (OD415) was measured. In the indicated experiments, the toxin was incubated with 

cholesterol dissolved in chloroform or with chloroform alone (vehicle control) for 10 min at 

room temperature before use. In some experiments, the assay was carried out in the presence 

of dithiothreitol (DTT) or a vehicle control. In the indicated experiments, toxin was incubated 

with polyclonal anti-VLY rabbit serum or preimmune control rabbit serum (25) on a rotary 

shaker for 20 min at 4°C. For the kinetic assay, absorbance at 700 nm was measured every 

minute with an Infinite 200 microplate reader (Tecan).   
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2.2.9 LDH assay  

HeLa cells were grown to confluence in a 24-well plate and weaned from serum and antibiotics 

overnight. Cells were incubated with toxin diluted in MEM for the indicated time periods. A 

150-�l volume of supernatant was used to assay lactate dehydrogenase (LDH) release with the 

Cytotoxicity Detection Kit (Roche). The 100% lysis control was an identical well of HeLa cells 

concurrently treated with 1% Triton X-100 in MEM.  

 

2.2.10 Epithelial p38 MAPK phosphorylation 

HeLa cells were grown to confluence in a 24-well plate and weaned from serum and antibiotics 

overnight. Cells were incubated with CDCs diluted in MEM for the indicated time periods. Cells 

were lysed in radioimmunoprecipitation assay buffer (20 mm Tris [pH 7.4], 137 mM NaCl, 10% 

glycerol, 2 mm EDTA [pH 8.0], 1% Triton X-100, 0.5% sodium deoxycholate, 0.1% sodium 

dodecyl sulfate [SDS]) with protease inhibitors and phosphatase inhibitor cocktail (Sigma), 

separated on a 4 to 12% polyacrylamide gel, and transferred to a PVDF membrane. Membranes 

were blocked in 5% milk in Tris-buffered saline–Tween 20, probed with phospho-p38 mitogen-

activated protein kinase (MAPK) antibody (Cell Signaling; 1:1,000), and detected with anti-

rabbit IgG (1:5,000) by enhanced chemiluminescence. Blots were stripped in 4 N NaOH for 30 

min, reblocked in 5% milk, and reprobed using anti-p38 MAPK antibody (Cell Signaling; 1:1,000). 
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2.2.11 Statistical analyses 

Hemolysis assay results are expressed as average values from six readings from one 

representative experiment. Each experiment was repeated three times. Data were analyzed by 

one-way analysis of variance, followed by Tukey’s posttest. For the antibody protection assay, 

the data shown are from one representative experiment. Data were analyzed by Student t test. 

A P value of 0.05 was considered significant. All statistical analyses were carried out using Prism 

4 software (GraphPad) 

 

2.2.12 Nucleotide sequence accession numbers 

The accession number for INY from L. iners DSM 13335 is ZP_05744302 (annotated as 

perfringolysin O).  Protein sequence data for PLY from S. pneumoniae TIGR4, R6, and 

Taiwan19F-14 are available from the NCBI under accession numbers AAK75991, AAL00542.1, 

and ACO23064.1, respectively. Other NCBI accession numbers are as follows: VLY from G. 

vaginalis ATCC 14019 and ATCC 14018, ACD39460 and ACD39459, respectively; ILY from S. 

intermedius UNS38 and UNS46, BAE16324 and BAA89790, respectively; LLO from L. 

monocytogenes NICBP 54006, ACF40759; ivanolysin (IVN) from Listeria ivanovii 16328, P31831; 

anthrolysin O (ALO) from Bacillus anthracis A0248, YP_002867524; cereolysin (CER) from 

Bacillus cereus B16, AAX88798; mitilysin (MLY) from Streptococcus mitis R5II, ABK58696; 

suilysin (SLY) from Streptococcus suis 3, CAC94852; perfringolysin O (PFO) from Clostridium 

perfringens 13, NP_561079; alveolysin (ALV) from Paenibacillus alvei, AAA22224; pyolysin (PYO) 
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from Arcanobacterium pyogenes BBR1, AAC45754. Corresponding nucleotide sequences were 

obtained from records linked to these amino acid sequences. 

 

2.3 Results 

2.3.1 The genome of L. iners contains a putative CDC 

 A basic local alignment search of the draft L. iners DSM 13335 genome sequence revealed an 

ORF with 51.9% identity and 68.4% similarity to VLY, the G. vaginalis CDC. This ORF was not 

found in available genome sequences from other Lactobacillus species (data not shown). The 

ORF contained a predicted signal sequence with a predicted cleavage site between amino acids 

31 and 32. Primers were created to amplify a region in the ORF from DSM 13335 and were 

subsequently used to detect the presence of this putative CDC in the genomes of several other 

clinical isolates of L. iners (Fig 2.1A). A band of approximately 700 bp was detected after PCR of 

each of the 11 L. iners strains tested, indicating that the presence of this putative toxin is 

common to this species and not solely a feature of DSM 13335. The predicted amino acid 

sequence of INY exhibits sequence similarity and identity with diverse CDC family members 

(Table 1), with the greatest similarity to ILY and VLY, the human-specific CDCs. The nucleotide 

sequences of INY were used to generate phylogenetic trees by the NJ, MP, and ML methods, all 

of which displayed essentially the same topology (Fig 2.1B). These trees demonstrated that the 

putative CDC produced by L. iners falls into the Streptococcus CDC group including PLY and ILY 

and is more distantly related to CDCs from Listeria, Clostridium, and Bacillus. All 11 of the INY 

sequences were on a single branch with bootstrap support of 100%.The predicted INY ORF from 
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L. iners DSM 13335 was cloned into the pET28a expression vector in order to generate an N-

terminal hexahistidine fusion, and recombinant INY (rINY) protein was purified. SDS-

polyacrylamide gel electrophoresis analysis revealed a protein with a size of approximately 55 

kDa (Fig 2.2A). By Western blotting, INY was detected using a monoclonal antibody directed 

against PLY (Fig 2.2B), as well as a polyclonal antibody against VLY (data not shown). In order to 

determine whether INY was produced and secreted, we assayed the culture supernatants of 

several L. iners strains for the presence of this putative CDC. A band consistent with the size of 

processed (lacking the signal sequence) INY was detected in the supernatants of all of the L. 

iners strains but not in the culture supernatant of E. coli (Fig 2.2C). Additionally, a higher-

molecular-weight band was detected in L. iners supernatants which may represent either 

unprocessed INY released upon bacterial lysis or INY that has undergone an unclear type of 

posttranslational modification. There was variation among the L. iners strains with respect to 

the amount of INY produced (Fig 2.2C) 
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Figure 2.1 The genome of Lactobacillus inesr contains an ORF encoding a putative CDC 



44 
 

 

Table 2.1 Similarities and Identities of the primary amino acid sequen 

 

CDC % Similarity % Identity

ILY 69.2 48.8

VLY 68.4 51.7

PLY 67.1 48.9

MLY 62.3 46.0

SLY 62.3 46.0

IVN 59.6 39.1

ALV 58.6 37.8

ALO 57.4 36.5

CER 57.2 36.9

PFO 57.1 37.7

PYO 54.7 38.6

Table 2.1  Similarities and Identities of the primary amino acid 

sequences of INY and other CDCs
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Figure 2.2 The putative cholesterol dependent cytolysin, inerolysin, resembles other cholesterol dependent cytolysins 

2.3.2 INY is a functional broad-host-range cytolysin and is inhibited by anti-VLY antibody 

rINY lysed murine, ovine, and human erythrocytes in a dose-dependent manner (Fig 2.3A). This 

lack of species specificity was in contrast to the previously described human specificity of ILY 

(Fig 2.3B) and was consistent with the behavior of PLY from Streptococcus pneumoniae (Fig 

2.3C). Polyclonal anti-VLY antibody protected ovine erythrocytes from INY-mediated lysis in a 

dose-dependent manner (Fig 2.3D).  
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 2.3 Recombinant INY shows non-species specific hemolytic activity consistent with other cholesterol 

dependent  

2.3.3 Cholesterol inhibits INY activity 

CDCs bind cholesterol through a mechanism dependent on a Thr-Leu pair located in CDC 

domain 4 (10). This Thr-Leu pair is conserved in INY (Thr-507 and Leu-508 in INY from strain 

DSM 13335). The presence of excess cholesterol inactivates CDCs (3, 12, 13, 19, 20, 32). 



47 
 

Exogenous cholesterol inhibited INY-mediated lysis of ovine erythrocytes in both endpoint and 

kinetic assays (Fig 2.4) 

 

Figure 2.4 Recombinant INY shows cholesterol dependent hemolytic activity
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2.3.4 INY activity is enhanced by DTT 

CDCs were formerly known as “thiol-activated cytolysins,” which denoted the increase in lytic 

activity seen in many CDCs in the presence of reducing agents[126-130]. Thiol activation is 

dependent on the sequence of the undecapeptide, a highly conserved 11-amino-acid sequence 

in domain 4. The consensus undecapeptide, ECTGLAWEWWR, has a cysteine residue in the 

second position. This cysteine residue must be maintained in a reduced state for full toxin 

activity. Both ILY and VLY have unusual undecapeptides that lack this cysteine. However, the 

predicted primary amino acid sequence of INY contains the consensus undecapeptide. Thus, we 

predicted that INY would be thiol activated. Addition of DTT to a concentration of INY (200 

ng/ml) that brought about low-level (30%) lysis alone led to a modest increase in the efficiency 

of lysis (Fig 2.5) 
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Figure 2.5 Recombinant INY is a thiol-activated cytolysin 

2.3.5 INY forms functional pores in epithelial cells and activates proinflammatory signaling.  

L. iners colonizes the vaginal epithelium, and epithelial cells may represent a more 

physiologically relevant target for INY than erythrocytes. INY lysed human cervical epithelial 

(HeLa) cells in a dose-dependent manner, albeit at higher concentrations than those required 

for hemolysis (Fig 2.6A). This effect was not restricted to HeLa cells, as both COS-7 (Fig 2.6B) 
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and A549 (data not shown) cells were susceptible to INY-mediated lysis. Epithelial cells detect 

sublytic concentrations of pore-forming toxins and initiate p38 MAPK signaling through a 

mechanism dependent on sensation of osmotic stress (27). Consistent with the activity of other 

pore-forming toxins, INY activated p38 MAPK at sublytic concentrations (3 μg/ml) in both HeLa 

(Fig 2.6C) and COS-7 (Fig 2.6D) cells. Phalloidin, which is normally restricted from the interior of 

the cell, gains access to the cytoplasm of HeLa cells following treatment with INY (Fig 2.6E), 

consistent with the formation of functional pores. 
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Figure 2.6 Recombinant INY can lyse and form function pores leading to epithelial cell lysis and activates pro-inflammatory 
signaling 
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2.4 Discussion 

The vaginal mucosa is home to a complex ecosystem, with a microbiota that may remain stable 

over time or may undergo profound and rapid shifts, leading to disease states such as BV. 

Culture-based studies formed the foundation of our understanding of the vaginal microbiota, 

but more recent nucleic acid-based culture-independent investigations have deepened our 

understanding of vaginal ecology[60, 122, 123].   Most vaginal lactobacilli exert a protective 

effect and provide resistance to colonization by pathogens via the production of several anti- 

microbial substances. L. iners is an atypical organism recently identified as a member of the 

vaginal microbiota and may have pathogenic rather than (or perhaps in addition to) protective 

effects. We have characterized INY, a CDC family member and the first candidate virulence 

factor for L. iners.  At the primary amino acid sequence level, INY is most similar to the human-

specific CD59-dependent toxins VLY and ILY; however, its lytic activity is neither species nor cell 

type specific. A putative CD59 binding site has been reported for ILY [131], but this sequence is 

not present in VLY. Thus, an overall basis for CDC host specificity has not been defined. INY 

represents the nearest neighbor of the CD59-dependent CDCs and may serve as a useful tool 

for further evolutionary and functional comparisons. A hallmark of the unique biology of L. iners 

is its ability to continue to colonize the vagina under conditions under which other lactobacilli 

cannot, including during BV[36, 132]. INY is a thiol-activated, cholesterol-inhibitable toxin that 

is secreted by growing L. iners.   Sublytic concentrations of INY activate p38 phosphorylation in 

human genital tract epithelial cells. This is a conserved and tightly regulated response to 

membrane disruption and osmotic stress[133, 134].  INY pores are sufficient to allow entry of 
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molecules from the extracellular space into the cytoplasm, as demonstrated with fluorescent 

phalloidin (Fig. 6). This effect may be of particular importance in immune responses  

to polymicrobial colonization[109, 135].   Cytolysin production may provide defensive functions 

by killing professional immune cells, may make available new anatomic niches by disrupting  

epithelial barriers, or may allow bacteria to access sequestered sources of nutrients such as iron 

from within erythrocytes. We hypothesize that CDC secretion, a feature common to G. 

vaginalis and L. iners, may be an important factor in survival in the inhospitable environment of 

BV, though at the highest extremes of vaginal pH (6.0), INY may be inactive. Human α-

defensins, which inactivate CDCs[136], are  decreased during BV[137], and this deficiency may 

allow INY-mediated cellular damage to occur. Antibodies against other CDCs, including PLY and 

VLY, may bind and inhibit INY, as may host antimicrobial peptides.  Cauci et al. showed that 

local antitoxin IgA responses were correlated with mucosal cytokine levels and with BV 

diagnosis[138, 139]. Cross-reactivity between anti-VLY and anti-INY immunoglobulins may have 

implications for the efficiency of the host response to BV and for resolution of disease. The 

reversible deficiency of antimicrobial peptides observed in BV[137] may be important because 

of their antitoxin, as well as their antimicrobial, effects. Continued investigation of INY may help 

shed light on CDC evolution and on the role of L. iners in vaginal health and disease. 
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Chapter 3: Investigation into the pH dependent activity of INY 

 

3.1 Introduction 

The CDCs are a family of toxins produced by a wide range of organisms.  These pore forming 

toxins can be crucial for pathogenesis of various organisms requiring pore formation.  

