
Large Scale Nearest Neighbor Search –
Theories, Algorithms, and Applications

Junfeng He

Submitted in partial fulfillment of the

requirements for the degree

of Doctor of Philosophy

in the Graduate School of Arts and Sciences

COLUMBIA UNIVERSITY

2014

c⃝2014

Junfeng He

All Rights Reserved

ABSTRACT

Large Scale Nearest Neighbor Search –
Theories, Algorithms, and Applications

Junfeng He

We are witnessing a data explosion era, in which huge data sets of billions or more

samples represented by high-dimensional feature vectors can be easily found on the

Web, enterprise data centers, surveillance sensor systems, and so on. On these large

scale data sets, nearest neighbor search is fundamental for lots of applications in-

cluding content based search/retrieval, recommendation, clustering, graph and social

network research, as well as many other machine learning and data mining problems.

Exhaustive search is the simplest and most straightforward way for nearest neigh-

bor search, but it can not scale up to huge data set at the sizes as mentioned above.

To make large scale nearest neighbor search practical, we need the online search step

to be sublinear in terms of the database size, which means offline indexing is nec-

essary. Moreover, to achieve sublinear search time, we usually need to make some

sacrifice on the search accuracy, and hence we can often only obtain approximate

nearest neighbor instead of exact nearest neighbor. In other words, by large scale n-

earest neighbor search, we aim at approximate nearest neighbor search methods with

sublinear online search time via offline indexing.

To some extent, indexing a vector dataset for (sublinear time) approximate search

can be achieved by partitioning the feature space to different regions, and mapping

each point to its closet regions. There are different kinds of partition structures, for

example, tree based partition, hashing based partition, clustering/quantization based

partition, etc. From the viewpoint of how the data partition function is generated,

the partition methods can be grouped into two main categories: 1. data indepen-

dent (random) partition such as locality sensitive hashing, randomized trees/forests

methods, etc.; 2. data dependent (optimized) partition, such as compact hashing,

quantization based indexing methods, and some tree based methods like kd-tree, pca

tree, etc.

With the offline indexing/partitioning, online approximate nearest neighbor search

usually consists of three steps: locate the query region that the query point falls

in, obtain candidates which are the database points in the regions near the query

region, and rerank/return candidates. For large scale nearest neighbor search, the

key question is: how to design the optimal offline indexing, such that the online

search performance is the best, or more specifically, the online search can be as fast

as possible, while meeting a required accuracy?

In this thesis, we have studied theories, algorithms, systems and applications for

(approximate) nearest neighbor search on large scale data sets, for both indexing with

random partition and indexing with learning based partition.

Our specific main contributions are:

1. We unify various nearest neighbor search methods into the data partition frame-

work, and provide a general formulation of optimal data partition, which sup-

ports fastest search speed while satisfying a required search accuracy. The

formulation is general, and can be used to explain most existing (sublinear)

large scale approximate nearest neighbor search methods.

2. For indexing with data-independent partitions, we have developed theories on

their lower and upper bounds of time and space complexity, based on the opti-

mal data partition formulation. The bounds are applicable for a general group

of methods called Nearest Neighbor Preferred Hashing and Nearest Neighbor

Preferred Partition, including, locality sensitive hashing, random forest, and

many other random hashing methods, etc. Moreover, we also extend the the-

ory to study how to choose the parameters for indexing methods with random

partitions.

3. For indexing with data-dependent partitions, I have applied the same formula-

tion to develop a joint optimization approach with two important criteria: n-

earest neighbor preserving and region size balancing. we have applied the joint

optimization to different partition structures such as hashing and clustering,

and achieved several new nearest neighbor search methods, outperforming (or

at least comparable) to state-of-the-art solutions for large scale nearest neighbor

search.

4. we have further studied fundamental problems for nearest neighbor search be-

yond search methods, for example, what is the difficulty of nearest neighbor

search on a given data set (independent of search methods)? What data prop-

erties affect the difficulty and how? How will the theoretical analysis and algo-

rithm design of large scale nearest neighbor search problem be affected by the

data set difficulty?

5. Finally, we have applied our nearest neighbor search methods for practical ap-

plications. We focus on the development of large visual search engines using

new indexing methods developed in this thesis. The techniques can be applied

to other domains with data-intensive applications, and moreover, be extended

to other applications beyond visual search engine, such as large scale machine

learning, data mining, and social network analysis, etc.

List of Figures

I Introduction 1

1 Introduction and Overview 2

1.1 Motivation . 2

1.2 Problem Definition . 4

1.3 Overview on Related Works . 5

1.3.1 NN Search via Tree Based Partition 7

1.3.2 NN Search via Hashing Based Partition 9

1.3.3 NN Search via Clustering Based Partition 12

1.3.4 Discussions . 13

1.4 Unified Formulation of Optimal Data Partition for Approximate NN

Search . 16

1.5 Thesis Outline . 18

II Nearest Neighbor Search via Random Partitions 21

2 Theories On the Complexity of NN Search via Random Partitions 23

2.1 Introduction to Previous Works On the Complexity of LSH 23

2.2 Formulation of the Time and Space Complexity for LSH 27

2.3 The Complexity of Tmin . 30

2.4 The Complexity of LSH . 31

2.4.1 Lower Bound of LSH . 31

i

2.4.2 New Upper Bounds . 33

2.5 Parameters for Locality Sensitive Hashing 34

2.6 Other NN Search Methods with Random Partitions 37

2.6.1 Time and Space Complexity for Nearest Neighbor Preferred

Hashing (NPH) Methods . 37

2.6.2 Time Complexity for Nearest Neighbor Preferred Partition (NPP)

. 39

2.6.3 Parameters for NPH and NPP 41

III Nearest Neighbor Search via Learning Based Parti-

tions 42

3 Algorithms of Optimal Partitions for Hashing Based NN Search 44

3.1 Optimal Partition Criteria for Hashing 44

3.1.1 Bucket Balancing for Search Time (P̂any(Ψ)) 45

3.1.2 Preserve Nearest Neighbors for Search Accuracy (P̂nn(Ψ)) . . 47

3.1.3 Intuition . 48

3.2 Hashing with Joint Optimization . 49

3.2.1 Formulation of Hashing with Joint Optimization 49

3.2.2 Relaxation for D(Y) . 50

3.2.3 Relaxation for minimizing I(y1, ..., ym, ..., yk) 50

3.2.4 Similarity Preserving Independent Component Analysis (SPICA) 51

3.3 Optimization . 52

3.3.1 Optimization Algorithm . 52

3.3.2 Complexity and Scalability . 54

3.4 Degenerated Case with a Simple Solution 55

3.4.1 Formulation . 55

3.4.2 Derivation . 56

ii

3.4.3 Implementation . 57

3.5 Experiments . 58

3.5.1 Experiment Setup . 58

3.5.2 Evaluation Metrics . 59

3.5.3 Experiment Results . 59

4 Algorithms of Optimal Partition for Clustering based NN Search 65

4.1 Background of K-means Clustering 65

4.2 Optimal Clustering for NN Search–Balanced K-Means 67

4.3 Iteration Algorithms for Balanced K-Means Clustering 69

4.4 Experiments . 69

4.4.1 Data Sets . 69

4.4.2 Experiments of Balanced K-means Clustering 71

4.4.3 Experiments on Image Retrieval with Local Feature Quantiza-

tion via Balanced K-means . 73

IV Systems and Applications 77

5 Bookcover Search with Bag of Words 79

5.1 Data and System Outline . 79

5.2 Experiment Results . 80

6 Mobile Product Search with Bag of Hash Bits 85

6.1 Introduction . 85

6.2 An Overview for the Proposed Approach 90

6.3 Mobile Visual Search with Bag of Hash Bits 92

6.3.1 Hash Local Features into Bits 92

6.3.2 Geometry Verification with Hash Bits 94

6.4 Boundary Reranking . 96

iii

6.5 Experiments . 97

6.5.1 Data Sets . 99

6.5.2 Performance of Bag of Hash Bits 101

6.5.3 Performance of Boundary Reranking 103

V Additional Discussions on Nearest Neighbor Search 105

7 Theories on the Difficulty of Nearest Neighbor Search 106

7.1 Introduction . 106

7.2 The Difficulty of Nearest Neighbor Search for a Given Data Set . . . 108

7.2.1 Relative Contrast (Cr) – Measure the Difficulty of Nearest Neigh-

bor Search . 108

7.2.2 Estimation of Relative Contrast 109

7.2.3 What Data Properties Affect the Relative Contrast and How? 110

7.2.4 Validation of Relative Contrast 113

7.3 How Will the Difficulty Affect the Performance NN Search Methods . 118

7.3.1 How Will the Difficulty Affect LSH 118

VI Conclusions 121

8 Summary and Future Works 122

8.1 Summary of Contributions . 122

8.2 Future Works . 124

VII Bibliography 126

Bibliography 127

iv

VIII Appendix 137

9 Proofs 138

9.1 Proofs for Chapter 2 . 138

9.1.1 Sketch of the Proofs for Theorem 2.3.1 138

9.1.2 Details of Proofs for Theorem 2.3.1 140

9.2 Proofs for Chapter 3 . 143

9.3 Analysis for Chapter 4 . 148

9.4 Proofs for Chapter 7 . 149

9.4.1 Proofs . 149

9.4.2 Previous Works on the Difficulty of Nearest Neighbor Search . 152

9.4.3 Relations Between Our Analysis and Previous Works 153

v

Part I

Introduction

1

Chapter 1

Introduction and Overview

1.1 Motivation

The advent of Internet brings us to the ”Big Data” era, in which huge data sets with

billions of samples become quite common. These huge data sets include, for instances,

web multimedia, enterprise data centers, mobile/surveillance sensor systems, and

network nodes, etc. Taking web multimedia as an example, according to the internet

statistics of 2011 1, Google Youtube has more than 48 hours of videos uploaded every

minute, while in February 2012, Facebook announced that it had more than 200

Billion photos, and more than 250 Million new photos are uploaded every day 2.

Lots of these huge data sets consist of high dimension vectors. For example,

in multimedia applications, each image can be described by the features of various

aspects of visual content like color, shape, objects, etc; in sensor systems, sensor data

are usually vectors too. To utilize these huge data sets, one crucial step of many

applications is to search nearest neighbors (NN) for a given query vector.

On one hand, lots of applications are essentially large scale nearest neighbor search

1http://royal.pingdom.com/2012/01/17/internet-2011-in-numbers/

2http://www.popphoto.com/news/2012/02/

people-upload-average-250-million-photos-day-to-facebook

2

http://royal.pingdom.com/2012/01/17/internet-2011-in-numbers/
http://www.popphoto.com/news/2012/02/
 people-upload-average-250-million-photos-day-to-facebook

problem. First, nearest neighbor search will often directly serve as a content based

search engine to return the query’s neighbors in the database, which is useful in

many different domains such as multimedia, biology, finance, sensor, surveillance,

and social network, etc. For example, given a query image, find similar images in a

photo database; given a user log profile, find similar users in a user database or social

network; given a DNA sequence, find similar DNA sequences; given a stock trend

curve, find similar stocks from stock history data; given an event from sensor data,

find similar events from sensor network data log; and so on. Take multimedia domain

as an example. Finding a query’s nearest neighbor will directly help accomplish tasks

like multimedia search, duplicate detection, and copyright management. Moreover,

from the query’s neighbors, we can usually obtain more associated information from

meta data, tags, and so on. For instance, we can build an image search engine to

answer questions like ”what is the product in this image”, ”who is this guy”, ”where

is this place”, and so on, by summarizing and analyzing the meta data, tags, or

webpages, associated with the returned images.

On the other hand, many large scale machine learning, data mining and social

network problems involve nearest neighbor search as one of the most crucial step-

s. For instance, the core technique of some classification methods like k-NN and

their variations, are basically nearest neighbor search. Moreover, lots of recommen-

dation/collaborative filtering systems rely on finding similar users/objects, which is

often a nearest neighbor search problem. Also, plenty of graph or network based

learning methods often need a sparse k-NN graph to scale up to huge data sets, or

need to propagate one sample’s co-efficients/lables to a few other nearest samples,

which are actually large scale NN search problems too. Finally when many machine

learning problems (classification, regression, clustering, detection, etc.) go to large

scale, approximate NN search is usually the key to speed up the algorithms, by ap-

proximating the distance, similarity, or inner product operation efficiently.

3

1.2 Problem Definition

In this thesis, we will focus on the nearest neighbor search problem. Before we s-

tart, we first discuss about the assumptions. In this thesis, we assume each data is

a vector in a high-dimensional space in which a distance metric is already defined.

This seems not to be a weak assumption, since features and distance metric may

not be well defined in many applications. However, features and distance metric are

domain/application specific, and there are lots of research on them in each domain.

Moreover, learning appropriate distance metric from domain data has also been an

active research area for a long time. So in this thesis, our focus is to develop gen-

eral theories and algorithms by assuming the features and distance are already well

defined.

Simply speaking, the nearest neighbor search problem can be formulated as fol-

lows: given a vector data set and a query vector, how to find the vector(s) in the data

set closest to the query. More formally:

suppose there is a data set X with n points X = {Xi, i = 1, ..., n} , given a query

point q, and a distance metric D(,), find the q’s nearest neighbor Xnn in X, i.e.,

D(Xnn, q) ≤ D(Xi, q), i = 1, ..., n. Like in most statistics or machine learning re-

search, here Xi, i = 1, ..., n and q are assumed to i.i.d. sampled, from a random

vector x. Note that in the discussions of following chapters, sometimes X also rep-

resents the data matrix consisting of all data points, and Xi is the i-th data point,

which is X’s i-th column.

”Linear scan” or ”exhaustive search”, is the most straight-forward way for nearest

neighbor search; however, it can not scale up to huge data sets. In this thesis, we

focus on large scale nearest neighbor search, i.e., ”approximate” nearest neighbor

search on large scale data sets.

There are several possible definitions about ”approximate” nearest neighbor search.

1. Find at least one approximate nearest neighbor Xj in X for q, such that

4

D(Xj, q) ≤ (1 + ϵ)Dq
nn where Dq

nn = D(Xnn, q).

2. With a probability of at least 1− δ, find q’s exact nearest neighbor Xnn in X.

3. With a probability at least 1−δ, find at least one approximate nearest neighbor

Xj in X for q, such that D(Xj, q) ≤ (1 + ϵ)Dq
nn.

The first kind approximation is in the sense of spatial approximation, i.e., we try

to find at least one point whose distance to the query is approximately (more specif-

ically smaller than 1 + ϵ times of) true nearest neighbor distance. The second kind

approximation is probability approximation, i.e., we want to find the true nearest

neighbor, but not with 100% probability as in linear scan, instead, we only require a

probability guarantee 1− δ. And the third kind of approximation is both spatial ap-

proximation and probability approximation, i.e., we want to get at least one spatially

approximate nearest neighbor with a a probability guarantee.

The second kind of approximation is the most important and popular case in

practice, and also the easiest one to analyze, so in this thesis we will mainly discuss

the second approximation (and sometimes when applicable the third approximation

too).

1.3 Overview on Related Works

There are several overviews on nearest neighbor search techniques [1, 2, 3, 4, 5, 6].

However, in this section, I will review most previous nearest neighbor search meth-

ods from the viewpoint of a data partition framework. Briefly speaking, large scale

(sublinear) approximate NN indexing/search can be regarded as a data or space par-

tition problem. Given a database which are points in a feature vector space, we can

summarize the whole NN search procedure as follows:

1. Offline indexing

5

(a) Partition the space/data set:

partition the data set into many subsets, or equivalently partition the space

into many regions, with some data structure (e.g., trees, hashing functions,

grids, quantization functions, etc.)

(b) Construct the indexing (inverted file) structure:

construct the ”inverted file” structure to record which points are contained

in each region

2. Online search

(a) Compute the query indices:

compute the indices of the ”query subset(s)/region(s)” that the query point

belongs to

(b) Access the query region(s):

from the indexing structure, use the indices to access the query region(s).

(c) Check by linear scan:

e.g., by sorting the candidates to obtain top retrieved results according to

their distances to the query, or by checking whether their distances to the

query is smaller than a threshold, etc. Sometimes the linear scan is applied

with low dimensional or compressed vectors/bits instead of original vectors

to speed up this step.

There are many NN search methods which have designed different data struc-

tures to partition the space and construct the indexing structure. Roughly speaking,

most of previous works can be categorized into three groups of data structures: tree

based, hashing based and clustering/quantizaiton based NN search, which will be

introduced in section 1.3.1, 1.3.2, and 1.3.3 respectively. Some discussions about ad-

vantages/disadvantages of these methods are provided in Section 1.3.4. Moreover,

there are also some methods that do not exactly follow the above framework, which

will be discussed in Section 1.3.4 too.

6

1.3.1 NN Search via Tree Based Partition

Tree based indexing methods include most earliest research on approximate nearest

neighbor, to name a few, [7, 8, 9, 10]. However, there are also lots of new works on

tree based indexing methods recently [11, 12, 13, 14, 15, 16].

In tree based NN Search methods, at the indexing step, the space is partitioned

with hieratical tree structure. More specifically, the whole space will be partitioned

into several regions, then each region will be further divided into smaller regions, until

some stopping criteria is satisfied.

An example of tree based NN search methods, kd-tree [7], is illustrated in Figure

1.1. In kd-tree, during offline indexing, every internal node is partitioned by an axis-

aligned hyperplane, which is the dimension of largest variance for points associated

with intermediate node. Usually, an offset (threshold) is chosen for the hyperplane to

make sure the partition is balanced, i.e., both sides of the hyperplane contain equal

number of points.

The indexing structure is naturally an indexing tree: each intermediate node stores

the splitting criteria and each leaf node stores the ”inverted file”, i.e.,, a list about

which data points belong to it. At the search step, we need to traverse from the root

to the query leaf node (i.e., the leaf node that the query point belongs to), obtain

all candidates in it, and check them. Often, probing the query leaf node alone will

only have a low probability to get the true nearest neighbor, and can not give us a

satisfying recall, so we need to probe more leaf nodes, e.g., via techniques such as

”back tracking” .

