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ABSTRACT 

Large-scale functional connectivity in the human brain reveals fundamental mechanisms of 

cognitive, sensory and emotion processing in health and psychiatric disorders 

Spiro P. Pantazatos 

 

Functional connectivity networks that integrate remote areas of the brain as working functional 

units are thought to underlie fundamental mechanisms of perception and cognition, and have 

emerged as an active area of investigation.  However, traditional approaches of measuring 

functional connectivity are limited in that they rely on a priori specification of one or a few brain 

regions. Therefore, the development of data-driven and exploratory approaches that assess 

functional connectivity on a large-scale are required in order to further understand the functional 

network organization of these processes in both health and disease.  In this thesis project, I 

investigate the roles of functional connectivity in visual search (Chapter 2, (Pantazatos, 

Yanagihara et al., 2012)) and bistable perception (Chapter 3, (Karten et al., 2013)) using 

traditional functional connectivity approaches, and develop and apply new approaches to 

characterize the large-scale networks underlying the processing of supraliminal (Chapter 4, 

(Pantazatos et al., 2012a)) and subliminal (Chapter 5, (Pantazatos, Talati et al., 2012b)) 

emotional threat signals, speech and song processing in autism (Chapter 6, (Lai et al., 2012)), 

and face processing in social anxiety disorder (Chapter 7, (Pantazatos et al., 2013)). Finally, I 

complement the latter study with an investigation of structural morphological abnormalities in 

social anxiety disorder (Chapter 8, (Talati et al., 2013)).  Each of these chapters has been or is 

about to be published in peer reviewed journals and this thesis provides an overview of the entire 



 

 

body of investigation, based on advances in understanding the role of large-scale neural 

processes as fundamental organizational units that underlie behavior.  

In Chapter 2, Independent Components Analysis (ICA), Psychophysiological Interactions 

(PPI) and Dynamic Causal Modeling (DCM) analyses were used to investigate the hypothesis 

that expectation and attention-related interactions between ventral and medial prefrontal cortex 

and association visual cortex underlie visual search for an object.  Results extend previous 

models of visual search processes to include specific frontal-occipital neuronal interactions 

during a natural and complex search task. In Chapter 3, PPI analyses revealed percept-dependent 

changes in connectivity between visual cortex, frontoparietal attention and default mode 

networks during bistable image perception. These findings advance neural models of bistable 

perception by implicating the default mode and frontoparietal networks during image 

segmentation. 

 In Chapters 4 and 5, an exploratory approach based on multivariate pattern analysis of 

large-scale, condition-dependent functional connectivity was developed and applied in order to 

further understand the neural mechanisms of threat-related emotion processing. This approach 

was successful in extracting sufficient information to "brain-read" both unattended supraliminal 

(Chapter 4) and subliminal (Chapter 5) fear perception in healthy subjects. Informative features 

for supraliminal fear perception included functional connections between thalamus and superior 

temporal gyrus, angular gyrus and hippocampus, and fusiform and amygdala, while informative 

features for subliminal fear perception included middle temporal gyrus, cerebellum and angular 

gyrus.  

 In psychiatric disorders, large-scale functional connectivity is typically assessed during 

resting-state (i.e. no task or stimulus). However, disorder-dependent alterations in functional 



 

 

network architecture may be more or less prominent during a stimulus or task that is behaviorally 

relevant to the disorder, as is exemplified by enhanced long-range, frontal-posterior connectivity 

during song (vs. speech) perception in autism (Chapter 6). In the case of social anxiety disorder 

(SAD), pattern analysis of large-scale, functional connectivity during neutral face perception was 

sensitive enough to discriminate individual subjects with SAD from both healthy controls and 

panic disorder (Chapter 7). The most informative feature was functional connectivity between 

left hippocampus and left temporal pole, which was reduced in medication-free SAD subjects, 

and which increased following 8-weeks SSRI treatment, with greater increases correlating with 

greater decreases in symptom severity. This finding parallels results from observed 

neuroanatomical abnormalities in SAD, which include reduced grey matter volume in the 

temporal pole, in addition to increased grey matter volume in cerebellum and fusiform (Chapter 

8).  The above findings suggest promise for emerging functional connectivity and structural-

based neurobiomarkers for SAD diagnosis and treatment effects.   
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CHAPTER 1 
 

INTRODUCTION 
 

 The study of the brain and its relationship to behavior has historically been approached 

through the complementary perspectives of functional segregation and functional integration 

(Friston, 2009). Under the principle of segregation the specialized functional roles of individual 

brain regions have been described: for example motion sensitivity of lateral occipital cortex 

(Born and Bradley, 2005) and sensitivity of the fusiform face area in response to face perception 

(Spiridon et al., 2006). However it is clear that activity of these regions alone is not sufficient to 

generate the perception of motion or of a facial identity, but rather, interconnectivity among 

regions within and without visual cortex (i.e. functional integration) is necessary for percept 

generation. Due to the complexity of connectivity both on the micro- and macro-scale, the 

continued development of new tools, methods and approaches are required in order to adequately 

measure and describe functional integration. 

  Due to its high spatial resolution and minimal invasiveness, functional magnetic 

resonance imaging (fMRI) has become the most popular technology used to study both 

functional segregation and integration in the human brain. This technique acquires time-

dependent Blood Oxygen Level Dependent (BOLD) signal. The BOLD signal is an indirect 

measure of neural activity which recruits blood to local regions, and is thought to primarily 

reflect local field potentials, which consist of local processing of inputs in a given cortical area 

(Goense and Logothetis, 2008).  Typically, whole-brain BOLD signal at a resolution of about 3 

mm cubic voxels are acquired every 2 seconds (temporal frequency = 0.5 Hz), though the 

temporal and spatial resolution of fMRI BOLD imaging are continually improving (Ugurbil et 

al., 2013). 
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  The primary approach used to measure functional segregation based on fMRI BOLD is 

Statistical Parametric Mapping (Turner et al., 1998). This approach creates spatial maps of 

activity, giving probability estimates for activated brain regions in response to particular 

conditions or stimuli.  This approach is considered a 'mass univariate' approach in that many 

independent statistical tests for activation are conducted across ~100,000 voxels in the brain. The 

term 'univariate' means that the response of each voxel in relation to a stimulus model or 

regressor is assessed in isolation of all the other voxels.  This approach has been successful in 

identifying, for example, regions of the brain that are particularly sensitive to the perception of 

objects (Malach et al., 1995) and faces (Spiridon et al., 2006). However, this approach and 

related mass univariate approaches are insufficient in modeling and measuring interactions 

between one or more regions in the brain.    

  There have been a number of approaches developed to measure functional integration 

based on fMRI BOLD imaging data, and classically they have been categorized into two main 

types of approaches: functional (bidirectional) and effective (unidirectional) connectivity 

(Friston, 2002). Functional (and effective) connectivity can be generically defined as a statistical 

dependency between two or more brain regions, and many mainstream approaches have been 

developed to assess condition-dependent (i.e. related to psychological context or stimulus) 

functional connectivity (Friston et al., 1997; 2003). However, with currently existing approaches 

there remain some fundamental disadvantages, and there is still a need for whole-brain, 

exploratory approaches that capture condition-dependent functional connectivity.  By 

"exploratory", I mean the extent to which the approach can assess functional connectivity across 

the whole-brain as well as with high neuroanatomical resolution of the identified functional 

connections. By "condition-dependent", I mean the ability of the approach to identify and 
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estimate connectivity whose strength is modulated by psychological context or stimulus. In 

general there is a trade-off in that the more exploratory the approach, the less condition-

dependent, and vice versa. One contribution of my thesis work is the refinement and application 

of approaches that are both highly exploratory (i.e. large-scale functional connectivity across the 

whole-brain), yet also allow for the assessment of condition-dependent functional connectivity. 

Such an approach gives us insight into the large-scale functional network architecture of 

cognitive, emotional and sensory systems in both health and psychiatric disorders.   

 In the rest of this introduction, I will give a brief overview of some commonly used 

functional and effective connectivity approaches, and describe how they were applied in my 

thesis in order to understand fundamental neural mechanisms of cognitive-sensory processing 

(Chapters 2 and 3). I will then elucidate the advantages (and relative disadvantages) of these 

approaches in terms of two previously mentioned desirable dimensions: the extent to which the 

approach is 1) exploratory and 2) condition-dependent. I will also describe a new approach 

which was developed and applied as part of my thesis, based on multivariate pattern analysis of 

condition-dependent, large-scale functional connectivity. This approach is exploratory across the 

whole-brain while also allowing for the identification and assessment of condition-dependent 

functional connectivity.  I will also briefly introduce how this approach was used in furthering 

our understanding of emotion and sensory processing (Chapters 4 and 5) as well as in identifying 

putative functional connectivity-based biomarkers for psychiatric disorder (Chapter 7).  

Seed-based functional connectivity approaches  

  Seed-based analyses are semi-exploratory in that a whole-brain search is conducted to 

identify regions that exhibit significant functional connectivity with a "seed" region. Seed-based 

functional connectivity approaches are often applied to resting-state data (i.e. no task) to 
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characterize intrinsic network interactions of particular regions of interest. These approaches 

typically calculate functional connectivity using correlation coefficients (Stein et al., 2000) or 

regression (Di Martino et al., 2008) and identify significant differences in these measures across 

diagnostic groups (Qi et al., 2013). For example, this approach has been used to assess the 

resting state functional connectivity of striatum with the rest of the brain and differences in these 

connections in autism (Di Martino et al., 2011). However a primary disadvantage of resting 

fMRI it is limited to intrinsic connectivity (at best, assuming subjects are not ruminating or 

thinking about a specific topic which could influence the results). 

  Psychophysiological Interactions [PPI] analysis is a condition-dependent, seed-based 

functional connectivity approach that identifies brain regions whose functional connectivity with 

a “seed” region differs significantly between two or more conditions (Friston et al., 1997). This 

approach is based on a regression model, similar to a general linear model used for activation 

analyses, in which the primary regressor-of-interest represents the interaction between one or 

more psychological contexts (i.e. conditions) and the de-convolved BOLD signal of the "seed" 

region. This interaction regressor is constructed by convolving (multiplying) the seed region 

temporal profile with the vector of the psychological variable of interest (i.e. 1*Condition A + -

1*Condition B).  Regions whose time courses follow this regressor exhibit higher covariation 

with the seed region during Condition A relative to Condition B. Additional regressors are 

included to model out variation due to activation and intrinsic functional connectivity. See  

(O'Reilly et al., 2012) for a tutorial that provides a more comprehensive, conceptual explanation 

of how PPI works.  

  For example, PPI analyses have been used to examine functional connectivity during 

fearful facial emotion processing (Banks et al., 2007; Das et al., 2005), usually using amygdala 
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as the "seed" region, and anomalies in such condition-dependent functional connectivity in 

psychiatric disorders have been described (Monk et al., 2008; Ohrmann et al., 2010; Prater et al., 

2012). In my thesis work, PPI analysis was used to identify visual association regions that 

exhibit greater functional connectivity with ventromedial prefrontal cortex, a region implicated 

in expectation and visual imagery, during visual search for an object (Chapter 2, (Pantazatos, 

Yanagihara et al., 2012)). Results extend previous models of visual search processes to include 

specific frontal-occipital neuronal interactions during a natural and complex search task. This 

approach was also used as part of my thesis to show differential functional coupling between 

visual cortex and frontoparietal and default mode networks during bistable image perception 

(Chapter 3, (Karten et al., 2013)). These findings advance neural models of bistable perception 

by implicating the default mode and frontoparietal networks during image segmentation. Another 

seed-based approach, Granger Causality Mapping (GCM), allows mapping of effective 

connectivity, or the identification of regions that are sources or targets of directed influence from 

the seed-region (Roebroeck et al., 2005). Despite the utility and popularity of seed-based 

approaches, particularly PPI, a primary disadvantage is they do not intrinsically assess functional 

interactions among three or more regions of the brain. This primarily owes to the fact that they 

are regression-based approaches and too many predictors (2 for each region) would render the 

model lacking in degrees of freedom.  

Network-modeling approaches  

 Network-modeling approaches allow for the assessment of intrinsic or condition-

dependent functional connectivity among three or more brain regions. These approaches have the 

additional advantage in that causal effects, particularly unidirectional, causal influences between 

brain regions that generated the data, can be directly modeled and assessed. The most commonly 
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used network-modeling approaches are those that measure effective connectivity, such as 

Dynamic Causal Modeling (DCM) (Friston et al., 2003) and Structural Equation Modeling 

(SEM) (Horwitz et al., 1999). Both approaches use model comparison frameworks in which 

inferences can be made about effective connectivity and modulation of this connectivity due to 

perceptual or cognitive condition, but they differ mainly in their generative models. For a 

comprehensive comparison of these approaches see (Penny et al., 2004). In my thesis, DCM was 

used to contribute evidence for bidirectional effective connectivity between object-sensitive 

visual association cortex and ventromedial prefontal cortex (Chapter 2, (Pantazatos, Yanagihara 

et al., 2012)). For tutorials and guides on practical application of DCM and SEM respectively see 

(Stephan et al., 2010) and (https://sites.google.com/site/fmrisem/). Due to the computational 

complexity entailed in estimating effective connectivity parameters and model comparison, these 

approaches generally only assess connections among only several (2-8) regions, which must be 

specified a priori. Hence, these are considered hypothesis-driven, as opposed to more 

exploratory, data-driven approaches. Condition-dependent, network-modeling approaches that 

use correlation-based measures among many more regions (~40) have also been applied (Dodel 

et al., 2005), but the ability to assess connectivity across the whole-brain when using univariate 

statistical inference procedures are hampered by the multiple comparisons problem (described 

more in the last section).  

Matrix decomposition approaches  

   Matrix decomposition approaches are data-driven and model-free analyses that 

decompose the fMRI data matrix into a sparse set of linearly orthogonal or uncorrelated spatial 

components. A commonly used exemplar of this approach is Independent components analysis 

(ICA), which is used to identify groups of spatially distributed yet synchronized regions (i.e. 
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spatial independent components, or IC) and their associated temporal profiles (Calhoun et al., 

2001). ICA assumes that signal sources (i.e. independent components, or ICs) consist of 

distributed brain regions that are largely spatially independent (i.e. functional modularity) and 

add linearly (McKeown and Sejnowski, 1998). Although it is model free, temporal profiles of 

ICs can be regressed against a temporal model in order to sort ICs according to task-relatedness. 

In my thesis, this approach was used to identify groups of synchronized regions involved during 

visual search (Chapter 2, (Pantazatos, Yanagihara et al., 2012)).  Related approaches, such as 

Partial Least Squares (PLS) (Krishnan et al., 2011) and Ordinal Trends analysis (OrT) (Habeck 

et al., 2005), directly incorporate between-group and within-subject variation in order to identify 

synchronized regions that exhibit sustained activity across subjects and experimental conditions, 

respectively. For example, OrT is particularly useful in identifying distributed networks that 

covary with increasing task difficulty in tasks such as verbal working memory and visuo-motor 

learning (Habeck et al., 2005). In this sense, these approaches are more "condition-dependent" 

than ICA. Another approach combines matrix decomposition with network modeling: a first step 

uses matrix decomposition to identify a set of modules (i.e. groups of synchronized brain 

regions), and in the second step functional or effective connectivity between these modules as a 

function of task or group is assessed. An example of this approach is the demonstration of 

increased correlation between frontoparietal networks and default mode network during 

internally (vs. externally) oriented attention tasks (Spreng, 2012). Despite the utility of treating 

the brain as a set of functional modules consisting of spatially distributed regions, a main 

disadvantage is these approaches are limited in anatomical resolution (i.e. they identify groups of 

synchronized regions related to a task, as opposed to function connectivity between distinct pairs 
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of brain regions). Thus they are less sensitive in detecting functional connectivity differences 

when those differences occur sparsely among pairs of discrete regions.  

Large-scale functional connectivity 

  Large-scale functional connectivity can be considered an extension of the above-

mentioned network modeling approaches. Here the goal is typically to characterize the complex 

network architecture (via graph theory, etc.) or global or local functional connectivity strengths 

on a whole-brain scale. Such approaches assess bidirectional functional connectivity (i.e. 

correlation, partial correlation, mutual information, coherence, etc.) among many hundreds of 

nodes distributed across the whole-brain. These nodes are either defined anatomically according 

to an atlas or evenly spaced across the brain, and/or defined based on some functional criteria 

(Craddock et al., 2012). The number of connections increase exponentially with increasing 

number of nodes (i.e. (n-1)*n/2), thus creating a multiple comparisons problem when using 

standard univariate statistical inference to identify condition-dependent connections. For 

example, 200 nodes have 19,900 connections among them, and with a typical alpha level of 0.05 

there would be about 1,000 expected false positives. Graph theoretic and related approaches are 

particularly suited to analyzing these data because they produce local (node-specific) or global 

measures based on overall properties of the patterns of connectivity. For example, as part of my 

thesis average global Euclidean distance was used to demonstrate significantly increased long-

range functional connectivity during song vs. speech in autism (Chapter 6, (Lai et al., 2012)). 

This suggests that in autism, long-range, frontal-posterior functional connections are more 

effectively engaged for song than for speech, which may provide at least a partial 

neurobiological account for the observed effects of music therapy in autism.  

  To identify condition dependent functional connectivity and their neuroanatomical 
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substrates, one proposed solution is a "network-based statistic" which quantifies the probability 

of observed N linked nodes above a particular threshold used for each edge (Zalesky et al., 

2010). This is the equivalent of applying cluster-extent correction for activation mapping 

(Forman et al., 1995). However, inferences can only be made on groups of interconnected edges, 

not individual ones, and furthermore the size of each group of interconnected nodes varies as a 

function of threshold. In addition, there is a substantial loss of information when conducting 

univariate statistical inference on functional connections averaged over a group of subjects and 

discounting the multivariate, joint responses among many functional connections.  

 

Information mapping of condition-dependent, large-scale functional connectivity  

 An alternative approach to univariate statistical mapping is "information mapping" 

(Kriegeskorte et al., 2006). Rather than identify brain regions (or functional connections) whose 

average activity changes across experimental conditions or subject group, this approach asks 

"where in the brain does the activity (or functional connectivity) pattern contain information 

about the experimental condition or subject group?"  This approach has the advantage that it 

avoids the multiple comparisons problem, and it also take into account the joint multivariate 

responses among any functional connections. At the same time, this approach is more directly 

applicable to translational neuroscience in that predictions about individual subjects (i.e. 

diagnosis, treatment outcome etc.) can readily be made using the same statistical framework. 

 Due to the above reason, there is great interest in the application of multivariate pattern 

analysis approaches to large-scale functional connectivity (Turk-Browne, 2013). These measures 

are typically derived from resting-state data and used to predict disease state (Craddock et al., 

2009).  However there are several limitations when using this approach with resting-state data: 1) 



 

10 
 

it cannot be used to understand the large-scale network architecture underlying various cognitive 

processes and 2) it does not take advantage of task-based paradigms that employ a probe or 

condition that is relevant to a particular psychiatric disorder.  In my thesis work, an approach that 

combines and leverages the advantages of large-scale functional connectivity, task-based fMRI, 

and multivariate pattern analysis (i.e. information mapping applied to condition-dependent, 

large-scale functional connectivity) was developed and applied. This approach is exploratory in 

that it can identify condition-dependent functional connectivity among many hundred nodes 

across the whole-brain. A visual comparison of this approach with other functional connectivity 

approaches is presented in Appendix Figure 1, in which methods are heuristically plotted along 

two dimensions: 1) exploratory ability of the approach and 2) ability to estimate condition-

dependent functional connectivity.  

  A primary hypothesis of the approach is that pair-wise correlations, from time-series 

which are segmented and concatenated from different block conditions, could be used to reliably 

decode the stimulus that was presented during each block. Information mapping (i.e. 

identification of informative, condition-dependent, large-scale functional connectivity) was 

applied to reveal novel insights into the neural mechanisms of sensory-emotional processing of 

supraliminal and subliminal threat-related face perception within healthy individuals (Chapter 4 

(Pantazatos et al., 2012a) and Chapter 5 (Pantazatos, Talati et al., 2012b)). Functional 

connections that discriminated supraliminal fearful from neutral faces included amygdala, 

fusiform, thalamus, superior temporal sulcus, superior occipital cortex, hippocampus, angular 

gyrus, and cerebellum, whereas functional connections that discriminated subliminal fear from 

neutral faces included middle temporal gyrus, angular gyrus, cerebellum, superior frontal gyrus, 

and amygdala. This approach also identified putative functional connectivity- based biomarkers 
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for social anxiety disorder, which is known to exhibit anomalies in these processes (Chapter 7, 

(Pantazatos et al., 2013)). The most informative feature that discriminated social anxiety was 

reduced left-temporal pole and left-hippocampus functional connectivity. This finding mirrors 

observed structural abnormalities in the temporal pole (Chapter 8, (Talati et al., 2013)). In 

summary, these findings indicate that whole-brain patterns of interactivity are a sensitive and 

informative signature of supraliminal and subliminal fear perceptual states in health and disease. 

 

Summary 

  In summary of my thesis work, traditional condition-dependent, functional connectivity 

approaches were used to extend previous models of visual search through the characterization of 

frontal-occipital interactions related to object-category selectivity, expectation and attention 

during a natural and complex search task (Chapter 2, (Pantazatos, Yanagihara et al., 2012)). 

These approaches were also used  to reveal percept-dependent changes in connectivity between 

visual cortex, frontoparietal attention and default mode networks during bistable image 

perception and advance neural models of image segmentation by implicating the default mode 

and frontoparietal networks (Chapter 3, (Karten et al., 2013)). New, exploratory approaches 

based on multivariate analysis of large-scale, condition-dependent functional connectivity were 

also refined and applied in order to further understand the functional network architecture of 

supraliminal (Chapter 4, (Pantazatos et al., 2012a)) and subliminal (Chapter 5, (Pantazatos, 

Talati et al., 2012b)) threat-related emotion processing. Condition-dependent, large-scale 

functional connectivity was also used to demonstrate enhanced long-range, frontal-posterior 

connectivity during song (vs. speech) perception in autism, suggesting a putative neurobiological 

account for the observed effects of music therapy in autism (Chapter 6, (Lai et al., 2012)). 
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Multivariate pattern analysis of large-scale, condition-dependent functional connectivity was also 

able to identify putative functional connectivity-based biomarkers for social anxiety disorder, 

which include reduced left-temporal pole and left-hippocampus functional connectivity (Chapter 

7, (Pantazatos et al., 2013)). This finding mirrors structural abnormalities in the temporal pole in 

social anxiety disorder, identified using voxel-based morphology analysis of structural MRI data 

(Chapter 8, (Talati et al., 2013)). In summary, the contributions of this thesis comprise advances 

in computational methods that reveal integrative processes in the human brain that underlie 

sensory, cognitive and emotion functions in both health and disease. 
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CHAPTER 2 
 

FRONTAL-OCCIPITAL CONNECTIVITY DURING VISUAL SEARCH1 

Summary 

Although expectation and attention-related interactions between ventral and medial prefrontal 

cortex and stimulus category-selective visual regions have been identified during visual detection 

and discrimination, it is not known if similar neural mechanisms apply to other tasks such as 

visual search.  The current work tested the hypothesis that high-level frontal regions, previously 

implicated in expectation and visual imagery of object categories, interact with visual regions 

associated with object recognition during visual search.  Using fMRI, subjects searched for a 

specific object that varied in size and location within a complex natural scene.  A model-free, 

spatial-Independent Component Analysis (ICA) isolated multiple task-related components, one 

of which included visual cortex, as well as a cluster within ventromedial prefrontal cortex 

(vmPFC), consistent with the engagement of both top-down and bottom-up processes. Analyses 

of PsychoPhysiological Interactions (PPI) showed increased functional connectivity between 

vmPFC and object-sensitive lateral occipital cortex (LOC), and results from dynamic causal 

modeling (DCM) and Bayesian Model Selection suggested bidirectional connections between 

vmPFC and LOC that were positively modulated by the task.  Using image-guided diffusion-

tensor imaging (DTI), functionally seeded, probabilistic white matter tracts between vmPFC and 

LOC, which presumably underlie this effective inter-connectivity, were also observed. These 

connectivity findings extend previous models of visual search processes to include specific 

frontal-occipital neuronal interactions during a natural and complex search task. 
                                                 
1 Pantazatos, Spiro P, Ted K Yanagihara, Xian Zhang, Thomas Meitzler, and Joy Hirsch. 2012. Frontal-occipital 

connectivity during visual search. Brain Connect. 
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Introduction 

 Recent studies suggest that in naturalistic situations, when precise visual characteristics 

of target objects are not known in advance, preparatory activity at higher levels of the visual 

hierarchy, such as stimulus category-responsive visual regions, selectively mediate visual search 

(Peelen and Kastner, 2011).  Mounting evidence also indicates that prefrontal regions are 

involved in the anticipation and expectation of abstract visual features such as visual stimulus 

categories (i.e. face, house, object) (Fenske et al., 2006a; Peelen and Kastner, 2011; Summerfield 

et al., 2006), and that these regions may constitute a top-down source of preparatory activity 

observed in visual cortex (Peelen and Kastner, 2011). Indeed, functional interactions between 

regions in the ventral and medial prefrontal cortex (vPFC and mPFC) and stimulus-category 

responsive regions (i.e. ‘face’, ‘object’ and ‘house’ areas) in temporo-occipital areas have been 

described for visual imagery tasks (Mechelli et al., 2004) and during face and object 

discrimination tasks (Bar, 2003; Summerfield et al., 2006).  In contrast to relatively non-content-

selective parietal-visual interactions, frontal-visual interactions are thought to reflect stimulus 

category-specific attentional mechanisms during visual imagery and perception (Gazzaley et al., 

2007; Mechelli et al., 2004). 

The characterization of frontal-visual interactions during naturally occurring visual tasks 

i.e. sustained searching for an object embedded within a complex scene, as well as the 

quantification and characterization of structural connections that underlie these functional 

interactions, remain an active research goal.  Here we hypothesized that during natural visual 

search, when only the target object category is known in advance, frontal regions interact with 
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stimulus category-responsive visual areas, and that structural and functional pathways between 

these regions could be demonstrated.  

 In the current study, subjects were instructed to indicate the presence and location of a 

specific object that varied in size and location in a complex natural visual scene.  A model-free 

multivariate analysis (spatial-ICA) was applied to the functional imaging data to identify 

spatially distributed and synchronized regions engaged during this complex visual search task. 

We first conducted an ICA (rather than a standard GLM) analysis for three reasons: 1) we aimed 

to identify groups of synchronized, or “functionally connected” regions, and of particular interest 

were visual and frontal regions within the ventral and medial prefrontal cortex, (vmPFC); 2) ICA 

avoids imposing apriori models and assumptions to the data, which was particularly important 

given that we used a complex and relatively natural and ecologically valid task; and 3) while 

vmPFC is part of the Default Mode Network (DMN), which is typically deactivated during tasks 

requiring attention, a component of vmPFC activity that is synchronized with positive visual 

activity during search should be isolated by ICA.  

 Independent components (IC) were sorted according to their temporal profiles in order to 

isolate functionally meaningful brain areas related to the visual search task.  The highest task-

related spatial component included dorsal and ventral visual areas as well as ventral medial 

prefrontal cortex (vmPFC).  Based on previous findings suggesting a role for vmPFC in stimulus 

object-category expectation and imagery during object discrimination and detection and 

concomitant interactions with visual association areas in a stimulus selective manner (Bar, 2003; 

Mechelli et al., 2004; Summerfield et al., 2006), we hypothesized that vmPFC also interacts with 

object/feature-sensitive visual regions during visual search.  Finally, we employed DTI to test the 

hypothesized structural connectivity between activated regions in vmPFC and LOC using 
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probabilistic tractography in a sample of 108 additional subjects that were not participants in the 

functional study. We focused on LOC, since it is known be highly specialized to visual objects 

(Amedi et al., 2001; Grill-Spector et al., 2001; Ishai et al., 2000; Spiridon et al., 2006) and also 

because it has been shown to be responsive to the anticipation of search for an object, even in the 

absence of visual input, and predicted performance during subsequent detection (Peelen and 

Kastner, 2011). 

 Here we show that 1) vmPFC is involved in visual processing during search for an object 

embedded within a complex scene 2) there is increased functional connectivity and bi-

directional, positive effective connectivity between vmPFC and object-sensitive LOC during the 

task and 3) there exist white matter tracts between these interacting regions.  These findings 

provide evidence of structural and functional paths underlying task-related functional 

interactions between vmPFC and object-sensitive regions (LOC) during visual search.   

Methods 

Subjects. 15 (5 female) healthy volunteers (mean age = 31, SD = 10, 13/15 right handed) with 

normal or corrected-to-normal vision participated in the search study, and 108 subjects (mean 

age=30.8, SD=11.3) participated in the DTI-only study, in accordance with institutional 

guidelines for research with human subjects.  Recruitment, evaluations and scans were all 

performed at Columbia University Medical Center in the fMRI Research Center. 

 

Experimental paradigms and procedure. Stimuli were presented in Visual Basic and displayed 

on a back-projection screen that was viewed by the subjects via a mirror attached to the scanner 

head-coil.  The visual search trials (26 per run) were presented within a slow event-related (non-

jittered) design with 20 seconds, or 10 TRs, between the onsets of each trial. Each trial consisted 
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of a stimulus presentation lasting 10 seconds, with 10 seconds of rest between end of one trial 

and the beginning of the next.  Within each rest epoch, 2 seconds of static noise was presented 

(to erase iconic memory) followed by 8 seconds of a black, blank field.  Total run time was 9 

minutes, 12 seconds.  Each trial consisted of presentation of 1 of 8 types of pictures: 1 which 

contained no target, and 7 which contained the target (an object resembling a 2.5 ton truck that 

was not camouflaged) at one of 7 different sizes, calibrated by distance from the viewer (600, 

700, 1100, 1300, 1700 and 2800 meters).  Each picture consisted of the same background (i.e. 

photo of a cluttered landscape). The location of the target also varied so that it appeared pseudo-

randomly in one of 9 areas of the picture (left, middle, right and lower, middle, and upper 

sections of the scene).  Each target location was presented 3 times in each run, and the no-target 

trial was presented 5 times.  Stimuli were presented in random order.  Subjects were instructed to 

decide whether a target was present in the image: if “no” they would click on ‘next’, and if “yes” 

they would click on the location of the target with a trackball (using the right hand).  The task is 

summarized in Figure 1. The response time and the decision type (correct positive (hits: +C), 

incorrect positive (false alarm: +F, no target was present or a wrong location was clicked in the 

image), correct negative (correct reject: -C), and incorrect negative (-F: miss, a false ‘no’) was 

recorded. Although eye movements were not measured, subjects were given instructions to scan 
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the scene while maintaining a stable head position. Figure

 

Figure 1. Chapter 2: Visual search task. Subjects were instructed to indicate whether a target was present in the 

image: if “no” they would click on ‘next’ in the bottom right corner of the image, and if “yes” they would click on 

the location of the target with a trackball (using the right hand).  Each epoch consisted of the presentation of a 

picture, which either contained no target, or a target that varied in size and location within the scene (see methods). 

Each picture consisted of the same background, as shown in the top left panel. 

Image acquisition. All functional images were acquired with a GE Twin-Speed 1.5T scanner, 

with T2*-weighted EPI sequence of 24 contiguous interleaved axial slices [TR=2000, TE=38 

ms, field of view (FOV) = 192 mm, array size = 64x64”] of 4.5 mm thickness and 3x3 mm in-

plane resolution, providing whole-brain coverage. High-resolution anatomical scans were 

acquired with a T1-weighted SPGR sequence (TR = 19 ms, TE = 5 ms, flip angle = 20�, FoV = 

220x220 mm), recording 124 slices at a slice thickness of 1.5 mm and in-plane resolution of 0.86 

x 0.86 mm.  
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 DTI images were acquired on the same scanner using an 8 channel sense head coil with a 

single-shot sequence of 55 unique diffusion directions at a b-value = 900 with TE=7.8ms and 

TR=17000ms. A single volume (b-value = 0) was acquired and used as a reference to correct for 

eddy currents and head motion  (Jenkinson and Smith, 2001).  Isotropic (2.5 mm3 voxels) 

diffusion-weighted data were acquired for all subjects except S5, whose voxels had an in-plane 

resolution of 1.25 x 1.25 mm and slice thickness of 2.5 mm. Array size was 128x128 in a FOV 

of 32x32mm. A total of 58 slices were acquired and the total scan time was 16 minutes and 32 

seconds.  

 DTI scans from 108 total healthy volunteers which were acquired and archived in our lab 

were included in the structural connectivity portion of this study that examined pathways 

between vmPFC and bilateral LOC. 

 

Image analysis: Pre-processing was done in SPM2 

(http://www.fil.ion.ucl.ac.uk/spm/software/spm2), while 1st and 2nd-level GLM, functional 

connectivity (PPI) and effective connectivity analyses were done in SPM8 

(http://www.fil.ion.ucl.ac.uk/spm/software/spm8).  Prior to preprocessing, the first 12 volumes 

were discarded.  Functional data were slice-time corrected, spatially realigned to the first volume 

of the first run, and spatially normalized to the MNI template brain (re-sampled voxel size: 2 

mm3).  These normalized functional images were spatially smoothed with an 8 mm3 kernel.  

 

Spatial-ICA:  Group spatial-ICA was implemented with the GIFT toolbox v1.3d (Calhoun et al. 

2001).  Spatial-ICA assumes that signal sources (i.e. independent components, or ICs) consist of 

spatially distributed brain regions that are largely spatially independent (i.e. functional 
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modularity) and add linearly (McKeown and Sejnowski, 1998). Thus, at each voxel in the brain, 

the BOLD response is decomposed into a sum of sources (time courses of the ICs), each 

weighted by a different value particular to that voxel. Group ICA is implemented by 

concatenating the subjects’ (spatially normalized) time series together so that the resulting spatial 

ICs are the same across all subjects (but the temporal profiles may vary from subject to subject).  

For each IC, statistical inference is then conducted on the loadings across all subjects at voxel. 

For more details please see (Calhoun et al., 2001). The minimum description length (MDL) 

criteria (Li et al., 2007) was used to estimate the number of informative ICs (25). Briefly, this 

approach employs a subsampling scheme to obtain a set of effectively independent and 

identically distributed samples from the dependent data samples and apply the information-

theoretic criteria formulas to the this set to estimate the number of informative components. The 

Infomax algorithm (default in GIFT) was used to conduct the ICA. ICA is model free and allows 

for variations in the shape of the HRF (temporal profile) of each spatial IC from subject to 

subject.  We sorted resulting spatial ICs by regressing their temporal profiles with a reference 

function created by convolving task onsets with the canonical HRF, and ranking the obtained R2 

values in descending order (Table 1). The reference function included onsets for all trials, as our 

main goal was to identify ICs that contained visual activity, which presumably would be high on 

every trial. This reference function served primarily as a temporal “proxy” for the activation due 

to the task in order to identify ICs that were search-related. While the rank order of ICs might be 

affected by the use of a different reference function, the overall set of identified task-related ICs 

is unlikely to differ.  The main goal of sorting was to aid in identifying a task-related IC that 

contained visual cortex as well as regions in ventral and medial prefrontal cortex.   Group 

statistics were also performed whereby beta values obtained from this regression (done 
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separately for each subject without concatenation) for each spatial component were averaged 

over each subject and tested for significance from zero (one-sample t-test). 