Functional pore formation results in membrane disruption, a consequence which can be 

manipulated for a number of various functions including destruction of immune cells, 

translocation of bacterial effectors into a eukaryotic cell[117], as well as phagosomal 

escape[104, 140].  Interestingly, these toxins which are produced by organisms with an 

intracellular component of their lifestyle display optimal/enhanced activity at acidic pHs 

consistent with their use in the acidic phagosome.  The listerial derived CDCs (including LLO) are 

particularly well suited to their role as an escape mechanism from the phagosome, displaying 

significant activity at acidic pHs and rapidly losing activity at neutral pH.  This elaborate and 

specific mechanism ensures that once the toxin mediates escape from the phagosome, it will 

maintain the integrity of the cell allowing intracellular replication of the bacteria.  The 

molecular basis for this pH dependent activity has been localized to three residues in domain 4 

of the protein, which act as a sensor for increased pH and trigger premature unfolding of the 

transmembrane regions and subsequent inactivation of the protein[103].  For a time, it was 

thought that pH dependent activity was specific only to Listeria derived toxins and that all other 

toxins were “pH insensitive”[141].  While such drastic pH dependence has only been shown for 

LLO, further studies demonstrated that PFO also displays a pH optimum, with greatly enhanced 

activity at pH 5.5-6 (although still able to function at neutral pH, unlike the Listeria derived 
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CDCs)[142].  Studies of PFO have suggested that at low pH, a partial unfolding event occurs, 

which primes the protein for membrane insertion.   

The data on PFO and LLO suggest that CDCs may have evolved mechanisms which make them 

well suited to their site of action, the acidified phagosome.  Given that L. iners can persist in a 

normal and BV states, where the pH can change from acidic to more neutral, we sought to 

understand how pH would affect the activity of its pore forming toxin, inerolysin[143].  Here, 

we demonstrate that INY shows a pH optimum, with significantly greater hemolytic activity at 

pH 4.5 than 7.4.  We also attempt to understand the molecular basis for this pH dependent 

activity.  Our work here suggests that pH dependent activity may be common to the family of 

CDCs, making certain toxins well suited to their respective physiological niches. 

3.2 Materials and Methods 

 

3.2.1 Cloning and expression of CDCs 

The listeriolysin O (LLO) ORF lacking its predicted signal sequence was amplified by PCR from L. 

monocytogenes BAA751 genomic DNA using primers BamHI-LLO-F 

(GCCGCCGGATCCAAGGATGCATCTGCATTC AATAAAG) and LLO-R-XhoI 

(GCCGCCCTCGAGTTATTCGATTGGATT ATCTAC). The ILY ORF lacking its predicted signal 

sequence was amplified from S. intermedius ATCC 27335 genomic DNA using primers BamHI-

ILY-F (GCCGCCGGATCCGCATTCGCTGAAA CACCTACC) and ILY-R-XhoI 

(GCCGCCCTCGAGTTAATCAGTGTTATC TTTCAC). Amplifications were performed using Phusion 

proofreading polymerase (New England BioLabs). A vector encoding a codon-optimized VLY 
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sequence (predicted amino acid sequence identical to that of the VLY from G. vaginalis ATCC 

14018 lacking the signal sequence, codon optimized for expression in E. coli) flanked by NdeI 

and XhoI restriction sites was purchased from GenScript.  For the creation of the INY double 

mutant, primers were used to replace the threonine at position 200 to an glutamate using 

primer pair primers NheI-INY-F (GCCGCCGCTAGCA ATACTGAGCCAAAAACAGCTATTG) and 

INY_Thr200_GluR(GCTTTGAGCACTTTCTGTATCATATTCAATTC)  and 

INY_Thr200_GluR(GAATTGAATATGATACAGAAAGTGCTCAAAGC) and XhoI-INY-R (GCCGCCCTCG 

AGTTAGTCATTTTTTACTTCTTCTTTG).  This was followed by replacement of a serine residue at 

position 239 with to a glutamate using NheI-INY-F (GCCGCCGCTAGCA 

ATACTGAGCCAAAAACAGCTATTG) and INY_Ser239_GluR 

(CTTAAAGTTAACAATTTCTGCTTGTTTCTC ) and INY_Ser239_GluF 

(GAGAAACAAGCAGAAATTGTTAACTTTAAG) and XhoI-INY-R (GCCGCCCTCG 

AGTTAGTCATTTTTTACTTCTTCTTTG).   The INY mutant showing reduced oligomerization 

capability (L508D) was created by introduction of the point mutation  by PCR amplification from 

L. iners DSM13335 genomic DNA using primers NheI-

INYL508D0F(GCCGCCGCTAGCAATACTGAGCCAAAAACAGCTATTG) and INYL508D-R-

XhoI(GCCGCCCTCGAGTTAGTCATTTTTTACTTCTTCTTTGTGTTTAGGTCTATCAGTCGTACCC).  

Restriction sites are underlined and in bold.  Introduction of the leucine to aspartate mutation 

is underlined.  Protein purification was done as previously described in Chapter 2 

3.2.2 Erythrocyte lysis assay 

Preparation of erythrocytes was carried out as previously described in Chapter 2. To measure 

hemolysis, supernatant was removed, and the optical density at 415 nm (OD415) was 
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measured.  Hemolysis assays were carried out in the presence of buffer C (35 mM sodium 

phosphate, 125 mM sodium chloride) as previously described[103]. Toxins were preincubated 

at the indicated pH for 30 min before use in an endpoint assay.  In the indicated experiments, 

toxin was treated for 30 minutes at the indicated pH and then adjusted using HCl or NaOH and 

incubated for an additional 30 minutes at 4oC before use in an endpoint assay.   

3.2.3 Fluorescence spectroscopy 

Unfolding of LLO and INY was measured over time by monitoring the change in 1-

anilinonaphthalene-8-sulfonic acid (ANS; Molecular Probes) fluorescence [103]. Purified LLO or 

INY was diluted to a final concentration of 1M in 2 ml of buffer C (35 mM sodium phosphate, 

125 mM sodium chloride) in a quartz cuvette. Fluorescence was monitored continuously for 30 

min in a spectrophotometer with excitation and emission wavelengths set to 371 nm and 483 

nm, respectively. 

3.2.4 Binding activity of recombinant CDCs 

Recombinant CDCs (5µg/mL) were incubated for 30 min at 37oC at the either pH 4.5 or pH 7.4.  

400µl toxin was mixed with 400µl of 1% hRBCs on ice for 5 min or with a 1% solution of VK2 

cells for 20 min at 4oC in Buffer C (35 mM sodium phosphate, 125 mM sodium chloride) at the 

indicated pH.  Cells were recovered by centrifugation (9000rpm for 10 min at 4oC).  Cells were 

washed twice with ice cold PBS, and resuspended in 2X SDS buffer + 1% TX-100.  Bound CDC 

was detected by western blot analysis using an anti-His-tag antibody (Sigma).   
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3.2.5 Binding of recombinant CDCs to immobilized cholesterol 

To assess the binding of CDCs to cholesterol, a PVDF binding assay was carried out.  Briefly, 20 

mg/mL cholesterol (dissolved in 1:1 chloroform:ethanol) was diluted to 20 μg/mL (dissolved in 

1:5 chloroform:ethanol), and 100 μl was added to each well (2 μg per well) of a 96 well plate 

with Immobiolon-P membrane (Millipore) at the bottom and allowed to dry overnight.  The 

cholesterol-coated wells were treated with blocking buffer consisting of 4% heat-inactivated 

fetal bovine serum in PBS for 1h.  CDCs at 2 µg/mL were treated for 30 min at either 37oC or 4oC 

at in Buffer C (35 mM sodium phosphate, 125 mM sodium chloride) at pH 4.5 or pH 7.4.  Toxin 

was diluted to 2nM in Buffer C with 4% heat inactivated fetal bovine serum and 100 µl was 

added to each well.  After 2 hours, wells were washed four times with blocking buffer, and 

treated with anti His-tag antibody (1:2000) for 1 hour.  Wells were washed four times with 

blocking buffer and antibody was detected with horseradish peroxidase-conjugated anti-mouse 

IgG (Santa Cruz) at a dilution of 1:2000.  The binding of CDCs to cholesterol was determined 

quantitatively by the addition of 100 μl of 3,3β,5,5β-tetramethylbenzidine (TMB).  The reaction 

was stopped by the addition of 50 µl of 2N H2SO4 and absorbance was measured at 450nm.  For 

INY and LLO, percent binding is measured relative to toxin treated at pH 4.5 and 4oC.  For PLY, 

percent binding is measure relative to toxin treated at pH 7.4 and 4oC. 

3.2.6 Protein degradation Assay 

Protein degradation was assessed by western blot analysis.  Briefly, CDCs (5 µg/mL) were 

treated for 37oC in buffer C (35 mM sodium phosphate, 125 mM sodium chloride) at pH 4.5 or 

7.4 for 30 min.  Protein levels were detected by western blot analysis using anti-his-tag 
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antibody.  Primary antibody was detected using horseradish peroxidase-conjugated anti-mouse 

IgG (Santa Cruz) at a dilution of 1:1000 and detected by enhanced chemiluminesence.   

3.2.7 SDS agarose gel electrophoresis separation of CDC monomer and oligomer 

SDS-AGE was carried out as described[144].  Briefly, 60 μg/mL of toxin was mixed with 1% 

hRBCs, in a final volume of 40 μl and incubated at 37oC for 30 min.  After 30min, glutaraldehyde 

was added to a final concentration of 5mM and incubated for an additional 2 min at room 

temperature.  Samples were solubilized SDS sample buffer and the complexes were analyzed on 

a 1.5% SDS-agarose gel (100 V, 120 min) and then transferred to nitrocellulose membranes. 

Protein bands were identified using mouse anti-his-tag antibody (Sigma) followed by 

horseradish peroxidase tagged goat anti-mouse secondary IgG. The bands were visualized using 

enhanced chemiluminesence (ECL Western Blotting Detection Reagents, Roche). 
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 Table 3.1 Primers used for INY domain swap 

 

 

 

Table 3.1 Primers used for INY domain swaps 

 

 

 

 

Domain Fusion Name Sequence

INY_D4_XHOI_R GCCGCCCTCGAGTTAGTCATTTTTTACTTCTTCTTTGTG

INY_D4_F GTTGAGACTAAGGTTACAGCTTACAGAAATGGTAAATTGATATTGAACCATAAAG

PLYD1-3_NdeI F GCCGCCCATATGATGGCAAATAAAGCAGTAAATGAC

PLYD1-3_R CTTTATGGTTCAATATCAATTTACCATTTCTGTAAGCTGTAACCTTAGTCTCAAC

PLYD1-2_NDEI_F GCCGCCCATATGATGGCAAATAAAGCAGTAAATGAC

PLY_1-147_R TTGAGCACTAGTTGTATCATATTCAATTCTAGCTGGGACATTATTGACC

INY_196-245_F GGTCAATAATGTCCCAGCTAGAATTGAATATGATACAACTAGTGCTCAA

INY_196-245_R GCGTCTACGCTGACTGTATAATAAATTTGCTTAAAGTTAACAATTGATGC

INY_292-366_F TATTTCGAGTGTTGCTTATGGGCGTTCTATGTACATTAAGTTGGAAAC

INY_292-366_R GGATGATCTGCTGTAAAGCGGCTACCTTTTTGAATTAATTCTTTCA

PLY_319-end_F TGAAAGAATTAATTCAAAAAGGTAGCCGCTTTACAGCAGATCATCC

PLYD4_XHOI_R GCCGCCGCTAGCCTAGTCATTTTCTACCTTATCCTCTACC

PLYD1-2_NDEI_F GCCGCCCATATGATGGCAAATAAAGCAGTAAATGAC

PLY_1-22R GTTAACATGTCACCTTGTCTTGTCAAGAGTTTCTTTTTATCGTAATTCAT

INY_69-105F ATGAATTACGATAAAAAGAAACTCTTGACAAGACAAGGTGACATGTTAAC

INY_69-105R GTAGCTGTTACAGAAATATCACTTGTACTGTTAGAAATGGTCTTCTTTTGT

PLY_57-343F ACAAAAGAAGACCATTTCTAACAGTACAAGTGATATTTCTGTAACAGCTAC

PLY_57-343R AATCAGCGGTATTGTTGATTACCGCAACTACATTGTCACGTA 

INY_391-407F TACGTGACAATGTAGTTGCGGTAATCAACAATACCGCTGATT

INY_391-407R ATCCAGCAGTAAATCTCCGTTTGAATATTCAGTTACTTTAGTAGCAAT

PLY_359-endF ATTGCTACTAAAGTAACTGAATATTCAAACGGAGATTTACTGCTGGAT

PLYD4-XHOI GCCGCCGCTAGCCTAGTCATTTTCTACCTTATCCTCTACC

INY__1-68F NHEI GCCGCCGCTAGCAATACTGAGCCAAAAACAGCTATTG

INY_1-68R AATACTTTCTCCCTGATGGGTCAAAACAGCTTGTGAATCATAAT

PLY_22-57F ATTATGATTCACAAGCTGTTTTGACCCATCAGGGAGAAAGTATT

PLY_22-57R CATTAGCAGTAGTTACTGAAATACTTGATGTATTTGTCGACAAGCTCC

INY_106-195F GGAGCTTGTCGACAAATACATCAAGTATTTCAGTAACTACTGCTAATG

INY_106-195R CCGTTATTTTTTCATACTGCATTCTGGCAGGAATGGCGTGA

PLY_148-197F TCACGCCATTCCTGCCAGAATGCAGTATGAAAAAATAACGG

PLY_148-197R CATCAACACTGGCAGTGTAGTAAATCTGCTTAAAATTAACAATCTGAATC

INY_246-291F GATTCAGATTGTTAATTTTAAGCAGATTTACTACACTGCCAGTGTTGATG

INY_246-291R CAACTTGAGATAGACTTGGCGTCCATAAGATACACTAGAAACATAAACT

PLY_244-318F AGTTTATGTTTCTAGTGTATCTTATGGACGCCAAGTCTATCTCAAGTTG

PLY_244-318R ACCTGGGTTAGAACTATCAAATTTACTGCCTTCTTGAATCAAGTC

INY_367-390F GACTTGATTCAAGAAGGCAGTAAATTTGATAGTTCTAACCCAGGT

INY_367-390R CATAGTCTGTACTGTTTTGAAAGGTTAAAGGACAACCAAGTTGCA

PLY_343-endF TGCAACTTGGTTGTCCTTTAACCTTTCAAAACAGTACAGACTATG

PLYD4-XHOI GCCGCCGCTAGCCTAGTCATTTTCTACCTTATCCTCTACC

PLYD1-3/INYD4

PLYD1-2/INYD3/PLYD4

PLYD1/INYD2/PLYD3-4

INYD1/PLYD2-4
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Table 3.2 Primers used for PLY domain swaps 