Besides kd-tree, there are many other projection based tree indexing methods,

such as random (projection) trees/forest[13], PCA tree[15], etc. The main difference

among these tree methods are the criteria/methods for generating the projections to

partition the database/space at each internal node. For example, in random (pro-

jection) trees/forest, at each internal node, a random hyperplane is chosen, so that

points in one side of the hyperplane go to left child while points in the other side go

7

to the right child. And in PCA tree, the projection is chosen as top PCA eigenvectors

for the database points.

Figure 1.1: kd-tree

Besides projection based tree indexing methods, another important category is

metric based tree indexing methods [17, 12, 18], including vantage point tree (vp-

tree), cover trees, and MVP trees, etc. For example, in the vp-tree method, we

partition data points in each internal node by choosing a point in the data space

(i.e., the ”vantage point”) and then dividing the data points into two parts: those

points that have a distance to the vantage point smaller than a threshold, and those

points that are not. Equivalently, we define a hyper-sphere with the center as the

vantage point and the radius as the threshold, and partition the data points according

to whether they are inside or outside the hyper-sphere. An illustration of vp-tree is

shown in Figure 1.2.

8

Figure 1.2: vantage point tree (vp-tree)

1.3.2 NN Search via Hashing Based Partition

Tree-based indexing approaches have shown good performance for low dimensional

data; however, they are known to degrade significantly when the data dimension

is high. So recently, many hash coding based algorithms have been proposed to

handle similarity search of high dimensional data, including random based hashing

methods such locality sensitive hashing and its variations/extensions [19, 20, 21, 22,

23, 24, 25, 26, 27, 28, 29] as well as learning based hashing methods, to name a few,

[30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45].

In hashing methods, instead of using tree structures, we use hash functions (usu-

ally hyper-planes) to partition the data/space. So the space will be partitioned to

many regions, and each region is represented with some hash codes, computed from

the hash functions, as illustrated in Figure 1.3. Note that some tree based indexing

methods also use hyper planes, but those hyper planes are local, i.e., only work-

ing for data points inside one internal node; however, each hash function in hashing

based indexing is global, works globally on the whole space/database. This difference

causes several important advantages for hashing based methods. First, it only needs

O(log(n)) hyper planes to partition the space to n regions while tree based methods

9

need O(n) hyper planes; Secondly, in hashing, for a given (query) region, it is easy to

find its nearby regions, just by permutating the hash bits which only take O(1) time

to find each nearby region; while in trees, it is quite difficult to find a nearby region,

usually with ”backtracking” methods which will take long time especially when the

dimension is high. This is the main reason of the ”curse of dimensionality” for tree

based methods, which makes tree based NN search method sometimes slower than

linear scan when the dimension is high.

Figure 1.3: Space partition by hash functions

The indexing structure is the hash table, in which each entry represents one region,

described by its hash codes 3. Each entry contains all the IDs for the data points that

fall into the region (i.e., data points that have the same hash codes as the region).

During the online search, the hash codes for the query point are first computed, and

then the hash codes are utilized to access the query entry in the hash table. The

3Sometimes when the hash code is too long and there are too many entries in the hash table, a

second conventional hashing (e.g., based on prime numbers) will be applied to reduce the number

of entries in the table.

10

process is illustrated in Figure 1.4. Data points in the query entry are obtained as

candidates, and usually reranking will be applied on candidates to further ensure

retrieving top near neighbors. In practice, to guarantee a high recall, often multiple

hash tables (note that each hash table represents one partition of the space) will

be generated, and the union of candidates from each hash table will be collected as

candidates.

Figure 1.4: Hash table look up

Briefly speaking there are two main groups of hashing methods: random based

hashing, and learning based hashing.

Among the popular randomized hash based techniques is the locality-sensitive

hashing (LSH) [20]. In LSH, random vectors (with some specific distribution) are

used as the projection bases to partition the space. As an important property of

LSH, points with high feature similarity are proven to have a high probability of

being assigned the same hash code and hence fall into the same region, which guaran-

tees an asymptotic theoretical property of sublinear search time. Variations of LSH

algorithms have been proposed in recent literatures to expand its usage to the cases

of inner products [21], Lp norms [22], Jaccard Similarity[21], and learned metrics [46],

kernel similarity[29], Chi2 distance[29], etc.

Despite of its success, one arguable disadvantage of LSH is the inefficiency of the

11

hash codes. Since the hash functions in LSH are randomly generated and independent

of the data, it is often not very efficient. And hence many hash tables are often

needed to get a good recall to keep a high precision. This would heavily increase the

requirement of storage, causing problems for very large scale applications. So, many

recent research works focus on how to generate high-quality short compact hash codes

[30, 31, 32, 33, 34, 35, 36, 38, 39, 40, 41, 42, 43, 44]. These codes are learned from

the data set, so each learned bit is more powerful in differentiating the neighbors of

random points, compared to those randomly generated bits. And hence one or a few

hash tables with short codes, can hopefully still achieve good precision.

The main difference of these methods is about how to learn the hash functions

from the data. One group of methods are to generate the hash functions by un-

supervised learning, e.g., PCA projections or its variations [47, 32], etc. Another

group of methods are via supervised learning (or semi-supervised learning) to make

sure nearest neighbors in training set can be preserved by the hash functions, which

are learned by neural networks or deep belief networks[30, 31, 33], linear subspace

learning techniques and their variations[39, 48, 40], or kernel functions[35, 36, 43].

1.3.3 NN Search via Clustering Based Partition

Besides tree based and hashing based indexing methods, another category of indexing

methods[49, 50, 51, 52] are based on clustering or vector quantization. Often in these

methods, the space is partitioned by clusters, for instance, obtained from k-means

clustering, as shown in Figure 1.5. (Or more specifically, the space is partitioned with

the Voronoi cells introduced by clusters.) During the offline indexing, the indexing

structure is usually conventional ”inverted file”, recording the indices of points falling

into each cluster. During the online search, we first find the cluster that the query

point belongs to, and get all points in the cluster as candidates. Actually, most

works on clustering based NN search are related to image/video search with local

features, where clusters serve as codebooks, and NN search is used to find matched

12

Figure 1.5: Space partition by clusters

local features in images/vides in the database for each query local feature.

The main difference among these clustering based NN search methods is how to

cluster/quantize the vectors (data points). The most popular way to cluster da-

ta points is via k-means clustering [49], while other methods include clustering via

regular lattice [52], supervised or semi-supervised clustering[51]. Moreover, in prod-

uct quantization method [50], clustering/quantization are done several times, while

each quantization is applied to a subset of data dimensions. Moreover, the distance

from the query point to the cluster centers is computed or approximated to rerank

candidates.

Moreover, we can also build trees by using hieratical clustering methods, where

each internal node is quantized to clusters generated from data only in the internal

node, as illustrated in 1.6.

1.3.4 Discussions

We have mainly introduced three kinds of approximate NN search methods:tree based

methods, hashing based methods, and quantization/clustering based methods. No

13

Figure 1.6:

method is superior to others in all scenarios. Each method has its own advantages

and disadvantages. For example, one big advantages of tree based methods is the

flexibility. Tree based methods can be easily extended to support data with mixed

kinds of features (e.g., binary, integer, real numbers), and different distance metric.

They are also easy to understand and implement, making them still popular in prac-

tice, despite the inferior performance sometimes. However, its main disadvantages are

the inefficiency for high dimensional data, and also the requirement to store O(K)

partition functions in memory to create K regions. For hashing methods, they over-

comes the ”curse of dimensionality” in some sense and can usually deal with high

dimensional data quite well. Moreover, it only needs O(logK) partition functions to

create K regions, requiring less memory, and making multiple partitions convenient

and practical. However, they usually can not support mixed kinds of features or

multiple distances. Clustering/quantization methods can usually create high quality

partitions, compared to the other two kinds of methods, when the number of region

K is fixed. However, it needs to spend expensive training time and store a large

number of cluster centers, which prohibits the usage of large K, and hence can not

scale up to large data set.

14

In terms of how the partition functions are generated, the partitions can also

be categorized into two main groups: data independent (random) partitions and

data dependent (learning based) partitions. The former includes random tree/forest

methods, locality sensitive hashing and its variations, and so on, where the partition

structures (functions) are randomly generated, independent of the database points.

The latter consists of many kinds of tree (e.g., kd-tree, vp-tree), hashing (e.g., PCA

hashing, spectral hashing) and quantization based NN search methods, where the

partitions are learned or optimized from database points. The main advantage of

random partitions is that no training is required, and hence it is very easy to scale up

to large data set. However, the partitions may not be optimal/high-quality since they

are randomly generated. On the other hand, data dependent methods can usually

generate better partitions (when fixing the number of regions K). But they usually

need massive computation to learn the partitions. So when computation capacity is

the main bottleneck, data independent methods are more appropriate, while when

memory is the main bottleneck, data dependent approaches is a better choice.

Finally, it is worth noting that there are some nearest neighbor search methods

which may not exactly follow the data partition framework as discussed above. For

example, several hashing methods are following the ”hamming ranking” paradigm.

Basically, after the hash bits are computed, these methods will not build hash tables,

and instead they will linear scan all database points by hamming distance between

the query point’s hash bits and each database point’s hash bits. All these methods

belong to (or are similar as) ”dimension reduction” to some extent. Basically, instead

of using original features for linear scan, they apply linear scan on the reduced low

dimensional (binary) bits. This method can not achieve sub-linear search time, and

hence can not scale up to very large scale data set, like billions or trillions of points

by these methods alone. Actually, these methods can be good options as the step 3

(”check by linear scan”) in our data partition framework, to scale up to very large

scale data sets.

15

In this thesis, we will mainly discuss the sublinear NN search methods, though

which can/may use the linear NN search methods as one step.

1.4 Unified Formulation of Optimal Data Partition

for Approximate NN Search

Denote y = Ψ(x) : Rd → N as the partition function, which will map a real vector

x in Rd space to a positive integer y. As discussed in section 1.3, Ψ can be hashing

based partition, tree based partition, clustering based partition, etc, and y is actually

the index of region that x falls into. For example, for hashing based methods, the

index is the hash codes of the bucket; for tree based methods, the index is the codes

of the leaf nodes; For clustering based methods, the index is the ID of each cluster.

Sometimes when multiple partitions instead of one partition are needed (for ex-

ample, multiple hash tables in hashing methods), Ψ() will be y = Ψ(x) : Rd → NL,

where L is the number of needed partitions. In other words Ψ() will map a d dimen-

sion real vector x to a L dimension integer vector, where yi, the i-th dimension of y

represents the region index of x in the i-th partition.

Under the data partition framework, given a query vector q, the time cost of online

search consists of three parts:

1. Tindices(Ψ):

the time cost to compute the index of the query region(s), i.e., Ψ(q).

2. Tregions(Ψ):

the time cost to access the candidate regions. If we only access the region

Ψ(q) itself, Tregions(Ψ) is O(1) and can often be omitted. However, sometimes

we will access not only the region of Ψ(q), but also nearby regions close to

Ψ(q). For example, in hashing, we often access all regions whose indices have

a small hamming distance to Ψ(q). And other examples include backtracking

16

techniques in tree based methods. In these cases, we will access multiple regions

for one query index, and hence Tregions(Ψ) might be much larger.

3. Tcheck(Ψ):

the time cost to check/rank all retrieved candidates. For a query q, denote

P̂any(Ψ) as the probability for a random database point to be retrieved under

the partition Ψ. Then nP̂any(Ψ) is the number of candidates retrieved. Ucheck

is the time cost to check one candidate, which often equals to computing the

distance between two d dimensional points. So Tcheck(Ψ) = P̂any(Ψ)Ucheck.

Moreover, suppose P̂nn is the probability for q’s nearest neighbor point to be

retrieved under the partition Ψ. P̂nn is actually the recall of the retrieved points.

Suppose δ is the maximum acceptable error probability. In other words, the prob-

ability to miss the true nearest neighbor 1 − P̂nn is supposed to be smaller than δ.

Here δ is a small positive number satisfying δ ≤ 1.

So the optimal partition to minimize search time while guaranteeing search accu-

racy can be formulated as:

min
Ψ

T (Ψ) = Tindices(Ψ) + Tregions(Ψ) + nP̂any(Ψ)Ucheck

s.t.,

1− P̂nn(Ψ) ≤ δ

(1.1)

We can also put the constraint into the cost function and obtain another formu-

lation as a joint optimization of search accuracy and time:

min
Ψ

(1− P̂nn(Ψ)) + λT (Ψ) = (1− P̂nn(Ψ)) + λ[Tindices(Ψ) + Tregions(Ψ) + nP̂any(Ψ)Ucheck]

(1.2)

The above formulations use recall to describe search accuracy. One may argue

precision should be better. But note that we have a checking step, e.g.,reranking,

17

in our process, so high recall will lead to high precision in top returned results after

checking.

Often Tindices(Ψ) and Tregions(Ψ) are much smaller than Tcheck = nP̂any(Ψ)Ucheck,

and hence the optimal partition formulation can be simplified as

min
Ψ

(1− P̂nn(Ψ)) + λnP̂any(Ψ)Ucheck

(1.3)

So for large scale nearest neighbor search, the key question is: how to design the

partition Ψ, such that the above optimization can be achieved.

First, there are some interesting trivial cases, which are obviously not the optimal

solutions. For example, one kind of partition Ψ is to put all points into one region

(leaving all other regions empty), and hence Pnn = 1 and Pany = 1. In this case,

this partition will lead us to linear scan. Another strategy of creating Ψ is to putting

points into regions arbitrarily without considering their distances. Then for a query

point, we can arbitrarily return one point from one region as its nearest neighbor.

This will give us the minimal search time, but the worst search accuracy, which is

basically ”random guess”.

Moreover, the optimal partition depends on the scenarios of our nearest neigh-

bor search, including the indexing structure, the way to generate/choose partition

functions, etc.

So the unsolved questions now is: under different scenarios, how to formulate Ψ,

as well as Ucheck, Tregions, Tindices, P̂nn(Ψ) and P̂any(Ψ), and moreover how to solve

the above optimization problems. We will provide discussion in details in Part II and

Part III of this thesis.

1.5 Thesis Outline

For random based partitions, the partitions are independent of the data, and are

usually determined by only a few parameters. So the exact formulation and analysis

18

of Ψ, Ucheck, Tregions, Tindices as well as P̂nn(Ψ) and P̂any(Ψ) are not difficult, making

both theoretical results and practical methods possible. In Part II of this thesis,

following the framework of optimal data partition in Section 1.4, we will provide new

bounds on the time/space complexity for LSH and also various kinds of NN search

methods based on random partition. Moreover, based on the derivation of the tight

bound, we also explore how to choose the parameters of random partition for each

particular data set.

For learning based partitions, the partition Ψ depend on the training data, and

hence exact formulation and analysis of Ψ, and especially P̂nn(Ψ) and P̂any(Ψ), are

usually very difficult. So besides theoretical analysis, we will also need approximation,

heuristics, and intuition. We will focus on designing algorithms rather than deriving

theoretical results like bounds for learning based partitions. In Part III, following the

framework of optimal data partition, we will show how to design various NN search

methods, which perform better than or at least as good as other state-of-the-art NN

search methods.

In Part IV, we will demonstrate examples of applications based on large scale NN

search. We will mainly focus on the applications of visual search engine, especially

mobile visual search, based on the large scale NN search techniques we discussed

in Part II and Part III. Our mobile visual search based on our hashing methods

outperforms other visual search methods, and is the first system that can index million

scale image object sets and allow search response over low-bandwith networks within

2 seconds.

In Part V, we will investigate more fundamental problems beyond algorithms. For

example, what is the difficulty of nearest neighbor search on a given data set, indepen-

dent of any method? What data properties (e.g., dimension, sparsity, etc.) affect the

difficulty and how? How will the difficulty or data property affect the complexity and

algorithm design for approximate nearest neighbor search? ... Investigation on these

fundamental problems will provide us deep understanding of NN search problems,

19

and inspiration of better design of NN search methods.

The proofs of all theorems/collaries in this thesis are provided in Chapter 9.

20

Part II

Nearest Neighbor Search via

Random Partitions

21

In this part of the thesis, we will mainly discuss nearest neighbor search based

on random partitions, including methods such as locality sensitive hashing, random

(projection) trees/forests, etc. Random partition based methods do not need train-

ing/optimization to generate the partition functions, and hence are very practical for

very large databases. Moreover, random partition based methods are easy to analyze,

and hence we can obtain a very deep understanding of them with solid theoretical

results.

In Chapter 2, based on the formulation of optimal data partition in (1.1), we will

find the formulation P̂nn(Ψ), P̂any(Ψ), Tindices and Tregions for nearest neighbor search

via random partitions. And hence by analyzing the bound of the optimal value of

(1.1), we can provide a lower bound of the time complexity for many variations of

random partitions based methods. We will first develop the lower bound for locality

sensitive hashing, and then extend it to a group of hashing methods called Nearest

Neighbor Preferred Hashing, a more general group of methods called Nearest

Neighbor Preferred Partition, including LSH, random hashing, random forests

and so on. Our techniques can also be applied to obtain a tighter upper bound

for LSH. Moreover, based on the theories, we also provide an approach to choose

parameters for LSH and other random partition methods on each particular data set.

22

Chapter 2

Theories On the Complexity of NN

Search via Random Partitions

2.1 Introduction to Previous Works On the Com-

plexity of LSH

Among random partition based nearest neighbor search methods, locality sensitive

hashing methods [19, 20, 21, 22], are one of the most popular and successful ones. In

this chapter, we will first formulate the time and space complexity, and then develop

the tight bound of time complexity for locality sensitive hashing methods (using the

LSH proposed in [21] as an example), in Section 2.2 and 2.3. We will generalize the

bound to other randomized nearest neighbor search methods in section 2.6 .