ICs that were significantly correlated (or anti-correlated) with the reference function and 

surviving a threshold at p <= 0.0001 (for the one-sample t-test of beta weights over all subjects) 

are listed in Table 1. There were an additional 9 ICs that were correlated or anti-correlated with 

the task surviving a threshold of p < 0.05, three of which were, on average across all subjects, 

positively correlated.  Visual inspection of these ICs, however, revealed they included “non-

physiological” spatial patterns indicative of motion artifact coinciding with the task. 

 

Table 1. Chapter 2: Temporal sorting using regression and group statistics of resulting beta 
values. 

Component  R2  Mean beta  Std  T-value  P value  
20  0.42  2.27  1.2  7.26  4.2e-06  
17  0.34  1.62  1.09  5.74  5.1e-05  
6  0.31  1.47  1.30  4.41  0.0006  
25  0.28  -0.52  0.41  -4.86  0.0003  
23  0.16  -0.88  0.63  -5.34  0.0001  
Note: P‐values are from one‐sample t‐tests testing for significance from zero. 

 

General Linear Model (GLM) analysis: Two GLM models were estimated: a single-condition 

GLM for defining DCM inputs, which consisted of all 26 search trials and a three-condition 

GLM, where trials were categorized according to response type.  For the latter, “negative 

responses” (Misses and correction rejections; trials in which subjects responded that there was 

not a target), “positive responses” (Hits and False Alarms (FA); trials in which subjects 

responded that there was a target, and “no responses” (trials that timed-out before the subject 

responded) were modeled separately.  First-level regressors were created by convolving the 

onsets of each trial with the canonical hemodynamic response function (HRF), and the duration 
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of each trial was set equal to the reaction time.  The following contrast - “positive response” > 

“negative response” trials - was then submitted to 2nd-level RFX analyses (one-sample t-test) to 

identify visual activity associated with perception of the target.  For this contrast only subjects 

that exhibited 3 or more instances of each trial type were included in the group analysis (12 

subjects). 

 

PsychoPhysiological Interaction (PPI) analysis: The PPI analysis measures the extent to which 

regions are differentially correlated during a given task. Ventromedial prefrontal cortex 

(vmPFC), the primary seed-of-interest, was defined by each subject’s maximum loading factor 

onto IC20 (a highly task correlated IC that contained visual activity).  An additional seed 

included precentral gyrus/dlPFC, which was defined by its peak MNI coordinates in IC20, [62, 0, 

40]. Activity was extracted from 6 mm spheres centered at the above coordinate locations. The 

BOLD signal throughout the whole-brain was then regressed on a voxel-wise basis against the 

product of this time course and the vector of the psychological variable of interest, (1*Search 

condition + -1*Non-search condition), with the physiological and the psychological variables 

serving as regressors of no interest (“non-search condition” was defined as the period 

encompassing the end of one trial to the beginning of the next). Resulting beta maps were 

subsequently passed to 2nd level random effects analysis (one sample t-test as well as multiple 

regression with subjects’ accuracy scores). For whole-brain cluster-extent correction, an 

uncorrected p-value of 0.005 was used and contiguous clusters of size 147 or more were deemed 

significant at p<0.05, corrected. This number was determined by 2000 Monte Carlo simulations 

of whole-brain fMRI data with respective data parameters of the present study according to the 

approach as implemented in AFNI 3dClustSim (Cox, 1996). 
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Effective connectivity: Effective connectivity analyses were carried out using DCM as 

implemented in SPM8 (http://www.fil.ion.ucl.ac.uk/spm/software/spm8) (Friston et al., 2003).  

Predictions about the observed data consist of the combination of driving inputs, intrinsic 

connection activity and bilinear modulation, which reflects the effects of experimental variables. 

In this case the search task served as both the driving input (on individual regions) and 

modulatory input (on connections between regions). These effects are modeled by the following 

equation: 

dz1/dt=(A+umB)z2+Cui 

in which dz1/dt is the state vector per unit time for the target region and z2 corresponds to time 

series data from the source region. ui indicates the direct input to the model while um indicates 

input from the modulatory variable onto intrinsic pathways specified by the model.  Activity in 

the target region is therefore determined by an additive effect of the intrinsic connectivity with 

the source region (Az2), the bilinear variable (umBz2, corresponding to the modulatory 

experimental manipulation), and the effects of direct input into the model (Cui). 

 A single-condition GLM analysis was conducted (see GLM analysis section) in order to 

extract time series data from the ROIs. The MNI coordinates of vmPFC activity were the same 

as those used for PPI analysis (see above). An LOC mask of coordinates containing > 40% 

probability of the label “lateral occipital cortex, inferior division” was defined using the Harvard-

Oxford atlas. Individual subject’s MNI coordinates that fell within this mask were specified 

according to highest T-values from the ”positive response” > “negative response” (Hits + FA > 

Misses + Correct rejects) contrast from the 3-condition GLM analysis described above (see 
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Table 3).  For each ROI, time series data were extracted from a 6 mm diameter sphere around 

each coordinate and were adjusted for effects of interest.   

 

Model Comparison and Selection: We estimated and compared a set of DCM models that 

included connections between vmPFC and LOC.  Within this set, model parameters were 

systematically varied with respect to task effects on regions and connections, with the primary 

goal of determining whether a model that included task-modulated connections between vmPFC 

and visual cortex was the most likely.  Multiple DCM models were evaluated separately for each 

subject, and random-effects Bayesian model selection (RFX BMS) as implemented in SPM8 was 

used to identify the optimal model that explained the data. RFX BMS accounts for heterogeneity 

of model structure across subjects and yields exceedance probabilities, which is the probability 

that one model is more likely than any other model, given the group data (Stephan et al., 2010).  

For each connectivity parameter from the optimal model, significance was assessed using a one 

sample t-test over all subjects. Unless otherwise indicated, there were 14 degrees of freedom for 

all reported t-values (including those from GLM and ICA analyses).  

 

Tractography analysis: DTI analyses were completed using the FMRIB's software library 

diffusion toolbox (http://www.fmrib.ox.ac.uk/fsl/) (Smith et al., 2004).  As described previously  

(Behrens et al., 2003), a probability of connectivity map was generated for regions of interest.  

Briefly, in native diffusion space, the principal diffusion direction (PDD) of non-isotropic water 

movement was modeled as a tensor for each voxel in the brain (Behrens et al., 2003). Complex 

fiber structure (i.e. crossing or diverging fibers) increases the uncertainty of the PDD estimate.  

Bayesian statistics were used to generate probability density functions (pdfs) of PDD uncertainty 
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allowing for the detection of non-dominant fiber pathways (Behrens et al., 2007).  From these 

pdfs, 5000 tract-following samples were taken with a maximum curvature threshold of +/- 80 

degrees and the exclusion of pathways that returned onto themselves.   

 DTI probabilistic fiber tracking was performed in individual diffusion space, and 

resulting tracks were then normalized to MNI standard space for visualization purposes. FLIRT 

(FMRIB's Linear Image Registration Tool) was used to transfer ROIs (and estimated fiber 

tracks) between subject and standard spaces.  Spatially normalized paths were added across all 

subjects, generating a group representation of individual pathways.  A positive (blue) value at 

each voxel means 50% or more subjects contained at least one streamline (waypoint) passing 

through that voxel (Fig 5).  Note that the group image does not correspond to a map of 

probabilistic connectivity from the seed to the waypoints mask as presented for individual 

subjects, but instead represents the importance of each voxel to this pathway with respect to all 

subjects.   

 

Definition of ROIs: For DTI tractography on 108 subjects (who did not participate in the task), 

the seed ROI for vmPFC was defined as a 12 mm radius sphere about the peak MNI coordinate 

for vmPFC [0 62 -4] from the group t-map in IC20 (see Table 2). Bilateral target LOC masks for 

DTI were defined using 12 mm radius spheres about the peak MNI coordinates from the contrast 

used to identify object-sensitive LOC in the 15 subjects who had performed the task (left: [--46 -

70 -4], right: [46 -68 -10]). 

 

 

 



 

26 
 

Table 2. Chapter 2: Frontal-occipital Independent Component IC20 (t > 2.25, cluster size > 50)  

Region  L/R  BA  X Y Z  Cluster size t
      (k)  values 
Visual cortex    L & R  7, 17, 18, 19 20, 31, 36, 37, -30 -90 8  19,599  24.81 
                                                 39, 40       
vmPFC  L & R  10, 11  0 62 -4  96  4.49 
 L   -4  58  -14   3.82  
LGN  L   -20 -32 -4  115  5.58  
Middle temporal  R  21, 22, 41  54  -24 0  106  3.98  
gyrus       
Precentral gyrus    R     6, 8  62  0  40  576  4.34  
   L     4, 6  -46 -4  52  650  5.78  
Superior parietal       
lobe          L      7  -22 -68 62  416  4.89  
 

 For PPI and effective connectivity (DCM) analyses, vmPFC was defined using individual 

peak coordinates from each individual’s IC20 (μ = [-1.6 56.1 -8.4], stdev = [3.6 5.1 4.1]). For 

DCM analyses, bilateral LOC was defined for each subject using the coordinate with the 

maximum T-value from the contrast “positive response” > “negative response” (see GLM 

analyses section) within the same LOC mask used for DTI analyses above.  Table 3 summarizes 

the ROI definition strategies used for all the analyses. 
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Table 3. Chapter 2: Source of ROI definitions for PPI, DCM and DTI analyses. 

Analysis  ROI  Defined by:  Masked by:  Later-
ality  

Avg or peak MNI coords (and std)  

PPI vmPFC IC20 (subject 
specific) 

N/A N/A [µx, µy, µz]=[-1.6, 56.1, -8.4] [σx, σy, σz]=[3.6,  
5.1,  4.1] 

 LLOC GLM ROI 
analysis (subject 
specific)*  

LOC mask - 
HarvOx 40%  

L   [µx, µy, µz]=[-51.2, -68, -4.7] & [46.7,-70.5,-6.7] 
[σx, σy, σz]=[6.0, 4.1,5.5] & [5.8,9.6,8.8]    

 dlPFC/pre
central 
gyrus 

IC20 (group 
peak) 

N/A R Peak: [62 0 40], t=4.34 

DCM  vmPFC  Same as for PPI      
  LOC  Same as for PPI, 

but also on right 
 L & R  

DTI 
(group)  

vmPFC  12 mm radius 
sphere about 
peak from IC20 

N/A N/A  Peak: [0 62, -4], t=4.49.  

 LOC  12 mm radius 
sphere about 
peak from GLM 
ROI analysis 
(group average*) 

N/A  L & R Left peak: [-52 -70 -4], t=5.46** 
Right peak: [46 -68 -10], t=9.02 

*Contrast of “positive response” > “negative response” trials (Hits + FA > Misses + Correct 
Rejects) thresholded at p < 0.05 uncorrected, with cluster extent threshold of 30).  
N/A = Not applicable.   
** To ensure no voxels within ROIs lay outside the brain the center was shifted 3 voxels 
medially to [-46 -70 -4]  
 

Results  

Behavioral results: Overall group mean reaction time (RT) for the task was 6.5 sec (std=2.5) and 

mean accuracy ((hits+correct rejects)/total trials) was 62.1% (std=20.6).  While reaction time 

increased as target size decreased (reaction time vs. ranked target size, r= -0.77, p=0.02), there 

was not a significant correlation between accuracy and target size (accuracy vs. target size r=-

0.56, p=0.15). Average RT for “positive response” trials was 5.2 s (std=1.98), while average RT 

for “negative response” trials was 7.87 s (std=1.33).   
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A cluster within vmPFC is synchronized with primary and association visual areas during visual 

search: Temporal sorting of ICs derived by spatial-ICA and group statistics of beta values (Table 

1) revealed three highly task-related components (Fig2A): 1) IC20, which consisted of primary 

and association visual areas, LOC, parietal and middle temporal lobe, lateral geniculate nucleus 

(LGN), superior colliculus, prefrontal cortex and vmPFC, 2) IC17, which consisted of 

supplementary motor area (SMA), primary motor (M1), thalamus, anterior insula and cerebellum 

and 3) IC6, which consisted of posterior parietal, prefrontal, and LOC.  Two independent 

components were also significantly anti-correlated to the task: IC25 consisted of the putative 

‘default network’ (posterior cingulate, lateral parietal, and medial prefrontal cortex), and IC23 

consisted of lingual and parahippocampal gyrus.  In addition to the group T-maps of these five 

components (Fig2A), their associated time courses averaged over all subjects are shown in 

Figure 2B.  
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Figure 2. Chapter 2: Search-related spatial independent components. (A) Group t-maps of three ICs most highly 

correlated to the task (A, red) and the two most anti-correlated to the task (A, blue) and (B) their associated time-

courses averaged over all subjects. IC20 consisted of primary and association visual cortex, middle temporal gyrus 

(MTg) and ventromedial prefrontal cortex (vmPFC, white arrow).  IC6 consisted of intra-parietal sulcus and 

posterior parietal, prefrontal, and lateral occipital cortex.  IC17 consisted of SMA, M1, thalamus, cerebellum and 

lateral occipital cortex. IC23 consisted of the ‘default network’: posterior cingulate, lateral parietal, dorsal medial 

frontal cortex and vmPFC.  IC25 consisted of lingual and parahippocampal gyrus. All spatial maps were displayed at 
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t > 2.25, which at 14 d.f. (number of subjects – 1) corresponds to p=0.02 for a one-tailed t-test, and are in 

Neurological convention (Right=Right).  

 

 Given previous reports of ventral and medial prefrontal involvement in expectancy-

related visual discrimination tasks (Bar, 2003; Peelen and Kastner, 2011; Summerfield et al., 

2006), of particular interest was the appearance and inclusion of a cluster in vmPFC in the most 

highly task-correlated component (IC20, white arrow in Figure 2 and bold in Table 2), that also 

included bilateral primary and visual association areas.  This observation is consistent with the 

involvement of vmPFC in visual processing during the visual search task.  Based on previous 

reports that suggest vmPFC is a source of expectancy-related signals (or “predictive codes”) and 

interacts with stimulus-category responsive association visual cortex during the discrimination 

and perception of face and objects (Bar, 2003; Summerfield et al., 2006), we further tested 

whether our visual-related vmPFC cluster was functionally connected with object sensitive 

visual association-cortex during visual search. 

 

vmPFC and LOC are functionally connected during visual search: Based on previous findings 

that suggest ventral and medial PFC interact with stimulus-category specific visual regions 

during visual discrimination tasks (Bar, 2003; Summerfield et al., 2006), we hypothesized that 

vmPFC interacts with object-sensitive LOC during visual search. As there was no independent 

localizer task for these subjects, we used the contrast positive(Hits + FA) > negative (Misses and 

Correct Rejections) trials to define object-sensitive LOC for each subject (i.e. visual activity 

associated the subjective perception of an object).  Since vmPFC is not necessarily associated 

with the perception of objects, but rather the anticipation and expectation of target category 

features, which should occur on every trial, vmPFC could not be isolated in this same manner. 
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Instead we relied on ICA to identify the vmPFC cluster whose component was synchronized 

with visual activity during the task.  

 We conducted two separate and complementary analyses: 1) we identified which visual 

areas exhibited increased connectivity with vmPFC during search (described more below) and 2) 

we located object-sensitive regions in the current design by contrasting “positive response” (i.e. 

Hits + False Alarms) greater than “negative response” (i.e. Misses and correct rejection) trials to 

identify regions associated with the perception of the target.  We then examined the overlap 

within visual cortex of the above analyses. For 2) the only significant results in the entirety of 

visual and visual association cortex, even at a very loose threshold of p < 0.1, uncorrected was 

LOC (left peak at [-52 -70 -4], t=5.46, p < 0.001, k=83; right peak at [46 -68 -10], t=9.02, p < 

0.001, k=370).  This is consistent with previous evidence that LOC is highly sensitive to object-

perception (Grill-Spector et al., 2001; Ishai et al., 2000; Spiridon et al., 2006).  

To identify regions that were functionally connected with vmPFC during visual search 

we performed a PsychoPhysiological (PPI) Interaction analysis, an exploratory approach which 

identifies regions that are differentially coupled with a particular “seed” region during one 

conditions vs. another (i.e. searching vs. not-searching). We used each subject’s peak w (loading 

factor from IC20) nearest the vmPFC group peak [2 52 -14] to define the vmPFC coordinates.  

When the “seed” region was vmPFC, we observed clusters within LOC, but not elsewhere within 

visual cortex, that were more significantly more coupled with vmPFC during search condition  

(Figure 3A, circled red). Furthermore, these clusters overlapped regions that were associated 

with perception of the target in the task (i.e. object-sensitive LOC as defined by the contrast Hits 

+ FA > Misses + Correct Rejections, Figure 3A, circled blue). An ROI analysis (12 mm sphere 

about peak LOC coordinate in above contrast “Hits + FA > Misses + Correct Rejections”) 
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confirmed that object-sensitive left LOC was significantly more functionally connected with 

vmPFC during search (t=2.36, p = 0.02), while right LOC failed to reach significance (t=1.18, 

p=0.13).  Event-related averages for the above contrast also reveal that the effect of the 

perception of the target was stronger in the left LOC (relative to right LOC, Figure 3B).  The 

above results indicate that vmPFC is functionally connected with object-sensitive LOC during 

visual search. 

 

Figure 3. Chapter 2: Functional connectivity between vmPFC and LOC during visual search. (A) Visual regions 

responsive to the subjective perception of a target (Hits + False Alarms (FA) > Correct Rejections (CR) and Misses) 

are shown in blue, while visual regions exhibiting greater functional connectivity with vmPFC during visual search 
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are shown in red (circles indicate overlapping clusters in LOC). For visualization purposes, both statistical maps 

were threshold at t > 2.0. (B) Event-related averages (with 90% CI in shaded grey) for “positive responses” (Hits + 

FA, dashed lines) and “negative responses” (CR + Misses, solid lines) for left and right LOC.  

 

          To further test the relative specificity of the vmPFC-LOC connectivity during visual 

search, we also conducted the above analyses using another seed region that was also present in 

IC20 (precentral gyrus/prefrontal cortex, MNI: [62 0 40], Table 2).  For this analysis, no cluster 

within visual cortex survived even a loose threshold (p < 0.05 uncorrected, k=10), further 

suggesting that frontal-occipital connectivity during search is relatively specific to the vmPFC. 

Finally, when LLOC was used as a “seed” region, three clusters survived whole-brain cluster-

extent correction at p < 0.05 corrected (p < 0.005 uncorrected): medial PFC, peak MNI 

coordinate at [4, 60, 4], t=4.7, k=569, as well as a cluster in posterior cingulate and anterior 

middle temporal gyrus (data not shown). Taken together, the above results suggest that 

connectivity between vmPFC and object-sensitive LOC is preferentially engaged during visual 

search, and is consistent with the fact that LOC is involved in the anticipation of and search for 

an object (Peelen and Kastner, 2011). However, this connectivity did not correlate with 

performance across subjects (p=0.57), suggesting this connectivity reflects a neural process that 

is generally engaged during visual search but is not predictive of overall performance ability in 

the task. 

 

vmPFC and LOC are effectively connected during visual search: Psychophysiological 

Interactions (PPI) analyses, a voxel-wise regression approach, were used to test the engagement 

and relative specificity of vmPFC-LOC frontal-occipital connectivity during visual search. 
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However, PPI does not measure the directionality of interactions between regions. Therefore we 

also conducted Dynamic Causal Modeling (DCM) and Bayesian Model Selection (BMS) to infer 

the directionality of connectivity between vmPFC and LOC and to also provide additional 

evidence for the existence of effective connectivity between vmPFC (as defined by each 

subject’s IC20) and object-sensitive LOC (as defined above). Given the recently raised technical 

and theoretical issues regarding DCM and Bayesian Model selection (Lohmann et al., 2012), we 

present vmPFC-LOC and dlPFC-LOC DCM results primarily as supplementary and as additional 

confirmation of the above PPI results.  

Twenty-one simple DCMs that include vmPFC and bilateral LOC were defined (Fig 4A). 

The first set of 7 models included the full model (all regions and bidirectional connections 

modulated by the task) and subsequent variants where task inputs are successively removed from 

each region. Models 5, 6 and 7 contain no task-modulation of connectivity. The second and third 

sets of (7) models are structured the same as the first, except that in the first set (8-14) only top-

down connections are modeled, and in the second (15-21) only bottom-up connections are 

modeled. The primary aim of model specification and selection was to determine whether a 

model that included task-modulated connectivity between vmPFC and LOC was most optimal.  

Coordinates defining LOC for each subject were informed by the GLM analysis (“positive 

response” > “negative response” trials) restricted to left and right LOC masks (see methods, 

Table 3). 



 

35 
 

 

Figure 4. Chapter 2: Effective connectivity between vmPFC and LOC during visual search. (A) Twenty-one 

Dynamic Causal Models (DCM) that include vmPFC and bilateral LOC and their modulation during the visual 

search. Models were grouped into sets of 7 in which the 1st set contained bidirectional connections, the 2nd only 

top-down connections, and the 3rd only bottom up connections. Within each group of 7, models varied with respect 

to direct inputs and contained task-modulated connectivities (models 1-4), or connectivities that were not modulated 

by the task (models 5-7).  (B) Exceedance probabilities of each model produced by RFX BMS implemented in 

SPM8. Of these 21 models, model 3 was the most optimal (exceedance probability =0.99). (C) Task-induced 

connectivity parameters (maximum a posterior estimates, MAP) averaged over subjects are reported for model 3. 

(Note: correction for multiple comparisons was not applied since there were only four inferences on connection 
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parameters). (D) Data (blue) and model predictions (red) for Model 3 are shown for vmPFC and RLOC for a 

representative single subject (S11).  

 

 According to Bayesian model selection (BMS, see methods), the most optimal DCM 

included direct input of the task into vmPFC and bidirectional connections between vmPFC and 

bilateral LOC that were modulated by the task (exceedance probability = 0.99, Fig 3B and C).  

The mean exceedance probabilities over all models was 0.05, std=0.21, and the maximum was 

0.99.  For the optimal model (Model 3), task-induced effective connectivities in both directions 

between vmPFC and bilateral LOC were positive and significant across all subjects at the p < 

0.05 level (Fig 3D).   

 We further tested whether increased frontal effective connectivity with LOC was specific 

to the vmPFC, in order to help ensure that the estimation of significant connectivity parameters 

was not a product of relatively few parameters and regions included in our model.  For this we 

reran the above 21 DCMs for 200 iterations, in which vmPFC was replaced with a randomly 

selected coordinate in the dorsal prefrontal cortex (defined by the AAL masks Frontal_Sup_L, 

Frontal_Sup_R, Frontal_Sup_Medial_L, Frontal_Sup_Medial_R, Frontal_Mid_L and 

Frontal_Mid_R in the WFU_Pickatlas).  In this “null” distribution, model 3 was still the most 

optimal model, but the mean exceedance probability was only 0.56 (stdev=0.20, data not shown), 

while the maximum observed value was 0.96 (as stated above the exceedance probability with 

vmPFC was 0.99). The mean of the mean exceedance probabilities over all models was 0.05, 

std=0.13, and the maximum was 0.56.  For model 3, and for each of our 200 null iterations, we 

conducted one-sample t-tests overall all subjects and generated a null distribution of t-scores for 

each of four connectivity parameters (bidirectional connections between a frontal region and left 
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and right LOC).  The mean t-values of these four connectivity parameters fell between the range 

of t = -0.48 to t = 0.40. We ascribed nonparametric p-values (npp) to the t-values observed for 

each connectivity parameter when using vmPFC as a frontal node based on the observed 

frequency of greater t-values when using a random dorsal prefrontal region: vmPFC->lLOC, 

t=2.62, npp=0.02, vmPFC->rLOC,t=2.41, npp=0.04, lLOC->vmPFC, t=2.24, npp < 0.005, 

rLOC->vmPFC, t=1.65, npp=0.065. Taken together, the above results indicate that increase 

effective connectivity with the LOC was relatively specific to the vmPFC.  

    

Structural connectivity between vmPFC and LOC: Although strong effective and functional 

interactions may still occur without direct anatomical connectivity, it is assumed that anatomical 

connectivity data is important in guiding the construction of neurobiologically realistic models of 

effective connectivity (Stephan et al., 2010).  Therefore we also tested the extent of structural 

connectivity between vmPFC and LOC. It should be noted that DTI does not necessarily assess 

direct anatomical connectivity, and the observed structural paths may be polysynaptic. For DTI 

analyses, seed and target masks were created from 12 mm radius spheres about the peak 

coordinate for vmPFC from IC20 (table 2) and bilateral LOC as defined above (i.e from the 

contrast Hits+False Alarms > Misses and correct rejections, see table 3). Structural paths 

between vmPFC and left and right LOC for 108 subjects who did not complete the task are 

shown in Fig 5.  These findings confirm substantial white-matter connectivity between vmPFC 

and (particularly left) LOC. The DTI results are based on a large sample of subjects, most of 

which did not perform the task. Since only 6 of the subjects who actually performed the task also 

acquired DTI scans, association of the integrity of this and other tracts with performance and/or 

functional connectivity measures is not possible in this study. 
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Figure 5. Chapter 2: White matter paths between vmPFC and bilateral LOC. (A) White matter paths for 108 subjects 

that did not participate in the task.  The vmPFC ROI was defined by 12 mm radius sphere about the peak coordinate 

from the group IC20 t-map [0 62 4], and bilateral LOC was defined by 12 mm radius spheres about peak coordinates 

for object-sensitive LOC (left: [--46 -70 -4], right: [46 -68 -10], see table 3).  Paths were thresholded to show voxels 

in which 50% or more subjects exhibited at least one or more waypoints from vmPFC to LOC (the maximum 

streamlines in the left pathway was 42, while the right pathway was 3). Maps are in Radiological convention 

(right=left, and top left numbers in each panel indicate z MNI coordinate. 
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Discussion 

Here we show that 1) vmPFC is correlated with visual activity involved in search for an 

object embedded within a complex scene 2) there is bi-directional, positive functional and 

effective connectivity between vmPFC and LOC during the search task and 3) there exist white 

matter tracts between these interacting regions. These findings provide evidence of structural 

paths underlying task-related functional interactions between vmPFC and object-sensitive 

regions (LOC) during visual search.   

 A recent and related study  applied search-light and multivoxel pattern analysis to reveal 

that activity patterns within the medial prefrontal cortex (whose peak MNI coordinates – [2, 43, 

5] - were very close to ours, [0, 62, -4]) as well object-sensitive LOC showed a significant 

category-specific cue effect in anticipation of visual search for people or cars in subsequent 

briefly presented (100 ms) natural scenes (Peelen and Kastner, 2011).  The authors conclude that 

medial prefrontal cortex may constitute a top-down source of preparatory activity observed in 

object-sensitive LOC. Here we extend these findings with the demonstration of increased 

effective connectivity between these regions during extended visual search lasting approximately 

4-10 seconds.  

To the authors’ knowledge, this study is the first to characterize functionally-seeded, 

probabilistic white-matter paths between vmPFC and object-sensitive LOC. We propose that 

these structural paths underlie the observed fronto-occipital functional interactions during visual 

search.  It is suggested that the vmPFC and its projections to visual cortex may mediate 

expectancy-related, stimulus-specific attentional mechanisms during visual discrimination and 

search, and may be more or less an enhanced feature of the human brain. 
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A recent DTI study used a spatial attention task to determine visuospatial attention-related 

regions of interest (ROIs) to functionally seed DTI analyses of a visuospatial attention network 

(Umarova et al., 2010).  Dorsal connections that link temporoparietal cortex with frontal eye 

fields and area 44 of the inferior frontal gyrus (IFG) were described as well as the ventral 

connections, which traveled in the white matter between insular cortex and putamen parallel to 

the sylvian fissure.  However, while this study used fMRI to inform structural DTI analyses, they 

did not focus on ventral prefrontal-occipital pathways. 

 Our observation of bidirectional positive effective connectivity between vmPFC and 

LOC during the search task is consistent with the theory of predictive coding, which postulates 

that bottom-up, degenerate sensory information is matched with top-down expectations 

(Mumford, 1992; Rosen et al., 1999), and that bottom-up and top-down analyses appear to occur 

in the cortex simultaneously (Grossberg, 1980; Lee and Mumford, 2003)friston 2002.  Top-down 

modulation of visual processing during face recognition has been shown to involve positive 

effective connectivity between vmPFC and a fusiform area responsive to faces (FFA) during a 

face detection task (Summerfield et al., 2006).  Similar top-down projections from orbital frontal 

cortex during object recognition have been shown using fMRI combined with magnetic 

encephalography (MEG) (Fenske et al., 2006b).  These and other studies have also suggested 

that “bottom-up”, coarse visual information is rapidly projected to areas within vmPFC in order 

to form an initial template for predictive codes that are subsequently projected to object-sensitive 

and face-sensitive visual processing regions during matching with more detailed bottom-up 

information.    

 Spatial-ICA extracted several independent spatial components that were significantly 

correlated to the task.  IC25 was anticorrelated with the task and contained the putative default-
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mode network (Greicius et al., 2003; Raichle et al., 2001), and IC23 contained task-related 

deactivation of the lingual and parahippocampal gyrus.  IC6 contained an attentional, or ‘task-

positive’ (Fransson, 2006; Kennedy and Courchesne, 2008) fronto-parietal network made up of 

parietal lobule, dorsolateral prefrontal cortex and tempero-occipital lobe. These areas are 

assumed to be associated with the mediation of spatial selective attention (Dosenbach et al., 

2007; Hahn et al., 2006; Lawrence et al., 2003), as well as executive attention and cognitive 

control (Dosenbach et al., 2007).  IC17 consisted of supplementary premotor and motor areas, 

thalamus and cerebellum and are consistent with spatial orienting, and saccade and response 

execution during the task (Ploran et al., 2007; Rosen et al., 1999; Seeley et al., 2007). The most 

highly task-related spatial component (IC20), which had the highest R2 value (0.41) from 

temporal sorting using the canonical HRF as a reference function, contained early visual areas 

(bilateral LGN, V1/V2/V3/V4), association visual areas (LOC, fusiform gyrus), ventral and 

dorsal stream visual areas (middle temporal and posterior parietal cortex), superior colliculus, 

SMA, M1 and vmPFC.   

 

Conclusion: In the present study we employed a multivariate analysis of fMRI data obtained 

during a natural search and detection task to isolate a highly task related component that 

contained primary and association visual areas as well as vmPFC.  The functional and structural 

connectivity of this visual and search-related vmPFC cluster with object-sensitive visual areas 

was tested using functional (PPI), effective (DCM) and structural (DTI) connectivity analyses.  

These analyses revealed increased functional and effective connectivity between vmPFC and 

LOC during visual search, as well as substantial white matter connectivity between them. These 
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data suggest a role of vmPFC during visual search which involves functional interactions with 

object-sensitive visual regions.  
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CHAPTER 3 
 

DYNAMIC COUPLING BETWEEN VISUAL CORTEX, DEFAULT MODE AND 
FRONTOPARIETAL NETWORKS DURING BISTABLE PERCEPTION2 

Summary 

 Mutually exclusive bistable percepts, referred to as “default” and “alternative”, elicited 

by the well-known Schroeder Staircase figure differentially engaged the Default Mode Network 

and the FrontoParietal Network, respectively, during functional magnetic resonance imaging. 

These two networks exhibited percept-dependent cross-interactions and connectivity with the 

visual cortex. Interestingly, both visual cortex and FrontoParietal Network exhibited higher 

connectivity with the Default Mode Network during the “alternative” percept, suggesting 

increased coupling between incoming visual information and externally-oriented attentional 

control with internally-oriented processing and mental imagery. These findings advance neural 

models of bistable perception by implicating the default mode and frontoparietal networks during 

image segmentation. 

Introduction 

 The mechanism by which the neural correlates of human vision segregate and bind 

features to form unified percepts from a complex visual world is a long standing central question 

that has also been linked to more general questions related to the neural correlates of awareness 

and consciousness (Leopold and Logothetis, 1999; Sterzer et al., 2009). A bistable figure 

presents a unique opportunity to investigate mechanisms involved in segmentation of visual 

input because one stimulus elicits two mutually exclusive percepts representing alternative 

organizations of the same visual input. Although neuroimaging studies have previously 

                                                 
2 Karten, Ariel, Spiro Pantazatos, David Khalil, Xian Zhang, and Joy Hirsch. 2013. Dynamic Coupling between the 
Lateral Occipital Cortex, Default Mode and Frontoparietal Networks During Bistable Perception. Brain Connect. 
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confirmed the involvement of parietal and frontal brain regions in bistable perception 

(Kleinschmidt et al., 1998), there is no established framework to describe the underlying neural 

mechanisms of image segmentation.  

 In this study, fMRI was employed to identify neural substrates engaged during each of 

the mutually exclusive percepts elicited by a common bistable figure, the Schroeder Staircase 

(Fig 6). In the “default” percept the staircase is readily perceived as a normal staircase whereas 

in the “alternative” percept the staircase is less readily perceived and is seen as an inverted 

staircase. As is typical with bistable figures, the two percepts differ with respect to the volitional 

effort and attention required for their realization and maintenance and this variation suggests a 

putative role for the attentional control networks during percept maintenance. Prior 

investigations of bistable perception have considered the role that attention and the frontoparietal 

network (FPN) plays in forming and in switching between each of the percepts (Knapen et al., 

2011; Meng and Tong, 2004; Slotnick and Yantis, 2005)}}.  In this study we tested the 

hypotheses that FPN would exhibit increased connectivity with the visual processing stream (i.e. 

visual cortex) during maintenance of the “alternative” percept of the Schroeder Staircase figure. 

Suprisingly we instead observed increased connectivity of visual cortex with default mode 

network (DMN). To the authors’ knowledge this is first implication of the default mode network 

during image segmentation.  

 The DMN, sometimes referred to as the task negative network, consists of temporal and 

midline structures that are more active during rest than during a task (Buckner et al., 2008; 

Greicius et al., 2003; Gusnard et al., 2001), and has been associated with internal stimuli or self-

reflection as well as memory of past events (Andrews-Hanna, 2012). The FPN, sometimes 

referred to as the task-positive network, consists of dorsal and frontal regions, and is associated 
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with tasks that require attention to external stimuli (Corbetta and Shulman, 2002; Dosenbach et 

al., 2007; Kastner and Ungerleider, 2000). These two networks have also been identified on the 

basis of spontaneous correlations during resting states characterized by anti-correlations between 

them (Anderson et al., 2011; Fox et al., 2005) suggesting an intrinsic oppositional functional 

organization of neural processes that mediate cognitive tasks. 

Methods 

Subjects: A total of 12 volunteers participated in the functional imaging study (8 males and 4 

females; ages 18-27 mean = 22.8). All subjects were informed about possible risks and provided 

consent according to the guidelines established by the Columbia University Institutional Review 

Board.  

 

Stimulus: The stimulus was a black and white line drawing of a common bistable figure (Fig6) 

referred to as the Schroeder Staircase. The figure can be perceived as either a normal right-side 

up staircase, or an inverted upside-down staircase.  

 

Figure 6. Chapter 3: Bistable Schroedinger staircase. Normal (default percept ) and upside-down (alternative-

percept) staircase. 

