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ABSTRACT

A theoretical study on the effect of curvature
on near-field radiative transfer

Karthik Sasihithlu

The dissertation focuses on the theoretical analysis of near-field electromagnetic wave effects

in thermal radiative transfer i.e. wave effects like interference, diffraction, and tunneling

effects, that become important when analyzing energy transfer via electromagnetic waves

over sub-wavelength distances. In particular, the focus will be on the enhanced thermal

radiative transfer between bodies made of polar dielectric materials which support surface

phonon polaritons (SPPs). When two such bodies are brought in close proximity to each

other, the enhanced near-field radiation due to tunneling of SPPs can exceed the classical

black body limit by several orders of magnitude. This enhanced radiation at nano-scale gaps

finds applications in near-field thermophotovoltaics, heat assisted magnetic recording and

near-field radiative cooling.

While the dependence of near-field radiative transfer on the gap between two planar

objects is well understood, the effect of curvature on near-field radiative transfer is unclear.

In particular, the relevance of an approximate method to predict the near-field interaction

between curved bodies (called the proximity approximate method) is disputed. Hence, the

computation of near-field radiative transfer between curved bodies, such as between two

spherical bodies, become important. The existing method for computing near-field radiative

transfer between two spheres is highly inefficient in probing small gaps where the near-

field enhancement is most observed. The objective of this work is not only to simplify this

computational framework which would enable us to probe smaller gaps and understand the

effect of curvature on near-field radiative transfer better, but also to provide a method to



extend this to unequal sized spheres with large size disparities, so that comparison can be

made with existing experimental measurements for near-field radiative transfer between a

sphere and a plane.

In this regard a simplified form of vector translation addition theorem has been proposed

which is valid for general near-field electromagnetic scattering problems. The range of va-

lidity of this approximation for the translation addition theorem has been discussed and

recursion relations have been derived for computing the translation coefficients under this

approximation. A method for normalizing the translation coefficients has also been proposed,

and the computation of these normalized translation coefficients has been shown to depend

only on ratios of successive orders of Bessel and Hankel functions which are computationally

inexpensive. An analysis of the dependence of normalized translation coefficients on the size

ratio of the two spheres has allowed us to extend the computation of near-field radiative

transfer calculations to spheres with large size disparities.

Based on the computations, I have shown that the surface phonon polariton mediated

radiative transfer between two spheres of effective radius R = (R1R2)/(R1 + R2), where R1

and R2 are the radii of the individual spheres, and minimum gap d scales as R/d as the non-

dimensional gap d/R → 0. I have proposed a modified form of proximity approximation to

satisfy the continuity requirement between far-field and near-field radiative transfer between

the spheres. The validity of this modified form of proximity approximation at different

frequencies has also been discussed. This method can be applied to approximate the near-

field radiative transfer between, not just spherical surfaces, but other general curved surfaces

such as between cylindrical or conical surfaces.
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Chapter 1

Introduction

Thermal radiation can be considered to be a fluctuating electromagnetic field arising from

spontaneous energy state transitions of particles of matter (molecules, atoms, ions, and

electrons) [1; 2]. These spontaneous transitions can be viewed as charge fluctuations due to

thermal energy in the material. The emitted radiation energy encompasses a broad range of

wavelengths and has a continuous spectrum with the peak of the distribution determined by

the temperature of the body. Due to the intimate relationship between the emitted radiation

from a body and its physical-chemical characteristics, the study of thermal radiation has

attained primary significance. By analyzing the emitted thermal radiation one can infer the

characteristics of the constituents in the object using the fact that different elements in the

environment absorb and emit very specific wavelengths of radiation as was first shown by

Gustav Kirchhoff in 1860 (some credit it to Ångström) [3]. The condition under which the

emitted/absorbed radiation would be independent of its chemical characteristics was also

first postulated by him. Such a radiation was termed ‘blackbody radiation’. Some of the

other early works that led to important developments of the field of thermal radiative transfer

includes that by Josef Stefan [4] who, on the basis of previous experimental measurements,

showed that the power radiated by a blackbody is proportional to the fourth power of its

absolute temperature. Further characteristics of this blackbody radiation were analyzed by

Wilhelm Wein who in 1893 showed that the peak of the radiation shifted towards smaller
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wavelengths with increasing temperature. He also showed that the spectral radiative energy

should be a function of the form f(ν/T ), i.e, the radiation at any specific frequency would

depend only on the temperature of the body. The form of this function, which is valid for any

frequency and temperature, was first found out by Max Planck in 1901 [5] who introduced

the new idea of “quanta of light” to arrive at it, as opposed to the classical concepts with

which it was being analyzed till then.

The analysis of thermal radiative energy transfer can be pursued from the viewpoint of

classical electromagnetic theory using Maxwell’s equations or using quantum theory. While

the propagation of thermal radiation can be explained using electromagnetic wave theory, the

description of emission and absorption of radiation from matter requires the use of quantum

theory. When the length scales of energy transport are much larger than the wavelength

of radiation, the description of energy transport via electromagnetic waves can be further

simplified as it can be analyzed in the realm of geometric optics wherein the waves are

described as collection of rays carrying energy in a small volume associated with a solid angle

in the direction of rays. However, when the length scales are comparable to the wavelength

of radiation, in order to take into account wave effects like interference, diffraction, and

tunneling of waves, the energy transport has to be necessarily analyzed using electromagnetic

wave theory. In particular, when two objects with dissipative electromagnetic properties

given by the dielectric function, are brought in close proximity to each other, a characteristic

gap dependence in radiative transfer is observed which can only be obtained theoretically

by using an electrodynamic basis for radiative transfer theory. This effect has gained all the

more prominence since it has been proven experimentally that for small gaps the radiative

heat transfer increases beyond Planck’s blackbody limit by several orders of magnitude [6;

7; 8]. This behavior, which is of primary motivation for this work, has been explained in

more detail in the ensuing paragraph.

Consider two planar black surfaces at temperatures TA and TB separated by a gap d in

vacuum which exchange energy at the rate of Q̇ Wm−2. According to Stefan’s law Q̇ is given
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by:

Q̇ =
π2k4

B

60~3c2
(T 4

A − T 4
B) (1.1)

where kB is the Boltzmann’s constant, ~ is the Planck’s constant divided by 2π and c is

the velocity of light in free space. This, as we notice, is independent of the gap d between

them. However, as shown in Fig. 1.1, at the interface between any object and vacuum

there are evanescent modes present which decay exponentially from the surface. When two

such surfaces are brought close enough, energy gets exchanged from one body to another via

photon tunneling through these evanescent modes. For closely spaced objects separated by

vacuum (these situations arise frequently in miniature devices such as between head and a

writing disk in a hard drive [9], or in scanning tunneling microscopes [10]) the contribution via

photon tunneling can be the dominant form of photonic energy transfer. This phenomenon

of the spacing dependence in radiative transfer has been experimental verified using different

configurations like (1) between two planar surfaces [11; 12; 13; 14], (2) scanning probe tip

and planar surface [15; 10; 16; 17], and (3) between a microsphere and a planar surface [18;

19; 20; 21; 22].

Earliest theoretical analysis of the gap dependence in the radiative transfer between

two identical flat surfaces of arbitrary material was pursued in 1967 by Cravalho et al.

[23]. They analyzed radiative transfer using electromagnetic theory to take into account the

wave interference and tunneling effects and modified the expression for time averaged flux

of blackbody radiation to arrive at an expression for the gap-dependent radiative transfer.

However, the number of modes that they included in their analysis of radiative transfer

via wave tunneling was limited to nω/c where n is the refractive index of the two surfaces

(taken to be real). Polder and Van Hove [24] in 1971, for the first time, analyzed the radiative

energy transfer between two closely spaced identical flat surfaces of arbitrary properties by

employing principles of fluctuational electrodynamics developed by Rytov [2]. By using the

fluctuation-dissipation theorem (discussed in Chapter 2) they were able to deal with the

actual source of the radiation - fluctuation currents in the body. However, they presented

their results only for metallic bodies, as did Loomis and Maris [25] who showed that the
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T1 
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T1 

(a) 

(b) 

Figure 1.1: (a) Evanescent waves exist at the interface between a metal/dielectric and

vacuum with decay length approximately λ/2 (b) When another metal/dielectric surface at

a different temperature is brought in close proximity to this interface, energy gets transferred

via tunneling of these evanescent modes. T1 and T2 denote the different temperatures of two

bodies.
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radiative transfer between metallic bodies due to evanescent waves varies as 1/l2 (for small

gaps) where l is the spacing between the metallic structures. This work was extended to

dielectric surfaces that support surface phonon polaritons by Mulet et al. [26] where the

contribution from such surface waves was shown to greatly enhance the radiative transfer

between polar dielectrics. Some of the most recent theoretical works extend this formulation

to study the behavior of near-field radiative transfer between planar structures of other

materials like that between two metamaterials [27; 28], anisotropic materials [29; 30], and

the influence of surface roughness characteristics [31].

Other than planar structures there have also been studies of the behavior of near-field ra-

diative transfer between bodies of other geometrical shapes like that between two dipoles [32;

33], between a dipole and a flat surface [34; 35] and recently to other more experimentally

feasible geometries such as between two micro spheres [36] and between a micro sphere and

a planar surface [37; 38]. The theoretical method developed in [36] was based on compu-

tations of spherical Bessel and Hankel functions which lead to numbers too large or too

small for a given floating point format on a computer. This posed severe restraints in the

analysis of near-field radiative transfer for small gaps where the near-field enhancement is

most visible. Gaps up to d/R = 0.01 were analyzed for two equal sized spheres of radius R

and compared with proximity approximation theory (details of the proximity approximation

method will be given in subsequent chapters). In addition, while in principle the theory

could be extended to spheres of any sizes, computational analysis could only be performed

between two similarly sized spheres. The method to calculate the near-field radiative trans-

fer between a sphere and a plane [37; 38] has been developed similar to that outlined for

two spheres in [36] except that in place of an expansion technique based on vector spher-

ical waves, a combination of spherical and cylindrical waves are used in Ref. [37] and a

combination of spherical and planar waves are used in Ref. [38] (but with a one-reflection

approximation). Based on these computations, the predictions from the proximity approxi-

mation method was compared with and it was concluded that the proximity approximation

method does not hold true in Ref. [37] but it was found to be relevant in Ref. [38]. The
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formalism for computing radiative transfer between arbitrary bodies has also been detailed

in several recent publications. Kruger et al. [38] arrived at an expression for the autocor-

relation function of the electric field outside an arrangement of arbitrary number of objects

in terms of their individual scattering properties, from which the net energy radiated from

the objects can be found out. However the computation of scattering properties of bodies

with arbitrary shape was not addressed and for demonstration purposes simple geometries

for which the correlation function can be obtained through expansion of fields using ap-

propriate geometry-dependent basis functions was shown. A similar problem of analyzing

radiative energy exchange among arbitrary bodies at different temperatures was considered

by Ben-Abdallah et al. [39] but under the dipole approximation. Messina and Antezza [40]

arrived at an expression for radiative heat transfer exchange between two bodies of arbitrary

shape and dielectric properties in terms of the bodies’ scattering matrices. By assuming

that the bodies are enclosed by planar strips they were able to use a plane-wave expan-

sion of the electric and magnetic fields. A different approach was taken by Rodriguez et

al. [41] who formulated the radiative heat transfer between bodies of arbitrary shape in

terms of surface currents located on the interfaces of the objects. By doing so, it enabled

them to use efficient boundary-element method techniques to arrive at solutions for bodies

with complicated geometries. Applying this method for the two-sphere configuration, data

was presented for radius R = 0.2µm and for separation gaps of order d ≈ R. It should be

pointed out that approaches specialized for certain geometries such as those developed in [36;

37] are expected to outperform such a generic approach as developed in [41] when applied

to these specific geometries. A similar surface-integral-equation approach for arriving at an

expression for energy and momentum transfer between arbitrarily shaped bodies was also

detailed in [42].

1.1 Motivation and outline of thesis

The primary aim of this work is to further the understanding of near-field effects in radia-

tive transfer when two objects exchanging radiation are placed in close proximity to each
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other. Some of the areas where such near-field effects become important are in thermal pho-

tovoltaics [43; 44; 45; 46], thermal rectification devices [47], nanopatterning [48], thermally

assisted magnetic recording [9], thermal imaging [49] and noncontact radiative cooling [50].

In particular, I have analyzed the role of curvature in near-field radiative transfer and the

relevance of proximity approximation in estimating the radiative transfer between curved

bodies. This has been accomplished by: (a) arriving at simplifications to the computational

method for determining near-field radiative transfer between two spheres given in Ref. [36]

and using these simplifications to compute the radiative transfer between two equal sized

spheres at gaps smaller than those published in literature, (b) proposing and verifying a mod-

ification to the proximity approximation method to ensure continuity between near-field and

far-field radiative transfer between two spheres, (c) highlighting the dependence of near-field

radiative transfer on the relevant spatial parameters in the problem, (d) enable extension of

the computations to the case of unequal sized spheres with large size disparities.

Understanding the near-field effects in radiative transfer has another important conse-

quence. The analysis of near-field forces between objects (like Casimir force and van der

Waals force) can be split into a temperature dependent part (from fluctuation of charges

due to thermal energy) and a temperature independent part (from fluctuation of charges

in their ground states; also called as zero-point fluctuations). The temperature dependent

part, which has the same origin as the near-field radiative energy transfer, is much smaller

than that due to zero-point fluctuations at room temperature, and hence difficult to measure

experimentally. Hence a study of the near-field radiative energy transfer between the objects

would also throw light on the behavior of the temperature dependent part of the near-field

forces as well.

The dissertation has been organized as follows : In Chapter 2 the fundamentals of near-

field radiative transfer which are relevant to this work are explained briefly and references

which expound on these concepts are listed. In Chapter 3, the method for computing ra-

diative transfer between spherical bodies is explained. In particular, the equations in Ref.

[36] have been explained in greater detail and, wherever appropriate, the derivations are
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shown. In Chapter 4, the basics of translation addition theorem, which is central to this

work, are presented and a method to normalize the translation coefficients is explained. Re-

cursion relations for the normalized translation coefficients, which are necessary for efficient

computation of the translation coefficients, are derived. In Chapter 5, a simplified form of

the translation addition theorem is derived which is valid in the limit d � R1, R2. Here, d

is the minimum surface to surface gap between the two spheres and R1, R2 are the radii of

the two spheres. In Chapter 6, the behavior of the normalized translation coefficients with

varying radius ratio R2/R1 is analyzed and a method which takes advantage of this behavior

to compute near-field radiative transfer between two unequal sized spheres with large size

disparities is explained. In Chapter 7, the convergence criterion for the vector eigenfunction

expansion of the electromagnetic field while computing the near-field radiative transfer is

derived and the role of the translation theorem in attaining this convergence is detailed.

Using the simplifications detailed in Chapters 4, 5 and 6, the near-field radiative transfer

between (a) two equal spheres and (b) two unequal sized spheres are calculated and the

results are presented and analyzed in Chapter 8. The difference in the spatial dependence of

the far-field and the near-field radiative transfer is highlighted. In Chapter 9, the proximity

approximation theory is introduced and the need for modification of this theory for the case

of near-field radiative transfer between two finite objects (like that between two spheres) is

explained. In the end the main contributions of this work has been summarized and possible

future work has been listed.
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Chapter 2

Fundamentals of near-field radiative

transfer

2.1 Basics of electromagnetism

Electric and magnetic fields are produced by charges. Maxwell’s equations describe quanti-

tatively how charges act as sources of electric and magnetic fields. The differential form of

Maxwell’s equations is given by:

∇ ·E = ρ/ε0 (2.1)

∇ ·B = 0 (2.2)

∇×E = −∂B
∂t

(2.3)

∇×B = µ0J +
1

c2

∂E

∂t
(2.4)

The quantities ρ and J represent the total charge and total current in the medium; ε0 and µ0

are the electric permittivity and magnetic permeability of free space; c is the velocity of light

in vacuum and given by c = 1/
√
µ0ε0. When dealing with wave propagation in a medium,

it is useful to rewrite the Maxwell’s equations in terms of the fields D and H where D and



CHAPTER 2. FUNDAMENTALS OF NEAR-FIELD RADIATIVE TRANSFER 11

H are given by the constitutive equations:

D = ε0E + Pfield (2.5)

H = B/µ0 +Mfield (2.6)

with the fields Pfield and Mfield representing the polarization and the magnetization fields

respectively. This enables us to describe the fields using just the free charges in the medium.

The Maxwell’s equations in terms of the fields D and H can be written as:

∇ ·D = ρfree (2.7)

∇ ·B = 0 (2.8)

∇×E = −∂B
∂t

(2.9)

∇×H = Jfree +
∂D

∂t
(2.10)

where, ρfree and Jfree denote the source terms due to free charges. For waves propagating in

vacuum, ρfree = Jfree = 0.

The polarization field Pfield can be related to the electric field E using Pfield = ε0χeE,

where χe denotes the susceptibility of the medium to get polarized by the electric field E.

Using this we can express the displacement field D in Eq. 2.5 in terms of E as: D = εE,

where ε = ε0εr with εr representing the relative permittivity or the dielectric function of the

medium and related to χe as: εr = 1 + χe. The materials chosen in this work are assumed

to be non-magnetic, so that we have B = µ0H .

For time harmonic fields E(x, t) = Re[Ê(x)eiωt] and B(x, t) = Re[B̂(x)eiωt] , the

Maxwell’s equations can then be written as:

∇ · D̂ = ρfree (2.11)

∇ · B̂ = 0 (2.12)

∇× Ê = −iωB̂ (2.13)

∇× Ĥ = Jfree + iωD̂ (2.14)
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The hat notation ‘ˆ ’ has been dropped from the following equations, recognizing that we

will be dealing with only time harmonic fields in this work. In vacuum (where ρfree,Jfree = 0,

µ = µ0, ε = ε0 ), combining Eq. 2.13 and Eq. 2.14 gives us the vector wave equation:

∇×∇×X(r, ω)− k2X(r, ω) = 0 (2.15)

where, X(r, ω) can be either the electric or the magnetic field at position vector r and k is

the wave propagation constant given by k = ω/c. The independent divergence-free solutions

of the vector wave equation in spherical coordinates are given by [36; 51; 52]:

M (p)
nm(kr) = z(p)

n (kr)V (2)
nm (θ, φ) (2.16)

N (p)
nm(kr) = ζ(p)

n (kr)V (3)
nm (θ, φ) +

z
(p)
n (kr)

kr

√
n(n+ 1)V (1)

nm (θ, φ) (2.17)

where M
(p)
nm(kr) (not to be confused with the magnetization field in Eq. 2.6) and N

(p)
nm(kr)

are vector spherical waves of order (n,m). n and m are integers. n can take values from 0

to∞. For each n, |m| ≤ n. The superscript p refers to the radial behavior of the waves. For

p = 1, the M and N waves are regular waves and remain finite at the origin and z
(1)
n (kr)

is the spherical Bessel function of order n. For p = 3, the M and N waves are outgoing

spherical waves that are singular at the origin and z
(3)
n (kr) is the spherical Hankel function of

the first kind of order n. The radial function ζ
(p)
n (x) = 1

x
d
dx

(
xz

(p)
n (x)

)
. V

(1)
nm (θ, φ), V

(2)
nm (θ, φ),

and V
(3)
nm (θ, φ) are vector spherical harmonics of order (n,m) and are given by:

V (1)
nm (θ, φ) = r̂Ynm (2.18a)

V (2)
nm (θ, φ) =

1√
n(n+ 1)

(
−φ̂∂Ynm

∂θ
+ θ̂

im

sinθ
Ynm

)
(2.18b)

V (3)
nm (θ, φ) =

1√
n(n+ 1)

(
θ̂
∂Ynm
∂θ

+ φ̂
im

sinθ
Ynm

)
(2.18c)

The vector spherical waves M and N given in Eq. 2.16 and Eq. 2.17 are mutually

orthogonal and are related to each other as: ∇×M = kN . They also form a complete set.
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Hence any solution to the vector wave equation can be expanded in an infinite series of M

and N waves as [51; 52; 53]:

E (r) =

n=∞
m=n∑
m=−n
n=1

[
A(p)
nmM

(p)
nm(kr) +B(p)

nmN
(p)
nm(kr)

]
(2.19)

H (r) =
ik

ωµ

n=∞
m=n∑
m=−n
n=1

[
A(p)
nmN

(p)
nm(kr) +B(p)

nmM
(p)
nm(kr)

]
(2.20)

where, A
(p)
nm, B

(p)
nm are coefficients which are found from boundary conditions.

An alternate but equivalent definition for the M and N waves in terms of the solutions

of the scalar Helmholtz equation is given in Chapter 4. Apart from M and N there is one

more solution to the vector Helmholtz equation (i.e. a possible solution to the Maxwell’s

equations) given by:

L(p)
nm(kr) = rYnmz

(p)
n (kr) (2.21)

If we have to satisfy ∇ · E = 0, which is the case in source free regions, then L need not

be used since this cannot contribute to a divergence free solution. Only M and N are then

used.

2.2 Optical properties of dielectric materials

The behavior of near-field radiative transfer between two closely spaced bodies is dependent

on the material properties of the two objects. In particular, for polar dielectrics like SiO2

(which is the material chosen for much of the study), SiC, and BN, the presence of resonances

in the dielectric function of the material has a large influence on the near-field radiative

transfer. The presence of resonances in the dielectric function of the material is described in

this section using the Drude-Sommerfeld model of an electron [54]. It must be pointed out

that this model for dielectric function has been used here for explanatory purposes only. For

the computations, experimentally obtained values of the dielectric function of SiO2, which

are listed in Ref. [55], have been used.
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Consider the motion of a bound electron with charge q under the action of an electric

field E(t). The equation of motion for this can be modeled as a spring-mass-damper system

given by:

m
(
ẍ+ Ω2x+ Γẋ

)
= qE(t) (2.22)

Here, mΩ2 and mΓ denote the spring constant and the damping coefficient respectively.

In the Fourier space, denoting the Fourier transform of x(t) and E(t) by x̃(ω) and Ẽ(ω)

respectively, Eq. 2.22 can be written as:

m
(
−ω2 + Ω2 − iΓω

)
x̃(ω) = qẼ(ω) (2.23)

The solution of this equation is given by:

x̃(ω) =
qẼ(ω)

m (Ω2 − ω2 − iΓω)
(2.24)

The dipole moment is given by p̃ = qx̃ and if there are N typical electrons in unit volume,

then we have total polarization P̃ to be P̃ = Nqx̃ = ε0χeẼ where, the susceptibility χe(ω)

is given by:

χe(ω) =
Nq2

ε0m

1

(Ω2 − ω2 − iΓω)
(2.25)

The susceptibility χe(ω) is a measure of the propensity of a medium to get polarized. χe(ω)

is related to the dielectric function or the relative permittivity of the medium as: εr(ω) =

1 + χe(ω). The permittivity εr(ω) is a measure of the extent to which the medium permits

the electric field to enter into it. In a dielectric, polarization (dipoles) will act to reduce the

electric field inside it. Since there are no molecules in vacuum to get polarized, it will allow

the electric field to completely enter it. Hence for vacuum εr(ω) = 1 and χe(ω) = 0. We can

then write the expression for εr(ω) (replacing the term

√
Nq2

ε0m
, which denotes the plasma

frequency of the material, by ωp) as:

εr(ω) = 1 +
ω2
p

(Ω2 − ω2 − iΓω)
(2.26)
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Figure 2.1: Real and imaginary part of the dielectric function from Eq. 2.26 as a function

of ω over the visible and near-UV range.

To understand the behavior of the function εr with varying frequency ω, consider first the

case where there is no restoring force (Ω = 0), which is typically the case for a free-electron

in a metal. Eq. 2.26 reduces to:

εr(ω) = 1−
ω2
p

(ω2 + iΓω)
(2.27)

The dielectric function given in Eq. 2.27 is plotted in Fig. 2.1 for the frequency range in

visible and near-ultraviolet spectrum (≈ 1.2 eV to 5 eV). The parameters ωp and Γ are chosen

to be 9.026 eV and 0.0267 eV (which are the parameters for gold [56]). The real part of the

dielectric function is observed to be negative over the visible range which implies that the

electric field is hardly able to penetrate the material. This is the reason why most metals are

strong reflective in the visible frequency range. The imaginary part of the dielectric function

is indicative of the dissipation of energy associated with the motion of electrons in metals.