Locality sensitive hashing (LSH) was first proposed in [19, 20], with an unpractical

method that only works to approximate the hamming distance in the embedded

unary bits 1. It was then extended to approximate the angle distance [21] and Lp

distance [22] for high dimensional vectors, making it successful in not only theory

but also engineering applications. Later on, variations of LSH are further developed

1which is equivalent to L1 distance of the original feature vector

23

to approximate advanced distance metrics, like learned metrics [27], kernel similarity

[37], complex metrics such as pyramid matching distance [26], etc.

Intuitively speaking, LSH is based on a simple idea: after a linear projection and

then assignment of points to a bucket via quantization, points that are nearby are

more likely to fall in the same bucket than points that are further away.

Using LSH consists of offline indexing the data and online searching for neighbors

of a query point, as discussed in Section 1.3. More specifically,

Step 1: Indexing

• Compute one hash code: Compute one hash code by a random hash function

h(x), where h(x) maps a vector x to an integer.

• Multi-line projection: obtain an array of k integers by doing k one-line hash

functions. All points that project to the same k values are called members of

the same (k-dimensional) bin/bucket. At this stage often a conventional hash

is used to reduce the k-dimensional bin identification vector to a location in

memory. With a suitable design, this hash produces few collisions and does not

affect our analysis.

• Repeat by hashing the dataset to k-dimensional buckets/bins into a total of L

times. Thus, every point in the dataset belongs to L tables.

Step 2: Search

1. Compute the L (k-dimensional) buckets/bins for the query point using the hash

functions as in the indexing stage.

2. Retrieve all points that belong to these bins (we call them candidates), measure

their distance to the query point, and return the one that is closest to query

point.

There are many variations about locality sensitive hashing. The main difference of

each variation is the hash function h(x). For example, in Rd space, one kind of hash

24

function with h(x) = sign(vTx), where v follows standard Gaussian distribution, is

called binary LSH. Another hash function h(x) = ⌊vT x+b
w

⌋ is called p-stable LSH,

where v is a vector and each dimension is i.i.d sampled from p-stable distribution,

and b follows the uniform distribution of [0, w].

Intuitively, the definition of locality sensitive hashing is: two points with smaller

distance should have higher probability to get the same hash code. More specifically,

a (r, cr, p1, p2) (where c > 1 and p1 > p2) locality sensitive hashing function family

means [19, 20]: for two points with distance smaller than r, they have at least p1

probability to get the same hash code; while for two points with distance larger than

cr, they have at most p2 probability to get the same hash code. In other words, a

(r, cr, p1, p2) sensitive hashing function [19, 20] is defines as:

For c > 1 and p1 > p2, a family of hash functions H is called (r, cr, p1, p2) sensitive

for D(,), if for any x and q,

when D(x, q) ≤ r, P (h(x) = h(q)) ≥ p1

when D(x, q) ≥ cr, P (h(x) = h(q)) ≤ p2

Binary LSH, p-stable LSH, and other LSH methods are all (r, cr, p1, p2) sensitive,

as proved in [21, 22], etc.

One main reason for LSH to become popular and successful is its solid theory

foundations. For the first time it provides a theoretical upper bound of sublinear

search time that works for high dimensional data [21, 22].

More specifically, for a (r, cr, p1, p2) locality sensitive hashing function family, we

have the following theory about the upper bound of its time and space complexity

[19, 20, 21]:

Theorem 2.1.1. Consider LSH from a (r, cr, p1, p2) hash function family where c > 1

and p1 > p2. For a query q, LSH can solve the c-approximate nearest neighbor problem

2 with time complexity O(d log 1
δ
nρ logp−1

2
n) and space complexity O(nd+ log 1

δ
n1+ρ),

2c-approximate nearest neighbor: if the true nearest neighbor has a distance r, LSH will at least

25

where ρ = log p1
log p2

. The number of needed hash tables is O(log 1
δ
nρ).

Note that p1 > p2 is guaranteed in the definition of LSH, so ρ = log p1
log p2

in the above

theorem always satisfies ρ < 1. And hence the search time O(d log 1
δ
nρ logp−1

2
n) is

sublinear in terms of n. The value of ρmainly determines how ”sublinear” LSH search

time will be. In [22], it is shown that ρ ≤ 1
c
, and moreover, [53] proves ρ ≥ 0.462

cp
for

LSH to approximate Lp distance.

In this chapter, following the formulation of optimal data partition in (1.1), we

formulated the time complexity of LSH as an optimization problem in terms of pa-

rameters k and L, where k is the number of hash functions in each hash table and L

is the number of hash tables. By analyzing the the optimization problem, we present

a lower bound of time and space complexity for LSH. This lower bound can also

be applicable to a more general random hashing methods called Nearest neighbor

Preferred Hashing (NPH), which include LSH as a special case. Moreover, the

tight bound can be further extended to a more general random partition based in-

dexing methods, called Nearest neighbor Preferred Partitions (NPP), which

includes LSH, many random hashing, as well as random trees/forests, etc. More-

over, the techniques are also applied to develop a new tighter upper bound for LSH,

and also a new approach to choose parameters for LSH and other random partition

methods on one particular data set.

The proofs of our theorems/collaries in this section can be found in Section 9.1 in

the Appendix.

an approximate nearest neighbor point within distance cr

26

2.2 Formulation of the Time and Space Complex-

ity for LSH

In this section, we will mainly discuss LSH with random hyperplanes to partition the

space, such as the one in [21], where the space partitions Ψ consists of L individual

partitions (i.e., L hash tables), each of which involves k random projections.

Following the formulation of optimal data partition in (1.1), we will first find the

formulation of time and space complexity for locality sensitive hashing with random

hyperplanes.

Recall (1.1), which is

min
Ψ

T (Ψ) = Tindices(Ψ) + Tregions(Ψ) + nP̂any(Ψ)Ucheck

s.t.,

P̂nn(Ψ) ≥ 1− δ

(2.1)

To the study the complexity of LSH, we need to study the complexity of min
Ψ

T (Ψ)

in the scenario of LSH.

For LSH, the partition Ψ is determined by two parameters, k and L. So we need

to obtain the exact formulation of P̂nn(Ψ), P̂any(Ψ), Tindices, Tregions and finally T (Ψ),

in terms of k and L.

Given the fixed query point q, denote pq,Xi
as the probability of database point

Xi and q to have the same hash code for one hash function. Denote pq,any as the

probability of a random database point and query q to have the same hash code for

one hash function, in other words, pq,any =
1
n

∑
i=1,...n pq,Xi

. Moreover, denote pq,nn as

the probability of q and its nearest database point to have the same hash code for

one hash function. For simplicity, we will use pXi
, pany and pnn instead of pq,Xi

, pq,any

and pq,nn, when there is no ambiguity. It is easy to see that pany ≤ pnn is always true

for LSH.

27

As defined in Section 1.4, P̂nn is the probability to return a true nearest neighbor

point for the query with our partition. Note that the probability to find the nearest

neighbor in one hash table (pnn)
k, the probability to miss the true nearest neighbor in

one hash table is 1− (pnn)
k, and so the probability to miss the true nearest neighbor

in all L hash tables is (1− (pnn)
k)L. So we have

P̂nn = 1− (1− (pnn)
k)L (2.2)

Moreover, as defined in Section 1.4, P̂any is the probability to return a random

database point for the query with our partition. Note that the probability for a

database point Xi to be returned in one hash table is (pXi
)k. So the probability for

a random database point to be returned in one hash table with k hash functions is

P̂any,1 =
1
n

∑
i=1,...n(pXi

)k. Note that according to Jensen’s inequality, we have

P̂any,1 =
1

n

∑
i=1,...n

(pXi
)k ≥ (

1

n

∑
i=1,...n

pXi
)k = (pany)

k (2.3)

so the probability for a random database point to be returned in L hash tables

is P̂any = 1 − (1 − P̂any,1)
L >= 1 − (1− (pany)

k)L. Note that usually (pany)
k is very

small, so

P̂any >= 1− (1− (pany)
k)L ≈ 1− (1− L(pany)

k) = L(pany)
k.

Denote Ubin as the cost to locate one hash bin (bucket) for each hash table in the

memory. It is easy to see Tregions = LUbin. And Ubin = Θ(1) for conventional locality

sensitive hashing with single probe.

Moreover, Tindices(Ψ) = LUindices, where Uindices is the time cost to compute the

hash codes in one hash table. Denote Uhash is the time cost to compute one hash bit,

it is easy to see that Uindices = kUhash, since in hash table we need to compute k hash

bits. Tindices(Ψ) = LkUhash.

For conventional binary LSH with hperplane like h(x) = sign(v · x), we have

Uhash = Θ(d), Ucheck = Θ(d). For other kinds of binary LSH, Uhash and Ucheck may

28

be different. 3

Note that usually Ubin ≪ Uhash, so the term UbinL can be ignored compared to

UhashkL, when discussing time complexity.

For LSH, denote T (Ψ) in terms of k and L as TLSH(k, L). Putting everything

together, for LSH, we have

TLSH(k, L) ≥ T (k, L) = UhashkL+ UcheckLn(pany)
k (2.4)

Denote Tmin as follows,

Tmin = min
k,L

T (k, L) = min
k,L

UhashkL+ UcheckLn(pany)
k (2.5)

s.t., (1− (pnn)
k)L ≤ δ (2.6)

i.e., Tmin is optimal T (k, L) with the probability guarantee.

From (2.4), it is easy to see that in the scenario of LSH,

minTLSH(k, L) ≥ Tmin

To study the complexity of LSH, i.e., the complexity of minTLSH(k, L), We will

first explore the complexity of Tmin in Section 2.3, and then show the complexity for

LSH in Section 2.4.

We need to store n data points with d dimension each, and L hash tables with n

elements each. So the space complexity will be

SLSH(k, L) = nL+ nd (2.7)

Basically, we just need to study the complexity of L for space complexity.

3For example, for LSH with learned metric [27], Uhash = O(d2). For kernelized LSH [37], Uhash =

O(p2 + p ∗UK), where p is the number of landmark points to compute the kernelized hash function,

and UK is the time cost to compute one kernel function. Moreover, if we use more complex distances

rather than Lp for checking (e.g., reranking) the data, Ucheck may not Θ(d) any more. Note that,

usually we have Ubin ≪ Uhash and Ubin ≪ Ucheck.

29

2.3 The Complexity of Tmin

First, it is easy to see the inequality constraint (1− (pnn)
k)L ≤ δ in (2.5) can be

changed to equality constraint (1− (pnn)
k)L = δ. 4 In other words,

Tmin = min
k,L

T (k, L) = min
k,L

UhashkL+ UcheckLn(pany)
k (2.8)

s.t., (1− (pnn)
k)L = δ (2.9)

Theorem 2.3.1.

Tmin = Θ(log
1

δ
nρUhash[

Ucheck

Uhash

]ρα0α
−ρ)

Smin = Θ(dn+ (log
1

δ
)n1+ρ[

Ucheck

Uhash

]ρα−ρ)

The number of hash tables is L = Θ((log 1
δ
)nρ[Ucheck

Uhash
]ρα−ρ). The number of returned

points is Θ(log 1
δ
nρ[Ucheck

Uhash
]ρ−1α1−ρ).

Here α0 =
log(τ

Ucheck
Uhash

n)+1

τ

α =
ρ log(τ

Ucheck
Uhash

n)+1

τ
, ρ = log pnn

log pany
and τ = log(pnn/pany).

The proofs of the tight bound can be found in section 9.1.2.

When Uhash = Ucheck = Θ(d) , Ubin = Θ(1), the following corollary gives us a

simplified result.

Corollary 2.3.2. For conventional binary LSH with Uhash = Ucheck = Θ(d) , Ubin =

Θ(1),

Tmin = Θ(log
1

δ
dnρβ0β

−ρ)

Smin = Θ(dn+ (log
1

δ
)n1+ρβ−ρ)

The number of hash tables is Θ((log 1
δ
)nρβ−ρ) . Here β0 = log(τn)+1

τ
, β = ρ log(τn)+1

τ
,

ρ = log pnn

log pany
and τ = log(pnn/pany).

4 Actually, if the solution kmin and Lmin satisfy (1− (pnn)
kmin)Lmin < δ, we can find L1 so

that (1− (pnn)
kmin)L1 = δ and L1 < Lmin. Note that T (k, L) is linear with L, so T (kmin, L1) <

T (kmin, Lmin), which conflicts with the fact that T (kmin, Lmin) is the minimal value.

30

2.4 The Complexity of LSH

2.4.1 Lower Bound of LSH

From Equation (2.4), we know that in the scenario of LSH, the time complexity

minTLSH(k, L) have minTLSH(k, L) >= minT (k, L) = Tmin.

Moreover, from Theorem 2.3.1, we know that Tmin = Θ(log 1
δ
nρUhash[

Ucheck

Uhash
]ρα0α

−ρ).

So immediately, we can get a lower bound for LSH:

Theorem 2.4.1. To achieve the exact nearest neighbor with a probability 1− δ, LSH

will have a time complexity

Ω(log
1

δ
nρUhash[

Ucheck

Uhash

]ρα0α
−ρ)

and space complexity

Ω(dn+ (log
1

δ
)n1+ρ[

Ucheck

Uhash

]ρα−ρ)

The number of returned points is Ω(log 1
δ
nρ[Ucheck

Uhash
]ρ−1α1−ρ). Here α0 =

log(τ
Ucheck
Uhash

n)+1

τ

α =
ρ log(τ

Ucheck
Uhash

n)+1

τ
, ρ = log pnn

log pany
and τ = log(pnn/pany).

For conventional binary LSH with Uhash = Ucheck = Θ(d) , Ubin = Θ(1), the

following corollary gives us a simplified result:

Corollary 2.4.2. For conventional binary LSH with Uhash = Ucheck = Θ(d) , Ubin =

Θ(1), the time complexity of LSH is

Ω(log
1

δ
dnρβ0β

−ρ)

and space complexity is

Ω(dn+ (log
1

δ
)n1+ρβ−ρ)

Here β0 =
log(τn)+1

τ
, β = ρ log(τn)+1

τ
, ρ = log pnn

log pany
and τ = log(pnn/pany).

31

In (2.3), If c1(
1
n

∑
i=1,...n pXi

)k ≤ P̂any,1 = 1
n

∑
i=1,...n(pXi

)k ≤ c2(
1
n

∑
i=1,...n pXi

)k,

for two constant c1 and c2, or in other words,

1

n

∑
i=1,...n

(pXi
)k = Θ((

1

n

∑
i=1,...n

pXi
)k)

, then we will have P̂any,1 = Θ((pany)
k) and hence,

TLSH(k, L) = Θ(T (k, L)).

In this case, we can actually get a tight bound for the time complexity of LSH:

Theorem 2.4.3. Given the data set {Xi, i = 1, ..., n}, if 1
n

∑
i=1,...n(pXi

)k = Θ((1
n

∑
i=1,...n pXi

)k)

is true, to achieve the exact nearest neighbor with a probability 1− δ, LSH will have

a time complexity

Θ(log
1

δ
nρUhash[

Ucheck

Uhash

]ρα0α
−ρ)

and space complexity

Θ(dn+ (log
1

δ
)n1+ρ[

Ucheck

Uhash

]ρα−ρ)

Corollary 2.4.4. For conventional binary LSH with Uhash = Ucheck = Θ(d) , Ubin =

Θ(1), the time complexity in Theorem 2.4.3 will become

Θ(log
1

δ
dnρβ0β

−ρ)

and space complexity become

Θ(dn+ (log
1

δ
)n1+ρβ−ρ)

The assumption that 1
n

∑
i=1,...n(pXi

)k = Θ((1
n

∑
i=1,...n pXi

)k) seems quite stric-

t at first glance, because it requires that the values of pXi
are not far from each

other, in other words pXi
need to be ”concentrated”. However, as will be discussed

in Section 7.2, when the data dimensions is large enough, D(Xi, q), the distance

between the query q and data point Xi, will actually concentrate, and hence pXi

will also concentrate too. In other words, the assumption that 1
n

∑
i=1,...n(pXi

)k =

Θ((1
n

∑
i=1,...n pXi

)k) may be practical for high-dimensional data.

32

2.4.2 New Upper Bounds

Previous theoretical study on the LSH complexity usually focus on the upper bound

of the time complexity. For example, for LSH with (r, cr, p1, p2) hash functions, in

[19, 20, 21, 22], the time complexity of LSH is upper bounded by a function, more

specifically,

O(dkL+ dLn(p2)
k)

, and the constraints is to

s.t., (1− (p1)
k)L ≤ δ

Basically, the previous works on LSH complexity have studied the following opti-

mization problem,

T
′

min = min
k,L

UhashkL+ UcheckLn(p2)
k (2.10)

s.t., (1− (p1)
k)L ≤ δ (2.11)

and provide an upper bound for this optimization problem, as shown in to get The-

orem 2.1.1, by luckily picking a sub-optimal k and L.

However, in (2.5), if we replace pany with p2, pnn with p1, (2.5) will have exactly

the same form as (2.10). So all the proofs and conclusions for Theorem 2.3.1 and

Collary 2.4.4 are still applicable with the same replacement. In other words,

T
′

min = Θ(log
1

δ
nρUhash[

Ucheck

Uhash

]ρα0α
−ρ)

Here α0 =
log(τ

Ucheck
Uhash

n)+1

τ

α =
ρ log(τ

Ucheck
Uhash

n)+1

τ
, ρ = log p1

log p2
and τ = log(p1/p2).

So we can have a new upper bound for LSH:

Theorem 2.4.5. With (r, cr, p1, p2) hash function family, LSH can solve the c-approximate

nearest neighbor problem with time complexity O(log 1
δ
nρUhash[

Ucheck

Uhash
]ρα0α

−ρ).

33

Corollary 2.4.6. With (r, cr, p1, p2) hash function family and moreover, if Uhash =

Ucheck = Θ(d), LSH can solve the c-approximate nearest neighbor problem with time

complexity O(log 1
δ
dnρβ0β

−ρ). Here β0 = log(τn)+1
τ

, β = ρ log(τn)+1
τ

, ρ = log p1
log p2

and

τ = log(p1/p2).