Functional Imaging Procedures: The functional study was run as a block design in which the 

stimulus was presented for 12 fifteen second epochs, each of which was preceded by a fifteen 
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second baseline epoch that featured a black screen with a crosshair (+). Prior to scanning, the 

“default” and the “alternative” percepts were determined for each subject based on the percept 

that the subject reported as seen first and most automatically. For all subjects the “default” 

percept was the right-side up staircase most resembling a familiar staircase, and the “alternative” 

percept was the up-side down staircase that appears to be suspended in midair. The subject was 

instructed to hold the “default” percept for the first 15-second stimulus epoch, and then 

instructed to switch and hold the “alternative” percept for the following 15-second stimulus 

epoch, and to continue this alternation for the rest of the 6.0 minute run. The percepts were cued 

by indications of the targeted percept name (alternative or default) above the image, and the 

subjects were given a keypad to indicate the actual engaged percept and whenever a perceptual 

switch (voluntary or otherwise) occurred. Subjects practiced outside the scanner until they felt 

comfortable with this perceptual task.   

 

Image Acquisition and Analysis: Functional images were acquired on a 1.5T GE MRI scanner 

located in the Columbia University fMRI Research Center, New York, NY. Whole brain 

Ecoplanar functional images (EPI) were collected with an 8 channel GE head coil in 25 

contiguous axial slices obtained parallel to the AC/PC line (TR=3000 ms, TE=35 ms, Flip 

angle=84 degrees, FoV=19.2 x 19.2, Array Size=128 x 128, Spatial Resolution=1.5 x 1.5 x 4.5 

mm). One hundred and twenty whole brain images were acquired during each of two 6-minute 

runs. High-resolution 3-D anatomical scans were also acquired with a T1-weighted SPGR 

sequence (TR=19 ms, TE=5 ms, Flip angle=20 degrees) FoV=220 x 200mm, A slice thickness of 

1.5 mm, in-plane resolution of 0.86 x 0.86 mm, and 124 slices per image. 
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 Image pre-processing and statistical analysis employed SPM5 software (Wellcome 

Department of Cognitive Neurology, University College London, UK). Functional T2*-images 

were slice-timing corrected and spatially realigned to the first volume of the first run. The SPGR 

scans were co-registered with the mean realigned EPI image, and normalization parameters to a 

standard T1 template image were computed, and combined realignment, inverse co-registration 

normalization parameters were applied to the functional images. Finally, images were smoothed 

with a Gaussian kernel of 8.0 x 8.0 x 8.0 mm full-width half-maximum, and a 128 s temporal 

high-pass filter was applied.   

 

GLM analysis: Statistical analysis of the BOLD signal aimed to locate activity associated with 

each perspective. Perceptual onset times (according to subjects' button presses) for the “default” 

and “alternative” percepts were convolved with the canonical hemodynamic response function 

(HRF). Contrasts of resulting beta estimates (“Default”>”Alternative” and 

“Alternative”>”Default”), for each run separately (for independent ROI analyses, see below), 

averaged across both runs, and were passed to 2nd level random effects (RFX) analyses (one-

sample t-tests).  Beta estimates from each run were also passed to a 2nd level RFX analysis 

(paired t-test) in order to determine conjoined activation and deactivation common to both 

percepts in run 1, used for independent ROI analyses (see below). 

 

PsychoPhysiological Interaction (PPI) analysis: The PPI analysis measures the extent to which 

regions are differentially correlated during a given task (Friston et al., 1997). Visual cortex, the 

primary seed-of-interest, was defined by the conjunction of “alternative” and “default” activity, 

at peak MNI coordinates for right [40 -70 -8] and left [-38, -78 -6], thresholded at p < 0.0001, 
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uncorrected corresponding to the lateral occipital complex. Activity was extracted from 6 mm 

spheres centered at the above coordinate locations. The BOLD signal throughout the whole-brain 

was then regressed on a voxel-wise basis against the product of this time course and the vector of 

the psychological variable of interest, (1*Default + -1*Alternative), with the physiological and 

the psychological variables serving as regressors of no interest.  Resulting beta maps, within each 

run and averaged across both runs, were subsequently passed to 2nd level random effects 

analysis (one sample t-test). Results for left and right seeds were similar; hence the main text 

depicts results using the bilateral seed. GLM models that were used to extract seed region 

activity and to estimate PPI results included additional nuisance regressors, i.e. 6 motion 

parameters, mean white-matter, and mean csf signal.  

 

Independent ROI analysis: To test whether the DMN and FPN were significantly more active 

and functionally connected with visual cortex during one percept vs. the other, we conducted an 

independent ROI analysis using the Marsbar Toolbox (http://marsbar.sourceforge.net/). For this, 

the FPN and DMN were defined using conjunction of both "default" and "alternative" conditions 

from Run 1 of each subject. These beta estimates were input to a 2nd level RFX analysis (paired 

2-sample t-test) in which positive and negative conjunction contrasts, thresholded at p<0.0001, 

uncorrected, defined the independent FPN and DMN ROIs. Contrast values (or beta estimates 

from PPI analyses) of “Default-Alternative” from Run 2 of each subject were then averaged over 

all voxels within the above ROIs, and submitted to two separate 2nd level RFX analysis (one-

sample t-tests, one for each ROI). 
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Results 

Activation results: Blood Oxygen Level Dependent (BOLD) signal in regions consistent with the 

DMN was relatively lower during the “alternative” percept  (“default > alternative”, Fig 7a), 

whereas signal in regions consistent with the FPN was relatively higher during the alternative 

percept (“alternative > default”, Fig 7b). In particular, the “default > alternative” perspective 

contrast included the middle temporal cortex (mTC), anterior cingulate cortex (ACC), posterior 

cingulate cortex (PCC), inferior parietal lobule (IPL), medial prefrontal cortex (MPFC), lateral 

prefrontal cortex (LPFC), and precuneus (PC),  which have been previously associated with the 

DMN (Raichle et al., 2001).   In comparison, the “alternative > default” contrast include the 

lateral occipital cortex (LOC), middle occipital cortex (mOC), inferior frontal cortex (IFC), 

inferior parietal lobule (IPL), superior parietal lobule (SPL), middle frontal gyrus (mFG), and 

supplementary motor area (SMA), which have previously been associated with the FPN 

(Corbetta and Shulman, 2002). An independent ROI analysis confirmed that activation of the 

DMN, as a whole, was significantly greater during the “default” perspective (“default” > 

“alternative, t=2.29, p<0.05), while activation of the FPN, as a whole, was significantly greater 

during the “alternative” perspective (“alternative” > “default”, t=2.01, p<0.05) (See Methods). 
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Figure 7. Chapter 3: Activation differences between “default” and “alternative” percepts. For display purposes maps 

are loosely threshold at p<0.05 uncorrected, k=10. 

 

Functional connectivity with visual cortex: Whole-brain functional connectivity with bottom up 

visual processing stream (i.e. association visual cortex) was explored to distinguish between two 

possible models of interactions. In one model, the positive correlation model, incoming visual 

information is expected to be positively correlated with the attentional control network (i.e. FPN) 

during the “alternative” percept, consistent with the notions of increased attentional resources 

being devoted to processing of the visual stimulus. An alternative, and initially counter intuitive 

anti-correlation model, predicts that incoming visual information would decouple from the FPN, 

consistent with the notion of decreased external attentional resources being devoted to processing 

bottom-up visual information.  
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PPI analysis of connectivity between visual cortex and all other brain regions was 

employed to test these alternative models, and revealed findings consistent with the anti-

correlation model; namely visual cortex decoupled from the FPN (“default” > “alternative”, Fig 

8a) and instead increased coupling with the DMN, (vmPFC in particular, “alternative > default, 

Fig 8b). An independent ROI analysis confirmed that connectivity with the FPN was 

significantly greater during the “default” perspective (“default” > “alternative, t=4.80, p<0.05), 

while connectivity with the DMN was greater during the “alternative” perspective 

(“alternative”>“default”, t=5.39, p<0.05) (See Methods).  
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Figure 8. Chapter 3: Functional connectivity of visual cortex during default and alternative percepts. (A) The visual 

cortex (lateral occipital cortex) exhibited greater coupling with FPN regions during the “default” percept. (B) The 

visual cortex (lateral occipital cortex) exhibited greater coupling with DMN regions during the “alternative” percept. 

For display purposes, maps were thresholded at p<0.05, uncorrected, k=10. Note: for “default” > “alternative”, core 

nodes of the DMN, vmPFC and PCC, survived cluster-extent threshold at p<0.05 corrected). (Lower panels) A 

conceptual summary of findings. (c) During the conscious default percept, functional connectivity increased 

between the LOC and the FPN. There was no evidence for cross network connectivity during this percept. (b) 
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During the conscious alternative percept, as revealed by the alternative > default contrast, the FPN was more 

engaged, while DMN de-activated even further, and the functional connectivity increased between the LOC and the 

DMN. Additionally, functional connectivity between the FPN and DMN was observed in this condition. 

 

Connectivity between FPN and DMN: In addition to the connectivity between the visual cortex 

and the two networks, the connectivity between the DMN and FPN was also investigated using 

PPI analysis in order to observe possible cross-network connectivity and dynamic coupling. 

During the “default” relative to “alternative” percept, both the DMN and the FPN exhibited 

higher connectivity within their respective networks. Independent ROI analyses confirmed that 

connectivity within each network was significantly greater during the “default” perspective 

(“default” > “alternative, DMN t=4.45, p<0.05 and FPN t=6.58, p<0.05).  During the 

“alternative” percept however, the two networks increased their connectivity to each other and 

the DMN was more connected to the FPN and the FPN was more connected to the DMN (data 

not shown). This "cross-network" connectivity that was observed most prominently during the 

“alternative” perspective was also confirmed by independent ROI analyses 

(“alternative”>“default”, DMN connectivity with FPN seed, t=3.63, p<0.05 and FPN 

connectivity with DMN seed t=5.33, p<0.05). In general, during the “default” percept, the 

individual networks tended to be more connected within themselves, whereas during the 

“alternative” percept, within-network connectivity decreased whilst cross-network functional 

connectivity increased. 
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Discussion  

 Here we show that bistable perception of the Shrodinger staircase differentially engages 

the FPN and DMN. Furthermore both visual cortex and FPN decouple from the FPN and 

increased coupling with the DMN (particular ACC/vmPFC and PCC) during the “alternative” 

percept (an upside down staircase in the case of the Schrodinger staircase). Increased coupling 

between association visual areas that process object recognition (LOC) with core components of 

the DMN such as vmPFC has been previously associated with visual imagery (Mechelli et al., 

2004) and goal-oriented visual perception (Bar, 2003; Pantazatos, Yanagihara et al., 2012; 

Summerfield et al., 2006), implicating similar processes during bistable perception, and in 

particular the percept that is more "effortful" to maintain.    

 At rest FPN and DMN are anticorrelated; in particular activity in vmPFC is anti-

correlated with parietal visual spatial and temporal attention networks, whereas PPC negatively 

predicts activity within with prefrontal-based motor control circuits (Uddin et al., 2009).  FPN 

and DMN are also anti-correlated during performance of externally-oriented attention tasks; in 

fact individuals who displayed greater anti-correlation (phase closer to 180 degrees) between 

DMN and FPN exhibited greater consistency in behavioral performance during an externally 

oriented attention task (Eriksen flanker task) (Kelly et al., 2008). In addition a recent study 

observed that DMN and components of the FPN are positively correlated during performance of 

an internally oriented mental planning task, while uncorrelated during an externally-oriented 

mental planning task (Spreng et al., 2010).  In the context of the current study, the above results 

suggest that the “alternative” percept engages neural processes related to internally oriented 

goals. In the case of the Shrodinger Staircase, the “alternative” percent is an upside down 

staircase (i.e. a relatively unfamiliar stimulus not normally encountered in one’s daily 

environment), and we speculate that the viewer is “shutting down” processes that treat a stimulus 
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as “externally-generated” (i.e. a functional staircase normally encountered in an everyday 

environment) and instead engage processes that “internally-generate” a percept that is less 

familiar to the viewer.   

A conceptual summary of our findings is presented in Fig 3c and Fig 3d. The LOC (Fig. 

3–green) was more highly correlated with FPN during the “default” percept (Fig 3c) and more 

highly correlated with the DMN during the alternative percept (Fig 3d). In addition, during the 

alternative percept, FPN BOLD activity increased, while DMN BOLD signal decreased even 

further.  Variations in concurrent deactivations of irrelevant sensory input have been 

associated with a suppressive mechanism (Amedi et al., 2005; Shmuel et al., 2002; Wade, 2002). 

Accordingly, our finding of increased connectivity between the FPN and the deactivated DMN 

suggests that the FPN may suppress DMN activity during the alternative percept.  

 Variations in connectivity of association visual regions with FPN and DMN have 

previously been reported depending upon volitional (top-down) goals (Chadick and Gazzaley, 

2011). Each visual stimulus in the task contained two superimposed objects from different 

stimulus categories (i.e. a face and a scene). When the scene stimulus was relevant to the task 

(i.e. visual activity in place-responsive regions (parahippocampal place area, PPA) was enhanced 

while connectivity with the FPN increased, whereas when the scene stimulus was irrelevant, 

activity of the PPA was suppressed while functional connectivity with the DMN increased. In the 

current study a (single) bistable image was presented, and the following pattern was observed: 

during the “alternative” percept when activity LOC was relative higher (Fig 6b), connectivity 

with the DMN increased. This may reflect the possibility that, instead of being up-regulated or 

suppressed for the purposes of an externally-oriented task goal, visual cortex increased engaging 
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with DMN reflecting increased integration of visual sensory information with internally-oriented 

mental imagery processes.    

 Recent EEG findings have reported that neural activity precedes the perceptual 

emergence of the “hidden” percept (Britz et al., 2009). While previously proposed models for 

bistable perception suggest that “fatigue” or “satiation” of the conscious percept allows for the 

subconscious percept to be expressed (Toppino and Long, 1987). Our data further suggest that 

these active stages of percept maintenance involve  dynamic coupling between low and high 

levels of visual information processing and large-scale networks including the DMN. These new 

findings can be interpreted as reflecting a balance between suppressive and active interactions 

between the FPN and DMN networks and the visual cortex. Together, the cross-network and the 

visual cortex connectivity observed in this study are consistent with a model where active image 

segmentation is mediated by both suppressive and active top-down mechanisms originating with 

the DMN and FPN that may regulate and/or preferentially integrate with incoming visual 

information. 
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CHAPTER 4 
 

DECODING UNATTENDED FEARFUL FACES WITH WHOLE-BRAIN CORRELATIONS: 
AN APPROACH TO IDENTIFY CONDITION-DEPENDENT LARGE-SCALE 

FUNCTIONAL CONNECTIVITY3 

Summary 

Processing of unattended threat-related stimuli, such as fearful faces, has been previously 

examined using group functional magnetic resonance (fMRI) approaches.  However, the 

identification of features of brain activity containing sufficient information to decode, or “brain-

read”, unattended (implicit) fear perception remains an active research goal. Here we test the 

hypothesis that patterns of large-scale functional connectivity (FC) decode the emotional 

expression of implicitly perceived faces within single individuals using training data from 

separate subjects. fMRI and a blocked design were used to acquire BOLD signals during implicit 

(task-unrelated) presentation of fearful and neutral faces.  A pattern classifier (linear kernel 

Support Vector Machine, or SVM) with linear filter feature selection used pair-wise FC as 

features to predict the emotional expression of implicitly presented faces.  We plotted 

classification accuracy vs. number of top N selected features and observed that significantly 

higher than chance accuracies (between 90-100%) were achieved with 15-40 features.  During 

fearful face presentation, the most informative and positively modulated FC was between 

angular gyrus and hippocampus, while the greatest overall contributing region was the thalamus, 

with positively modulated connections to bilateral middle temporal gyrus and insula. Other FCs 

that predicted fear included superior-occipital and parietal regions, cerebellum and prefrontal 

cortex.  By comparison, patterns of spatial activity (as opposed to interactivity) were relatively 

uninformative in decoding implicit fear.  These findings indicate that whole-brain patterns of 

                                                 
3 Pantazatos, Spiro P, Ardesheer Talati, Paul Pavlidis, and Joy Hirsch. 2012a. Decoding unattended fearful faces 
with whole-brain correlations: an approach to identify condition-dependent large-scale functional connectivity. 
PLoS Comput. Biol. 
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interactivity are a sensitive and informative signature of unattended fearful emotion processing.  

At the same time, we demonstrate and propose a sensitive and exploratory approach for the 

identification of large-scale, condition-dependent FC. In contrast to model-based, group 

approaches, the current approach does not discount the multivariate, joint responses of multiple 

functional connections and is not hampered by signal loss and the need for multiple comparisons 

correction. 

Introduction 

 Faces with a fearful expression are thought to signal the presence of a significant, yet 

undetermined source of danger within the environment, or 'ambiguous threat' (Ewbank et al., 

2009).  Evidence from fMRI and evoked potentials (ERPs) suggest that fearful face processing 

can strongly affect brain systems responsible for face recognition and memory during implicit 

(consciously perceived but unattended) presentation of these stimuli (Vuilleumier et al., 2002; 

Vuilleumier and Pourtois, 2007). Group-based fMRI studies have shown that the perception and 

processing of facial emotional expression engages multiple brain regions including the fusiform 

gyrus, superior temporal sulcus, thalamus, as well as affect-processing regions such as amygdala, 

insula, anterior cingulate cortex among others (Adolphs et al., 2003; Haxby et al., 2000; Ishai et 

al., 2005; Pessoa et al., 2002).  However, to the authors’ knowledge, no study to date has 

identified features of brain activity that contain sufficient information to reliably decode, or 

“brain-read”, the threat-related emotional expression of unattended (implicitly perceived) faces 

within individual subjects.  The identification of such features, though less well quantified as in 

group model-based studies, would have a greater capacity for representing distinctions between 

different cognitive-emotional perceptual states (Norman et al., 2006), and hence could contribute 
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in advancing our understanding of the neural mechanisms that underlie threat detection and 

facial emotion processing. 

 Most group fMRI approaches that have studied the neural correlates of emotional face 

perception have relied on univariate approaches (Bishop et al., 2007; Etkin et al., 2004; Haas et 

al., 2009) which identify regions correlated with a regressor-of-interest, but ignores any 

interactions with other regions.  Bivariate approaches have been applied, but assess the 

interactivity (functional connectivity) of only one seed region (usually amygdala) with the rest of 

the brain (Etkin et al., 2006; Pezawas et al., 2005).  Even though several notable studies have 

taken a multivariate approach in assessing the effective connectivity among multiple brain 

regions during emotional face processing (Fairhall and Ishai, 2007; Ishai, 2008; Stein et al., 

2007), a limited number of nodes were included in the networks and they were selected based on 

a priori anatomical knowledge or on their activation in conventional, General Linear Model 

(GLM)-based mass univariate analyses.  However, univariate GLM approaches make strong 

assumptions about the hemodynamic response (i.e. sustained periods of activation or 

deactivation relative to baseline), while functional connectivity offers a complementary and more 

data-driven and exploratory measure that makes use of temporal correlations to estimate 

functional connectivity (Li et al., 2009). 

 There has been a recent surge of interest in examining the large-scale (i.e. pair-wise 

connectivity throughout the whole-brain) functional network architecture of the brain as a 

function of various cognitive processes or individual variation (Smith et al., 2011). This is often 

done by first defining a set of functional "nodes" based on spatial ROIs and then conducting a 

connectivity analysis between the nodes based on their FMRI timeseries.  Large-scale functional 

connectivity patterns have been successful in predicting age (Dosenbach et al., 2010a) as well as 
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subject-driven mental states such as memory retrieval, silent-singing vs. mental arithmetic 

(Shirer et al., 2011) and watching movies vs. rest (Richiardi et al., 2011).  It remains to be 

determined however, whether whole-brain connectivity can be used to decode very similar 

stimuli that differ by only one or a few subtle characteristics, such as the emotional expression of 

an unattended face.  If so, then functional connections that discriminate between the two 

conditions can be interpreted as being uniquely related to the parameter of interest that varies 

across both conditions.  

 Although multivariate pattern analyses are more sensitive than group, model-based 

approaches, one disadvantage is decreased interpretability and quantification of the precise 

relationship among features related to a certain condition (Norman et al., 2006).  However, since 

this approach exploits the information inherent in the joint responses of many functional 

connections, an advantage is that pattern classification of similar conditions coupled with feature 

selection and identification can be used as a means to identify condition-dependent, large-scale 

functional connectivity, without the need to correct for tens of thousands of multiple 

comparisons.  This approach can be used for hypothesis generation to identify groups of 

functional connections associated with a condition, which can then serve as connections and 

regions of interest for more rigorous and mechanistically revealing approaches such as effective 

connectivity (Marreiros et al., 2008). 

 Here we estimate the large-scale functional networks of implicit fear processing using a 

blocked design and Blood Oxygen Level Dependent (BOLD) image acquisition, during which 

subjects were instructed to identify the color of pseudo-colored fearful and neutral faces (Fig 9). 

We applied atlas-based parcellation to derive several hundred nodes throughout the whole-brain 

and computed thousands of pair-wise correlations (40 total time points, or 80s worth of fMRI 
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data) during each of two conditions: implicit processing of fearful and neutral faces.  We then 

employed multivariate pattern analyses in conjunction with linear filter feature selection to 

identify functional connections whose pattern could distinguish between implicit processing of 

fearful and neutral faces within individual subjects, using training data from separate subjects. 

We plotted classification accuracy vs. number of included features to approximate the minimum 

number of informative features, and then identified these features (functional connections) on a 

neuroanatomical display. See Fig 10 for an outline of the analysis scheme.  

 

Figure 9. Chapter 4: Experimental paradigm for the interaction of attention and affect (adapted from Etkin, et. al. 

2004). Stimuli were either fearful (F) or neutral (N) expression faces, pseudocolored in red, yellow,or blue. Each 

event was comprised of a face which was either masked (33 ms for a fearful or neutral face, followed by 167 ms of a 

neutral face mask of the same gender and color, but different individual; MF or MN, respectively), or unmasked 

(200 ms for each face; F or N) or masked. Ten events of the same type, spaced 2 seconds apart, were presented 

within each 20 second block, followed by 15 seconds of crosshair with black background. There were four blocks 

per condition, giving 40 time points in the correlation estimates per condition per subject.  In view of our specific 
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hypotheses, only the unmasked conditions are discussed in the main text, while results for unmasked conditions are 

presented elsewhere (manuscript in preparation).   

 Our primary objective was to test the hypothesis that condition-specific, functional 

connectivity over the whole-brain (here Pearson correlation using 40 time points of fMRI data 

per example) contain enough information to discriminate between implicitly presented fearful 

and neutral faces, and to identify the functional connections that are most informative in this 

decoding task.  A secondary objective was to compare the decoding accuracies achieved when 

using interactivity (pair-wise correlations) vs. activity (i.e. beta estimates from SPM maps).  We 

show that a small subset of connections estimated across the whole-brain can predict, or “brain-

read”, implicitly presented fearful faces with high peak accuracies using training and testing data 

from separate subjects.  We propose that this is a valuable, exploratory approach to estimate 

condition-dependent, large-scale functional connectivity and demonstrate that whole-brain 

patterns of interactivity are a sensitive and informative signature of cognitive-emotional 

perceptual states. 
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Figure 10. Chapter 4: Data analysis scheme.  Time series from each condition (unmasked fearful and unmasked 

neutral, F and N) and for N regions (R1 though RN) were segmented from each subject’s whole run and 

concatenated (concatenation of two blocks for each condition shown in figure).  There were four 20 second (10 TR) 

blocks of each condition; hence each example was comprised of 40 time points per condition per subject.  For each 

of example, correlation matrices were estimated, in which each off-diagonal element contains Pearson’s correlation 

coefficient between region i and region j.  The lower triangular region of each of these matrices were used as input 

features in subsequent classifiers that learned to predict the example (i.e. F or N) based on their observed patterns of 

the correlations.  Here, we used a filter feature selection based on t-scores in the training sets during each iteration of 

leave-two-out cross validation.  The difference map consists of the set of most informative features (those that are 

included in the most rounds of cross-validation and have the highest SVM weights.) 

Methods  

Ethics Statement: All procedures and tasks were reviewed for ethical concerns and protection of 

human subjects by appropriate local IRB boards prior to subject recruitment and data collection. 
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The procedures described in this study of healthy adults have been approved by the Columbia 

University Morningside IRB (#IRB-AAAA3690, PI: Joy Hirsch) and IRB (#IRB5290, PI: Myrna 

M. Weissman) 

 

Subjects: A total of 38 (19 female) healthy volunteers (mean age = 29, SD = 6.9) with 

emmetropic or corrected-to-emmetropic vision participated in the study in accordance with 

institutional guidelines for research with human subjects. All subjects were screened to be free of 

severe psychopathology including Bipolar Disorder and Psychotic Disorders.  

 

Stimulus Presentation Paradigm: Subjects performed a previously described task (Etkin et al., 

2004) which consists of color identification of fearful and neutral faces (F and N respectively). 

Although backwardly masked (subliminal) fearful and neutral faces were also presented, here we 

discuss results based on the unmasked (supraliminal) conditions.  Results based on comparisons 

of masked conditions are presented elsewhere (manuscript in preparation). Stimuli: Black and 

white pictures of male and female faces showing fearful and neutral facial expressions were 

chosen from a standardized series developed by Ekman and Friesen (Ekman and Friesen, 1976). 

Faces were cropped into an elliptical shape that eliminated background, hair, and jewelry cues 

and were oriented to maximize inter-stimulus alignment of eyes and mouths. Faces were then 

artificially colorized (red, yellow, or blue) and equalized for luminosity. For the training task, 

only neutral expression faces were used from an unrelated set available in the lab. These faces 

were also cropped and colorized as above.  
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Behavioral task: Each stimulus presentation involves a rapid (200 ms) fixation to cue subjects to 

fixate at the center of the screen, followed by a 400 ms blank screen and 200 ms of face 

presentation. Subjects have 1200 ms to respond with a key press indicating the color of the face. 

Behavioral responses and reaction times were recorded.  Unmasked stimuli consist of 200 ms of 

a fearful or neutral expression face, while backwardly masked stimuli consist of 33 ms of a 

fearful or neutral face, followed by 167 ms of a neutral face mask belonging to a different 

individual, but of the same color and gender (see Fig 9). Each epoch consists of ten trials of the 

same stimulus type, but randomized with respect to gender and color. The functional run has 16 

epochs (four for each stimulus type) that are randomized for stimulus type. To avoid stimulus 

order effects, we used two different counterbalanced run orders. Stimuli were presented using 

Presentation software (Neurobehavioral Systems, http://nbs.neuro-bs.com), and were triggered 

by the first radio frequency pulse for the functional run. The stimuli were displayed on 

VisuaStim XGA LCD screen goggles (Resonance Technology, Northridge, CA). The screen 

resolution was 800X600, with a refresh rate of 60 Hz.  Prior to the functional run, subjects were 

trained in the color identification task using unrelated neutral face stimuli that were cropped, 

colorized, and presented in the same manner as the nonmasked neutral faces described above in 

order to avoid any learning effects during the functional run.  After the functional run, subjects 

were shown all of the stimuli again, alerted to the presence of fearful faces, and asked to indicate 

whether they had seen fearful faces on masked epochs.   

 

fMRI Acquisition: Functional data were acquired on a 1.5 Tesla GE Signa MRI scanner, using a 

gradient-echo, T2*-weighted echoplanar imaging (EPI) with blood oxygen level-dependent 

(BOLD) contrast pulse sequence. Twenty-four contiguous axial slices were acquired along the 
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AC-PC plane, with a 64 × 64 matrix and 20 cm field of view (voxel size 3.125 × 3.125 × 4 mm, 

TR = 2000, TE = 40, flip angle = 60).  Structural data were acquired using a 3D T1-weighted 

spoiled gradient recalled (SPGR) pulse sequence with isomorphic voxels (1 × 1 × mm) in a 24 

cm field of view (256 × 256 matrix, ~186 slices, TR 34 ms, TE 3 ms).  

 

GLM analysis: Functional data were preprocessed and processed in SPM8 (Wellcome 

Department of Imaging Neuroscience, London, UK). For preprocessing, the realigned T2*-

weighted volumes were slice-time corrected, spatially transformed and resampled to a 

standardized brain (Montreal Neurologic Institute, 2x2x2 mm3 cube resolution) and smoothed 

with a 8-mm full-width half-maximum Gaussian kernel. 1st-level regressors were created by 

convolving the onset of each block (MF, MN, F and N) with the canonical HRF with duration of 

20 seconds.  Additional nuisance regressors included 6 motion parameters, white matter and csf 

signal, which were removed prior to time-series extraction. For the current work, the same GLM 

analysis served three purposes: 1) facilitate removal of nuisance effects from time series prior to 

FC estimation using structurally (atlas-based) and functionally defined ROIs, 2) produce beta-

estimates of each condition for classification analysis of spatial activity patterns and 3) 

functionally define ROIs (nodes) prior to FC calculation (used for comparing results of structural 

vs. functional definition of nodes).   

 

Node definitions: Brain regions were parcellated according to bilateral versions of the Harvard-

Oxford Cortical and sub-cortical atlases and the AAL atlas (cerebellum) and were trimmed to 

ensure no overlap with each other and to ensure inclusion of only voxels shared by all subjects 

(Fig 11, left panel). For each subject, time-series across the whole run (283 TRs) were extracted 
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using Singular Value Decomposition (SVD) and custom modifications to the Volumes-of-

Interest (VOI) code within SPM8 to retain the top 2 eigenvariates from each atlas-based region.  

Briefly, the data matrix for each atlas-based region is defined as A, an n x p matrix, in which the 

n rows represent the time points, and each p column represents a voxel within an atlas-based 

region. The SVD theorem states: 

Anxp= Unxn Snxp V
T

pxp, 

where UTU = Inxn and VTV = Ipxp  (i.e. U and V are orthogonal). The columns of U are the left 

singular vectors (eigenvariates, or summary time courses of the region), S (the same dimensions 

as A) has singular values, arranged in descending order, that are proportional to total variance of 

data matrix explained by its corresponding eigenvariate, and is diagonal, and VT has rows that 

are the right singular vectors (spatial eigenmaps, representing the loading of each voxel onto its 

corresponding eigenvariate). Here we retain the top two eigenvariates (nodes) from each region.  

   For each atlas-based region, we opted to apply SVD over the entire time-series from each 

subject and then segment and concatenate the eigenvariates according to the 

conditions/comparisons of interest (rather than segment and concatenate all the masks’ voxels 

first and then apply SVD) in order to maximize the total number of observations (time points) 

per region and also to avoid potentially introducing any artifact and unnatural variation caused 

by the splicing together of signal from disparate time points, which could possibly bias the SVD 

results. However, a potential disadvantage of this approach is that important sub-regions and 

associated eigenvariates within a particular atlas-based region could be missed due to variation in 

other conditions/blocks within the run that are not considered in the current work. This is an 

additional motivation to retain the top two eigenvariates from each atlas-based region, as 

opposed to just one. 
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Figure 11. Chapter 4: Node definitions and anatomical locations. Cortical and subcortical regions (ROIs) were 

parcellated according to bilateralized versions of the Harvard-Oxford Cortical and subcortical-atlases, and the 

cerebellum was parcellated according to AAL (left panel). ROIs were trimmed to ensure there was no overlap 

between them and that they contained voxels present in each subject. The top two eigenvariates from each ROI was 

extracted, resulting in 270 total nodes throughout the brain (right panel).  For display purposes, node locations 

(black spheres) correspond to the peak loading value from each time-course’s associated eigenmap averaged over all 

subjects. 

 

   The above step resulted in a total of 270 nodes with an associated time course (i.e. 

eigenvariates) and spatial eigenmaps from the 135 initial atlas-based regions. Thus, each atlas-

based region was comprised of two nodes.  Interestingly, when extracting only one eigenvariates 

per region, maximum accuracy did not surpass 46% (data not shown). This is possibly due to the 

fact that larger, atlas-based regions encompassed other functional sub-regions which were not 

included in the analysis.  Another possible reason is that for many regions, the 1st eigenvariate 
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may reflect artifact global or mean grey matter signal (while white matter and csf signal were 

regressed out from nodes’ time-series, global and mean grey matter signals were not), or it may 

reflect variation caused by other conditions/blocks within the run that were not considered in the 

current classification analyses (see paradigm task description above), or a combination of all the 

above. Therefore we extracted two eigenvariates from each region. We note that this means it is 

likely that node 2 of a particular region shows functional connectivity that differentiates between 

conditions and node 1 of the same region has no differential connectivity. For clarity we 

therefore label each node using its Harvard-Oxford atlas label appended by either “_PC1” for the 

first eigenvariate and “_PC2” for the second. For display purposes, we calculated the MNI 

coordinates of the peak loading weight (locations averaged across subjects) for each eigenvariate 

from its associated eigenmap (Fig 11, right panel). Supplementary Table 1 from (Pantazatos et 

al., 2012a) lists these average MNI coordinates for each node. 

 

Functional connectivity networks for implicit fearful and neutral face processing: For each 

subject, functional connectivity matrices (i.e. where cell i,j contains the Pearson correlation 

between region i and region j) were generated for implicit fearful (F) and neutral (N) conditions.  

The above time-series were segmented and concatenated according to conditions of interest (40 

total time points per condition, incorporating a lag of 2 or 3 s from the start of each block) before 

generating the correlation matrices.  Fisher’s R to Z transform was then applied to each 

correlation matrix.  Finally for the binary classification of interest (i.e. F vs. N), correlation 

matrices were demeaned with respect to the average between the two conditions in order to 

remove the effects of inter-subject variability. The lower diagonal of the above preprocessed 
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correlation matrices (38 subjects X 2 conditions total) were then used as input features to predict 

viewed stimuli in subsequent pattern recognition experiments.  

 

Differences in functional connectivity between implicit fearful and neutral face processing: We 

first tested for significant differences between the primary conditions of interest (i.e. F > N) 

while correcting for multiple comparisons (False Discovery Rate, FDR).  This yielded no 

significant results when multiple comparison correction was applied (FDR, p < 0.05 and 0.1).  

This was not surprising, as multiple comparison correction was expected to be too conservative 

given the exceedingly high number of independent comparisons (36,315).   

 

Pattern analysis of large-scale functional connectivity to predict implicit fear perception: 

Support vector machines are pattern recognition methods that find functions of the data that 

facilitate classification (Vapnik, 1999). During the training phase, an SVM finds the hyperplane 

that separates the examples in the input space according to a class label. The SVM classifier is 

trained by providing examples of the form <x,c>, where x represents a spatial pattern and c is the 

class label. In particular, x represents the fMRI data (pattern of correlation strengths) and c is the 

condition or group label (i.e. c = 1 for F and c = −1 for N). Once the decision function is 

determined from the training data, it can be used to predict the class label of new test examples. 

 For all binary classification tasks, we applied a linear kernel support vector machine 

(SVM) with a filtering feature selection based on t-test and leave-two-out cross validation 

(LTOCV).  There were 38 examples for each condition (2 from each subject, 76 total).  During 

each iteration of 38 rounds of LTOCV, both examples (1 from each class) from one subject were 

withheld from the dataset and 1) a 2-sample t-test was performed over the remaining training 
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data (N=37 in each group) 2) the features were ranked by absolute t-score and the top N were 

selected 3) these selected features were then used to predict the class of the withheld test 

examples during the classification stage.  The full feature set for each example consisted of 

36,315 correlations.   