Consider now the case when you introduce a restoring force into the oscillating electron

model (Ω is finite). This is the case in dielectrics where the electrons are bound. The equation

for the dielectric function in this case is given by Eq. 2.26. The dielectric function for such

a model has been plotted in Fig. 2.2. When a restoring force is introduced, the presence



CHAPTER 2. FUNDAMENTALS OF NEAR-FIELD RADIATIVE TRANSFER 16

-400

-200

0

200

400

0

2x10-12

4x10-12

6x10-12

8x10-12

1x10-11

1.2x10-11

1.4x10-11

1 1.5 2 2.5 3 3.5 4 4.5 5

R
e(
 r)

Im
(

r )

Frequency (eV)

Re(
r
)

Im(
r
)

Figure 2.2: Real and Imaginary part of the dielectric function as a function of frequency

over the visible range accounting for bound electrons; The parameters chosen are ωp = 9.026

eV, Γ = 0.0267 eV, and Ω = 2.7544 eV

of the natural frequency of the spring-mass oscillator system introduces the possibility of

resonance when the frequency of the exciting electric field ω is equal to the the natural

frequency of the system Ω. This resonance behavior can be observed in Fig. 2.2. It must be

mentioned that the model of dielectric function given in Eq. 2.26 has been chosen only to

explain the presence of resonances in dielectric function of materials, since, such resonances

are observed in the dielectric function of silica, which is the material used for the analysis

of near-field radiative transfer between two spheres in this work. A more accurate model

for the dielectric function, which includes contribution from other sources of polarization

(inter-band electronic transitions, for example), can be obtained from Ref. [57].

The dielectric function of silica is plotted in Fig. 2.3 as a function of frequency in eV.

The presence of resonance at two different frequencies can be observed, one at 0.061 eV

and the other at 0.144 eV. These frequencies lie in the infra-red region which are ideal for

enhancement of radiative energy transfer at room temperature (≈ 300 K).
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Figure 2.3: Real and Imaginary part of the dielectric function of silica as a function of

frequency in eV.

2.3 Properties of surface-polaritons

As mentioned in Chapter 1, the enhancement in near-field radiative transfer between two

polar dielectric surfaces is primarily from tunneling of surface polaritons which are confined

at the interface with vacuum. Hence it would be of interest to understand the conditions

under which surface polaritons exist and their properties. These are dealt with in this section.

The explanation follows closely the description given in Ref. [57].

2.3.1 Necessary conditions for surface polaritons to exist in planar

interfaces

Consider an interface between a medium with complex frequency dependent dielectric func-

tion ε1(ω) and vacuum with dielectric function ε2(ω) = 1. The interface is chosen to coincide

with the plane z = 0 of a Cartesian coordinate system, as indicated in Fig. 2.4. We are
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Figure 2.4: Interface between two medium with material characterized by dielectric function

ε1(ω) and ε2(ω)

primarily looking for homogeneous solutions of the Maxwell’s wave equation (i.e those solu-

tions of the wave equation that can exist on their own without external excitations) which

are localized at the interface of the two-layered system. A field is localized at the interface

when it exponentially decays on either side of the interface.

The wave equation is given by:

∇×∇×E(r, ω)− ω2

c2
ε(ω)E(r, ω) = 0 (2.28)

with ε(ω) = ε1(ω) when z < 0 and ε(ω) = ε2(ω) when z > 0. A transverse magnetic (TM

or p-polarized) wave in the two media is represented by:

(Exix̂+ Eziẑ)eikxx+ikziz−iωt; i = 1, 2 (2.29)

where kx and kz denote the components of the wave propagation constant k =
√
ε(ω)ω/c

along the interface and along the z-axis respectively. Note that kx does not change across a

interface. No solution for localized modes exist for TE (s-polarized) waves [57]. For the field

inside the two media we can write:

k2
x + k2

zi = εiω
2/c2; i = 1, 2 (2.30)
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Since the free-charge ρf inside the two media is zero, we also have ∇ ·D = 0 so that:

kxExi + kziEzi = 0; i = 1, 2 (2.31)

The following boundary conditions have to be satisfied at the interface:

• Tangential field across the interface should be continuous

Ex1 − Ex2 = 0; (2.32)

• Normal component of the displacement field should be continuous

ε1Ez1 − ε2Ez2 = 0; (2.33)

Equations 2.31, 2.32, and 2.33 form a set of four homogeneous equations for the four un-

knowns Exi, Ezi, i = 1, 2. A solution exists only if:
kz2
kz1

=
ε2

ε1

. Combining this with Eq.

2.30, we can solve for kx which gives us the dispersion relation which relates the wave-vector

in the propagation direction kx to the frequency ω as:

k2
x =

ε1ε2

ε1 + ε2

ω2

c2
(2.34)

We can also solve for normal wave vector kzi giving us:

k2
zi =

ε2
i

ε1 + ε2

ω2

c2
; i = 1, 2 (2.35)

The above discussion holds true for any eigenmode solution of the wave equation at the

interface of two media. In particular, we need solutions that are localized at the interface

of the media (i.e exponentially decaying in z-direction) and propagating in the x-direction.

Therefore, ignoring losses in the medium [i.e. Im(ε1) = 0; when there are losses in the

medium the radiating and confined modes cannot be as easily differentiated], we need kx to

be real and kzi to be imaginary such that Im(kzi) > 0 [< 0] for z > 0 [< 0]. Since ε2 = 1,

both these conditions are satisfied in Eq. 2.34 and 2.35 when:

ε1(ω) < −1 (2.36)

Referring to the plot of dielectric function of silica shown in Fig. 2.3 we observe that there

are two frequency bands where the real part of the dielectric function satisfies Eq. 2.36 and

hence can support surface modes.
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2.3.2 Dispersion relation for surface polaritons

From Eq. 2.34 the dispersion relation for a SiC - vacuum interface is given by:

kx =
ω

c

√
ε1(ω)

ε1(ω) + 1
(2.37)

To plot the dispersion relation, we ignore losses and use only the real part of the dielectric

function of SiC in Eq. 2.37. Figure 2.5(a), which shows the dispersion curve for the SiC-

vacuum interface, and Figure 2.5(b), which shows the plot of real part of the dielectric

function of SiC, have been borrowed from Ref. [58] with permission. We note the following

from Eq. 2.37: when ε1 � 1 then kx ≈
ω

c
which is termed as the light-line in Fig. 2.5(a).

Significant deviation from the light line will be observed only when ε1 → −1. When 0 > ε1 >

−1, then kx is imaginary and hence cannot be shown on the dispersion curve. The frequency

where ε1 = 0 is termed the longitudinal optical mode and denoted by ωLO. The natural

frequency in the Drude model of the dielectric function of SiC is termed the transverse

optical mode ωTO and the frequency where ε1 = −1 is indicated by ωres in the figure. We

observe that there are two branches in the dispersion curve, a higher frequency (or energy)

one corresponding to ω > ωLO and a lower frequency one corresponding to ω < ωTO. Since

for the higher frequency curve, kx < ω/c these correspond to propagating waves. The lower

energy curve corresponds to confined surface waves.

From the dispersion curve for the surface phonon polariton, it is clear that it is possible

for modes with large values of kx to exist on the surface of the SiC-vacuum interface for

frequencies close to ωres. The physical reason for the increased momentum (represented by

kx) can be understood from Heisenberg’s uncertainty principle: since we are confining the

wave to the surface, the momentum has to naturally increase. When two SiC surfaces are

brought in proximity to each other, energy gets transferred from one surface to another via

tunneling of these modes. This is the reason why we observe a large increase in radiative

heat transfer when two polar-dielectric surfaces separated by vacuum are brought in close

proximity to each other [34].



CHAPTER 2. FUNDAMENTALS OF NEAR-FIELD RADIATIVE TRANSFER 21

 

 

Figure 2.5: (a) Dispersion curve for SiC-Vacuum system. Here kv = ω/c (b) Plot of

real part of dielectric function of SiC. The figures have been borrowed from Ref. [58] with

permission.
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2.4 Green’s functions

The primary purpose of employing Green’s functions is to get a solution for inhomogeneous

boundary value problems. The Green’s function G(r, r′) gives the field at an observation

point r from a source of unit strength concentrated at r′ taking into account the boundary

conditions for the given problem [59; 60]. Generally, depending on whether the field is a

scalar (like electrostatic potential from a unit charge, or the gravitational potential from a

unit mass) or a vector (like the electric field from a unit current source) the Green’s function

is a scalar or a dyad (tensor). Some of the Green’s functions we frequently encounter are

[59]:

1. For Poisson’s equation ∇2G(r − r′) = δ(r − r′) with free-space boundary condition:

G(r − r′) =


1

2π
ln[r − r′] for 2D space

− 1

4π

1

|r − r′|
for 3D space

(2.38)

2. For Helmholtz’s equation ∇2G(r − r′) + k2G(r − r′) = δ(r − r′) with free-space

boundary condition:

G(r − r′) =


− i

4
h

(1)
0 (k|r − r′|) for 2D space

− eik(r−r′)

4π|r − r′|
for 3D space

(2.39)

where h
(1)
0 denotes the zeroth order cylindrical Hankel function of the first kind.

2.4.1 Dyadic Green’s functions

In this work, we will be mainly dealing with Green’s functions in a dyadic form since we are

trying to find the electromagnetic field in the presence of non-magnetic macroscopic dielectric

materials. The electromagnetic fields are governed by the inhomogeneous vector Helmholtz

equation, which can be obtained from the Maxwell’s equations (see Sec. 2.1) and given by [61;
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Figure 2.6: Interface between two planar bodies V1 and V2 with the fluctuating dipole

sources being assumed to be confined in V1

59]:

∇×∇×E(r, ω)− ω2

c2
ε(r, ω)E(r, ω) = iµ0ωJ(r, ω) (2.40)

The solution of this equation in Green’s function formalism can be written as:

E(r, ω) = iωµ0

∫
V

Ge(r, r
′, ω).J(r′, ω) d3r′ (2.41)

where, Ge(r, r
′, ω) is the Dyadic Green’s function (DGF) which will be in tensor form. The

DGF satisfies the equation:

∇×∇×Ge(r, r
′ω)− ω2

c2
ε(r, ω)Ge(r, r

′, ω) = δ(r − r′)I (2.42)

(I is the unit dyad/tensor) along with the boundary conditions of the problem. This method

was first used by Levine and Schwinger [62] in 1950 while analyzing electromagnetic wave

diffraction effects.

For a bulk medium, where the medium is an infinitely extended homogeneous dielectric,

the DGF is the solution of the equation:

∇×∇×G0(r, r′ω)− ω2

c2
ε(ω)G0(r, r′, ω) = δ(r − r′)I (2.43)

and should satisfy the Sommerfeld radiation condition at infinity [61; 59; 63]. The solution

of this equation is given by [61; 59]:

G0(r, r′ω) = −
[
I +

1

k2
∇∇

]
G(r, r′ω) (2.44)
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where, k2 = ω2

c2
ε(ω) and G(r, r′ω) is the solution of the scalar Helmholtz equation given in

Eq. 2.39. So the DGF for the vector Helmholtz equation in bulk medium is given by:

G0(r, r′ω) =
1

4π

[
I +

1

k2
∇∇

]
eik|r−r

′|

|r − r′|
(2.45)

In case of an interface (for simplicity consider a planar interface) like the one shown

in Fig. 2.6, the effect of the interface is to impose additional boundary conditions on the

electric field and hence on the DGF too. The effect of the interface can be considered by

adding suitable solutions of the homogeneous Helmholtz equation to the bulk solution that

we have already obtained. If we assume that the sources are only confined in V1 (r′ ∈ V1)

as shown in Fig. 2.6 we have:

Ge(r, r
′, ω) =

G0(r, r′, ω) +G1(r, r′, ω) for r ∈ V1

G1(r, r′, ω) for r ∈ V2

(2.46)

where, G1(r, r′, ω) is the yet to be determined scattering DGF for the regions V1 and V2

(they are not the same for V1 and V2) which are the solutions to the equations:

∇×∇×G1(r, r′ω)− ω2

c2
εj(ω)G1(r, r′, ω) = 0; j = 1, 2 (2.47)

To find the scattered DGF, the bulk and the scattered DGF are expanded in fundamental

modes of the vector Helmholtz equation, with the unknown coefficients of the expansion

to be determined by applying appropriate boundary conditions to each mode. For planar

surfaces, the DGF is expanded in vector planar waves, for spheres we adopt vector spherical

waves. But the procedure is similar for both the cases. For more details refer to [64; 61;

65].

Similar to the way the electric field was defined in Eq. 2.41, we can define the magnetic

field using:

H(r, ω) =

∫
V

Gh(r, r
′, ω).J(r′, ω) d3r′ (2.48)

where, Ge and Gh are related to each other by ∇ ×Ge(r, r
′ω) = Gh(r, r

′ω). Finding the

net radiative transfer requires us to compute the Poynting vector given by: S = E ×H∗,
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where the ‘∗’ denotes complex conjugate. This requires us to find expressions of the type

〈EiωH∗jω〉 where the angled brackets denote ensemble average and i and j denote the three

cartesian coordinates i 6= j. In terms of Ge and Gh, this ensemble average can be written

as:

〈Ei(r1, ω)H∗j (r1, ω)〉 = iωµ0

∫
V

d3r

∫
V ′
d3r′Geil(r1, r, ω)G∗hjm(r1, r

′, ω)×

〈Jl(r, ω)Jm(r′, ω)〉
(2.49)

The topic of finding 〈Jl(r, ω)Jm(r′, ω)〉 is discussed in the next section.

2.5 Fluctuation dissipation theorem

The fluctuation-dissipation theorem (FDT) establishes for an arbitrary dissipative physical

system the relationship between the spectral density of spontaneous equilibrium fluctuations

and its dissipative properties. The development of FDT started with the investigation of the

source for the ‘noise’ in electric circuits. The close relation between electric noise and thermal

radiation lies in the fact that the radiation is composed of electromagnetic waves generated

by thermal electric fluctuations in the body. For a long time a unified approach for such

closely related physical phenomena was absent, possibly due to the fact that the frequency

of electromagnetic oscillations in the above two phenomena was widely differently. Nyquist

[66] first derived a formula, called Nyquist formula or the Nyquist theorem relating the

spectral intensity of fluctuating electromotive force to the impedance of the electric circuit

which was valid in the classical limit (~ω � kBT ). Further development of the theory

of thermal fluctuations resulted in generalizations of this formula. In 1951, H.B. Callen

and T.A. Welton [67] derived the FDT, which generalized Nyquist’s formula to dissipative

systems of arbitrary physical nature. In 1953, Rytov [68] developed a theory of thermal

electromagnetic fields based on the FDT which was then subsequently used by Lifshitz [69]

to develop his theory of van der Waals forces. According to this theory the fluctuating

electromagnetic field is described as generated by random detached currents spread in the

medium. To calculate the energy carried by this fluctuating field, the spatial correlation of
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the spectral amplitudes of these random currents is needed. This is given by the FDT [67;

70; 71] as:

〈Jl(r, ω)Jm(r′, ω)〉 =
2εo ε

′′(ω)ωΘ(ω, T )

π
δlmδ(r − r′) (2.50)

where ε′′(ω) is the imaginary part of the dielectric function of the source, and Θ(ω, T ) is given

by ~ω/[exp(~ω/kBT )− 1]. Thus the spectral density of electromagnetic source fluctuations

is directly associated with a macroscopic property of the system [in this case ε′′(ω)]. The δlm

factor ensures that there is no coupling between the fluctuations in the orthogonal directions.

The presence of δ(r − r′) implies that the currents at any two positions r and r′ in the

material are taken to be uncorrelated. This assumption is valid only when the length scales

involved in the problem is much greater than the mean-free path of the electrons in metals

or atomic spacing in dielectrics [68]. In this work we shall assume the validity of Eq. 2.50.

2.6 Near-field radiative heat transfer between two planar bodies

Since the proximity approximation makes use of the near-field radiative heat transfer coeffi-

cient from two parallel flat surfaces to approximate the conductance between curved bodies,

it is necessary to give a brief explanation about the computation of the radiative heat flux

between two flat surfaces. The development of the theory of computing near-field radiative

transfer between planar surfaces is similar to the development of that between two spherical

bodies except that we use vector spherical waves in the latter case as opposed to vector

planar waves in the former case for the modal expansion of the dyadic Green’s functions.

The magnitude of heat transfer by radiative transfer is determined by calculating the

Poynting vector at the desired location [44]. The ensemble average Poynting vector 〈S〉 at

any position r is given by:

〈S(r, ω)〉 =

∫ ∞
0

Re〈E(r, ω)×H∗(r, ω)〉 dω (2.51)

The cross product of two vector quantities A and B in Einstein notation is given by:

(A×B)i = eijkAjBk
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where eijk is the Levi-Civita symbol, and i,j,k refer to the three Cartesian components.

Hence the Poynting vector can be written as:

〈Si(r, ω)〉 = eijk〈Ej(r, ω)H∗k(r, ω)〉 (2.52)

The electric field and magnetic field can be expressed in terms of the electric DGF Ge (which

needs to be found) as given in Eq. 2.41 and Eq. 2.48. By using the tensor notation we can

write:

Ej(r, ω) = iωµ0

∫
Ge
jp(r, r

′, ω)Jp(r
′, ω) dr′ (2.53)

H∗k(r, ω) =

∫
Gh∗
kl (r, r

′′, ω)Jl(r
′′, ω) dr′′ (2.54)

Thus from Eq. 2.52, Eq. 2.53 and Eq. 2.54 we can write:

Si(r, ω) = eijkiωµ0

∫∫
Ge
jp(r, r

′, ω)Gh∗
kl (r, r

′′, ω)〈Jp(r′, ω)Jl(r
′′, ω)〉 dr′ dr′′ (2.55)

Substituting for 〈Jp(r′, ω)Jl(r
′′, ω)〉 from the fluctuation-dissipation theorem given in Eq.

2.50 we have:

Si(r, ω) = eijk
2iω2

π
µ0ε0ε

′′(ω)Θ(ω, T )

∫∫
Ge
jp(r, r

′, ω)Gh∗
kp(r, r

′′, ω)δ(r′′ − r′) dr′ dr′′ (2.56)

⇔ Si(r, ω) = eijk
2iω2

π
µ0ε0ε

′′(ω)Θ(ω, T )

∫
Ge
jp(r, r

′, ω)Gh∗
kp(r, r

′, ω) dr′ (2.57)

Since we need the heat transfer in the z-direction, we get:

Sz(r, ω) =
2iω2

π
µ0ε0ε

′′(ω)Θ(ω, T )

∫ [
Ge
xp(r, r

′, ω)Gh∗
yp(r, r

′, ω) −

Ge
yp(r, r

′, ω)Gh∗
xp(r, r

′, ω)
]
dr′

(2.58)

⇔ Sz(r, ω) =
2iω2

π
µ0ε0ε

′′(ω)Θ(ω, T )

∫ [
Ge(r, r

′, ω).G
h∗
T (r, r′, ω)

]
xy−yx

dr′ (2.59)

where,the subscript T denotes transpose of the dyad.
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In order to findGe(r, r
′, ω) andG

∗
h(r, r

′, ω) we use the orthonormal triad ê, ĥ, k̂ defined

by the relations:

ê =
k × z
|k × z|

(2.60)

ĥ =
ê× k
|k|

(2.61)

k̂ =
k

|k|
(2.62)

In the orthonormal basis (ê, ĥ, k̂), the expression for Ge(r, r
′) which relates the source in

medium 1 to the field in medium 3 as shown in Fig. 2.8 is given by [71; 72]:

Ge(r, r
′) =

i

8π2

∫∫
dkxdky

1

k1z

([
A3e

ik3.rê(k3z)
]
ê(k1z)e

−ik1.r′

[
C3e

ik3.rĥ(k3z)
]
ĥ(k1z)e

−ik1.r′
) (2.63)

with k3 = kxx̂+ kyŷ + k3zẑ and k1 = kxx̂+ kyŷ + k1zẑ

This can be viewed as an up-going vector planar TE wave e−ik1.r′
ê(k1z) in the source

layer (medium 1) giving rise to a transmitted wave A3e
ik3.rê(k3z) in medium 3. Similarly

a vector planar TM wave ĥ(k1z)e
−ik1.r′

gives rise to a transmitted wave C3e
ik3.rĥ(k3z) in

medium 3. The coefficients A3 and C3 is found out by applying the boundary conditions at

the interfaces using the steps described in the next paragraph.

Consider first an interface between two infinite media located at position z1 as shown in

Fig. 2.7. A planar wave of unit amplitude in medium 1 e+ik1zz impinging on the interface

gives rise to a reflected wave B1e
−ik1zz in medium 1 as well as a transmitted wave A2e

+ik2zz

in medium 2. Here k1z and k2z denote the component of wavevector in the z-direction in the

first medium and second medium respectively. The coefficients B1 and A2 can be found by

employing boundary conditions (continuity of electric and magnetic fields) at the interface.

For TE waves (assuming nonmagnetic media with µl = 1), the boundary conditions at the
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Figure 2.7: Reflection and transmission at an interface between two infinite media

interface located at z1 give two linear equations in B1 and A2 [61; 64]:

e+ik1zz1 +B1e
−ik1zz1 = A2e

ik2zz1 (2.64)

k1z(e
+ik1zz1 −B1e

−ik1zz1) = k2z(A2e
ik2zz1) (2.65)

For TM waves the corresponding boundary conditions are:

k1z
ω
c

√
ε1

(e+ik1zz1 −D1e
−ik1zz1) =

k2z
ω
c

√
ε2

(C2e
ik2zz1) (2.66)

ω

c

√
ε1(e+ik1zz1 +D1e

−ik1zz1) =
ω

c

√
ε2(C2e

ik2zz1) (2.67)

where C2 and D1 are the transmission and reflection coefficients analogous to A2 and B1.

Solving Eqs. 2.64 and 2.65 for B1 we get:

B1 = e2ik1zz1
k1z − k2z

k1z + k2z

, (2.68)

which can be written in the form B1 = e2ik1zz1R12 where R12 denotes the Fresnel reflection

coefficient for a wave traveling from medium 1 to medium 2 and is given by (for TE waves):

RTE
12 =

k1z − k2z

k1z + k2z

, (2.69)

For TM waves the Fresnel reflection coefficient is given by:

RTM
12 =

k1z/ε1 − k2z/ε2

k1z/ε1 + k2z/ε2

(2.70)
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Figure 2.8: Reflection and transmission from a film embedded between two half spaces

The relation between B1 and R12 is got from:

RTE
12 e

+ik1zz1 = B1e
−ik1zz1 (2.71)

In the presence of an additional interface at z2 as shown in Fig. 2.8 the expression for B1

will change. Applying boundary conditions similar to Eqs. 2.64 and 2.65 to the interfaces

at z1 and z2 and solving for B1 we get

B1 = e2ik1zz1
R12 +R23e

2ik2z(z2−z1)

1 +R12R23e2ik2z(z2−z1)
, (2.72)

where R12 and R23 are the Fresnel reflection coefficients at the interfaces z1 and z2 defined

appropriately as shown in Eq. 2.69 and Eq. 2.70. Depending on whether the analysis is being

performed for TE or TM waves, the corresponding form of the Fresnel reflection coefficients

have to be used.

Equation 2.67 can be written in the form B1 = e2ik1zz1R̃12 where R̃12 denotes the altered

reflection coefficient for the interface at z1 in the presence of an additional interface at z2

and is given by:

R̃12 =
R12 +R23e

2ik2z(z2−z1)

1 +R12R23e2ik2z(z2−z1)
, (2.73)
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Here, the reflection coefficient for the interface at z1, R̃12, has been written in terms of the

reflection coefficient of the interface above it, R23. While only two interfaces needs to be

considered for finding the radiative heat transfer between two planar surfaces, this method

can be generalized to the case when you have several successive layers. For such a case we

can find a generalized reflection coefficient R̃n,n+1 in terms of the reflection coefficient at the

(n+ 1)th interface, R̃n+1,n+2 as:

R̃n,n+1 =
Rn,n+1 + R̃n+1,n+2e

2ik(n+1)z(zn+1−zn)

1 +Rn,n+1R̃n+1,n+2e
2ik(n+1)z(zn+1−zn)

, (2.74)

This enables us to set up a recursive scheme to find the reflection coefficients in all the

layers whereby the reflection coefficient in the top most interface is given by the Fresnel

coefficient and for each of the successive layers, the reflection coefficient is computed in

terms of the reflection coefficient of the interface immediately above it by employing the

form shown in Eq. 2.74. Knowing the reflection coefficients at an interface, the boundary

condition equation at the interface (Eq. 2.64 or 2.65) can be used to find the corresponding

transmission coefficient.