 
Table 3.2 Primers used for PLY domain swaps 

 

3.2.8 Transmission Electron Microscopy 

Erythrocyte ghost membranes were made by placing 10 μl of a 50% hRBC cell suspension in a 

drop of water and incubated at room temperature for 10 minutes to allow the membranes to 

rise to the air-liquid interface.  Formvar coated 300 mesh grids (Electron Microscopy Sciences) 

were placed onto the drop and incubated for 5 min.  INY (125 µg/mL) was pretreated in Buffer 

Domain Fusion Name Sequence

PLYD-4F_for INYD1-3 F GATTATATTGCTACTAAAGTAACTGAATATTCAAACGGAGATTTACTGCTGGATC

PLYD-4_XHOI R GCCGCCCTCGAGCTAGTCATTTTCTACCTTATCCTCTACC

INYD1-3F-NheI GCCGCCGCTAGCAATACTGAGCCAAAAACAGCTATTG

INYD1-3R GATCCAGCAGTAAATCTCCGTTTGAATATTCAGTTACTTTAGTAGCAATATAATC

INY1-195F_NHEI GCCGCCGCTAGCAATACTGAGCCAAAAACAGCTATTG

INY 1-195R GCCGTTATTTTTTCATACTGCATTCTGGCAGGAATGGCGTGA

PLY 148-197F TCACGCCATTCCTGCCAGAATGCAGTATGAAAAAATAACGGC

PLY 148-197R CATCAACACTGGCAGTGTAGTAAATCTGCTTAAAATTAACAATCTGAATCTG

INY 246-291F CAGATTCAGATTGTTAATTTTAAGCAGATTTACTACACTGCCAGTGTTGATG

INY 246-291R CAACTTGAGATAGACTTGGCGTCCATAAGATACACTAGAAACATAAACTAAAG

PLY 244-318F CTTTAGTTTATGTTTCTAGTGTATCTTATGGACGCCAAGTCTATCTCAAGTTG

PLY244-318R CACCTGGGTTAGAACTATCAAATTT 

INY 367-end F GGACTTGATTCAAGAAGGCAGTAAATTTGATAGTTCTAACCCAGGTG

INY_D4_XHOI_R GCCGCCCTCGAGTTAGTCATTTTTTACTTCTTCTTTGTG

INY1-195F_NHEI GCCGCCGCTAGCAATACTGAGCCAAAAACAGCTATTG

INY1-68R CAATACTTTCTCCCTGATGGGTCAAAACAGCTTGTGAATCATAATC

PLY22-57F GATTATGATTCACAAGCTGTTTTGACCCATCAGGGAGAAAGTATTG

PLY22-57R TCATTAGCAGTAGTTACTGAAATACTTGATGTATTTGTCGACAAGCTCC

INY106-390F GGAGCTTGTCGACAAATACATCAAGTATTTCAGTAACTACTGCTAATGA

INY 106-390R CATAGTCTGTACTGTTTTGAAAGGTTGCAACTTGGTTGTCCTTTAAG

PLY343-359F CTTAAAGGACAACCAAGTTGCAACCTTTCAAAACAGTACAGACTATG

PLY343-359R CTTTATGGTTCAATATCAATTTACCATTTCTGTAAGCTGTAACCTTAGTCT

INY 408-endF AGACTAAGGTTACAGCTTACAGAAATGGTAAATTGATATTGAACCATAAAG

INY_D4_XHOI_R GCCGCCCTCGAGTTAGTCATTTTTTACTTCTTCTTTGTG

PLY1-21FNHEI GCCGCCGCTAGCATGGCAAATAAAGCAGTAAATGAC

PLY1-21R TTGTTAACATGTCACCTTGTCTTGTCAAGAGTTTCTTTTTATCGTAATTCATAGC

INY69-105F GCTATGAATTACGATAAAAAGAAACTCTTGACAAGACAAGGTGACATGTTAACAA

INY69-105R TTGGTAGCTGTTACAGAAATATCACTTGTACTGTTAGAAATGGTCTTCTTTTG

PLY58-147F CAAAAGAAGACCATTTCTAACAGTACAAGTGATATTTCTGTAACAGCTACCAA

PLY58-147R CTTTGAGCACTAGTTGTATCATATTCAATTCTAGCTGGGACATTATTGACC

INY196-245F GGTCAATAATGTCCCAGCTAGAATTGAATATGATACAACTAGTGCTCAAAG

INY196-245R GCGTCTACGCTGACTGTATAATAAATTTGCTTAAAGTTAACAATTGATGCT

PLY198-243F AGCATCAATTGTTAACTTTAAGCAAATTTATTATACAGTCAGCGTAGACGC

PLY198-243R TTGTTTCCAACTTAATGTACATAGAACGCCCATAAGCAACACTCGAAATATA

INY292-366F TATATTTCGAGTGTTGCTTATGGGCGTTCTATGTACATTAAGTTGGAAACAA

INY292-366R GGATGATCTGCTGTAAAGCGGCTACCTTTTTGAATTAATTCTTTCAA

PLY319-342F TTGAAAGAATTAATTCAAAAAGGTAGCCGCTTTACAGCAGATCATCC

PLY319-342R AATATAATCAGCGGTATTGTTGATTACCGCAACTACATTGTCACGTAAA

INY391-endF TTTACGTGACAATGTAGTTGCGGTAATCAACAATACCGCTGATTATATT

INY_D4_XHOI_R GCCGCCCTCGAGTTAGTCATTTTTTACTTCTTCTTTGTG

INYD1/PLYD2/INYD3-4

PLYD1/INYD2-4

   INY D1-3/PLY D4

INYD1-2/PLYD3/INYD4
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C at pH 4.5 or pH 7.4 for 30 min and then a drop was placed onto the grid and incubated at 

37oC for 30 min.  Grids were stained with 2% phosphotungstic acid for 30 sec.  Samples were 

examined using a JEOL JEM-1200 EXII electron microscope.  Pictures were taken on an ORCA-HR 

digital camera (Hamamatsu) and recorded with the AMT Image Capture Engine.   

 

3.2.9 Construction of INY derivatives and chemical modification of cysteine residues with IANBD 

Proteins were purified as indicated previously.  Toxins were treated with 2.5mM DTT for 10  

minutes at room temperature and then dialyzed overnight to remove DTT.  Toxin derivatives  

were labeled with a 20-fold molar excess of the IANBD[iodoacetamido-N,N’-dimethyl-N-(7  

nitrobenz-2-oxa-1,3-diazolyl)ethylene-diamine; Molecular Probes] overnight at 4oC.  Following  

modification with the probe, excess was quenched with 1mM DTT for 10 minutes and probe  

was removed via extensive dialysis.  NBD measurements were carried out with an Infinite 200  

microplate reader (Tecan) using the following settings: an excitation wavelength of 480nm and  

an emission wavelength of 540 nm with a bandpass of 5nm.  Emission intensity was scanned  

between 500 and 600 nm at a resolution of 1 nm with an integration time of 1 sec.  10 µg of 

toxin was incubated with varying amounts of cholesterol in Buffer C for 30 minutes at 37oC.  

The fluorescence intensity of the unlabeled samples was subtracted from that of the 

fluorescent probe-labeled samples in order to control for the intrinsic fluorescence of the 

sample in the absence of probe.   
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Table 3.3 Primers used for construction of cysteine mutantsTable 3.3 Primers used for construc 

  

3.2.10 Statistical methods 

Hemolysis assay results are expressed as average values from three readings from one 

representative experiment.  Each experiment was repeated three times.  Data were analyzed by 

Student t test.  A P value of <0.05 was considered significant.   

 

3.3 Results 

3.3.1 Recombinant INY shows pH dependent activity which is distinct from LLO 

The CDCs have various pH-dependent activity profiles. ILY has activity across a wide pH 

range[128], while LLO (produced by L. monocytogenes) has an acidic pH optimum, consistent 

with its function within a vacuole during the Listeria life cycle[103]. The hemolytic activity of INY 

was measured as a function of pH and compared to the hemolytic activities of several other 

CDCs (Fig. 1A). ILYand VLY were both active at neutral pH and demonstrated a significant 

Toxin Primers Sequence

INY-CysAla-F
GA ATG TTA AGA TTC AAG AAG CTA CAG 

GCT TGG CAT G

INY-CysAla-R
CAT GCC AAG CCT GTA GCT TCT TGA ATC 

TTA ACA TTC A

INY-AspCys-F
GGA AAC AAC AAG CAA GAG TTG CAA 

AGT TCA AGC AGC TTT TG

INY-AspCys-R
CAA AAG CTG CTT GAA CTT TGC AAC TCT 

TGC TTG TTG TTT CC

INY-IleCys-F
ACT AGT GTT GTA GCT GTT TGC TTA GGT 

GGT AAC TC

INY-IleCys-R
GAG TTA CCA CCT AAG CAA ACA GCT ACA 

ACA CTA GT

INYC476A

INYD305C

INYI339C
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decrease in activity at pH 4.5. This reduction in ILY activity at acidic pH was consistent with a 

previous report[128]. In contrast, INY demonstrated greater activity at a more acidic pH (4.5 to 

6.0), with decreased function at pH 7.4 (Fig 3.1A). The molecular basis of pH dependence has 

been extensively investigated for LLO[103]. To gain further insights into the pH-dependent 

activity of INY, we compared the activity of INY to that of LLO as a function of both pH and 

temperature. It has been previously shown that LLO responds to a pH increase by rapid 

unfolding and loss of activity. Maximal unfolding of LLO requires increases in both temperature 

and pH. With an increased pH, INY rapidly lost activity at both 23°C and 37°C (Fig 3.1B). This is in 

contrast to LLO, which showed a slight decrease with an increase in either pH or temperature 

and a more pronounced decrease in activity upon incubation at increased pH and increased 

temperature. Toxin unfolding in response to pH, as has been demonstrated for LLO, was 

measured using the fluorescent probe ANS, which binds hydrophobic sites on proteins. Addition 

of LLO to a solution of ANS led to an increase in fluorescence (Fig 3.1C) that was considerably 

more pronounced at pH 7.4. In contrast, INY demonstrated only a slight increase in 

fluorescence over time at pH 7.4, as well as pH 5.5 (Fig 3.1D).   To further distinguish the 

mechanism of pH dependent activity of INY, toxins were incubated at either pH 4.5 or pH 7.4 

for 30 minutes.  The pH was then shifted back to pH 4.5 followed by an additional 30 minute 

incubation.  Once LLO was inactivated by elevated pH, shifting the pH could not restore 

hemolytic activity.  Interestingly, the loss of activity seen with INY was reversible, and upon 

shifting the pH we see a restoration of hemolytic activity to levels comparable to that of pH 4.5 

treated toxin.  For LLO, a triad of acidic residues in domain 4 is responsible for sensing increased 

pH and driving unfolding of the protein.  In order to determine if the analogous residues in INY 
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were responsible for this unique pH dependent activity, they were mutated in order to 

resemble LLO.  In LLO three residues comprise this “acidic sensor”: Glu-208, Glu-247, and Asp 

320.  Fig 3.1F is a protein sequence alignment, highlighting the analogous residues in INY: Thr-

201, Ser-239, and Asp-312.  Inserting the triad of acidic sensor residues into INY was not 

sufficient to confer LLO-like activity on the protein and this recombinant mutant toxin 

maintained INY-like activity (Fig 3.1G). 
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Figure 3.1 Recombinant INY shows pH dependent act

ivity distinct from that of LLO 

 

3.3.2 Membrane Binding activity of pH treated CDCs 

We examined the membrane binding activity of toxins at the indicated pH to determine if this 

first step was impaired at more basic pH.  There was no loss of membrane binding activity to 
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either hRBCs (Fig 3.2A) or VK2 epithelial cells (Fig 3.2B) under basic conditions for INY.  This is in 

contrast to LLO, which shows a significant loss of membrane binding activity.  The cholesterol 

dependent cytolysin (CDC) family is characterized by a dependence on cholesterol for hemolytic 

activity.  For most (with the exception of the human specific CDCs ILY and VLY), membrane 

cholesterol serves as the receptor to which they initially bind[145].  We determined whether 

cholesterol binding activity was intact after incubation under basic conditions.  INY and LLO 

were treated at pH 4.5 or pH 7.4 for 30 min at 37oC.  The amount of CDCs bound was then 

measured by ELISA using an anti-his-tag antibody.  After treatment of INY at pH 7.4, its binding 

was comparable to binding of toxin treated at pH 4.5 (Fig 3.2C).  Again, this is contrast to LLO, 

where treatment at pH 7.4 resulted in a significant reduction in cholesterol binding ability as 

compared to binding at pH 4.5.  Protein levels were assessed by western blot to ensure that the 

unique pH dependent activity was not due to protein degradation.  We observed comparable 

protein levels between toxin treated at pH 4.5 and toxin treated at pH 7.4 (Fig 3.2D). 
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Figure 3.2 Membrane binding activity is intact and loss of activity is not due to protein degradation 

3.3.3  Several CDCs show pH dependent activity 

To date, pH dependent activity has only been described for the Listeria derived toxins[141]  as 

well as PFO[142].  Given that PLY is the most closely related non-species specific CDC, we 

examined the pH dependent activity of this toxin.  The hemolytic activity of PLY at pH 4.5 and 

pH 7.4 was measured across a range of concentrations and compared to INY.  The pH 

dependent profile of PLY is reversed as compared to INY, showing a loss of hemolytic activity at 



70 
 

pH 4.5 as compared to pH 7.4 (Fig 3.3A).  With the finding that both INY and PLY demonstrate 

pH dependent activity, we expanded the panel of CDCs tested to include arcanolysin (ALN) and 

pyolysin (PLO), produced by Arcanobacterium haemolyticum[146] and Arcanobacterium 

pyogenes[126] respectively.  Phylogenetically  divergent from INY, these toxins also 

demonstrated pH dependent activity.  ALN showed enhanced activity at pH 7.4 while PLO had 

enhanced activity at pH 4.5 (Fig 3.3 B).  PLY was either preincubated for 30min at 37oC at pH 4.5 

or pH 7.4.  The pH of the sample was then adjusted to pH 7.4 and incubated for an additional 30 

min at 4oC.  Similar to INY, PLY showed a loss of hemolytic activity (at pH 4.5), which was 

restored after the pH shift.  Like INY, this loss of hemolytic activity was not due to protein 

degradation (Fig 3.3E) at pH 4.5.  Binding of PLY to erythrocytes (Fig 3.3C) and cholesterol (Fig 