From Theorem 2.4.5 and Collary 2.4.6, we can see that the previous upper bound

in Theorem 2.1.1 might be loose, especially when p1 close to p2. For example, an

interesting extreme case is when p2 = p1. In this case, the upper bound in previous

time complexity is O(log 1
δ
dn logp−1

2
n), as shown in Theorem 2.1.1, It is even worse

than linear scan (i.e.,, O(dn)), which is intuitively not very possible. On the contrary,

our new upper bound in Collary 2.4.6 shows the time complexity of LSH in this case

should be O(log 1
δ
dn), the same as linear scan.

2.5 Parameters for Locality Sensitive Hashing

The current literature does not give a definitive statement about how to find the

best parameter values. The previous theoretical results about the LSH parameters

are mainly based on [19, 20, 21], which shows k = O(logp−1
2

n). First, since p2 is

independent of the data set, so it will give the same parameters for all data set with

the same number of points, without considering the distribution of the data at all,

which of course will not reasonable for lots of cases. Moreover, the result is in a range

of O(), which may be quite loose in practice.

In this Chapter, we will present the analysis of the parameters for LSH for each

particular data set, which not only benefits us with algorithms to obtain parameters

in practice, but also provides us deeper understanding and better insights for them.

During the discussions of the time and space complexity for LSH, we have actually

provided some information about the range for optimal k of LSH (in O() or Θ()terms),

for instance, as shown in Theorem 9.1.3 in the Appendix. But in practice we need

the actual values of the parameters rather than the ranges.

34

So in this Chapter, we will go further to find out the actual value for optimal

parameters k and L of binary LSH. We will also analyze how the optimal parameters

k and L are affected by different factors, like the number of data n, the probability

profile pnn and pany, the experiment environment constants Uhash, Ucheck, etc.

Recall Theorem 9.1.3 (in the Appendix for the proofs of Chapter 2), we have

p−kmin
any =

α1n

(kmin log p−1
nn + 1)

where

α1 =
Ucheck log(pnn/pany)

Uhash

.

Moreover, recall that kmin = Θ(log(α1n)

log p−1
any

) as shown in Lemma 9.1.4 and 9.1.5, so

when n is large, kmin will not be small, and hence kmin log p
−1
nn ≥ 1, unless pnn is almost

1, which is not very possible for real world high dimensional data.

So approximately we have

p−kmin
any =

α1n

kmin log p−1
nn

We can rewrite it as

kmin =
log(n)

log p−1
any

+
log(η0)

log p−1
any

− log(kmin)

log p−1
any

(2.12)

where η0 = α1/ log p
−1
nn =

Ucheck log pnn
pany

Uhash log p−1
nn

.

So an approximate solution for the equation (2.12) can be obtained as

kmin = k0 −
log(k0)

log p−1
any

(2.13)

where k0 =
log(n)

log p−1
any

+ log(η0)

log p−1
any

.

Actually, putting kmin = k0 − log(k0)

log p−1
any

into the right hand side of (2.12), we get

log(n)

log p−1
any

+
log(η0)

log p−1
any

− log(kmin)

log p−1
any

= k0 −
log(k0 − log(k0)

log p−1
any

)

log p−1
any

= k0 −
log(k0)

log p−1
any

−
log(1− log(k0)

k0 log p
−1
any

)

log p−1
any

= kmin −
log(1− log(k0)

k0 log p
−1
any

)

log p−1
any

35

Note that
log(1− log(k0)

k0 log p−1
any

)

log p−1
any

≈
log(k0)

k0 log p−1
any

log p−1
any

is quite small. So the approximate solution is

quite accurate.

Moreover, with kmin, we can obtain Lmin as follows:

Lmin =
− log δ

pkmin
nn

(2.14)

From (2.13) and (2.14), we can find out how the parameters k and L are affected

by factors such as n, pnn, pany, Uhash, Ucheck, and δ. 5. The relationships are shown

in Table 2.1, where ”↑” means k or L will increase if one of the factors increase; ”↓”

means k or L will decrease if one of the factors increase; ”-” means k or L will not

be affected; ”x” means how k or L will be affected is unknown.

For example, it is very easy to see that if n increases, k0 will increase. Note that

k0 will increase much faster than log(k0), so kmin will increase. Moreover, when Ucheck

or pnn increase, η0 will increase and so will k0 and kmin. Also, when pany increases,

kmin will increases, because log(n)

log p−1
any

increases faster than log(k0)

log p−1
any

. Finally, it is easy to

see δ will not affect kmin.

Moreover, when kmin increases and pnn is fixed, L will increase. So L is affected

by n, Ucheck, Uhash or pany the same way as k is. Moreover, we will need less tables L

for larger δ.

n pnn pany Uhash Ucheck δ

k ↑ ↑ ↑ ↓ ↑ -

L ↑ x ↑ ↓ ↑ ↓

Table 2.1: The effect of different factors on the parameters k and L of LSH (with

single probe).

5n: the database size, pnn: the probability of two nearest neighbor points to have the same code

for one hash function h(x), pany: the probability of two random points to have the same code for

one hash function h(x), Uhash: the unit cost of compute h(x), Ucheck: the unit cost of checking

one candidate (e.g., compute the distance), and δ: the error probability to miss the true nearest

neighbors

36

2.6 Other NN Search Methods with Random Par-

titions

We have formulated the time and space complexity for locality sensitive hashing in

Section 2.2, and presented the tight bound in Section 2.3. In this section, we will

extend the formulation and the bound to other NN search methods with Random

Partitions.

2.6.1 Time and Space Complexity for Nearest Neighbor Pre-

ferred Hashing (NPH) Methods

The locality sensitive hashing is formally defined as (r, cr, p1, p2)-sensitive hashing, as

shown in Section 2.1. Mainly speaking, it requires the collision probability of two

points for the hash function h(x) to be inversely monotonic to their distance.

However, for lots of hash functions h(x), it might be too strict to require the

monotonic property, or sometimes just too difficult to prove the monotonic property in

theory. Actually in our discussions of the lower bound for LSH in above sections, we do

not actually need the monotonic property. What we need is a less strict requirement:

the probability of two nearest points to have the same hash code is larger than the

probability of two random points to have the same hash code. In other words, nearest

neighbors are preferred by the hash functions h(x). More specifically, we can formally

define Nearest Neighbor Preferred Hashing (NPH) as follows: Nearest Neighbor

Preferred Hashing (NPH)

Given a data set X and a distance D, a random hash function h(x) is called Nearest

Neighbor Preferred Hashing (NPH) in terms of D, if pnn ≥ pany, where pnn and pany

are defined as in Section 2.2.

First of all, it is easy to see all LSH based on hyper-plane are Nearest Neigh-

bor Preferred Hashing, because of the inverse monotonic property of LSH. However,

besides hyper-plane based LSH functions, there are also many other possible hash

37

functions which are NPH.

For example, besides using hyper-planes like in LSH, we can also use other struc-

tures to partition the data, e.g., hyper-spheres instead of hyper-planes as hashing

functions to partition the data. More specifically, the hash function is defined as

h(x) = sign(D(vi, x) − b), where vi is a randomly chosen pivot in Rd, and b is a

parameter of the radius of the hyper-sphere served as a distance threshold. In other

words, h(x) = 1, if D(vi, x) <= b, i.e., data point x falls inside the hyper-sphere;

h(x) = 0, if D(vi, x) > b, i.e., data point x falls outside the hyper-sphere. Moreover,

besides hyper-planes and hyper-spheres, we can actually use any (closed) surfaces as

the hash function to partition the space. It is intuitive that pnn ≥ pany for these kinds

of hash functions.

Similarly as in LSH, if we use k hyper-sphere based hash functions h(x) as one

partition to build one hash table, and repeat the partition L times to get L hash

tables. Then we will get the formulation of the time and space complexity as conven-

tional LSH with hyper-planes, and hence obtain the same bound on time and space

complexity:

Theorem 2.6.1. To achieve the exact nearest neighbor with a probability 1 − δ,

Nearest Neighbor Preferred Hashing (NPH) will have a time complexity

Ω(log
1

δ
nρUhash[

Ucheck

Uhash

]ρα0α
−ρ)

and space complexity

Ω(dn+ (log
1

δ
)n1+ρ[

Ucheck

Uhash

]ρα−ρ)

The number of hash tables L is Θ((log 1
δ
)nρ[Ucheck

Uhash
]ρα−ρ).

Here α0 =
log(τ

Ucheck
Uhash

n)+1

τ

α =
ρ log(τ

Ucheck
Uhash

n)+1

τ
, ρ = log pnn

log pany
and τ = log(pnn/pany).

However, different partition structures will give us different values of pany and pnn,

which will affect the time and space complexity.

38

2.6.2 Time Complexity for Nearest Neighbor Preferred Par-

tition (NPP)

We can further extend the Nearest Neighbor Preferred Hashing to other kinds of par-

titions besides of hashing. More specifically, k-level Nearest Neighbor Preferred

Partitions (NPP) is defined as:

For a random partition Ψ on a given data set X, suppose random Ψ is determined

by one parameters k. If for one point Xi, its probability to be returned is P̂Xi
(Ψ)

has a form like P̂Xi
(Ψ) = Θ((pXi

)k), and moreover pnn ≥ pany where pnn and pany are

defined as in Section 2.2, then it is called Nearest Neighbor Preferred Partition.

It is not difficult to see all the analysis and theories for LSH are applicable to NPP

too, if we repeat k-level Nearest Neighbor Preferred Partitions (NPP) for L times,

where k and L is chosen as discussed in our LSH analysis.

For example, suppose the partition is done by a random forest with L binary trees.

In each tree, there are k levels, and hence there are in total 2k leaf nodes in each tree

(note that the root node is level 0). And for each internal node, it has two branches,

determined by a single bit, which is computed via some binary function 6. In other

words, if h(x) = 0, point x belongs to the left branch; if h(x) = 1, point x belongs to

the right branch.

Similarly as in LSH, denote pXi
as the probability of point Xi to have the same

code as query q for the binary function.

In a binary random tree of k levels as discussed above, we can prove that the

probability of any random two points to be in the same leaf node is (pXi
)k. Actually,

for level 0 and level 1, it is easy to see the conclusion is correct. Now assume the

conclusion is correct for level i, we need to prove it is still correct for level i + 1. In

level i, there are 2i nodes. Suppose pXi,j
for j = 1, 2, ..., 2i is the probability for Xi

6for example h(x) = sign(v · x− b), where v is a randomly generated vector and b is a threshold

constant.

39

and the query to both belong to node j. Then we have
2i∑
j=1

pXi,j
= (pXi

)i from the

assumption. In level i+ 1, for two branches of node j, the probability for Xi and the

query both belong one of two branches is pXi
pXi,j

. And hence the probability for two

random points to fall into the same node in level i+ 1 is
2i∑
j=1

pXi
pXi,j

= (pXi
)i+1.

Denote Unode as the time cost to compute the split criteria in one internal node,

and Uindices as the time cost to compute the index of query leaf node in the tree. Then

Uindices = kUnode, since we need to traverse k nodes to get the leaf. Moreover, denote

Uregions as the time cost to access one query leaf node in the indexing tree stored

in the memory. Moreover, it is easy to see Unode = Θ(d) and Uregions = Θ(1) too,

which are the same as Uhash and Ubin in LSH. And similarly, Uregions can be ignored,

compared to other terms. So

The optimal partition introduced by random forests is actually to find the optimal

parameters k and L as follows,

Trandomtrees(k, L) ≥ T (k, L) = UnodekL+ UcheckLn(pany)
k

s.t.,

1− (1− (pnn)
k)L ≥ 1− δ

(2.15)

So all the discussions of time complexity in previous sections about LSH are

directly applicable to NN search methods based on random trees/forest.

Theorem 2.6.2. To achieve the exact nearest neighbor with a probability 1 − δ,

Nearest Neighbor Preferred Partition (NPP) will have a time complexity

Ω(log
1

δ
nρUnode[

Ucheck

Unode

]ρα0α
−ρ)

The number of partitions L is Θ((log 1
δ
)nρ[Ucheck

Unode
]ρα−ρ).

Here α0 =
log(τ

Ucheck
Unode

n)+1

τ

α =
ρ log(τ

Ucheck
Unode

n)+1

τ
, ρ = log pnn

log pany
and τ = log(pnn/pany).

40

2.6.3 Parameters for NPH and NPP

As discussed in section 2.6, Nearest Neighbor Preferred Hashing (NPH) and Nearest

Neighbor Preferred Partitions (NPP) share the same analysis as LSH. So it is easy

to see the optimal parameters in Section 2.5 is applicable to NPH and NPP too. For

example, for random forests method, k here is number of levels in each tree, and L

is the number of trees. And we can find the parameters of k as (2.13) and of L as

(2.14) for random forest methods.

41

Part III

Nearest Neighbor Search via

Learning Based Partitions

42

One main disadvantage for NN methods with random partitions is that the par-

tition function is randomly generated, and hence may not be very efficient. LSH and

other random partition methods resolve this problem by utilizing many partitions,

e.g., many hash tables in LSH method, or many trees in random forest methods.

However, when the memory budget are limited, the number of partitions can only be

small. In this case, random partition methods may perform poorly. However, if we

can improve each partition via learning from data (rather than generating randomly),

we may still get satisfying performance with few partitions, when the memory budget

is limited.

So in this part of the thesis, we will discuss about nearest neighbor search with

learning based partitions, including indexing with learning based hashing and index-

ing with clustering. To make our discussions easier, we assume to learn only one

partition (L = 1).

Unlike random partitions, for learning based partitions, the partitions Ψ depend

on the training data, and hence Ψ and especially P̂nn(Ψ) and P̂any(Ψ) are usually

very difficult to formulate. So in the discussion of this part, we will need lots of

approximation, heuristics, and intuition, besides theoretical analysis.

More specifically,

1. In Chapter 3, based on the formulation of optimal data partition in (1.1), we

will obtain the two criteria for learning based hashing, i.e., balancing buckets

and preserve nearest neighbors, and moreover formulate a joint optimization to

achieve the two criteria.

2. In Chapter 4, based on the formulation of optimal data partition in (1.2), we

will extend the conventional K-means clustering algorithm to balanced K-means

clustering, which is more suitable to be utilized for indexing applications.

The proofs for theorems in Chapter 3 and Chapter 4 can be found in Section 9.2

and 9.3 in the appendix respectively.

43

Chapter 3

Algorithms of Optimal Partitions

for Hashing Based NN Search

3.1 Optimal Partition Criteria for Hashing

Now we consider to learn hash functions instead of using random hash functions

for partition the data. To make things easier, we assume we want to learn one

partition (L = 1) with k hash bits by hash functions H(x), where the m-th bit is

computed by hash function Hm(x). We can start by using linear hash functions, i.e.,

H(x) = T Tx− b, or equivalently, Hm(x) = T T
mx− bm, where T is a matrix of m by d,

Tm is the m-th column of T , and b is vector, and bm is the m-th dimension of b.

Recall the optimal partition formulation in (1.1), i.e.,

min
Ψ

T (Ψ) = Tindices(Ψ) + Tregions(Ψ) + nP̂any(Ψ)Ucheck

s.t.,

P̂nn(Ψ) ≥ 1− δ

(3.1)

In the case of using k hash bits for NN search, Tindices = kUhash, where Uhash is the

time cost to compute one inner product between the query point and one projection

44

vector Tm, and hence Uhash = Θ(d).

Moreover, if we only probe one bucket in the hash table, Tregions = Θ(1). If we

probe more buckets, like all buckets within hamming distance r to the query bucket,

then Tregions = Θ(Cr
k).

For a fixed k, the partition Ψ is determined by Tm and bm, m = 1, ..., k. However,

Tindices(Ψ), Tregions(Ψ), Ucheck and n are all independent of Tm and bm. So in the case

of learning k hash functions for optimal partition of NN search, we can simply (1.1)

as:

min
T,b

P̂any(T, b)

s.t.,

P̂nn(T, b) ≥ 1− δ

(3.2)

The above formulation of optimal partition for learning k hash functions actually

tries to find Tm and bm, m = 1, ..., k such that P̂nn(Ψ)) is as large as possible, and

P̂any(Ψ) is as small as possible. Moreover, note that decreasing P̂any(Ψ) will lead to

less search time, and increasing P̂nn(Ψ)) will provide higher search accuracy.

However, the unsolved problems are how to formulate P̂any(T, b) and P̂nn(T, b), and

how to solve the optimization problem. We will answer these questions in following

sections.

3.1.1 Bucket Balancing for Search Time (P̂any(Ψ))

From (3.2), we want to find partition to decrease P̂any(Ψ).

Suppose there are in total K regions (buckets) after partition. (In the case of

hashing with k bits, K = 2k.) Suppose there are ni points in bucket i, for i = 1, ..., K.

The following theorem shows that P̂any(Ψ) is minimized when all ni are equal.

45

Theorem 3.1.1. P̂any(Ψ) can be minimized if all buckets (regions) are per-

fectly balanced, i.e., every bucket contains the same number of samples.

In other words, ni = n/K, i = 1, ..., K.

Proof:

Denote pi as the probability for one random point to fall into cluster i. Then when n

is large enough, the probability for a random query and a random database point both

falls into the cluster i is p2i . Then

P̂any(Ψ) =
K∑
i=1

p2i =
1

n2

K∑
i=1

n2
i

Note that
∑

i=1,...,K

ni = n,
K∑
i=1

(ni)
2 will minimized if ni are equal, i.e., ni = n/K,

i = 1, ..., K.

The following theorem provides a maximum entropy and moreover a minimum

mutual information criteria to make all ni equal.

Denote y as a k-dimension random binary vector. ym is the m-th dimension of y,

which is a binary random variable generated by Hm(x).