By solving the boundary conditions we arrive at the transmission coefficients A3 (for TE

waves) and C3 (for TM waves) and thus the electric DGF from Eq. 2.63. The magnetic DGF

Gh is obtained from ∇×Ge = Gh and using these in Eq. 2.59 we get the net heat transfer

per unit area from surface 1 to surface 2 across the vacuum film. The radiative heat transfer

coefficient h between two silica planar surfaces has been plotted in Fig. 2.9. A slope of −2

in the log-log plot indicate a 1/d2 behavior in the near-field region. To understand why we

see a 1/d2 at small gaps, consider the expression for the net radiative heat transfer between

two planar surfaces via evanescent waves. This is given by [44]:

qevan =
1

π2

∫ ∞
0

dω [Θ(ω, T1)−Θ(ω, T2)]

∫ ∞
0

kρ
Im(rp01)Im(rp02)e−2kρd

|1− rp01 r
p
02e
−2kρd|2

dkρ (2.75)

where, Θ(ω, T1) is the mean energy of the Planck’s oscillator at temperature T1, kρ is the in-

plane component of the wave vector, rp01 and rp02 are the Fresnel reflection coefficients (for TM

waves) for the two surfaces respectively (with vacuum as interface) which are independent

of kρ in the limit kρ � ω/c (true for evanescent waves), d is the separation distance and kρ
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Figure 2.9: Plot of radiative heat transfer coefficient h as a function of gap in nm for two

planar surfaces made of silica

is the in-plane wave propagation constant. To facilitate integration taking kρd = β where β

is an integration parameter, Eq. 2.75 can be simplified to:

qevan =
1

π2

∫ ∞
0

dω [Θ(ω, T1)−Θ(ω, T2)]
1

d2

∫ ∞
0

dβ β
Im(rp01)Im(rp02)e−2β

|1− rp01 r
p
02e
−2β|2

(2.76)

⇔ qevan =
1

d2

∫ ∞
0

dω [Θ(ω, T1)−Θ(ω, T2)]K (2.77)

where,

K =
1

π2

∫ ∞
0

β
Im(rp01)Im(rp02)e−2β

|1− rp01 r
p
02e
−2β|2

dβ (2.78)

Eq. 2.77 shows that for small gaps, when the contribution from evanescent waves is dominant,

the radiative heat transfer varies as 1/d2.
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Part II

Near-field radiative transfer between

spherical bodies
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Chapter 3

Theoretical formulation for computing

radiative transfer between spherical

objects

3.1 Introduction

In this chapter the semi-analytical method that has been developed by Narayanaswamy and

Chen [36] to arrive at an expression for the the near-field radiative heat flux between two

spheres maintained at temperatures TA and TB has been outlined briefly and some of the

steps for arriving at the analytical expressions listed in Ref. [36] have been shown explicitly.

The theoretical procedure is similar to that between planar bodies which has been outlined

in Chapter 2.

3.2 Discussion

The configuration of the two spheres between which radiative transfer is to be calculated is

shown in Fig. 3.1. Radiative heat transfer between the spheres is calculated using Rytov’s

theory of fluctuational electrodynamics [2]. The Fourier component of the fluctuating electric

field E(ra, ω) and magnetic field H(ra, ω) at any point ra are given by Eq. 2.41 and Eq.
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Figure 3.1: Configuration of two spheres whose centers are translated along z-axis

2.48 (repeated here for completeness of discussion). They are given by:

E(ra, ω) = iωµo

∫
V

d3ra′Ge(ra, r
′
a, ω) · J(r′a, ω), (2.41 revisited)

H(ra, ω) =

∫
V

d3ra′Gh(ra, r
′
a, ω) · J(r′a, ω), (2.48 revisited)

where Ge(ra, r
′
a, ω) and Gh(ra, r

′
a, ω) are the dyadic Green’s functions (DGF) for the elec-

tric and magnetic fields due to a point source at r′a and are related by Gh(ra, r
′
a, ω) =

∇×Ge(ra, r
′
a, ω), J(r′a, ω) is the Fourier component of the current density due to thermal

fluctuations, and µo is the permeability of vacuum. The integration is performed over the

entire volume V containing the source.

Finding the DGF is a non-trivial task. In order to employ Eq. 2.41 and 2.48 to find the

electric and magnetic fields in the scattered region, the DGF must necessarily satisfy the

boundary conditions on the surface of the two spheres. The boundary conditions are:

1. Tangential part of the electric DGF has to continuous i.e.

n̂×Ge(r1, r
′) = n̂×Ge(r2, r

′) (3.1)



CHAPTER 3. THEORETICAL FORMULATION FOR COMPUTING RADIATIVE
TRANSFER BETWEEN SPHERICAL OBJECTS 36

2. Tangential part of the magnetic DGF has to be continuous i.e.

n̂×Gh(r1, r
′) = n̂×Gh(r2, r

′) (3.2)

where, n̂ is a unit normal to the boundary surface at r1 or r2. The development of Ge and

Gh parallels that of the layered media case explained in Chapter 2 except that one has to

employ vector spherical waves M and N waves in place of the vector planar waves. A brief

outline of this is given in the ensuing paragraphs.

Consider first the case when there are no boundaries (i.e homogenous medium). The

electric DGF for the field at any observation point ra due to a source at r′a is given by the

solution of the in-homogenous vector Helmholtz equation given in Eq. 2.42, along with the

Sommerfeld radiation boundary condition mentioned in Chapter 2. The electric DGF is

given by [65; 64; 59]:

Ge(ra, r
′
a) =

r̂r̂

k2
a

δ(ra − r′a)

+ ika

l=∞
m=l∑
m=−l
l=1

M
(1)
lm (kara)M

(3)
l,−m(kar

′
a) +N

(1)
lm (kara)N

(3)
l,−m(kar

′
a) if ra < r′a

M
(3)
lm (kara)M

(1)
l,−m(kar

′
a) +N

(3)
lm (kara)N

(1)
l,−m(kar

′
a) if ra > r′a

(3.3)

where r′a is the source point and ra is the observation point. In particular, we will be

interested in the case where ra > r′a (since we later take the source to be inside sphere A

whereas the boundary of interest will be the surface of the sphere). In this case the DGF

takes the form:

Ge(ra, r
′
a) = ika

l=∞
m=l∑
m=−l
l=1

[
M

(3)
lm (kara)M

(1)
l,−m(kar

′
a) +N

(3)
lm (kara)N

(1)
l,−m(kar

′
a)
]

(3.4)

This equation can be viewed asM
(3)
lm (kara) waves being generated at the observation point ra

by M
(1)
l,−m(kar

′
a) waves at the source point r′a (and similarly for N

(3)
lm (kara) waves). However,

in the presence of a boundary/interface, due to reflection of waves from the interface, there
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ka Mlm
(3)(kara)  

Alm ka Mlm
(1)(kara)  

Blm kf Mlm
(3)(kf ra)  

Region a 

Region f 

o 

ra 

Figure 3.2: Configuration showing reflection and transmission of a M vector spherical wave

inside a sphere of radius R1. The origin of the coordinate system is located at the center of

the sphere marked as O and the blue line denotes the position vector ra with respect to this

coordinate system

will be additional fields generated. For demonstrative purposes a simple boundary case (a

single sphere surrounded by free space) has been analyzed below.

3.2.1 Analysis for a single sphere

Consider the case of an outgoing M
(3)
lm (kara) wave inside a single sphere (region a) of radius

R1 as shown in Fig. 3.2. This will give rise to a reflected wave in region a as well as a

transmitted wave in region f, which can be represented by AlmM
(1)
lm (kara) andBlmM

(3)
lm (kfra)

respectively, where ka and kf are the frequency dependent wave propagation constants in the

two regions a and f respectively as shown in Fig. 3.2. Alm and Blm are unknown coefficients

which are to be determined. Depending on the region in question we can use onlyM (1)(kara)

(M (3)(kfra)) to avoid encountering singularity as kara → 0 (kfra →∞).
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For this simple case, the DGF for an observation point in region a is given by:

Ge(ra, r
′
a) = ika

l=∞
m=l∑
m=−l
l=1

[M (3)
lm (kara) + AlmM

(1)
lm (kara)

]
M

(1)
l,−m(kar

′
a)

+
[
N

(3)
lm (kara) + A′lmN

(1)
lm (kara)

]
N

(1)
l,−m(kar

′
a)

 (3.5)

and for an observation point in region f the DGF is given by:

Ge(ra, r
′
a) = ikf

l=∞
m=l∑
m=−l
l=1

 [BlmM
(3)
lm (kfra)

]
M

(1)
l,−m(kar

′
a)

+
[
B′lmN

(3)
lm (kfra)

]
N

(1)
l,−m(kar

′
a)

 (3.6)

where, A′lm and B′lm are analogous to Alm and Blm but for a N wave. The coefficients Alm,

Blm, A′lm and B′lm are determined by applying the boundary conditions (Eq. 3.1 and 3.2)

on the surface of the sphere. This has been shown below:

First, we note from referring to the expression for DGF in Eq. 3.4 that what we have to

analyze is not just propagation of M
(3)
lm (kpra) wave function but the function kpM

(3)
lm (kpra)

where kp is the propagation constant in the medium where the M wave is propagating. The

tangential component of the M
(3)
lm (kpra)

[
N

(3)
lm (kpra)

]
wave is z

(3)
l (kpra)

[
ζ

(3)
l (kpra)

]
where

ζ
(3)
l (x) = 1

x
d
dx

(
xz

(3)
l (x)

)
. Using ∇×M = kN we get the boundary condition equations to

be (noting that at the interface the magnitude of position vector ra is R1):

kaz
(3)
l (kaR1) +Blmkaz

(1)
l (kaR1) = Almkfz

(3)
l (kfR1) (3.7)

k2
aζ

(3)
l (kaR1) +Blmk

2
aζ

(1)
l (kaR1) = Almk

2
fζ

(3)
l (kfR1) (3.8)

Solving this gives us:

Blm =
kfz

(3)
l (kaR1)ζ

(3)
l (kfR1)− kaz(3)

l (kfR1)ζ
(3)
l (kaR1)

kaz
(3)
l (kfR1)ζ

(1)
l (kaR1)− kfz(1)

l (kaR1)ζ
(3)
l (kfR1)

(3.9)

In such problems it also useful to find an expression for the reflection coefficient at the

interface of region a and region f , R̃af , given by:

R̃af kaz
(3)
l (kaR1) = Blm kaz

(1)
l (kaR1) (3.10)

This gives us:

R̃
(M)
af =

(
kfz

(3)
l (kaR1)ζ

(3)
l (kfR1)− kaz(3)

l (kfR1)ζ
(3)
l (kaR1)

kaz
(3)
l (kfR1)ζ

(1)
l (kaR1)− kfz(1)

l (kaR1)ζ
(3)
l (kfR1)

)(
z

(1)
l (kaR1)

z
(3)
l (kaR1)

)
(3.11)



CHAPTER 3. THEORETICAL FORMULATION FOR COMPUTING RADIATIVE
TRANSFER BETWEEN SPHERICAL OBJECTS 39

The superscript (M) denotes that the analysis is for the propagation ofM wave. Substituting

ζ(kfR1) =
z(kfR1) + (kf R1) ∂z(x)

∂x
|kfR1

kf R1

and using

∂fn
∂x

=
n

x
fn − fn+1 (3.12)

with f denoting the Bessel function we can show that this is equivalent to:

R̃
(M)
af =

ka z
(3)
n+1(kaR1)

z
(3)
n (kaR1)

− kf
z
(3)
n+1(kfR1)

z
(3)
n (kfR1)

kf
z
(3)
n+1(kfR1)

z
(3)
n (kfR1)

− ka
z
(1)
n+1(kaR1)

z
(1)
n (kaR1)

 (3.13)

Similarly, solving for Alm in Eq. 3.7 and 3.8 we get,

Alm =
ka
kf

(
kaz

(3)
l (kaR1)ζ

(1)
l (kaR1)− kaz(1)

l (kaR1)ζ
(3)
l (kaR1)

kaz
(3)
l (kfR1)ζ

(1)
l (kaR1)− kfz(1)

l (kaR1)ζ
(3)
l (kfR1)

)
(3.14)

The expression for the transmission coefficient at the interface of region a and region f ,

T̃
(M)
af , is got from the equation:

T̃
(M)
af kaz

(3)
l (kaR1) = Alm kfz

(3)
l (kfR1) (3.15)

For an outgoing N
(3)
lm (kara) wave in Fig. 3.2 the coefficients A′lm and B′lm can be similarly

solved to give:

A′lm =
kaz

(3)
l (kaR1)ζ

(3)
l (kfR1)− kfz(3)

l (kfR1)ζ
(3)
l (kaR1)

kfz
(3)
l (kfR1)ζ

(1)
l (kaR1)− kaz(1)

l (kaR1)ζ
(3)
l (kfR1)

(3.16)

B′lm =

(
ka
kf

)(
kaz

(3)
l (kaR1)ζ

(1)
l (kaR1)− kaz(1)

l (kaR1)ζ
(3)
l (kaR1)

kfz
(3)
l (kfR1)ζ

(1)
l (kaR1)− kaz(1)

l (kaR1)ζ
(3)
l (kfR1)

)
(3.17)

The expressions for the reflection and transmission coefficients R̃
(N)
af and T̃

(N)
af are got from

using Eq. 3.16 and 3.17 in Eq. 3.10 and 3.15 respectively.

3.2.2 Analysis for two spheres translated along z-axis

It must be noted that for the case of symmetric boundaries (e.g. such as surface of a single

sphere considered in Sec. 3.2.1 or even concentric spherical layers) a M wave will give rise
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to only M waves after reflection and transmission at the interface. However when there are

asymmetric boundaries (e.g. the configuration which we are analyzing of two spheres with

centers translated along z-axis), then each M wave arising from one sphere will give rise to

both M and N waves on reflection from the other sphere. The DGF for the configuration

shown in Fig. 3.1 for an observation point in the scattered region (vacuum space between

the two spheres) can therefore be written as:

Ge(ra, r
′
a) = ikf

m=Nm
l,ν=Nm∑
l,ν=(1,m)
m=−Nm

(−1)m



(C lM
νmM

(3)
νm(kfra) + C lN

νmN
(3)
νm(kfra)

)
+(

DlM
νmM

(3)
νm(kfrb) +DlN

νmN
(3)
νm(kfrb)

)
M (1)

l,−m(kar
′
a)+(C ′lMνmM (3)

νm(kfra) + C
′lN
νmN

(3)
νm(kfra)

)
+(

D
′lM
νmM

(3)
νm(kfrb) +D

′lN
νmN

(3)
νm(kfrb)

)
N (1)

l,−m(kar
′
a)


(3.18)

The position vectors ra and rb refer to the same location in space in coordinate systems

located at the center of spheres a and b respectively. The coefficients C lM
νm, DlM

νm etc are

found from applying the boundary conditions on the surface of the two spheres similar to

that explained for a single sphere above. The magnetic DGF is got from:

Gh(ra, r
′
a) = ∇×Ge(ra, r

′
a)

= ik2
f

m=Nm
l,ν=Nm∑
l,ν=(1,m)
m=−Nm

(−1)m



(C lM
νmN

(3)
νm(kfra) + C lN

νmM
(3)
νm(kfra)

)
+(

DlM
νmN

(3)
νm(kfrb) +DlN

νmM
(3)
νm(kfrb)

)
M (1)

l,−m(kar
′
a)+(C ′lMνm N (3)

νm(kfra) + C
′lN
νmM

(3)
νm(kfra)

)
+(

D
′lM
νmN

(3)
νm(kfrb) +D

′lN
νmM

(3)
νm(kfrb)

)
N (1)

l,−m(kar
′
a)


(3.19)

Using Eq. 3.18 and 3.19, an expression for the Poynting vector can be obtained in the

following steps. First we use the translation addition theorem (explained in greater detail in

Chapter 4) which enables us to express M
(3)
νm(kfra) and N

(3)
νm(kfra) as an expansion series in

terms of M and N waves with respect to the coordinate system at the center of the sphere

b. This can be written as:

M (3)
νm(kfra) =

∑
n

[
Aνm,nmM

(1)
nm(kfrb) +Bνm,nmN

(1)
nm(kfrb)

]
(3.20)
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N (3)
νm(kfra) =

∑
n

[
Bνm,nmM

(1)
nm(kfrb) + Aνm,nmN

(1)
nm(kfrb)

]
(3.21)

It must be noted that:

1. In the translation theorem, the outgoing wave from sphere a is expressed in terms of

incoming waves from sphere b (and vice-versa)

2. The m subscript inM
(3)
νm(kfra) does not change while applying the translation theorem

only because we are dealing with translation only along z-axis. A more general form

of the translation theorem would have been

M (3)
νm(kfra) =

∑
n,m′

[
Aνm,nm′M

(1)
nm′(kfrb) +Bνm,nm′N

(1)
nm′(kfrb)

]
(3.22)

Using Eq. 3.20 and 3.21 (and interchanging summations over n and ν) we get:

Ge(ra, r
′
a)

ikf
=
∑
l,m,n

(−1)m

[∑
ν

(
C lM
νmAνm,nm + C lN

νmBνm,nm

)
M (1)

nm(kfrb)+

∑
ν

(
C lM
νmBνm,nm + C lN

νmAνm,nm
)
N (1)

nm(kfrb)+

∑
ν

[
DlM
νmM

(3)
νm(kfrb) +DlN

νmN
(3)
νm(kfrb)

]]
M

(1)
l,−m(kar

′
a)+

∑
l,m,n

(−1)m

[∑
ν

(
C
′lM
νm Aνm,nm + C

′lN
νmBνm,nm

)
M (1)

nm(kfrb)+ (3.23)

∑
ν

(
C
′lM
νm Bνm,nm + C

′lN
νmAνm,nm

)
N (1)

nm(kfrb)+

∑
ν

(
D
′lM
νmM

(3)
νm(kfrb) +D

′lN
νmN

(3)
νm(kfrb)

)]
N

(1)
l,−m(kar

′
a) (3.24)

Now use the boundary conditions (Eq. 20c and Eq. 20d in Ref. [36]) to replace the
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summations and take the summation over n inside, to get:

Ge(ra, r
′
a)

ikf
=
∑
l,m

(−1)m

[∑
n

(
−DlM

nm

un(R2)
M (1)

nm(kfrb) +
−DlN

nm

vn(R2)
N (1)

nm(kfrb)

)
+

∑
ν

[
DlM
νmM

(3)
νm(kfrb) +DlN

νmN
(3)
νm(kfrb)

]]
M

(1)
l,−m(kar

′
a)+

∑
l,m

(−1)m

[∑
n

(
−D′lMnm
un(R2)

M (1)
nm(kfrb) +

−D′lNnm
vn(R2)

N (1)
nm(kfrb)

)
+

∑
ν

(
D
′lM
νmM

(3)
νm(kfrb) +D

′lN
νmN

(3)
νm(kfrb)

)]
N

(1)
l,−m(kar

′
a) (3.25)

where un(R2) and vn(R2) are the Mie scattering coefficients of a sphere of radius R2. These

are equivalent to the the coefficients Blm and Alm given in Eq. 3.14 and 3.9 respectively.

Since n is just a dummy variable, we can replace it by ν to give:

Ge(ra, r
′
a)

ikf
=
∑
l,m

(−1)m

[∑
ν

(
−DlM

νm

uν(R2)
M (1)

νm(kfrb) +
−DlN

νm

vν(R2)
N (1)

νm(kfrb)

)
+

∑
ν

[
DlM
νmM

(3)
νm(kfrb) +DlN

νmN
(3)
νm(kfrb)

]]
M

(1)
l,−m(kar

′
a)+

∑
l,m

(−1)m

[∑
ν

(
−D′lMνm
uν(R2)

M (1)
νm(kfrb) +

−D′lNνm
vν(R2)

N (1)
νm(kfrb)

)
+

∑
ν

(
D
′lM
νmM

(3)
νm(kfrb) +D

′lN
νmN

(3)
νm(kfrb)

)]
N

(1)
l,−m(kar

′
a) (3.26)

Splitting theM andN waves in terms of vector spherical harmonics V
(1)
νm (θ, φ), V

(2)
νm (θ, φ),V

(3)
νm (θ, φ)
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using Eq. 2.16 and Eq. 2.17:

Ge(ra, r
′
a)

ikf
=

∑
l,m,ν

(−1)m
[
DlM
νm

(
z(3)
ν (x)− z

(1)
ν (x)

uν(R2)

)
V (2)
νm +DlN

νm

(
ζ(3)
ν (x)− ζ

(1)
ν (x)

vν(R2)

)
V (3)
νm

+DlN
νm

(
z

(3)
ν

x
− z

(1)
ν (x)/x

vν(R2)

)√
ν(ν + 1)V (1)

νm

]
M

(1)
l,−m(kar

′
a)

+
∑
l,m,ν

(−1)m
[
D
′lM
νm

(
z(3)
ν (x)− z

(1)
ν (x)

uν(R2)

)
V (2)
νm +D

′lN
νm

(
ζ(3)
ν (x)− ζ

(1)
ν (x)

vν(R2)

)
V (3)
νm

+D
′lN
νm

(
z

(3)
ν

x
− z

(1)
ν (x)/x

vν(R2)

)√
ν(ν + 1)V (1)

νm

]
N

(1)
l,−m(kar

′
a) (3.27)

where x = kfR2. Similarly for Gh we have from Eq. 3.19:

Gh(ra, r
′
a)

ik2
f

=
∑
l,m

(−1)m
[∑

ν

(
−DlM

νm

uν(R2)
N (1)
νm(kfrb) +

−DlN
νm

vν(R2)
M (1)

νm(kfrb)

)
+

∑
ν

(
DlM
νmN

(3)
νm(kfrb) +DlN

νmN
(3)
νm(kfrb)

)]
M

(1)
l,−m(kar

′
a)+

∑
l,m

(−1)m
[∑

ν

(
−D′lMνm
uν(R2)

N (1)
νm(kfrb) +

−D′lNνm
vν(R2)

M (1)
νm(kfrb)

)
+

∑
ν

(
D
′lM
νmN

(3)
νm(kfrb) +D

′lN
νmN

(3)
νm(kfrb)

)]
N

(1)
l,−m(kar

′
a) (3.28)

which simplifies to:

Gh(ra, r
′
a)

ik2
f

=
∑
l,m,ν

(−1)m
[
DlN
νm

(
z(3)
ν (x)− z

(1)
ν (x)

vν(R2)

)
V (2)
νm +DlM

νm

(
ζ(3)
ν (x)− ζ

(1)
ν (x)

uν(R2)

)
V (3)
νm

+DlM
νm

(
z

(3)
ν

x
− z

(1)
ν (x)/x

uν(R2)

)√
ν(ν + 1)V (1)

νm

]
M

(1)
l,−m(kar

′
a)

+
∑
l,m,ν

(−1)m
[
D
′lN
νm

(
z(3)
ν (x)− z

(1)
ν (x)

vν(R2)

)
V (2)
νm +D

′lM
νm

(
ζ(3)
ν (x)− ζ

(1)
ν (x)

uν(R2)

)
V (3)
νm

+D
′lM
νm

(
z

(3)
ν

x
− z

(1)
ν (x)/x

uν(R2)

)√
ν(ν + 1)V (1)

νm

]
N

(1)
l,−m(kar

′
a) (3.29)

As shown in Sec. 2.6 the ensemble average Poynting vector 〈S〉 at any position r can be

expressed in terms of the factor 〈Ei(r1, ω)H ∗j (r1, ω)〉, where,

〈Ei(r1, ω)H ∗j (r1, ω)〉 =
iε0ε

′′(ω)µ0ω
2Θ(ω, T )

π

∫
V

d3r′[Ge(r1, r
′, ω).G∗Th (r1, r

′, ω)]ij (3.30)
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For this we need the dot product of Ge, given by the quantity in Eq. 3.27 and G∗h, given

by the transpose conjugate of the quantity given in Eq. 3.29. For this we make use of the

fact that M and N waves are mutually orthogonal and use the relations Ref. [36] (since we

have an integral over r′ we will require integral over M
(1)
l,−m(ksr

′).M
∗(1)
l,−m(ksr

′)) :

k2
fε
′′

a

∫
Va

M
(1)
lm (kar

′)M (1)∗
pq (kar

′)dr′ = δlpδmqR1 Im[k∗aR1z
(1)
l (kaR1)ζ(1)∗(kaR1)] (3.31)

and

k2
fε
′′

a

∫
Va

N
(1)
lm (kar

′)N (1)∗
pq (kar

′)dr′ = δlpδmqR1 Im[k∗aR1z
(1)∗
l (kaR1)ζ(1)(kaR1)] (3.32)

Once the ensemble average Poynting vector 〈S〉 at any position r is calculated, since we

want the net energy seeping into the sphere, we actually would need to take the following

integral over the surface area of the sphere b, Sb:

Qa→b(ω, T ) =

∮
Sb

S.r̂ dA

i.e.