3.3D) was comparable between both pH treatments. 
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Figure 3.3 Several CDCs show pH dependent activity 
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3.3.4 Oligomerization properties of pH treated toxin 

After membrane binding, several structural changes occur which results in oligomerization of 

monomers into a prepore structure.  These large oligomeric complexes, ready for pore 

formation, are notably SDS resistant[147].  Briefly, toxin (preincubated at the indicated pH at 

37oC for 30 min) was incubated with red blood cells (2 x 108 cells/mL) for 30 min.  Samples were 

then solubilized with SDS without heating and separated by SDS-agarose gel electrophoresis, 

which should separate monomeric and oligomeric forms.  After 20 minutes, SDS resistant 

oligomers were detected at both pH treatments.  However, at pH 7.4 we detected a greater 

number of oligomers as compared to toxin treated at pH 4.5 (Fig 3.4A).  At pH 7.4, despite a loss 

of hemolytic activity, oligomerization can still occur.  Interestingly, we also detected a higher 

molecular weight species present in the pH 7.4 treated toxin, which was not present in the pH 

4.5 treated toxin.  PLY demonstrated competence for oligomer formation at both pH 

treatments as well, similar to INY (Fig 3.4B).  To further assess competence for oligomerization, 

we monitored this process on the surface of erythrocyte ghosts by transmission electron 

microscopy (TEM).  For pH 4.5 treated toxin, we observed ring like structures on the surface of 

the erythrocyte ghosts.  Notably, we observed some structures which possessed dimensions 

consistent with what has been see for other CDCs, but the majority of these pore structures 

were approximately 300-400nm in diameter, which is about 10 times greater than the size of 

pores observed for other known CDCs[148].  The presence of two species of pores has been 

observed for PFO previously, and it is yet unclear if these species are competent for pore 

formation[92].  At pH 7.4, no observable pores could be detected on the surface of the 

erythrocyte ghosts (Fig. 3.4C), despite the observation of high molecular weight structures in 



73 
 

our SDS-PAGE analysis.  Additionally, we observed disorganized regions on the surface of the 

erythrocyte ghosts (Fig 3.4D) which is consistent with disorganized linearly bound toxin seen 

with oligomerization defective mutants of streptolysinO[149].  This pattern of dark staining is 

also consistent with monomeric bound toxin, as seen previously with PFO in solution[92].  As an 

additional assesment of competence for oligomerization, we also attempted to monitor 

structural transitions that mediate this process.  Upon membrane binding, the rotation of β5 

loop away from the β4 sheet contributes to the formation of an SDS resistant prepore, and this 

can be monitored spectroscopically using the environmentally sensitive probe conjugated to a 

cysteine residue substituted for ILE-339 in β4.  Initially buried under the β5 sheet and in a 

nonpolar environment, this residue becomes exposed to the polar environment and 

fluorescence is quenched.  At either pH, we observed a comparable reduction in fluorescence 

intensity, indicating the presence of these structural changes in both pH treated toxins.  Taken 

together, our results indicate that at either pH, despite a loss of hemolytic activity, monomeric 

toxin was competent for oligomerization.   
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Figure 3.4 CDCs show no defect in oligomerization after pH treatment 

3.3.5 CDCs show a defect in membrane insertion after pH treatment 

Having determined that at both acidic and neutral pH, membrane binding activity was intact and toxins 

are competent for oligomerization, we assessed the final step in pore formation, the conversion of a 

prepore to a pore and insertion of the transmembrane helices.  In order to monitor these structural 

changes, we conjugated the environmentally sensitive probe NBD to a cysteine residue substituted for 

Asp-305 in TMH2.  Upon incubation with cholesterol crystals, we found that at pH 4.5 there was a 

significant increase in fluorescence intensity (Fig. 3.5).  In contrast, at pH 7.4, toxin incubated with 

cholesterol crystals showed no increase in fluorescence intensity, indicating a lack of insertion of 

transmembrane helices at this elevated pH (Fig. 3.5).  We attempted to monitor several other steps in 

pore formation by substituting other residues with cysteine: His 232 (which monitors insertion of TMH1) 

and Gly 214 (which monitors disruption of the domain 2-domain 3 interface and unfurling of the 

transmembrane helices).  For the Gly-214 mutant, toxin maintained only 20% of its WT activity making it 
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difficult to observe changes in fluorescence intensity.  For His232, our labeling procedure seemed to be 

ineffective.     

Table 3.4 INY and its derivatives 

 

Table 3.4 INY and its derivatives 
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Figure 3.5 CDCs show a defect in membrane insertion after pH treatmentthis  

3.3.6  Localization of the pH dependent activity 

The crystal structures of several proteins (including PFO, ILY, and ALO)[150-152] have been 

solved.  These proteins have been shown to fold into similar three-dimensional structures, and 

it is highly likely that the other members of this family also fold into the same four domain 

structure.  Figure 3.6A shows the discontinuous nature of these domains in the primary 

structure of the protein.  In order to localize the pH dependent activity of the protein, chimeric 



78 
 

toxins were created which contained a single domain of INY (or a fragment of a domain) in 

place of the analogous residues in PLY.  These toxins were incubated at the indicated pH for 

30min at 37oC before being used in an erythrocyte lysis assay.  The chimeric toxin PLY-INYD4 

shows a pH dependent activity profile similar to PLY, showing a loss of activity at pH 4.5 (Fig 

3.6B).  The chimeric toxin PLY-INYD2 also displayed activity consistent with native PLY activity, 

showing greater hemolytic activity at pH 4.5 than at pH 7.4 (Fig 3.6C).  The pH dependent 

activity of the domain 3 chimeric toxins could not be fully assessed.  In a hemolysis assay, these 

constructs resulted in an “aggregation” phenotype, characterized by red blood cells sticking to 

the sides of the well plate rather than forming a defined pellet (data not shown).  Interestingly, 

when we examined these red blood cells, we found them to be intact rather than lysed red 

blood cells.  At higher concentrations (Appendix C Fig.C1), this construct was able to lyse red 

blood cells, but only at pH 4.5 (and not pH 7.4 where the aggregation phenotype was still 

observed).  In order to avoid the aggregation phenotype and assess the role of domain 3 in the 

pH dependent activity, we created two different chimeric toxins each containing one 

continuous fragment of domain 3.  The INYD3F1 construct contained amino acids 196-245 or 

domain 3 in a PLY background whereas INYD3F2 contained amino acids 292-366 in a PLY 

background.  Both of these toxins also demonstrated the aggregation phenotype seen for the 

full length domain 3 chimera (data not shown).  These constructs both behaved similarly to the 

full length domain 3 chimeric toxin, showing hemolytic activity at high concentrations 

(approximately 1000 fold greater than those needed for native INY) at pH 4.5 but not at pH 7.4 

(Appendix C Fig.C2).  In our assays, we have observed higher levels of background hemolysis for 

RBCs incubated at pH 4.5 than for RBCs incubated at pH 7.4 (data not shown).  Given the result 
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obtained with the chimeric toxins containing INY domain 3 in a PLY background, we attempted 

to create chimeric toxins with PLY domain 3 fragments in an INY background.  We were unable 

to clone PLY residues 148-197 in an INY background (PLYD3F1).  A chimeric toxin composed of 

PLY residues 244-318 in an INY background (PLY D3F2) showed activity consistent with native 

PLY losing activity at pH 4.5 (Fig 3.6D).  We next assessed the role of domain 1 in the pH 

dependent activity of the toxin. The chimeric toxin composed of INY residues 1-68 in a PLY 

background (INYD1F1) displayed the same aggregation phenotype as had been seen with the 

INY domain 3 chimeric toxins and showed hemolytic activity at pH 4.5, but only at 

concentrations approximately 1000 fold greater than those needed to achieve the same level of 

lysis as native INY (Appendix C Fig. 1B).  INYD1F2 and INYD1F3 behaved similarly to PLY, 

showing hemolytic activity at pH 7.4 and losing approximately all hemolytic activity at pH 

7.4(Fig 3.6E).  We were unable to create a chimeric protein consisting of INY amino acid 

residues 367-390 in a PLY background.  In order to address the role of this fragment (fragment 

4) of domain 1 in the pH dependent activity, we created a chimeric toxin of PLY amino acid 

residues 319-342 in an INY background.  This fusion protein behaved similarly to INY, showing 

approximately 80% lysis at pH 4.5, and dropping to approximately 20% at pH 7.4(Fig 3.6F). 
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Figure 3.6 Localization of the pH dependent activity 

3.4  Discussion 

pH dependent regulation of toxin activity has only been described in a few members of the CDC 

superfamily: The listerial derived cytolysins (including LLO) as well as PFO.  The evolution of this 

pH dependent activity is consistent with their use in the acidified phagosome to mediate escape 

into the cytosol.  L. iners has only been recently identified, and to date no work has been 

published that suggests that L. iners has an intracellular component to its lifestyle.  However, its 

normal physiological niche is the mucosal surface of the vaginal epithelium, which in a normal 

healthy vaginal tract is maintained at a low pH of about 4.   Although some have suggested that 

most of the CDCs, not including LLO and the listerial derived cytolysins, are pH insensitive[141], 

our work also suggests that pH dependent activity is a feature of a number of CDCs including 

pyolysin and inerolysin (which show an acidic pH optimum) as well as pneumolysin and 

arcanolysin (which show a basic pH optimum).  This is suggestive of a pan CDC regulatory 

mechanism, with various toxins having evolved to operate maximally within the pH range of 

their anatomical niches.   
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The molecular mechanisms of LLO pH dependent activity have been localized to a triad of 

charged residues in domain three which acts as a sensor for environmental pH.  Once it has 

mediated escape from the acidified phagosome, it experiences the more neutral pH of the 

cytosol, which then initiates a rapid and irreversible unfolding of the TMHs of the portion of the 

protein which inserts into the membrane, resulting in a complete loss of activity.  Interestingly, 

our results demonstrate the mechanism of pH dependent activity is distinct from that of LLO as 

it is reversible and affects the very last step of the pore forming mechanism, the insertion of the 

transmembrane domains, rather than the first step of pore formation, the binding and 

association with target membranes.  Interestingly, higher molecular weight structures were 

observed for toxin incubated at pH 7.4, supporting the idea that at this pH the toxin is stuck at 

the stage of oligomerization.  It is also possible that toxin treated at this pH forms two types of 

oligomeric structures, functional prepores as well as higher molecular weight structures which 

are non-functional.  As the concentration of toxin increases, a greater proportion of the 

oligomers are of this functional type, explaining the ability to overcome this loss of activity with 

greater amounts of toxin.  Our TEM analysis did not show any of these oligomeric strucutres, 

but our results indicated a different pattern of association with membranes at pH 7.4.  The 

functional significance of this unique association is not clear, but the SDS-AGE results as well as 

our spectroscopic analysis indicate competence for oligomerization.  The pore structures we 

observed at pH 4.5 were notably larger than any pore structure which has been identified 

previously.  Heterogeneity in pore size has been noted for other toxins[92], but pores this large 

have never been identified.  This result suggests that the pores produced by INY are larger than 

pores produced by other CDCs.  This discrepancy could be resolved through osmotic protection 
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experiments, getting a rough estimate of the pore size by using dextrans of different molecular 

sizes to block hemolytic activity of the pores.            

Our attempts to localize this pH dependent activity to particular residues were ultimately 

unsuccessful.  However, we know that the residues in domain 3 that confer pH dependent 

activity on LLO were not sufficient to confer this activity onto INY, confirming a distinct 

molecular mechanism for the pH dependent activity of INY.  The discovery that PLY, which is 

phylogenetically highly related to INY, displays a loss of activity at neutral pH presented the 

opportunity to localize the pH dependent activity of INY.  Our domain swap approach however 

was unable to confer PLY pH dependent activity onto INY (and the converse was also true, as 

we were unable to confer INY pH dependent activity onto PLY).  Some of these constructs were 

not functional in our assays and this is possibly due to incompatibility of INY domains in PLY (as 

making the converse swaps of PLY domains in an INY background yielded normal activity). 

pH dependent activity has been identified in pore forming toxins other than those belonging to 

CDC superfamily, including diphtheria toxin.  For diphtheria toxin, low pH is thought to 

neutralize acidic loops in the protein, facilitating their insertion into the membrane.  Data from 

PFO studies suggest that at low pH there is a partial unfolding event which primes the protein 

for membrane insertion[142].  Theoretical calculations of various crystal structures of PFO at 

neutral or acidic pH suggest that three residues, Asp58, Asp380, and Glu388, function to cause 

a premature breakage of the link between domain 2 and TMH1/2 of domain 3 at low pH[105].  

This explanation would be consistent with our results observed for the domain swaps, 

indicating the requirement of residues in several domains for this pH dependent activity. 
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These studies demonstrate that INY has evolved to operate within its particular physiological 

niche, the relatively acidic vaginal tract.  While the molecular basis of this activity has not yet 

been identified, functionally, INY in the presence of elevated pH shows a defect in the final step 

of pore formation, prepore to pore conversion.  Additionally, our results suggest that the whole 

family of CDCs are regulated by this subtle mechanism.  
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Chapter 4: L. iners induces unique signaling in the vaginal epithelium 

 

4.1 Introduction 

The vaginal epithelium represents the first barrier to pathogen invasion and provides more than 

just a physical barrier.  It possesses an innate immune system which can be selectively 

activated, allowing it to initiate appropriate responses to pathogenic and commensal species.  

Via the production of proinflammatory cytokines as well as antimicrobial peptides (defensins), 

the vaginal epithelium can initiate responses to deal with the vast number of organisms 

colonizing this surface.  The production of these immune system mediators is not only crucial to 

defense, but has been shown to affect, and perhaps shape, the composition of the colonizing 

micromicrobiota [153-155]. 