 If the classifier predicted all trials as positive or negative, the resulting accuracy would be 

50% since the number of examples are equal for each class.  We therefore report classification 

accuracy (number of true positives and negatives over all trials) vs. number of included features 

that have been ranked by their t-score.  We assessed the significance of decoding results by 

computing the frequency in which actual values surpassed those from null distributions derived 

by randomly permuting class labels based on the method proposed by (Golland and Fischl, 

2003), with the a slight modification to account for the dependence between pairs of examples 

from each subject. Briefly, to derive this null distribution, class labels within each pair conditions 

from each subject were randomly flipped with a probability of 0.5 over 2000 iterations for each 

number of included features.  P-values for the peak decoding accuracies (F vs. N: 100%, top 25 

features) were also calculated with respect to classification results when shuffling labels 10,000 

times, and then subjected to Bonferroni correction for the number of total Top N comparisons (in 

this case 20). 

 For SVM learning and classification we used the Spider v1.71 Matlab toolbox 

(http://people.kyb.tuebingen.mpg.de/spider/) using all default parameters (i.e. linear kernel SVM, 

regularization parameter C=1.  Graphical neuro-anatomical connectivity maps of the top N 

features were displayed using Caret v5.61 software 

(http://brainvis.wustl.edu/wiki/index.php/Caret:About). We note that different features could be 

selected during the feature selection phase of each round of cross-validation.  Therefore in 
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ranking the top 25 features, we first rank by total number of times that feature was included in 

each round of cross-validation, and then among these features, we sort by absolute value of the 

average SVM weight. 

 Our intent is not to estimate the true accuracy of prediction given a completely new data 

set, but rather to test whether there exists information in the pattern of functional connections 

relevant to unattended emotion perception, and to approximate the optimal number of features 

that containing this information. We note that our approach (plotting accuracy vs. number of top 

N features) is not biased, since for each number of top N features, and for each round of leave-

two-out cross validation, the top N features were selected from a training set that was completely 

independent from the testing set.  If there is a true signal present in the data, we expect, and in 

the current data in general observe, that there is an initial rise in accuracy as more informative 

features are added to the feature set, and a dip in accuracy as less informative features (i.e. noise) 

are added to the feature set.  Therefore in reporting classification results, we report the range of 

features at which accuracies first reach maximum accuracy-10% (positive slope) to which they 

reach maximum accuracy-10% (negative slope), and also correct for multiple comparisons (i.e. 

number of top N features tested) using Bonferroni when reporting the p-value for the maximum 

accuracy achieved. 

 For assessing the significance of the differences between decoding results (i.e. FC as 

features vs. beta estimates) we used the Accurate Confidence Intervals MATLAB toolbox for 

assessing whether the parameter p (probability of correct prediction) from two independent 

binomial distributions was significantly different 

(http://www.mathworks.com/matlabcentral/fileexchange/3031-accurate-confidence-intervals). 

Briefly, these methods search for confidence intervals using an integration of the Bayesian 
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posterior with diffuse priors to measure the confidence level of the difference between two 

proportions (Ross, 2003). We used the code prop−diff(x1,n1,x2,n2,delta), (available from the 

above website) returning Pr(p1−p2>δ), where x1, n1, x2, n2, are number of correct responses and 

total predictions in two distributions being compared, and delta (zero in our case) is the null 

hypothesis difference between the probabilities.  

Results 

Behavioral results: The average response rate in the color discrimination task was 98% 

(σ=4.6%), mean accuracy was 97% (σ=3.5%), and mean reaction time was 0.65 s (σ=0.12), 

indicating that subjects performed the color discrimination task as instructed.   

 

Discriminating between implicit processing of fearful and neutral faces with patterns of 

functional connectivity: We applied atlas-based parcellation (see Fig 11) and computed pair-wise 

correlations between 270 nodes (derived from 135 atlas-based brain regions) using 40 total time 

points of fMRI data that were segmented and concatenated from two conditions; unattended and 

nonmasked (i.e. implicit) fearful (F) and neutral (N) faces (Figure 1).  This resulted in 36,315 

total functional connections (z-transformed Pearson correlations) for each condition of interest (F 

and N).   

 We quantified the extent to which a subset of these functional connections could decode, 

or predict, the conditions from which they were derived by submitting them as features into a 

pattern classifier.  We used a linear kernel Support Vector Machine (SVM) with a filter feature 

selection based on the t-score of each feature (functional connectivity) in each training set.  

Decoding accuracies for implicit fearful vs. neutral classifications (F vs. N) were plotted against 
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the number of included features (ranked in descending order by t-score) in order to approximate 

the number of informative features relevant to the emotional expression of the facial stimulus.    

 For implicit fearful vs. neutral (F vs. N) classification, maximum accuracies of 86-96% (p 

< 0.0001) were achieved with the top 10-20 features (Fig 12A).  Anatomical display of the top 

16 overall features that differed between F and N conditions revealed functional connections 

among occipital regions, middle and superior temporal gyrus, lateral and medial prefrontal 

regions, thalamus, cerebellum and insula (Fig 12B-D, Table 4). The connections that carried the 

most weight in the linear SVM classifier was included right angular gyrus and left hippocampus, 

and left thalamus and left planum polare, which exhibited a greater correlation in the F vs. N 

condition (Table 4, F# 1-3).  To identify regions whose overall functional connectivity was 

greater during fear, the size of each node was made proportional to the sum of SVM weights of 

each of its connections.  The node with the most positive functional connectivity during fear was 

the thalamus (Figure 4B-D, large red sphere in center), which exhibited positively modulated 

functional connections with bilateral middle temporal gyrus and right insula.  
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Figure 12. Chapter 3: Large-scale functional connectivity discriminates between unattended, conscious processing 

of fearful and neutral faces. (A) Decoding accuracy when classifying F vs. N as a function of the number of features 

(1 to 40) included ranked in descending order by their absolute t-score. Maximum accuracy for F vs. N classification 

(100%, p < 0.002, corrected) was achieved when learning was based on the top 25 features in each training set.  

Mean accuracy scores for shuffled data are plotted along the bottom, with error bars representing standard deviation 

about the mean. Posterior (B), ventral (C) and right lateralized (D) anatomical representation of the top 25 features 

when classifying supraliminal fearful vs. supraliminal neutral face conditions (F vs. N).  The thalamus (large red 

sphere in the center of each view) is the largest contributor of connections the differentiate the F from N. Red 

indicates correlations that are greater in F, and blue represents correlations that are greater in N.  For display 

purposes, the size of each sphere is scaled according to the sum of the SVM weights of each node’s connections, 
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while the color of each sphere is set according to the sign of this value; positive sign, red, F > N and negative sign, 

blue, N > F. In addition, the thickness of each connection was made proportional to its SVM weight.     

  

Table 4. Chapter 4: F vs. N, Top 16 features. Consensus features are shown in bold. 

Edge label  Mean R 
Fear 

Mean R 
Neutral 

T‐value  SVM 
weight 

FSets 

Left_Thalamus_PC2 ‐ Left_Planum_Polare_PC1  0.061307  ‐0.082794  4.3082  1.7364  38 

Right_Lateral_Occipital_Cortex_inferior_division_PC2 ‐ 
Left_Juxtapositional_Lobule_Cortex_Supp_Motor_cortex_PC1 

0.09372  ‐0.071973  4.3893  1.3856  38 

Right_Angular_Gyrus_PC1 ‐ Left_Hippocampus_PC2  0.089644  ‐0.043317  4.7277  1.3773  38 

Vermis_4_5_PC1 ‐ Right_Putamen_PC1  ‐0.052167  0.068933  ‐4.0958  ‐1.1339  17 

Right_Central_Opercular_Cortex_PC1 ‐ 
Left_Planum_Polare_PC1 

0.101  0.24164  ‐4.141  ‐1.1261  25 

Right_Amygdala_PC2 ‐ Left_Putamen_PC1  0.018875  0.14839  ‐4.7533  ‐1.116  38 

Left_Supramarginal_Gyrus_posterior_division_PC2 ‐ 
Left_Lateral_Occipital_Cortex_inferior_division_PC2 

0.013263  0.15074  ‐3.9791  ‐1.112  11 

Right_Inferior_Temporal_Gyrus_posterior_division_PC1 ‐ 
Cerebelum_6_R_PC2 

‐0.02189  0.11678  ‐4.521  ‐1.1031  38 

Left_Ventral_Lateral_Occipital_Cortex_superior_division_PC2 ‐ 
Left_Accumbens_PC2 

0.039594  ‐0.10233  4.6239  1.0477  38 

Right_Ventral_Lateral_Occipital_Cortex_superior_division_PC2 
‐ Right_Middle_Temporal_Gyrus_posterior_division_PC2 

0.041073  ‐0.063035  5.3268  1.0433  38 

Left_Middle_Temporal_Gyrus_anterior_division_PC2 ‐ 
Left_Lateral_Occipital_Cortex_inferior_division_PC1 

‐0.028552  0.062753  ‐4.1191  ‐1.0078  23 

Left_Temporal_Occipital_Fusiform_Cortex_PC2 ‐ 
Cerebelum_8_L_PC1 

0.040634  ‐0.098713  4.2072  1.0032  35 

Vermis_7_PC2 ‐ Midbrain_PC1  0.12648  ‐0.001608  4.5083  0.99178  38 

Right_Temporal_Occipital_Fusiform_Cortex_PC1 ‐ 
Right_Amygdala_PC1 

0.23713  0.10776  4.9032  0.90304  38 

Left_Temporal_Fusiform_Cortex_anterior_division_PC1 ‐ 
Left_Paracingulate_Gyrus_PC1 

‐0.14323  ‐0.016626  ‐4.2079  ‐0.77203  34 

Left_Superior_Frontal_Gyrus_PC2 ‐ 
Left_Cingulate_Gyrus_posterior_division_PC2 

0.069026  ‐0.074108  4.4018  0.67325  38 

 

  In addition to parcelating the brain and defined nodes based on an atlas, we also 

functionally defined nodes using two approaches 1) using the same 160 MNI coordinates as used 

in Dosenbach et. al., 2010 (Dosenbach et al., 2010b) which were selected and defined based on 



 

77 

separate meta-analyses of the fMRI literature, and 2) a biased approach based on 92 nodes (2 

eigenvariates from each of 49 ROIs defined as 6 mm radius spheres centered at peak 

coordinates) that were based on the GLM results from the same, whole dataset (for F contrast F > 

N thresholded at p=0.05, k=30).  For 1) achieved accuracies were 63-73% when using 75 to 130 

features, and for 2) accuracies between 76-86% were obtained when using 80 to 140 features 

(data not shown).  Approach 2) is biased in that we defined our nodes based on the GLM results 

of the whole data set, and as such provides an upper bound on the expected accuracies when 

functionally defining nodes based on the GLM results in separate training sets during each 

iteration of LTOCV. Therefore we conclude that the above whole-brain, atlas-based approach, 

which achieved 86-96% accuracy with 10-20 features when using unbiased feature selection, is 

optimal to using functionally defined nodes.   

 

Discriminating between F and N faces using spatial patterns of activation: To compare the 

information content of patterns of interactivity (i.e. functional connections used above) vs. 

patterns of activity we also attempted F vs. N classifications using beta estimates, which are 

considered summary measures of activation in response to each condition. In order to make 

feature-selection/LTOCV and SVM learning more computationally tractable, preprocessed 

functional data were resized from 2x2x2 mm voxel resolution to 4x4x4 mm resolution, and 

subject-specific GLM models were re-estimated, resulting in a reduction of total feature space 

per example from ~189,500 betas to ~23,500. Feature selection, LTOCV and SVM learning 

proceeded exactly as above for FC data. We observed accuracies of 66%-76% with ~500 to 2600 

features, with peak accuracy at 76% (p = 0.0044, uncorrected) at ~1900 features (Fig 13A).  The 

most informative voxels encompassed many distributed regions that included dorsolateral 
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prefrontal/opercular cortex, fusiform gyrus, lateral occipital cortex, superior temporal gyrus, 

anterior cingulate, amygdala, parahippocampal gyrus, ventrolateral prefrontal cortex, pulvinar, 

precuneus, cerebellum, inferior parietal lobe and insula (Fig 13B).  Although significantly above 

chance, and despite the involvement of many more regions, maximum accuracy using betas was 

significantly less than the maximum accuracy achieved with FC (76% < 100%, p=5.37x10-7). 

 

 

Figure 13.Chapter 4:  Classification results using beta estimates as features. (A) Feature selection, cross-validation 

and SVM learning were performed exactly the same as for FC, but over the range of 1 to 4000 ranked features 

(voxels). Accuracies for F vs. N classification reached 66-76% with ~500-2500 features, with maximum accuracy 

(76%, p = 0.0044, uncorrected) at ~1,900 features. (B) The most informative voxels with positive SVM weights (F > 

N, yellow) included fusiform gyrus (-28,-20,-12), cerebellum (-28, -20), amygdala (-20), insula (-12), orbital and 

ventrolateral prefrontal cortex (-20, -12, -4), midbrain (-12), parahippocampal gyrus (-12), middle temporal gyrus 

and superior temporal sulcus (-12,-4,4), thalamus/pulvinar (4), dorsolateral prefrontal/opercular cortex (12,20,28), 

dorsomedial prefrontal cortex (20,28), and superior occipital cortex (20,28) and inferior parietal lobe (36). 

Informative voxels with negative SVM weights (N > F, blue) included temporal-occipital cortex (-20), subgenual 
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anterior cingulate (-12,-4), striatum (-4,4), lingual gyrus (4,12), precuneus (20) and dorsolateral prefrontal cortex 

(28,36). (B). Brain images are displayed using Neurological convention (i.e. L=R), and top left number in each 

panel represents the MNI coordinate (z) of depicted axial slice. 

 

 We performed additional classifications using betas derived from the original, smaller 

voxel-sizes and with the addition of an initial (positively biased) feature selection step over the 

whole-dataset for the same issues of technicality stated above. This also served to estimate an 

upper bound on the expected accuracy when using beta-values: if maximum accuracy achieved 

was still less than when using functional connectivity with unbiased feature selection, then we 

can more readily conclude that functional connectivity features are more “informative” than beta 

estimates (when using the Canonical Hemodynamic Response Function (HRF) to model 

activation). For this analysis, the initial (biased) feature selection employed an F-test of the 

contrast F>N thresholded at p<0.01, cluster threshold=20, resulting in 4,226 total initial features. 

Feature selection/LTOCV and classification again proceeded as above across the range of 1 to 

4000 features. In spite of initially biased feature selection, F vs. N classification reached 92% 

maximum accuracy (data not shown).   

 In addition to using beta maps throughout the whole-brain, we derived beta weights using 

the same summary time courses (eigenvariates) that were extracted and used to compute pair-

wise FC (270 total betas per condition per subject). For this, the GLM analysis was kept the 

same as above except that previously included nuisance regressors (6 motion, mean white and 

mean csf) and a low-pass filter were not included, since they were already removed from the 

time courses during extraction. Resulting estimated beta weights were then used as features to 

predict fearful vs. neutral faces using the exact same procedure when using whole-brain FC. 

Accuracies of between 69-79% were achieved with between 40 to 150 features (data not shown). 
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Discussion 

 Here we demonstrate that pattern analysis of large-scale functional connectivity can 

reliably decode the emotional expression of implicitly perceived faces, and that pair-wise 

functional connections are modulated by implicit fear perception.  This work also demonstrates a 

whole-brain, large-scale and exploratory approach for the identification of condition-specific, 

functional connectivity that avoids correcting for multiple comparisons among thousands of 

connections (discussed more below).  

 One of the more significantly modulated functional connections during implicit 

presentation of fearful faces was between left hippocampus and right angular gyrus. The left 

hippocampus is a key region for memory (i.e. autobiographical memory retrieval) and the right 

angular gyrus has been implicated in mentalizing, or inferring the thoughts and feelings of others 

(Spreng and Mar, 2010).  Interestingly, during resting states, these two regions were found not to 

correlate with each other, but instead correlated with other regions that substantially overlapped, 

such as superior temporal sulcus (STS), anterior temporal lobe, posterior cingulate cortex, 

dorsomedial and ventral prefrontal cortex, inferior frontal gyrus, and the amygdala.  It has been 

proposed that this functional overlap facilitates the integration of personal and interpersonal 

information and provides a means for personal experiences to become social conceptual 

knowledge (Spreng and Mar, 2010).  Here, we observed the left hippocampus and right angular 

gyrus were correlated during implicit emotion (fear) perception, suggesting the integration of 

autobiographical memory with mentalizing during implicit perception of emotional faces.   

 Other connections that discriminated between implicitly presented fearful and neutral 

faces included thalamus, superior and lateral occipital, superior frontal gyrus, precentral gyrus, 



 

81 

cerebellum, striatum, parietal and posterior and anterior temporal regions (in the vicinity of the 

superior temporal sulcus, STS).  This latter observation is consistent with previous models and 

group studies that identify the STS and middle temporal gyrus as a primary neural substrate for 

processing the emotional expression of faces (Engell and Haxby, 2007; Haxby et al., 2002; 

Sabatinelli et al., 2011), and recent work demonstrating that multivariate pattern analyses applied 

to these regions could decode explicit emotional face recognition (Peelen et al., 2010; Said et al., 

2010; Tsuchiya et al., 2008).  Importantly, the current findings suggest that interactions of 

temporal regions and STS with areas such as cerebellum, thamalus, lateral occipital cortex and 

central opercular cortex (Table 4 F# 1, 5, 8 and 10) are also involved in implicit emotion 

perception.    

 An amygdala-FG interaction did appear among the top features for discriminating 

between implicit fearful and neutral faces and also was a consensus feature (Table 4, F#14): this 

is predicted by previous studies have shown that emotional faces modulate amygdala-fusiform 

(FG) interactions (Fairhall and Ishai, 2007; Sabatinelli et al., 2005; Vuilleumier et al., 2004)}} 

and further contributes face validity in the ability of the current approach to not only identify 

informative, but also neurophysiologically meaningful, features in decoding fear. The structure 

with the overall highest weight in discriminating between the fear and neutral conditions was 

thalamus (Fig 12C and D, largest red sphere in center), which exhibited greater correlation with 

left superior gyrus (STS) during the fear condition (Table 4 F#1). This observation is consistent 

with its purported role as a hub integrating cortical networks during the evaluation of the 

biological significance of affective visual stimuli (Pessoa and Adolphs, 2010), and with the 

observation of direct structural connectivity between several sub-regions of the thalamus with the 
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STS (Yeterian and Pandya, 1991). The current results suggest that functional connectivity 

between thalamus and STS play a prominent role during implicit fear perception. 

 Interestingly, functional connections of the cerebellum were also significantly modulated 

during the fear condition. In particular, functional connections of the cerebellum with midbrain 

(Table 4 F# 13) and fusiform gyrus (F# 12) were increased during fear, while connections with 

putamen (F# 4) and inferior temporal gyrus (F#8) were decreased.  Although cerebellum has 

been frequently reported to be activated or involved during emotion processing (Fusar-Poli et al., 

2009; 2010; Karama et al., 2011), the specific roles the various subregions play during affective 

processing remain to be elucidated (Stoodley and Schmahmann, 2010).   

  

Large-scale functional network of fear processing: It is clear that fearful emotion processing and 

its behavioral consequences involve the complex interactions among many distributed regions 

(Coplan and Lydiard, 1998; Gorman et al., 2000; Kent and Rauch, 2003).  Among these, the 

amygdala and its interactions with the frontal and visual cortex are critically involved in attended 

and pre-attentive threat and emotion processing (Banks et al., 2007; Bishop et al., 2004; Etkin et 

al., 2004; 2006).  Numerous previous studies have examined functional interactions between 

amygdala and several other regions in the fear and facial emotion processing pathway. Usually 

these have used Psycho-Physiological Interaction (PPI) analysis to study the functional 

connectivity of a seed region, often the amygdala, with the rest of the brain during a fearful 

relative to non-fear perceptual or cognitive state (Banks et al., 2007; Pezawas et al., 2005). Other 

studies employed effective connectivity measures such as structural equation modeling (SEM) 

and dynamic casual modeling (DCM) to examine multiple interactions among a more limited set 

of a priori defined regions (Fairhall and Ishai, 2007; Stein et al., 2007) 
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 In contrast to the above-mentioned studies, the current approach is relatively model-free 

in that we estimate functional connectivity throughout the whole-brain without a priori 

restrictions based on anatomically defined areas or seed regions.  We estimate network 

connections using simple correlation measures, similar to a previous study that demonstrated 

condition dependent modulations in large-scale (41 nodes) functional connectivity across various 

syntactical language production tasks (Dodel et al., 2005) but on a much larger scale (270 nodes 

in the current analysis).  We then identified a subset of functional connections whose pattern 

could discriminate between implicit fearful and neutral face processing. 

 

An approach to estimate condition specific large-scale functional connectivity: There is 

considerable interest in examining the large-scale functional network architecture of the brain as 

a function of various cognitive processes or individual variation (Smith et al., 2011). This is 

often done by first defining a set of functional "nodes" based on spatial ROIs and then 

conducting a connectivity analysis between the nodes based on their FMRI timeseries.  Group-

based statistical parametric mapping can then be applied to resulting connections (Ginestet and 

Simmons, 2011). However, as the number of nodes (N) increases, the number of connections 

increases exponentially (# connections = (N*(N-1))/2) resulting in a multiple comparisons 

problem, and hindering the exploration-based query of condition-specific whole-brain functional 

connectivity on a large-scale. The equivalent of cluster-extent thresholding for graphs has been 

proposed, such as the Network Based Statistic (Zalesky et al., 2010), which estimates the 

probability of observing groups of linked, suprathreshold edges based on chance.  However, 

inferences can only be made on groups of interconnected edges, not individual ones. In addition, 

there is a substantial loss of information in model-based approaches when conducting statistical 
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inference on signals (functional connections) averaged over a group of subjects, and discounting 

the joint responses among many functional connections. 

    Here, we present a novel alternative to identify functional connections of interest based 

on their information content in machine-learning based multivariate pattern analyses that attempt 

to discriminate between two conditions that differ based on a parameter of interest (in this case 

the emotion expression of a presented face).  For this we used linear filter feature selection and 

plotted classification accuracy vs. number of included features in order to determine the number 

of features required to distinguish between conditions, and then identified the top N features on 

neuroanatomical display.  

 

“Information content” of neural activity vs. neural interactivity: Large-scale functional 

connectivity and network analysis has been increasingly used as the tool of choice for extracting 

meaningful and understanding complex brain organization (Smith et al., 2011).  In the current 

work we applied simple Pearson correlation to estimate the large-scale functional connectivity of 

implicit threat-related emotion and ambiguous facial processing using a block-design.  Previous 

work based on simulations has indicated that correlation-based methods, including Pearson 

correlation, are in general quite successful in capturing true network connections (Smith et al., 

2011).  Here we “validated” the estimated connections by testing whether a subset of features 

could be used to decode (“brain-read”) the emotional expression of the facial stimulus that was 

presented during each block.  For this we applied Multivariate Pattern Analyses (MVPA) 

techniques similar to those used previously to decode categories of viewed stimuli (Cox and 

Savoy, 2003; Hanson et al., 2004; Haxby et al., 2001; Mourao-Miranda et al., 2005; O'Toole et 
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al., 2005) orientation (Haynes and Rees, 2005; Kamitani and Tong, 2005) and the decisions 

made during a near-threshold fearful face discrimination task (Pessoa and Padmala, 2007). 

       In contrast to the above-mentioned studies, which applied MVPA to the activity of 

spatially distributed regions and/or voxels, in the current work we applied pattern analysis to the 

correlations, or interactivity, between regions distributed throughout the whole-brain.  We 

compared the decoding accuracy when using correlations as features versus beta estimates, (i.e. 

summary measures of activation amplitudes for each condition for each voxel).  We observed 

that the peak classification rate when using betas (76%, ~1900 features) was significantly lower 

than that achieved using FC (96%, ~16 features).  Even with an additional, initial feature-

selection based on the entire data set which positively biased results, peak decoding accuracies 

when using ~4,000 beta values (92%) were lower than those reached when using only ~16 

correlations as features and unbiased feature selection (96%). This suggests that there is 

substantially more information, relevant to cognitive-emotional neural processing, that is 

contained in the interactions between regions than is typically realized through standard 

univariate approaches.  However, it should be noted that this requires enough TRs (time-points) 

to compute meaningful correlations between brain regions for a particular condition, and would 

thus in general be impractical for decoding single-trial or event-related data.  

   We observed that using whole-brain, anatomically defined ROIs to define nodes for 

whole-brain FC estimation yielded much higher classification rates than using nodes that were 

functionally defined (either from other meta-analyses or coordinates defined from GLM analysis 

of these same data).  This was not too surprising, as these functionally defined ROIs were 

smaller (6 mm radius spheres centered around peak F-value coordinates from the contrast of F > 

N obtained from the GLM vs. atlas-based masks), and hence provided considerably less 
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coverage of the brain. In addition, the GLM framework relies on multiple assumptions (i.e. 

model/shape of hemodynamic response function, effects add linearly, etc.) (Monti, 2011) and 

regions that show activation to a stimulus (i.e. sustained increase in signal amplitude during the 

duration of a block) may not necessarily exhibit differential functional connectivity and vice 

versa.  These observations further the notion that there exists substantial information in whole-

brain large-scale functional connectivity patterns, the nodes of which may not be captured or 

revealed adequately through standard GLM approaches. 

 

Limitations: Previous simulations have raised concerns regarding the use of atlas-based 

approaches for parcellating the brain (Smith et al., 2011).  Because the spatial ROIs used to 

extract average time-series for a brain region do not likely match well the actual functional 

boundaries, BOLD time-series from neighboring nodes are likely mixed with each other. While 

this hampers the ability to detect true functional connections between neighboring regions, it has 

minimal effect on estimating functional connectivity between distant regions. This perhaps 

explains why in this study most of the functional connections that discriminated between fearful 

and neutral faces are long-distance.  Future experiments using non-atlas based approaches would 

likely lead to better estimates of shorter-range functional connections.  We also note that the 

current atlas-based approach may have under-sampled the prefrontal cortex, and that possible 

future improvements could break up the prefrontal regions into smaller pieces in order to sample 

more nodes from this area. 

         Using Pearson correlation, it is possible that any association between two brain regions is 

the result of a spurious association with a third brain region.  Another limitation of the current 

study is the required amount of data used to extract quality features of brain activity.  Our use of 
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correlations as features required a substantial number of time points (i.e. 40 scans per condition 

per subject) relative to previous studies of decoding emotion perception. Given this, it was not 

feasible to sample enough examples within a single or few subjects as is typical in multivariate 

pattern analysis studies, and we instead pooled examples across multiple subjects.  On the other 

hand, the fact that reliable classifiers could be learned using examples from separate subjects 

speaks to the generalizability of our obtained results.   

 

 

  



 

88 

CHAPTER 5 
 

CORTICAL FUNCTIONAL CONNECTIVITY DECODES SUBCONSCIOUS, TASK-
IRRELEVANT THREAT-RELATED EMOTION PROCESSING4 

 

Summary 

It is currently unclear to what extent cortical structures are required for and engaged during 

subconscious processing of biologically salient affective stimuli (i.e. the ‘low-road’ vs. ‘many-

roads’ hypotheses). Here we show that cortical-cortical and cortical-subcortical functional 

connectivity (FC) contain substantially more information, relative to subcortical-subcortical FC 

(i.e. ‘subcortical alarm’ and other limbic regions), that predicts subliminal fearful face processing 

within individuals using training data from separate subjects. A plot of classification accuracy vs. 

number of selected whole-brain FC features revealed 92% accuracy when learning was based on 

the top 8 features from each training set.  The most informative FC was between right amygdala 

and precuneus, which increased during subliminal fear conditions, while left and right amygdala 

FC decreased, suggesting a bilateral decoupling of this key limbic region during processing of 

subliminal fear-related stimuli.  Other informative FC included angular gyrus, middle temporal 

gyrus and cerebellum. These findings identify FC that decodes subliminally perceived, task-

irrelevant affective stimuli, and suggest that cortical structures are actively engaged by and 

appear to be essential for subliminal fear processing. 

Introduction 

 The human brain has evolved specialized neural mechanisms for recognizing and 

processing the emotional expressions of faces (Adolphs, 2001).  Of particular importance are 

                                                 
4 Pantazatos, Spiro P, Ardesheer Talati, Paul Pavlidis, and Joy Hirsch. 2012b. Cortical functional connectivity 

decodes subconscious, task-irrelevant threat-related emotion processing. NeuroImage.  
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faces with fearful expressions, which are thought to signal the presence of a source of danger 

within the environment (Ewbank et al., 2009).  It is commonly assumed that threat-related and 

other biologically salient affective signals are processed automatically, without the requirement 

of awareness or attention, by a sub-cortical pathway involving the superior colliculus, pulvinar 

and amygdala (i.e. ‘subcortical alarm’ system, or ‘low road’ hypothesis) (Liddell et al., 2005; 

Tamietto and de Gelder, 2010).  However, recent evidence has initiated debate regarding the 

extent to which these stimuli engage and rely upon cortical networks that are coordinated by sub-

cortical regions such as the amygdala and thalamus (i.e. the ‘many roads’ and related 

hypotheses) (Pessoa and Adolphs, 2011).   

 Evidence arguing for the ‘many-roads’ hypothesis includes anatomical and physiological 

data in animal models, and behavioral, non-invasive neurophysiology and lesion studies in 

humans, while data to support the ‘low-roads’ hypothesis in humans has included group 

neuroimaging studies that have reported greater activation in sub-cortical “alarm” regions for 

subliminal affective stimuli relative to non-affective stimuli (Liddell et al., 2005) as well as 

increased covariation of right amygdala with pulvinar and superior colliculus during masked fear 

conditioning using Positron Emission Tomography (PET) imaging (Morris et al., 1999) see 

((Pessoa and Adolphs, 2010; 2011; Tamietto and de Gelder, 2010; de Gelder et al., 2011)for 

detailed reviews and perspectives). 

 Compared to multivariate pattern analyses which take into account the joint responses (or 

covariations) of multiple brain regions, group GLM neuroimaging approaches are relatively 

insensitive due to loss-of-signal from averaging across many sessions and subjects (Cox and 

Savoy, 2003; Norman et al., 2006).  An alternative and complementary approach, that could 

reduce signal-loss and the risk of false positives is to apply multivariate pattern analysis to 
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identify regions of the brain that contain enough information to distinguish between 

subconscious presentation of biologically salient affective and non-affective stimuli, such as 

masked fearful and neutral faces. 

 Although the neural correlates of subliminal (both either task- and task-irrelevant) and 

threat-related emotional face processing have been extensively investigated using group fMRI 

studies (Etkin et al., 2004; Fusar-Poli et al., 2009; Kouider et al., 2009; Liddell et al., 2005; 

Pessoa, 2005) as well as group EEG (Kiss and Eimer, 2008; Pegna et al., 2011), features of brain 

activity that contain sufficient information to reliably decode, or “brain-read”, the emotional 

expression of subliminally processed faces remain to be identified.  Identifying such features 

could be a crucial step towards understanding the subconscious encoding and processing of 

affective facial stimuli, since these features would have a greater capacity (though less well 

quantified) for representing distinctions between fear- and non-fear- related cognitive-emotional 

perceptual states than those previously identified through standard brain mapping approaches 

(Norman et al., 2006). This is a particularly important goal given that deficits in facial affect 

processing are thought to underlie psychiatric disorders such schizophrenia, autism, and anxiety 

(Harms et al., 2010; Machado-de-Sousa et al., 2010).  

 Decoding, or predicting, a presented stimulus or cognitive state based on brain activity 

has mostly relied on multi-voxel pattern analysis (MVPA) approaches that take into account the 

joint, multivariate response of multiple voxels and/or brain regions (see (Norman et al., 2006) for 

a review). The above approaches have been increasingly applied toward the problem of 

identifying features of brain activity that can decode explicit emotional face perception (see 

discussion for a brief review).  Statistically significant, albeit modest, decoding accuracies have 

been demonstrated when using activation (i.e. either instantaneous, time-averaged activity or 
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summary measures of activation such as beta estimates derived from SPM maps) of spatially 

distributed voxels or regions as input features when predicting the emotional expressions of 

perceived faces.  However, like most other complex brain processes, threat-related stimuli and 

face perception consists of the coordinated functional connectivity among distributed cortical 

and sub-cortical brain regions (Ishai et al., 2005; Kober et al., 2008; Vuilleumier and Pourtois, 

2007).  Hence, whole-brain functional connectivity patterns may be more informative than 

spatial activation patterns when decoding subliminally processed facial emotion.  

 The current fMRI study employed a blocked design in which subjects were instructed to 

identify the color of pseudo-colored masked fearful and neutral faces (Etkin et al., 2004).  Our 

primary objective was to test the hypothesis that whole-brain functional connectivity (here 

Pearson correlation using 40 or 10 time points of fMRI data per example) can discriminate 

between task-irrelevant and subliminally presented (backwardly masked) fearful and neutral 

faces, and to identify the functional connections that are most informative in this decoding task.  

Our secondary objective was to directly assess and compare the decoding ability of correlations 

that were restricted to regions of the ‘sub-cortical alarm pathway’ and other limbic regions.  

 Finally, we compared the decoding accuracies achieved when using functional 

connectivity (FC, or pair-wise correlations) vs. activity (i.e. beta estimates from SPM maps).  We 

show that a small subset of connections estimated across the whole-brain (most of which are 

cortical-subcortical and cortical-cortical that include temporo-parietal regions), can “brain-read” 

subliminally presented fearful faces with significantly higher accuracies than subcortical-

subcortical functional connections restricted to ‘subcortical alarm’ and other limbic regions. In 

addition, patterns of spatial activity were significantly less informative than whole-brain FC in 

discriminating between these two conditions. These findings support the notion that the cortex 
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plays an active and essential role in subliminal affect processing, and that this neural processing 

is sub-served by complex interactions among distributed brain regions.   

Methods  

Subjects: A total of 38 (19 female) healthy volunteers (mean age = 29, SD = 6.9) with 

emmetropic or corrected-to-emmetropic vision participated in the study in accordance with 

institutional guidelines for research with human subjects. All subjects were screened to rule out 

severe psychopathology.  

 

Stimuli Presentation Paradigm: Subjects performed a previously reported task (Etkin et al., 

2004) which consists of color identification of masked and unmasked fearful and neutral faces 

(Fig 9).  Results for unmasked conditions, which were used to address separate questions about 

processing of supraliminal fearful stimuli from those considered here, were presented in Chapter 

3.  See Chapter 3 Methods for more details regarding stimuli.  

 

Behavioral task: See Chapter 3 Methods for details. Additionally, while still in the scanner and 

after the main presentation paradigm, subjects were administered a forced-choice test under the 

same presentation conditions as the functional run and asked to indicate whether they saw a 

fearful face or not. These data were used to determine d-prime (d′) values using the formula: d’ = 

z(hit rate) – z(false alarm rate), where z represents transformation to z-scores.  After the imaging 

session, subjects were shown the stimuli again, alerted to the presence of masked faces, and 

asked to indicate whether they had been aware of fearful faces.   

 

fMRI Data Acquisition: See Chapter 3 Methods. 



 

93 

 

GLM  analysis: See Chapter 3 Methods. 