Qa→b(ω, T ) =

∫ 2π

0

∫ π

0

S.r̂ R2
2 sin θ dθ dφ (3.33)

where T is the temperature of the sphere a. It is possible to define a linearized thermal

conductance G (units WK−1) between the two spheres as:

G = lim
T1→T2

Q(T1, T2)

T1 − T2

, (3.34)

where Q (T1, T2) is the rate of heat transfer between the two spheres at temperatures T1 and

T2. In terms of the quantity Qa→b(ω, T ) given in Eq. 3.33, we get an expression for the

conductance G as:

G(ω, T ) =
d

dT
Qa→b(ω, T ), (3.35)

For calculating the integral in Eq. 3.33, the following relations from Ref. [36] would have to
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be made use of: ∮
Ω

(
V

(s)
lm (θ, φ)× V (s)∗

pq (θ, φ)
)
� r̂dΩ = 0 (3.36)∮

Ω

(
V

(2)
lm (θ, φ)× V (3)∗

pq (θ, φ)
)
� r̂dΩ = δlpδmq (3.37)∮

Ω

(
V

(3)
lm (θ, φ)× V (2)∗

pq (θ, φ)
)
� r̂dΩ = −δlpδmq (3.38)

Using these integrals in Eq. 3.33 the expression for the radiative conductance G(ω, T ) in

Eq. 3.35 can be obtained as (Eq. 28 in Ref. [36]):

G(ω, T ) =
R2

R1

dΘ

dT
(ω, T )×

∑
l,m,ν


[
Im
(

1
xν(R2)

) ∣∣∣D̃lM
νm

∣∣∣2 − Im
(

1
yν(R2)

) ∣∣∣D̃lN
νm

∣∣∣2] Im
(

1
xl(R2)

)
|xl(R2)|2+[

Im
(

1
xν(R2)

) ∣∣∣D̃′lMνm∣∣∣2 − Im
(

1
yν(R2)

) ∣∣∣D̃′lNνm∣∣∣2] Im
(

1
yl(R2)

)
|yl(R2)|2

 (3.39)

where,

xν(R2) = kbR2ζ
(1)
ν (kbR2)z(1)

ν (kfR2)− kfR2ζ
(1)
ν (kfR2)z(1)

ν (kbR2) (3.40)

yν(R2) = kbR2ζ
(1)
ν (kfR2)z(1)

ν (kbR2)− kfR2ζ
(1)
ν (kbR2)z(1)

ν (kfR2) (3.41)

and the normalized coefficients

D̃lM
νm =

z
(1)
l (kaR1)

z
(1)
ν (kfR2)

DlM
νm

D̃lN
νm =

z
(1)
l (kaR1)

ζ
(1)
ν (kfR2)

DlN
νm

D̃′
lM

νm =
ζ

(1)
l (kaR1)

z
(1)
ν (kfR2)

D
′lM
νm

D̃′
lN

νm =
ζ

(1)
l (kaR1)

ζ
(1)
ν (kfR2)

D
′lN
νm

(3.42)

The process of normalization is explained in greater detail in Chapter 4.

To conclude, it must be mentioned that this chapter does not present any new findings.

The intention of the chapter is to explain the theoretical foundations for computing the
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radiative transfer between two spheres that has been developed earlier in literature. I have

shown explicitly the derivations to arrive at some of the analytical expressions listed in Ref.

[36].



CHAPTER 4. TRANSLATION ADDITION THEOREM 47

Chapter 4

Translation addition theorem

4.1 Introduction

An important component of the analysis of multi-body electromagnetic scattering problems is

the usage of translation addition theorem to facilitate the application of boundary conditions

on the surface of the adjacent objects. In particular, for the two-sphere problem, the vector

addition theorem allows us to expand the electromagnetic field in terms of vector spherical

waves from each of the spheres and then re-expand the vector spherical waves from one sphere

in terms of the vector spherical waves from the second sphere. The efficient computation of

the translation coefficients for the scalar and vector addition theorems is thus of significance,

especially when the number of terms required for convergence in the vector spherical wave

expansion is large - which is the case in near-field electromagnetic scattering problems.

In this chapter an introduction to the translation addition theorem has been given in

Sec. 4.2 and the recurrence relations that have been developed in literature to compute

the translation coefficients are described in Sec. 4.3. A method to normalize the translation

coefficients which helps avoid the possibility of encountering divergent numbers (numbers too

large for a given floating point format on a computer) during the calculation of coefficients

of the translation addition theorem is discussed in Sec. 4.4.
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4.2 Definitions for vector spherical waves and vector translation

coefficients

The simplest case of a multi-particle system is that of two spheres whose centers are trans-

lated along the z-axis as shown in Fig. 3.1. For convenience, the configuration has been

re-drawn in Fig. 4.1 with the parameters relevant for this chapter highlighted. Emission

and scattering of electromagnetic waves from such a system involves solving the vector wave

equation given in Eq. 2.15 (repeated here for convenience):

∇×∇×X(r, ω)− k2X(r, ω) = 0; (2.15 revisited)

where, X(r, ω) is the electric or magnetic field at position vector r and k is the frequency

dependent wave propagation constant. Following the notation in Fig. 4.1, k = kf = ω/c in

the free-space region; k = ka = na(ω)ω/c inside sphere a; and k = kb = nb(ω)ω/c inside

sphere b with na(ω) and nb(ω) being the complex refractive indices of sphere a and sphere

b respectively. The independent divergence-free solutions of the vector wave equation in

spherical coordinates are given in Eqs. 2.16 and 2.17 (and repeated here for completeness):

M (p)
nm(kr) = z(p)

n (kr)V (2)
nm (θ, φ); (2.16 revisited)

N (p)
nm(kr) = ζ(p)

n (kr)V (3)
nm (θ, φ) +

z
(p)
n (kr)

kr

√
n(n+ 1)V (1)

nm (θ, φ); (2.17 revisited)

The symbols and notations are explained in Sec. 2.1.

Following Ref. [73] these vector spherical waves can also be expressed in terms of the

solutions to the scalar Helmholtz equation. The solutions of the scalar Helmholtz equation

∇2ψ + k2ψ = 0 are given by:

ψ(p)
nm(k, r) = z(p)

n (kr)Ynm(θ, φ) (4.1)

where, ψnm are scalar spherical waves of the same order (n,m) and Ynm(θ, φ) represent the

spherical harmonics. Using these the vector spherical waves can be expressed as:

M (p)
nm(k, r) =

1√
n(n+ 1)

∇×
[
rψ(p)

nm(k, r)
]

(4.2)
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N (p)
nm(k, r) =

1√
n(n+ 1)

1

k
∇×∇×

[
rψ(p)

nm(k, r)
]

(4.3)

The representations for M and N waves in Eq. 2.16, 2.17 and Eq. 4.2, 4.3 are equivalent,

and differ from the corresponding representations in Ref. [73] in only a factor (1/
√
n(n+ 1))

which has been introduced to ensure that the vector spherical waves are orthonormal to each

other for integration over θ and φ.

The scalar addition theorem for the scalar spherical waves ψnm is given by:

ψnm(k, ra) =
∑
νm′

ψνm′(k, rb)βνm′,nm (4.4)

and the vector addition theorem for the vector spherical waves Mnm and Nnm waves are

given by Eqs. 3.20 and 3.21 (and repeated here for completeness):

Mnm(k, ra) =
∑
ν,m

[
Mνm(k, rb)Aνm,nm +Nνm(k, rb)Bνm,nm

]
(3.20 revisited)

Nnm(k, ra) =
∑
ν,m

[
Nνm(k, rb)Aνm,nm +Mνm(k, rb)Bνm,nm

]
(3.21 revisited)

where ra and rb are coordinates of the same point with respect to the coordinate systems

centered at O and O′ respectively as shown in Fig. 4.1. Here ra = rb + D. Since the

definition of the vector spherical waves Mnm(k, ra) and Nnm(k, ra) differs in literature (see

Ref. [73], Ref. [36]), the formulae for the vector translation coefficients will differ accordingly.

The superscripts ‘Chew’ and ‘AN’ has been used to refer to the definitions according to Ref.

[73] and Ref. [36] respectively. The following steps indicate how we can change from one

representation to another. Consider first the vector addition theorem with the definitions of

Mnm(k, ra), Nnm(k, ra), Aνm,nm, and Bνm,nm according to Ref. [73]:

MChew
nm (k, ra) =

∑
νm

[
MChew

νm (k, rb)A
Chew
νm,nm +NChew

νm (k, rb)B
Chew
νm,nm

]
(4.5)

This equation can be converted to reflect the definitions given in Ref. [36] by using the factor

1/
√
n(n+ 1).

MChew
nm (k, ra)√
n(n+ 1)

=
∑
νm

[
MChew

νm (k, rb)√
n(n+ 1)

AChewνm,nm +
NChew

νm (k, rb)√
n(n+ 1)

BChew
νm,nm

]
(4.6)
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rb 

ra 

O 

  
O′ 

sphere b 

sphere a 

region f 
(free space) 

R1 

R2 

d 

z - axis 

D 

Figure 4.1: The configuration for this study consisting of two spheres of unequal radii R1

and R2 (labeled sphere a and sphere b respectively) and the position vectors ra , rb and D.

The minimum surface to surface gap between the two spheres d is given by d = D−R1−R2

⇔MAN
nm (k, ra) =

∑
νm

[
Mνm(k, rb)√
n(n+ 1)

√
ν(ν + 1)

ν(ν + 1)
AChewνm,nm +

Nνm(k, rb)√
n(n+ 1)

√
ν(ν + 1)

ν(ν + 1)
BChew
νm,nm

]
(4.7)

⇔MAN
nm (k, ra) =

∑
νm

[
MAN

νm (k, rb)

√
ν(ν + 1)

n(n+ 1)
AChewνm,nm +NAN

νm (k, rb)

√
ν(ν + 1)

n(n+ 1)
BChew
νm,nm

]
(4.8)

Therefore we have:

AANνm,nm =

√
ν(ν + 1)

n(n+ 1)
AChewνm,nm (4.9)

and

BAN
νm,nm =

√
ν(ν + 1)

n(n+ 1)
BChew
νm,nm (4.10)

The superscripts Chew and AN have been dropped for the formulae later on in this

work, noting that by default the definitions from Ref. [36] has been used for deriving all
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other relations.

4.3 Computing the vector translation coefficients

The coefficients of the vector addition theorem Aνm′,nm and Bνm′,nm can be expressed in

terms of summation over Wigner 3j symbols [74] calculating which involve computations of

a large number of factorials. For the configuration shown in Fig. 4.1 (with m = m′ due to

axisymmetry condition) the vector translation coefficients are given by (using k = kf for the

coordinate systems O and O′ positioned in free-space):

Aνm,nm =

√
ν(ν + 1)

n(n+ 1)

2π

ν(ν + 1)

∑
p

[n(n+ 1) + ν(ν + 1)− p(p+ 1)]×

iν+p−n ψp,0(kfD) A(m,n,−m, ν, p)

(4.11)

Bνm,n,m =
imkfD√

ν(ν + 1)n(n+ 1)

∑
p

iν+p−n ψp,0(kfD)A(m,n,−m, ν, p) (4.12)

where,

A(m,n,−m, ν, p) = (−1)m
√

(2n+ 1)(2ν + 1)(2p+ 1)

4π
×n ν p

0 0 0

 n ν p

−m m 0

 (4.13)

with the symbol

n ν p

m µ q

 representing the Wigner 3j coefficient [74]. The above relations

differ from those that are given in Ref. [75] due to the different definitions of M
(p)
nm(kr) and

N
(p)
nm(kr) waves that we are using (given in Eq. 4.2 and 4.3). The corresponding scalar

coefficient βνm,nm is given by (Eq. 25 in Ref. [75] modified to reflect axisymmetry condition

for our configuration):

βνm,nm(kfD) =
∑
p

4π iν+p−nz(3)
p (kfD)

√
2p+ 1

4π
A(m,n,−m, ν, p) (4.14)
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When large number of coefficients are required computation of these Wigner 3j symbols

becomes computationally tedious. To overcome this complexity, recursion relations derived

for the scalar addition theorem [76] and the vector addition theorem [73] can be used, which

result in reduced computational times. The recursion relation for the scalar translation

coefficient β is given by (Eq. 23 and Eq. 27 in Ref. [76]):

βνm,n+1,m =
−a−nm βνm,n−1,m + a+

ν−1,mβν−1m,nm + a−ν+1,mβν+1m,nm

a+
nm

(4.15)

and

βν n+1,n+1n+1 =
b+
ν−1,n βν−1n,nn + b−ν+1,n βν+1n,nn

b+
nn

(4.16)

The form of the constants a+
nm, a−nm and b+

nm, b−nm have been retained from Ref. [76]. Since

the vector translation coefficients Aνm,nm and Bνm,nm can be related to β, they are computed

directly from β as (Eq. 12a and Eq. 12b in Ref. [73] changed according to the axisymmetry

of our configuration and definition of M and N waves)

Aνm,nm =

√
ν(ν + 1)

n(n+ 1)
βνm,nm +

√
ν(ν + 1)

n(n+ 1)

kfD

ν + 1

√
(ν +m+ 1)(ν −m+ 1)

(2ν + 1)(2ν + 3)
βν+1,m,nm

+

√
ν(ν + 1)

n(n+ 1)

kfD

ν

√
(ν +m)(ν −m)

(2ν − 1)(2ν + 1)
βν−1,m,nm

(4.17)

Bνm,n,m =
imkfD√

ν(ν + 1)n(n+ 1)
βνm,n,m (4.18)

4.4 Normalizing the translation coefficients

To initialize the recursion for the scalar translation coefficient the following expression is

used:

βν0,00 = (−1)ν
√

2ν + 1 z(3)
ν (kfD) (4.19)
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where, z
(3)
ν (kfD) represents the spherical Hankel function. When ν � kfD, spherical Hankel

and Bessel functions can be approximated by the following asymptotic forms:

z(3)
ν (kfD) ≈ i

√
4

(2ν + 1)kfD

(
2ν + 1

ekfD

)(ν+1/2)

(4.20)

z(1)
ν (kfD) ≈

√
4

(2ν + 1)kfD

(
ekfD

2ν + 1

)(ν+1/2)

(4.21)

It follows from Eq. 4.20 and Eq. 4.21 that evaluating spherical Hankel and Bessel functions in

the limit ν � kfD can lead to numbers too large or too small for a given floating point format

on a computer. For instance, the maximum and minimum positive floating point numbers for

double precision floating point format are 1.7976×10+308 and 2.225×10−308 respectively (both

approximate). However, since products of such large and small terms are important for sub-

sequent calculations, we need to modify the algorithm so that evaluations such large or small

numbers can be minimized. This can be achieved through the “normalization” of the trans-

lation coefficients with appropriate factors, which has been explained below. A careful look

at the form of the spectral radiative conductance (Eq.28 in Ref. [36] ) gives us a hint on the

appropriate factors. It is observed that coefficients DlM
νm and DlN

νm which represent the coeffi-

cients ofM andN waves in the scattered field in vacuum (Eq. 19 in Ref. [36] ) are accompa-

nied by factors of the form
(
z

(1)
l (kaR1)/z

(1)
β (kfR2)

)
and

(
z

(1)
l (kaR1)/ζ

(1)
β (kfR2)

)
respectively.

Hence, what is important for the computation of the radiative energy transfer is not the terms

DlM
νm and DlN

νm themselves but
(
DlM
νmz

(1)
l (kaR1)/z

(1)
β (kfR2)

)
and

(
DlN
νmz

(1)
l (kaR1)/ζ

(1)
β (kfR2)

)
.

These factors can be used in the coupled linear equations for the coefficients of vector

spherical waves in vacuum (Eq. 20 in Ref. [36]) to arrive at different forms of the normalizing

factors for the translation coefficients Aνm,nm and Bνm,nm as has been shown below. The

coupled linear equations are given by:

C lM
nm + un(a)

z
(1)
n (kfR1)

z
(3)
n (kfR1)

Nmax∑
ν=(m,1)

 DlM
νmAνm,nm(−kfD)

+DlN
νmBνm,nm(−kfD)

 = pMN δNl (4.22a)
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DlM
nm + un(R2)

z
(1)
n (kfR2)

z
(3)
n (kfR2)

Nmax∑
ν=(m,1)

 C lM
νmAνm,nm(+kfD)

+C lN
νmBνm,nm(+kfD)

 = 0 (4.22b)

C lN
nm + vn(a)

z
(1)
n (kfR1)

z
(3)
n (kfR1)

Nmax∑
ν=(m,1)

 DlM
νmBνm,nm(−kfD)

+DlN
νmAνm,nm(−kfD)

 = 0 (4.22c)

DlN
nm + vn(R2)

z
(1)
n (kfR2)

z
(3)
n (kfR2)

Nmax∑
ν=(m,1)

 C lM
νmBνm,nm(+kfD)

+C lN
νmAνm,nm(+kfD)

 = 0 (4.22d)

where:

un(R1) =


kb
z

(1)
n+1(kbR1)

z
(1)
n (kbR1)

− kf
z

(1)
n+1(kfR1)

z
(1)
n (kfR1)

kb
z

(1)
n+1(kbR1)

z
(1)
n (kbR1)

− kf
z

(3)
n+1(kfR1)

z
(3)
n (kfR1)

 (4.23)

and

vn(R1) =


kbR1

z
(1)
n+1(kfR1)

z
(1)
n (kfR1)

− kfR1
z

(1)
n+1(kbR1)

z
(1)
n (kbR1)

+ (n+ 1)

(
kf
kb
− kb
kf

)

kbR1
z

(1)
n+1(kfR1)

z
(1)
n (kfR1)

− kfR1
z

(3)
n+1(kbR1)

z
(3)
n (kbR1)

+ (n+ 1)

(
kf
kb
− kb
kf

)
 (4.24)

And similarly un(R2) and vn(R2). For convenience of illustration the steps involved are

shown for one of the equations (Eq. 4.22b). Using the normalizing factors for DlM
nm Eq.

4.22b can be written as:

z
(1)
l (kaR1)

z
(1)
n (kfR2)

DlM
nm + un(R2)

z
(1)
l (kaR1)

������
z

(1)
n (kfR2)

������
z

(1)
n (kfR2)

z
(3)
n (kfR2)

Nmax∑
ν=(m,1)

C lM
νmAνm,nm(+kfD)+

C lN
νmBνm,nm(+kfD)

 = 0 (4.25)

The equivalent normalizing factors for C lM
nm and C lN

nm are
z
(1)
l (kbR2)

z
(1)
ν (kfR1)

and
z
(1)
l (kbR2)

ζ
(1)
ν (kfR1)

respectively.

Using these, Eq. 4.25 can be written as:

⇔
z

(1)
l (kaR1)

z
(1)
n (kfR2)

DlM
nm + un(R2)

z
(1)
l (kaR1)

z
(3)
n (kfR2)

Nmax∑
ν=(m,1)


(
z
(1)
l (kbR2)

z
(1)
ν (kfR1)

C lMνm

)
z
(1)
ν (kfR1)

z
(1)
l (kbR2)

Aνm,nm(+kfD)+

z
(1)
l (kbR2)

ζ
(1)
ν (kfR1)

C lNνm
ζ
(1)
ν (kfR1)

z
(1)
l (kbR2)

Bνm,nm(+kfD)

 = 0

(4.26)
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⇔
z

(1)
l (kaR1)

z
(1)
n (kfR2)

DlM
nm + un(R2)

Nmax∑
ν=(m,1)

 z
(1)
l (kaR1)

z
(3)
n (kfR2)

(
z
(1)
l (kbR2)

z
(1)
ν (kfR1)

C lMνm

)
z
(1)
ν (kfR1)

z
(1)
l (kbR2)

Aνm,nm(+kfD)+

z
(1)
n (kaR1)

z
(3)
l (kfR2)

z
(1)
l (kbR2)

ζ
(1)
ν (kfR1)

C lNνm
ζ
(1)
ν (kfR1)

z
(1)
l (kbR2)

Bνm,nm(+kfD)

 = 0

(4.27)

⇔
z

(1)
l (kaR1)

z
(1)
n (kfR2)

DlM
nm+un(R2)

z
(1)
l (kaR1)

z
(1)
l (kbR2)

×

Nmax∑
ν=(m,1)


(
z
(1)
l (kbR2)

z
(1)
ν (kfR1)

C lMνm

)(
z
(1)
ν (kfR1)

z
(3)
n (kfR2)

Aνm,nm(+kfD)

)
+(

z
(1)
l (kbR2)

ζ
(1)
ν (kfR1)

C lNνm

)(
ζ
(1)
ν (kfR1)

z
(3)
n (kfR2)

Bνm,nm(+kfD)

)
 = 0

(4.28)

From Eq. 4.28 it is apparent that the appropriate normalizing factors for Aνm,nm are(
z

(1)
ν (kfR1)/z

(3)
n (kfR2)

)
. Using similar steps the other coupled linear equations (Eq. 4.22a,

4.22b, 4.22c and 4.22d) can be modified to:

(
z

(1)
l (kbR2)

z
(1)
n (kfR1)

C lMnm

)
+ un(a)

z
(1)
l (kbR2)

z
(1)
l (kaR1)

×

Nmax∑
ν=(m,1)


(
z
(1)
l (kaR1)

z
(1)
ν (kfR2)

DlM
νm

)(
z
(1)
ν (kfR2)

z
(3)
n (kfR1)

Aνm,nm(−kfD)

)
+(

z
(1)
l (kaR1)

ζ
(1)
ν (kfR2)

DlN
νm

)(
ζ
(1)
ν (kfR2)

z
(3)
n (kfR1)

Bνm,nm(−kfD)

)
 =

z
(1)
l (kbR2)

z
(1)
n (kfR1)

pMN δNl

(4.29a)

(
z

(1)
l (kaR1)

z
(1)
n (kfR2)

DlM
nm

)
+un(R2)

z
(1)
l (kaR1)

z
(1)
l (kbR2)

×

Nmax∑
ν=(m,1)


(
z
(1)
l (kbR2)

z
(1)
ν (kfR1)

C lMνm

)(
z
(1)
ν (kfR1)

z
(3)
n (kfR2)

Aνm,nm(+kfD)

)
+(

z
(1)
l (kbR2)

ζ
(1)
ν (kfR1)

C lNνm

)(
ζ
(1)
ν (kfR1)

z
(3)
n (kfR2)

Bνm,nm(+kfD)

)
 = 0

(4.29b)
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(
z

(1)
l (kbR2)

ζ
(1)
n (kfR1)

C lNnm

)
+vn(R1)

z
(1)
n (kfR1)

ζ
(1)
n (kfR1)

z
(1)
l (kbR2)

z
(1)
l (kaR1)

×

Nmax∑
ν=(m,1)