Although this microbiota is dynamic, complex, and poorly understood the dominant species 

present in a normal healthy vaginal tract are lactobacilli, with L. crispatus, L. gasserii, and L. 

jensenii being the most commonly isolated organisms.  Interestingly, the microbiota tends to be 

dominated by one or two Lactobacillus species rather than being a heterogenous mix of 

species[156].  Several studies have suggested that the presence of Lactobacillus species in the 

vaginal tract prevents the growth of potential pathogens[12].  A loss of these protective species 

and an overgrowth of these potential pathogens is characteristic of disease states, including 

bacterial vaginosis (BV).  This dysbiosis is associated with significant adverse consequences 

including an increased risk for preterm birth.  The link between preterm labor and BV is 

supported by epidemiological data but the exact mechanisms remain unclear.  Implicated in 
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this process are IL-8, IL-6, TNFα, as well as the production of prostaglandins and matrix 

metalloproteases[46], contributing to premature cervical ripening and uterine contractions.[46] 

L. iners is a recently identified member of the vaginal tract and epidemiological studies suggest 

that L. iners does not behave like traditionally protective lactobacilli, and rather than 

contributing to stability is actually associated with increased diversity[122] and transitions into 

a BV state[66].  We hypothesize that L. iners, despite being a Lactobacillus species, possesses 

pathogenic potential and could contribute to BV and BV associated preterm labor.  Here, we 

demonstrate that L. iners induces unique signaling in the vaginal tract.  Compared to L. 

crispatus (a protective species) and even G. vaginalis (a BV associated species), L. iners induced 

responses in the vaginal epithelium, creating an environment characterized by elevated 

proinflammatory mediators and rich in antimicrobial peptides.  We hypothesize that this may 

contribute to the altered vaginal microbiota seen in BV as well as BV associated preterm labor.       

4.2 Materials and Methods 

4.2.1 Epithelial Cell Lines 

The immortalized human vaginal epithelial cell line VK2/E6E7 was purchased from ATCC (CRL-

2616).  VK2 cells were cultured in Keratinocyte-SFM (Gibco-BRL) supplemented with 5 ng/mL 

recombinant epidermal growth factor, 50 µg/mL bovine pituitary extract, 400µM CaCl2,10 

µg/mL ciprofloxacin at 37°C in a humidified atmosphere with 5% CO2. 

4.2.2 Bacterial Cell Lines 

L. iners strains were grown on Columbia agar with 5% sheep blood.  L. iners type strain DSM 

13335, the genome of which has been sequenced, was obtained from the Deutsche Sammlung 
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von Mikroorganismen und Zellkulturen.  L. iners strain UPII 143-D(HM-126) and L. iners strain 

UPII 60-B(HM-131) were obtained  from BEI resources.  L. iners liquid cultures were grown in 

iners media (1% proteose peptone, 1% beef extract, .5% yeast extract, 85.6mM sodium 

chloride, .830 mM magnesium sulfate, .331mM manganese (II) sulfate, 11.48mM dipotassium 

phosphate, 2% glucose, 10% Fetal Bovine Serum).   L. crispatus strains were grown on MRS 

agar/MRS broth.  L. crispatus type strain ATCC33820 was obtained from ATCC.   

4.2.3 Cloning and expression of mutant CDCs 

For the construction of the pore formation deficient mutant, a tryptophan residue at position 

481 was replaced with a phenylalanine residue by overlap extension PCR using primers  NheI-

INY-F(GCCGCCGCTAGCAATACTGAGCCAAAAACAGCTATTG) and INY-TrpPhe-

R(CCACCATTCAAATGCCAAGCCTGTGCATTCTTGAATCTTAACATTCAAATGACGAACGTTT) and INY-

TrpPheF(AAACGTTCGTCATTTGAATGTTAAGATTCAAGAATGCACAGGCTTGGCATTTGAATGGTGG) 

and INY-XhoI-R(GCCGCCCTCGAGTTAGTCATTTTTTACTTCTTCTTTG). Tryptophan to phenylalanine 

mutation is underlined and in bold.  Restriction sites are underlined.  Overlaps are underlined 

and italicized.   

 

4.2.4 Stimulation of cell lines 

VK2/E6E7 vaginal epithelial cells were grown to confluence in 12 well plates.  Bacteria were 

heat killed for 15 minutes at 70oC and checked for the absence of live organisms by plating an 

aliquot onto the appropriate medium.  Heat killed bacteria were diluted in keratinocyte-SFM 

and VK2 cells were treated at an MOI of 10.  The plate was spun 39.2 x g for 5 min and then 
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incubated for 2 hours (to assess the production of proinflammatory cytokines) or 18 hours (to 

assess for the production of antimicrobial peptides).  The amount of LDH released into the cell 

supernatant was assayed using Cytotoxicity Detection Kit Plus (Roche) as per the 

manufacturer’s instructions.  Percent cytotoxicity was determined using the following formula: 

[(Test LDH-bc)/(hc-bc)] x100 where bc (background control) is an estimate of LDH activity in the 

assay medium and hc (high control) corresponds to the maximum releasable LDH activity in all 

cells.   

4.2.5 Quantitative real-time PCR 

RNA was isolated from cells using an RNAqueous-4PCR (Ambion) according to the 

manufacturer’s instructions.  A total of 1 µg of RNA was reverse transcribed into cDNA by using 

the high-capacity cDNA reverse transcription kit (Applied Biosystems).  The quantitative real-

time PCR was carried out using power SYBR green master mix in a StepOne Plus thermal cycler 

(Applied Biosystems). The relative quantification (RQ) values were calculated using a 

comparative threshold cycle (ΔΔCT) proGram on StepOne software version 2.0. 

4.2.6 Statistical Methods 

All results are expressed as average values from duplicate readings from one representative 

experiment.  Each experiment was repeated two times.  Data were analyzed by Student t test.  

A P value of <0.05 was considered significant.   
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Table 4.1 Primers for proinflammatory cytokine responses 

 

Table 4.1 Primers for proinflammatory cytokine responses 

Table 4.2 Primers for antimicrobial responses 

 

Table 4.2 Primers for antimicrobial respon 

 

Name Sequence

Interleukin 8 F TTGGCAGCCTTCCTGATT TC

Interleukin 8 R TATGCACTGACATCTAAGTTCTTTAG

GAPDH F GGGCGCCTGGTCACCAGGGCTG

GAPDH R GGGGCCATCCACAGTCTTCTG

Interleukin 6 F AAGAGTAACATGTGTGAAAGC

Interleukin 6 R CTACTCTCAAATCTGTTCTGG

COX-2 F TGAGCATCTACGGTTTGCTG

COX-2 R TGCTTGTCTGGAACAACTGC

Tumor necrosis factor alpha F TCTCCTTCCTGATCGTGGC

Tumor necrosis factor alpha R GGTTCAGCCACTGGAGCT

Name Sequence

Human Beta Defensin-2 forward ATCAGCCATGAGGGTCTTGT

Human Beta Defensin-2 reverse GAGACCACAGGTGCCAATTT

Human Beta Defensin-3 forward AGCCTAGCAGCTATGAGGATC

Human Beta Defensin-3 reverse CTT CGG CAG CAT TTT CGG CCA

Human Beta Defensin-4 forward ATCAGCCATGAGGGTCTTGT

Human Beta Defensin-4 reverse GAGACCACAGGTGCCAATTT

Human alpha defensin 5 forward ATGAGGCTACAACCCAGAAGC

Human alpha defensin 5 reverse GACTCACGGGTAGCACAACG
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4.3 Results 

4.3.1 L. iners induces proinflammatory signaling in the vaginal epithelium 

Epidemiological data as well as genomic studies suggest that L. iners is unlike its closely related 

vaginal counterparts.  Many of these studies suggest that L. iners has some pathogenic 

potential, possibly contributing to alterations of the vaginal microbiota or being less protective 

against disturbances[65, 66].  Others have suggested that L. iners could play a role in 

maintenance or restoration of a healthy vaginal environment[62].  In order to gain further 

insight into the role of this organism in the vaginal tract and how the vaginal epithelium 

responds to it (as pathogen or commensal), we treated VK2 vaginal epithelial cells with several 

heat killed strains of L. iners, L. crispatus, and G. vaginalis.  We found that the L. iners strains 

tested (13335, 60B, 143D) were able to induce significant upregulation of IL-8 (ranging from a 2 

fold to 10 fold increase)(Fig 4.1A).  All strains tested were able to induce an approximately 6 

fold increase in IL-6 transcripts (Fig 4.1B), and induced upregulation of TNFα (ranging from an 6 

fold to 10 fold increase)(Fig 4.1C). L. crispatus induced no significant production of these targets 

above the media alone control.  Interestingly, we also found that G. vaginalis, a BV associated 

species, did not induce significant production of any of these targets. We also examined the 

ability of L. iners to induce to production of COX-2 (Fig 4.1D).  All L. iners strains tested were 

able to induce an approximately six fold increase in COX-2 transcripts.  In addition to assessing 

the level of mRNA transcripts, we also assessed protein levels of IL-8.  Here, we found that the 

one strain of L. iners we tested, 13335, induced the production of IL-8 protein in a dose 

dependent manner.  At an MOI of 10, L. iners 13335 induced the production of IL-8 (300 pg/mL) 

after stimulation of VK2 cells for 18 hours (Fig 4.2).  In contrast, L. crispatus at a similar MOI 
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induced no significant IL-8 production, in excess of what the untreated cells produced (50 

pg/mL).  Taken together, these results demonstrate that L. iners induces the production of 

proinflammatory cytokines by the vaginal epithelium, and this not generally shared among 

lactobacilli.   
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Figure 4.1 Heat killed L. iners induces proinflammaory cytokine production by VK2 vaginal epithelial cells 

 VK2 vaginal epithelial cells 
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 epithelia

 

4.3.2 Antibody to CDCs abrogates this proinflammatory cytokine response 

We have previously shown that L. iners produces INY, a pore forming toxin which belongs to the 

family of cholesterol dependent cytolysins(Chapter 1 and [143]).  This gene is notably missing 

from the genome sequences of other lactobacilli, including L. crispatus.  We hypothesized that 

this pore forming toxin is the main driver for the differential response to these organisms seen 

previously.  Our attempts to develop genetic tools for the manipulation of L. iners with the 

purpose of creating an INY knockout were unsuccessful (Appendix A).  To address the role of 
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this toxin in the responses seen with heat killed bacteria, we utilized a polyclonal antibody 

raised to a related CDC Vaginolysin (VLY), to neutralize any INY present.  Briefly, heat killed 

bacteria were preincubated with anti-VLY rabbit polyclonal antibody or prebleed (control rabbit 

serum from before immunization with VLY) before being used to stimulate VK2 vaginal 

epithelial cells.  Heat killed bacteria incubated with prebleed still induced significant production 

of IL-8 (ranging from a 2 fold to a 30 fold increase in transcripts), IL-6 (ranging from a 2 fold to 

10 fold increase in mRNA), TNFα (ranging from a 2 fold to 20 fold increase in mRNA), as well as 

COX-2 (ranging from 5 fold to 30 fold increase) (Fig 4.3 A,B,C, and D respectively).  Pre-

incubation with anti-VLY antibody abrogated the production of these targets to levels 

comparable to untreated cells.   
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Figure 4.3 Antibody to CDCs abrogate

 response 

4.3.3 Purified Recombinant INY is sufficient for the proinflammatory cytokine response 

To further assess the role of the toxin in these responses, we wanted to determine if purified 

recombinant toxin alone was sufficient to induce the production of these proinflammatory 
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cytokines.  VK2 vaginal epithelial cells were treated with purified recombinant toxin alone or a 

mixture of toxin and heat killed L. crispatus.  Recombinant INY was able to induce significant 

upregulation of IL-8, IL-6, TNFα, and COX2 in a dose dependent manner.  An approximately 100 

fold increase in IL-8(Fig 4.4A), 90 fold increase in IL6 (Fig 4.4B), 25 fold increase in TNFα (Fig 

4.4C), and 10 fold increase in COX-2 (Fig 4.4D) was observed after stimulation with purified 

recombinant INY.  The addition of L. crispatus had no effect on the production of these targets.   

 

 

 

Figure 4.4 Recombinant INY can stimulate proinflammatory cyokine production 
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4.3.4 Pore formation is required for proinflammatory cytokine production 

TLRs play an important role in recognizing microbial infections and initiating responses, usually 

resulting in the elaboration of several proinflammatory cytokines.  Previous work has 

demonstrated that CDCs can act as more than just cytolytic toxins, and can induce 

proinflammatory signaling via direct recognition by TLR4[157, 158], induction of osmotic 

stress[134], as well as allowing the introduction of bacterial products into the cytosol of the cell 

and sensing by intracellular pattern recognition receptors[109].  We wanted to determine if the 

responses we observed were due to direct recognition of toxin or pore formation.  To address 

this, a point mutant toxoid (W481F) was created which was 1000 fold less efficient than wild 

type toxin at forming pores (Fig 4.5A).  We found that this mutant, although still able to bind to 

the surface of red blood cells at comparable levels (Fig.  4.5B) was unable to induce any 

significant production of IL-8 (Fig. 4.5C), IL-6 (Fig. 4.5D), TNFα (Fig. 4.5E), COX-2 (Fig. 4.5F).  
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Figure 4.5 Pore formation is required for proinflammatory cytokine production 

4.3.5 Heat killed L. iners induces a unique defensin profile 

The vaginal epithelium must discriminate between pathogen and commensal, initiating unique 

responses to each.  In addition to the production of proinflammatory cytokines, vaginal 

epithelial cells may also produce an array of antimicrobial peptides, and in other anatomical 

sites it has been suggested that these substances play a critical role in regulating the 

composition of the microbial microbiota[159].  We examined the defensin profile induced by L. 

iners and L. crispatus and found that L. iners stimulation of VK2 cells resulted in a 2 fold to 3.5 

fold increase in  HBD4 (Fig. 4.6A).  In response to stimulation with L. iners strain 60B, we 

observed a 2.5 fold increase in HD5 and in response to L. iners 13335 stimulation we observed 

an approximately 20 fold increase in HD5 (Fig. 4.6B),  Both strains tested induced an 

approximately 4-5 fold increase in HBD2 (Fig. 4.6C).  L. iners was not able to stimulate HBD3 

production, but we did note a downregulation of HBD3 by L. crispatus, although this was not 

statistically significant.   When purified recombinant INY was used, we did not see comparable 

induction of defensins as with whole heat killed bacteria.  Our results demonstrate that L. iners 

has the ability to induce responses in the vaginal epithelium, creating a unique vaginal 

environment, as compared to L. crispatus, a traditionally protective species.  We hypothesize 

that this unique complement of defensins has important implications for the composition of the 

colonizing micromicrobiota.   
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Figure 4.6 Heat killed L. iners induces unique defensin production by VK2 vaginal epithelial cells 

 

4.4 Discussion   

Traditionally, a healthy vaginal tract is defined by a microbiota which is dominated by 

Lactobacillus species.  As culture independent methods for the identification of bacterial 

species has become more commonplace, our understanding of the composition of a normal 

vaginal tract has become more complete.  The most commonly isolated Lactobacillus strains are 

L. crispatus, L. gasseri, and L. johnsonii and the use of these culture independent techniques 

have expanded the group of vaginal colonizing bacteria to include a new Lactobacillus species, 

L. iners.  Ravel et. al demonstrated the ubiquitous nature of this organism, with 30% of his study 

population being dominated by this organism.  Vaginal lactobacilli are thought to prevent the 

growth of urogenital pathogens via the elaboration of lactic acid, hydrogen peroxide and 

bacteriocins.  Interestingly, L. iners displays paradoxical behavior as it is associated with 

increased transitions into BV states as well as showing a vaginal environment characterized by 

increased diversity and more elevated pH as compared to an L. crispatus dominated 

microbiota[122].  The idea that this organism possesses pathogenic potential is further 

supported with the identification of the first putative virulence factor, inerolysin, a pore 

forming toxin belonging to the family of cholesterol dependent cytolysins[143].  We sought to 

understand what the vaginal environment would look like for an L. iners dominated microbiota, 

and how this differed from a microbiota dominated by a traditionally protective Lactobacillus 

species, L. crispatus.   
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The vaginal epithelium is the initial point of contact between a microorganism and the host.  