Theorem 3.1.2. Suppose y = H(x), i.e., y is the k hash bits for a random

vector x. The regions created by the partitions from hash functions H,

are perfectly balanced, i.e., all ni are equal, if and only if Entropy(y)

is maximized, or equivalently, mathematical expectation E(ym) = 0 for

m = 1, ..., k and the mutual information I(y1, ..., ym, ..., yk) is minimized.

Proof:

Note that Entropy(y) = {−
2k∑
i=1

P (y = ai) logP (y = ai)} = {−
2k∑
i=1

ni

n
log(ni

n
)}. It is

easy to see that ni =
n
2k

for i = 1, ..., 2k, if and only if Entropy(y) gets its maximum

value.

As shown in [54, 55],

Entropy(y) =
k∑

m=1

Entropy(ym)− I(y1, ..., ym, ..., yk) (3.3)

46

where I() is the mutual information.

So Entropy(y) would be maximized, if
k∑

m=1

Entropy(ym) is maximized and I(y1, ..., ym, ..., yk)

is minimized. Moreover, note that ym is a binary random variable. If the mathemat-

ical expectation E(ym) = 0, half samples would have bit +1 and the other half would

have bit −1 for ym, which means Entropy(ym) = 1, and is maximized.

In conclusion, if E(ym) = 0,m = 1, ..., k and I(y1, ..., ym, ..., yk) is minimized,

Entropy(y) would be maximized, and the search time would be minimized. This com-

pletes the proof of Proposition 1.

Note that if I(y1, ..., ym, ..., yk) is minimized, it means y1, ..., ym, ..., yk are inde-

pendent 1. So minimizing mutual information criterion is also to provide the most

compact and least redundant hash codes.

3.1.2 Preserve Nearest Neighbors for Search Accuracy (P̂nn(Ψ)

)

From (3.2), we know that to obtain a good partition, we need to increase P̂nn(Ψ)) to

improve search accuracy.

The exact formulation for P̂nn(Ψ)) in the case of learning based hashing is un-

fortunately very difficult. However, it is intuitive that large P̂nn(Ψ)) means nearest

neighbor preserving, i.e., to keep nearest neighbors in the same region (bucket) or

nearby regions. Lots of approaches are proposed to preserve nearest neighbors in

different index methods. In hashing methods like [31, 32], there are usually a nearest

neighbor preserving term. We will follow the nearest neighbor preserving term in [32].

More specifically, denote Yi = H(Xi), the hash bits forXi, which is a k-dimensional

vector. Since {Xi, i = 1, ..., n} are i.i.d. sampled from a random vector x, {Yi =

1 Independence among hash bits are mentioned in spectral hashing [32], but it does not relate

independence to search time, and moreover, there is no actual formulation, derivation or algorithm

to achieve the independence.

47

H(Xi), i = 1, ..., n} are i.i.d. samples from y = H(x). For two data samples Xi and

Xj in the training set, suppose Wij is the similarity between Xi and Xj. Similarity

Wij can come from feature similarity or label consistency, etc., depending on the ap-

plications. The only requirement for W is the symmetry. The nearest neighbor term

in [32] is:

D(Y) =
∑

i=1,...,n

∑
j=1,...,n

Wij||Yi − Yj||
2

(3.4)

where Y is the set of all Yi. With this criterion, samples with high similarity, i.e.,

larger Wij , are supposed to have similar hash codes, i.e., smaller ||Yi − Yj||2. Here∑
i=1,...,n

∑
j=1,...,n

Wij||Yi − Yj||2 tries to preserve feature similarity between original data

points. On average, samples with high similarity, i.e., larger Wij , should have similar

hash codes, i.e., smaller ||Yi − Yj||2.

However, W in our algorithm does not need to be fixed as Wij = exp(−||Xi −

Xj||2/σ2) in spectral hashing. Furthermore, the common requirements for similarity

matrix, like positive semi-definite, or non-negative elements, are unnecessary here ei-

ther. Actually, any symmetric W can be applied in our method. So, besides the usual

feature similarities, other kinds of similarity, e.g., those based on class label consisten-

cy, can also be used. In other words, our method supports supervised, unsupervised,

and semi-supervised hashing, with W respectively defined as label similarity only,

feature similarity only, or combination of label similarity and feature similarity.

3.1.3 Intuition

On one hand, it is easy to see that nearest neighbor preserving alone does not guar-

antee a good hash/serach method. For example, as an extreme case, one can always

assign every data point to the same region, and hence nearest neighbors are perfectly

preserved. However, in this case, for every query, all the data would be returned,

which is the worst case of search time, and actually equals linear scan. Moreover, the

search precision will be very low too.

48

On the other hand, bucket balancing alone is not sufficient either. As an extreme

case, we can randomly assign data points to different regions to make sure every

region contains exactly the same number of points. However, this kind of partition

will cause very bad search accuracy, which is actually the same as returning random

results.

So a good partition should not focus on nearest neighbor preserving only, or bucket

balancing alone only, but aim at a good tradeoff between search accuracy and search

time, by jointly optimize nearest neighbor preserving and bucket balancing.

3.2 Hashing with Joint Optimization

3.2.1 Formulation of Hashing with Joint Optimization

Note that E(ym) = 0,m = 1, ..., k means E(y) = 0, which can further be rewritten as
n∑

i=1

Yi = 0 with samples {Yi, i = 1, ..., n}. By incorporating the similarity preserving

term D(Y) for search accuracy and the mutual information criterion for search time,

the problem of joint optimization for P̂any(Ψ) and P̂nn(Ψ). together can now be

formulated as:

min
H

I(y1, ..., ym, ..., yk)

s.t.,
n∑

i=1

Yi = 0

D(Y) ≤ η

Yi = H(Xi)

(3.5)

We first parameterize H, so that it can be optimized more easily. For simplicity,

we first assume data are in vector format, and H is a linear function with a sign

threshold, i.e.,

H(x) = sign(T Tx− b) (3.6)

and later on, we will provide a generalized version in section 3.3.1.1 to handle data

with general format. Here T is a projection matrix of d× k and b is a vector.

49

Even with the parameterizations of H, the problem in (3.5) is still difficult to

optimize (e.g., non-differential), and hence relaxation is needed. In the following

discussion, we will show how to relax equation (3.5) with the parameterized H.

3.2.2 Relaxation for D(Y)

First of all, recall that Yi = H(Xi) = sign(T TXi − b). A traditional relaxation as in

many algorithms (e.g., [32]), is to remove the binary constraint by ignoring the sign()

function so that D(Y) is differentiable. In other words, D(Y) is relaxed as:

∑
i,j=1,...,n

Wij||(T TXi − b)− (T TXj − b)||2 =
k∑

m=1

T T
mCTm (3.7)

where C = XLXT . Here L is the Laplacian matrix L = D − W . D is a diagonal

matrix, Di,i =
n∑

j=1

Wi,j.

Moreover,
n∑

i=1

Yi = 0 ⇒
n∑

i=1

(T TXi − b) = 0, so b = 1
n
T T

n∑
i=1

Xi.

3.2.3 Relaxation for minimizing I(y1, ..., ym, ..., yk)

Denote zm = T T
mx, where Tm is the m-th column of T . So ym = sign(zm − bm).

It is easy to see that if zm are independent, ym would be independent too. Hence if

I(z1, ..., zm, ..., zk) = I(T T
1 x, ..., T

T
mx, ..., T

T
k x) is minimized, I(y1, ..., ym, ..., yk) would

be minimized. So we will minimize I(z1, ..., zm, ..., zk) = I(T T
1 x, ..., T

T
mx, ..., T

T
k x) in-

stead of I(y1, ..., ym, ..., yk) in equation (3.5).

In the field of ICA, independence or mutual information is well studied for a long

time. As discussed in [54], minimizing I(z1, ..., zm, ..., zk) can be well approximated

as minimizing C0 −
k∑

m=1

||g0 − E(G(zm))||2, which equals maximizing

k∑
m=1

||g0 −
1

n

n∑
i=1

G(T T
mXi)||2 (3.8)

50

under the constraint of whiten condition, i.e.,

E{zmzj} = δmj

⇒ E{(T T
mx)(T

T
j x)} = T T

mE{xxT}Tj = T T
mΣTj = δmj

(3.9)

for 1 ≤ m, j ≤ k.

Here C0 is a constant, E() means the expectation, G() is some non-quadratic

function such as G(u) = −e−u2/2, or G(u) = log cosh(u), etc., and g0 is a constant.

δmj = 1, if m = j ; δmj = 0 , if m ̸= j. Σ = E(xxT).

3.2.4 Similarity Preserving Independent Component Analy-

sis (SPICA)

In sum, after relaxation with equation (3.7), (3.8), and (3.9), the problem in equation

(3.5) can now be formulated as:

max
Tm,m=1...k

k∑
m=1

||g0 − 1
n

n∑
i=1

(G(T T
mXi))||2

s.t., T T
mΣTj = δmj, 1 ≤ m, j ≤ k

k∑
m=1

T T
mCTm ≤ η

(3.10)

where C = XLXT and Σ = E(xxT). The hash bits for Xi can be computed as

Yi = sign(T TXi − b), for i = 1, ..., n, where b = 1
n
T T

n∑
i=1

Xi.

Surprisingly, after relaxation steps mentioned above the solution becomes quite

intuitive. We call this method SPICA (Similarity Preserving Independent Component

Analysis), because it incorporates a similarity preserving term into the Fast-ICA

formulation [54].

51

3.3 Optimization

3.3.1 Optimization Algorithm

The optimization problem in both equations (3.10) and (3.12) is nonconvex. It is

not trivial to obtain a fast algorithm to solve them efficiently, especially when the

data set is very large. Inspired by the work in [54, 56], here we provide a fast and

efficient approximate method to solve the problems of equation (3.10) and (3.12). The

workflow of the optimization is described in Algorithm 1 with details. The method

is shown to converge quite fast and perform well in the extensive experiments to be

described later.

Note that γ in algorithm 1 is equivalent to parameter η in (3.10) and (3.12).

Actually, γ = 0 means η = ∞. Larger γ is equivalent to smaller η.

The details of derivation for the algorithm are shown in Section 9.2 in the ap-

pendix.

3.3.1.1 Generalization–GSPICA

In practice, many applications involve structured data in the forms of graphs, trees,

sequences, sets, or other formats. For such general data types, usually certain kernel

functions are defined to compute the data similarities, e.g., [57, 58]. Moreover, even

if the data are stored in the vector format, many machine learning solutions benefit

from the use of domain-specific kernels, for which the underlying data embedding to

the high-dimensional space is not known explicitly, namely only the pair-wise kernel

function is computable. We can obtain the kernelized version of SPICA to deal with

data of general format by parameterizing the hash functions as:

y = H(x) = sign(T TKx − b) (3.11)

where Kx = [K(x, Z1), ..., K(x, Zi), ..., K(x, Zp)]
T . Here K is the kernel function, and

Zi, i = 1, ..., p are some landmark samples, which for example can be a subset chosen

from the original n samples. Usually p ≪ n.

52

Algorithm 1 Workflow for optimization of SPICA.

Input: data Xi, i = 1, ..., n, similarity matrix W , the number of required bits: k .

(By replacing Xi with KXi
and X with Kp×n, we can obtain the optimization for

GSPICA.)

Output: hash functions to generate k bits for

each sample, i.e., Yi = H(Xi) = sign(T TXi − b)

Workflow:

1. Compute Σ = 1
n

n∑
i=1

XiXi
T ; Apply SVD to Σ, Σ = ΩΛΩT ;

2. Q = ΩkΛ
− 1

2
k , where Λk is a diagonal matrix consisting of k largest eigen values

of Λ, Ωk is the corresponding column of Ω

3. Compute C = XLXT = X(D −W)XT , Compute C̃=QTCQ

4.

for m = 1, ..., k do

if m = 1 then

B = I

else

apply QR decomposition to matrix [T̃1, ...T̃m−1] to get matrix B, such that

[T̃1, ...T̃m−1, B] is a full-rank orthogonal matrix.

end if

A = BT C̃B, X̂i = BT X̃i = BTQTXi

Random intialize w

repeat

β = 1
n

n∑
i=1

(wT X̂iG
′(wT X̂i))− γwTAw.

w+ = w− [1
n

n∑
i=1

(G′′(wT X̂i))I − βI − γA]−1[1
n

n∑
i=1

(X̂pG
′(wT X̂i))− βw− γAw].

w = w+/||w+||.

until converge

T̃m = Bw

end for

5. Tm = QT̃m and b = 1
n
T T

n∑
i=1

Xi

6. For any sample Xi, compute its k hash bits

Yi = sign(T TXi − b)

53

Denote zm = T T
mKx. With similar relaxation and derivation, we can get

max
Tm,m=1...k

k∑
m=1

||g0 − 1
n

n∑
i=1

(G(T T
mKXi

))||2

s.t.,
k∑

m=1

T T
mCTm ≤ η

T T
mΣTj = δmj, 1 ≤ m, j ≤ k

(3.12)

where

KXi
= [K(Xi, Z1), ..., K(Xi, Zp)]

T

Moreover b = 1
n
T T

n∑
i=1

KXi
and Yi = sign(T TKXi

− b), for i = 1, ..., n . Here, C =

Kp×n(D −W)KT
p×n. Kp×n is defined as

(Kp×n)i,j = K(Zi, Xj), i = 1, · · · , p, j = 1, · · · , n. (3.13)

And Σ = E{KxKx
T} = 1

n

n∑
i=1

KXi
KT

Xi
= 1

n
Kp×nK

T
p×n.

In Equation (3.12), one can see that Mercer condition is unnecessary for function

K. Actually, any similarity function is applicable. We call the method in equa-

tion (3.12) Generalized SPICA (GSPICA), which can handle both vector data and

structured data with any kernel function or similarity/proximity function K defined.

3.3.2 Complexity and Scalability

In algorithm 1 for SPICA and GSPICA, the bottleneck of time complexity is the

computation of XWXT or Kp×nWKT
p×n in step 3. When we have a large scale data

set, what may consist of millions of samples, it would be very expensive to compute

XWXT or Kp×nWKT
p×n, with a time complexity of O(dn2) and O(pn2) respectively.

One way to overcome the computation complexity is to use a sparse W . Gener-

ally speaking, one can always sample a small subset of training samples to compute

similarity matrix, so that W is sparse, and hence the time complexity of XWXT or

Kp×nWKT
p×n is acceptable.

Another approach is by low rank representation/approximation for W such that

W = RQRT , where R and Q are low rank matrix. In this case, Kp×nWKT
p×n can

54

be computed as: Kp×nWKT
p×n = (Kp×nR)Q(Kp×nR)T which involves small matrices

only. There are several ways to obtain the low rank approximation, for example, we

can choose W as W = XXT if X are normalized data, or apply Nyströk algorithm

[59] to get a low rank approximation for W . Moreover, when the W is defined by

some ”shift-invariant” kernel functions such as W (i, j) = e−||Xi−Xj ||2/σ2
, we can apply

the kernel linearization technique [60] to approximate W as W = ZZT , where Z are

the random Fourier Features as in [60]. Note that we don’t need to compute or store

W , but only compute or store the low rank matrix.

With the speed up, algorithm 1 would take about O(d2n) or O(p2n) for SPICA or

GSPICA respectively, which is close to state-of-the-art methods like spectral hashing

[32] (O(d2n)) or OKH [61] (O(p2n)).

3.4 Degenerated Case with a Simple Solution

3.4.1 Formulation

As a variation of (3.5), we can put the mutual information term into constraints:

min
H

D(Y)

s.t., I(y1, ..., ym, ..., yk) = 0
n∑

i=1

Yi = 0

Yi = H(Xi)

(3.14)

However, if we only require the uncorrelation instead of independence among

y1, ..., ym, ..., yk, the constraint I(y1, ..., ym, ..., yk) = 0 would become 1
n

n∑
i=1

YiYi
T= I,

where I is the identity matrix. Moreover, suppose the hash function is the kernel

based hash function similar as in (3.11):

y = H(x) = sign(ATKx − b) (3.15)

55

In this case, we will get a degenerated case of (3.14) as follows:

min
H

D(Y)

s.t., 1
n

n∑
i=1

YiYi
T= I

n∑
i=1

Yi = 0

Yi = sign(ATKi − b)

(3.16)

where

Ki = [K(Xi, Z1), ..., K(Xi, Zp)]
T

In the following, we will derive the analytical solutions of the above optimiza-

tion problem and analyze the complexity of the method. Specifically, we will show

the optimal kernel hash functions can be found elegantly by solving an eigenvector

problem.

3.4.2 Derivation

Theorem 3.4.1. With the same relaxation as in spectral hashing by ig-

noring the constraint of Yi ∈ {−1, 1}k, the above optimization problem is

equivalent to the following:

min
A

tr(AT (C + CT)

2
A)

s.t. ATGA = I (3.17)

with

b = AT ā.

where

C = Kp×n(D −W)KT
p×n

(3.18)

and

G =
1

n
Kp×nK

T
p×n − āāT (3.19)

56

Here Kp×n is the kernel matrix between p landmarks and n samples. More specif-

ically the element of i-th row and j-th column for Kp×n is defined as

(Kp×n)i,j = K(Zi, Xj), i = 1, · · · , p, j = 1, · · · , n. (3.20)

Ki is the ith column of Kp×n, and

ā = (
n∑

i=1

Ki)/n. (3.21)

Kp×p is the kernel matrix among p landmarks. More specifically the element of ith

row and jth column for Kp×p is defined as

(Kp×p)i,j = K(Zi, Zj), i = 1, · · · , p, j = 1, · · · , p (3.22)

and D is a diagonal matrix with Dii = (
n∑

j=1

Wij +
n∑

j=1

Wji)/2, (i = 1, · · · , n).

Note here C and G are both p× p matrix.

3.4.3 Implementation

The above optimization problem in (3.17) can be further rewritten into an eigen

vector problem for simpler implementation.