(
z
(1)
l (kaR1)

z
(1)
ν (kfR2)

DlM
νm

)(
z
(1)
ν (kfR2)

z
(3)
n (kfR1)

Bνm,nm(−kfD)

)
+

(
z
(1)
l (kaR1)

ζ
(1)
ν (kfR2)

DlN
νm

)(
ζ
(1)
ν (kfR2)

z
(3)
n (kfR1)

Aνm,nm(−kfD)

)
 = 0

(4.29c)

(
z

(1)
l (kaR1)

ζ
(1)
n (kfR2)

DlN
nm

)
+vn(R2)

z
(1)
n (kfR2)

ζ
(1)
n (kfR2)

z
(1)
l (kaR1)

z
(1)
l (kbR2)

×

Nmax∑
ν=(m,1)


(
z
(1)
l (kbR2)

z
(1)
ν (kfR1)

C lMνm

)(
z
(1)
ν (kfR1)

z
(3)
n (kfR2)

Bνm,nm(+kfD)

)
+

(
z
(1)
l (kbR2)

ζ
(1)
ν (kfR1)

C lNνm

)(
ζ
(1)
ν (kfR1)

z
(3)
n (kfR2)

Aνm,nm(+kfD)

)
 = 0

(4.29d)

Since Aνm,nm and Bνm,nm are related to βνm,nm as given in Eq. 4.17 and 4.18 it is sufficient

if we build recursion relations for the normalized scalar translation coefficient βNνm,nm given

by

βNνm,nm =
z

(1)
ν (kfR1)

z
(3)
n (kfR2)

βνm,nm (4.30)

The recursion relations for the normalized translation coefficients βNνm,nm can be developed

as:

z
(1)
ν (kfR1)

z
(3)
n+1(kfR2)

βνm,n+1,m =
1

a+
nm

(
−a−nm

z
(1)
ν (kfR1)

z
(3)
n+1(kfR2)

(βνm,n−1,m) + a+
ν−1,m

z
(1)
ν (kfR1)

z
(3)
n+1(kfR2)

(βν−1m,nm)

+a−ν+1,m

z
(1)
ν (kfR1)

z
(3)
n+1(kfR2)

(βν+1m,nm)

)
(4.31)

⇔ βNνm,n+1,m =
1

a+
nm

(
−a−nm

������
z

(1)
ν (kfR1)

z
(3)
n+1(kfR2)

z
(3)
n−1(kfR2)

������
z

(3)
n−1(kfR2)

(βNνm,n−1,m)

+a+
ν−1,m

z
(1)
ν (kfR1)

z
(3)
n+1(kfR2)

������
z

(1)
ν−1(kfR1)

z
(1)
ν−1(kfR1)

z
(3)
n (kfR2)

������
z

(3)
n (kfR2)

(βNν−1m,nm)

+
z

(1)
ν (kfR1)

z
(3)
n+1(kfR2)

������
z

(1)
ν+1(kfR1)

z
(1)
ν+1(kfR1)

z
(3)
n (kfR2)

������
z

(3)
n (kfR2)

a−ν+1,m(βNν+1m,nm)

) (4.32)
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⇔ βNνm,n+1,m =
1

a+
nm

(
−a−nm

z
(3)
n−1(kfR2)

z
(3)
n+1(kfR2)

βNνm,n−1,m + a+
ν−1,m

z
(1)
ν (kfR1)

z
(1)
ν−1(kfR1)

z
(3)
n (kfR2)

z
(3)
n+1(kfR2)

βNν−1m,nm

+
z

(1)
ν (kfR1)

z
(1)
ν+1(kfR1)

z
(3)
n (kfR2)

z
(3)
n+1(kfR2)

a−ν+1,mβ
N
ν+1m,nm

)
(4.33)

An important property to be noticed is the fact that a−mm is zero so that to start off you will

only need (0,0) harmonic to find the coefficients for the (1,0) harmonic. As can be noticed,

the recursion relations depend on ratios of successive orders of Bessel and Hankel functions.

This aids computation of these translation coefficients tremendously since you do not have

to compute individual Bessel and Hankel functions of a particular order and hence we do

not encounter divergent numbers at any point during the recursion.

To traverse from one ‘m’ to the next, the following recursion relations for the translation

coefficients needs to be used (Eq. 27 in Ref. [76]:

βν m+1,n+1m+1 =
−b−nm(βν m+1,n−1m+1) + b+

ν−1,m(βν−1m,nm) + b−ν+1,m(βν+1m,nm)

b+
nm

(4.34)

We only need the values for n = m since we can initialize the values for higher values of n

using Eq. 4.15. Also note that when n = m, bnn = 0. Hence Eq. 4.34 reduces to Eq. 4.16.

The normalization process for Eq. 4.16 is given below:

z
(1)
ν (kfR1)

z
(3)
n+1(kfR2)

βν n+1,n+1n+1 =
1

b+
nn

(
b+
ν−1,n

z
(1)
ν (kfR1)

z
(3)
n+1(kfR2)

������
z

(1)
ν−1(kfR1)

z
(1)
ν−1(kfR1)

z
(3)
n (kfR2)

������
z

(3)
n (kfR2)

(βν−1n,nn)

+b−ν+1,n

z
(1)
ν (kfR1)

z
(3)
n+1(kfR2)

������
z

(1)
ν+1(kfR1)

z
(1)
ν+1(kfR1)

z
(3)
n (kfR2)

������
z

(3)
n (kfR2)

(βν+1n,nn)

) (4.35)

i.e.

βNν n+1,n+1n+1 =
1

b+
nn

(
b+
ν−1,n

z
(3)
n (kfR2)

z
(3)
n+1(kfR2)

z
(1)
ν (kfR1)

z
(1)
ν−1(kfR1)

βν−1n,nn

+b−ν+1,n

z
(3)
n (kfR2)

z
(3)
n+1(kfR2)

z
(1)
ν (kfR1)

z
(1)
ν+1(kfR1)

βν+1n,nn

) (4.36)
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These recursion relations are only dependent on ratio of successive orders of spherical

Bessel functions and hence we do not encounter very small numbers when ν � kfD. The

ratios have been computed by method of continued fractions as shown in Section 4.5. The

initialization for the recursion is provided by:

βNν0,00 = (−1)ν
√

2ν + 1
z

(1)
ν (kfR1)

z
(3)
0 (kfR2)

z(3)
ν (kfD) (4.37)

The spherical Hankel functions in Eq. 4.37, if computed individually, will lead to di-

verging numbers when ν � kfD as explained previously. To circumvent this, the fac-

tor
z

(1)
0 (kfR1)

z
(3)
ν (kfR2)

z
(3)
ν (kfD) is determined by computing the exponential of log

[
z

(1)
0 (kfR1)

]
−

log
[
z

(3)
ν (kfR2)

]
+ log

[
z

(3)
ν (kfD)

]
. The procedure to compute logarithm of Bessel functions

and Hankel functions is detailed in Section 4.5.

The steps for initializing the (n, ν)th element of the translation coefficient βνm,nm are:

• m = 0

Find (0,0), (0,1), (0,2), (0,3)... successively using Eq. 4.37. Use these values and

employ Eq. 4.33 to find (1,1), (1,1), (1,2), (1,3) and similarly for other rows of n

• m = 1

Use (0,0), (0,1), (0,2) ... from m = 0 to find (1,1) , (1,2), (1,3)... for m = 1 employing

Eq. 4.36 and then use Eq. 4.33 to find the coefficients of (2,1), (2,2), (2,3)...and other

rows in n successively.

• m = 2

Use (1,1), (1,2) ... from m = 1 to find (2,2), (2,3)... for m = 2 employing Eq. 4.36

and then use Eq. 4.33 to find the coefficients of (3,2), (3,3), (3,4)... and other rows in

n successively

and similarly for other values of m
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4.5 Computing logarithm and ratios of Bessel functions

The method of continued fraction to compute ratios of successive orders of Bessel and Hankel

functions has been adopted from Ref. [77] and the method to compute logarithm of Bessel

and Hankel functions has been adopted from Ref. [78]. While the steps below detail that

for cylindrical Bessel and Hankel functions, it can be extended to spherical Bessel functions

by noting that:

z(1)
n (x) =

√
π

2x
Jn+1/2(x) (4.38)

The logarithm of Bessels function is of the form:

log
[
Jn(z)

]
= log

[
J0(z)

]
−

n∑
k=1

log (Rk) (4.39)

where

Rk =
Jk−1(z)

Jk(z)
(4.40)

Note that to find log
[
J(n)

]
we must know what Rk is. This is got from using continued

fraction expansion.

Rk = a1(z, k) +
1

a2(z, k) +
1

a3(z, k) +
1

a4(z, k) + ...

(4.41)

with am(z, k) =
2 (−1)(m+1) (k +m− 1)

z
We also need the value of log

[
J0(z)

]
which is com-

puted using the form:

log
[
J0(z)

]
= log

[
cos(z)

]
− log

(
1 + 2

∞∑
k=0

(−1)k
J2k(z)

J0(z)

)
(4.42)

The ratio
J2k(z)

J0(z)
is got from the following consideration: If N is the largest order of the

bessel function required, then RN can be computed using the continued fraction method
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shown earlier. Using this
J2k

J0

can be found out (for small k of course, or else there will be a

overflow again) from:

Jn(z)

J0(z)
= Rn ·Rn−1 ·Rn−2 · ...R1 (4.43)

4.6 Conclusion

In this chapter a brief introduction to the translation addition theorem was provided. The

method of computation of the translation coefficients present in literature was listed and dif-

ficulties of computing the translation coefficients in the present form for near-field scattering

problems was explained. A method of normalizing the translation coefficients was shown

and recursion relations were derived for the normalized translation coefficients. The ability

to express these recursion relations of the normalized translation coefficients in terms of

ratios of successive order of spherical Bessel and Hankel functions was mentioned as the pri-

mary reason for overcoming the computational difficulties in the original form. Apart from

overcoming diverging numbers normalizing translation coefficients has another important

consequence which is explained in Chapter 6
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Chapter 5

One term approximation

5.1 Motivation

In most cases arrays of the translation coefficients Aνm,nm and Bνm,nm are needed for n =

1, ..., nmax and ν = 1, ..., νmax at fixed values of m. It is mentioned in Ref. [73] that when

nmax = νmax = 10, the speed when using the recurrence relations listed in Chapter 4 (Eq.

4.15 and Eq. 4.16) is about 400 times faster than using the form which includes computing

the Weigner 3j coefficients (Eq. 4.14 in Chapter 4). However, when computing the near-

field radiative transfer between two spheres separated by a small gap, nmax and νmax can

easily reach values up to 1000 and even these recurrence relations become computationally

expensive. In this chapter it is shown that in such a case when the number of spherical

waves needed for convergence nmax, νmax � kfD , the recurrence relations can be simplified

further to make it more computationally viable. Recursion relations have also been derived

for these simplified form of translation coefficients.



CHAPTER 5. ONE TERM APPROXIMATION 62

5.2 Analysis

Consider the form for the scalar translation coefficient, βνm,nm for two spheres separated by

a gap D given in [51]. The exact form for the translation coefficient is given by:

βνm,nm(kfD) =
∑
p

4πiν+p−nψp,0(kfD)A(m,n,−m, ν, p) (5.1)

where,

ψp,0(kfD) = z(3)
p (kfD)Yp,0(θ′′, φ′′) (5.2)

For our configuration θ′′ = 0, φ′′ = 0 so that:

ψp,0(kfD) = z(3)
p (kfD)Yp,0(0, 0) (5.3)

The spherical harmonic Yp,0(θ′′, φ′′) is given by:

Yp,0(0, 0) =

√
2p+ 1

4π
P 0
p (1) (5.4)

where, P 0
p (1) represents the Associated Legendre polynomials. The function P n

p (1) has the

property that

P n
p (1) =

1 when n = 0

0 when n 6= 0

(5.5)

Therefore we have,

ψp,0(kfD) = z(3)
p (kfD)

√
2p+ 1

4π
(5.6)

Hence, the form for βνm,nm(kfD) from Eq. 5.1 for our configuration of two spheres translated

along z-axis reduces to Eq. 4.14 (repeated here for the convenience of the reader):

βνm,nm(kfD) =
∑
p

4πiν+p−nz(3)
p (kfD)

√
2p+ 1

4π
A(m,n,−m, ν, p) (4.14 revisited)

We note that the form for βνm,nm depends on a summation over different orders p of the

spherical Hankel function z
(3)
p (kfD). The magnitude of z

(3)
p (kfD) increases exponentially

for p > kfD, as seen in Fig. 5.1. From this behavior, we observe that for p � kfD the
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Figure 5.1: Plot of log |z(3)
p (kfD)| as a function of the order p. Here kfD is arbitrarily

chosen to be of value 33

contribution from the last term in the summation over p in Eq. 4.14 i.e the term with

p = n + ν dominates over the rest of the contributions and hence only this term can be

retained in the summation over p. Using this in Eq. 4.14, we get the one-term approximation

form for the scalar translation coefficient βνm,nm as:

βνm,nm = 4πi2ν z
(3)
n+ν(kfD)

√
2(n+ ν) + 1

4π
A(m,n,−m, ν, (n+ ν)) (5.7)

In order to decide the cutoff criterion for employing this simplification, it is sufficient

if we analyze the exponential behavior of z
(3)
p (kfD) as a function of its order p since the

rest of the terms in Eq. 4.14 do not vary significantly. What we are primarily interested

in is the ratio (z
(3)
p+2/z

(3)
p ) since p increments by a step of two due to the special property of

A(m,n,−m, ν, n+ν) [51]. The asymptotic form for the ratio z
(3)
p+2(kfD)/z

(3)
p (kfD) for p� 1

is equivalent to the asymptotic form for the ratio yp+2(kfD)/yp(kfD) where yp(kfD) repre-

sents the spherical Neumann functions. From Ref. [74], the asymptotic form for cylindrical

Neumann functions Yν(z) can be written as:
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Yν(z) =

√
2

πν

( ez
2ν

)−ν
(5.8)

Since we require spherical Neumann functions yν(z) which are related to Yν(z) by:

yν(z) =

√
π

2z
Yν+ 1

2
(z) (5.9)

we get:

Yν+ 1
2
(z) =

√
2

π(ν + 1
2
)

(
ez

2(ν + 1
2
)

)−(ν+ 1
2

)

(5.10)

=

√
4

π(2ν + 1)

(
ez

(2ν + 1)

)−(ν+ 1
2

)

(5.11)

Hence we have:

yν+2(kfD)

yν(kfD)
=

√
(2ν + 1)

(2ν + 5)

(
1

ekfD

)2
(

(2ν + 5)ν+ 5
2

(2ν + 1)ν+ 1
2

)
(5.12)

=

(
2ν + 5

ekfD

)2(
2ν + 5

2ν + 1

)ν
(5.13)

Therefore we get:

z
(3)
p+2(kfD)

z
(3)
p (kfD)

=

(
2p+ 5

ekfD

)2(
2p+ 5

2p+ 1

)p
(5.14)

Using Eq. 5.14 it is possible to get an estimate of the error resulting from not retaining the

rest of the terms in the summation over p in Eq. 4.14 while using the one-term approximation.

To see this we simplify Eq. 5.14 with the following steps:

z
(3)
p (kfD)

z
(3)
p−2(kfD)

=

(
2p− 3

ekfD

)2(
2p+ 1

2p− 3

)p
(5.15)

=

(
2p− 3

ekfD

)2(
2p− 3 + 4

2p− 3

)p
(5.16)

=

(
2p− 3

ekfD

)2(
1 +

2

p− 3
2

)p
(5.17)

For large p, this
(

1 + 2
p− 3

2

)p
reduces to e2 so that we can write:



CHAPTER 5. ONE TERM APPROXIMATION 65

10-2

100

102

104

106

100 101 102 103

z n+
2(k

f D
) 

/z
n  (

k f D
)

n/k
f
 D

(3
)

(3
)

a)

10-3

10-1

101

103

0 2 4 6 8 10 12

er
ro

r 
(%

)

n/k
f
 D

R
1 

= 13.7 m

R
2
/R

1
 = 40

b)

Figure 5.2: a) Plot of (z
(3)
n+2(kfD)/z

(3)
n (kfD)) as a function of n for a kfD value of 33 (ar-

bitrarily chosen). The point n = 7 kfD beyond which the one-term approximation has been

adopted in our computations for calculating the translation coefficients has been indicated in

the figure b) The error in spectral conductance at the resonant frequency of 0.061 eV when

different factors of the argument kfD is chosen as the criterion for employing the one-term

approximation. From the plot, a criterion n = 7kfD is observed to give an error of ≈ 0.02%

in the spectral conductance. The spectral conductance has been computed for two spheres

of size R1 = 13.7µm and R2 = 40R1 with minimum gap d/R1 = 0.01
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z
(3)
p (kfD)

z
(3)
p−2(kfD)

=

(
2p− 3

ekfD

)2

e2 (5.18)

⇒
z

(3)
p−2(kfD)

z
(3)
p (kfD)

=

(
kfD

2p− 3

)2

(5.19)

To get an expression for the error [= (exact − estimated)/exact = 0.01 (for 1% error)]

we make a reasonable approximation that for large p the contribution from p = n+ ν − 2 is

representative of the error from retaining only the last term p = n+ ν in the summation in

Eq. 4.14. Hence the expression for the error can be written as:

error =

[
z

(3)
p−2(kfD) + z

(3)
p (kfD)

]
− z(3)

p (kfD)[
z

(3)
p−2(kfD) + z

(3)
p (kfD)

] (5.20)

⇒ error =

(
z
(3)
p−2(kfD)

z
(3)
p (kfD)

)
(
z
(3)
p−2(kfD)

z
(3)
p (kfD)

)
+ 1

(5.21)

Substituting from Eq. 5.19 we get:

error =

(
kfD

2p−3

)2

(
kfD

2p−3

)2

+ 1
(5.22)

Since p = n + ν in the one-term approximation, the expression for the error in Eq. 5.22

turns out to be:

error ≈

(
kfD

2(n+ν)−3

)2

(
kfD

2(n+ν)−3

)2

+ 1
(5.23)

For 1% error we get n + ν ≈ 5 kfD. For our computations we have used n + ν = 7 kfD as

the criterion for employing the one-term approximation. The ratio from Eq. 5.14 has been

plotted in Fig. 5.2(a). It is observed that when p = 7 kfD, z
(3)
p (kfD) ≈ 100 z

(3)
p−2(kfD). A
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plot of error (in %) in the spectral conductance at a resonant frequency (0.061 eV) when the

one-term approximation is used at different values of the order p is shown in Fig. 5.2(b). The

errors are computed with respect to the spectral conductance value when the approximated

form for translation coefficients is not employed. It can be observed that adopting p = 7kfD

as the criterion for employing the one-term approximation gives us an error of about 0.05%

in the spectral conductance.

The expression for the scalar translation coefficient βνm,nm given in Eq. 5.7 cannot be

used as is for computational purposes since the computation of Weigner 3j coefficient is

tedious. Hence recursion relations can be derived for the approximated form for βνm,nm.

Employing n ν n+ ν

−m m 0

 = (−1)n−ν

√
(2n)!(2ν)!(n+ ν)!(n+ ν)!

(2n+ 2ν + 1)!(n−m)!(n+m)!(ν −m)!(ν +m)!
(5.24)

in Eq. 5.7 it can be shown that the recursion relations turn out to be of the form:

βνm,n+1m = βνm,nm

(
n+ 1

n

)√
(2n+ 3)(2n+ 1)

(n+ 1)2 −m2
×(

n+ ν + 1

2n+ 2ν + 1

)(
z

(3)
n+ν+1(kfD)

z
(3)
n+ν(kfD)

) (5.25)

This form of recursion is computationally simpler than the corresponding recursion relations

for the exact form of βνm,nm given in Eq. 4.15. Once the scalar translation coefficient βνm,nm

has been computed, the vector translation coefficients Aνm,nm and Bνm,nm can be obtained

from Eq. 4.17 and Eq. 4.18.

5.3 Conclusions

In this chapter, a simplified form of translation addition theorem (referred to in this chap-

ter as the ‘one-term approximation’) valid for general near-field electromagnetic scattering

problems has been proposed and the limit at which this form is valid is discussed. The

accuracy of this approximation has also been detailed from an error analysis. This simplified
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form is about 10 times faster than the corresponding exact form for computing the vector

translation coefficients
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Chapter 6

Dependence of normalized translation

coefficients on the radius ratio of the

spheres

6.1 Introduction

For near-field scattering problems when the closest gap between the two spheres d� R1, R2

(here, d = D−R1−R2) the elements in the matrix representing the normalized translation

coefficient βNnm,νm shows a marked dependence on the radius ratio R2/R1. In this chapter

a description of this behavior is provided by expressing the elements of βNnm,νm in a matrix

form for different values of (n, ν) (for a particular m) and plotting this matrix for different

radius ratios of the spheres. An attempt is made to explain this characteristic behavior

analytically and its utilization in simplifying the computational procedure to calculate the

near-field radiative transfer between spherical bodies.
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6.2 Description via matrix plots

As described in Chapter 4 a form of the normalized scalar translation coefficient can be

written as:

βNνm,nm = βνm,nm
z

(1)
ν (kfR1)

z
(3)
n (kfR2)

(6.1)

This is equivalent to computing an expression of the form:

βνm,nm
z

(1)
n (kfR1)

z
(3)
ν (kfR2)

(6.2)

and then taking the transpose of Expr. 6.2 keeping in mind the symmetry relations for

βνm,nm [79]. The advantage of using Expr. 6.2 becomes apparent when we analyze the

behavior of this expression for (n, ν) > kfD. From the one-term approximation that has

been detailed in Chapter 5 for n, ν � kfD, we can write

βνm,nm ∼ z
(3)
n+ν(kfD) (6.3)

[since the spherical Hankel function is the dominant term for large (n, ν)]. Expr. 6.2 is thus

similar to (
z

(3)
n+ν(kfD)

z
(1)
n (kfR1)

z
(3)
ν (kfR2)

)
(6.4)

This expression has been analyzed as a function of n and ν for different radius ratios

R2/R1. Figures 6.1(a), 6.1(b), 6.1(c) and 6.1(d) show the contour plots of the expres-

sion Log10|z
(3)
n+ν(kfD) z

(1)
n (kfR1)/z

(3)
ν (kfR2)| for two spheres with radius ratios R2/R1 =

1, 3, 10, and 20 respectively. The radius of the smaller sphere R1 = 10µm and the gap

between the spheres is taken to be 50 nm for all the cases. When R2/R1 = 1 it can be

observed from Fig. 6.1(a) that the dominant terms in the matrix are present in a band

along the diagonal with terms on either side of the band tapering off exponentially. This

behavior can be utilized to simplify the computation of translation coefficients and also the

linear-coupled equations that result from applying the boundary conditions, since, terms in

the matrix with absolute values less than 10−6 can be approximated to be zero and sparse

routines can then be employed to solve the linear equations. This approximation affords an
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Figure 6.1: Contour plots of the expression Log10|z
(1)
n (kfR1) z

(3)
n+ν(kfr

′′)/z
(3)
ν (kfR2)| as a

function of n and ν for two spheres with successive radius ratios R2/R1 = (a) 1, (b) 3,

(c) 10, and (d) 20 with R1 = 10µm, and the minimum gap maintained at 50 nm for all

the cases. The dashed-lines denotes the contour line for a value of -6 which is taken as

the cutoff point below which values for the normalized vector translation coefficients are

approximated to zero. The line of maximum (shown as dotted lines) given by Eq. 6.35 has

been superimposed on these contour plots
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error of less than 0.05 % in the final computed value of the conductance. For R2/R1 > 1 the

distribution of the dominant terms in the matrix changes markedly. From Fig. 6.1(c) and

6.1(d) where R2/R1 � 1 it can be observed that only the elements in the first few rows of

the matrix needs to be initialized with the absolute values of the terms in the higher rows

falling off exponentially. This simplifies the computation procedure since only these rows

need to be stored and utilized thereof.