This epithelium must be able to respond to commensal and pathogen and initiate appropriate 

responses to each.  Commensals like L. crispatus and L. jensenii have been shown to be fairly 

innocuous, initiating no significant proinflammatory signaling in the vaginal epithelium, 

whereas pathogenic species upregulate these targets[160].  Furthermore, these commensals 

have been shown to actually downregulate proinflammatory signaling after TLR 

stimulation[161].  Interestingly, we found that L. iners rather than behaving like a commensal 

lactobacilli, actually induced responses more characteristic of a pathogenic species 

characterized by increased production of IL-8, IL-6 and TNFα.  Additionally, we also looked at 

the induction of cyclooxygenase-2 which is responsible for the production of prostaglandins and 

found that L. iners strains also upregulated this target as well.  Excessive proinflammatory 

cytokine production can be harmful to a pregnancy and contribute to preterm labor[162-165].  

While the roles of these cytokines in preterm labor have not been fully elucidated, previous 

work demonstrates that IL-8 can induce neutrophil influx into the cervix where these immune 

cells can the produce MMP-8 (neutrophil collagenase) which can contribute to cervical ripening.  

TNFα can also contribute to cervical ripening and preterm labor via the induction of MMP-8, 

MMP-9[166]. IL-6 has been used as a biomarker for the prediction of preterm labor, and it is 

suggested that this inflammatory mediator could induce the upregulation of oxytocin receptor 

expression in the myometrium[167], which could contribute to uterine contractions.  It is also 

known that prostaglandin production by COX-2 can result in increased calcium concentrations 

in the myometrium which could contribute to uterine contractions.  Most of these studies have 

examined cytokines and neutrophil influx in the cervix, uterus, and maternal and fetal 
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membranes.  However, it is very likely that inflammatory mediators produced by the vaginal 

epithelium could ascend to induce changes further along the vaginal tract.  

Our results suggest that the main driver for the differential response of vaginal lactobacilli (L. 

iners vs. L. crispatus) is INY.  After neutralization of INY by an antibody raised to a related CDC, 

the responses we observed were completely abrogated.    Epithelial cells can detect the 

presence of toxins either via its pore forming abilities in response to calcium fluxes[134] or as a 

result of introduction of bacterial cell components through the pore[109].  Our results suggest 

that the induction of these targets is accomplished through calcium fluxes, as we used purified 

recombinant protein to induce these responses, in the absence of any additional bacterial 

components.  It is possible that our preparations of purified recombinant protein contain some 

contaminants which could enter the cytosol via the pore to induce these proinflammatory 

responses.  Further work examining the requirement of NOD receptors could shed light on the 

importance of translocation of bacterial components for the initiation of these responses.  

Additionally, CDCs could induce these responses by direct recognition of toxin via TLR4[157].  

We show that pore formation, and not direct recognition is responsible for the responses we 

observed, as INY toxoid (INYW481F) was unable to induce these responses despite similar 

membrane binding activity.    

In addition to providing a physical barrier, the vaginal epithelium can antagonize the growth of 

potential pathogens via the production of defensins.  These antimicrobial peptides have the 

ability to directly inhibit the growth of microorganisms, as well as more complex effects linking 

the innate and adaptive immune system.  Additionally, it has been demonstrated that these 
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antimicrobial peptides can shape the composition of the microbiota[155, 168].   We 

demonstrate that L. iners induces the production of a unique profile of defensins, as compared 

to L. crispatus which did not induce any of the targets we assessed and actually seemed to 

downregulate them.  In a study of a pregnant population, vaginal fluid from women who had an 

intermediate microbiota (which is thought to be dominated by L. iners) was enriched in 

defensins, as compared to normal microbiota as well as women with frank bacterial 

vaginosis[169].  Interestingly, the production of INY by this strain is not what drives this 

response, and requires some unknown stimulating factor.  We suggest that a L. iners dominated 

microbiota, via the production of several antimicrobial targets can contribute to alterations and 

potentially dysbiosis of the vaginal micromicrobiota, resulting in a transition to a BV state and a 

reduction in the level of defensins.  More work is required to understand the full effect that 

production of these defensins have on health and disease in the vaginal tract. 

We present evidence that clearly demonstrates that L. iners and L. crispatus induce unique 

responses in the vaginal epithelium.  These data suggests that the vaginal environment of an L. 

iners dominated microbiota is distinct from that of an L. crispatus domainted microbiota, 

characterized by increased proinflammatory cytokine production and a unique profile of 

defensins.   This altered defensin profile potentially contributes to the dysbiosis seen in 

bacterial vaginosis, shaping the micromicrobiota in a way that is distinct from the way in which 

an L. crispatus dominated microbiota.  Attempts to treat bacterial vaginosis (a state not rich in 

proinflammatory mediators) and limit preterm labor have been unsuccessful, suggesting that 

the events contributing to preterm labor have set in long before we ever see an episode of BV.  

Given the ability of L. iners to persist in both “normal” and BV states, the chronic elevated  
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proinflammatory cytokine profile could potentially contribute to BV associated preterm labor.  

Figure 4.7 outlines the role L. iners may play in vaginal health.  The finding that INY is important 

in these responses presents a new target for limiting the incidence of preterm labor.  Further 

study is required to determine if these responses, in vivo, could result in alterations of the 

microbiota and increase the risk of preterm labor.     
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Figure 4.7 Proposed model for the role of L. iners in the vaginal tract 
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Chapter 5: Summary 

5.1 Summary of Results 

L. iners is a recently identified constituent of the vaginal tract.  Initially overlooked because of 

its fastidious nature, the use of cultivation independent techniques for identification allowed 

for the expansion of the repertoire of Lactobacillus species colonizing the vaginal tract to 

include this organism.  Traditionally, lactobacilli have been ascribed protective and stabilizing 

effects, contributing to the overall health of the vaginal tract[12, 13].  Techniques for the 

molecular identification of bacterial species have led to the understanding that the lactobacilli 

colonizing the vaginal tract are not a single species, but rather a group of distinct species 

including L. crispatus, L. gasseri, L. jensenii, and L. iners.  Epidemiological studies have furthered 

our knowledge about the role of these organisms in the vaginal tract, and have suggested that 

attributing a protective function to these species as a whole may not accurately reflect the role 

they play in shaping the vaginal microbiota and determining the health of the vaginal tract[9, 

121].  In particular, L. iners was found to be associated with increased transitions into BV states 

while L. crispatus was not, suggesting that L. iners has pathogenic potential.  It is this idea which 

led us to look for putative virulence factors in the genome of this organism.  Our results 

demonstrate that L. iners produces a pore forming toxin which belongs to the cholesterol 

dependent cytolysin (CDC) superfamily.  This family of toxins is secreted by a wide range of 

Gram positive and Gram negative organisms, and play important roles in the pathogenic 

mechanisms of the bacteria which secrete them.  The three dimensional structure of several 

CDCs have been solved, and across the family there is a high level of sequence identity and 

similarity, suggesting that this family of toxins possesses similar three-dimensional structure 
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and thus function in similar ways[105, 152, 170].  As their name suggests, these toxins are 

dependent on cholesterol to serve as the initial receptor mediating pore formation.  While 

these varied toxins all act through the same mechanism, pore formation, their activity may be 

required at particular times during the life cycle of the organism.  Regulation may occur at the 

level of transcription, translation, or post-translationally.  In our review of the literature, there 

has been only a single report of regulation at the level of transcription, demonstrating that the 

CDC produced by B. anthracis was regulated by external conditions[116].  Greater evidence for 

regulation at the level of activity has been shown for both LLO and PFO, showing optimal 

activity at acidic pH[102, 142].  The molecular basis for this activity has been identified in LLO, 

but not PFO[103].   Furthermore, no other groups have demonstrated pH dependent activity for 

any other members of this toxin family.  Given that this organism occupies a normally acidic 

nice, we hypothesized that this toxin (like LLO and PFO) would show an acidic pH optimum and 

that this activity was a common mechanism for regulation among many members of the class 

of cholesterol dependent cytolysin.    

Additionally, we sought to explain the paradoxical behavior of L. iners among lactobacilli, 

demonstrating increased transitions of the vaginal microbiota in women with a microbiota 

dominated by this species.  Our work here demonstrates that L. iners induces unique signaling 

in the vaginal epithelium which we hypothesize contributes to its paradoxical behavior.  These 

findings are discussed further in the following sections.  

 

 



109 
 

 

5.2 Identification and Characterization of the Cholesterol Dependent Cytolysin produced by L. 

iners 

L. iners  is an atypical organism which has been recently identified due to the use of culture 

independent methods for identification of microbial species.  Epidemiological studies suggest 

that this organism behaves more like a pathogen than a protective lactobacillus species, 

demonstrating reduced stability of the vaginal microbiota in individuals colonized by L. iners as 

compared to L. crispatus. This paradoxical behavior led us to look for toxins resembling 

vaginolysin (produced by G. vaginalis, a potential BV associated pathogen) in the genome of 

this organism.  BLAST analysis resulted in the identification of an ORF with a high similarity to 

vaginolysin in all of the sequenced L. iners strains available on NCBI.  Interestingly, the presence 

of this putative toxin was unique to L. iners strains and not present in any of the other vaginal 

lactobacillus species for which fully sequenced genomes were available.  This toxin was named 

Inerolysin (INY).  This is the first report of INY being purified, and we sought to characterize it.  

Recombinant INY displayed non-species restricted activity that displayed characteristics 

common to the family of cholesterol dependent cytolysin superfamily: activated by DTT and 

inhibited by the addition of exogenous cholesterol.  Additionally, antibody raised to a related 

family member was able to recognize, and neutralize INY.  Our results expand the family of 

cholesterol dependent cytolysins to include the pore forming toxin produced by L.  iners, 

referred to as INY.  The identification of this putative virulence factor began to lend support to 

the idea that L. iners possessed pathogenic potential and could contribute to disease in the 

vaginal tract.  The expansion of this family of toxins provides further opportunity to study the 
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structure-function relationship of the CDC superfamily as well as further our knowledge of the 

mechanism of pore formation.    

5.3 Characterization of the pH dependent activity of INY 

Others have demonstrated that CDCs produced by organisms with an intracellular component 

to their lifecycle, have evolved to be well suited to the acidic pH of the phagosome.  Although it 

has not been shown that L. iners has an intracellular lifestyle, it does normally occupy the 

acidified vaginal tract (pH 4.0) and so we sought to determine if INY demonstrated pH 

dependent regulation similar to PFO and LLO.  Our results demonstrated that the acidic pH 

optimum we see for INY is distinct from LLO, as it is reversible in INY, and LLO like activity could 

not be conferred onto INY by just the addition of the analogous “sensor” residues which are 

responsible for the pH dependence of LLO.  We determined that membrane binding, and 

oligomerization could proceed, but the final step in pore formation is defective at more neutral 

pH.  Interestingly, pH dependent activity was not restricted to INY, but was also identified in 

pyolysin and arcanolysin, phyologenetically distant relatives of INY.  While most of the toxins 

that have been examined and in work from other groups as well as our work examining INY and 

PYO show optimal activity at acidic pH, this is the first report of toxins which exhibit optimal 

activity at more neutral pH.  Interestingly, those toxins which demonstrate acidic pHs occupy an 

acidic niche during their lifestyle.  In the case of Listeria and Clostridia, an acidic pH optimum is 

required for activity in the acidified phagosome.  Those which demonstrate more neutral pH 

have not been shown to occupy any intracellular or acidified niches, and remain mainly 

extracellular where the pH is normally more neutral.  Taken together, past work and the studies 

carried out in this work suggests that pH dependent regulation of toxin activity is a mechanism 
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common to the entire family and that each toxin may be particularly well suited to its 

physiological niche.  Further work is required to confirm that all CDCs have pH dependent 

activity.  Analysis of pneumolysin suggests that the mechanism of PLY pH dependent activity is 

the same as it is for INY, as membrane binding and oligomerization were intact at neutral pH.  

We did not directly test for transmembrane helix insertion spectroscopically as we did with INY, 

but it could be done in the future to confirm that the defect is at this stage of pore formation.  

Our attempts to localize the pH dependent activity were ultimately unsuccessful, but suggest 

that the pH dependent activity is a function of several domains, rather than just a single one as 

it is with LLO.  INY is well suited to its physiological niche, colonizing the acidified vaginal tract.  

INY shows optimal activity at acidic pH and so may be able to initiate changes in the normal 

acidified vaginal tract.  G. vaginalis, another organism which makes a CDC, is a potential vaginal 

pathogen whose exact role in BV has not yet been elucidated.  While it is possible that this toxin 

may play a role in contributing to disease and adverse consequences associated with BV, the 

fact that VLY has optimal activity at neutral pH argues against its role in initiating changes in the 

normally acidified vaginal tract.  Additionally, G. vaginalis and its associated toxin are probably 

not associated with initiating changes in the vaginal microbiota as these organisms are rarely 

found in large numbers in the normally acidified vaginal tract.  We suggest that INY is 

particularly well suited to acting on the vaginal mucosa when it is in a “normal” state and is 

acidified.  Through some unknown mechanisms (investigated in Chapter 3), this toxin may act 

to alter the vaginal microbiota, contribute to transitions into BV states, as well as contribute to 

BV associated adverse outcomes.  Additionally, the work carried out in this study furthers our 

knowledge of the ways in which CDC activity can be regulated and suggests that the entire 
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family of CDCs may be regulated by pH.  Further studies must be carried out to determine the 

molecular basis of this pH dependent regulation.   