 

Node definitions: Whole-brain parcellation was similar to Chapter 3, and is recapitulated in Fig 

15A and 15B below, while sub-cortical alarm parcellation included bilateral masks for 

hippocampus, dorsal and ventral amygdala, insula and caudate, anterior cingulate, pulvinar and 

superior colliculus were defined using WFU_pickatlas with the exception of superior colliculus 

and locus ceruleus, which were manually drawn using FLSview (amygdala was manually 

separated into dorsal and ventral regions along z=0) (Fig 15C).  These regions produced 32 

nodes (not shown) and 496 total features. Average MNI locations for each node are listed in 

Supplementary Table 2 of (Pantazatos, Talati et al., 2012b). 

 

Figure 14. Chapter 5: Whole-brain and "sub-cortical alarm" parcellation. (A) Cortical and subcortical regions 

(ROIs) were parcellated according to bilateralized versions of the Harvard-Oxford Cortical and Subcortical-atlases, 

and the cerebellum was parcellated according to the Automated Anatomical Labeling (AAL) atlas ROIs were 

trimmed to ensure there was no overlap between them and that they contained voxels present in each subject. (B) 
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The top two eigenvariates from each ROI was extracted, resulting in 270 total nodes throughout the brain. For 

display purposes, node locations (black spheres) correspond to the peak loading value from each time-course’s 

associated eigenmap averaged over all subjects. (C) Bilateral masks for hippocampus, dorsal and ventral amygdala 

(left top slice; middle ROIs), insula and caudate (left middle slice; middle ROIs), anterior cingulate, pulvinar and 

superior colliculus (left bottom slice; top, middle and bottom ROIs respectively) were defined using WFU_pickatlas 

with the exception of superior colliculus and locus ceruleus, which were manually drawn using FLSview (amygdala 

was manually separated into dorsal and ventral regions along z=0). 

 

Functional connectivity networks for subliminal fearful and neutral face processing: See Chapter 

Methods. For the current binary classification of interest (i.e. MF vs. MN), correlation matrices 

were demeaned with respect to the average between the two conditions in order to remove the 

effects of inter-subject variability. The lower triangle of the above preprocessed correlation 

matrices (38 subjects X 2 conditions total) were then used as input features to predict viewed 

stimuli. 

 

Pattern analysis of large-scale functional connectivity to predict subliminal (and implicit) fear 

perception: See Chapter 3 Methods. We plotted classification accuracy vs. every 5 features from 

the top 1 through 200 (the maximum number was chosen heuristically based on (Dosenbach et 

al., 2010b)).  Other than a peak near 10 features, accuracies hovered near 50%. Therefore we 

changed the range to every single feature from top 1 through 20.  For sub-cortical 'alarm' FC we 

used the same initial range (5 to 200) to confirm that accuracies also hovered near 50% beyond 

10 features, and then plotted results using 1 to 20 features as above.  We also plotted the null 

distribution and assessed the significance of peak decoding results by computing the frequency 

in which actual values surpassed those from null distributions derived by randomly permuting 
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class labels. To derive this null distribution, class labels within each pair conditions from each 

subject were randomly flipped with a probability of 0.5 over 10000 iterations (top N features at 

which peak accuracy was achieved) or 50 iterations (for plots at each number of included 

features). Uncorrected p-values were reported, and unless otherwise stated, p-values were also 

corrected at p<0.05 for multiple comparisons using Bonferroni procedure. For plots, 95% 

Confidence Intervals (95% CI) of the accuracy score were calculated using the normal 

approximation interval of the binomial distribution: (p±Zc*√[p(1-p)/n], where 

p=TP+TN/(TP+FP+TN+FP), Zc=97.5 percentile of a standard normal distribution, and n=sample 

size. This formula was used as it is the simplest and most commonly used to approximate 

confidence intervals for proportions in a statistical population, and because there was adequate 

sample size and proportions were not extremely close to 0 or 1(Newcombe, 1998).   

 SVM learning and classification followed similar procedures as in Chapter 3. For 

assessing the significance of the differences between decoding results (i.e. whole-brain FC as 

features vs. subcortical FC) we used the Accurate Confidence Intervals MATLAB toolbox for 

assessing whether the parameter p (probability of correct prediction)  from two independent 

binomial distributions was significantly different 

(http://www.mathworks.com/matlabcentral/fileexchange/3031-accurate-confidence-intervals). 

Briefly, these methods search for confidence intervals using an integration of the Bayesian 

posterior with diffuse priors to measure the confidence level of the difference between two 

proportions (Ross 2003). We used the code prop−diff(x1,n1,x2,n2,delta), (available from the above 

website) returning Pr(p1−p2⩾δ), where x1, n1, x2, n2, are number of correct responses and total 

predictions in two distributions being compared, and delta (zero in our case) is the null 

hypothesis difference between the probabilities.  
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Results 

Behavioral results:  The average response rate in the color discrimination task was 98% 

(stdev=4.6%), mean accuracy was 97% (stdev=3.5%), and mean reaction time was 0.65 s 

(stdev=0.12), indicating that subjects performed the task as instructed. In the task used to 

determine d’ scores (see methods), twelve subjects reported that no masked fearful face had been 

presented).  In the remaining subjects, mean observed d’ score was 0.13, std = 0.35, and the max 

was 0.71 (~65% accuracy).  A one-sample t-test confirmed these scores were not significantly 

different than zero (p=0.07). We also included the twelve subjects who only responded with 

misses and correct rejections. In order to do so we had to slightly adjust their hit rate and false 

alarm from 0 and 1 to 0.01 and 0.99 respectively, since the z-transform is undefined at 0 and 1. 

These subjects’ d’ scores thus all became -4.65, and when they were included in a new one-

sample t-test the overall scores were significantly negative (p=0.0006). Taken together, the 

above results indicate that backward masking was successful.  

 

Discriminating between subliminal processing of fearful and neutral faces with whole-brain 

patterns of functional connectivity: We applied atlas-based parcellation and computed pair-wise 

correlations between 270 cortical and sub-cortical brain regions, or nodes, using 40 total time 

points of fMRI data that were segmented and concatenated from two conditions; task-unrelated 

viewing of backwardly masked fearful (MF) and neutral (MN) faces (similar to Fig 10 in 

previous chapter).  This resulted in 36,315 total functional connections (z-transformed Pearson 

correlations) for each condition (MF, MN).  The atlas-based parcellation scheme and average 

node locations are shown in Fig 14A and B, while MNI coordinates and labels corresponding to 

each node are listed in Supplementary Table 1 in (Pantazatos, Talati et al., 2012b). 
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 The extent to which a subset of these functional connections could decode, or predict, the 

conditions from which they were derived was quantified by submitting them as features into a 

linear kernel SVM pattern classifier using filter feature selection based on the t-score of each 

feature (functional connectivity) in each training set.  Decoding accuracies for subliminal fearful 

vs. neutral classifications (MF vs. MN) were plotted against the number of included features 

(ranked in descending order by t-score) in order to approximate the number of informative 

features relevant to the emotional expression of the facial stimulus. For MF vs. MN 

classification, accuracy reached a maximum of 82% (p < 0.0001) when learning was based on 

the top 9 features in each training set, while accuracies remained above 75% from 10-20 features 
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(Fig 14A).  Features were display neuroanatomically Fig 14B-D and are listed in Table 5. 

 

Figure 15. Chapter 5: Large-scale functional connectivity discriminates between processing of masked fearful and 

neutral faces. (A)  Decoding accuracy when classifying MF vs. MN as a function of the number of features (1 to 20) 

ranked in descending order by their absolute t-score.  Maximum accuracy for MF vs. MN classification (82%, p < 

0.0001) was achieved when learning was based on the top 9 features in each training set.  Ventral (B), right (C) and 

left (D) lateralized anatomical representation of the top 9 overall features.  Red indicates correlations that are greater 

in MF, and blue represents correlations that are greater in MN. For display purposes, the color of each sphere is set 

according to the sign of the sum of the SVM weights of each node’s connections; positive sign, red, MF > MN and 

negative sign, blue, MN > MF, and the thickness of each connection was made proportional to its weight. 

Abbreviations: L SFg = Left Superior Frontal Gyrus PC2, L OFC = Left Frontal Orbital Cortex PC2, R MTg = 
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Right Middle Temporal Gyrus PC2, L Cer = Left Cerebellum, R ICC = Right Intracalcarine Cortex, L DLOC = Left 

Dorsal Lateral Occipital Cortex.   

 

Table 5. Chapter 5: MF vs. MN, Top 9 features. Consensus features are shown in bold, and Fsets 

refers to number of training sets in which that feature was selected. 

Edge label  Mean R MF  Mean R 
MN 

T‐value  SVM 
weight 

FSets 

Left_Superior_Frontal_Gyrus_PC2 ‐ 
Left_Frontal_Orbital_Cortex_PC2 

‐0.0079881  ‐0.12867  4.5835  1.9781  38 

Right_Middle_Temporal_Gyrus_posterior_division_PC2 ‐ 
Cerebelum_6_L_PC1 

0.068222  ‐0.09052  5.0103  1.6945  38 

Right_Temporal_Fusiform_Cortex_anterior_division_PC1 ‐ 
Left_Middle_Temporal_Gyrus_posterior_division_PC2 

‐0.091167  0.079443  ‐4.4287  ‐1.6638  23 

Right_Supramarginal_Gyrus_posterior_division_PC1 ‐ 
Right_Middle_Temporal_Gyrus_posterior_division_PC1 

0.067526  ‐0.10074  4.5524  1.6333  36 

Right_Intracalcarine_Cortex_PC2 ‐ 
Left_Dorsal_Lateral_Occipital_Cortex_superior_division_PC1 

‐0.031813  0.10989  ‐4.3699  ‐1.6219  20 

Left_Middle_Temporal_Gyrus_posterior_division_PC1 ‐ 
Left_Cingulate_Gyrus_anterior_division_PC1 

0.17677  0.019301  4.6431  1.601  37 

Left_Middle_Temporal_Gyrus_temporooccipital_part_PC1 
‐ Cerebelum_6_L_PC1 

0.1089  ‐0.037114  4.7473  1.3721  38 

Right_Middle_Temporal_Gyrus_posterior_division_PC1 ‐ 
Right_Angular_Gyrus_PC1 

0.14702  0.0068463  4.3078  1.3644  15 

Right_Amygdala_PC2 ‐ Left_Amygdala_PC1  ‐0.057707  0.055489  ‐4.5929  ‐0.96079  38 

 

 

 Although time-series were high-pass filtered and white-matter and csf signal was 

removed, it is possible that slow frequency drifts (just below periods of 128 s and manifesting 

within global grey matter signal) remained, and that these drifts could have artificially increased 

the variance in (and hence affect the correlation between) the concatenated time series. Given 

our use of counterbalanced designs, this effect should not have been enhanced in the 

concatenated time-series from one condition over the other, and hence any differences in FC 
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between conditions should be attributed to differences in stimulus features of subliminally 

presented faces, not the above-mentioned potential artifacts.  

 

Discriminating between MF and MN faces using functional connectivity among ‘sub-cortical 

alarm’ system and other limbic regions: Previous work in animal models confirms a sub-cortical 

“alarm” pathway for fast and subliminal fear processing through the superior colliculus, pulvinar 

and amygdala (Tamietto and de Gelder, 2010).  However, direct evidence for this pathway in 

humans is sparse (Pessoa and Adolphs, 2010).  We tested whether functional connectivity among 

these and other sub-cortical and limbic ROIs could discriminate between masked threat-related 

and neutral facial stimuli using masks for left and right dorsal and ventral amygdala, pulvinar, 

insula, anterior cingulate, hippocampus, caudate and bilateral superior colliculus and locus 

ceruleus (Figure 14C).  Classifications used pair-wise functional connections among the above 

regions (32 nodes, 496 total features) and were performed as above. In contrast to peak decoding 

results obtained when using functional connections across the whole-brain (82%), MF vs. MN 

discrimination using features restricted to ‘sub-cortical alarm’ and limbic regions did not surpass 

45% (data not shown). Thus classification accuracy using only subcortical 'alarm' and limbic 

ROIs was less effective than using ROIs throughout the whole-brain.  

 

Discriminating between MF and MN faces with patterns of activation: To compare the 

information content of patterns of functional connectivity (i.e. functional connections used 

above) vs. patterns of neural activity, we also performed MF vs. MN classification using beta 

estimates, which are scaling factors estimated from the General Linear Model and can be 

considered a summary measure of activation to each condition.  Our primary goal was to assess 
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the relative classification performances when using “betas” as features under “best-case 

scenario” conditions. Thus we employed a single, biased feature-selection step in which features 

(voxels) were chosen based on an F-test conducted over the entire data set.  An inclusion mask 

was defined from an F-test of the contrast MF > MN (p < 0.05, k=30: 6,248 total features, Figure 

3A, yellow).  Accuracies were plotted against the number of included features ranging from 1 to 

6000.  In spite of biased feature selection, MF vs. MN classification only reached a maximum of 

78% accuracy (data not shown).   

 

Top FC features that discriminated between MF and MN faces: We formally compared the 

“information content” of whole-brain FC vs. subcortical alarm FC and whole-brain betas when 

used as features in predicting MF vs. MN faces.  For this we tested for significant differences 

between the maximum classification accuracies achieved for whole-brain FC vs. the other two 

(see methods). The maximum accuracy for whole-brain FC (82%) was significantly greater that 

maximum accuracy achieved with sub-cortical 'alarm' FC (45%) (p < 0.001) and greater than the 

peak accuracy achieved with whole-brain beta values under biased feature selection (78%).  

 Anatomical display of the top 9 overall whole-brain FC features that discriminated 

between MF and MN conditions revealed functional connections among regions in right middle 

temporal gyrus, superior frontal gyrus, orbitofrontal cortex, angular gyrus, amygdala, 

cerebellum, precuneus and anterior cingulate (Figure 15, Table 5). The connection that carried 

the most weight in the linear SVM classifier was between left superior frontal gyrus and left 

orbitofrontal cortex, which exhibited a greater correlation in the MF vs. MN condition.  
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Discussion 

 The current work demonstrates that patterns of functional connectivity (pair-wise cortical-

cortical and subcortical-cortical functional connections) contain sufficient information to decode 

the emotional expression of task-irrelevant, subliminally presented faces.  The connections that 

discriminated between subliminally presented fearful and neutral faces included cerebellum, 

superior frontal and orbitofrontal cortex, amygdala, temporo-occipital and temporo-parietal 

regions, with the majority of connections involving the posterior and anterior middle temporal 

gyrus (in the vicinity of the superior temporal sulcus, STS).  This is consistent with models and 

studies of emotional face recognition that identify the STS and middle temporal gyrus as a 

primary neural substrate for suprathreshold processing of the emotional expression of faces 

(Haxby et al., 2002; Sabatinelli et al., 2011; Said et al., 2010).  Importantly, the current results 

suggest these cortical regions are also engaged and required during subliminal and task-irrelevant 

emotional face processing, and furthermore, that functional interactions of STS with temporo-

parietal, temporo-occipital and cerebellar regions are also critically involved in subliminal 

emotional face processing. In addition, we observed that functional connections restricted to the 

‘sub-cortical alarm’ pathway were not sufficient to decode subliminal emotion perception.  

Taken together, these observations support the notion that the cortex plays a more important role 

in the processing of subliminal affective visual information than is typically acknowledged 

(Pessoa and Adolphs, 2010)}} 

 Interestingly, the only observed functional connection among the top 9 informative 

features which included two sub-cortical regions was between left and right amygdala. This FC 

decreased during during fear, suggesting bilateral decoupling of this key limbic region during the 

MF condition. This observation is consistent with previous studies suggesting that the right 
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amygdala is more involved during automatic, subliminal and unintentional mood induction, 

whereas the left amygdala is more involved during supraliminal perception and intentional, 

cognitive mood induction engaged during explicit reflection processes (Dyck et al., 2011; 

Williams et al., 2006).   

   

“Information content” of neural activity vs. functional connectivity: Multi-voxel pattern analysis 

(MVPA) methods have been successful in decoding categories of viewed stimuli (Cox and 

Savoy, 2003; Hanson et al., 2004; Haxby et al., 2001; Mourao-Miranda et al., 2005; O'Toole et 

al., 2005), orientation (Haynes and Rees, 2005; Kamitani and Tong, 2005), the decisions made 

during a near-threshold fearful face discrimination task (Pessoa and Padmala, 2007), and 

decoding explicit emotion perception (Peelen et al., 2010; Said et al., 2010; Tsuchiya et al., 

2008). However, complex and subtle cognitive and affective processes such as those that are 

engaged by subliminally presented emotional faces, and which entail interactions among many 

distributed regions, may not be adequately captured or represented by patterns of spatial 

activation, when using typical imaging parameters used for whole-brain imaging and particularly 

when the activity in each region is averaged over several or more time points to increase signal 

to noise.  Instead, the pattern of functional connectivity, (i.e. pair-wise correlations or other 

measures of large-scale functional connectivity), may be a relatively more sensitive and 

informative representation of such brain-states compared to patterns of activity. (However, we 

speculate that with the increasing sensitivity, spatial and temporal resolution of fMRI, decoding 

subliminal emotion perception based on fine-grained activity patterns within key regions (i.e. 

amygdala, fusiform, superior-temporal sulcus), and particularly within single subjects, should be 

feasible.) 
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 Large-scale functional connectivity (i.e. thousands of pair-wise function connections) and 

network analysis has been increasingly used as the tool of choice for extracting meaningful and 

understanding complex brain organization (Li et al., 2009; Smith et al., 2011).  A previous group 

study, which did not apply MVPA but instead averaged each connection over multiple subjects 

in a univariate fashion, demonstrated condition dependent modulations in pair-wise (41 nodes) 

functional connectivity across various syntactical language production tasks (Dodel et al., 2005). 

More recently, pattern analysis on large-scale functional connections obtained from resting state 

data were used to predict individual maturity (Dosenbach et al., 2010b) as well as subject-driven 

mental states such as memory retrieval, silent-singing vs. mental arithmetic and watching movies 

vs. rest (Richiardi et al., 2011).  Here we used stimulus-associated, condition-dependent 

functional connectivity to discriminate between subconscious cognitive-emotional processing 

states within individual subjects.   

 Previous work based on simulations has indicated that correlation-based methods, 

including Pearson correlation, are in general quite successful in capturing true network 

connections (Smith et al., 2011).  Here we show that Pearson correlation can be used to estimate 

connections that decode (“brain-read”) the emotional expression of a face that was subliminally 

presented during each block from which they were derived. We also compared the decoding 

accuracy when using correlations as features versus beta estimates (i.e. summary measures of 

activation to each condition at each voxel).  We observed that, even with feature-selection based 

on the entire data set which positively biased results, peak decoding accuracies for betas were 

lower than those reached when using correlations as features (betas: MF vs. MN peak accuracy 

78%,  MF vs. MN peak accuracy 82%).  This suggests that there is more information, relevant to 

subliminal cognitive-emotional neural processing, that is contained in the interactions between 
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regions than is typically realized through standard univariate approaches.  However, it should be 

noted that this requires enough time-points to compute meaningful correlations between brain 

regions for a particular condition, and would thus in general be impractical for decoding single-

trial or event-related data.  

 

Subliminal vs. supraliminal fearful face processing: The same method used here was recently 

applied to decode supraliminal (200 ms presentation prior to backward masking), as opposed to 

subliminal (67 ms presentation prior to backward masking, fearful vs. neutral faces (Pantazatos 

et al., 2012a). As expected, supraliminal emotional stimuli were more distinguishable than 

subliminal stimuli, as evidenced by higher maximum accuracies (86-96%) achieved across a 

wider range of features (10-20) for supraliminal stimuli. As in the current work, many of the 

connections that distinguished between supraliminal emotion stimuli included STS and middle 

temporal gyrus.  However, by and large, there was little to no overlap between the most 

informative connections that discriminated between subliminal fearful and neutral faces 

presented in the current work and the most informative features that discriminated between 

supraliminal fearful and neutral faces. For supraliminal stimuli, the most positively modulated 

FC was between left thalamus and STS, while thalamus was not included in the current results. 

This is  consistent with the observation that the thalamus (pulvinar) is relatively more active for 

attended and consciously-perceived affective stimuli (Pessoa and Adolphs, 2010), and also with 

the idea that separable and largely non-overlapping neural regions and mechanisms may underlie 

conscious vs. non-conscious processing of affective stimuli (Etkin et al., 2004; Tamietto and de 

Gelder, 2010). 
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Limitations: Using Pearson correlation, it is possible that any association between two brain 

regions is the result of a spurious association with a third brain region. Likely candidates for this 

third region are the pulvinar (located in the posterior thalamus) and amygdala, which are 

proposed to act as hubs integrating the activity of multiple cortical areas during sub-threshold 

emotional stimulus processing (Pessoa and Adolphs, 2010; de Gelder et al., 2011).  The current 

analysis may have neglected to account for functional contributions of the pulvinar since we 

extracted the top two principal components from the whole thalamus; thus possible future 

experiments would explicitly define the pulvinar separately from the rest of the thalamus.  

 Another possible limitation of the current study is the required amount of data used to 

extract quality features of brain activity.  Our use of correlations as features required a 

substantial number of time points (i.e. 40 time points per condition per subject) relative to 

previous studies of decoding emotion perception. Given this, it was not feasible to sample 

enough examples within a single or few subjects as is typical in multivariate pattern analysis 

studies, and we instead pooled examples across multiple subjects.  On the other hand, the fact 

that reliable classifiers could be learned using examples from separate subjects speaks to the 

generalizability of our obtained results.  

 Previous simulations have raised concerns regarding the use of atlas-based approaches 

for parcellating the brain (Smith et al., 2011)  Because the spatial ROIs used to extract average 

time-series for a brain region do not likely match well the actual functional boundaries, BOLD 

time-series from neighboring nodes are likely mixed with each other. While this hampers the 

ability to detect functional connections between neighboring regions, it has minimal effect on 

estimating functional connectivity between distant regions. This perhaps explains why in this 

study most of the functional connections that discriminated between fearful and neutral faces are 
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long-distance.  Future experiments using non-atlas based approaches would likely lead to better 

estimates of shorter-range functional connections.   

 In addition to the choice of parcellation schemes, decoding results were also affected by 

the number of eigenvariates extracted from each region. Extracting only one eigenvariate from 

each region did not contain sufficient information to decode subliminal fear (data not shown), 

whereas extracting two eigenvariates did.  Extracting three and four eigenvariates resulted in a 

decrease in decoding accuracies (data not shown), probably because the exponential increase in 

estimated edges among the nodes led to increased likelihood of “false-positives” being selected 

during the linear filter feature selection.  Future studies should explore more sophisticated 

methods of feature selection that could better exploit and select informative features from higher-

dimensional feature spaces.  

 

Conclusions: The current work demonstrates that large-scale functional connections between 

cortical-cortical and cortical-sub-cortical regions are sensitive features of brain activity that can 

decode task-irrelevant, subliminal emotion processing. In contrast, sub-cortical-sub-cortical 

functional connections, particularly among ‘sub-cortical alarm’ regions, contained less 

information for this decoding task, as did patterns of spatial activity. These data are consistent 

with the notion that interactions that include cortical regions are employed for the subconscious 

processing of biologically salient affective stimuli.  In addition, the pattern of connections (edges 

of a weighted graph) between regions is an informative and sensitive signature of subconscious 

cognitive-emotional brain states.   

  



 

108 

CHAPTER 6 
 

LARGE-SCALE FUNCTIONAL CONNECTIVITY DURING SPEECH AND SONG IN 
AUTISM5 

 

Summary 
 

A prominent aspect of neurobiological accounts of autism is significantly reduced strength of 

long-range, and in particular frontal-posterior, neural connections. This largely comes from 

functional connectivity MRI during resting-state or language and speech comprehension, and is 

interpreted as a deficit in the formation and maintenance of long-range structural and functional 

connections, particular frontal-posterior connections involved in language and social 

communication. Despite language disabilities in autism, however, music abilities are frequently 

preserved. Paradoxically, brain regions associated with these functions typically overlap, 

suggesting domain-specificity in autism such that stronger long-range functional connectivity 

would be observed during song (vs. speech) perception. This hypothesis was tested with large-

scale functional network analyses of both song and speech processing in autistic and control 

subjects. In support of this hypothesis, in autistic children, we observed significantly stronger 

long-range frontal-posterior connectivity during music stimulation when compared to speech 

stimulation, suggesting that in autism, long-range, frontal-posterior functional connections are 

more effectively engaged for song than for speech. These observations may provide at least a 

partial neurobiological account for the observed effects of music therapy in autism.  

                                                 
5 Lai, Grace, Spiro P Pantazatos, Harry Schneider, and Joy Hirsch. 2012. Neural systems for speech and song in 
autism. Brain. 
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Introduction 

 Autism is a complex developmental disorder currently estimated to affect approximately 

1 in 100 children (Kogan et al., 2009). It is defined by reduced social interaction, impaired 

communication, and restricted interests and behavior. One prevailing characterization of autism 

is that it is a disorder associated with atypical brain connectivity affecting distributed neural 

systems (Belmonte et al., 2004; Courchesne and Pierce, 2005; Just et al., 2004; Minshew and 

Williams, 2007).  Neuroimaging studies of language in high-functioning autistic subjects have 

reported decreased activation in Broca’s area (left inferior frontal gyrus, IFG as well as 

decreased functional connectivity between frontal and posterior language processing regions 

(Fletcher et al., 2010; Harris et al., 2006; Just et al., 2004; Kana et al., 2006; Sahyoun et al., 

2010). However, while these findings support disconnection models for autism that propose 

under-connectivity between distant brain regions (Just et al., 2004; Kana et al., 2006), 

disconnection models do not explain the frequently observed preservation of related functions 

such as music (Allen et al., 2009; Mottron et al., 2000) where, in healthy adults, neural systems 

engaged during music and language functions tend to be highly coincident (Koelsch et al., 2002; 

Limb, 2006; Patel, 2011; Schön et al., 2010). Here we examine the large-scale functional 

architecture of music and language perception in autistic children and healthy controls, and 

tested the hypothesis that music engages longer-range functional connections in autism. Positive 

findings would imply that long-range disconnection, it in of itself, is not a sufficient account for 

impairment in autism, but rather that long-range disconnection is instead an outcome and result 

of domain-specific deficits in language and social processing, which may occur more locally in 

the brain. 
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Methods  

Subjects: Thirty-six patients with autism participated in this study, all recruited by physician 

referral. Twelve of these patients (mean age = 12.40 SD = 4.70, range = 7.01-22.47; males = 10; 

right-handed = 10) were imaged while alert. Images from an additional 27 patients (mean age = 

8.62, SD = 3.14, range = 5.41-17.93; males = 22; right-handed = 15) who received MRI 

evaluations (structural, functional, and DTI scans) for medical purposes under light propofol 

sedation were also included in this study, following parental consent. Twenty-one non-autistic 

controls (mean age = 10.72, SD = 4.42, range = 3.57-17.78; males = 14; right-handed = 19) were 

imaged alert and recruited via flyers distributed within the Columbia University Medical Center 

and Columbia University campuses. Due to excessive head movement, several additionally 

recruited subjects (two control and four autistic subjects) were excluded from the final dataset. 

All parents provided consent for their child to participate, or to include their clinical MRI 

examinations in this research study as approved by the Columbia University Medical Center 

Institutional Review Board. When possible, assent was also obtained from the subjects. A subset 

of data from these same subjects were used in a previous study investigating the potential 

application of fMRI for identification of autism (Lai et al., 2011).  

Comparisons between autistic and control groups were based on subsets of age-matched 

subjects and functional MRI comparisons between autistic and control groups included only 

images acquired during alert conditions. Patients and controls were not matched on IQ since 

patients were low-functioning. Within-group contrasts for the autism group included sedated and 

non-sedated subjects. Additionally, DTI comparisons included data from both non-sedated and 

sedated subjects for the benefit of an increased sample size. DTI images from 5/12 alert patients 

were excluded due to visible movement. Table 1 provides a summary of demographic 

information (age, gender, and handedness) for subjects included in all DTI and fMRI 
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comparisons.  

Autistic children were eligible for the study if they met diagnostic criteria for autism on 

the DSM-IV and the Autism Diagnostic Interview – Revised (ADI-R). Language impairment 

was measured using the Language and Communication subscale of the ADI-R and clinical 

observation (see supplemental methods). Control subjects were eligible to participate if they did 

not have a diagnosis of autism, a psychiatric disorder, or siblings diagnosed with autism. Levels 

of normal social and academic functioning for controls were confirmed via scholastic 

performance at grade-level and parent report. Both autistic and control children were without co-

morbid neurological or developmental disorders, as determined by clinical evaluation performed 

by the referring physician for autistic subjects and parent report for control subjects.  

 

Music Affinity ratings: Due to the severity of impairment of autistic subjects in this study, a 

formal assessment of music function was not performed. Rather, parents were asked to rate how 

receptive their child was to different kinds of music on a scale from 0-10. “0” was defined as Not 

at all - does not orient to music when playing, may as well be random noise. “5” was defined as 

Moderately - will listen to and enjoy if playing, but will not request it. “10” was defined as 

Extremely - will request it to be played frequently and listen attentively for long periods of time. 

Parents rated their child’s affinity for the child’s specific song selection.  

Alert autistic and control subjects: We employed a “silent video” technique to help minimize 

head-movement and distractibility in young children . A familiar video was shown (on mute) 

throughout the scan duration. The silent video was presented via a rear-projection screen or MRI 

compatible goggles depending on the child’s preference. Comparisons between auditory epochs 
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and baseline revealed brain activity related to the auditory stimulus rather than the video that 

occurred continuously during both stimulus and baseline epochs.  

 

Sedated autistic patients: Patients imaged under conventional clinical conditions were imaged to 

rule out organic disease while sedated with propofol for neurologic assessment in accordance 

with the medical requisition of the referring physician. Although sedation has been associated 

with reduced amplitude of the fMRI signal during auditory stimulation (Davis et al., 2007) it is 

indicated to map language systems in children under clinical conditions (Souweidane et al., 

1999). See Supplemental Methods for description of anesthesia management. Parents of eligible 

patients provided permission to include these medical scans. 

 

fMRI Stimulation: Each fMRI acquisition (run) was 2 min and 29 sec in duration, consisting of a 

24 sec period of background scanner noise, followed by four 15 sec presentations of the auditory 

stimulus alternating with 15 sec when the auditory stimulus was not presented. Two runs for 

each stimulus type (speech and song) were presented consecutively. The order of presentation 

was randomized across subjects. Auditory stimuli were pre-recorded by parents and presented 

passively to subjects via MR-safe headphones. Although passive language stimulation primarily 

engages receptive processes, it is necessary for use with low-functioning children who cannot 

comply with task instructions during an imaging procedure. Activation in typical language areas 

has been previously reported during routine clinical assessments for alert (Hirsch et al., 2000) 

and sedated patients (Souweidane et al., 1999) using similar stimulation techniques.  

Speech stimuli were recordings of each child’s own parents speaking in a natural and 

conversational manner to their child. All parents were instructed to talk about the same topics 
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(i.e. being in the scanner, recent events, plans after the scan) although the test was not scripted in 

order to assure familiarity with each parent’s conversational style. Song stimuli were selected as 

each child’s favorite or preferred song containing vocals. Since autistic children often have fixed 

interests and are particularly receptive to familiar stimuli, it was necessary that speech and song 

stimuli were familiar and preferred for each subject. For the speech recordings, two independent 

raters judged whether the 15 sec clips of voice recordings from autistic and control parents could 

be distinguished. Both raters judged the child’s diagnosis with only 55% accuracy (11/20) with a 

43% (9/20) correspondence. Close-to-chance levels of performance indicate that narratives from 

autistic parents did not differ perceptibly from controls. Audio stimuli were power-normalized 

across subjects to ensure similar acoustic properties across subjects.  

 

MRI acquisition: Alert autistic and control children were imaged using a research-dedicated 1.5 

T GE Twin Speed magnetic resonance scanner located in the Functional MRI Research Center at 

Columbia University Medical Center. Clinical structural and functional images were acquired at 

the MR Imaging Center of the Morgan Stanley Children’s Hospital of New York-Presbyterian 

Hospital on a similar 1.5 T GE Twin Speed magnetic resonance scanner using identical 

sequences.  

In both cases, fMRI images were acquired using an echo planar T2*-weighted gradient 

echo sequence (TE = 51 ms, TR = 3000 ms, flip angle = 83 deg). Twenty-seven contiguous axial 

slices covering the full brain were acquired along the AC-PC plane, with a 192 x 192 mm field 

of view (FOV) imaged on a 128 x 128 grid yielding an in-plane resolution of 1.56 x 1.56 mm 

and slice thickness of 4.5 mm. High-resolution structural images were acquired using a 3D 

SPGR sequence (124 slices, 256 x 256, FOV = 220 mm), with a total scan time of 10 min and 38 
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sec. Diffusion tensor imaging (DTI) images were acquired using a echo-planar sequence (TR = 

8500 ms, TE = 81.9, 25 directions, b = 1000 s/mm2). Twenty-seven slices were acquired with a 

resolution 1.02 mm x 1.02 mm and slice thickness of 5.00 mm on a 128 x 128 grid. The total 

scan time for the DTI acquisition was 3 min and 58 sec. Although the use of 25 diffusion 

directions constrains the ability to detect crossing fibers for tractography analyses, the shorter run 

time achieved by using fewer diffusion directions was necessary to minimize image acquisition 

time for children. 

 

Preprocessing: Realigned T2*-weighted volumes were slice-time corrected, spatially 

transformed to the standard MNI brain and smoothed with a 8-mm full-width half-maximum 

Gaussian kernel. First-level regressors were created by convolving the onset of each stimulus 

epoch with the canonical HRF with duration of 15 seconds. Additional nuisance regressors 

included motion, global white matter and CSF signal.  Prior to extraction, each voxel’s time-

series were adjusted for effects of interest by removal of the above nuisance effects. 

 

ROI definition: Brain regions were parcellated by the Harvard-Oxford Cortical and Subcortical 

atlases and the AAL (cerebellum) atlas and were trimmed to ensure no overlap (Figure 16a). The 

time-series from each voxel in each region was extracted, segmented according to condition 

onsets and durations (incorporating a lag of 1 TR, or 3s, to account for the HRF), and 

concatenated across all conditions and subjects.  Singular Value Decomposition (SVD) was then 

applied to the m x n data matrix to reduce data dimensionality, where m = number of voxels in 

each region, and n = number of time points across all subjects and conditions (4080). For each 

region, eigenvariates that accounted for greater than 5% of the total variance across all subjects 
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and conditions were used as ROIs for the whole-brain connectivity analysis. This resulted in 298 

total time courses (eigenvariates) and ROIs (spatial eigenmaps) from the 133 initial regions. 

Concatenation across subjects was performed prior to data reduction in order to ensure that each 

ROI had identical, normalized spatial locations across all subjects.  ROI locations were defined 

in MNI coordinates at the peak value of each eigenmap. 

 

Large-scale functional connectivity analyses: Images were preprocessed using SPM8 software 

(see above) (Wellcome Department of Imaging Neuroscience, London, UK). Pair-wise 

functional connectivity (Fisher’s R-to-Z transformed Pearson correlations) was computed 

between 298 total cortical, subcortical, and cerebellar ROIs for each subject and condition 

(Figure 16a, see above section). We performed an initial filter step to filter out noise (~38,000 

positive and negative correlations hovering near zero) and increase the likelihood of only 

including real functional connections in comparisons between conditions and groups. 