6.3 Asymptotic analysis

The characteristic dependence of βNnm,νm on the radius ratio R2/R1 as shown in Section

6.2 can be explained analytically by using the asymptotic forms for the spherical Bessel

and Hankel functions when n, ν � 1. When n → ∞ and x ≈ O(n) (from Ref. [74]) the

asymptotic form for the cylindrical Bessel function as:

Jn(n sech α) =
en(tanhα−α)

√
2πn tanh α

(6.5)

where, 0 < sech α ≤ 1 Using ν sech α = x1 i.e sech α = x1/ν, and tanh2(x) = 1− sech2(x),

Eq. 6.5 reduces to:

Jn(x1) =
e
√
n2−x21−n cosh−1(n/x1)√

2π
√

(n2 − x2
1)

(6.6)

From this, and making use of the relation between cylindrical and spherical Bessel functions,

we can write the asymptotic form for the spherical Bessel function z
(1)
n (kfR1) for n� kfR1

as:

z(1)
n (kfR1) ≈ e

√
(n+1/2)2−(kfR1)2−(n+1/2) cosh−1[(n+1/2)/(kfR1)]

2
√

(kfR1)
√

(n+ 1/2)2 − (kfR1)2

(6.7)

For the asymptotic form of the spherical Hankel’s function z
(3)
ν (x), we use the asymptotic

function of the spherical Neumann functions y
(3)
ν (x), since for large ν z

(3)
ν (x) ≈ iy

(3)
ν (x).

From Ref. [74]) the asymptotic form for the cylindrical Neumann function can be written

as:

Yν(ν sech α) ≈ − eν(α−tanh α)√
1
2
πν tanh α

(6.8)
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Taking ν sech α = x2 this reduces to:

Yν(x2) =
eν cosh−1(ν/x2)−

√
ν2−x22√

1
2
π
√

(ν2 − x2
2)

(6.9)

So we can write the asymptotic forms for z
(3)
ν (kf R2) and z

(3)
n+ν(kf D) as:

z(3)
ν (kfR2) ≈ e(ν+1/2) cosh−1[(ν+1/2)/kfR2]−

√
(ν+1/2)2−(kfR2)2√

(kfR2)
√

(ν + 1/2)2 − (kfR2)2

(6.10)

and

z
(3)
n+ν(kfD) ≈ e(n+ν+1/2) cosh−1[(ν+1/2)/kfD]−

√
(ν+1/2)2−(kfD)2√

(kfD)
√

(ν + 1/2)2 − (kfD)2

(6.11)

The ratio we are interested in is given by Expr. 6.4.

6.3.1 Analysis for equal sized spheres

For the case of equal sized spheres we have x1 = x2 = x(= kfR1) and x3 = kD = 2x + δ

where δ denotes the kd term. For small gaps, we have δ = kd → 0. Expr. 6.4 can thus be

reduced to:

z(1)
n (x)

z
(3)
n+ν(2x+ δ)

z
(3)
ν (x)

(6.12)

To get an order of magnitude estimate we will be considering only the dominant exponential

terms in the asymptotic forms for the terms in Expr. 6.12. For simplified representation we

replace (n+ 1/2) by n (and similarly for (ν+ 1/2) and (n+ ν+ 1/2)). The arguments below

for n and ν can be shown to hold true without this simplification. Expr. 6.12 will then be

of the order:

e
[√

n2−x2+
√
ν2−x2−

√
(n+ν)2−(2x+δ)2

]
×

e
[
(n+ν) cosh−1( n+ν

2x+δ)−n cosh−1(nx)−ν cosh−1( νx)
] (6.13)

For ease of analysis we split Expr. 6.13 into two terms and analyze them separately. The

two terms are:

e
[
(n+ν) cosh−1( n+ν

2x+δ)−n cosh−1(nx)−ν cosh−1( νx)
]

(6.14)
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and

e
[√

n2−x2+
√
ν2−x2−

√
(n+ν)2−(2x+δ)2

]
(6.15)

Consider first Expr. 6.14. Using cosh−1 z = log(z +
√
z2 − 1) we have:

e

[
(n+ν) log

(
n+ν
2x+δ+
√

( n+ν2x+δ )
2−1

)
−n log

(
n
x+
√

(nx )
2−1

)
−ν log

(
ν
x+
√

( νx )
2−1

)]
(6.16)

This simplifies to: n+ ν

2x+ δ
+

√(
n+ ν

2x+ δ

)2

− 1

(n+ν)(
n

x
+

√(n
x

)2

− 1

)−n (
ν

x
+

√(ν
x

)2

− 1

)−ν
(6.17)

For n/x� 1 and ν/x� 1 (which is what we encounter for small gaps) this can be written

as: (
2(n+ ν)

2x+ δ

)(n+ν)(
2n

x

)−n (
2ν

x

)−ν
=

(
n+ ν

2x+ δ

)(n+ν) (n
x

)−n (ν
x

)−ν
=

(
(n+ ν)(n+ν)

nnνν

)(
xnxν

(2x+ δ)n+ν

)
=

(
(n+ ν)n (n+ ν)ν

nnνν

)(
xnxν

(2x+ δ)n+ν

)
=
(

1 +
ν

n

)n (
1 +

n

ν

)ν (
2 +

δ

x

)−(n+ν)

=
(

1 +
ν

n

)n (
1 +

n

ν

)ν
2−(n+ν)

(
1 +

δ

2x

)−(n+ν)

=

(
1 + ν

n

)n (
1 + n

ν

)ν
2(n+ν)

(
1 +

δ

2x

)−(n+ν)

(6.18)

For δ = 0, the expression reduces to:(
1 + ν

n

)n (
1 + n

ν

)ν
2(n+ν)

(6.19)

The maximum value of this expression can be shown to occur at n = ν (Taking partial

derivatives with respect to n and ν and solving the two equations simultaneously). And the
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maximum value is 1. Now consider the other part in Expr. 6.13 i.e.

e
[√

n2−x2+
√
ν2−x2−

√
(n+ν)2−(2x+δ)2

]
(6.15 revisited)

At δ = 0 the power term in Expr. 6.15 reduces to:

√
n2 − x2 +

√
ν2 − x2 −

√
(n+ ν)2 − (2x)2 (6.20)

It is possible to show that
√
n2 − x2 +

√
ν2 − x2 <

√
(n+ ν)2 − (2x)2 for all n 6= ν and that

the maximum value of the expression (equal to 0) happens when n = ν. To go about this,

consider the following steps. We need to show:

√
n2 − x2 +

√
ν2 − x2 <

√
(n+ ν)2 − (2x)2 (6.21)

Squaring both sides of Eq. 6.21:

n2 − x2 + ν2 − x2 + 2
√
n2 − x2

√
ν2 − x2 < (n+ ν)2 − (2x)2 (6.22)

Canceling common terms
√
n2 − x2

√
ν2 − x2 < nν − x2 (6.23)

Squaring both sides and simplifying:

− ν2 − n2 < −2nν (6.24)

or

ν2 + n2 > 2nν (6.25)

which is true (since (n − ν)2 > 0). Thus Expr. 6.15 attains a maximum value (=1) when

n = ν. Since we have shown that both the factors in Expr. 6.13 attain maximum value when

n = ν, thus we can conclude that the maximum value of Expr. 6.12, which is representative

of the value of the normalized scalar translation coefficient for equal sized spheres, occurs at

n = ν.
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6.3.2 Analysis for unequal sized spheres

For analyzing the case of unequal sized spheres we go back to Expr. 6.4. Employing the

asymptotic forms for the spherical Bessel and Hankel functions given in Eqs. 6.7, 6.10, and

6.11, we get the order of magnitude estimate of Expr. 6.4 to be:

e
[√

n2−(kf R1)2+
√
ν2−(kf R2)2−

√
(n+ν)2−(kf R1+kf R2+δ)2

]
×

e

[
(n+ν) cosh−1( n+ν

kf R1+kf R2+δ
)−n cosh−1( n

kf R1
)−ν cosh−1( ν

kf R2
)
] (6.26)

On similar lines as was shown for the equal-spheres case, we split the above expression

into two terms and analyze each of them separately. Consider first:

e

[
(n+ν) cosh−1( n+ν

kf R1+kf R2+δ
)−n cosh−1( n

kf R1
)−ν cosh−1( ν

kf R2
)
]

(6.27)

Using: cosh−1[z] = log[z +
√
z2 − 1] we get:

(n+ ν) cosh−1

(
n+ ν

kf R1 + kf R2 + δ

)
=

(n+ ν) log

 n+ ν

kf R1 + kf R2 + δ
+

√(
n+ ν

kf R1 + kf R2 + δ

)2

− 1


(6.28)

But since we are dealing with n � kf R1 and ν � kf R2, the above term in Expr. 6.27

reduces to: (
2

n+ ν

kf R1 + kf R2 + δ

)n+ν

(6.29)

Applying the same modifications to the other cosh−1 terms in Expr. 6.27 we get:(
n+ ν

kf R1 + kf R2 + δ

)n+ν (
n

kf R1

)−n(
ν

kf R2

)−ν
(6.30)

When δ decreases to zero, the remaining terms can be simplified as follows:(
1 +

n

ν

)n (
1 +

ν

n

)ν ( kf R1

kf R1 + kf R2

)n(
kf R2

kf R1 + kf R2

)ν
(6.31)

which can be written as:(
1 +

n

ν

)n (
1 +

ν

n

)ν (
1 +

R2

R1

)−n(
1 +

R1

R2

)−ν
(6.32)
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This can be shown to attain a maximum value (=1) when we have:

ν = n
R2

R1

(6.33)

Now consider the other part of Expr. 6.26 i.e.

e

[√
n2−(kf R1)2+

√
ν2−(kf R2)2−

√
(n+ν)2−(kf R1+kf R2+δ)2

]
(6.34)

When δ reduces to zero the expression becomes maximum (= 1) when

ν

n
=
R2

R1

(6.35)

Since both the expressions 6.27 and 6.34 attain maximum when Eq. 6.35 holds true, thus

we can conclude that the condition for Expr. 6.4 (which is representative of the value of

the normalized scalar translation coefficient) to attain maximum is given by Eq. 6.35. This

condition conforms well with what is observed in the contour plots of Fig. 6.1 where the line

representing Eq. 6.35 has been superimposed on the contour plots.

6.4 Conclusions

In this chapter the behavior of the normalized translation coefficients with varying radius

ratio was demonstrated pictorially using contour plots and an attempt was made to explain

this behavior analytically. The importance of this behavior stems from the fact that this

behavior can be taken advantage of to extend the computational model for two spheres to

unequal sized spheres with large radius ratios which was computationally improbable earlier.
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Chapter 7

Convergence analysis

7.1 Introduction

As explained in Chapter 3 the completeness of the functions M
(p)
lm (kr) and N

(p)
lm (kr) allows

the scattered electromagnetic field to be expanded in an infinite series as:

E (r) =

l=∞
m=l∑
m=−l
l=1

[
A

(p)
lmM

(p)
lm (kr) +B

(p)
lmN

(p)
lm (kr)

]
; (2.19 revisited)

H (r) =
ik

ωµ

l=∞
m=l∑
m=−l
l=1

[
A

(p)
lmN

(p)
lm (kr) +B

(p)
lmM

(p)
lm (kr)

]
; ( 2.20 revisited)

where, k2 (r) = ω2ε (r)µ (r). Here the dielectric permittivity, ε (r), and magnetic perme-

ability, µ (r), are frequency dependent piecewise constant functions with a discontinuity at

the surface of the sphere. Since we are dealing with nonmagnetic materials µ (r) = 1. For

the interior of the sphere, we use p = 1 (regular vector spherical waves). For the exterior of

the sphere, we use p = 3 (outgoing vector spherical waves). The coefficients A
(p)
lm and B

(p)
lm

are obtained by satisfying the boundary conditions on the surface of the sphere.

Irrespective of single sphere or multiple sphere scattering, as a practical matter, the

infinite series in Eq. 2.19 and Eq. 2.20 need to be truncated (in indices l and m), retaining

only enough terms necessary to ensure a sufficiently accurate approximation. The number
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of terms to retain depends on different length scales pertinent to the problem. For far–field

scattering by a single sphere, the relevant length scales are the radius of the sphere, R, and

the wavelength of incident radiation, λ. The number of terms for convergence Nconv is given

by [80; 52; 81]

Nconv = a+ x+ bx1/3 (7.1)

where x = 2πR/λ, and a is 1 or 2 and b is 4 or 4.05, depending on x. These values of a

and b are obtained empirically and the resulting expansion gives an error less than 0.01 %.

For far–field scattering by two spheres shown in Fig. 3.1, the relevant length scales are the

radii of spheres R1 and R2, the wavelength λ, and the center–to–center distance between the

spheres, D. In this case, a different criterion has been proposed [82]

Nconv = eπ
D

λ
, (7.2)

where e is the base of natural logarithm. While the convergence criteria in Eq. 7.1 and 7.2

are relevant for far–field scattering, near–field effects lead to several peculiarities and hence

we can expect different criteria for the number of terms of convergence. This is especially

true when surface plasmon and/or phonon polaritons lead to enormous enhancement of the

field amplitude near the interfaces. Hence for problems involving near–field effects the role

of the gap d between the bodies can be expected to be prominent in deciding the number of

terms for convergence.

The fact that scattering and absorption of evanescent waves lead to increased contri-

butions from higher order terms has been recognized previously. Quinten et al [83] while

analyzing scattering and extinction by small particles noted the increase in the contributions

from higher order modes for scattering and absorption by evanescent waves as compared to

propagating waves. Yannopapas and Vitanov [84] noticed difficulty in attaining convergence

while calculating local density of states (LDOS) near the surface of a metallic sphere. How-

ever an explicit form for the number of terms for convergence along the lines of Eq. 7.1 or 7.2

has not been proposed for near–field scattering. A brief mention of a convergence criteria was

made by Narayanaswamy and Chen in their analysis of surface phonon polariton mediated
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near–field radiative transfer between two closely spaced spheres [36]. While a scaling form

for the number of terms of convergence was proposed, a more detailed error analysis was

not pursued. In this chapter a comprehensive error analysis has been made for computation

of near–field radiative transfer between two silica spheres of equal radii. Based on the error

analysis a criterion for the number of terms required to attain an error of less than 1% has

been proposed, and this formulation has also been extended for the case of two spheres of

unequal radii.

7.2 Analysis for the two sphere problem

The configuration of two spheres which lie on the common z-axis and whose centers are

separated by a distance D is shown in Fig. 3.1. The symmetry in this configuration of the

two spheres ensures that Eq. 2.19 and Eq. 2.20 can be simplified to be written as:

E (r) =

m=∞
l=∞∑

l=(m,1)
m=0

[
A

(p)
lmM

(p)
lm (kr) +B

(p)
lmN

(p)
lm (kr)

]
(7.3)

H (r) =
ik

ωµ

m=∞
l=∞∑

l=(m,1)
m=0

[
A

(p)
lmN

(p)
lm (kr) +B

(p)
lmM

(p)
lm (kr)

]
, (7.4)

where the symbol (m, 1) refers to the greater of m and 1. This step is more useful than

the trivial simplification it appears to be. In Eq. 7.3 and 7.4, the computation for a given

value of m is decoupled almost entirely from other values of m. The only link between

computations for different values of m is that the recursive scheme for calculating vector

translation coefficients at m requires the coefficients for m− 1 and m− 2 [51].

Just as scattering or absorption coefficients can be used as metrics to gauge convergence

for far–field radiation, we can similarly use radiative conductance G (Eq. 3.39 in Chapter 3)

to gauge the convergence of scattering response in the near–field region. The heat transfer

parameter G is related to the electromagnetic problem by expressing it in terms of the vector

spherical expansion of the dyadic Green’s function of the vector Helmholtz equation [36].

The expansion is similar to Eq. 2.19 and 2.20 [61; 85]. Further details of the elctromagnetic
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formulation are available in Narayanaswamy and Chen [36]. The spheres are made of silica,

the dielectric function of which has been shown as a function of frequency in Fig. 2.3.

By observing the variation of the refractive index with frequency it can be deduced that

silica supports surface phonon–polaritons between 0.05-0.065 eV and 0.13-0.1405 eV. Hence

computations are carried out in the frequency range 0.04-0.16 eV. In addition to conductance

G, we also define a spectral conductance Gω (ω) that is related to G by the relation G =∫
Gω (ω) dω. The behavior of Gω (ω) is useful in showing the difference in convergence

depending on whether or not surface phonon polaritons are active at that frequency. The

numerical scheme itself proceeds along the following lines: (1) Choose a value of l = Nconv to

truncate the summation over l in Eq. 7.3 and Eq. 7.4. (2) Compute the electric and magnetic

fields for each value of m, and from that the contribution to Gω (ω). This step is continued

until the contribution from m = Mconv has reached a sufficiently low value. (3) Repeat steps

(1) and (2) for all frequencies to obtain G. Even though all values of m satisfying |m| ≤ Nconv

can contribute to the overall conductance, we will show that Mconv � Nconv in practice.

7.3 Convergence of summation over l: derivation of a convergence

criterion based on comparison with planar surfaces

To find the number of l terms required in Eq. 7.3 and Eq. 7.4 for convergence of near–field

quantities for the two sphere problem, comparison is drawn with the well understood case of

near–field transfer between two half–spaces [24; 26; 86]. In the latter case, the summations

in Eq. 7.3 and Eq. 7.4 are replaced by an integral of the form
∞∫
0

dkinf(kin) exp(−2kinz),

where kin is the in–plane wavevector, z is the spacing between the two half–spaces, and

f(kin) is an appropriately defined function. It is seen that only wavevectors satisfying the

condition kin . 1/z contribute to the integral. The equivalent of the in–plane wavevector for

a sphere is the wavelength of spatial variation of the field on the surface of the sphere. For

l = Nconv, the periodicity of the spatial variation is determined by the behavior of YNconv ,m,

|m| ≤ Nconv. The smallest wavelength on the surface is given by 2πR/Nconv, resulting in

a maximum in–plane wavevector–equivalent of Nconv/R. By analogy with the convergence
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requirement for two half–spaces, we obtain Nconv/R ∼ 1/d or

Nconv = C
R

d
, (7.5)

where C is a constant (or a weak function of R) that is dependent on the desired accuracy

of the conductance. This criterion is sufficient for the analysis of radiative transfer between

spheres of submicron radii where the radiative transfer is dominated by near–field effects.

However, for spheres of larger radii where the contribution from propagating waves is not

negligible, we have observed that the above criterion is not sufficient to attain convergence

and the equation needs to be modified to:

Nconv = C
R

d
+ eπ

D

λ
, (7.6)

with the additional term being taken from Eq. 7.2.

In order to quantify the error due to retaining contributions only from wave functions with

l ≤ N in Eq. 7.3 and Eq. 7.4, the conductance G and spectral conductance Gω are plotted

as a function of N in Fig. 7.1 and Fig. 7.2 respectively. It is seen that an exponentially

decaying function of the form G (N) = G∞ + ae−bN matches the variation of G (and Gω)

adequately, where G∞ denotes the value of G as N → ∞, and a and b are constants. The

relative error E(N) (in %) for total conductance, defined as E(N) = (G(N)− G∞)/G∞, is

also plotted in Fig. 7.1. The conductance G (N) and error E (N) for R = 10 µm and R = 25

µm, with d/R = 0.01, are shown in Fig. 7.1(a) and 7.1(b) respectively. The difference

between the convergence of the numerical method at nonresonant (0.1005 eV) and resonant

(0.061 eV) frequencies is illustrated by plotting the spectral conductance for R = 10 µm and

d/R = 0.01 as a function of N in Fig. 7.2(a) and Fig. 7.2(b). Also plotted are the relative

errors in spectral conductance at these frequencies. The exponential decay in the error values

is observed for both these frequencies. As expected, convergence to a given relative error

requires a larger value of N at a resonant frequency than at a non–resonant frequency. For

instance, at N = 2R/d the relative error for the resonant frequency is ≈ 3 % while it is ≈

0.2 % at the non–resonant frequency.
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Figure 7.1: Convergence of conductance (on the left axis) and error (on the right axis) shown

for (a) R = 10µm spheres at d = 100 nm and (b) R = 25µm spheres at d = 250 nm. The

solid line through the relative error data points in included to illustrate the exponentially

decaying trend.
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Figure 7.2: Convergence of spectral conductance (on the left axis) and error (on the right

axis) shown for R = 10µm spheres for d = 100 nm at (a) a nonresonant frequency (0.1005

eV) and (b) a resonant frequency (0.061 eV).
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Figure 7.3: Variation of Nconv with R/d for two equal–sized spheres with R = 500 nm,

1µm, 15µm and 25µm

While Eq. 7.6 proposes a scaling form for Nconv, the constant C needs to be quantified

for attaining a given relative error. This can be obtained by analyzing the variation of Nconv

with R/d for spheres of different radii. Figure 7.3 shows the dependence of Nconv on R/d

for spheres of both submicron radii and larger radii at the resonant frequency (0.061 eV). It

is apparent that C assumes a constant value (≈ 2.72) at the resonant frequency. For total

conductance, C = 2 is sufficient to attain 1% error as seen in Fig. 7.1. It should be noted

that these values of C are particular to the case of radiative transfer between silica spheres.

This constant is expected to vary weakly with the dielectric properties of the material(s)

of the spheres. However the scaling form shown in Eq. 7.5 was proposed without taking

into consideration the material of the spheres and hence can be used for any material that

supports surface phonon or plasmon polaritons.

For the sake of completion we have also analyzed the convergence of conductance between

spheres of unequal radii. For two spheres of radii R1 and R2 with R1 < R2, Nconv can be

expected to scale with R2 as:

Nconv = C
R2

d
+ eπ

D

λ
, (7.7)
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The variation of spectral conductance Gω as a function of N for two spheres with R1 = 2µm,

R2 = 40µm and d = 200 nm at a nonresonant frequency (0.1005 eV) and a resonant frequency

(0.061 eV) are shown in Fig. 7.4(a) and Fig. 7.4(b) respectively. Due to computational

constraints the maximum number of terms considered for this study has been limited to N

= 3R2/d. From Fig. 7.4(b) we note that at the resonant frequency the value of constant C

in Eq. 7.7, for 1% error, turns out approximately to be the same as the value obtained for

equal radii [see Fig. 7.2(b)]. Hence we conclude that Eq. 7.7 is expected to hold true even

in the limiting case of R1 → 0, which implies that to determine the scattered field due to

excitation by a dipole current source at a distance z(� λ) from the surface of a sphere of

radius R, Nconv scales as R/z. This can be used as a criterion for the convergence of the

number of terms to be retained in the summation over l while calculating quantities such as

LDOS near the surface of a sphere, like in [84].

7.3.1 Convergence of summation over m

In addition to truncating the infinite series in Eq. 7.3 and 7.4 with respect to l, it is also

necessary to truncate the series in m. Since each value of m contributes independent of other

values of m to the spectral conductance (and conductance), we can write Gω =
max(l)∑
m=0

G
(m)
ω ,

where max(l) is the maximum value of l used in the computation. The variation of G
(m)
ω

with m between two spheres of radii R = 25µm and gap d = 250 nm at a resonant frequency

(ω = 0.061 eV) and a nonresonant frequency (ω = 0.1005 eV) are shown in Fig. 7.5(a)

and Fig. 7.5(b) respectively. We notice that there is an approximately exponential decay

[G
(m)
ω ≈ A exp (−Bm)] in the contributions from higher values of m. The values of B for the

resonant and nonresonant frequency are shown in Fig. 7.5(a) and Fig. 7.5(b) respectively.

This observation enables us to propose an empirical criterion for the number of terms Mconv

to be retained in summation over m as:

G(Mconv)
ω = 0.005G(0)

ω (7.8)
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Figure 7.4: Convergence of spectral conductance shown for R1 = 2µm and R2 = 40µm

spheres for d = 200 nm at (a) a nonresonant frequency (0.1005 eV) (b) a resonant frequency

(0.061 eV).
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Figure 7.5: Contribution to spectral conductance from each value of m for R = 25µm and

d = 250 nm at (a) a resonant frequency (0.061 eV) (b) nonresonant frequency (0.1005 eV).

The rate of exponential decay (B) for higher values of m at the resonant frequency is also

shown.
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i.e only wavefunctions with contribution to spectral conductance higher than 0.5% of the

contribution from m = 0 are used for the series summation in m in Eq. 7.3 and Eq. 7.4.