      

5.4 Characterization of the responses of the vaginal epithelium to L. iners 

Given the paradoxical behavior of this organism, and its potential contribution to mediating 

transitions into BV states, we wanted to look at the responses of the vaginal epithelium to this 

organism in comparison to a traditionally protective Lactobacillus species.  Our results 

demonstrate that L. iners behaves more like a pathogenic species, inducing the production of 

proinflammatory cytokines IL-8, IL-6, and TNFα.  Additionally, we hypothesized that this 

organism could be a major factor in the etiology of BV associated preterm labor, given its ability 

to persist in both normal and BV states.  We found that L. iners induced significant production 

of COX-2, which plays a large role in preterm labor (in addition to the proinflammatory 

cytokines mentioned previously).  The main driver for this response was found to be INY, and 

this response required active pore formation.  Further work is required to clearly demonstrate a 

link between L. iners and preterm birth, but if INY does contribute to this adverse consequence 

it presents a new target for limiting the incidence of BV associated preterm labor.  Our results 

also demonstrate that L. iners induces the production of a unique profile of defensins in the 

vaginal tract.  We speculate that this unique signaling could contribute to instability and 

increased frequency of transition into a BV state associated with L. iners colonization.  Further 

work is required to understand how this complement of defensins translates to actual changes 

in the composition of the microbial microbiota.  While we were unable to accomplish this, 
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mouse models of L. iners colonization could yield a significant amount of information with 

regards to the vaginal environment dominated by L. iners.   Given the non-species specific 

nature of this toxin, there is no reason to suspect that L. iners could not colonize the vaginal 

mucosa of the mouse.  However, one potential problem with this model is that the vaginal tract 

of the mouse is more basic than the human vagina[171], which could antagonize both the 

colonization by this organism as well as the activity of this toxin.  Additionally, purified toxin 

could be utilized in a mouse model to understand how this CDC may alter signaling in the 

vaginal mucosa.  Overall, the vaginal epithelium recognizes L. crispatus and L. iners in very 

different ways (mediated in part by INY) and induces very unique responses to each of them.  

This suggests that the presence of Lactobacillus species is not necessarily synonymous with 

vaginal health.  Current methods for diagnosis of BV depend on clinical criteria, such as Gram 

stain, whiff test, presence of discharge as well as clue cells.  These methods can detect the 

presence of BV in symptomatic women, but a significant number of women are asymptomatic.  

Better techniques are required to identify these asymptomatic women.  The work carried out 

here suggests that women who are preferentially colonized by L. iners may still be at risk for 

some of the adverse outcomes associated with BV, such as preterm labor.  This should prompt 

us to develop new tools to identify those women who are preferentially colonized by L. iners 

and thus at risk for BV and BV associated preterm labor.   
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Appendix A: Attempts to generate an INY knockout 

A1.1 Introduction 

Lactic acid bacteria are a group of organisms which are Gram-positive, non-spore forming bacteria, 

initially isolated from milk[172],  and can be found in fermented food and even the human body.  This 

group of organisms represents a major constituent of the gastrointestinal tract, where they function in 

host metabolism as well as protection against pathogen invasion/growth.  Given their crucial roles in the 

food industry as well as the human body as well as the fact that they are generally regarded as safe 

(GRAS), there has been significant interest in the genetic manipulation of these organisms.  Much of the 

interest has been in the realm of food development, being use for improved food preservation as well as 

flavoring[173].  One of the more medically relevant uses is for improved vaccine delivery.  These 

organisms provide attractive vehicles as they can be delivered orally (which can enhance adherence) 

and they can induce both mucosal and systemic immune responses.  As such, there is a significant 

amount of work that has been done on generating tools for genetic manipulation as well as techniques 

for transformation of these organisms.  

The development of lactobacillus plasmids and vectors has been ongoing for quite some time and great 

strides have been made in developing vectors which can be utilized for cloning.  Plasmids for use in 

these organisms can be broadly categorized as those which are promiscuous (and thus able to replicate 

in several organisms), those with two origins of replications (which facilitates manipulation in E. coli 

followed by transformation of lactobacilli), and native Lactobacillus plasmids engineered with a Gram 

negative origin of replication[174].  In our studies, we made use of several of these plasmids to optimize 

the conditions for the introduction of foreign DNA into this previously untransformed Lactobacillus 

species.       
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In order to generate INY knockouts to study the role of this toxin in disease processes, we made use of 

integration vectors.  There has been a significant amount of work done to generate new integration 

vectors based on the presence of insertion sequences present normally in lactobacilli[175].  The 

efficiency of a number of these vectors has been improved by engineering plasmids with temperature 

sensitive origins of replication.  These plasmids should replicate at permissive temperatures, which 

should facilitate recovery of transformants even if our transformation efficiency is low.  These 

transformants can then be shifted to a higher non-permissive temperature which will facilitate 

integration.  We created several integration plasmids with a truncated form of INY to direct the 

integration events.   In the presence of antibiotic selection only those cells which have undergone the 

first crossover event and thus have integrated the plasmid should be resistant to that antibiotic.  These 

transformants would then be grown for a second time in the absence of selection to stimulate a second 

crossover event, resulting in a looping out of the original plasmid elements, and leaving either the full 

length gene or the truncated version of the gene in the genome.  In either case (either a single crossover 

event or a double crossover event), we would have a functional INY knockout.  However, the first 

situation could potentially have polar effects, affecting the expression of other genes upstream and 

downstream.  The second scenario would have created a knockout with no possibility of polar effects.  

Figure A1 shows a schematic of the proposed crossover events that would occur. 

The other major modifiable parameter we manipulated in order to generate a genetically modified 

organism was the mode by which DNA was introduced.  Electroporation has been widely used in 

lactobacilli, and acceptable transformation frequencies have been demonstrated for a number of 

lactobacillus species including L. gasseri and L. johnsonii[174, 176, 177]. Additionally, conjugation 

provides an alternative means for the introduction of foreign DNA into host cells.  This form of 

horizontal gene transfer has been demonstrated between lactobacillus species[178, 179] but also 

between Lactococcus and Lactobacillus [180].  In our study, we made use of the pAMβ1 plasmid which is 
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capable of self-transmission.  This plasmid has been used in the past to transmit genes encoding 

clumping factors to the host cell, and we hoped to utilize this same technique for the introduction of 

foreign DNA. This would be the first report of genetic manipulation of L. iners and would facilitate 

further work in understanding the role of this organism in health and disease of the vaginal tract.   

A1.2 Materials 

A1.2.1 Growth media and buffers 

Iners Media 

1% proteose peptone, 1% beef extract, .5% yeast extract, 85.6mM sodium chloride, .830 mM 

magnesium sulfate, .331mM manganese (II) sulfate, 11.48mM dipotassium phosphate, 2% glucose, 10% 

Fetal Bovine Serum 

Electroporation Buffer1 

0.4M sucrose, 1mM MgCl2, 5mM KH2PO4 pH 6.0 

Electroporation Buffer 2 

0.9M sucrose, 3mM MgCl2 

Electroporation Buffer 3 

0.5M sucrose, 10% glycerol 

Electroporation Buffer 4 

0.5M Sucrose, 7mM K3PO4, 1mM MgCl2, pH 7.4 
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A1.2.2 Bacterial strains and plasmids 

Strains/Plasmid Relevant Characteristics Reference or source 

E. coli     

TOP10 
F mcrA (mrr-hsdRMS-mcrBC) 80lacZ M15 lacX74 
deoR recA1 araD139 (ara-leu)7697 galU galK 

Invitrogen 

TG1 
K-12 supE thi-1 Δ(lac-proAB) Δ(mcrB-
hsdSM)5, (rK

-mK
-) 

Stratagene 

ARE165 
NEB10+pRK21761; contains RK2 helper plasmid 
for conjugal transfer 

[181] 

      

L. iners     

13335 Type strain; isolated from human urine DSMZ 

60B isolated from human vagina ATCC 

143D isolated from human vagina ATCC 

      

Plasmids     

pCR2.1-TOPO Cloning vector; AmpR KmR   Invitrogen 

pARE252 
1.2kb INY fragment consisting of the first 507 
base pairs fused to the last 479 base pairs and 
lacking the internal 300bp 

This work 

pAM1 E. coli-Bifidobacteria shuttle vector; AmpR, ErmR [182] 

pARE253 
Truncated INY from pARE252 subcloned into 
XbaI/HindIII site of pAM1 

This work  

pEVP3 pneumococcal suicide vector; CmR [183] 

pARE254 
Truncated INY from pARE252 subcloned into 
KpnI/XbaI site of pEVP3 

This work  

pGID023 Integration vector; ErmR [184] 

pARE298 
Truncated INY from pARE252 subcloned into the 
BamHI/XbaI site of pGID023 

This work 

pJAK16 Cloning vector; CmR [185] 

pG+Host9 
broad host range temperature sensitive 
plasmid; ErmR 

 [186] 

pARE284 
Truncated INY from pARE252 subclones into the 
EcoRI site 

This work 

pRK21761 RK2 helper plasmid for transfer via conjugation  [156] 

pOri23 Expression vector for Gram positive; ErmR [187] 

pKS80 Expression vector for Gram positive; ErmR [188] 
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 for genetic manipulation 

A1.3 Procedures 

A1.3.1 Preparation of electrompetent cells 

L. iners was grown in iners media for approximately 26 hours (which corresponds to log phase) at 

37oC/5% CO2.  Iners media was also supplemented with sodium chloride (0.9M and 0.5M)[189] as well as 

glycine (0.8%, 1%, 2%, 2.5%).  No growth was observed in media supplemented with 0.9M NaCl and 

2.5% glycine.  These agents are known to destabilize the cell wall. Cells were harvested and in some 

cases pellets were treated with lysozyme or mutanolysin, in order to weaken the cell wall and facilitate 

the entry of foreign DNA into the bacterial cell.  Cell viability was tested after treatment by growth on 

plates with these cell wall weakening agents to ensure that they did not kill the bacterial cells. Cells were 

harvested by centrifugation, resuspended in half the original volume with electroporation buffer and 

incubated on ice for 10 minutes.  Cells were harvested by centrifugation and resuspended in 1/10 the 

volume with electroporation buffer and incubated on ice for 10 minutes.  Cells were harvested by 

centrifugation and resuspended in 1/100 the volume with electroporation buffer and incubated on ice 

for 10 minutes.  In some instances, cells were treated at 56oC for 5min, 10min, 20min or 30 min.  This 

was done to temporarily inactivate any host restriction systems that would cause degradation of 

introduced DNA[190, 191].  100μl aliquots were chilled on ice and used within an hour of preparation. 

A1.3.2 Electroporation 

  Plasmid DNA was isolated from E. coli by alkaline lysis method and varying amounts (0.1 ng, 1 ng, 10 

ng, 100ng, 1μg, 10μg) of DNA was added to the chilled cells in electroporation buffer.  Cells were 

incubated for 5 minutes with the DNA and then transferred into prechilled electroporation cuvettes 

(1mm gap or 2mm gap).  After incubation, varying pulses were delivered (1000V, 1500V, 2000V, 2500V), 



129 
 

25μF, 200Ώ.  Cells were immediately recovered in 1mL of iners media and grown at 37oC/5%CO2 for 2 

hours, 6 hours, or 8 hours.  

A1.3.3 Modification of plasmid DNA 

In some cases, in order to deal with the issue of host restriction modification systems instead of heat 

inactivating, we attempted an in vitro methylation procedure. Briefly, 500mL of L. iners strains 

(DSM1335, 60B, or 143D) were grown to an OD600 of approximately 1.0 and pelleted by centrifugation.  

These cells were washed with 100 mL of PENP buffer (10 mM potassium phosphate, 10 mM EDTA, 50 

mM NaCl and 0.2M PMSF, pH 7.0).  Cells were harvested by centrifugation and resuspended in a final 

volume of 10mL.  The cells were sonicated and debris was pelleted by centrifugation at 4oC.  The extract 

was saved on ice into 1 mL aliquots and 1 mL of glycerol was added as well as BSA (0.2 mg/mL) and 

stored at -20oC until use.  The DNA modification assay was carried out as follows: in a final volume of 

100 μl plasmid DNA (100 μg) was mixed with BSA (100 μg/mL), S-adenosylmethionine (80 µM), and TNE 

buffer [50 mM Tris (pH 7.5), 50 mM NaCl, 10 mM EDTA].  The reactions were incubated at 30oC for 16 

hours.  These methylated DNAs were then recovered by phenol chloroform extraction followed by 

ethanol precipitation.  Methylated DNA was stored at -20oC until use in the electroporation procedures 

mentioned above.   

 

A1.3.4 Conjugation 

L. iners strains (recipient) were grown either on Columbia blood agar plates or in iners media alone or 

supplemented with 0.5 M NaCl or 1% glycine for 2 days.  Cells were harvested, washed 3 times in iners 

media.  E. coli (donor) strains harboring the RK2 helper plasmid with integration vectors were grown in 

LB overnight and L. lactis (donor) harboring pAMβ1 was grown in GM17 overnight and washed in LB or 

GM17 respectively.  In some experiments, the recipient L. iners strain was treated with lysozyme or 
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mutanolysin for 30 min to weaken the cell wall and then washed 3 times in iners media to remove the 

lysozyme/mutanolysin.  After washes, cells were resuspended in 100 μl of the appropriate medium.  

Recipient (L. iners) was spotted onto the plate alone or in combination with the donor strains in varying 

amounts.  Plates were incubated at 37oC/5%CO2 for 1hr, 2hr, 4hr, 6hr, 8hr, or overnight.  Cell mixtures 

were then retrieved with a swab and plated onto selective media and grown for several days.  In some 

cases, in order to deal with the faster growth rate (and potential overgrowth) of the donor E. coli strains, 

aztreonam and nalidixic acid was included on the plates to prevent their growth and facilitate detection 

of putative transformants. 