More specifically, suppose the SVD decomposition of G is

G = T0Λ0T0
T (3.23)

and denote Ã as

A = TΛ− 1
2 Ã (3.24)

where Λ is a diagonal matrix consisting of k largest elements of Λ0, while T is the

corresponding columns of T0.

The problem in (3.17) equals to

min
Ã

tr

(
ÃTΛ− 1

2T T (C + CT)

2
TΛ− 1

2 Ã

)
s.t. ÃT Ã = I (3.25)

57

The solution Ã is a k × k matrix, which is the k eigen vectors for matrix

C̃ = Λ− 1
2T T (C + CT)

2
TΛ− 1

2 . (3.26)

Given Ã, A can be obtained from equation (3.24). For a novel sample x, its mth

bit code ym can be computed as

ym = Hm(x) = sign(AT
mkx − bm) (3.27)

where

kx = [K(x, Z1), ..., K(x, Zp)]
T (3.28)

namely, the kernel values between x and the landmark points. Equally, y = sign(ATkx−

b).

As shown in the above, kernel based hash functions {Hm,m = 1, ..., k} can be

optimized by solving an eigen vector problem on a matrix with a size around k ×

k. (Recall (3.27), (3.26) and (3.24)). After {Hm,m = 1, ..., k} are learned via

optimization, they can directly hash new samples of any data format using properly

defined kernel function, as shown in (3.27) and (3.28).

3.5 Experiments

3.5.1 Experiment Setup

We compare our GSPICA algorithm with several state-of-the-art methods, including

spectral hashing (SH) [32], locality sensitive hashing(LSH)[21] and kernelized locality

sensitive hashing (KLSH) [37].

All algorithms are compared using the same number of hash bits. For a fair

comparison, we always use the same kernel function with the same parameters (if

any), when kernels are used in methods including GSPICA and KLSH. The same

number of landmark samples are used for GSPICA and KLSH. And moreover, the

58

number of landmark points are set close to the number of feature dimensions, so that

GSPICA and SH would have almost the same indexing time. The parameter γ is

chosen with a validation set, which is independent of the training set or the query

set.

3.5.2 Evaluation Metrics

For evaluation, we will first compare the precision-recall curve, which is one of the

most papular evaluation methods in large scale retrieval research.

We also report comparison of accuracy-time tradeoff for different hashing methods.

Search accuracy is represented by recall rate, i.e., percentage of groundtruth neighbors

found. However, direct comparison of machine time for each algorithm is not practical,

since different implementation (e.g., different programming languages) may result

in varied search times of the same method. So in our experiments, search time is

represented via the number of retrieved samples in the selected buckets. By this, we

try to provide an unbiased comparison of search time.

3.5.3 Experiment Results

1 million web image data set

This is a data set consisting of 1M web images downloaded from flickr web site:

www.flickr.com. 512 dimension gist features [62] are extracted for each image. RBF

kernel is used for this data set. 32 hash bits are used for all the hashing methods.

To get the precision or recall, we need to obtain groundtruth of the true nearest

neighbors for each query sample. Similar to the previous works [32, 37], we establish

the groundtruth by choosing the top samples (e.g., top 100 samples) found via linear

scan.

In Figure 3.1, we first show the comparison of precision-recall curves. GSPICA

performs significantly better than other methods, confirming its superiority on search

59

performance. Then we report accuracy-time comparison for different hashing meth-

ods. GSPICA also achieves a much better tradeoff between search accuracy and time.

For instance, at the same search time (1 m retrieval samples), the recall of our method

is several times higher than other methods.

0 0.2 0.4 0.6 0.8 1
10

−4

10
−3

10
−2

10
−1

10
0

Recall

P
re

ci
si

on

 GSPICA with Linear Kernel
GSPICA with RBF Kernel
Spectral hashing
KLSH with Linear Kernel
KLSH with RBF Kernel
LSH

(a) Precision-recall curve on 1M web image data

10
−2

10
0

10
2

10
4

10
6

0

0.2

0.4

0.6

0.8

1

Number of retrieved samples

R
ec

al
l

GSPICA with Linear Kernel
GSPICA with RBF Kernel
Spectral hashing
KLSH with Linear Kernel
KLSH with RBF Kernel
LSH

(b) Accuracy-time comparison on 1M web image data

Figure 3.1: Search results on 1M web image data set with 32 hash bits. In (a), the

comparison of precision-recall curve is provided. In (b), comparison of accuracy-time

curve is shown where recall represents search accuracy, and the number of retrieved

samples in selected buckets represents search time. Graphs are best viewed in color.

In Figure 3.2, some example query images and the top 5 search results are also

provided. The results of the proposed method are confirmed to be much better than

others.

100K Photo Tourism image patch data set with multi hash tables

One key property of LSH and its variations like KLSH is the capacity to create

multiple hash tables to improve the recall. Though only GSPICA with single hash

table is discussed above, it can be easily extended to use multiple hash tables, for

60

(a) Queries (b) Top 5 search results.

Figure 3.2: On 1M web image data set, example query images and top 5 search results

of GSPICA, SH, KLSH, and LSH ranked by Hamming distance with 32 hash bits are

shown. Note that we are using gist features, so color information is not considered.

61

example, by using a subset of training set for each table.

We test our GSPICA method with multi hash tables on Photo Tourism image

patch set [63].

In our experiments, we use 100K patches, which are extracted from a collection of

Notre Dame pictures. 1K patches are randomly chosen as queries, 90K are used as

training set to learn the hashing function. For each patch, 512 dimension gist features

[62] are extracted. The task is to identify the neighbors, i.e., near-duplicate patches,

in the training set for each query patch. For each patch, its near-duplicates are used

as the groundtruth. In our experiments, we randomly sample 10,000 training samples

to compute 48 bits for each hash table. The same procedure is also done to create

multi tables for spectral hashing.

The results are shown in Figure 3.3. By using multi hash tables, the recall of our

GSPICA method is improved. Moreover, GSPICA works significantly better than

LSH, KLSH or spectral hashing, no matter with a single hash table or multi hash

tables.

We also explore how the change of experiment setting, e.g., the number of land-

mark samples P, or the parameter γ in Algorithm 1, would affect our results. As

shown in Figure 3.4, the proposed method is quite insensitive and stable to reason-

able change of P and γ. And not surprisingly, the performance increases slowly with

P .

62

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Recall

P
re

ci
si

on

SH 1 table
GSPICA 1 table
GSPICA 5 tables
KLSH 5 tables
KLSH 1 table
SH 5 tables
LSH 1 table
LSH 5 tables

(a) Precision-recall curve on Photo Tourism data

10
−2

10
0

10
2

10
4

10
6

0

0.2

0.4

0.6

0.8

1

R
ec

al
l

Average number of retrieved samples

SH 1 table
GSPICA 1 table
GSPICA 5 tables
KLSH 5 tables
KLSH 1 table
SH 5 tables
LSH 1 table
LSH 5 tables

(b) Accuracy-time comparison on Photo Tourism data

Figure 3.3: Search results on 100K Photo Tourism image patch data with 48 hash bits

for each hash table. In (a), the comparison of precision-recall curve is provided. In (b),

comparison of accuracy-time curve is shown where recall represents search accuracy,

and the number of samples in selected buckets represents search time. Graphs are

best viewed in color.

63

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Recall

P
re

ci
si

on

γ=10, P = 300
γ=1, P = 200
γ=1, P = 400
γ=0.1, P = 300
γ=1, P = 300

(a) Precision-recall curve for different experiment setting

Figure 3.4: Search results on 100K Photo Tourism image patch data with 48 hash

bits for one hash table with different number of landmark samples P and parameter

γ in Algorithm 1. Note that the green curve with square marks are covered by other

curves and can not be seen. As shown, the proposed algorithm is quite stable and

not sensitive to reasonable change of P and parameter γ. Graphs are best viewed in

color.

64

Chapter 4

Algorithms of Optimal Partition

for Clustering based NN Search

In this chapter, we consider clustering based indexing for nearest neighbor search. We

will focus on the most popular clustering method: K-means. Following the optimal

data partition framework, a clustering method more suitable for nearest neighbor

search, balanced K-means, will be discussed in this Chapter.

We start with the background of conventional K-means Clustering methods.

4.1 Background of K-means Clustering

Simply speaking, given a data set {Xi, i = 1, ...n}, the objective of K-means clustering

is to partition the data into K subsets Sj, j = 1, ..., K to minimize the within-cluster

distance, i.e., mean squared error (mse). A formal formulation of K-means is as

follows:

min
Sj ,j=1,...,K

K∑
j=1

∑
i∈Sj

(Xi − Cj)
2

(4.1)

where Cj is the center of Sj, or more specifically Cj =
∑
i∈Sj

Xi/|Sj|. Here |Sj| is the

number of data points in Sj.

65

The above optimization problem is known to be NP-hard. So in practice heuristic

algorithms have been developed to allow for a quick convergence to a local optimum.

Furthermore a large number of variations have been proposed on how to initialize the

starting set of centroids, or when to update the cluster centers. Algorithm 2 presents

a sequential version of the algorithm that is frequently used [64]

Algorithm 2 K-means Clustering Algorithm.

Initialization by randomly assigning data points to Sj and then compute initial

cluster center Cj.

Denote yi as the cluster label for Xi, i.e., if Xi ∈ Sj, then yi = j.

for iteration t = 1, ..., T do

for data sample i = 1, ..., N do

y
′
i = yi, ymin = yi, dmin = +∞

for j = 1, ..., K do

if ||Xi − Cj|| < dmin then

ymin = j, dmin = ||Xi − Cj||

end if

end for

if yi ̸= ymin then

yi = ymin, Move i from Sy
′
i
to Syi

update the two centers Cy
′
i
and Cyi .

end if

end for

end for

66

4.2 Optimal Clustering for NN Search–Balanced

K-Means

Suppose we are going to use K clusters for approximate nearest neighbor search. More

specifically, we will return all the points in the query cluster (which the query belongs

to) as candidates.

Consider the optimal partition formulated in (1.2), which is

min
Ψ

(1− P̂nn(Ψ)) + λ[Tindices(Ψ) + Tregions(Ψ) + nP̂any(Ψ)Ucheck]

In the case of using clustering for NN search, Tindices(Ψ) = KUindices, where Uindices

is the time cost to compute the distance between the query point and one cluster

center, and hence Uindices = Θ(d). Moreover, Tregions is the time to access one cluster

and hence Tregions(Ψ) = Θ(1).

Suppose there are ni points in cluster i, denote pi as the probability for one

random point to fall into cluster i. Similarly as discussed in Seciton 3.1, when n is

large enough, the probability for a random query and a random database point both

falls into the cluster i is p2i . Then

P̂any(Ψ) =
K∑
i=1

p2i =
1

n2

K∑
i=1

n2
i

P̂nn(Ψ) is the probability for two nearest neighbor points to fall into the same

cluster. In clustering based indexing methods, the clusters are obtained such that the

within-cluster distances are minimized, which intuitively pushes nearest neighbors

into the same cluster, and hence larger P̂nn(Ψ). In Section 9.3 in the Appendix,

we show that, to some extend, minimizing 1 − P̂nn(Ψ) will lead to the original cost

function of K-Means, i.e., min
∑

Sj ,j=1,...,K

K∑
j=1

∑
i∈Sj

(Xi − Cj)
2.

Following the optimal partition framework in (1.2), putting Tindices(Ψ) = KUindices,

P̂any(Ψ) =
K∑
i=1

p2i = 1
n2

K∑
i=1

n2
i into min

Ψ
(1 − P̂nn(Ψ)) + λ[Tindices(Ψ) + Tregions(Ψ) +

67

nP̂any(Ψ)Ucheck], and moreover, replacing (1− P̂nn(Ψ)) by
K∑
j=1

∑
i∈Sj

(Xi − Cj)
2, as well

as omitting the constant Tregions(Ψ), we get the optimal clustering for NN Search

formulated as follows:

min
Sj ,j=1,...,K

K∑
j=1

∑
i∈Sj

(Xi − Cj)
2 + λ[KUindices +

1

n

K∑
i=1

n2
iUcheck] (4.2)

Note that the partition Ψ is determined by the cluster sets Sj, j = 1, ..., K.

If the number of clusters K is fixed, we can further remove the term KUindices.

Moreover, Ucheckn is a constant for a given data set. Let us denote Uchecknλ as a new

λ, then (4.2) can be simplified as the cost function :

min
Sj ,j=1,...,K

K∑
j=1

∑
i∈Sj

(Xi − Cj)
2 + λ

K∑
j=1

(nj)
2

(4.3)

where Cj is the center of Sj and nj is the number of data samples in Sj.

This cost function is denoted as CF0 as in later discussions in this section. Note

that
∑

j=1,...,K

nj = n,
K∑
j=1

(nj)
2 will be minimized if nj are equal. Actually, this term

can be other forms like
K∑
j=1

(nj)
3, or functions like

∑
p

(nj)
mp or nj log(nj), where mp

is positive. We choose (nj)
2 and (nj)

3 because of their simplicity and their good

performance in experiments.

We call the cost function CF1 when (nj)
3 is used:

min
Sj ,j=1,...,K

K∑
j=1

∑
i∈Sj

(Xi − Cj)
2 + λ

K∑
j=1

(nj)
3

(4.4)

Basically speaking, the optimal partition leads us to a balanced K-means clus-

tering, which not only minimizes the within-cluster distance but also balances the

number of points in each cluster simultaneously.

68

4.3 Iteration Algorithms for Balanced K-Means

Clustering

We can alter Algorithm 2 to provide the iteration algorithm for balanced K-means

clustering as shown in Algorithm 3. Intuitively speaking, in the case of conventional

K-means a point is moved from the current cluster to a new cluster if the distance

between the point and the new cluster center can be decreased. However, in balanced

K-means, this decision is made based on whether the cost, which combines both the

cluster distance term and balancing term, can be decreased.

Note that by setting λ = 0 the balanced K-means algorithm de-generates to

conventional K-means. Moreover, it is easy to see this balanced K-means algorithm

has the same time complexity as conventional K-means. And it is very easy to

implement, by just modifying several lines of code in the iteration step.

4.4 Experiments

4.4.1 Data Sets

For the analysis and results presented in this paper, we have used 2 data sets, that

we will briefly introduce in this section.

2D Synthetic Data Set We start with a 2 dimensional synthetic data set of

500 data points sampled at random, using a Gaussian distribution (x-axis: µ = 0,

σ = 0.3; y-axis: µ = 0, σ = 0.2). We use this data set to analyze the trade off

between the minimization of the mean squared error and the balancing the cluster

assignment. It also allows us to visualize the effect of the distribution of the centroids

over the feature space.

European Cities 1M Collection This collection of geo-tagged Flickr images

is proposed by Avrithis et al. [65] and consists of approximately 1 million images 1.

1For our experiments we only used the list of distractor images, resulting in a collection of 860.500

69

Algorithm 3 Balanced K-means Clustering Algorithm.

Initialization by randomly assigning data points to Sj and then compute initial

cluster center Cj.

Denote yi as the cluster label for Xi, i.e., if Xi ∈ Sj, then yi = j.

for iteration t = 1, ..., T do

for data sample i = 1, ...n do

%% If stay in the current cluster, the cost is 0

y
′
i = yi, ymin = yi, costmin = 0

for j = 1, ..., K, j ̸= yi do

%% If move to cluster j, the cost is computed as costj

costj = (||Xi − Cj||2 − ||Xi − Cyi′||2)+

λ[(nj + 1)2 + (nyi′ − 1)2 − (nj)
2 − (nyi′)

2]
(4.5)

or

costj = (||Xi − Cj||2 − ||Xi − Cyi′||2)

+λ[(nj + 1)3 + (nyi′ − 1)3 − (nj)
3 − (nyi′)

3]
(4.6)

if costj < costmin then

ymin = j, costmin = costj

end if

end for

if yi ̸= ymin then

%% move to cluster ymin

yi = ymin, Move i from Sy
′
i
to Syi

update nyi′ and nyi , and the two centers Cy
′
i
and Cyi .

end if

end for

end for

70

Using the SURF descriptor [66], as proposed by Bay et al. we extracted a total of

approximately 350 million descriptors. The (balanced) K-means models presented in

this paper are based on a random set of 1 million descriptors that have been used

as the training data set. For the evaluation of the retrieval performance, we used an

independent query image set and their binary relevance judgements as introduced in

[67] and provided by Yahoo! through the Webscope program 2

4.4.2 Experiments of Balanced K-means Clustering

In this section we analyze the effect of balancing the K-means quantization in terms

of mean squared error and cluster balance. The mean squared error (mse), or “within

cluster distance” is typically computed as

mse =
K∑
j=1

∑
i∈Sj

(Xi − Cj)
2 (4.7)

where K indicates the number of clusters, Cj denotes the cluster centroid, Sj contains

the indices of all features in cluster j. The balance (bal) of the K-means model is

then measured using

bal =
1

K

K∑
j=1

|nj|2

(n/K)2
(4.8)

where n is the number of all features, and nj denotes the number of features assigned

to cluster j. If the balance bal = 1, then every cluster is perfectly balanced, and has

the same number of points.

Clustering on 2D Synthetic Data Set

To see if the intuition behind the theory is correct, we start the analysis of cluster-

ing with the 2D synthetic data set with number of clusters K = 25. We train various

images

2Yahoo! Webscope Program provides a reference library of datasets for non-commercial use. See:

http://webscope.sandbox.yahoo.com/ for details.

71

http://webscope.sandbox.yahoo.com/

1.000

1.025

1.050

1.075

1.100

0 0.01 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

B
A
L

λ

0

5

10

15

20

M
S
E

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

 data points

 K50k L=0 centroids

 K50k L=0.2 centroids

(a) (b)
Figure 4.1: (a)Trading off mse and bal on the 2D synthetic data set. Note that when

λ = 0, it is actually conventional K-means. (b)Visualization of cluster assignments

on the 2D synthetic data set. Comparing K-means (blue) and balanced K-means

with λ = 0.1 (red). Centroids of the balanced K-means quantization model are more

oriented to the center of gravity of the point set. Graphs are best viewed with colors.

models of balanced K-means by sweeping the only model parameter λ, using number

of iteration I = 100. Figure 4.1(a) shows how the mean squared error is traded off

for a balanced cluster assignment. Note that we get conventional when λ = 0. We

observe that for λ > 0.05 the balance (bal) quickly converges to around 1 and the

within cluster distances (mse) are about the same as K-means. When bal is close

to 1, we have derived an almost perfectly balanced model. Further increasing λ will

increase the mean squared error (mse), which is not desirable.