Connections that were either positive or negative over all subjects and conditions were analyzed 

separately (thresholded using a one-sample t-test, p < 0.001 uncorrected). There were 5,879 

positive connections and 4959 negative connections. A paired t-test was then applied to identify 

connections that were greater for song relative to speech (song > speech), and those greater for 

speech relative to song (speech > song) across a range of p-thresholds (p=0.05 to p=0.001, x-axis 

of Figure 16b) in order to ensure that results of subsequent comparisons were not specific to or 

dependent upon particular p-value thresholds. The mean length (Euclidean distance between the 

end points) of these identified connections was then compared between song>speech and 

speech<song using two-sample t-tests. Correlations that survived p<0.05 uncorrected thresholds 
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(for the paired comparisons) were used to define the connections between ROIs displayed in 

Figure 16c.    

Results 

Behavioral Results: All autistic subjects scored in the high range of impairment on all three ADI-

R sub-sections (Reciprocal Social Interaction: mean = 21.18, SD = 1.66, range = 17-24; 

Language and Communication: mean = 18.87, SD = 2.62, range = 12-26; Restricted, Repetitive, 

and Stereotyped Behavior: mean = 6.00, SD = 1.15, range = 4-9). A diagnosis of autism is made 

when a child scores higher than a specified minimum on all three sections (Social: >10; 

Language: >8; Repetitive Behaviors: >3). In particular, scores on the language and 

communication domain for all patients in this study (range=12-26) were well above the 

diagnostic minimum (>8) for autism.  

Clinical observations of words uttered during a 30 minute free-play session ranged from 

0–250. Mean number of words uttered in response to a physician’s prompt was 46.4 (SD = 

76.16, median = 14), and the mean number of spontaneously produced words was 16.29 (SD = 

42.70, median = 4). Breakdown of the percentage of children with zero to over 50 words (Figure 

1a) document the limited verbal output in a majority of our patients (over 50% of them produced 

under 5 spontaneous words during the session). Breakdown of verbal output by age (Figure 1b) 

fails to suggest a relationship between number of words and age. Linguistic comprehension was 

limited to simple (subject, verb, object) grammatical relationships in all subjects except for one 

child who was able to comprehend more complex constructions, such as the use of the passive 

voice or hierarchical structures. Verbal output for controls could not be assessed in the same way 

as the autistic patients due to the absence of standardized instruments appropriate for both low-

functioning language-impaired autistic children and typically developing controls. Behavioral 
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milestones reported by the National Institute on Deafness and Other Communication Disorders, 

(NIDCD. (2001). Retrieved from 

http://www.nidcd.nih.gov/health/voice/speechandlanguage.asp#mychild. ) for typically 

developing children include understanding of approximately 2000 words, production of more 

than 300 words, and use of grammatically correct compound and complex sentences by the age 

of five.  

Despite language impairments, the autism group did not differ from the control group on 

ratings of music affinity. Parent ratings (on a scale of 1-10) of how receptive their child was to 

the familiar song showed no significant group differences between the autistics and controls in 

their affinity for familiar songs (autism mean = 8.20 SD = 2.16, control mean = 9.05 SD = 1.10, t 

= -1.56, p = 0.126).  

 

Large-scale functional connectivity results: Large-scale functional connectivity between song 

and speech stimulation was assessed using the mean lengths (Euclidean distance) of pair-wise 

functional connections across ROIs of the whole-brain (Figure 16a) that differed between 

conditions. In the autism group, positive pair-wise correlations that were greater in song relative 

to speech (p < 0.05) had a grater mean Euclidean distance (length) than those greater for speech 

relative to song (song > speech, mean length = 63 mm, speech > song, mean length = 49 mm, p = 

0.0009). This was significant over a range of thresholds used to define song > speech and speech 

> song connections (Figure 16b, top). No differences were observed in controls (song > speech, 

mean length = 59 mm, speech > song, mean length = 60 mm, p = 0.79, Figure 16b, bottom), 

consistent with the lack of song vs. speech differences in the PPI analysis for the control group 

(see (Lai et al., 2012) for activation, PPI and DTI results and discussion).  Anatomical display of 
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these connections (defined at p-value threshold of 0.05) illustrates greater fronto-posterior 

connectivity during song relative to speech in autistic subjects (Figure 16c, top, orange 

connections) but not controls (Figure 16c, bottom). Greater fronto-posterior connections for song 

> speech relative to speech > song is consistent with PPI results of greater functional 

connectivity between left IFG and posterior brain regions during song relative to speech 

stimulation in autistic patients (see (Lai et al., 2012)). Overall numbers of increased versus 

decreased connections were comparable between the two groups, but interestingly in autism 

there were slightly fewer connections during song relative to speech, and vice versa in controls 

(Autism: song > speech = 127;  speech > song = 186; Total=313; Control: song > speech = 181; 

speech > song = 156; Total = 337). This suggests fewer, but longer distance connections during 

song, and greater, short distance connections during speech in autistic subjects.  

  In contrast to positive functional connections, negative functional connections exhibited 

no significant differences in the Euclidean length of pair-wise correlations that were greater in 

song relative to speech in either group: autism, song > speech, 141 connections, mean length = 

79 mm, speech > song, 128 connections, mean length = 81 mm, p = 0.76; Control, song > 

speech, 149 connections, mean length = 79 mm, speech > song, 151 connections, mean length = 

86 mm, p = 0.10). Taken together, these results suggest that in autism, song induces increased 

long-range positive, but not negative, functional connectivity.  
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Figure 16. Chapter 6: Song vs. speech large-scale functional connectivity in autism and healthy controls. (A) Atlas 

used to parcellate regions for large-scale whole-brain analysis. (B) Large-scale whole-brain analysis showed that in 

autism (top), connections that are stronger for song relative to speech are longer on average than connections 
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stronger for speech relative to song (plotted with 95% CI). In controls (bottom), connections stronger for speech did 

not differ in length to connections stronger for song. (C) Anatomical representation of functional connections (lines) 

between regions (spheres) stronger in song relative to speech (red, P < 0.05 uncorrected) and speech relative to song 

(blue, P < 0.05 uncorrected) in autistic (top) and control (bottom) subjects (left hemisphere shown). Size of each 

sphere represents the sum of the lengths of all its connections. For display purposes, the thickness of connections 

was made proportional to their lengths. 

Discussion  

 Using fMRI, the large-scale functional networks during language and music perception in 

autistic patients was investigated. Consistent with previous studies and models of neural 

disconnection (Just et al., 2004; Kana et al., 2006), we observed decreased long range functional 

connectivity, and increased short range functional connectivity, in response to speech (vs. song) 

stimulation in autistic subjects. In addition, reduced activation and functional connectivity in 

core components of the language system (left IFG, or inferior frontal gyrus, also known as 

Broca’s area, and secondary auditory cortex) during speech perception was observed in these 

same data (Lai et al., 2012)   However, during music perception there was a significant increase 

in long-range functional connectivity relative to the speech condition, as well as increased left 

IFG activation and increased functional connectivity with angular gyrus (Wernicke’s area) 

relative to speech stimulation (Lai et al., 2012).  Together, these findings support the hypothesis 

that long-range disconnection may not be a sufficient account for language impairment in autism.  

 One possibility for discrepancies between music and language functions in autism and 

models that propose long-range disconnection may be a speech-specific (and in general, social-

information-specific) attentional deficit (Groen et al., 2008). Whereas typically developing 

individuals prefer speech to non-speech stimuli and are automatically inclined to process higher-

level linguistic and semantic information in speech stimuli, there is evidence that autistic subjects 
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do not appear to exhibit the typical bias towards social stimuli (Ceponiene et al., 2003; Järvinen-

Pasley and Heaton, 2007).  

 In summary, the current findings imply that long-range disconnection alone is not a 

sufficient account for impairment in autism, and that long-range disconnection may instead be an 

outcome and result of domain-specific deficits in language and social processing, which may 

occur more locally in the brain. These results also highlight the fact that large-scale functional 

networks may be more or less anomalous in a particular psychiatric disorder depending on the 

conditions under which they are measured. For the development of functional connectivity-based 

diagnostic neurobiological markers, which has largely relied on resting-state paradigms, these 

results further motivate the use of stimuli or conditions in which there is a disorder-dependent 

increase (or decrease) in attentional bias.  The next chapter investigates whether large-scale 

functional connectivity during the processing of facial affect, particularly harsh or ambiguous 

emotions, can be used for diagnostic classification of social anxiety disorder. 
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CHAPTER 7 
 

REDUCED ANTERIOR TEMPORAL AND HIPPOCAMPAL FUNCTIONAL 
CONNECTIVITY DURING FACE PROCESSING DISCRIMINATES INDIVIDUALS WITH 
SOCIAL ANXIETY DISORDER FROM HEALTHY CONTROLS AND PANIC DISORDER,  

AND INCREASES FOLLOWING TREATMENT6 

 
Summary 

Group functional magnetic resonance imaging (fMRI) studies suggest anxiety disorders are 

associated with anomalous brain activation and functional connectivity (FC).  However, brain-

based features sensitive enough to discriminate individual subjects with a specific anxiety 

disorder and that track symptom severity longitudinally, desirable qualities for putative disorder-

specific biomarkers, remain to be identified. BOLD fMRI during emotional face perceptual tasks 

and a new, large-scale and condition-dependent FC and machine-learning approach was used to 

identify features (pair-wise correlations) that discriminated patients with social anxiety disorder 

(SAD, N=16) from controls (N=19). We assessed whether these features discriminated SAD 

from panic disorder (PD, N=16), and SAD from controls in an independent replication sample 

which performed a similar task at baseline (N: SAD=15, controls=17) and following 8-weeks 

paroxetine treatment (N: SAD=12, untreated controls=7).  High SAD vs. HCs discrimination 

(Area under the ROC Curve, AUC, arithmetic mean of sensitivity and specificity) was achieved 

with two FC features during implicit neutral face perception (AUC=0.88, p<0.05 corrected). 

These features also discriminated SAD vs. PD (AUC=0.82, p=0.0001) and SAD vs. HCs in the 

independent replication sample (FC during implicit angry face perception, AUC=0.71, p=0.01). 

The most informative FC was left hippocampus-left temporal pole, which was reduced in both 

SAD samples (replication sample p=0.027). This FC increased following effective treatment 

                                                 
6 Pantazatos, Spiro P, Ardesheer Talati, Franklin Schneier, and Joy Hirsch. 2013. Anterior temporal, hippocampal 
functional connectivity during face processing discriminates individuals with social anxiety disorder and normalizes 
following treatment. (submitted). 
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(post > pre, t(11)=2.9, p=0.007), with greater increases correlating with greater decreases in 

symptom severity (ΔLSAS vs. ΔFC, R=-0.55, p=0.008). In conclusion, SAD is associated with 

reduced FC between left temporal pole and left hippocampus during face perception, and results 

suggest promise for emerging FC-based biomarkers for SAD diagnosis and SSRI treatment 

effects.   

Introduction 

 There is an increasingly recognized need for biomarkers in neuro-degenerative and 

psychiatric disorders for both early and differential diagnosis, personalized prediction of 

treatment response, and treatment and drug discovery (Gordon and Koslow, 2010). Biomarker 

research for anxiety disorders has received relatively little attention, despite the fact they are the 

most common psychiatric condition, with a lifetime prevalence of 29% (Kessler et al., 2005). 

Social anxiety disorder (SAD) is the most common of these disorders (Jefferys, 1997), with a 7% 

to 13%  lifetime prevalence (Kessler et al., 1994). SAD is characterized by heightened anxiety 

and avoidance during social interactions. It has an early onset (80% of cases occur before age 18 

years)  (Otto et al., 2001), and often precedes other anxiety, mood, and substance 

abuse/dependence disorders (Lampe et al., 2003; Randall et al., 2001). SAD is associated with 

significant functional impairment and distress in work and social domains and usually persists 

unless treated (Lochner et al., 2003; Schneier et al., 1994).  

 Models of SAD (Clark and McManus, 2002; Rapee and Heimberg, 1997) have 

highlighted the role of sensitivity to perceived social threats, which is triggered by biased 

appraisals of social situations. These maladaptive appraisals transform innocuous social cues into 

interpersonal threats that induce a cascade of fears of negative evaluation, somatic concerns, 

inhibited behavior, and negative emotional reactivity.  Behavioral studies have shown a negative 
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interpretation bias in SAD, such that ambiguous facial expressions are more likely to be deemed 

as threatening (Mohlman et al., 2007; Veit et al., 2002; Yoon and Zinbarg, 2007a).  A meta-

analysis of neuroimaging studies of anxiety (using tasks that mostly involved emotional face 

viewing) found overall greater activation of amygdala and insula, structures linked to negative 

emotional response, in SAD subjects relative to matched comparison subjects (Etkin and Wager, 

2007).  

 Neuroimaging studies have typically used emotional face paradigms to contrast average 

activation between patients and healthy control subjects, identifying significant differences in 

particular brain regions. However, clinical application of neuroimaging for the diagnosis and 

treatment of anxiety would require a quantitative measure of brain activity that can distinguish 

single patients with a specific disorder (e.g. SAD) from healthy individuals as well as from 

individuals with a related disorder (e.g. Panic Disorder (PD), which is characterized by panic 

attacks and anxiety symptoms that overlap those of SAD but are not exclusively related to social 

stimuli). To accomplish this we shifted the focus of our data analysis from average differences 

(or similarities) in regional brain activity between groups to features of brain activity that 

maximize the probability of predicting the correct diagnosis within a single subject. 

 A novel approach based on multivariate machine learning-based pattern analysis of large-

scale, condition-dependent functional connectivity (FC) recently demonstrated increased 

sensitivity of patterns of interactivity (i.e. pair-wise FC from hundreds of nodes) relative to 

patterns of activity (i.e. beta or contrast activation maps) in predicting subliminal and implicit 

viewing of fearful vs. neutral faces in healthy subjects (Pantazatos et al., 2012a; Pantazatos, 

Talati et al., 2012b) . Based on this and previous evidence that SAD subjects exhibit anomalies 

in the cognitive-emotional processing of emotional and ambiguous social stimuli, we 
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hypothesized that such patterns of interactivity during fearful and neutral face processing would 

be sensitive in discriminating whether an individual subject has SAD. The current work 

examined 1) whether pattern classification of FC during implicit or subliminal processing of 

emotional or neutral faces can predict SAD diagnosis (control vs. SAD, and SAD vs. PD), 2) 

whether discriminating features from the above were also replicated in an independent sample 

and 3) whether these same discriminating features tracked symptom severity in subjects 

undergoing 8 weeks of treatment with the selective serotonin reuptake inhibitor (SSRI) 

paroxetine. A secondary objective compared the classification performance achieved when using 

interactivity (pair-wise correlations) vs. activity (i.e. beta estimates from SPM maps). If FC-

based features can be shown to reliably categorize subjects with a diagnosis of SAD, 

discriminate them from subjects with a closely related disorder such as PD, and demonstrate 

normalization following effective treatment, this would represent an important advance in the 

development of biomarkers for psychiatric diagnosis and treatment effects.  

 
Methods 

Ethics Statement: All procedures and tasks were reviewed for ethical concerns and protection of 

human subjects by the Columbia University and New York State Psychiatric Institute 

Institutional Review Boards prior to subject recruitment and data collection.  

 

Subjects  

Primary Sample: Twenty healthy control subjects (HC), 18 subjects (ages 18-50) diagnosed with 

SAD and 16 patients diagnosed with PD were recruited through web advertisements (except for 

seven of the SAD subjects recruited from a genetic  study of anxiety (Talati et al., 2008). 

Functional scans of two subjects (1 control and 1 SAD) were unusable due to scanner technical 
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issues, while a third subject was excluded because she was diagnosed with both SAD and PD. 

Recruitment and clinical procedures have been detailed elsewhere (Talati et al., 2013).  

 

Replication Sample: Eighteen medication-free adults with a primary diagnosis of GSAD (age 

20–52) and 17 age, sex and race-matched HCs were recruited through media notices and clinical 

referrals. Diagnoses were based on psychiatric interview and confirmed by the Structured 

Clinical Interview for DSM-IV Axis I disorders. Data from four GSAD patients were excluded 

from analyses due to technical issues (described more below), yielding 14 GSAD patients and 17 

HCs used for diagnostic classification analysis. Twelve GSAD patients and seven HCs 

completed a second scan following 8-weeks paroxetine treatment (or non-treatment for HCs).  

 Exclusion criteria for GSAD participants included having a current Axis I disorder (other 

than secondary diagnoses of generalized anxiety disorder, dysthymia, or specific phobia), major 

depressive episode in the past year, substance abuse in the past 6 months, and clinically 

significant general medical conditions. HCs did not meet criteria for any lifetime Axis I disorder. 

Health status was confirmed by a physical examination including drug toxicology screen. All 

subjects were free of psychotropic medications for at least 4 weeks prior to study entry. 

 Data from four GSAD patients were excluded from analyses (one subsequently revealed 

a recent history of major depression, one failed to follow imaging task instructions, and the 

functional scans of the others suffered from technical issues), yielding 14 GSAD patients. 

Secondary comorbid diagnoses in participants with GSAD consisted of current generalized 

anxiety disorder (N=3), past major depression (N=6), and past alcohol abuse (N=1). Six GSAD 

subjects had taken medication for anxiety or depression prior to the past 4 weeks. All subjects in 

both samples provided written informed consent after discussion of study procedures. 
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Behavioral task  

Primary Sample: Subjects performed a previously described task from our group (Etkin et al., 

2004; Pantazatos et al., 2012a) which consists of color identification of fearful, neutral, masked 

fearful and mask neutral faces (F, N, MF and MN respectively) with in a blocked paradigm (four 

20 second blocks for each condition, 15 second baseline between each block). See Chapter 3 

methods for further details regarding the task paradigm and stimuli.  

 

Replication Sample: Subjects performed gender identification of angry, happy and neutral faces 

(A, H, and N respectively) drawn from the same standard series as above (Ekman and Friesen, 

1976), and within a blocked paradigm (four 20 second blocks for each condition, 12-14 second 

baseline between each block). Stimuli consisted of faces of both genders expressing neutral, high 

valence angry or happy expressions during explicit and implicit viewing conditions. During the 

explicit processing condition, subjects were asked to judge the emotional facial expression 

(angry, neutral, happy) by using a keypad, and reaction times were recorded. During implicit 

processing, subjects were asked to identify gender of each face (male/female), responding via 

keypad. The stimuli were presented in a block design consisting of two 6 min and 48 sec. runs 

(one run implicit, one run explicit) each containing 4 blocks of angry (A), neutral (N) and happy 

(H) faces. Each block lasted 20 seconds, followed by 12-14 seconds of baseline (white crosshair 

against black backgroun d). Within each block, 10 stimuli (faces) were presented for 1 second, 

followed by 1 second crosshair between each stimulus presentation. At the start of each run, an 

instruction screen was presented for 10 seconds, with instructions for using the keypad. Subjects 

had been trained prior to the scanning session in the use of the keypad. Given that our primary 
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sample performed an implicit task (i.e. identification of colors overlaid on emotional faces), we 

conducted the replication analysis using the implicit runs from the replication sample. 

           Due to a minor programming error, during the implicit runs, 11 baseline (pre-treatment) 

subjects (6 controls, 5 cases) received a distribution (in no particular order) of 5/4/3 blocks of 

each condition, with 5 blocks tending to occur slightly more often for the A condition, and 3 

blocks slightly more often for N (over all subjects, mean #blocks per condition: A-4.22, H-3.91, 

N-3.88). Five (1 control, 4 cases) post-treatment runs were similarly affected (over all subjects, 

mean # blocks per condition: A-3.95, H-4.11, N-3.95). 

 

Image Acquisition and Analyses 

fMRI Acquisition: Functional data were acquired on a 1.5 Tesla GE Signa MRI scanner in the 

functional MRI Research Center at Columbia University Medical Center, using a gradient-echo, 

T2*-weighted echoplanar imaging (EPI) with blood oxygen level-dependent (BOLD) contrast 

pulse sequence. Twenty-four contiguous axial slices were acquired along the AC-PC plane, with 

a 64 × 64 matrix and 20 cm field of view (voxel size 3.125 × 3.125 × 4 mm, TR = 2000, TE = 

40, flip angle = 60).  Structural data were acquired using a 3D T1-weighted spoiled gradient 

recalled (SPGR) pulse sequence with isomorphic voxels (1 × 1 × mm) in a 24 cm field of view 

(256 × 256 matrix, ~186 slices, TR 34 ms, TE 3 ms).  

 

GLM analysis: Functional data were preprocessed and processed in SPM8 (Wellcome 

Department of Imaging Neuroscience, London, UK). For preprocessing, the realigned T2*-

weighted volumes were slice-time corrected, spatially transformed and resampled to a 

standardized brain (Montreal Neurologic Institute, 2x2x2 mm3 cube resolution) and smoothed 
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with a 8-mm full-width half-maximum Gaussian kernel. 1st-level regressors were created by 

convolving the onset of each condition (primary sample: MF, MN, F and N, replication sample: 

A, H, and N) with the canonical HRF with duration of 20 seconds.  Additional nuisance 

regressors included 6 motion parameters, white matter and csf signal, which were removed prior 

to time-series extraction. For the current work, the same GLM analysis served two main 

purposes: 1) facilitate removal of nuisance effects from time series prior to FC estimation using 

structurally (atlas-based) defined ROIs, and 2) produce beta-estimates of each condition for case 

vs. control classification analyses (primary sample) using spatial activity patterns.   

 

Functional connectivity estimation: Atlas-based parcellation was applied and pair-wise 

correlations between 248 nodes (derived from 124 atlas-based brain regions) were computed 

using 40 total time points of fMRI data that were segmented and concatenated from four 

conditions; unattended and non-masked (i.e. implicit) fearful (F) and neutral (N) faces, and 

subliminal, masked fearful (MF) and neutral faces (MN) (see (Pantazatos et al., 2012a; 

Pantazatos, Talati et al., 2012b) for more details and analysis schematic. Correlations over the 

full run were also computed (Full). This resulted in 30,628 total functional connections (z-

transformed Pearson correlations) for each condition of interest (F, N, MF, MN and Full), which 

were used as features for diagnostic classification.  

 

Pattern analysis of large-scale functional connectivity to predict SAD diagnosis: For all binary 

classification tasks, a linear kernel SVM (Vapnik, 1999) with a filter feature selection (t-test) and 

leave-one-out cross validation was used. During each iteration of leave-one-out cross validation 

(primary sample), one subject was withheld from the dataset and 1) a 2-sample t-test was 
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performed over the remaining training data 2) the features were ranked by absolute t-score and 

the top N were selected 3) these selected features were then used to predict the class of the 

withheld test examples during the classification stage. For classification in the replication 

sample, the SVM model was learned from the whole primary sample using the top 2 features 

identified in the analysis above, and this same model was used to predict SAD vs. controls in the 

replication sample. Prior to learning, the effects of age and gender were regressed out from the 

features using a general linear model, and features were z-scored. Classification, performance 

assessment and confidence interval estimation followed previously described procedures 

(Pantazatos et al., 2012a; Pantazatos, Talati et al., 2012b).  

 

Univariate replication analyses: Features identified in the primary analysis were subjected to 

univariate statistical tests in the replication sample. SAD vs. HC (pre-treatment) was assessed 

with Mann-Whitney U test, pre-post group changes in FC were assessed using paired t-test, and 

longitudinal pre-post correlations (decrease ΔLSAS vs. increase ΔFC) were assessed using 

Spearman’s Rho (rank correlation coefficient). Our hypotheses were based on the directions 

observed in the primary sample, so reported p-values are one-tailed.   

 

Results 

Behavioral results: The average response rates in the color discrimination task were: HCs 96.4% 

(σ=6.2%), SAD 99.9% (σ=0.15%), PD 98.1% (σ=4.2%). Mean accuracies were: HCs 96.3% 

(σ=4.4%), SAD 99.1% (σ=0.96%), PD 97.0% (σ=4.3%).  Mean reaction time were: HCs 0.66s s 

(σ=0.09 s), SAD 0.64 (σ=0.16 s), PD 0.70 s (σ=0.11 s) indicating that subjects performed the 
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color discrimination task as instructed. The groups did not differ significantly in RT (F50=1.75, 

p=0.18) or accuracy (F47=0.46, p=0.63, one-way ANOVA).  

 

Discriminating between SAD and HCs with patterns of functional connectivity:  For SAD (n=16) 

vs. HC (n=19) classification in the primary sample (see Table 6 for demographics), a peak AUC 

of 0.88 (p< 0.004 corrected, 0.81,1.0 90% CI) was achieved when learning was based on the top 

2 features in each training set, derived from the N condition (Figure 17A; results from all 

conditions not shown). The accuracy decreases with three or more features as presumably less 

informative features (i.e. noise) are added to the feature set.  Anatomical display of these two 

features revealed functional connections between Left Hippocampus and Left Temporal Pole, 

and between Right Anterior Middle Temporal gyrus and Left Orbitofrontal Cortex (Figure 17B, 

Table 7A). When comparing classification performance of each feature alone, Left 

Hippocampus-Left Temporal Pole was more discriminating than Right Anterior Middle 

Temporal gyrus-Left Orbitofrontal Cortex (AUC=0.77 vs. 0.68, data not shown). 
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Table 6. Chapter 7: Demographics table 

Cross‐sectional  SAD PD Control

Primary Sample  N = 16 N = 16 N = 19 statistic 

Age (Mean Years, sd)  33.6 (7.1) 32.2 (11) 31.7 (8) F(2,49)= 0.21, p = 0.81

Gender (Number, % Female)  14 (88%) 12 (75%) 8 (42%) ChiSq = 8.7, p = 0.01

LSAS Score, (mean, sd)  n/a n/a n/a

Replication Sample  N = 14 n/a N = 17 statistic 

Age (Mean Years, sd)  27.3 (7.5) 31 (10.7) t(29)= 1.17, p = 0.25

Gender (Number, % Female)  10 (71) 10 (58) Chi‐Sq = 0.53, t = 0.46

LSAS Score, (mean, sd)  86.7 (18.1) 7.8 (5.3) t(29) = 17.1, p < 0.0001

Longitudinal 

Replication Sample Subset  N = 12 n/a N = 7 statistic 

Age (Mean Years, sd)  28.3 (7.8) 35 (13.0) t(17) = 1.43, p = 0.17

Gender (Number, % Female)  8 (66) 2 (29) ChiSq = 2.6, p = 0.11

LSAS Score pre, (mean, sd)  85.8 (15.3) 7.7 (6) t(17) =12.7, p < 0.0001

LSAS Score post, (mean, sd)  44.5 (25.3) 8.25 (8.1) t(17) = 3.6, p = 0.0004

LSAS Score post‐pre, (mean, sd) ‐41.3 (28.9) 0.57 (3.4) t(17) =3.4 p = 0.003



 

133 

 

 

Figure 17. Chapter 7: Functional connectivity that discriminates SAD in primary sample.  (A) Classification 

performance (AUC) when predicting SAD (n=16) vs. controls (n=19) as a function of the number of features (1 to 

40) included ranked in descending order by their absolute t-score. Features were Pearson correlations using 

segmented and concatenated time-series during the implicit neutral face condition ("N", black dots, see text for 

results when using correlations over other stimulus conditions).  The peak performance for SAD vs. Control 

classification using "N" correlations (sensitivity=0.88, specificity=0.89, AUC=0.89, p < 0.002, corrected) was 

achieved when learning was based on the top 2 features in each training set. Mean AUC for shuffled data are plotted 

along the bottom, with error bars representing 90% CI. Ventral (B) anatomical representation of the top 2 features 

when classifying SAD vs. control subjects using "N" correlations. The largest contributing FCs were between R 

Anterior Middle Temporal gyrus and L Orbitofrontal Cortex, and L Hippocampus and L Temporal Pole which were 

both reduced in SAD (shown in blue). For display purposes, the size of each sphere is scaled according to the sum of 

the SVM weights of each node’s connections. In addition, the thickness of each connection was made proportional 

to its SVM weight.   

 

 Specificity of these features to the SAD diagnosis was tested by classifying SAD vs. 

subjects with panic disorder (PD, n=16). Using only the above two features (no feature 

selection), an AUC of 0.81, p=0.0001 uncorrected was achieved in discriminating between SAD 
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and PD patients (Table 7B), suggesting relative specificity of these features to SAD. These two 

features did not discriminate HCs from panic disorder (AUC=0.47, data not shown). 

We note that that this primary sample was not balanced for gender (HCs: 11 males, 8 females; 

SAD: 2 males, 14 females). We therefore tested whether the top 2 features identified above could 

predict gender among the combined group (13 males vs. 22 females). Classification was not any 

greater than chance for this classification (AUC=0.50), verifying that classification performance 

was not an artifact of a sample mismatched for gender. In addition, there was only a slight 

decrease in performance after applying multiple regression to each feature and removing the 

effects of age and gender: original AUC/adjusted AUC=0.88/0.80. Importantly, replication of 

these findings (described more below) was tested in a sample that was matched for age and 

gender. 

 

Examining previous SAD-related FC reported in the literature: In addition to the exploratory, 

data-driven approach above, we examined FC previously identified to be anomalous in SAD, in 

particular reduced aINS-dACC (Klumpp et al., 2012) and amygdala-dACC and amygdala-dlPFC 

(Prater et al., 2012) in SAD during fear. Using PPI analysis, a recent study observed less aINS-

dACC FC during fearful (> happy) in gSAD relative to controls (Klumpp et al., 2012).  All FC 

during both F and N conditions between bilateral Insula and Anterior Cingulate Gyrus was 

queried at p < 0.05 uncorrected, and the following was observed: Control > SAD, 

Left_Insular_Cortex_PC2-Left_Cingulate_Gyrus_anterior_division_PC1 t(33)=2.22/2.96 F/N, 

and Right_Insular_Cortex_PC2-Left_Cingulate_Gyrus_anterior_division_PC1 t(33)=1.82/Not 

significant  F/N.  The average peak location for Left Insula was anterior ([-36 16 2]), while peak 
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MNI location for the right was middle insula ([42 -4 6]). These results are consistent with the 

aforementioned study.  

 A related study (Prater et al., 2012) used PPI and observed less connectivity between 

amygdala-dACC and amygdala-dlPFC in SAD during fearful faces perception. As above, we 

interrogated FC between these regions during F and N conditions at p<0.05 uncorrected, Control 

> SAD and observed: Right_Amygdala_PC2-Right_Cingulate_Gyrus_anterior_division, 

t(33)=2.53/Not significant F/N and Right_Ventral_Frontal_Pole_PC1 - Right_Amygdala_PC1 = 

t(33) = 1.9208/Not significant F/N consistent with (Prater et al. 2012). However, many FC 

differences between  amygdala and dlPFC/precentral gyrus were in the opposite direction (i.e. 

greater in SAD): Control > SAD, Right_Ventral_Frontal_Pole_PC1 - Right_Amygdala_PC2 = -

1.94 Right_Ventral_Frontal_Pole_PC1 - Left_Amygdala_PC2 = -1.67,  Left_Amygdala_PC1-

Left_Middle_Frontal_Gyrus_PC1, t(33)=-3.08, Left_Precentral_Gyrus_PC1-

Left_Amygdala_PC1, t=-2.63, Right, t=-1.72, Right_Ventral_Frontal_Pole_PC2 - 

Left_Amygdala_PC1 , t=-2.5082. 

 Although FC differences were mostly consistent with these studies, including the above 

connections (RAmygdala-RACC, Right_Ventral_Frontal_Pole_PC1-Right_Amygdala_PC1, Left 

Insula-dACC) with the top 2 connections identified in the main text did not improve 

classification performance (data not shown), while including only these connections resulted in 

poorer classification performance (AUC=0.53). It is important to note that FC was measure here 

using Pearson correlation, while these previous studies applied "seed" based regression analyses, 

which are different approaches for measure functional connectivity and their differences. See 

(Kim and Horwitz, 2008) for further discussion. 
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 Discriminating between SAD and healthy control subjects with patterns of spatial activity: To 

compare the information content of patterns of interactivity (i.e. functional connections used 

above) vs. patterns of activity, SAD vs. control classification was also conducted using beta 

estimates, which are considered summary measures of activation in response to each condition. 

This approach is conceptually similar to a recent study that used pattern classification of whole-

brain activity (BOLD averaged over several TR’s of an event minus baseline activity 

immediately preceding the event) during sad face viewing to predict diagnosis (normal vs. 

clinically depressed) (Fu et al., 2008). In order to make feature-selection/leave-one-out cross 

validation and SVM learning more computationally tractable, preprocessed functional data were 

resized from 2x2x2 mm voxel resolution to 4x4x4 mm resolution, and subject-specific GLM 

models were re-estimated, resulting in a reduction of total feature space per example from 

~189,500 betas to ~23,500. Feature selection, leave-one-out cross validation and SVM learning 

proceeded exactly as above for FC data. When using the contrast F-N, we observed a peak AUC 

of 0.88 (p<0.0001 uncorrected) with 8 voxels (within cerebellum and middle occipital gyrus), 

and when using the F beta weights, a peak AUC=0.83, p=0.0008 uncorrected was observed with 

~170 voxels (Figure 19). However the AUC using F betas dropped to 0.49, and AUC using F-N 

contrast dropped to 0.58 after regressing out the effects of age and sex prior to classification. 

 Classification of SAD vs. PD using the same features as above was then attempted, and  a 

decrease in classification performance was observed; when using F>N contrasts, AUC=0.59, 

p=0.03 uncorrected, and when using F beta weights, AUC=0.56 p=0.26 uncorrected, data not 

shown). Classification of SAD vs. PD using top 10:10:500 F-N contrast estimates over the 

whole-brain only achieved a peak AUC of 0.66 (data not shown). Thus, although peak 

classification performance for SAD vs. Controls using contrast estimates as features matched 



 

137 

that of using pair-wise functional connectivity, under the current analysis these activation 

differences appear to be less specific to SAD. 

 

Figure 18. Chapter 7: Predicting SAD vs. Controls using beta and contrast estimates as features. (A) Feature 

selection, cross-validation and SVM learning were performed exactly the same as for FC, but over the range of 10 to 

1000 ranked features (every 10 voxels). High SAD vs. control classification rates was observed when using the top 

10 F > N contrast values (dots) in each training set, with high classification rates were observed with using the top 

170-200 F beta values (squares) in each training set. (B, left) For F>N contrast values, classification was performed 

again with the top 1 to top 20 features, and the peak was identified at 8 features (sensitivity=0.74 , specificity=1.0 , 

AUC=0.88, p<0.0001 uncorrected). The most informative F>N contrast voxels with negative SVM weights (F>N, 
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Controls > SAD, blue) was in the cerebellum (a), while the most information voxels with positive SVM weights (F 

> N, SAD > controls, yellow) included middle occipital gyrus (b) and a voxel in the vicinity of precentral gyrus (c). 

(B, right) For F beta values, classification was performed again with the top 150 to top 200 features, and the 

classification performance first peaked with 170 features (sensitivity=0.81 , specificity=0.84 , AUC=0.83, p=0.0008 

uncorrected). The most informative F beta voxels with negative SVM weights (F, Controls > SAD, blue) included 

regions in the left frontal pole and middle temporal gyrus (z=2mm), left inferior frontal gyrus (z=22mm), 

dorsomedial prefrontal cortex (z=46mm), while the most informative voxels with positive SVM weights (F, SAD > 

controls, yellow) included cerebellum (z=-22mm), superior occipital gyrus (z=22mm) and supramarginal gyrus 

(z=14mm).  Brain images are displayed using Neurological convention (i.e. L=R), and top left number in each panel 

represents the MNI coordinate (z) of depicted axial slice. 