For the case considered in Fig. 7.5, the error due to retaining contributions only from the

wavefunctions satisfying Eq. 7.8 is ≈ 0.028% at the resonant frequency and ≈ 0.024% at the

nonresonant frequency.

7.4 Derivation based on the one-term approximation of normal-

ized translation coefficients

7.4.1 Motivation

The convergence criterion for the number of vector spherical waves required for computing

the near-field radiative transfer between two spherical bodies in Eq. 7.7 was derived heuristi-

cally based on comparison with the convergence criterion for the near-field radiative transfer

between planar bodies. In particular, the observation that only the in-plane wavevectors

with magnitude less than 1/z (z is the gap between the planar surfaces) contribute signifi-

cantly to the radiative heat transfer between planar surfaces has been used to arrive at the

corresponding criterion for the radiative transfer between spherical bodies. However, as has

been shown in this chapter, a similar form of convergence criterion can be derived without

having to refer to the corresponding relation for planar bodies, by analyzing the asymptotic

forms for the normalized translation coefficients. From this, the role of translation coeffi-

cients in obtaining convergence in the vector eigenfunction expansion method of computing

near-field radiative transfer becomes explicit.

7.4.2 Discussion

As explained in Chapter 5, using the one-term approximation it is possible to show that:

βνm,nm ∼ z
(3)
n+ν(kfD) (7.9)
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a) b) 

Figure 7.6: (a) Plot of log |z(1)
n (200)| as a function of n; (b) Plot of log |z(3)

n (200)| as a

function of n

where, βνm,nm is the scalar translation coefficient and z
(3)
n+ν(kfD) is the spherical Hankel

function with order n+ ν and argument kfD. ( Eq. 7.9 takes into account only an order of

magnitude estimation; there will be other constants in the expression for the exact form of

βνm,nm ). The normalized form of the scalar translation coefficient βNνm,nm (from Chapter 4)

is thus of the order:

βNνm,nm ∼ z
(3)
n+ν(kfD)

z
(1)
ν (kfR1)

z
(3)
n (kfR2)

(7.10)

The behavior of the expression in RHS (right hand side) of Eq. 7.10 has to be understood

in order to comprehend how the translation coefficients affects the convergence in the near-

field radiative heat transfer calculation. To go about this, consider the log plots of the

absolute value of spherical Bessel and Hankel functions z
(1)
n (r) and z

(3)
n (r) as a function

of the order n and for a particular argument r as shown in Fig. 7.6(a) and 7.6(b). The

arguments chosen for these plots are random values selected for demonstrative purposes

only (the values chosen are specified in the caption). It is observed from these plots that

the absolute values for the spherical Bessel (Hankel) function has a oscillatory/sinusoidal

behavior when n . r and decreases (increases) exponentially when n� r .

Consider the case of two equal spheres separated by a gap d such that d � R1, R2. We

then have kfD ≈ kfR1 + kfR2 with kfd → 0. The values for kfR1 , kfR2 and kfD can be

chosen to be ≈ 20, (R1, R2 ≈ 25µ m, ω ≈ 0.16 eV). At these values of kfR1 , kfR2, and

kfD we can expect the absolute values of Bessel (Hankel) function to be nearly constant
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a) b) 

Figure 7.7: (a) Plot of
∣∣∣ z(1)ν (20)

z
(3)
n (20)

∣∣∣ as a function of n and ν; (b) Plot of log |z(3)
n+ν(20)| as a

function of n and ν

(oscillating) till z = 20 before starting to decrease (increase) rapidly when n & 20. Three-

dimensional plots of the ratio
z
(1)
ν (kfR1)

z
(3)
n (kfR2)

and the function z
(3)
n+ν(kfD) is shown in Fig. 7.7(a)

and Fig. 7.7(b) respectively, as a function of n and ν with kfR1 = kfR2 = 20 and kfD = 40:

The steep fall observed in Fig. 7.7(a) for (n, ν) > 20 is expected from the behavior of

the spherical Bessel and Hankel functions shown in Fig. 7.6 From Fig. 7.7(b) it is observed

that the absolute value of z
(3)
n+ν(kfD) is largest along the diagonal line n = ν. As observed

from Eq. 7.10 it is the product of the two functions plotted in Fig. 7.7 that is relevant. The

product of these two functions is plotted in Fig. 7.8. To understand the behavior of the

function when the gap between the two spheres varies, I have plotted the function given in

Eq. 7.10 for kfR1 = kfR2 = 20 but different values of kfD such that kfD ≈ kfR1 +kfR2. In

Fig. 7.8(a) kfD = kfR1 + kfR2 = 40, in Fig. 7.8(b), (c), and (d) kfD is gradually increased

to 40.2, 40.5 and 41 respectively.

The following observations can be made from Fig. 7.8(a) where kfD = kfR1 +kfR2. The

increasing function shown in Fig. 7.7(b) compensates for the rapidly decreasing values of

the function shown in Fig. 7.7(a) (when the two functions are multiplied) and the product

of these two functions (which gives Eq. 7.10) is nearly constant along the diagonal. While
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Figure 7.8: Plot of

∣∣∣∣ z(1)ν (kfR1)

z
(3)
n (kfR2)

z
(3)
n+ν(kfD)

∣∣∣∣ as a function of n and ν for kfR1 = kfR2 = 20 but

for varying kfD The values of kfD are chosen to be (a) kfD = 40, (b) kfD = 40.2, (c)

kfD = 40.5, and (d) kfD = 41
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only values up to n, ν of 200 is shown in the plot, the values of the function can be shown to

be constant even when extended to larger values of n and ν such that (n, ν)→∞. However,

when kfD > kfR1 + kfR2 the increasing function in Fig. 7.7(b) can no longer compensate

for the rapidly decreasing values of the function shown in Fig. 7.7(a) and values can be

observed to decrease along the diagonal after a few terms. The closer the value of kfD to

kfR1 + kfR2 more will be the number of terms required for value of the function to start

decreasing along the diagonal as observed in Fig. 7.8(b), (c), and (d). The number of terms

required for the values to decrease along the diagonal thus decides the number of vector

spherical waves required for the convergence of the near-field radiative transfer calculation.

This is shown analytically in the next section (Section 7.5).

7.5 Asymptotic analysis

Consider Expr. 6.4 which gives the order of magnitude estimate of the normalized scalar

translation coefficient βνm,nm. It reads:

z
(3)
n+ν(kfD)

z
(1)
n (kfR1)

z
(3)
ν (kfR2)

(7.11)

Employing the asymptotic forms for the spherical Bessel and spherical Hankel functions

given by Exprs. 6.7, 6.10 and 6.11, the order of magnitude of Expr. 7.11 has been shown to

reduce to Expr. 6.26 which consists of product of two exponential terms namely:

e

[√
n2−(kfR1)2+

√
ν2−(kfR2)2−

√
(n+ν)2−(kfR1+kfR2+δ)2

]
(6.27 revisited)

and

e

[
(n+ν) cosh−1

(
n+ν

kfR1+kfR2+δ

)
−ν cosh−1

(
ν

kfR2

)
−n cosh−1

(
n

kfR1

)]
(6.34 revisited)

An analysis of Exprs. 6.27 and 6.34 along the line of maximum (given by Eq. 6.35) gives

us an estimate of the number of terms that are important along this line, and hence an
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estimate of the number of terms for convergence as discussed in Sec. 7.4.2. The Taylor’s

series expansion of Expr. 6.27 is given by:

e

[√
n2−(kf R1)2+

√
ν2−(kf R2)2−

√
(n+ν)2−(kf R1+kf R2)2

(
1−

(kf R1+kf R2)δ

(n+ν)2−(kf R1+kf R2)
2

)]
(7.12)

Since we are analyzing the terms along the line of maximum we can replace ν by (n)(R2/R1).

Expr. 7.12 then reduces to:

e

√
n2−(kf R1)2

[
1+

kfR2
kfR1

−
(
1+

kfR2
kfR1

)(
1−

(kf R1)
2δ

(n2−(kfR1)
2)(kfR1+kfR2)

)]
(7.13)

which further simplifies to:

e

[
(kf R1)δ√

(n2−(kfR1)
2)

]
(7.14)

Now consider the other term given in Expr. 6.34. Using the Taylor series expansion

(n+ ν) cosh−1

(
n+ ν

kfR1 + kfR2 + δ

)
≈ (n+ ν) cosh−1

(
n+ ν

kfR1 + kfR2

)
−

(n+ ν)2δ

(kfR1 + kfR2)
√

(n+ ν)2 − (kfR1 + kfR2)2

(7.15)

and a similar analysis along the line of maximum by replacing ν with n(R2/R1) reduces

Expr. 6.34 to:

e

[
− δ√

n2−(kf R1)
2

(
n2

kfR1

)]
(7.16)

Combining Expr. 7.14 and 7.16 gives:

e

[
− δ√

n2−(kf R1)
2

(
n2

kfR1
−kfR1

)]
(7.17)

From this we infer that the values becomes negligibly small when:

δ√
n2 − (kf R1)2

(
n2

kfR1

− kfR1

)
� 1 (7.18)

i.e if

n�

√(
R1

d

)2

+ (kfR1)2 (7.19)
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and since ν = (n)(R2/R1) the condition for ν would be:

ν � R2

R1

√(
R1

d

)2

+ (kfR1)2 (7.20)

This condition is similar to the criterion for the convergence of the vector spherical wave

expansion method of the near-field radiative transfer between two spheres which was shown

in Section 7.3 to be of the form:

Nconv = 2
R2

d
+ eπ

D

λ
, (7.21)

This criterion was derived heuristically based on comparison with the convergence criterion

for the near-field radiative transfer between planar bodies. Eq. 7.20 demonstrates explicitly

the role of translation coefficients in attaining convergence of near-field radiative transfer

calculations between two spheres. For our numerical calculations we have used Eq. 7.21 as

the criterion for the number of vector spherical waves since it is typically of higher value

than that represented in Eq. 7.20.

7.6 Conclusion

In this chapter, the numerical convergence of vector spherical wave expansion technique

applied to near–field electromagnetic scattering has been investigated. The conclusions of

this study are as follows:

1. The number of vector spherical waves required for numerical convergence of near–field

radiative thermal conductance between two closely spaced spheres of equal size that

support surface polaritons is given by Nconv = C
R

d
+ eπ

D

λ
, where C is a dimensionless

number that depends on the desired accuracy.

2. Contributions from larger values of m decay exponentially with m and the summation

over m can be truncated at a value of m = Mconv � Nconv.

3. The convergence criteria developed here are also applicable to other near–field scat-

tering problems where a new length scale is introduced in lieu of d. For example, to
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determine the LDOS at a point at a distance z(� λ) from the surface of a sphere, the

convergence criterion would be Nconv = C
R

z
+ eπ

D

λ
,
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Chapter 8

Near-field conductance

8.1 Introduction

The changes to the numerical implementation of the theory of radiative transfer between two

spheres that were described in Chapters 4, 5 and 6 have lead to the following improvements:

(a) While gaps up to d/R = 0.01 for equal sized spheres is available in literature [36],

this work extends to gaps up to d/R = 0.001 (b) Extension to lower gaps has lead to

better understanding of near-field effects between two spheres and thus enabled us to better

model the effect of curvature on near–field radiative transfer between spherical bodies. (c)

It has also been possible to extend the computational analysis to a more general case of

unequal sized spheres up to the limit R2 � R1 where R2 and R1 are the radii of the two

sphere. Without the simplifications I have introduced, these calculations become infeasible

due to computational demand. In this chapter the results from the computation of near-field

radiative transfer between two spheres are presented and analyzed.

8.2 Computation of thermal radiative conductance

The radiative heat transfer is analyzed in terms of the linearized thermal conductance G

(WK−1) which has been defined earlier in Chapter 3. This reads as:

G = lim
T1→T2

Q(T1, T2)

T1 − T2

, (3.34 revisited)
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where Q (T1, T2) is the rate of heat transfer between the two spheres at temperatures T1 and

T2. The derivation of an expression for G in terms of the dyadic Green’s function of the two-

sphere configuration (which is computed using the vector spherical wave expansion method)

has been explained in detail in Chapter 3. The expression for G used for computational

purposes is given by Eq. 3.39. All computations have been conducted at 300 K.

For experimental validation of the enhancement of radiative transfer in the near-field,

silica has been the material of choice for two reasons: (1) it can support surface phonon–

polaritons in the frequency ranges from 0.055 to 0.07 eV and 0.114 to 0.16 eV, and (2) silica

microspheres are easily available. Hence the heat transfer has been computed, using silica

as the material, for the frequency range 0.041 eV to 0.16 eV. The optical properties of silica

are taken from Ref. 20.

8.3 Discussion of results

8.3.1 Equal sized spheres

For the configuration of two equal spheres which has been shown in the inset of Fig. 8.1,

numerical values of conductance are plotted as a function of gap to radius ratio d/R for

different radii in Fig. 8.1. In Fig. 8.1, for every radius, two regions can be observed: (1) a

region where conductance varies logarithmically (marked Region–A), and (2) a region where

a deviation from logarithmic behavior is observed (marked Region–B).

To gain a deeper insight into this behavior, we compare the spectral variation of the

conductance at different gaps in the two regions. The gaps chosen are d/R = 0.01, 0.03

and 0.05 for R = 20 µm (marked (a), (b) and (c) in Fig. 8.1). The gaps corresponding to

d/R = 0.03, 0.05 fall in Region–A of Fig. 8.1, while d/R = 0.01 falls in Region–B. From the

spectral variation plotted in Fig. 7.1, we note that most of the increase in the heat transfer

for d/R = 0.01 is due to the contributions from surface phonon–polaritons alone. Hence we

conclude that the contribution from surface phonon–polaritons to the conductance starts to

become significant in Region–B.
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Figure 8.1: Conductance between the two spheres shown in the top right corner as a

function of d/R for different radii. The open circles denote the conductance values which

show a logarithmic variation with gap (marked Region–A) and the closed circles denote the

conductance values which show a deviation from logarithmic behavior (marked Region–B).

The spectral variation of the conductance at gaps marked (a), (b) and (c) for R = 20 µm

spheres are shown in Fig. 8.2.
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Figure 8.2: The spectral variation of conductance for R = 20µm for the different gaps

(a), (b) and (c) marked in Fig. 8.1. The frequency regions marked “Resonant frequencies”

(“Nonresonant frequencies”) are where surface phonon–polaritons are present (absent).

The observation that contribution from surface phonon–polaritons to the conductance

starts to become significant in Region–B necessitates us to understand the contribution

from surface phonon–polaritons better. To this end, the contributions of conductance from

the resonant and nonresonant frequencies are analyzed separately and are shown in Fig. 8.3.

Remarkably, the analysis for the spectral conductance at a resonant frequency (0.061 eV)

suggests that at gaps d/R . 0.01, the conductance is dependent only on the ratio d/R and

is independent of the particular values of d and R. Furthermore, the slope of the data points

being ≈ −1 suggests a R/d behavior at such gaps. A similar analysis for a nonresonant

frequency (0.1005 eV), shown in the inset of Fig. 8.3, suggests that for d/R . 0.01 the

rate of change of spectral conductance with gap is significantly lower than that for resonant

frequencies.

Based on the behavior of resonant radiative transfer at small gaps and the observation of

logarithmic behavior for larger gaps in Fig. 8.1, we have found that the numerical values of

conductance can be modeled by a function of the form C1 (R/d) + C2 ln (R/d) + C3, where
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Figure 8.3: For different radii, the spectral conductance at a resonant frequency (0.061 eV)

as a function of d/R. The conductance values for all radii attain a slope of −1 at low gaps.

Inset: The spectral conductance at a nonresonant frequency (0.1005 eV) as a function of

d/R (axes labels remain the same).
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C1, C2 and C3 are radius–dependent constants. C1, C2 and C3 are obtained by minimizing

the square of error between the function and the numerical values of conductance. The fitted

curves are shown in Fig. 8.1. The variation of C1, C2 and C3 with radius is shown in Fig.

8.4(a). The equations of the curves used for fitting the values of the coefficients are given

by: C1 = 8.33 − 0.11R; C2 = −0.08 + 0.025R; C3 = −0.024 + 0.004R + 0.002R2. The

above equations can be made use of to calculate the conductances for intermediate radii.

The residuals from the functional fit to the numerical conductance values are shown in Fig.

8.4(b). The residual is calculated as the difference between the numerical values and the

values from the functional form and expressed as percentage of the numerical values.

8.4 Comparison between Classical Radiative Transfer Theory and

Numerically obtained Conductance Values.

The expression for radiative conductance Gc(d, T ), according to the classical radiative trans-

fer theory (RTT), between two objects of equal emissivity ε and surface area A is given by

[87]:

Gc(d, T ) =
4σAT 3

2(1− ε)/ε+ (1/F12)
(8.1)

where F12 is the view factor between the two objects. Since the conductance between the

two spheres has been simulated for a particular frequency range, for effective comparison,

conductance from classical theory has to be computed for this frequency range too. Hence

Eq. 8.1 needs to be modified to:

Gc(d, T ) =
4σAT 3 (f (λ2T )− f (λ1T ))

2(1− ε)/ε+ (1/F12)
(8.2)

where λ1 and λ2 are the two wavelengths between which the numerical simulation in this

work has been performed (λ2 > λ1) and f(λT ) is given by [1]:
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f(λT ) =

∫ λ

0

∂eb(λ, T )

∂T
dλ∫ ∞

0

∂eb(λ, T )

∂T
dλ

(8.3)

where eb(λ, T ) denotes the spectral hemispherical blackbody flux given by:

eb(λ, T ) =
A1

λ5
(
exp

(
A2

λT

)
− 1
) (8.4)

with A1 = 4π2~c2 (≈ 37, 413 Wµm4cm−2) and A2 = 2π~c/kB (≈ 14, 388 µmK). In our

simulations, the conductance between the two spheres has been computed for the wavelength

range 7.57 µm (0.164 eV) to 30.3 µm (0.041 eV). For this range, f (λ2T )− f (λ1T ) = 0.721.

The comparison between conductance values determined from Eq. 8.2 and the numerically

computed conductance values for R = 20 µm is shown in Fig. 8.5. The conductance values

from RTT and numerical simulations follow a similar trend at large gaps (1 . d/R . 10).

Even though view factor calculations are strictly valid only when the nominal size of objects

are much larger than the characteristic thermal wavelength λT , it appears that they are

valid for silica spheres as small as R = 20µm. The small deviations (less than 10 % at

d/R = 10) between the numerical values and the predictions from RTT are possibly due to:

(1) diffraction effects, (2) numerical errors due to finite number of frequency points used for

the computation, and (3) non-validity of RTT for such small spheres.

8.4.1 Unequal sized spheres

By making use of the behavior of the normalized translation coefficients with varying radius

ratios it is possible to compute the near-field radiative conductance between two spheres

with large size disparities since, as explained in Chapter 6, for large radius ratios of the

spheres only the elements in the first few rows (≈ R1/d) of the translation coefficients are

dominant. Hence only these need to be computed and utilized thereof. By making use of

this simplification, radiative conductance G between two spheres for radius ratio 10, 20 and

40 has been computed and shown in Figure 8.6.
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Further analysis of the radiative conductance between unequal sized spheres is presented

in the next chapter in the context of proximity approximation method.

8.5 Conclusion

In summary, radiative heat transfer between two spheres has been analyzed in the near–

field regime using flucutational electrodynamics formalism. We have shown that it varies as

R/d as d/R → 0 and as log (R/d) for larger values of d/R up to the far–field limit. The

conductance values from unequal sized spheres was also presented for size ratios 10, 20 and

40.
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Chapter 9

Modified proximity approximation

9.1 Introduction

While the results discussed in the Chapter 8 were obtained from first principles by taking

into account the origin of radiative transfer from thermoelectric fluctuations in the material,

it suffers from the disadvantage that the computational resources pose a limit on the closest

gap between the two spheres that can be analyzed (notice from Eq. 7.21 in Chapter 7 that the

number of vector spherical waves required for convergence Nmax ∝ 1/d where d is the surface

to surface gap at the point of closest approach). The computational method developed is

also particular to the configuration of two spheres with centers translated along the z-axis

and cannot be extended easily for computing near-field radiative transfer between objects of

other geometrical shapes (like cylinders, cones or ellipsoids). In this chapter a discussion of

an approximate method to compute the near-field radiative transfer between curved bodies

has been provided which can be used for predicting near-field radiative transfer between

bodies of arbitrary geometrical shape, and at much smaller gaps than possible from exact

computations. This method, known as proximity approximation method, has been used in

literature for predicting near-field forces between closely spaced curved bodies. We discuss

the reasons why this theory has to be modified for radiative transfer theory and compare

the computed values of near-field radiative conductance for both equal and unequal sized
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spheres with the prediction from the modified form of proximity approximation theory.

9.2 Discussion

9.2.1 Features of proximity approximation theory

The importance of proximity approximation originates from the fact that it provides us with

a facile way of approximating the interaction between two bodies with arbitrary curvature at

small gaps by making use of the corresponding interaction between two infinite flat surfaces.

This proximity approximation method (also called Derjaguin’s approximation) was first pro-

posed in 1934 by Derjaguin [88] while discussing interaction between colloidal particles, and

has since been employed to estimate near-field forces, like van der Waals and Casimir force

[89; 90; 91; 92; 93; 94], between closely spaced curved bodies. Some of the features of this

proximity approximation method (as applicable for estimating near-field forces) has been

listed below:

1. It can be applied to bodies with arbitrary curvature as has been shown by White [95]

2. It provides a first-order approximation for the force between the curved objects [95;

96]

3. It is applicable to not just the additive inverse power law potentials like the van der

Waals/ Casimir interactions but for any type of functional form, whether attractive,

repulsive or oscillatory [97, pg. 163], [96]

4. It is valid only when the interaction length and the minimum separation distance

between the particles is much smaller than the curvature i.e for this approximation to

be valid the interaction between the particles should only be in a small region around

the point of closest approach [95; 98; 96; 89].

From Feature 4 listed above, if L0 is the length scale over which the interaction reduces to

zero, R0 the minimum radius of curvature of the system, and d the minimum separation
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between the two bodies at the point of closest approach, then we can write the sufficient

conditions for the proximity approximation to be valid as [95]

L0

R0

� 1; (9.1)

and
d

R0

� 1 (9.2)

There have been attempts to estimate the error from adopting the proximity approxima-

tion to predict near-field forces between the experimentally feasible geometry of sphere and

a plate. Gies et al. [89] applied worldline numerics to this configuration to calculate the

Casimir energy from scalar field in vacuum with Dirichlet boundary conditions. They deter-

mined that the proximity approximation is accurate up to 1% error when d/R ≤ 0.00755.

Here, d is the minimum separation distance between the sphere and the plate and R is the

radius of the sphere. Fosco et al. [99], by expanding the electrostatic energy using a gradient

expansion in the local separation between the surfaces, determined that the proximity ap-

proximation gives accurate values up to 1% for d/R . 0.017 for estimating the electrostatic

forces between the sphere and the plane. Teo et al. [100] compared the proximity approxi-

mation results with numerical calculations of the Casimir energy from the electromagnetic

field in vacuum between a sphere and a plate and determined that the proximity approx-

imation gives accurate results up to a accuracy of 5% for d/R . 0.03 and up to 1% error

for d/R . 0.006. Identical figures were also arrived at by Bimonte et al. [101], who used a

similar gradient expansion technique proposed by Fosco et al. [99], to arrive at an expres-

sion for the Casimir energy from electromagnetic field in vacuum. There has also been at

attempt to determine the accuracy of the proximity approximation experimentally. Krause

et al. [102] measured the Casimir force between a gold-coated plate and gold-coated spheres

of varying radii, ranging from 10.5 µm to 148.2 µm and determined that the error at 95%

confidence level due to the proximity approximation will be less than 1% when d/R . 0.017.

This confidence level was determined only for gaps d . 300 nm.

To illustrate the application of proximity approximation, consider two bodies with arbi-

trary curvature separated by a gap d at the point of closest approach as shown in Fig. 9.1.
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Figure 9.1: Interaction between two bodies separated by a gap d at the point of closest

approach

The bodies are assumed to be smooth in the vicinity of the the point of closest approach.