Figure 4.1(b) depicts the effect of balancing the K-means quantization on the

distribution of the centroids over the feature space. As expected, the centroids of the

balanced K-means model are more oriented towards the dense areas in the feature

space, resulting in smaller Voronoi cells for the dense areas.

Clustering of 1M SURF Features

The initial set of centroids has been set randomly from the sample features. The

clusters haven been trained with I = 100 iterations, with cost function CF1 as in

(4.4), and the size of the visual vocabulary is set to K = 50, 000. Please note that if

72

80000

95000

110000

125000

140000

M
S
E

1.000

1.125

1.250

1.375

1.500

0 0.01 0.05 0.1 0.2 0.3 0.4 0.5

B
A
L

λ

Figure 4.2: Trading off mse and bal on the 1M SURF feature collection. Note that

when λ = 0, it is actually conventional K-means.

λ = 0 a regular K-means quantization model is trained.

As shown in Figure 4.2 the trade-off between the mse and bal for the models

follows a similar trend as observed for the 2D synthetic example. We can maintain

mse about the same as conventional K-means while obtain almost perfectly balanced

clusters for λ = 0.05− 0.2. Further increasing λ will increase the mean squared error

(mse).

We also observe that the mse is initially declining when increasing λ, but for

larger values of λ, one can see that the mse increases rapidly. Intuitively, λ = 0.1

would provide the best trade-off between mse and bal.

4.4.3 Experiments on Image Retrieval with Local Feature

Quantization via Balanced K-means

To put our theory to the ultimate test, we deploy an image similarity retrieval system,

similar in spirit as proposed by Sivic et al. [49]. Using the vector space model [68]

we index the images using the quantized descriptors as a visual-bag of words. We use

1M randomly sampled SURF features to train a quantization model with 50K clus-

ters. This results in an index with approximately 100K posting lists, as we multiply

73

the quantization id with the sign of the laplacian [66]. Finally, to improve the sys-

tem performance, we deploy the approximate query evaluation method that was first

introduced by Bröder et al. [69], and which is optimized to handle long queries effi-

ciently [69]. We do not deploy a post-retrieval filter such as ”RANSAC” or geometry

verification methods as is commonly used for image object retrieval systems, because

this would obscure the actual retrieval performance with the different quantization

models, e.g., conventional K-Means and our proposed balanced K-Means.

One may argue that a simple trick to improve the balancing for K-means is to

remove stop words, i.e., discard those codewords in which the number of quantized

local features is larger than a threshold. However, as discussed in [70] and observed

in our experiments, this will usually degrade the system accuracy. So we will use

K-means without removing stop words as our baseline.

Search Accuracy

For the evaluation of the retrieval performance, we have adopted the TREC method-

ology and evaluation metrics [71]. In Table 4.1 the best performing runs for the

two cost functions CF0 (Eq. 4.3) and CF1 (Eq. 4.4) of balanced K-means is present-

ed, and compared against the performance using the standard K-means algorithm.

We observe that both balanced K-means models (CF0, λ = 1 and CF1, λ = 0.2)

outperform the standard K-means algorithm (λ = 0) on the EC1M collection. For

example, we can improve the precision from 0.8 to 0.92 on the first returned image,

for the balanced K-means model, using CF1, compared to the conventional K-means

model. Some examples of query images and top 5 retrieved images with K-means and

balanced K-means (using CF1) quantization model are shown in Figure 4.3.

Focusing on the CF1 cost function, Table 4.2 shows the impact on the retrieval

performance when sweeping the λ parameter. On the EC1M collection we find the

optimal value of λ = 0.2, choosing larger values of λ would positively impact the

balance of the quantization, but negatively affect the quantization quality and as

shown here the retrieval performance.

74

K-means configuration

cost function - CF0 CF1

λ K-means 1 0.2

retrieval performance

relevant retrieved 547 588 601

p@1 0.8 0.88 0.92

p@5 0.784 0.792 0.84

p@10 0.7 0.74 0.78

Table 4.1: Retrieval performance on EC1M collection, comparing cost functions CF0

and CF1.

K-means configuration (using CF1)

λ K-means 0.01 0.05 0.1 0.2 0.3 0.4 0.5

retrieval performance

relevant retrieved 547 584 540 590 601 587 563 540

p@1 0.8 0.8 0.76 0.92 0.92 0.88 0.76 0.76

p@5 0.784 0.784 0.776 0.816 0.84 0.808 0.76 0.776

p@10 0.7 0.716 0.716 0.728 0.78 0.768 0.7 0.716

Table 4.2: Retrieval performance on EC1M collection

Search Time

Proceeding with our best performing configurations, we finally present the impact

of balanced K-means in terms of retrieval time in milliseconds on the EC1M collec-

tions. Note that the actual retrieval time depends on the size of the collection, the

query length, e.g. the number of local features extracted from the image, among

other factors. We have provided information about the query length in bottom part

of Table 4.3. As can be observed in the top part of Table 4.3 balancing K-means

quantization significantly and consistently reduces the average retrieval time. On the

EC1M collection search time is cut with 28.8% when compared to a conventional

75

Query

Top 5 results

K-means b K-means K-means b K-means
Figure 4.3: Examples of queries and top 5 retrieved images, with K-means and bal-

anced K-means quantization model. ”b K-means” represents the proposed ”balanced

K-means”.

K-Means Balanced K-Means

mean of search time 283.00 204.42

variance of search time 279.63 260.10

Table 4.3: System performance evaluation

K-means quantization with the same characteristics.

76

Part IV

Systems and Applications

77

In this part of the thesis, we will apply our proposed large scale NN search methods

to real world applications, mainly focusing on visual search applications.

In Section 5, we will demonstrate the applications of bookcover search, i.e., search-

ing a book via taking a picture of its cover. We will follow the traditional ”Bag of

Words” visual search paradigm, with the proposed ”balanced K-Means” method for

quantization. We show that ”Bag of Words” with our proposed ”balanced K-Means”

method as discussed in Chapter 4 outperforms ”Bag of Words” with conventional

K-Means. And more importantly, we justify that visual search for these kinds of 2D

planar objects is very mature, in fact ready for commercial applications.

Furthermore, in Section 6, we will provide the application of a mobile product

search system, i.e., searching a product such as shoes, furniture, etc., by taking a pic-

ture with smart phones. We will provide the details about how to build an end-to-end

mobile visual search system efficiently, to overcome the unique challenges including

constrained memory, computation, and bandwidth, based on our proposed hashing

methods as discussed in Chapter 3. The system will also involve other techniques like

object segmentation and object boundary re-ranking to further improve the system

performance. Our mobile visual system is the first system that can index large scale

image data sets with local features, and allow object-level search with a response

within 1 or 2 seconds over low-bandwith networks.

78

Chapter 5

Bookcover Search with Bag of

Words

5.1 Data and System Outline

Open Library Book Covers Collection The open library book cover1 data set

consist of a collection of 4,283,246 book cover images, after removing cover images

smaller than 10kb in size or a height smaller than 200 pixels. Using SURF features,

we extracted 1.76 billion SURF descriptors. A random set of 1 million descriptors has

been used as the training data set for clustering for Bag of Words. For the retrieval

experiments, we have complemented the collection with a set of 117 query images

of book covers from our personal book collection and collected the binary relevance

judgements for the top 10 images retrieved by the various system configurations that

we have evaluated. To collect the judgements, we deployed a blind-review pooling

method as is commonly used for retrieval performance evaluation experiments [71].

Our search system is the same as described in Section 4.4.3, following the spirit of

”Bag of Words” as proposed by Sivic et al [49], with our proposed balanced K-Means

quantization method. Using the vector space model [68] we index the images using

1See http://openlibrary.org/dev/docs/api/covers for details.

79

http://openlibrary.org/dev/docs/api/covers

the quantized descriptors as a visual-bag of words. We do not deploy a post-retrieval

filter as is commonly used for image object retrieval systems, as this would obscure

the actual retrieval performance with the different quantization models.

5.2 Experiment Results

Search Accuracy

In Table 5.1 we present the results of the balanced K-means model (CF1, λ = 0.3)

in comparison to the standard K-means model as trained on the BOOKS collection.

In this case, we optimized for early precision (P@1) as a typical application for this

collection would be to identify the author and title of the book in the query image.

retrieval performance

K-means Balanced K-means

relevant retrieved 318 342

p@1 0.85 0.88

map 0.760 0.783

Table 5.1: Retrieval performance on Open Library book covers collection

Search Time

Proceeding with our best performing configurations, we finally present the impact of

balanced K-means in terms of retrieval time in milliseconds on BOOKS collections.

As can be observed in the top part of Table 5.2 balancing K-means quantization

significantly reduces the average retrieval time. On the BOOKS collection the average

search time is reduced with 24.8%.

In conclusion, our proposed balanced K-Means method significantly outperfor-

m conventional K-Means as a quantization for NN search, in terms of both search

accuracy and time.

Moreover, Figure 5.1 shows a distribution of the number of descriptors per quanti-

80

BoW with K-means BoW with balanced K-means

mean of search time 715.70 538.43

variance of search time 313.30 287.41

Table 5.2: Search time (ms)

0 10000 20000 30000 40000 50000

Quantization class

0

50000

100000

150000

200000

N
u

m
b

e
r

o
f

d
e

s
c
ri

p
to

rs

k-means

balanced k-means, λ=0.3

Figure 5.1: Distribution of the number of descriptors over the 50,000 quantization

classes for the BOOKS collection. The figure depicts a comparison of K-means clus-

tering vs. balanced K-means clustering (λ = 0.3). Graphs are best viewed with

colors.

zation class for the (balanced) K-means models using all 1.76 billion descriptors in the

BOOKS collection. The quantization classes have been sorted in descending order of

number of descriptors assigned. It clearly illustrates how the regular K-means quan-

tization model will lead to a highly unbalanced cluster assignment, which is bound

to hurt both retrieval precision and time. The balanced K-means quantization model

distributes the number of descriptors more evenly over the quantization classes, but

is also not perfect. This is explained by the fact that we have used a relatively s-

mall sample of 1million descriptors to train the quantization models. Increasing the

number of training samples will cause the distribution of descriptors to become more

balanced, and eventually flat.

Finally, we show example queries and results from our book cover search in Figure

5.2 and 5.3. We can see that the query images are very challenging, taken with

81

variations of size, rotation, lighting, camera viewpoints, etc. For most of cases, we

can get the correct search results even just for the first candidate. Actually, as shown

in Table 5.1, our precision at top first candidate is 0.88, which is satisfying even for

real-world commercial applications. In other words, large scale NN search is ready

for image search applications like bookcover, CD/DVD cover, and other 2-D planar

objects.

82

Figure 5.2: Example queries and results from our book cover search. Graphs are best

viewed with colors.

83

Figure 5.3: More example queries and results from our book cover search. Graphs

are best viewed with colors. 84

Chapter 6

Mobile Product Search with Bag of

Hash Bits

6.1 Introduction

The advent of smartphones provides a perfect platform for mobile visual search, in

which many interesting applications have been developed [72, 73, 74, 75], such as

location search, product search, augmented reality, etc. Among them mobile product

search is one of the most popular, because of the commercial importance and wide

user demands. There are several preliminary commercial systems on mobile product

search such as Google ” Goggles”, Amazon ”Snaptell”, and Nokia ”Point and Find”.

For mobile product search, local feature (LF) like SIFT[76] or SURF[66] is a popular

choice, since global features usually cannot support object-level matching, which is

crucial for product search.

Similar as conventional desktop visual search problems, mobile visual search has

the same requirement of efficient indexing and fast search. However, besides that,

mobile visual search has some unique challenges, e.g.,reducing the amount of data

sent from the mobile to the server1, having low computation and cheap memory on

1Not only because the bandwidth and speed of networks are still limited, but also because sending

85

the mobile side, etc.

Early mobile visual search systems only use the mobile as a capture and display

device. They usually send the query image in a compressed format like JPEG to

the server, and apply all other steps, like local feature extraction and searching, on

the server side. As the computation capacity of smartphones becomes more and

more powerful, extracting local features on the mobile client can be done very fast

now, almost in real time. So recent mobile visual systems tend to extract local

features on the mobile side. However, such local features need to be compressed

before transmission; otherwise, sending the raw local features may cost more than

sending the image. As shown in [77, 78, 79], if we compress each local feature to tens

of bits and send the compressed bits, the transmission cost/time will be reduced by

many times, compared to sending the JPEG images.

So in this chapter, we will only focus on the paradigm that transmits compressed

local features instead of JPEG images. So the main challenge is: how can we compress

local features to a few bits, while keeping the nearest neighbor search accuracy?

One straightforward approach for compressing local features is to quantize each

local feature to a visual word on the mobile side, and then send the visual words

to the server. However, most quantization methods with large vocabulary (which is

important for good search results) such as vocabulary tree [80], are not applicable on

current mobile devices, due to the limited memory and computation capacity. Simi-

larly, some promising fast search methods like [81] are not suitable for mobile visual

search either, because they usually need large memory and/or heavy computation on

the mobile side.

The most popular way for mobile visual search nowadays is to compress the local

features on the mobile side by some coding method, for instance CHoG [82], in which

the raw features is encoded by using entropy based coding method, and can be de-

coded to approximately recover features at the server. The server will then quantize

more data will cost users more money and consume more power.

86

the recovered features to visual codewords and following the standard model of ”bag

of words” (BoW), which represents one image as collections of visual words contained

in the image.

In this Chapter, we present a new mobile visual search system based on Bag of

Hash Bits (BoHB) instead of conventional Bag of Words. More specifically, in the

proposed BoHB approach, each local feature is encoded to tens of hash bits using

similarity preserving hashing functions as discussed in Chapter 3, and each image is

then represented as a bag of hash bits instead of bag of words.

First, the proposed BoHB method meets the unique requirements of mobile visual

search: for instance, the mobile side only needs very little memory (i.e., storing tens

of vectors with the same dimension of the local feature) and cheap computation (i.e.,

tens of inner products for each local feature). And moreover, the data sent from

mobile to server is also very compact, about the same as the state-of-the-art mobile

visual search method like CHoG [72, 82], much smaller than sending JPEG images.

Moreover, in terms of efficient searching, roughly speaking, the main difference

between bag of words representation and bag of hash bits representation is how to

search the database and find matched local features for each local feature contained

in the query. In the bag of words model, this step is done by quantizing each local

feature to a visual word, and then all local features with the same word index are

considered as ”matched” ones. To some extend, the hash bits of each local feature

can also be viewed as the visual word index, however, the advantages of using hash

bits are: 1) In ”bag of words” representation, the distance between ”word index” of

local features is meaningless. For example, word index 4 is not ”meaningfully” closer

to word index 5 than word index 200, since word index are just clustering labels;

however, the hamming distance between the hash bits is actually meaningful when

we use similarity preserving hash functions, like PCA hashing, SPICA hashing [83] or

LSH [21]. The hamming distance among hash bits is often designed to approximate

the original feature distance, and hence is helpful for matching local features much

87

more accurately. 2) the hash bits allow us to create the indexing structure in a very

flexible manner, eg., by building multiple hash tables. Hence, searching matched local

features can be done by checking multiple buckets in multiple hash tables. These

advantages are important in developing successful search systems that maintain high

retrieval accuracy while reducing the number of the candidate results and hence the

search time.

Some previous works [78, 72] have reported that hashing may not be a good

choice to compress local features, and hence not suitable for mobile visual search. We

believe such preliminary conclusions are drawn based on implementations that did not

fully explore the potentials of the hash techniques. In this Chapter, we will present

a different finding and develop a hash based system for mobile visual search that

significantly outperforms prior solutions. The key ideas underlying our approaches

are:

1. Use compact hashing (e.g., SPICA hashing[83] or its degenerated case: PCA

hashing (PCH), instead of random hash functions like Locality Sensitive Hash-

ing (LSH) [21].

2. Build multiple hash tables and apply hash table lookup when searching for the

nearest neighbor (”matched”) local features, instead of just using the linear

scan over the hash bits .

3. Apply multi-probe within certain Hamming distance thresholds in each hash

table, to reduce the number of needed hash tables.

4. Generate multiple hash tables through hash bit reuse, which further helps reduce

the number of transmitted data to tens of bits per local feature.

The other focus of the Chapter is to develop effective and efficient features suitable

for mobile product search. Boundary features are especially suitable for this purpose,

since the object boundary can be represented in a very compact way, without fur-

ther compression. Moreover, boundary feature is complementary with local features

88

that have been used in typical systems. Local features can capture unique content

details of the objects very well. However, it lacks adequate descriptions about the

object shape, which can actually be provided by the boundary information. There

are some works on boundary feature [84, 85]. However, the combination of bound-

ary features with the local features has not been explored for mobile visual search.

To the best of our knowledge, our work is the first one to fuse local feature and

boundary feature together for mobile product search. One of the main difficulties to

use boundary features is to automatically segment the objects in the database and

obtain the boundaries. However, for product image databases, this is usually not a

major concern because of the relatively clean background in the images crawled from

the sites like Amazon and Zappos. Even for the images captured and submitted by

users, usually the product object is located in the center of the picture with a high

contrast to the background. By applying automatic saliency cut techniques like those

proposed in [86], we will demonstrate the abilities to automatically extract bound-

aries for product images. Finally for images with complicated backgrounds, we also

provide interactive segmentation tools like Grabcut [87] on the mobile side to further

improve the boundary accuracy extracted from the query images.