 

Table 7. Chapter 7 Most informative features discriminating SAD.  A) Top 2 FC features (during Neutral face 

blocks) discriminating SAD vs. HCs, B) Same 2 FC features (during Neutral face blocks) when predicting SAD vs. 

PD subjects C) Same 2 FC features (during Angry Faces) predicting SAD vs. HCs in an independent replication 

sample. All reported p-values are uncorrected. 

A) Primary Sample: SAD (n=16) vs. Controls (n=19) Top 2 features, 
Neutral Faces 
Sensitivity=0.88; specificity=0.89;  
AUC=0.88, p<0.0001 (0.81,1.0) 90% CI 

SAD 
Mean R  

Controls 
Mean R  

T‐value  SVM 
weight 

Fsets 
(35) 

Right_Middle_Temporal_Gyrus_anterior_division_PC1 ‐ 
Left_Frontal_Orbital_Cortex_PC1 

‐0.07  0.41  ‐5.81  ‐2.26  35 

Left_Temporal_Pole_PC1 ‐ Left_Hippocampus_PC1  ‐0.08  0.58  ‐5.39  ‐1.74  35 

B) Primary Sample: SAD (n=16) vs. PD (n=16) Above 2 features, 
Neutral Faces 
Sensitivity=0.81; specificity=0.81; AUC=0.81, p=0.0001 

SAD  
Mean R  

PD    Mean 
R 

T‐value  SVM 
weight 

Fsets 

Right_Middle_Temporal_Gyrus_anterior_division_PC1 ‐ 
Left_Frontal_Orbital_Cortex_PC1 

‐0.07  0.24 
 

‐3.12 
 

‐2.25  N/A 

Left_Temporal_Pole_PC1 ‐ Left_Hippocampus_PC1  ‐0.08  0.52 
 

‐5.11 
 

‐2.24  N/A 

C) Independent Replication Sample: SAD (n=14) vs. Controls (n=17)  
SVM model trained from Primary Sample, Above 2 features during 
Angry faces 
Sensitivity=0.71; specificity=0.71;  
AUC=0.71, p=0.01; (0.59,0.88) 90% CI                                 

SAD 
Mean R  

Controls 
Mean R  

T‐value  SVM 
weight* 

Fsets 

Left_Temporal_Pole_PC1 ‐ Left_Hippocampus_PC1  0.13  0.36  ‐1.65  ‐1.13  N/A 

Right_Middle_Temporal_Gyrus_anterior_division_PC1 ‐ 
Left_Frontal_Orbital_Cortex_PC1 

0.24  0.27  ‐0.43  ‐1.10  N/A 
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Replication in an independent and longitudinal sample 

 Discriminating SAD vs. HCs in an independent replication sample:  To see how well 

classification using the top 2 FC features identified above generalized to new data, these features 

(Left Hippocampus-Left Temporal Pole and Right Anterior Middle Temporal gyrus–

Orbitofrontal Cortex) were tested in a second, independent sample of SAD (n=14) vs. HCs 

(n=17). This sample also performed implicit perception of emotional faces, but instead of color 

identification of fearful and neutral faces (primary sample), they identified the gender of angry, 

happy and neutral faces. For this an SVM model (line) was learned using the full primary dataset 

for the above two features (Figure 19A). To increase generalization ability of the model, features 

were corrected for the effects of age and gender and z-scored prior to SVM learning (under these 

preprocessing steps classification performance was only slightly reduced to AUC=0.86). This 

learned model was applied to the independent replication sample, and the highest AUC was 

achieved when using FC during angry faces (Angry: sensitivity =0.71, specificity=0.71, 

AUC=0.71, p=0.01 (0.59, 0.88) 90% CI, Figure 19B, Table 7C; Happy: AUC=0.47, p=0.77; 

Neutral: AUC=0.54, p=0.43; Full: AUC=0.57, p=0.31, data not shown).  

 Univariate group comparisons over each feature revealed that Left Hippocampus-Left 

Temporal Pole FC was significantly reduced in SAD vs. HCs, particularly during the Angry 

condition (mean difference = -0.27, p=0.017) and Neutral (mean difference= -0.25, p=0.056) 

conditions (Table 8, 1st row). There were no significant differences observed between SAD and 

HCs in the Right Anterior Middle Temporal gyrus– Orbitofrontal Cortex FC (all p>0.2, data not 

shown).  
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Figure 19. Chapter 7: Left-Hippocampus-Left Temporal and Left Anterior Middle Temporal gyrus-Left 

Orbitofrontal Cortex FC predict SAD in the replication sample. (A) Linear kernel SVM line when learning SAD 

(N=16) vs. Control (N=19) based on the full primary dataset using Left-Hippocampus-Left Temporal and Left 

Anterior Middle Temporal gyrus-Left Orbitofrontal Cortex FC during implicit neutral faces condition as features. 

Effects of age and gender were removed, and features were normalized (z-scored) prior to learning, so classification 

performance was slightly lower (AUC=0.86, p<0.0001) than the main text and Figure 1. Shaded grey (white) 

indicates area in which all points were predicted as SAD (control). (B) The same model learned above was used to 

classify SAD (N=14) vs. control (N=17) in the independent replication sample, using Left-Hippocampus-Left 

Temporal and Left Anterior Middle Temporal gyrus-Left Orbitofrontal Cortex FC during implicit angry faces 

(AUC=0.71, p=0.01, see main text for results from other conditions). 

 

Table 8. Chapter 7: Univariate statistical tests of features identified in the primary sample tested 
in a second, independent replication sample. 

 

 

Changes in Left Hippocampus-Left Temporal Pole functional connectivity following SSRI 

treatment, and correlation with decreases in symptom severity:  We examined whether Left 

Hippocampus-Left Temporal Pole FC could be considered a possible biomarker for (SSRI) 

Left Hippocampus‐Left Temporal Pole  Angry   Happy   Neutral   Full

effect size pval effect size pval effect size pval effect size pval

SAD (n=14) > Control (n=17) ‐0.245 0.027 ‐0.176 0.197 ‐0.208 0.092 ‐0.190 0.042

SAD pre > post (n=12) ‐0.414 0.007 ‐0.343 0.039 ‐0.245 0.098 ‐0.343 0.036

LSAS post‐pre vs. FC pre‐post (n=19) 0.546 0.008 0.583 0.004 0.335 0.081 0.371 0.059
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treatment effects. At the group level, social anxiety symptom severity (as assessed through the 

Liebowitz Social Anxiety Scale, or LSAS) was significantly reduced following 8-weeks SSRI 

(paroxetine) treatment (cases (pre-post) > controls (pre-post) t(17)=3.4, p=0.003, Table 6, last 

row). Pre minus post comparisons in the SAD subjects (n=12) revealed the Left Hippocampus-

Left Temporal Pole FC, particularly during Angry faces, increased following treatment (Angry 

pre>post, mean change in R = -0.41, t(11) =-2.9, p=0.007 paired t-test, Table 8, 2nd row).  

To further examine whether Left Hippocampus-Left Temporal Pole FC tracks social anxiety 

symptom severity, we tested the extent to which changes in LSAS were associated with changes 

in this FC. A subset of the replication sample completed an additional scan following 8 weeks of 

paroxetine treatment (SAD n=12) or following 8 weeks without treatment (HCs n=7). This 

analysis included controls, because we were primarily interested in longitudinal symptom change 

that is not necessarily specific to treatment. Given that SAD subjects exhibited decreased FC 

relative to HCs at baseline, we hypothesized that, across both HCs and SAD subjects, increases 

in Left Hippocampus-Left Temporal Pole FC should be associated with decreases in symptom 

severity. This relationship was indeed observed for Left Hippocampus-Left Temporal Pole FC 

computed across all examined conditions (pre-post ΔLSAS vs. post-pre ΔFC: angry R=0.55, 

p=0.008, happy R=0.58, p=0.004, neutral R=0.33 p=0.08, and full run R=0.37 p=0.06) (Table 8, 

3rd row, Figure 19). These results held, particularly for FC during angry, happy and neutral faces, 

after removal of the top 1 and top 2 outliers (indicated as boxed 1s and 2s in Figure 2) from each 

plot, (pre-post ΔLSAS vs. post-pre ΔFC top 1 removed: angry R=0.59, p=0.01, happy R=0.63, 

p=0.005, neutral R=0.35 p=0.15, full run R=0.39 p=0.10; top 2 removed: angry R=0.57, 

p=0.017, happy R=0.62, p=0.007, neutral R=0.51 p=0.018, and full run R=0.36 p=0.16).  
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 When pre-post ΔLSAS vs. post-pre ΔFC was correlated among only cases (n=12), a 

positive, yet non-significant, correlation was observed (R=0.32, p=0.31). Left Hippocampus-Left 

Temporal Pole FC at baseline was not associated with ΔLSAS symptom improvement (R=0.21, 

p=0.5, data not shown). Change in right anterior middle temporal gyrus-left OFC FC did not 

correlate with change in symptom severity (angry: R=-0.10, p=0.34, happy: R=-0.20, p=0.2, 

neutral: R=0.04, p=0.44).  Additional analyses suggest decreases in activation in left 

hippocampus and left temporal pole in response to angry and neutral faces following treatment, 

although effects were sub-threshold (see (Pantazatos et al., 2013) Supplementary Results).  
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Figure 20. Chapter 7: Increases in Left Hippocampus-Left Temporal Pole connectivity correlate with greater 

decreases (ΔLSAS post-pre) in social anxiety symptom severity following 8 weeks paroxetine treatment (or non-

treatment for control subjects) in a second, independent replication sample. Linear plots of change in correlations 

values (pre > post) during implicit angry, happy and neutral face viewing, as well as over the full run, vs. change 

(post > pre) in Liebowitz Social Anxiety Scale (LSAS) scores. Pre- and post-scans were obtained approximately 8 

weeks apart. Cases (n=12) received 8-weeks paroxetine treatment, and seven healthy control subjects (n=7) were 

scanned following 8-weeks non-treatment. Correlation values were assessed using Spearman's rank correlation 

coefficient, and p-values are one-sided testing against the null hypothesis of correlation equal to or less than zero. 
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Discussion  

  In the current work a novel and exploratory approach based on multivariate pattern 

analysis of large-scale, condition-dependent FC (Pantazatos et al., 2012a) was used to identify 

FC that discriminated individual subjects with SAD. FC features that discriminated SAD from 

HCs in the primary sample also discriminated SAD from HCs and from subjects with the closely 

related diagnosis of PD with significant sensitivity and specificity. Additionally, following 8 

weeks of treatment of SAD with paroxetine, the most discriminative FC feature normalized, with 

greater changes in FC correlating with greater decreases in symptom severity. Results suggest 

promise for FC-based biomarkers for psychiatric diagnosis and treatment effects.   

 Related diagnostic classification studies have applied pattern analysis to condition 

dependent activation to a particular probe or stimulus relevant to the disorder (i.e. responses to a 

sad or mother's face to predict depression (Fu et al., 2008)). While pattern analysis of activation 

maps takes into account multivariate interactions among regions, activation maps are usually 

beta maps (summary statistics of activation) or signal that has been averaged across multiple 

successive scans. Thus interactions are at a grosser temporal scale. In contrast, the current 

approach explicitly takes into account scan-to-scan covariation between regions. Here, pattern 

analysis of FC was more sensitive and specific in discriminating SAD than was multivariate 

pattern analysis of activation (when using the canonical HRF to model activity), likely due to the 

fact that it captures information inherent in the interactions among brain regions. Previous large-

scale FC approaches capture this information, but only during resting state (i.e. resting-state 

fMRI BOLD to predict schizophrenia (Yu et al., 2013) and age (Dosenbach et al., 2010b). The 

current approach measures condition-dependent FC (i.e. large-scale FC during emotional face 

viewing), combining the sensitivity of multivariate machine-learning analysis with the 

advantages of both task-based and resting-state FC approaches. 
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 A meta-analysis of both PET and fMRI studies of SAD prior to 2007 showed increased 

activation in amygdala and insula during negative emotional processing (Etkin and Wager, 

2007), while many recent fMRI studies of SAD have applied activation analyses focused on the 

amygdala, and insula (Klumpp et al., 2010; Schmidt et al., 2010; Yoon and Zinbarg, 2007a) to 

show increased activation in these areas to intense vs. low or negative vs. neutral emotional 

stimuli. In addition, univariate analyses showed decreased activation of the amgydala and 

increased activation in the vmPFC in response to social threat stimuli following 12-weeks of 

SSRI treatment (Phan et al., 2013). However, although these univariate approaches can identify 

areas that respond more or less to a particular stimulus, they ignore interactions, or FC, between 

regions, which is thought to measure information transfer underlying complex cognitive-

emotional processing such as during threat or facial affect perception and appraisal (Friston, 

2002).  

 Although previous studies have demonstrated differences in activation and FC (Ding et 

al., 2011; Hahn et al., 2011; Klumpp et al., 2012; Liao et al., 2011; Prater et al., 2012)  between 

SAD and HCs, the current work is among the first to use FC (and activation) to discriminate 

SAD vs. HC diagnostic membership. The current approach of combining machine learning with 

large-scale, condition dependent FC is more exploratory and data-driven in identifying FC 

differences than previously used techniques such as Psychophysiological Interactions (PPI) 

Analysis, which only assess FC with a single, a priori specified, “seed” region at a time.  The 

additional discrimination of SAD from PD is particularly notable given that these disorders have 

a significant overlap of both symptoms and neurobiology, such as amygdala hyperactivation and 

decreased frontal regulation (Damsa et al., 2009; Rauch et al., 2003).  
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 The most discriminative feature was significantly reduced Left Hippocampus-Left 

Temporal Pole FC in SAD, and greater increases in this FC predicted greater improvement in 

symptom severity following 8 weeks of SSRI treatment. Our finding of Left Hippocampus-Left 

Temporal Pole functional connectivity during face perception in healthy subjects is consistent 

with the observation of intrinsic FC between anterior hippocampus and anterior temporal pole in 

humans and non-human primates (Kahn et al., 2008), and with increased FC between 

hippocampus and left temporal pole during successful retrieval of memory for face-name 

associations (Tsukiura et al., 2010). Interestingly, we observed that this FC is reduced in subjects 

with SAD, particularly during neutral (primary sample) and angry face (replication sample) 

processing (see below for further discussion regarding differences between these samples). 

Previous findings indicate that the temporal pole has a role in both social and emotional 

processes including face recognition and theory of mind, (Wong and Gallate, 2012) and memory 

for face-name pairs (Damasio et al., 1996), and it has been proposed that the temporal pole binds 

complex, highly processed perceptual inputs to visceral emotional responses (Olson et al., 2007). 

It is also thought to be involved in access to social knowledge during mentalizing, the implicit 

attribution of intentions and other mental states (Frith and Frith, 2003). The left hippocampus is a 

key region for memory (i.e. autobiographical memory retrieval) (Spreng and Mar, 2010), and 

functional connectivity between this region and the temporal pole may reflect an integration of 

stored memory with social knowledge during face perception and mentalizing in healthy 

subjects. This neural process is presumably disrupted or under-utilized in SAD, which is 

characterized by excessive self-focused attention and fears of negative evaluation in 

interpersonal situations.   
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 It may seem counterintuitive that the most predictive FC was during neutral faces in 

primary sample. However this is consistent with evidence suggesting that SAD is characterized 

by negative interpretation bias, particularly when presented with ambiguous social cues (i.e. 

neutral faces) (Winton et al., 1995; Yoon and Zinbarg, 2007b). Other studies demonstrate 

abnormal reactivity to emotional, and in particular harsh (i.e. angry, disgust), faces (Klumpp et 

al., 2010). In the current study, case vs. control and pre-post treatment differences in Left 

Hippocampus-Left Temporal Pole FC during neutral faces in the replication sample was 

observed on a trend level (Table 8, Neutral column: SAD>Control, p=0.09, SAD pre>post 

p=0.10). However the strongest effects in this sample were observed for this FC during angry 

faces (Table 8, Angry column: SAD > Control, p=0.027, pre>post p=0.007).  One possible 

interpretation is that angry faces (relative to neutral) are more salient in SAD, and larger 

differences in Left Hippocampus-Left Temporal Pole FC might have observed in the primary 

sample if angry faces had been used. Alternatively, neutral (relative to angry) faces could be a 

more salient in SAD, but the signal was not apparent in the replication sample due to a minor 

technical issue that caused slightly fewer blocks of neutral face conditions relative to angry (see 

Methods: Replication Sample, last paragraph). Future studies using a balanced block design with 

both angry and neutral faces can facilitate a direct comparison that should help resolve this 

ambiguity.  

 Interestingly, we observed increased FC between Left Hippocampus-Left Temporal Pole 

concomitant with symptom improvement following 8-weeks SSRI treatment,  yet there was a 

trend-level decrease in activity in each of these structures in response to angry and neutral faces 

following treatment (see Supplementary Results). Previous PET and SPECT studies have also 

shown reduced perfusion and cerebral blood flow (rCBF) in these regions following 8-weeks 
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SSRI treatment. PET imaging during a public speaking paradigm in SAD subjects demonstrated 

that regardless of treatment approach (SSRI citalopram or behavioral therapy), improvement was 

accompanied by a decreased rCBF-response to public speaking bilaterally in the amygdala, 

hippocampus, and the periamygdaloid, rhinal, and parahippocampal cortices (Furmark et al., 

2002), while a related SPECT study demonstrated reduced cerebral perfusion in left 

hippocampus following 8 or 12 weeks of citalopram in a combined group of SAD, obsessive 

compulsive disorder and post-traumatic stress disorder patients (Carey et al., 2004). A related 

SPECT study observed reduced perfusion in anterior and lateral temporal cortex in SAD subjects 

following 8-weeks citalopram treatment (Van der Linden et al., 2000), while in a recent fMRI 

BOLD study, temporal pole activity during successful understanding of others' mental states 

correlated with neuroticism (Jimura et al., 2010). Taken together, these results suggest that while 

increased activation of hippocampus and temporal pole may be associated with increased social 

anxiety symptom severity, increased functional connectivity between these two structures is 

associated with decreased symptom severity. 

 In the absence of a placebo or comparison therapy group, we cannot infer to what extent 

changes in Left Hippocampus-Left Temporal Pole FC were specific to SSRI treatment or to 

clinical improvement. In a recent PET study in which SAD subjects responded to either placebo 

or SSRI treatment, reduction in (amygdala) brain activity was similar in both groups (Faria et al., 

2012).  Hence we cannot rule out that Left Hippocampus-Left Temporal Pole FC would increase 

in response to any effective treatment. From the current longitudinal analysis based on only two 

time points, we also cannot infer whether the changes in Left Hippocampus-Left Temporal Pole 

FC preceded, or instead followed, changes in symptom severity. A future study could be 
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designed to employ mediation analysis to more explicitly test whether changes in Left 

Hippocampus-Left Temporal Pole FC mediate changes in symptom severity, or vice versa. 

 Although baseline (pre-treatment), Left Hippocampus-Left Temporal Pole FC did not 

predict outcome in response to 8 weeks SSRI treatment, power to detect predictors of outcome 

was limited by limited heterogeneity in outcome, as most of the SAD patients improved during 

treatment.  FC (as well as brain activity features identified in related studies (Ding et al., 2011; 

Doehrmann et al., 2012), may be a useful pre-biomarker to refine the diagnostic classification of 

psychiatric disorders and advance the development of personalized treatment approaches. For 

example, it is possible that Left Hippocampus-Left Temporal Pole FC could be modulated by 

particular conditions (e.g. social threat stimuli under various cognitive reappraisal strategies) 

within a single scan session, and the extent of this modulation may then be predictive of 

treatment outcome. Alternatively FC features might be used to identify targets for direct 

modification by techniques such as transcranial magnetic stimulation. If the FCs identified in this 

study are further validated by independent replications, future studies could examine the clinical 

features of individuals, regardless of diagnosis, that exhibit these features, who might thus also 

benefit from treatments designed to modulate this circuitry. 

 Limitations of this study include that the primary data set was not gender matched, and 

there were differences in ascertainment, diagnostic assessments and paradigm (i.e. color vs. 

gender identification) with the replication sample. However, the fact that replication was 

significant despite these differences suggests robustness of our approach, and encourage further 

refinement of the approach and replication in larger samples. An important future refinement 

would include node definitions based on functional parcellation of the brain (as opposed to atlas-

based parcelation, which introduces arbitrary boundaries between regions).  Future studies might 
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also utilize a variety of imaging paradigms that activate different regions, such as speech 

anticipation, eye gaze (Schneier et al., 2009), as well as other structural imaging modalities (Liao 

et al., 2011; Talati et al., 2013), as the best discrimination may ultimately result from combining 

several paradigms and imaging modalities that tap into various neural facets of the disorder. 
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CHAPTER 8 
 

GREY MATTER ABNORMALITIES IN SOCIAL ANXIETY DISORDER:  PRIMARY, 
REPLICATION, AND SPECIFICITY STUDIES7 

 

Summary 

BACKGROUND:  Despite increasing evidence that structural brain abnormalities underlie 

pathological anxiety, social anxiety disorder (SAD), although among the most common of 

anxiety disorders, has received little attention. Using Magnetic Resonance Imaging, we (1) 

examined whole-brain grey matter (GM) volume differences between a group of subjects with 

generalized SAD and healthy controls; (2) retested the findings in an independent clinical 

sample; and (3) tested for specificity by contrasting the SAD group to a separate group of panic 

disorder (PD) subjects. METHODS: The primary group with SAD (N=16) was required to meet 

DSM-IV criteria for generalized SAD with onset by age 30. Controls (N=20) were required to 

have no lifetime history of any anxiety disorder. The replication sample included 17 generalized 

SAD and 17 control subjects. The PD comparison group (N = 16) was required to not have 

lifetime SAD. Images were acquired on a 1.5 Tesla GE Signa MRI scanner using a 3D T1-

weighted spoiled gradient recalled (SPGR) pulse sequence with isomorphic voxels (1×1×1 mm) 

in a 24cm field of view (256×256 matrix, ~186 slices, TR 34ms, TE 3ms). Morphological 

differences were determined using optimized voxel based morphometry, implemented in the 

SPM8 software package. RESULTS: After adjusting for age, gender, and total intracranial 

volume, SAD (compared to control) subjects had larger GM volumes in the left parahippocampal 

and middle occipital, and bilateral supramarginal and angular cortices, and left cerebellum; they 

had decreased GM in bilateral temporal poles and left lateral orbitofrontal cortex. Cerebellar, 

                                                 
7 Talati, Ardesheer, Spiro P Pantazatos*, Franklin R Schneier, Myrna M Weissman, and Joy Hirsch. 2013. Gray 
matter abnormalities in social anxiety disorder: primary, replication, and specificity studies. Biol. Psychiatry. 
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parahippocampal, and temporal pole differences were (1) observed in both samples individually 

as well as in a combined dataset analysis, (2) survived whole brain correction for multiple 

comparisons, and (3) were not observed in the PD group, suggesting specificity to SAD.  

CONCLUSIONS: These findings parallel the functional literature implicating a network of 

cortical and sub-cortical regions in SAD, and they suggest structural abnormalities that may 

underlie the functional disturbances. The specificity of the above regions in mediating constructs 

of social anxiety will require further investigation.   

 
Introduction 

 Anxiety disorders, as defined by the current Diagnostic and Statistical Manual (DSM-IV) 

(Psychiatric Association, 1994), are among the most common psychiatric disorders. They share 

prominent anxiety as a clinical feature, as well as some abnormalities in brain circuitry 

associated with fear processing (Delgado et al., 2006). Anxiety is also clinically heterogeneous 

(3-4), however, and identifying abnormalities in brain structure and function that pertain to the 

different diagnoses may help our understanding of the bases of this heterogeneity. Social anxiety 

disorder (SAD; also referred to as social phobia), although among the most common anxiety 

disorders (Jefferys, 1997), has however received relatively little attention in this context.  

 SAD is characterized by significant and persistent fear of social situations wherein the 

individual might be exposed to unfamiliar persons or situations, or to scrutiny by others 

(Psychiatric Association, 1994). Lifetime prevalence is approximately 5-12%, with higher rates 

among females than males, and with mean onset in late childhood and early adolescence (Kessler 

et al., 2005). Persons suffering from SAD typically either avoid the feared situations, or endure 

them with intense anxiety or distress, leading to significant impairment in multiple domains of 

functioning. Generalized SAD— the subtype involving experience of fear and avoidance in most 
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social situations (and the focus of the investigation here)— is associated with greater severity, 

comorbidity, and impairment, and may also have greater genetic heritability (Schneier et al., 

2009).  

 A substantial body of functional MRI studies has reported hyperactivity within limbic 

regions in SAD patients, particularly the amygdala, hippocampal region, and insula, when 

viewing emotionally charged faces (Freitas-Ferrari et al., 2010; Pietrini et al., 2010).  These 

paradigms have particular face-validity for SAD, where fear of scrutiny and negative evaluation, 

and avoidance of eye contact are core symptoms (Safren et al., 1999). Disturbances in frontal, 

and particularly anterior cingulate, cortex have been reported as well, although specificity and 

directionality of findings have been inconsistent (Freitas-Ferrari et al., 2010).  Other functional 

imaging paradigms targeting anticipation of public speaking (Lorberbaum et al., 2004), gaze or 

eye contact (Schneier et al., 2011), and judgment of self- versus non-self relevant information 

(Whitfield-Gabrieli et al., 2011) have yielded generally similar patterns.    

 Data from functional paradigms, however, are dependent on the type of task performed, 

as well as the subject’s current state. This is of particular concern in studies of SAD, as the 

scanning environment may exacerbate performance anxiety— a common feature of the 

disorder— and impair task performance. Measures of brain structure, in contrast, are largely 

state- independent, and can complement functional studies by identifying morphological 

vulnerabilities that are robust to task parameters. Structural studies of SAD, however, have been 

extremely limited.  A 2008 review of structural imaging studies of anxiety (Ferrari et al., 2008) 

identified only one report for SAD (Potts et al., 1994). That example failed to detect any 

differences between SAD cases and controls, but was restricted to examination of the thalamus, 

putamen, and an overall index of grey matter (GM).  A subsequent meta-analysis of anxiety 
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disorders failed to find any studies of SAD that qualified for inclusion (Radua et al., 2010). Some 

studies have included SAD subjects within anxiety groups but without differentiating them from 

other fear-based disorders (van Tol et al., 2010). Finally, a recent treatment study reported 

volume decreases in the cerebellum and superior temporal cortex in SAD patients following 12 

weeks of treatment with the selective serotonin reuptake inhibitor (SSRI) escitalopram 

(Cassimjee et al., 2010). SSRI treatment, however, is broadly efficacious for multiple anxiety 

and mood disorders, so the extent to which the changes reflect processes specific to social 

anxiety is unknown. These questions, coupled with the overall paucity of studies, invite 

additional investigation using complementary approaches and populations.   

 In the present study, we used magnetic resonance imaging (MRI) and optimized voxel 

based morphometry (VBM) to identify brain abnormalities associated with SAD. Given the 

absence of well-established structural abnormalities in SAD based on the current literature, we 

used a whole-brain approach. The investigation involved three stages. First, we compared a 

primary group of persons with DSM-IV generalized SAD to a group of healthy control 

participants, to identify differences in GM differences between the two groups. We then re-

examined the same measures in an independent clinical sample of generalized SAD patients and 

healthy controls, to replicate and evaluate the generalizability of our findings. And finally, we 

asked whether the GM abnormalities identified above were specific to SAD, by contrasting the 

primary SAD group to a group of subjects with a different anxiety disorder: panic disorder (PD). 

PD is a complex anxiety disorder characterized by recurrent episodes of unexpected and 

uncontrollable fear, accompanied by cardio-respiratory, gastrointestinal, neurological, or other 

autonomic responses. Like SAD, it is more frequent among women and moderately heritable, 

although with later onset (Roy-Byrne et al., 2006; Weissman, 1993)}}. Although the two 
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disorders share some clinical symptoms as well as abnormal fear circuitry, (Kendler et al., 1995; 

Schneier et al., 1992), they also have distinguishing clinical and treatment profiles. Comparison 

to the PD group thus afforded us one mechanism to evaluate whether the aforementioned 

regional abnormalities specifically indexed social anxiety. 

   The goals of the study can thus be summarized as follows: (1) to identify structural 

abnormalities in the brain associated with SAD; (2) to retest the findings in an independent 

clinical population; and (3) to test specificity of these findings to SAD, as compared to other 

anxiety disorders. 

Methods 

Primary Sample (“Sample 1”): All subjects were 18-50 years of age.  SAD cases were required 

to have a  DSM-IV(1) diagnosis of generalized social anxiety disorder (Goldstein et al., 1997).  

To further minimize heterogeneity, we required cases to have demonstrated onset by age 30, and 

have a first-degree relative with an anxiety disorder.  Controls were required to have no lifetime 

history of any psychiatric disorder, with exceptions for past minor depressive disorder, 

adjustment disorders, or brief periods of substance abuse (but not dependence) in adolescence or 

college. Additionally, controls could not have a history of an anxiety disorder in any first-degree 

relative, and were required to be at least 25 years old at the time of assessment, to minimize the 

possibility of including subjects who, although asymptomatic, might still be at risk for the 

disorder. For both SAD and control groups, subjects with a personal or family history of 

schizophrenia or bipolar disorder were excluded a priori. 

 Subjects were recruited through web advertisements (except for 7 SAD cases recruited 

from an ongoing genetic program project of fear and anxiety (Talati et al., 2008)).  Subject 

selection involved two stages. First, persons responding to the advertisement were screened by a 
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research assistant using the screening sections of the SADS-LA-IV diagnostic modules for 

anxiety disorders. Subjects who screened positive for social anxiety, and were not 

contraindicated for an MRI scan, were invited to participate in a full DSM-IV interview (detailed 

below).  Similar procedures were used to recruit the comparison sample of PD subjects. Subjects 

in the PD group, however, could not have a diagnosis of SAD, and vice versa. All procedures 

were approved by the Columbia University/ New York State Psychiatric Institute Institutional 

Review Boards, and all subjects gave written consent to participate.   

 Diagnostic assessments were administered by clinically trained doctoral- and masters-

level mental health professionals using the Schedule for Affective Disorders and Schizophrenia-

Lifetime Version modified for the study of anxiety disorders and updated for DSM-IV (SADS-

LA-IV). Psychiatric history on first-degree relatives was obtained during the interview using the 

Family History Screen (FHS) (Weissman et al., 2000). Final psychiatric diagnoses were made by 

an experienced clinician based on all available diagnostic information using the Best Estimate 

Procedure (Leckman et al., 1982). Trait and state anxiety prior to the scan were assessed using 

the Spielberger State-Trait Anxiety Inventory (STAI) (Spielberger et al., 1983). 

  

Replication Sample (“Sample 2”): Structural MRI data was obtained for 17 persons with SAD 

and 17 healthy controls (age 20-52) participating in an unrelated fMRI study (Schneier, P.I.) that 

used the same MRI scanner. The sample has been detailed elsewhere (Schneier et al., 2011). 

Briefly, subjects were recruited through media advertisements and clinical referrals, and 

interviewed using the Structured Clinical Interview for DSM-IV Axis I disorders (SCID IV) 

(First et al., 1997). Social anxiety severity was also rated by a clinician using the Liebowitz 

Social Anxiety Scale (LSAS) (Liebowitz, 1987). [Higher LSAS scores indicate greater severity]. 
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The SAD group was required to have a current diagnosis of generalized SAD, but no other 

current Axis I disorder (except secondary diagnoses of generalized anxiety, dysthymia, or 

specific phobia). Controls, as with the primary sample, were required to have no lifetime history 

of any Axis I disorder.  Because this was a treatment study, only images acquired at baseline (at 

which time all subjects had been medication-free for ≥ 4 weeks), were used.   

 

Imaging and Data Analysis: Structural data were acquired on a 1.5 Tesla GE Signa MRI scanner 

using a 3D T1-weighted spoiled gradient recalled (SPGR) pulse sequence with isomorphic 

voxels (1 × 1 × 1 mm) in a 24 cm field of view (256 × 256 matrix, ~186 slices, TR 34 ms, TE 3 

ms). Anatomical data were processed using whole-brain voxel based morphometry (VBM)  

(Ashburner and Friston, 2000), as implemented in the SPM8 software package 

(http://www.fil.ion.ucl.ac.uk/spm) using Matlab v7.13.The 3D T1-weighted images were 

segmented into the three main tissue classes (gray matter, GM; white matter, WM; and 

cerebrospinal fluid, CSF) using the SPM unified segmentation algorithm with default settings 

(Ashburner and Friston, 2005).  Next the GM and WM images were spatially normalized to a 

group specific template (composed of all patients and controls) and then to MNI space using a 

diffeomorphic image registration toolkit (DARTEL) in 1.5 mm cubic resolution (Ashburner, 

2007). The images were modulated with the individual Jacobian determinants to preserve the 

local amount of GM and WM. Modulation was achieved by multiplying voxel values in the 

segmented images by the Jacobian determinants derived from the spatial normalization step. In 

effect, the analysis of modulated data tests for regional differences in the absolute amount 

(volume) of grey matter.  Finally, images were smoothed with an 8 mm full-width at half-

maximum (FWHM) isotropic Gaussian kernel. This is the default used in SPM software, and has 
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been found empirically to be optimal for group inference (Mikl et al., 2008).  Furthermore, 

because many VBM studies of other anxiety and mood disorders have used this kernel (Yoo et 

al., 2005; van Tol et al., 2010), this consistency should aid future qualitative and quantitative 

comparisons of our data with other studies.  

 Prior to statistical analysis, an inclusion mask was created by absolute thresholding which 

excluded all voxels with GM values less than 0.2. Statistical analysis on processed GM images 

was carried out by means of whole brain multiple regression, using binary variables to code for 

SAD cases vs. controls.  Analyses were carried out in each independent dataset alone, and with 

the datasets combined. Sex, age, and total intracranial volume (TIV, which was the sum of GM, 

WM and CSF, for each subject normalized by 10,000) were entered as covariates in all analyses, 

as these are independently associated with GM differences in adults, and failure to adjust for 

these variables can result in false positives (Henley et al., 2010). For the combined dataset 

analysis, an additional variable coding for dataset was included in order to control for any 

possible systematic differences between samples.  

 For whole-brain analyses, tables and maps were thresholded at  p=0.001 and cluster-size 

of 10. Additionally, significant clusters were identified by means non-stationary cluster extent 

correction using random fields (Hayasaka et al., 2004) as implemented using the NS toolbox 

(http://fmri.wfubmc.edu/cms/software#NS) for SPM5. This correction method confers increased 

sensitivity to spatially extended signals while remaining valid when cluster-size distribution 

varies depending on local smoothness as is the case in VBM data (Hayasaka et al., 2004). ROI 

analyses were conducted using the Marsbar Toolbox (http://marsbar.sourceforge.net/) within 

SPM8.  Clusters in one sample that survived whole-brain cluster-extent correction (see above 

paragraph) at p < 0.05 or 0.1 were used to define ROIs for independent testing in the other 
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sample. Briefly, contrasts values of SAD > control or  control > SAD contrasts from the 2nd 

level model of one sample were first averaged over all voxels within the above ROIs, and 

submitted to an independent 2nd level analysis (using the same group level design as for whole-

brain analyses above). 