Consider an element area dS at the point P (x, y, z) on the surface of body 2. Provided that

the radius of curvature of the two bodies is large compared to the distance d, then the element

area dS can be approximated to be an element area of a half-space with the same properties

as body 2, parallel to and separated by a second half-space with properties of body 1 by a

distance z. In such a scenario the interaction energy of the element area dS with body 1,

dV , can be written as

dV = E(z) dS (9.3)

where, E(z) is the interaction energy per unit area between the two half-spaces separated by

a gap z. It must be noted that E(z) must decay rapidly with distance z so that contributions

from area elements far-away from the point of closest approach is minimal and Eq. 9.3 is

valid. The total interaction energy between the two bodies can then be written as:

V =

∫
S1

E(z)dS (9.4)
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Figure 9.2: Extension of proximity approximation in Casimir theory to approximating

the near-field radiative heat transfer between two spheres. f(z) denotes the Casmir/van

der Waals pressure between two plates with gap z and h(z) is the radiative heat transfer

coefficient between two plates with gap z

The area element can to a leading order of the inverse of radius of curvature (= 0 for planar

surfaces) be replaced by the projected area on the xy plane to give:

V =

∫
x

∫
y

E(z) dx dy (9.5)

9.2.2 Application of proximity approximation to near-field radia-

tive transfer

Because of similarity in the origin of near-field forces and the near-field radiative transfer

(both are induced by the fluctuation of charges inside bodies at finite temperature) a similar

technique has been extended to the case of estimating near-field radiative heat transfer

between curved bodies [20; 36], i.e radiative conductance (defined in Eq. 3.34) between

curved surfaces can be estimated from the known solutions for near–field radiative transfer

coefficient between parallel surfaces using the proximity approximation, as has been depicted

(for the configuration of two spheres) in Fig. 9.2.
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Analytically, this is equivalent to:

G(d, T ) =

∫ R

0

h(z) 2πr dr, (9.6)

where z = d + 2R − 2
√
R2 − r2 is the local gap between the two spheres as shown in Fig.

9.3(b) and h(z) is the heat transfer coefficient between two parallel surfaces at that gap z.

This form has been used by Rousseau et al. [20] to compare with experimental observations.

h(z) for two flat silica surfaces is plotted as a function of gap z in Fig. 9.3(a). h(z) can be

split as follows:

h (z) = hnf (z) + h∞, (9.7)

where h∞ is the contribution from propagating waves and hnf contains contributions from

all other effects. In other words Eq. 9.7 indicates that h(z) has contributions from both

the near–field effects and from propagating waves, and thus includes all contributions to

radiative heat transfer. As can be seen from Fig. 9.3(a), hnf falls off rapidly to zero as z

increases beyond λT and h∞ attains a constant value for z � λT .

Measurements from the Chen group [18; 19] between a silica microsphere and a silica

substrate in the range 30 nm to 10 µm did not agree with the proximity approximation.

Rousseau et al. [20], based on their measurements between a silica microsphere and a

silica substrate, concluded that near–field radiative transfer agreed with the proximity ap-

proximation in the range 30 nm to 2.5 µm. There are no experiments between two silica

spheres reported in literature. Though the phenomena of van der Waals force (including

Casimir force) and near–field radiative transfer are fluctuation–induced, there are important

differences. Radiative transfer has contributions from the infra–red (IR) portion of the elec-

tromagnetic spectrum whereas forces have larger contributions from the visible and higher

frequencies. Dispersion forces obey a power law behavior and decay rapidly to zero as gap

between the interacting bodies increases, while radiative transfer has a finite value due to

propagating waves at large gaps too. Because of these differences, it is not clear whether the

proximity approximation, as it is used to compute dispersion forces, can be used to predict

near–field radiative heat transfer between spherical surfaces.



CHAPTER 9. MODIFIED PROXIMITY APPROXIMATION 112

Recently, a higher order expansion of the proximity approximation method to estimate

better the near-field radiative heat transfer between two bodies has been proposed [103].

This method is similar to the gradient expansion in the local gap z of the electrostatic

and Casimir energy [99; 101] used to arrive at higher order expansion of the proximity

approximation method for estimating the near-field forces. However, the results in Ref.

[103] were presented under the assumption that the radiative heat transfer between two

half-spaces varies as 1/z2. This assumption is valid only in the interaction region where the

local gap between arbitrary shaped bodies is small.

To understand why we can expect the proximity approximation, as given in Eq. 9.6,

to fail to predict accurately the radiative heat transfer between finite objects, observe that

in Fig. 9.3(a), hnf � h∞ is satisfied only for gaps z . 400 nm. For sizes of spheres

currently used in experiments (R & 5 µm) there will be significant contribution from the

propagating waves at the outer regions of the spheres where the local gap z & λT even when

the minimum gap at the point of closest approach d � λT . This suggests that for gaps

under consideration in Region–B of Fig. 8.1 in Chapter 8 there will be contributions to

the radiative transfer from propagating waves as well as near–field effects. While Eq. 9.6

might provide a reasonable approximation to the contribution from near–field effects to the

radiative transfer, it overestimates the contribution from propagating waves at the outer

regions of the spheres. To see this, consider the large–gap limit where the heat transfer

coefficient h(z) from Eq. 9.7 attains a constant value, h∞. Eq. 9.6 predicts conductance

between the spheres to be πR2h∞, irrespective of the gap and does not take into account

the variation of view factor [87] between the two spheres with distance. It must be pointed

out, however, that for the configuration adopted in Ref. [20] the view factor does not change

with gap between the sphere and the plane.

In order to preserve the continuity between the radiative transfer in the large–gap limit

and the smaller gaps, we propose that the proximity approximation, in the form that is

used to determine Casimir or van der Waals forces between spherical surfaces, be used to

predict only the contribution to conductance from hnf . The contribution from propagating
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Figure 9.3: (a) Variation of h(z) and hnf (z) with gap between two flat silica surfaces.

(b) Proximity approximation – the conductance between two spheres is calculated by sum-

ming the local contributions of the heat transfer coefficient between two parallel planes. (c)

Comparison between the conductance values obtained numerically and using proximity ap-

proximation. The open circles denote the numerical values while the closed circles denote

the proximity approximation predictions using Eq. 9.8. Proximity approximation using Eq.

9.6 for R = 25 µm has been included for comparison.
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waves to the near–field conductance is computed according to RTT by taking into account

the variation of view factor with distance between the two spheres. This correction to

the proximity approximation formulation is not necessary while calculating Casimir or van

der Waals force, since they decay rapidly with distance (1/d4 and 1/d3 respectively). The

modified form of proximity approximation (MPA) to determine the conductance between

two equal sized spheres is given by:

GMPA
1 (d, T ) =

∫ R

0

hnf (z)2πr dr + G(1)
c (d, T ), (9.8)

where G
(1)
c (d, T ) can be approximated by the conductance value from classical radiative

transfer theory when diffraction effects are negligible. G
(1)
c (d, T ) for two objects of equal

emissivity ε and surface area A is given by Eq. 8.1 (repeated here for convenience):

G(1)
c (d, T ) =

4σAT 3

2(1− ε)/ε+ (1/F12)
; (8.1 revisited)

where F12 is the view factor between the two objects. Conductance values computed using

Eq. 9.8 and Eq. 8.1 are in greater agreement with the numerically computed values than the

prediction of Eq. 9.6 as shown in Fig. 9.3(c). Numerical values of the gap dependent view

factor between the two spheres is taken from Ref. [55]. Since the conductance between the

two spheres has been simulated for a particular frequency range, for effective comparison,

conductance from classical theory has to be properly adjusted to reflect this, as explained in

Section 8.3 of Chapter 8.

9.3 Verification of modified proximity approximation for spheres

with large size disparities

The MPA was first developed to ensure continuity in the radiative transfer between two equal

sized spheres in the far-field and the near-field limits as explained in Section 9.2. Hence it

would be of interest to also study the relevance of the MPA when the radius of one of the

spheres R2 is increased such that R2 � R1 where R1 is the radius of the smaller sphere,
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Figure 9.4: The plot of spectral emissivity for a silica half-plane as a function of frequency

in eV which is used in the form of MPA (Eq. 9.9) to predict the far-field contribution to the

conductance

since when R2/R1 →∞ it reduces to the sphere-plane configuration that has been commonly

adopted for experimental verification.

The form of MPA for unequal sized spheres is given by:

GMPA
2 (d, T ) =

∫ R1

0

hnf (z) 2πr dr + G(2)
c (d, T ), (9.9)

where R1 is the radius of the smaller sphere, z = d + R1 + R2 −
√
R2

1 − r2 −
√
R2

2 − r2 is

the gap at distance r from the symmetry axis as shown in Fig. 9.3(b). G
(2)
c (d, T ) for two

unequal spheres of equal emissivity ε and temperature T is given by [87]:

G(2)
c (d, T ) =

4σT 3 (4πR2
1)

((1− ε)/ε) (1 +R2
1/R

2
2) + (1/F12)

, (9.10)

where F12 is the gap dependent view factor between the two spheres [104]. The emissivity

for a silica half-space has been computed and plotted as a function of frequency in eV in

Fig. 9.4(b). The conductance values have been computed for the frequency range 0.041 eV

to 0.164 eV, and the value of G
(2)
c (d, T ) has been appropriately adjusted to reflect this.

The predicted conductance from MPA, GMPA
2 , from Eq. 9.9 is compared with exact

computations developed from first-principles, G, (Sec. 8.3 of Chapter 8) in Fig. 9.5(a) for
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Figure 9.5: (a) Plot of computed values of the total conductance and the MPA as a function

of the non-dimensional gap d/R1 for two spheres with R2/R1 = 40 . The study has been

performed for R1 = 13.7 µm and 2.5 µm (b) The % error between the computed values and

values from the MPA as a function of d/R1
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two spheres with R1 = 13.7 µm and 2.5µm and R2 = 40R1. The error between G and GMPA

is plotted in Fig. 9.5(b). For gaps d/R1 < 0.1 MPA is observed to be able to predict the

exact computed values of the conductance with errors less than 1%.

Since the total radiative conductance between the two spheres has contribution from fre-

quencies, where there is a resonant enhancement from surface phonon polaritons as well as

non-resonant frequencies where radiative conductance is not due to surface phonon polari-

tons (see Fig. 7.1 in Chapter 8), it would be of interest to observe if the MPA accurately

predicts the contribution from both these regions. The computed values of the spectral con-

ductance Gω at a single resonant (0.061 eV) and a non-resonant (0.081 eV) frequency and the

values predicted by the MPA for these frequencies have been plotted in Fig. 9.6(a) and Fig.

9.7(a). The contribution from the far-field radiative conductance Gc(d, T ) in Eq. 9.9 has to

be appropriately modified to reflect spectral conductance. From proximity approximation

theory, at gaps d/R1 ≈ 0 , the spectral conductance Gω(d) for two spheres of unequal radii

R1 and R2 is expected to vary as [105]:

Gω(d) =

(
R1R2

R1 +R2

)
1

d
≈ R1

d
(for R2 � R1) (9.11)

Since R2 � R1 (here R2 = 40R1) this characteristic R1/d behavior is observed for the res-

onant frequency contributions shown in Fig. 9.6(a) for d/R1 . 0.02. However such behavior

is not observed for the non-resonant frequency contributions shown in Fig. 9.7(a).

The error between Gω and the spectral conductance predicted by MPA, GMPA
ω , for the

resonant and non-resonant frequency contributions are shown in Fig. 9.6(b) and Fig. 9.6(b).

In the far-field region (d/R1 & 2 for R1 = 13.7µm, and d/R1 & 10 for R1 = 2.5µm)

where the enhancement due to tunneling of waves (surface waves at the resonant frequency

and evanescent waves at non-resonant frequency) is negligible, the form of MPA in Eq. 9.9

predicts that the variation in Gω with gap is primarily due to the changing view factor

between the spheres with gap. As observed from Fig. 9.6(b) and Fig. 9.7(b) there is good

agreement with the exact computed values of the conductance at such gaps. For intermediate

gaps (2 . d/R1 . 0.07, for R1 = 13.7µm) the variation of Gω with gap is dependent on

both the changing view factor with gap as well as increased tunneling of waves. For gaps
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Figure 9.6: (a) Comparison between the computed values of Gω at a resonant frequency

(0.061 eV) and GMPA
ω as a function of the non-dimensional gap d/R1 for two spheres of radius

R1 = 2.5 µm, 13.7 µm and R2 = 40R1 (b) The % error between Gω and GMPA
ω as a function

of d/R1
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Figure 9.7: (a) Comparison between the computed values of Gω at a non-resonant frequency

(0.0801 eV) andGMPA
ω as a function of the non-dimensional gap d/R1 for two spheres of radius

R1 = 2.5 µm, 13.7µm and R2 = 40R1 (b) The % error between Gω and GMPA
ω as a function

of d/R1
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d/R1 . 0.07 (below which the view factor increases by less than 1%) the enhanced radiative

transfer with decreasing gap can be attributed entirely due to increased tunneling of waves.

At such small gaps MPA is able to model the enhancement at the resonant frequency within

≈ 5% errors irrespective of the value of R1, whereas at the non-resonant frequency the

error is observed to be greater than 10% when R1 = 2.5µm. Despite such high errors at

the non-resonant frequencies, MPA is successful in predicting the overall conductance when

R1 = 2.5 µm with error less than 1% for d/R1 . 0.1 as observed in Fig. 9.5. This apparent

discrepancy is explained in detail in Sec. 9.4.

9.4 Validation of modified proximity approximation with exper-

imental results

In this section, both the predictions from MPA and the exact computed values are compared

with experimental measurements of near-field radiative transfer between a sphere and a plane

available in literature [106]. Since at the gaps used for experiments the change in radiative

conductance is mainly due to near-field effects and not due to changing view factors, the

exact computed values as well as the predictions from MPA should be appropriately modified

to reflect this. The form of the MPA that is appropriate for comparing with the near-field

enhancement in radiative transfer for the sphere-plane case would be:

GMPA (d, T ) =

∫ R

0

hnf (z) 2πr dr (9.12)

where R is the radius of the sphere and z = d+R−
√
R2 − r2. The experimental measure-

ments between a sphere and a planar substrate can be compared with the exact computations

of radiative transfer between unequal sized spheres only if the size ratio between the two

spheres is such that R2 � R1. The following paragraph expands on this observation.

First consider the variation of conductance, G(d), with non-dimensional gap d/R1 where

R1 is the radius of the smaller sphere (in this case R1 = 13.7 µm) for varying values of

R2/R1 (radius ratio) as shown in Figure 9.8(a). From these values of G(d), variation of

G(d)−G(dmax) for dmax = 2364.5 nm (which is the gap below which the enhanced radiative
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Figure 9.8: Near-field conductance between two spheres of varying R2/R1 as a function

of non-dimensional gap d/R1. (a) Conductance G(d) between a sphere R1 = 13.7 µm and

another sphere of radius R2 such that R2/R1 = 10, 20, and 40. (b) Change in conductance,

G(d)−G(dmax), where dmax = 2364.5 nm.
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transfer due to near-field effects can be experimentally measured) with non-dimensional gap

d/R1 gives us the near-field enhancement due to near-field effects for small gaps. This is

shown in Fig. 9.8(b). The values are observed to change by less than 0.5 % on increasing

the radius ratio from 20 to 40. Thus we can conclude that though the conductance between

the two spheres is not identical to the conductance between a sphere and a plane, the change

in near-field radiative transfer with gap (which is what we are measuring experimentally) is

identical as long as R2 & 20R1. In the simulations, we have set R2 = 40R1 (R1 = 2.5 µm or

13.76 µm).

The discussion in the above paragraph paves the way for comparison of both the MPA

and the exact computed values of conductance between two unequal size spheres with the

experimental measurements of near-field enhancement in radiative transfer between a sphere

and a plane. This is shown in Fig. 9.9(a) and (b) where the following quantities are compared:

(a) Gex
th(d) − Gex

th(dmax) (subscript th stands for theory and ex stands for exact) denotes

the conductance from exact computations between two unequal sized spheres with R1 =

2.5µm or 13.7µm and R2 = 40R1 (b) GMPA
th (d) which denotes the predictions from MPA

and (c) Gexpt which denotes the conductance obtained from experimental measurements

between a silica sphere of radius R = 2.5µm or R = 13.7µm and a planar silica substrate

(the experimental readings were taken by my colleague Ning Gu. More details about the

experimental technique can be found in Ref. [106]). Excellent conformation is observed

between the three quantities. The predictions from MPA (Eq. 9.12) for the sphere-plane

configuration can be further compared with the values of Gex
th(d)−Gex

th(dmax) from Fig. 9.9

by comparing the error between the two approximations. This is shown in Figure 9.10 where

the variation of fractional difference between the values G(d)−G(dmax) and the MPA, with

non-dimensional gap d/R1 for R2/R1 = 40 is shown for both R1 = 2.5 µm and R1 = 13.7

µm. For d/R1 < 0.1 the error between the two quantities is less than 5%.

To understand why the modified proximity approximation seems to explain experimental

data even when R1 < λT , we plot in Fig. 9.11 [106] ∆Gex
th(ω, d) = Gex

th(ω, d) − Gex
th(ω, dmax)

i.e the spectral contributions to the change in conductance at d from that at dmax = 2364.5
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Figure 9.9: Conductance as a function of separation d for the R = 2.5 µm and R = 13.76

µm spheres are shown in (a) and (b) respectively (red points with error bars). Only the

data for d/R . 0.05 is shown in the main figures. The entire data up to d = 1500 nm is

shown in the inset. The thick blue line is obtained from applying the modified proximity

approximation to the near-field contribution to radiative transfer between two half planes.

The black circles are obtained from exact calculations.
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Figure 9.10: Near-field conductance between two spheres of varying radius ratios (R2/R1)

as a function of non-dimensional gap d/R1

nm for R1 = 2.5 µm (Fig. 9.11a) and R1 = 13.7 µm (Fig. 9.11b). Surface phonon polariton

resonances are responsible for the two prominent features between 0.052 eV - 0.072 eV and

between 0.1335 eV - 0.16 eV in the spectrum of ∆Gex
th(ω, d). At rest of the frequencies, the

enhancement is non-resonant, i.e. it is not due to surface phonon polaritons. Though it

can be concluded qualitatively from the behavior of ∆Gex
th(ω, d) that resonant frequencies

contribute more to ∆Gex
th(d) for the smaller sphere, a better way to quantify it is by plotting

∆G
ex

th(ω, d) =
∫ ω

0
∆Gex

th(ω′, d)dω′/
∫∞

0
∆Gex

th(ω′, d)dω′, the normalized cumulative spectral

contribution to ∆Gex
th(d), as we have done in the insets in Fig. 9.11a and Fig. 9.11b. Over

the entire frequency range, surface phonon polariton resonances contribute to ≈ 90 % and ≈

60 % for R1 = 2.5 µm and R1 = 13.76 µm spheres respectively. Our analysis has shown that

the error in G(ω, d)−G(ω, dmax) between the exact numerical calculations and the modified

proximity approximation: (1) is smaller at resonant frequencies compared to non-resonant

frequencies, and (2) decreases as R1 increases (See Fig. 3c). The reason modified proximity

approximation is valid even when R1 < λT is because the increase in error with decreasing

R1 is balanced by the relatively higher contribution from resonant frequencies.
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Figure 9.11: Exact numerical prediction for ∆Gex
th(ω, d) = Gex

th(ω, d) − Gex
th(ω, dmax) for

dmax = 2364.5 nm . (a) R1 = 2.5 µm, R2 = 40R1, and (b) R1 = 13.76 µm, R2 = 40R1.

The lines in (a) and (b) correspond to d/R1 = 0.016 (blue line), 0.026 (green), 0.032 (red),

0.04 (cyan), 0.064 (magenta), 0.1 (yellow), and 0.128 (black). The normalized cumulative

spectral contribution, ∆G(ω, d), for d/R1 = 0.016 is shown in the inset to (a) and (b). (c)

Error between exact calculation and modified proximity approximation at ω = 0.062 eV

(resonant frequency) and ω = 0.081 eV (non-resonant frequency).
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9.5 Conclusion

We have also shown that the proximity theorem, in the form that is used to compute disper-

sive forces cannot be used to determine near–field heat transfer and a modification is needed

to take into account the contributions from propagating waves. We have also shown the

predictive capability of the modified form of proximity approximation for the more general

configuration of unequal sized spheres with large size disparities as well. We have validated

the predictions of this modified proximity approximation (MPA) with experimental values

available in literature for the sphere-plane configuration. We have also provided a reason

for the validity of MPA for the case of sub-wavelength spheres. Such predictive capabilities

will be useful in applications like heat–assisted magnetic recording [107] to approximate the

near–field radiative transfer between the curved surface of the near–field transducer and the

recording medium.
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Chapter 10

Summary and future work

10.1 Summary of the main contributions

The primary aim of this work was to understand the effect of curvature on near-field radiative

transfer. To this end, I have listed below some of the contributions from this work.

1. The computational model for computing the near-field radiative transfer between two

spheres was simplified which enabled us to probe lower gaps than available in literature

for the case of two equal sized spheres. While gaps till d/R = 0.01 are available in

literature, we have now been able to go down till gaps of d/R = 0.001 (R being the

radius of the spheres and d the surface to surface gap). Based on these computations at

lower gaps we were able to show that the contribution to radiative heat transfer from

frequencies where the surface phonon polaritons are active varies as R/d as d/R→ 0

2. A modified form of proximity approximation theory has been proposed for the case

of radiative exchange between two equal sized spheres to ensure continuity condition

between far-field and near-field radiative transfer between finite objects.

3. A simplified form of translation addition theorem valid for general near-field electro-

magnetic scattering problems has been proposed. And the limit at which this form is

valid is discussed. The recursion relations for computing the translation coefficients
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using this simplified form of translation addition theorem is computationally faster

(about 10 times faster) than using the recursion relations for the exact forms

4. A general formula was derived for finding the number of terms required for attaining

convergence in the computation of near-field radiative heat transfer via vector spherical

wave expansion method. This was expressed in terms of the spatial parameters in

the configuration like the radius of the spheres, the surface to surface gap, and the

wavelength of radiation.

5. Based on the observed dependence of the normalized translation coefficient on the

radius ratio of the two spheres, the near-field radiative transfer between unequal sized

spheres with large size disparities has also been computed. For radius ratio R2/R1 = 40

it has been possible to go down till a gap of d/R1 = 0.013. For any radius ratio R2/R1,

it is possible to compute radiative heat transfer for gaps until d/R1 ≈ (R2/R1)/3000.

The relevance of the modified proximity approximation has been shown for this more

general case as well.

6. The accuracy of the modified proximity approximation method for different frequencies

has also been analyzed and the reason why this method is seen to hold true for the case

of sub-wavelength spheres has been explained. This method has also been validated

by comparing with experimental results available in literature.

10.2 Future work

1. The theoretical method outlined to compute the near-field radiative transfer between

two spheres assumes that the surfaces are smooth. However, in practice, experimental

measurements of near-field radiative transfer is influenced by surface effects like surface

roughness characteristics. Since the scale of the roughness in commercially available

silica spheres is roughly the same order as the minimum gap we go down to, the effect

of roughness in the measured radiative transfer is expected to be significant. Hence

corrections to the measured radiative heat transfer should be arrived at to take into
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account the influence of surface roughness. The influence of roughness on the near-

field heat transfer between two planar surfaces has been studied by using second-order

perturbation theory [108]. However no such study has been undertaken for the case of

curved bodies.

2. It would be of interest to know if we can find an exact analytical expression for the

radiative heat transfer between two spheres in the asymptotic limit of d→ 0, where d

is the the separation distance between the two spheres at the point of closest approach.

In this limit the vector translation coefficients can be shown to reduce to simple ex-

pressions with the contributions from higher order modes reaching a constant value.

Perhaps this can be made use of to arrive at an analytical expression for the near-field

radiative heat transfer between two spheres.

3. The modified proximity approximation was first proposed in this work for the config-

uration of two equal sized spheres separated by a small gap. This was later shown

to hold true for a more general case of two unequal sized spheres with large size dis-

parities. The validity of MPA can be further tested with curved surfaces other than

spherical surfaces, for e.g. cylindrical, conical or ellipsoidal surfaces.
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