 

A1.3.5 Natural Transformation 

After several attempts to introduce plasmid DNA with no success, we attempted to determine if L. iners 

strain DSM13335 could be transformed with genomic DNA.  Genomic DNA from the parent strain could 

possibly be a better transforming factor than plasmid DNA isolated from E. coli.  We made use of a 

spontaneous streptomycin resistant mutant of DSM13335.  Genomic DNA was isolated from this 

spontaneous streptomycin mutant using the DNeasy kit (Qiagen). 100mL cultures of L. iners were grown 

for approximately 36 hours (which corresponds to stationary phase), harvested by centrifugation and 

resuspendend in 1 mL of iners media.  Varying amounts of DNA (100 µg, 250 µg, and 500 µg) were 

added to the bacteria.  Cells were incubated with water as a negative control.  Cells were incubated at 

37oC for varying amounts of time (5min, 30min, 1hr, and 3hr).  After the allotted time period, cells were 

diluted and plated onto Columbia agar +5% sheep blood plates supplemented with streptomycin (40 

µg/mL).  No differences in the number of streptomycin resistant colony forming units between cells 

transformed with genomic DNA or water were observed.  
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A1.4 Conclusions 

Ultimately, our attempts to genetically manipulate L. iners were unsuccessful.  Despite creating 

numerous vectors for the purpose of knocking out INY, a putative virulence factor for this organism, our 

results suggest that we were unable to introduce foreign DNA into our recipient L. iners strain.  

Impediments to transformation of Gram-positive organisms include the thick cell wall that can prevent 

entry of the DNA into the cell and host-restriction modification systems, which can degrade foreign DNA 

once it gains entry into the cytosol.  The genome of L iners possesses each of the components of the 

Type I restriction modification system.  We attempted to deal with these issues by treating the cells at 

56oC for varying amounts of time to temporarily inactivate host restriction-modification systems[192] 

before the addition of DNA and electroporation.   We also attempted to deal with the host restriction-

modification systems by treating plasmids derived from E. coli with cell free extracts from the recipient 

strains, in order to prevent degradation.  Additionally, we attempted transformation via conjugation 

with both a Gram negative (E. coli) and a Gram positive (L. lactis) donor.   Plasmids derived from E. coli 

could potentially be recognized as foreign and be degraded by host restriction modification systems of 

the organism.  We used genomic DNA in order to circumvent this issue, which would have the correct 

methylation pattern to evade the host restriction system.  Transformation of this genomic DNA into the 

recipient strain should yield more streptomycin resistant transformants than the negative control (as 

streptomycin resistance could arise as a result of a point mutation during growth).  All of our results 

suggest that L. iners strain DSM13335 is recalcitrant to transformation.  It is surprising that we were 

unable to transform this strain as related Lactobacillus strains, including L. crispatus and L gasseri [193, 

194] have been successfully transformed.  Additionally, an analysis of the genome suggests that this 

organism has the ability to be transformed as it possess all of the components of the natural 

transformation machinery, the com genes.  These genes encode pilus like proteins which serve to bind 

exogenous DNA, proteins which form channels in the membrane allowing the entry of the DNA, as well 
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as proteins involved in the creation of ssDNA[195-197].  The inability to transform L. iners could be strain 

specific, and it is worth attempting genetic manipulation with other strains of L. iners using the 

techniques outlined here.  Another potential option would be to identify /isolate native plasmids from L. 

iners and utilize these to generate a new set of integration/cloning vectors specific for L. iners.     
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Figure A Proposed crossover events for integration vectors 

Appendix B: Heterologous Expression of INY 

B.1 Introduction  

Our attempts to generate an INY knockout were unsuccessful.  In order to address the role of this toxin 

in contributing to proinflammatory cytokine signaling and defensin production, we sought to utilize a 

common system for the expression of this putative virulence factor.  For over three decades, tools have 

been developed for the heterologous expression of proteins in Lactococcus lactis.  This nonpathogenic, 

noncolonizing microorganism has been extensively used to understand the role of various factors from 

potentially pathogenic microorganisms in the etiology of disease.  This section will outline the attempts 

made to express inerolysin (INY) in this system, in the hopes of understanding the role of this virulence 

factor in health and disease of the vaginal tract. 

B.2 Materials and Methods 

B.2.1 Bacterial Strains and Cell lines 

E. coli strains were grown in Luria-Bertani broth.  L. lactis strains were grown in GM17 broth. 
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Table B1.  Strains and Plasmids used 

Strains/Plasmid Relevant Characteristics Reference or source 

E. coli     

MC1061 
araD139, Δ(ara, leu)7697, ΔlacX74, galU-, galK-, hsr-, 
hsm+, strA Boca Scientific 

TOP10 
F mcrA (mrr-hsdRMS-mcrBC) 80lacZ M15 lacX74 deoR 
recA1 araD139 (ara-leu)7697 galU galK Invitrogen 

TG1 K-12 supE thi-1 Δ(lac-proAB) Δ(mcrB-hsdSM)5, (rK
-mK

-) Stratagene 

      

L. lactis     

MG1363 
Plasmid-free and prophage-cured derivative of NCDO 
712 [198] 

pNZ9000 pepN::nisRnisK; For nisin inducible expression  Boca Scientific 

      

Plasmids     

pKS80 
expression vector; constitutive from lactococcal 
promoter [188] 

pKS80-INY 
INY from DSM13335 cloned into BamHI site of pKS80 for 
constitutive expression This work 

pOri23 
expression vector;constitutive expression from p23 
lactococcal promoter Que (2001) 

pOri23-INY 
INY from DSM13335 cloned into BamHI/SalI sites of 
pOri23 for constitutive expression This work 

pTRKH3-
ermGFP 

expression vector; constitutive from erythromycin 
promoter Addgene 

pTRKH3-ermINY 
INY from DSM 13335 cloned downstream of erm 
promoter replacing GFP for constitutive expression This work 

pNZ8148 nisin inducible expression vector Boca Scientific 

pNZ8148-INY 
INY from DSM13335 cloned into KpnI/BamHI sites of 
pNZ8148 for nisin inducible expression This work 

  

 

Table B1 Plasmids and Strains used for heterologous expression 
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B.2.2 Cloning and expression of recombinant INY in L. lactis 

The open reading frame (ORF) encoding INY lacking the predicted signal sequence was cloned 

from L. iners DSM 13335 genomic DNA using primers BamHI-INY-F 

(GCCGCCGGATCCAATACTGAGCCAAAAACAGCTATTG) and SalI-INY-R 

(GCCGCCGTCGACTTAGTCATTTTTTACTTCTTCTTTG) for cloning into pOri23.  The ORF encoding 

INY was cloned from L. iners DSM13335 genomic DNA using primers SalI-INY-

F(GCCGCCGTCGATAATACTGAGCCAAAAACAGCTATTG) and BamHI-INY-

R(GCCGCCGGATCCTTAGTCATTTTTTACTTCTTCTTTG) for cloning into pTRKH3-ermGFP.  The ORF 

encoding INY lacking the predicted signal sequence was cloned from L. iners DSM 13335 

genomic DNA using primer BamHI-INY-F(GCCGCCGGATCCAATACTGAGCCAAAAACAGCTATTG) 

and BamHI-INY-R(GCCGCCGGATCCTTAGTCATTTTTTACTTCTTCTTTG) for cloning into the BclI site 

of pKS80.  Amplifications were performed using Phusion proofreading polymerase (New 

England Biolabs).  For cloning into pNZ8148, primers KpnI-INY-F 

(GCCGCCGGTACCAATACTGAGCCAAAAACAGCTATTG) and XbaI-INY-

R(GCCGCCTCTAGATTAGTCATTTTTTACTTCTTCTTTG) were used to clone INY.  The products of 

the PCR reaction were cloned via the indicated restriction sites into their respective vectors.  

For expression in pTRKH3-ermGFP, the GFP was removed by digestion with SalI and BamHI and 

replaced with INY.  Transformation of E. coli was carried out as per manufacturer instructions 

(Boca Scientific).  L. lactis transformations were carried out as per manufacturer instructions 

(Boca Scientific).   
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B.2.3 Nisin inducible expression of INY 

L. lactis harboring either pNZ8148-INY (ARLC12) or empty vector pNZ8148 (ARLC13) were 

grown overnight at 30oC in GM17 with 10µg/mL of chloramphenicol.  Overnight cultures were 

diluted 1/25 into 2x 400mL of fresh medium and grown until OD600 reached 0.4 (approximately 

4 hours).  Cultures were induced with 1 mg/mL of nisin (MP Biologicals) and induced for 2-3 

hours.  Cells were harvested by centrifugation and pellets were resuspended in PBS and 

incubated with lysozyme (10 mg/mL) and protease inhibitor for 30 minutes on ice.  Cells were 

sonicated to break them open, and lysate collected by centrifugation.  Protein concentrations 

were determined by modified Bradford assay.  Pellets were resuspended in LDS sample buffer 

(Invitrogen).  Recombinant INY was detected by western blot.  Samples were also used in an 

erythrocyte lysis assay.   

 

B.2.4 Detection of recombinant INY from L. lactis 

For detection of expression of INY from pKS80, pOri23, pTRKH-erm-INY, L. lactis was grown in 

GM17 overnight with 5 µg/mL erythromycin at 30oC.  400mL of overnight culture was harvested 

by centrifugation, resuspended in 40mL of PBS and treated with lysozyme (1 mg/mL) and 

protease inhibitor (sigma) for 30 minutes on ice.  Cells were sonicated on ice and cells were 

pelleted by centrifugation.  Protein concentrations were determined by a modified Bradford 

assay (Bio-Rad) and equal amounts of total protein were run on a 4 to 12% polyacrylamide gel 

(Invitrogen).  Proteins were transferred to polyvinylidene difluoride (PVDF) membrane, blocked 

with 5% milk and probed with anti-PLY monoclonal antibody (Santa Cruz Biotechnology. 1:1000 
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dilution).  The primary antibody was detected with horseradish peroxidase-conjugated mouse 

IgG by enhanced chemiluminesence.   

 

B.2.5 Erythrocyte Lysis Assay 

The use of human erythrocytes from healthy adult volunteers after verbal informed consent 

was obtained was approved by the Columbia University Institutional Review Board (protocol 

IRB-AAAC5641). Defibrinated sheep and horse blood was obtained from Fisher Scientific. 

Erythrocytes were washed in sterile PBS with 1 mM CaCl2 and 1 mM MgCl2. For endpoint 

assays, 100 µl of a 1% washed erythrocyte solution was mixed with 100 µl of lactococcus lysates 

or supernatant in a 96-well V bottom plate and incubated for 30 min at 37°C and 5% CO2. After 

30 min, the plates were spun at 2,000 rpm to pellet erythrocytes. Supernatant was removed, 

and the optical density at 415 nm (OD415) was measured.  
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B.3 Results 

Interestingly, despite cloning the ORF encoding INY into pKS80 and pOri23, which should result 

in constitutive expression, we were unable to detect INY in lysates or pellets of these 

transformants.  Analysis of L. lactis strains harboring the plasmid pTRKH3-ermINY by western 

blot revealed the presence of an approximately 39kDa protein which cross-reacted with an anti-

PLY antibody (Figure B1).  Although cross reactive, this protein was not consistent with the 

predicted size of INY (57kDa). These lysates were found to have no lytic activity despite the 

addition of milligrams of total protein (data not shown).  In contrast, lysates from L. lactis 

harboring the pNZ8148-INY (ARLC12) contained an approximately 57kDa protein which was 

cross reactive with an anti-PLY antibody, consistent with the expression of INY from this strain.  
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This was unique to L. lactis harboring the construct, as cells harboring the empty vector 

(ARLC13) did not produce any protein recognized by the anti-PLY antibody (Figure B2).  In a 

functional erythrocyte lysis assay, we confirmed the presence of functional pore forming toxin 

in ARLC12 lysates as they were able to induce hemolysis of red blood cells (Figure B3).   

Conversely, ARLC13 lysates, which possessed no toxin were not able to induce lysis when 

comparable amounts of total protein were used.  We attempted to use these strains to induce 

production of proinflammatory cytokines from VK2 cells.  However, we were unable to detect 

any significant differences between strains (data not shown).  We hypothesize that intracellular 

components of the bacteria were able to induce production of proinflammatory cytokines, 

given we used lysates of the bacteria.  Thus these constructs proved to be less useful than 

expected in addressing the role of this toxin in these epithelial cell responses.   

 

B.4 Discussion  

Lactococcus lactis is commonly used as a tool for studying the role of putative virulence factors 

in disease pathogenesis.  Our goal was to express inerolysin in a related lactic acid bacteria 

(LAB) to understand the role of this toxin in proinflammatory cytokine production and to shed 

light on the role of this putative virulence factor in the pathogenesis of bacterial vaginosis (BV) 

and BV associated preterm labor.  We were unable to detect expression in strains harboring the 

constitutive expression vectors pKS80 and pOri23.  With the use of the constitutive expression 

vector using the erythromycin promoter, we obtained protein which cross reacted with 

antibody raised to a related CDC, pneumolysin.  This cross-reactive protein however was not 

the expected size of INY (approximately 57kDa).  When tested in a hemolysis assay, these 
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proteins were not able to induce any significant lysis, indicating production of a truncated 

protein.  We hypothesize that constitutive expression may put undue stress on the cell, 

providing pressure for recombination of the introduced plasmid, resulting in a truncated non-

functional protein.  Alternatively, constitutive expression may lead to intracellular accumulation 

of toxin, which may then be subject to degradation by intracellular proteases.  This is often a 

problem, which led to the development of inducible vectors for expression, allowing for growth 

to high density followed by shorter periods of induction to prevent excessive intracellular 

accumulation[199].  Using the nisin inducible expression vector pNZ8148 we were able to 

express full length, functional INY in this LAB.  However, when we used these constructs to 

stimulate vaginal epithelial cells to address the role of INY in initiating proinflammatory 

cytokine signaling, we found that our empty vector control also induced the same level of 

signaling.  It is not clear why this was the case, but it is possible that some soluble factor 

present in the cytosol of L. lactis has proinflammatory effects.  To address this possibility, we 

attempted to create INY fused to the usp45 secretion signal.  Usp45 is the major secreted 

protein from L. lactis and this strategy has been widely used to target proteins for secretion.  

Unfortunately, our attempts to create this construct were unsuccessful.  Overall, while we were 

able to achieve heterologous expression of the toxin in a related LAB, this strategy proved to be 

of little use for studying the epithelial cell responses to INY.  
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Appendix C: Additional Figures for pH dependent Activity 

 

 

 

Figure C Additional figures for pH dependent activity 

 

 