 An additional analysis was performed to formally quantify the significance in overlap of 

the case versus control contrast maps from each of the two independent datasets (dataset 1: 16 

cases, 20 controls, dataset 2: 17 cases, 17 controls). For this we used the cluster_overlap_npm.m 

script available from the laboratory of Tor Wager, Ph.D. (http://wagerlab.colorado.edu) in which 

2 T-maps (one from each sample  for the cases > controls comparison) were thresholded at p < 

0.05 uncorrected, cluster size > 10 and binarized to include only positive T-values (the analysis 

was repeated for negative T-values, or controls > cases). The number of overlapping voxels 

between the two maps was then calculated.. The probability of this overlap occurring by chance 

was calculated by comparing its observed value to a null distribution, which was derived by 

randomizing the locations of the centers of the clusters of each map 2,000 times. 

Results 

Sample 1 

Demographic and Clinical Features: Sample characteristics are detailed in Table 9a. As 

compared to the healthy controls, the SAD group had a higher proportion of female subjects, and 

reported higher state and trait anxiety.  The most frequently co-morbid lifetime diagnoses were 

major depressive disorder and specific phobia. Three subjects reported taking medication for 

anxiety in the past, but no subject was on any psychoactive medication in the 10 weeks 

preceding the scan.  
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Table 9. Chapter 7: Sample demographics and clinical features.  

 

+ p ≤.1; * p ≤ .05;  **p ≤ .01;  ***p ≤ .005; **** p  ≤ .001 
Abbreviations:  
AUD: Alcohol Use Disorder (abuse or dependence); DUD: Drug Use Disorder (abuse or 
dependence); GAD: Generalized Anxiety Disorder; MDD = Major Depressive Disorder; OCD: 
Obsessive Compulsive Disorder; SP: Specific phobia.  
 
Medication frequencies only include those prescribed for a psychiatric condition.  

 \ 

Diagnostic Groups Statistical  Comparisons

(a) SAMPLE 1 SAD CON PD SAD vs  CON PD vs  CON SAD vs  PD

N = 16 N = 20 N = 16

Gender [N(%), Female] 13 (81) 9 (45) 13 (76) x
2
 = 4.9* x

2
 = 3.8

+
x
2
 = 0.11

Age [mean years, std] 34.1 (6.7) 31.4 (7.8) 31.8 (10) t = 1.1 t = .41 t = .75

Age at onset [mean, std] 11.0 (5.9) n/a 18.4 (3.4) t = 4.4****

Trait Anxiety  [mean, std] 35.7 (12.5) 27 (6.1) 39.4 (7.9) t = 2.3* t= 4.9**** t = .99

State Anxiety [mean, std] 39 (11.9) 26 (4.1) 35.5 (10) t = 4.0**** t = 3.5*** t = .88

Lifetime Comorbid Diagnoses  [N,%]

MDD 5 (31) 0 3 (17) x
2
 = .83

GAD 2 (12) 0 2 (12) x
2
 = .004

SP 4 (25) 0 5 (29) x
2
 = 0.08

OCD 1 (6) 0 2 (12) x
2
 = 0.1

DUD 1 (6) 0 4 (23) x
2
 = 1.9

AUD 0 0 4 (34) x
2
 = .3

Lifetime Psych. Medication Use [N,%] 3 (20) 0 9 (52) x
2
 = 3.7

+

(b) SAMPLE 2 SAD CON PD SAD vs  CON

N = 17 N = 17 n/a

Gender [N(%), Female] 11 (64) 10 (59) x
2
 = 0.1

Age [mean years, std] 29.1 (8.9)  31.3 (10.7) t = .66

State Anxiety [mean, std] 44.7 (9.6) 24.4 (7.1) t = 6.9****

Liebowitz Social  Anxiety Scale [mean, std] 81.4 [15.6] 8.1 [5.4] t = 17.7****

Lifetime Comorbid Diagnoses  [N,%]

MDD 6 (35) 0

GAD 3 (18) 0

AUD 2 (12) 0

Lifetime Psych. Medication Use [N,%] 6 (35) 2 (12)

(C ): COMBINED SAMPLE SAD CON PD Sample Group Sample x Group

N = 33 N = 37 n/a (1 vs  2) (SAD vs  CON)

Gender [N(%), Female] 24 (73) 19 (51) x
2
 = 0.03 x

2
 = 3.4+ x

2
 = 1.8

Age [mean years, std] 31.5 (8.2) 31.4 (9.1) t = 1.3 t = .01 F = 1.5

State Anxiety [mean, std] 42.0 (11.0) 25.6 (5.7) t = 1.5 t = 64.9**** F = 2.8
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Grey Matter Differences associated with SAD: We first examined grey matter (GM) differences 

between the SAD and healthy control groups on a voxel-by-voxel basis across the entire brain.  

Significant group differences (defined as clusters of 10 or more voxels at p ≤ .001) are identified 

in Table 10a. All analyses were adjusted for age, gender, and total intracranial volume (TIV).  

There were no overall differences in total grey or white matter between the SAD and control 

groups.   

 The largest GM increases associated with SAD (i.e, the SAD > control contrast) were 

observed in a left hemisphere cluster encompassing the cerebellum and 

fusiform/parahippocampal cortex [Brodmann’s Areas (BA) 37, 36]. Additional differences were 

detected in right and left lingual, middle occipital, and middle frontal gyri.  The converse 

contrast (control > SAD) identified a cluster spanning right hemisphere primary motor and 

sensory cortices, multiple clusters in both hemispheres of the dorsal anterior cingulate, and a 

cluster in the temporopolar region of the left superior temporal cortex.  
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Table 10. Chapter 8: Grey Matter Abnormalities Associated with Social Anxiety Disorder 

 

P < .001; k = 10 
Sample 1: N = 36 (16 SAD, 20 Control);  
Sample 2: N = 34 (17 SAD, 17 Control);  
Combined Sample:  N =70 (33 SAD, 37Control) 
 
Clusters surviving whole brain correction are indicated as follows: *p < .05; +p < .1  

(a) Sample 1
SAD > Control BA Size x y z t

1 L Cerebel lum, Parahippocampal , Fus i form 37, 36 451+ ‐24 ‐39 ‐21 4.40

2 R Middle  Fronta l 46, 10 224 45 51 9 4.95

3 R Lingual 19 41 24 ‐53 ‐5 3.67

4 R Cerebel lum ‐ 35 15 ‐62 ‐44 3.95

5 L Middle  Occipi ta l 19 11 ‐39 ‐74 8 3.98

6 L Lingual 17 12 ‐8 ‐92 ‐15 3.49

Control > SAD

1 R Precentra l , Postcentra l 6,4 678* 42 ‐18 38 ‐4.84

2 R Middle  Cingulate 24 199 14 ‐21 48 ‐4.64

3 L Middle  Cingulate 32 32 ‐11 21 38 ‐3.89

4 L Superior Tempora l 22 29 ‐59 8 3 ‐4.13

5 R Tempora l  Pole, Superior Tempora l 38 28 30 17 ‐29 ‐3.36

6 R Media l  Fronta l , Middle  Cingulate 6,24 16 11 ‐6 51 ‐4.47

7 L Middle  Cingulate 24 11 ‐14 ‐20 44 ‐3.59

(b) Sample 2
SAD > Control

1 L,R Cerebel lum ‐ 701 2 ‐41 ‐12 4.92

2 L Inferior Parieta l , Supramargina l 40 214 ‐38 ‐42 53 3.92

3 R Paracentra l  Lobule,  Supp.Motor Area 6 186 5 ‐17 48 4.24

4 L Inferior Temporal 20, 21 153 ‐57 ‐44 ‐14 4.97

5 R Post Centra l  Gyrus 3,1,2 29 39 ‐24 48 3.95

Control > SAD

1 R Tempora l  Pole, Superior Tempora l 38 603* 38 17 ‐29 ‐4.91

2 R Middle  Fronta l , Orbitofronta l 11,47 366
+

33 47 ‐9 ‐5.66

3 L Temporal  Pole, Superior Temporal 38 31 ‐42 20 ‐27 ‐3.71

4 L Inferior Fronta l , Orbitofronta l 11 22 ‐36 33 ‐9 ‐4.14

(c) Combined Sample
SAD > Control

1 L Cerebel lum, Parahippocampal , Fus i form 37 1840* 0 ‐51 ‐12 4.12

2 R Supramargina l , Angular 40 192 53 ‐50 36 3.81

3 L Supramargina l , Angular 40 22 ‐42 ‐62 47 3.44

4 L Middle  Occipi ta l 19 28 ‐39 ‐71 8 3.73

Control > SAD

1 R Tempora l  Pole, Superior Tempora l 38 851* 32 17 ‐30 ‐5.22

2 L Temporal  Pole, Superior Temporal 38 97 ‐42 15 ‐30 ‐3.56

3 L Inferior Fronta l , Orbitofronta l 47 18 ‐38 35 ‐9 ‐3.69

4 R Superior Occipita l 10 24 ‐74 29 ‐3.55
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Clusters are listed in order of descending size; coordinates refer to the voxel with the peak t 
value in the cluster.  
 

Sample 2 

Demographic and Clinical Features: We next repeated the above analyses in an independently 

recruited and imaged clinical sample of SAD cases and healthy controls (hereon, “sample 2”).  

The SAD and control groups of sample 2 did not significantly differ on measures of age or 

gender, either from each other (Table 9b), or from the respective SAD and control groups in the 

first sample (Table 9c).  

 

Grey Matter Differences associated with SAD:  GM differences between the SAD and control 

groups in sample 2 are listed in Table 10b, adjusted for age, gender, and TIV. Significantly 

greater GM among the SAD group was detected in the bilateral cerebellum, left supramarginal, 

right paracentral lobule and supplementary motor area, left inferior temporal and right post-

central regions.  The control > SAD contrast identified clusters in both left and right temporal 

pole, and the regions of the middle and inferior frontal gyri encompassing orbitofrontal cortex.  

 We also performed a corollary analysis using a continuous clinician-rated measure of 

social anxiety, the Liebowitz Social Anxiety Scale (LSAS) total score [this measure was not 

collected in the first sample]. We first examined the association between symptom severity and 

GM across all subjects, regardless of their diagnostic status. The results, listed in Table 3a, show 

that cerebellar, inferior parietal and precentral GM volumes were positively correlated with 

social anxiety severity; conversely, temporal pole, as well as superior, middle and inferior frontal 

cortices, was negatively correlated with severity.  We also explored whether severity could 

further predict GM variation within the SAD group. As listed in Table 3b, GM within left medial 
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frontal and right middle occipital gyri, as well as right thalamus and hippocampus, was 

associated with greater severity among subjects with SAD;  conversely, three GM clusters in the 

(predominantly right hemispheric) dorsal anterior cingulate were inversely correlated with SAD 

severity 

 

Table 11. Chapter 8: Relationship between Social Anxiety Severity and Grey Matter volume 

 

P < .001; k = 10 
Analysis includes Sample 2 only as the LSAS measure was not collected in sample 1.  
Table a:  N = 34 (17 SAD, 17 Control) 
Table b: N = 17 SAD only 
LSAS: Liebowitz Social Anxiety Scale. Higher scores indicate greater anxiety. 
All correlations between LSAS severity and GM volume were > .4 with the peak voxel of each 
cluster. 

 

(a) GM‐SAD Severity Correlation, Full Sample BA Size x y z t
Positively Associated with LSAS

1 L,R Cerebel lum (Vermis ) ‐ 294 0 ‐39 ‐14 4.11
2 Inferior Parieta l  Lobule 40 145 ‐38 ‐44 53 3.82
3 L Middle  Tempora l , L Inferior Temporal 20,21 92 ‐59 ‐44 ‐15 4.73
4 L Precentra l 6 69 ‐26 ‐12 63 4.57
5 R Precentra l   6 26 30 ‐11 56 3.58
6 R Cerebel lum (Posterior) ‐ 25 14 ‐57 ‐18 3.57
7 R Precentra l   6 22 39 ‐8 56 3.79

Negatively Associated with LSAS
1 R Superior Tempora l , Tempora l  Pole 38 480 35 15 ‐30 ‐4.37
2 R Middle  Frontal 11 341 33 47 ‐11 ‐5.85
3 L Superior Frontal 11 69 ‐17 44 ‐15 ‐3.97
4 L Inferior Frontal   11 33 ‐26 29 ‐15 ‐3.67
5 L Inferior Frontal   47 23 ‐35 32 ‐8 ‐3.80
6 L Superior Temporal , Tempora l  Pole 38 19 ‐42 20 ‐27 ‐3.67
7 L Inferior Frontal   10 14 35 35 ‐8 ‐4.10

(b) GM‐SAD Severity Correlation, within SAD Group
Positively Associated with LSAS

1 L Superior / Medial  Fronta l 6 103 ‐9 26 57 5.36
2 Thalamus  (Pulvinar Nuclei ) ‐ 73 8 ‐33 2 6.19
3 R Middle  Occipi ta l 19 13 33 ‐80 8 6.83
4 R Hippocampus ‐ 11 32 ‐24 ‐8 4.52

Negatively Associated with LSAS
1 R Middle  Cingulate 23,31 52 11 ‐36 33 ‐5.31
2 L Cerebel lum (Tons i l ) ‐ 36 ‐3 ‐50 ‐45 ‐4.49
3 R Middle  Cingulate 24 26 9 2 35 ‐4.70
4 L Middle  Tempora l   22 20 ‐51 ‐45 0 ‐4.55
5 L Cingulate   24 16 ‐6 ‐5 36 ‐4.74
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Combined Sample 

Testing for Overall Replicability between samples: Prior to combining the two samples, we first 

tested the extent to which individual findings from one sample were replicated in the other. We 

used non-stationary cluster extent correction to identify clusters significant at p < 0.05 or 0.1, 

corrected, in either sample alone (indicated by a * or + in Table 10). This analysis identified 

three clusters: (1) Sample 1 SAD > Control:  left cerebellum/parahippocampal gyrus  [peak 

coordinate: -24 -39 -21], (2) Sample 1 Control > SAD: right precentral/postcentral gyrus [peak 

42 -18  38] and 3) Sample 2; Control > Case: right temporal pole [peak 38 17 -29].  Independent 

ROI analyses (a single test of the same contrast in the other sample) for Clusters 1, 2, and 3, 

yielded t29 =1.92, p=0.032/ t29 =-1.2, p=0.88/ t31 =1.62, p=0.058 respectively. Thus, findings 

for left cerebellum/parahippocampal gyrus and right temporal pole were replicated across 

samples, whereas findings for right precentral/postcentral gyrus did not.  

 Second, we tested for consistency between the two samples in terms of the overlap in the 

overall spatial patterns of SAD > control and control > SAD differences at a loosened threshold 

(see methods). We observed a significant overlap of voxels for the SAD > control contrast across 

both samples (observed: 3096, expected under null: 910, p=0.007), but not for the control > case 

contrast (observed: 188, expected: 533 under null, p=0.89). Thus, the spatial overlap in regions 

with greater GM volume among the SAD groups (which included cerebellum, parahippocampal 

gyrus, fusiform and inferior parietal lobe, figure not shown) was relatively extensive and 

significantly greater than that expected by chance, whereas the spatial overlap across regions 

with greater GM in the control groups (right temporal pole, see ROI analyses above) was not 

extensive and was less than the overlap expected by chance.  
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Grey Matter Differences associated with SAD in combined sample: Finally, we combined the 

two samples into a single dataset and examined overall differences between SAD and control 

groups, adjusting for the previously noted variables, as well as for sample of origin. The final 

results, detailed in Table 10c, preserve a number of the regions observed in the individual 

samples. Specifically, the SAD > control contrast revealed large increases in the cerebellum, left 

parahippocampal and fusiform gyri, bilateral supramarginal and angular gyri, and left middle 

occipital gyrus. The control > SAD contrast identified lower temporal pole (both hemispheres, 

but predominantly right) and left inferior prefrontal / orbitofrontal GM in the SAD group. 

Cerebellum, parahippocampal and temporal pole differences were robust to multiple comparison 

correction at the whole-brain level (asterisked clusters in Table 10). The main findings are 

illustrated in Figure 21, with clusters shown in red illustrating regions with greater GM volume 

among the SAD group than the controls, and clusters in blue, the converse.  The numbering of 

regions in the figures corresponds to the clusters in Table 10.   
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Figure 21. Chapter 8: Gray matter differences associated with social anxiety disorder (SAD); p < 0.001; k= 10; n=70 

(33 SAD, 37 Control). T1-weighted axial images; image left is brain left. Images Group differences are adjusted for 

differences in age, gender, intracranial volume, and sample source. *Regions surviving multiple comparison 

correction at the whole brain level. Clusters are numbered corresponding to their listing in Table 10 (Combined 
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Sample). SAD > Control (red): 1: left (L) cerebellum, parahippocampal, fusiform; 2: right (R) 

supramarginal,angular; 3: L supramarginal, angular; 4: L middle occipital. Control >  SAD (blue): 1: R superior 

temporal, anterior temporal pole; 2: L superior temporal, anterior temporal pole; 3; L inferior frontal (orbitofrontal); 

4: L middle occipital. 

 We also conducted an additional exploratory analysis in the combined sample within 

three ROIs which have been implicated in the functional neurobiology of social anxiety (see 

introduction), but were not detected in our whole-brain analysis: (1) bilateral amygdala; (2) 

bilateral insula; and (3) anterior cingulate cortex (ACC). For these analyses we employed a 

looser statistical threshold than that used for the preceding analyses (p < 0.05, k = 10,) and also 

applied small-volume, non-stationary cluster extent correction. We found no voxels that survived 

the above uncorrected threshold for the SAD > control contrast within any ROI. However, GM 

in the left ACC [87 voxels, peak: t = 2.92, p = 0.009 (uncorrected); x = -3, y = 36, z = 22], 

bilateral insula [LEFT: 108 voxels, peak: t=2.78, p = 0.004; -46,12, -8; RIGHT:100 voxels, peak: 

t = 2.4, p = 0.008; 42, -13, -6],  and the right amygdala [87 voxels, t = 2.92, p = 0.002; 36,3, -26] 

were lower in subjects with SAD. None of these regional differences survived whole-brain 

cluster extent correction, and only the amygdala observations survived small-volume and cluster 

extent correction (p = 0.03, corrected); these coordinates should thus be viewed provisionally 

and probed further in subsequent studies.  

 

Testing for Specificity to SAD: Comparison with Panic Disorder (PD): To further investigate 

whether the GM differences identified above were specific to SAD, we compared the SAD group 

from sample 1 (who had documented no lifetime history of PD) to a group of separate subjects 

who had been recruited in sample 1 with PD (who were selected to be free of SAD).  

Demographic and clinical features of the PD group are included in Table 9a. As with the SAD 
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group, subjects with PD were more likely than controls to be female. Mean age of onset was later 

in adolescence for PD than for SAD (18.4 vs. 11.0 yrs), consistent with the epidemiology of the 

two disorders. Importantly, the two anxiety groups did not differ from each other on age, gender, 

or state or trait anxiety.  

 We first examined brain-wide differences between the PD and the control groups. As 

shown in Table 12a, and illustrated in Figure22a, subjects with PD, as compared to controls, had 

large areas of parieto-occipital GM increases— specifically, in bilateral cuneate and precuneate, 

lingual, and superior occipital cortices— as well as larger insular cortex. Conversely, a number 

of frontal cortical (right pre- and post-central gyri, left and right middle cingulate, supplementary 

motor area) as well as sub-cortical (thalamus, caudate) regions showed reduced GM among the 

PD cases.  
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Table 12. Chapter 8: Grey Matter Differences between Panic Disorder and Social Anxiety 
Disorder 

 

 p < .001; k = 10 
Table 4a: N = 16 PD, 20 Control; Table 4b: N = 16 SAD, 16 PD  
Clusters surviving whole brain correction (p < .05) are asterisked.  
Clusters are listed in order of descending size; coordinates refer to the voxel with the peak t value in the cluster.  

 

(a) PD Vs. CONTROL BA Size x y z t

PD > Control
1 L,R Cuneus , Lingual   17,18 1620* 0 ‐98 6 5.03
2 L Insula ‐ 379 ‐30 9 5 4.44
3 L, R, Cuneus , Precuneus 7 355 0 ‐71 24 4.30
4 R Cuneus , Superior Occipi ta l 7 23 21 ‐75 30 3.56

Control > PD
1 R Precentra l , Postcentra l   6,1‐4 884* 44 ‐14 42 ‐5.29
2 R Middle  Cingulate 32 504* 5 20 41 ‐4.69
3 L Inferior Parieta l 40 104 ‐50 ‐45 42 ‐4.36
4 R Middle  Cingulate, R Supp. Motor Area 24 29 11 ‐6 50 ‐4.32
5 L Caudate ‐ 98 ‐14 12 18 ‐4.14
6 L Precentra l 6 40 ‐56 ‐5 36 ‐3.64
7 R Middle  Cingulate 24 13 15 ‐18 44 ‐3.57
8 R Thalamus ‐ 23 8 ‐20 15 ‐3.46

(b) PD vs SAD
PD > SAD

1 L Cuneus 7 149 ‐6 ‐77 36 4.43
2 L Middle  Fronta l 9 35 ‐53 20 30 4.19
3 L, R  Lingual 18 25 2 ‐87 ‐8 3.56
4 R Superior Occipi ta l 18,31 12 23 ‐74 29 3.74

SAD > PD
1 R Parahippocampal , Fus i form, Cerebel lum 37,36,19 534* 30 ‐48 ‐11 ‐4.52
2 L Parahippocampal ,Fus i form 37,36 402 ‐30 ‐41 ‐17 ‐4.42
3 R Middle  Fronta l , Inferior Fronta l 10 106 42 45 5 ‐3.94
4 R Anterior Cingulate 32 10 15 47 2 ‐3.55
5 L Middle  Fronta l 8 12 ‐21 21 44 ‐3.34
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Figure 22. Chapter 8: Gray matter differences between social anxiety disorder (SAD) and panic disorder (PD); p < 

0.001; k=10. (A) n=16 PD, n= 20 Control; (B) n=16 SAD, n=16 PD. T1-weighted axial images; image left is brain 

left. Images Group differences are adjusted for differences in age, gender, and intracranial volume. Clusters 

surviving whole brain correction are indicated as follows: *p < 0.05; p < 1. Clusters are numbered corresponding to 

their listings in Table 11, PD vs. Control and PD. vs. Sad, respectively. (A) PD > Control (red): 1: bilateral cuneate, 

lingual; 2: L insula; 3: bilateral cuneus, precuneus; 4: R cuneus, superior occipital. Control > PD (blue) 1: R 

precentral, postcentral; 2: R middle cingulate; 3: L inferior parietal; 4: R middle cingulate, supplementary motor 

area; 5: L caudate; 6: precentral; 7: R middle cingulate. (B) SAD > PD (red): 1: R parahippocampal, fusiform; 2: L 

parahippocampal, fusiform; 3: R middle frontal, inferior frontal; 4: R anterior cingulate; 5: L middle frontal. PD  >  

SAD (blue) 1: L cuneus; 2: L middle frontal; 3; L and R lingual; 4: R superior occipital. 
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We then formally contrasted the PD and SAD groups. As shown in Table 12b and Figure 

21b, subjects with PD showed larger mean occipital GM volume, particularly in the cuneate 

cortex, calcarine sulcus, and lingual gyrus. Conversely, both hemispheres of the 

parahippocampal and fusiform gyri were significantly larger in the SAD group. Finally, right 

inferior frontal (orbitofrontal), and anterior cingulate were larger among the SAD groups, though 

it should be noted that both anxiety groups had reduced GM vis a vis healthy controls.  

 

Discussion 

Summary of Findings: We report here on morphological abnormalities associated with 

generalized social anxiety disorder (SAD).  We found that subjects with SAD, as compared to 

healthy controls, had higher GM volume in the cerebellum and the left parahippocampal cortex, 

and lower GM in the temporal pole of the superior temporal lobe. Several observations together 

strengthen our confidence in these findings. First, these differences were observed in both 

individual samples as well as the combined dataset Analysis. Second, the clusters remained 

significant after correction for multiple comparisons at the whole-brain level. Third, similar 

clusters were identified when using a clinician-rated measure of social anxiety severity instead of 

diagnosis (tested in sample 2 only). And finally, a separate group of subjects with panic disorder 

(PD) did not show these patterns, pointing to the relative specificity of these findings to SAD. 

We thus weight the ensuing discussion primarily toward the above regions.  Other GM 

differences that were not observed in both samples, or did not survive corrections for multiple 

comparisons, may play a role, but such findings should be considered provisional.  

 



 

173 

Grey Matter Increases Associated with SAD: The largest differences were within the cerebellum, 

where we detected significantly greater GM, particularly the vermis and posterior lobe, among 

subjects with SAD. These differences were observed in both samples, rendering them unlikely to 

be an artifact of sample ascertainment. Few studies have examined the role of the cerebellum in 

phobic disorders. Resting state perfusion studies have reported both hyper- and hypo-perfusion 

in the cerebellum among subjects with SAD (Warwick et al., 2008), and a Positron Emission 

Tomography (PET) study found anxiety induced in SAD patients to increase blood flow to the 

cerebellum (Kilts et al., 2006). The aforementioned treatment study (Cassimjee et al., 2010) 

reported decreases in cerebellar volumes among SAD patients following three months of SSRI 

treatment, but because there was no control group, it is unclear whether the patients had 

abnormalities prior to being treated. Although the mechanisms are unclear, cerebellar 

abnormalities may increase vulnerability to anxiety states via modulation of arousal. Many 

cerebellar subdivisions, and the vermis in particular, project to the midbrain regions of the pons 

and medulla, which mediate the autonomic responses that are exaggerated in persons with 

anxiety (Baldaçara et al., 2008).    

 Also having higher GM volume in the SAD group was the parahippocampal gyrus 

(PHG). The PHG consolidates memories and social communication cues, and hyperactivation 

has been reported in SAD patients during conditions of social threat (Goldin et al., 2009; Straube 

et al., 2004), as well as during non-threatening tasks involving human, as compared to non-

human or computer-simulated, interaction (Polosan et al., 2011).  Moreover, the adjacent 

fusiform gyrus—part of the parahippocampal cortex (and included in the detected clusters)— is 

cardinal in facial recognition (Fairhall and Ishai, 2007) and processing of facial expression 

(Gentili et al., 2008; Straube et al., 2004). A recent fMRI study reported that when asked to 
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passively view socially threatening stimuli, persons with SAD had higher BOLD signal increases 

in bilateral PHG than controls; however, if asked to try to actively regulate their negative 

responses to the same stimuli, the SAD group had decreased responses in fusiform (Goldin et al., 

2009).  These differences were not replicated if social threat was replaced with physical threat. In 

the present study, PHG and fusiform GM differences were observed only in the SAD group 

(Table 12a). GM volume in the PD group was not only significantly lower than in the SAD 

group, as shown in Table 12b, but lower than in the controls as well. Whilst no other study to our 

knowledge has directly contrasted these two anxiety disorders at the morphological level, a 

number of reports, including a pilot meta-analysis (Lai, 2011; Massana et al., 2003; Uchida et al., 

2008), have reported reduced PHG volume among panic patients. Our anatomical data, coupled 

with the functional literature on SAD, suggest that increased PHG activity may serve as a marker 

for social-based anxiety constructs.  Incidentally, lower caudate volume, the only other regional 

abnormality associated with PD in the aforementioned PD meta-analysis (Lai, 2011), was also 

replicated in our PD group (Table 12a, control > PD).  

 

Grey Matter Decreases Associated with SAD: The temporal pole, that is, the anterior region of 

the superior temporal cortex corresponding to Brodmann’s Area 38, had significantly lower GM 

volume in both samples of SAD subjects. The anterior temporal cortex has been implicated in the 

processing of abstract conceptual knowledge, but the BA 38 region— and particularly its right 

hemisphere— may more specifically index social concepts (Zahn et al., 2007; 2009). Functional 

MRI studies of healthy subjects have reported activation in this region during social competition 

and perception of others’ mental states (Polosan et al., 2011). Conversely, lesions and 

degeneration of BA 38 have led to changes in social behavior as well as in the ability to 
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characterize social attributes of behavior (Liu et al., 2004; Zahn et al., 2007). Attachment anxiety 

is also associated with decreased GM matter in this region (Benetti et al., 2010), and among 

persons with SAD, public speaking (Tillfors et al., 2001) and anticipation thereof (Tillfors et al., 

2002) have been associated with decreased blood flow to the temporal pole.  Interestingly, in one 

study, left temporal pole was the only region showing significantly increased surface area, 

concomitant with significantly reduced cortical thickness, in in adults with Williams Syndrome 

(WS), a rare genetic disorder that in terms of its behavioral phenotype seems the opposite of 

SAD (e.g., hyper-sociability,  lack of fear of interacting with strangers) (Meda et al., 2012). That, 

as well as one other report (Reiss et al., 2004) also showed decreased PHG volume in WS 

patients, again the opposite of what we find here with SAD. Though WS and SAD may be 

etiologically different disorders, the common regional focus of abnormalities suggests that the 

above regions may mediate common constructs of social cognition, with different 

neuroanatomical aberrations leading to different clinical syndromes.   

 The SAD group also had lower GM in the lateral orbitofrontal cortex (~BA 11, 47). OFC 

regulates expression of emotion, and assigns positive and negative stimulus response 

contingencies (Blackmon et al., 2011; Milad and Rauch, 2007).  Concordantly, GM disturbances 

(particularly in the left hemisphere) have been linked to multiple anxiety and mood disorders 

(Whitfield-Gabrieli et al., 2011). The OFC also receives direct reciprocal input from the 

amygdala, a central mediator of the fear response, and in persons with SAD, the uncinate 

fasiculus— the white matter tract connecting OFC to temporal cortex— is compromised (Baur et 

al., 2011; 2013).  Although our study does not address temporal sequence, these disturbances are 

likely to begin early in life, as infants with high-reactive and inhibited temperament— which are 

risk factors for later onset of SAD (Biederman et al., 2001; Schwartz et al., 1999)  —   show 
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reduced cortical thickness in similar left OFC regions when imaged in adulthood, even if they 

did not go on to develop the full disorder (Schwartz et al., 2010). 

 Finally, two other interesting but inconsistently observed regional differences deserve 

comment. First, significantly lower GM among SAD cases was identified in the primary motor 

and sensory cortex in sample 1 only. Although the right hemispheric precentral gyrus is thought 

to control motor function, it also has been associated with self-face recognition (Kilts et al., 

2006) and imitations of facial expressions (Baldaçara et al., 2008) that could hold implications 

for social anxiety. In fMRI studies, this region is hypoactive in SAD patients during emotional 

regulation tasks (Goldin et al., 2009). Second, multiple clusters were observed for the control > 

SAD contrast in the middle cingulate in sample 1 (Table 10a). Although this lower cingulate GM 

volume in SAD was not mirrored in sample 2 (Table 10b), within the SAD cases of that sample, 

increased severity of social anxiety was associated with lower cingulate GM volume (Table 11b).  

The inconsistency of these findings across sample suggests that they may not reflect robust 

population differences. Furthermore, it is unlikely that these patterns are specific to social 

anxiety, as they were also observed in the PD group, and similar abnormalities have been 

reported for other anxiety and mood disorders (Radua et al., 2010).  Nevertheless, the overall 

inverse relationships with GM-SAD diagnosis (sample 1) and GM-severity (sample 2) are 

broadly consistent with functional models positing anxiety as a failure of the frontal cortex to 

down-regulate limbic activation (Etkin and Wager, 2007). 

 

Limitations: The reported findings should be interpreted within the context of the following 

limitations. First, the study is cross-sectional and does not therefore speak to the causal 

relationship between brain structure and diseased state, as the identified GM differences could 
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either predispose to, or be a result of the disorder. Disentangling causal from compensatory 

pathways would require more complex epidemiological approaches (Weissman et al., 2011) — 

e.g., selecting subjects who are at high-risk (by virtue of family history, presence of a prodrome, 

etc) but asymptomatic at recruitment, and then tracking brain changes longitudinally as a subset 

go on to develop the syndrome.  Related, the GM differences reported here should also not be 

used to make diagnostic inferences, as they are based on overall group differences and do not 

account for important individual brain, behavioral, and environmental variations that shape 

whether a given subjects will have a diagnosis (Davatzikos, 2004).  Second, standard 

methodological limitations to VBM, particularly its vulnerability to normalization and smoothing 

errors (Crum et al., 2003) apply here as well.  Third, in order to obtain a more population-

representative sample, we did not exclude lifetime occurrence of other anxiety or mood 

disorders. Although we required that SAD symptoms occur first and not be explainable by other 

psychiatric or medical conditions, and the individual frequencies of comorbid conditions were 

low, we cannot rule out that other lifetime anxiety, or behavioral traits that are related to, but do 

not directly index SAD, contributed to the group differences.  And fourth, the analysis only 

compared SAD with one other anxiety disorder: PD. Different patterns might well have been 

observed had we instead use a different comparison group. For example, a comparison with 

specific phobia, another disorder of aberrant fear processing, might have yielded largely 

overlapping regions; on the other hand, a more complex emotion dysregulation syndrome like 

PTSD may diverge significantly from SAD, particularly within frontal regions sub-serving 

executive control (Etkin and Wager, 2007). Related, it should be noted that to facilitate 

interpretation, we only included SAD subjects without a history of PD, and vice versa. This 

could have biased selection toward milder or less generalizable cases of either disorder.  
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Alternative approaches would have been to include a third group with both SAD and PD, or to 

permit all comorbidity and then model the variance statistically. Both approaches, however, 

would have necessitated a substantially larger study sample.   

 

Conclusions: This report contributes to the currently limited literature on the neurobiology of 

social anxiety by identifying grey matter deficits that may predispose to abnormalities in neural 

circuitry.  The rigorous ascertainment criteria, retest in an independent sample, and comparison 

with another anxiety disorder strengthen both the reliability and the interpretability of our 

findings. The confirmation in a second sample is particularly valuable for MRI studies, given the 

high type I error rates and preponderance of failures to replicate original reports, and should be 

considered in future study designs when possible (Ioannidis, 2011). Finally, because the results 

include regions (e.g., cerebellum, temporal pole) that are not primary nodes of functional fear-

processing circuits, the validity of these regions, as well as specific roles in mediating constructs 

of social anxiety, will require further investigation.   
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APPENDIX A  
SCHEMATIC REPRESENTATION OF FUNCTIONAL CONNECTIVITY APPROACHES 
ALONG TWO DIMENSIONS: ABILITY TO ASSESS CONDITION-DEPENDENCY VS. 

EXPLORATORY ABILITY 

 

Figure 23. APPENDIX A: Current functional connectivity approaches along two dimensions. Dimension 1 (x-axis) 

refers to both the extent to which the approach can assess functional connectivity across the whole-brain as well as 

the ability to identify functional connectivity between discrete pairs of regions at high-spatial resolution. Dimension 

2 (y-axis) refers to the ability of the approach to model and assess functional connectivity during specific cognitive 

contexts and conditions. DCM=Dynamic Causal Modeling, PPI=Psychophysiological Internaction Anslysis, 

PLS=Partial Least Squares, OrT=Ordinal Trends Analysis, ICA=Independent Components Analysis, LS-FC=Large-

scale functional connectivity. 

 