The outline of this Chapter is:

1. In Section 6.2, we present the overview of our mobile visual system .

2. In Section 6.3, we discuss our proposed mobile visual scheme based on Bag of

Hash Bits, which significantly outperforms the-state-of-art visual search meth-

ods, including not only mobile ones [72, 82] but also conventional (desktop)

search systems [81, 80].

3. In Section 6.4, we incorporate boundary reranking to improve the accuracy of

mobile product search, especially at the category level.

4. In Section 6.5, we have collected a large scale challenging product search data

sets with diverse categories. These product data sets will be released to facilitate

89

further research in this exciting research area. Moreover, we have implemented

a fully functional mobile product search system including all the functions and

the large product data set described in the paper.

6.2 An Overview for the Proposed Approach

Figure 6.1: Architecture of the proposed mobile product search approach based on

bag of hash bits and boundary reranking.

Figure 6.1 shows the overall workflow of the proposed system. In our work, we

choose SURF as the local feature, because of its proven performance in accuracy and

speed in several existing systems. For database indexing, each local feature in the

database is encoded into M bits (M is tens in our case) by using similarity preserving

hashing functions. Multiple hash tables are built, each of which uses a subset of the

k bits.

For online searching, first, on the client (mobile) side, we compress each local

feature in the query image to M bits by the same similarity preserving hashing func-

tion. We also encode the (x,y) coordinates of each local feature, using less than 10

extra bits in a way similar to [72], in order to use the spatial layout information for

reranking. We then send the hash bits (M bits) and the coordinate bits (less than 10

bits) for all the local features, together with the boundary curve of the whole object

to the server. Note that only one boundary curve is needed and it is usually very

compact, for example, less than 200 bytes, and hence will increase the transmission

cost very little.

90

For a local feature in the query image and a local feature in the database, if they

fall into two buckets within a Hamming distance r in any hash table, the database

local feature is considered a ”matched” feature for the query local feature. The search

process starts with finding all matched local features to each query local feature by

probing all buckets within hamming distance r in all hash tables. Once the matched

features are found, we collect candidate images whose ”matched” local features exceed

a certain threshold. We then apply an image-level geometry verification to compute

the geometry similarity scores between the query image and candidate images. The

geometry verification utilizes both the hash bits and the locations of local features in

the image. Finally, we integrates object boundary features into our reranking process.

By fusing the geometry similarity score and boundary similarity score, we rerank the

candidate images and return the final top K retrieved images.

Our bag of hash bit approach requires similar bit budgets (e.g., 60-100 bits per

local feature) as the state-of-art mobile visual search works like CHoG [82, 72], but

a much higher search accuracy and faster search speed as shown in the experiments.

For example, as shown in the experiments over a large dataset of product images,

compared to CHoG, our approach can obtain about the same accuracy (in terms

of recall for top K results) but tens of times speedup in the search step, or perfor-

m significantly better in both search accuracy (30% improvement) and search time

(several times speedup). The BoHB method also (significantly) outperforms popular

conventional visual search systems, such as bag of words via vocabulary tree [80], or

product quantization [81]. Moreover, hashing based approach is very fast to com-

pute (only requiring tens of inner products), and very easy to implement on mobile

devices, and applicable for different types of local features, hashing algorithms and

image databases.

Moreover, from the boundary curve, we extract a boundary feature called ”central

distance”, which is translation, scale, and rotation invariant to boundary changes. By

incorporating the boundary feature into the reranking step, the overall search perfor-

91

mance is further improved, especially in retrieving products of the same categories

(shoe, furniture, etc).

6.3 Mobile Visual Search with Bag of Hash Bits

6.3.1 Hash Local Features into Bits

We will apply linear hashing methods for encoding each local feature to hash bits.

More specifically, for any local feature x, where x is a 128 dimension vector when

using SURF in our case, we can get one hash bit for x by

b = sign(vTx− t) (6.1)

Here v is a projection vector in the feature space, and t is a threshold scalar. Though

v can be a projection vector from any linear similarity preserving hashing method, we

have found randomly generated v like in LSH [21] performs quite poorly, because a

small number of hash tables is utilized, due to the memory limit. On the other hand,

projections from compact hashing like SPICA hashing [83] or its degenerated case,

PCA hashing, will provide much better search performance. So in the rest of this

paper, we assume v comes from SPICA [83] or PCA projections. Moreover, as well

known in hashing research area, balancing hash bit will usually improve the search

performance, so we choose t as the median value such that half of each bit are +1,

and the other are -1.

Following the considerations in [72], constrained by transmission speed, we limit

the number of hash bits for each local feature to less than 100.

Matching Local Features with Multiple Hash Tables

One popular technique to achieve fast sublinear search rather than linear scan, is to

utilize multiple hash tables.

For one hash bit/function, denote pNN as the probability of one query point (local

feature in our case) and one of its neighbor points to have the same bit value, and pany

92

as one query point and a random database point to have the same bit value. When

using similarity persevering hash functions, pNN will be larger than pany. Suppose we

use k bits in one table. For the simplicity of our discussion, we assume pNN is the

same for every bit, and so is and pany. And moreover, bits are independent. (Violation

of these assumptions will make the discussion much more complex but lead to similar

conclusions.) Denote PNN(k, r) as the probability of one query point and one of its

nearest neighbors to fall into two buckets whose hamming distance is no larger than

r, where r ≪ k. We have:

PNN(k, r) =
∑

i=0,...r

C i
k(pNN)

k−i(1− pNN)
i

Similarly, denote Pany(k, r) as the probability of one query point and a random

database point to fall into two buckets whose hamming distance is no larger to r.

Similarly,

Pany(k, r) =
∑

i=0,...r

Ci
k(pany)

k−i(1− pany)
i

Note that pany < pNN and r ≪ k, so Pany(k, r) will decrease much faster than

PNN(k, r) when k increases. Note that the expected number of returned nearest neigh-

bors is NNNPNN(k, r) where NNN is the number of total nearest neighbor points for

the query point. Moreover, the expected number of all returned points is NPany(k, r),

where N is the number of points in the database. So the precision of nearest neighbors

in returned points is
NNNPNN(k, r)

NPany(k, r)
,

If k becomes larger, NNN∗PNN (k,r)
N∗Pany(k,r)

will becomes larger too, and hence the pre-

cision of finding matched local features will be high. However, when k is large,

NNN ∗PNN(k, r) itself may be too small, and hence we cannot obtain enough nearest

neighbors. So we can increase the number of hash tables L to improve the chance of

obtaining nearest neighbors, while still keep the high precision.

If we only check one bucket (i.e., r = 0) in each hash table, L often has to

be very large like hundreds to get a reasonable recall for finding nearest neighbors.

93

One popular solution to reduce the number of tables is to probe multiple buckets

in one hash table. For example, if we set r as 2 or 3, and check all buckets within

hamming distance r in each hash table, the number of needed tables can then be

reduced significantly, to about ten for example, because PNN(k, r) will increase when

r becomes larger, for a fixed k.

In practice, hamming distance r is usually a small number, e.g., ≤ 3, the number

of bits k in each hash table is about 20− 40, and L is 5− 20.

Multiple Hash Tables Proliferation

We adopt the idea of using multi hashing table to find nearest neighbor local features

for the query ones. However, the number of bits to build L hash tables is Lk, usually

hundreds or thousands bits. For mobile visual search, we only have a budget of tens

of bits per local feature. So instead of sending hundreds/thousands of hash bits for

each local feature over the mobile network, we only send tens of bits per local feature,

but generate multiple hash tables by reusing the bits. More specifically, suppose we

have M bits for each local feature, we will build each hash table by randomly choosing

a subset of k bits from M bits. We have observed if M is more than 2 or 3 times

larger than k, constructing tables by reusing bits does not largely affect the search

result, especially when the number of hash tables is not large, e.g., about ten in our

case. We can thus construct multiple tables without increasing the total amount of

bits needed for each local feature.

6.3.2 Geometry Verification with Hash Bits

Suppose one database image contains several matched local features, one would like

to check if these matches are geometrically consistent, i.e., whether a valid geometric

transformation can be established between the feature positions in the query image

and the positions in the database image. The existence of a consistent geometric

transformation between two images strongly indicates that the image indeed contains

similar object(s). Considering the popular geometric verification method, RANSAC,

94

is too slow, we apply a fast geometry verification method based on length ratio, in-

spired by [72]. The method is about tens/hundreds of times faster than the RANSAC

algorithm and was shown to perform well on real-world databases. Intuitively, it esti-

mates the portion of matched features between query and reference images that share

a consistent scale change. The higher value this is, the higher score the candidate

reference image receives.

Length Ratio Similarity with Hash Bits

More specifically, for a the query image Iq and a database image Idb, suppose they

have m ≥ 2 matched local features. For two features p and q in Iq, suppose their

matched features are p′ and q′ in Idb respectively. Denote xp and yp as the (x, y)

coordinate of local feature p in the image. The length ratio is defined as the ratio of

distance between p and q and distance between p′ and q′:
||(xp′−xq′)

2+(yp′−yq′)
2||

1
2

||(xp−xq)2+(yp−yq)2||
1
2
. There

are C2
m ratio values between Iq and Idb, since there are m matched local features, and

C2
m matched feature pairs. Each ratio value i will be quantized to some bin a in the

ratio value histogram. Suppose, ration value i is computed with local feature p, p′

and q, q′ , then i’s vote to bin j is computed as

vi,j = α(dpp′+dqq′), if j == a,

vi,j = 0, otherwise.

Here α is a constant which is smaller than but close to 1, and dpp′ and dqq′ are the

hamming distances between p, p′ and q, q′ respectively. Then the maximum value in

the histogram is taken as the geometry similarity score between two images, or more

specifically,

Sg(Iq, Idb) = max
j

∑
i=1,...,C2

m

vi,j. (6.2)

However, one observation is: the similarity score as above results in an approxi-

mately quadratic growth versus the number of matched points. In our experiment,

we have found this put too much weight on the number of matches while ignoring

the quality of matches themselves. One distracter image with complex background

95

can, e.g., have higher score than the correct one just because it has more matches to

the background clutter of query image. We thus divide the maximum value in the

histogram by the total number of matches to further improve the robustness to noisy

matches.

6.4 Boundary Reranking

To obtain boundary features, we need to extract the boundaries first. Since product

objects are usually the most salient regions in images, we applied the SaliencyCut

algorithm to extract the boundaries automatically [86].

We also implement the interactive segmentation Grabcut [87] on the mobile device,

to further improve the segmentation accuracy for the query.

Some example results of the automatic SaliencyCut are shown in figure 6.2.

Figure 6.2: Examples of automatic SaliencyCut results. The first 4 are segmented

correctly, while the last two do not find perfect cut due to shadow, lighting, and

distracting background. Pictures are best viewed in color.

There are different boundary features proposed [84, 88], however, in our system,

we utilize a very straightforward boundary feature, central distance, because of its

simplicity and robustness.

Before feature extraction, we first smooth the boundary by using a moving average

filter to eliminate noises on the boundary. Then the feature is expressed by the

distances between sampled points p(n) along the shape boundary and the shape

96

center c = (cx, cy):

D(n) =
∥p(n)− c∥2

maxn ∥p(n)− c∥2
, n = 1, 2, . . . , N

The points p(n) are sampled with a fixed length along the boundary. For a desired

feature lengthN , the sampling step can be set to L/N , where L is the boundary length

(the total number of pixels in the boundary curve). It is easy to see the central

distance feature is invariant to translation. In addition, the feature D is normalized

by its maximum element, and hence will be scale invariant.

Moreover, to make it rotation invariant and start point independent, the discrete

Fourier transform (DFT) is applied:

F(n) = |f [D(n)]|, n = 1, 2, . . . , N (6.3)

where f [·] is the discrete Fourier transform and can be computed efficiently by fast

Fourier transform (FFT) in linear time. Any circular shift of the feature vector

D(n) only affects the phases of its frequency signal, while F(n), the magnitude of

frequency signal, keeps unchanged. In sum, F(n) will be translation, scale, and

rotation invariant to boundary changes.

For one query image Iq and one database image Idb, their boundary similarity

Sb(Iq, Idb) is defined as Sb(Iq, Idb) = e−||Fq−Fdb||, where Fq and Fdb are the frequency

magnitude for Iq and Idb, as defined in Equation (6.3).

We fuse the two similarity, i.e., geometry similarity Sg as computed in (6.2)

and boundary similarity Sb, with a linear combination: S(Iq, Idb) = Sg(Iq, Idb) +

λSb(Iq, Idb). The combine similarity s are used to rerank the top results.

6.5 Experiments

We have provided some video demos at http://www.ee.columbia.edu/~jh2700, to

demonstrate the end-to-end mobile product search system that has been operational

over actual mobile networks.

97

http://www.ee.columbia.edu/~jh2700

1 2 3 4 5

(a)

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

1
2
3
4
5

0 5 10 15 20 25
0

5

10

15

20

1
2
3
4
5

(b) (c)

Figure 6.3: (a) 5 example object boundaries. (b) The central distance features for 5

samples. (c) The central distance features in frequency domain. The boundaries are

extracted by the automatic SaliencyCut method. As shown in (b) and (c), the simi-

larity among the central distance features or their frequencies capture the similarity

among boundaries quite well. Graphs are best viewed in color.

Figure 6.4: Example user interfaces on iphone. Users may select the whole image, or

a subwindow as query input, which can further be refined by automatic SalientCut

or interactive object segmentation tools like Grabcut. Matched products are shown

on the right.

98

Two snapshots from our video demo are shown in Figure 6.4 to illustrates the UI

of our system 2. Our system supports search with the whole image or a subwindow

as the query.

Our system will have the same speed in most of the steps as other mobile visual

search system, e.g, local feature extraction on mobile (< 1s), transmitting query data

through network (usually < 1s). The step of compressing each local feature to hash

bits is very fast, and can almost be ignored, compared to other steps.

The main difference between our approach and other mobile product search sys-

tem is the searching step: searching with bag of hash bits v.s. searching with bag of

words. To further justify our approach, we conduct experiments to provide quantize

analysis on this searching step. Since the whole searching step only involves compu-

tation on the server and does not involve mobile, our experiments are conducted on

a workstation. We will report both search accuracy and search time in our experi-

ments. Note that the time of other steps (e.g., feature extraction, transmission) is

independent of the database size. The database size will only affect this searching

step. So the searching time represents the scalability of the system.

6.5.1 Data Sets

The existing product (or object) image sets, e.g., ”Stanford Mobile Visual Data Set”

[89], or ”UKBench” object data set [80], usually have a small scale like thousands of

images. or contain mainly 2D objects like CD/DVD/Book covers.

For mobile product search applications, the most meaningful data set may actually

come from online shopping companies like Amazon, Ebay, etc. So we have collected

two large scale product sets from Amazon, Zappos, and Ebay, with 300k−400k images

of product objects, from diverse categories like shoes, clothes, groceries, electrical

2We have implemented the UI in iPhone platform with Objective C. Moreover, the implemen-

tation of extracting SURF features and some image processing steps are accomplished by adapting

OpenCV into iPhone platform

99

devices, etc. These two product image sets are the largest and most challenging

benchmark product datasets to date.

Product Data Set 1

The first data set includes 360K product images crawled from Amazon.com. It con-

tains about 15 categories of products. For this data set we have created a query set

of 135 product images. Each query image will have one groundtruth image in the

database, which contains exactly the same product as the query, but will differ in

object sizes, orientations, backgrounds, lightings, camera viewpoints, etc.

Product Data Set 2

The second data set contains 400K product images collected from multiple sources,

such as Ebay.com, Zappos.com, Amazon.com, etc, and with hundreds of categories.

For this data set we have collected a query set of 205 product images.

The image sizes for both sets are usually 200-400 by 200-400. And each image

usually contains about 50-500 SURF features. No subwindow is provided for each

query image. And moreover, the boundaries for product objects in both database

and queries are extracted by automatic SaliencyCut.

Some examples of query images and their groundtruths from our data sets are

shown in Figure 6.5.

query

target

Figure 6.5: Some example queries and their groundtruths in Product Dataset 2. The

first row are queries, and the second row are corresponding groundtruths.

100

6.5.2 Performance of Bag of Hash Bits

First, we compare our ”bag of hash bits” approach to CHoG [82, 72] approach, which

is the state-of-the-art in mobile visual search area, on Product Data Set 1.

In CHoG implementation, each CHoG feature is about 80 bits. The CHoG features

will be quantized with vocabulary tree [80], which is the state-of-the-art method to

quantize local features. Since the quantization step for CHoG approach is done on

the server side, using large scale codebook is possible. In our implementation, we use

a codebook with 1M codewords.

For our ”Bag of Hash Bits”, we use 80 bits for each local feature by using SPICA

hashing [83] or LSH [21]. And then we build 12 hash tables, each of which is con-

structed by randomly choosing 32 bits from the 80 bits. We will check buckets within

hamming distance r in each hash table. r is set to 1-3 in our experiments.

As shown in Figure 6.6, with bits generated from SPICA hashing and hamming

distance r = 2, our approach of ”Bag of Hash Bits” on surf features can obtain about

the same recall as BoW on ”CHoG” features, but the search speed is improved by

orders of magnitude. And if we set r = 3, we can improve the accuracy significantly,

e.g., about 30% improvement for the recall at top 10 retrieved results, while be several

times faster.

However, if we use bits from LSH, the search time of our BoHB approach will

be increased by tens/hundreds of times. The main reason is: LSH bits are random-

ly generated and hence are quite redundant. That actually explains why previous

hashing based systems (usually utilizing LSH bits) perform quite poorly.

We also compare our ”bag of hash bits” approach to other popular visual search

systems, such as BoW via vocabulary tree [80] or product quantization [81], with

SURF features, even though they may not be applicable to mobile visual search

scenarios.

For vocabulary tree implementation, we follow the paradigm in vocabulary tree in

[80]. The codebook size on SURF features is up to 1M, which is the largest codebook

101

10
0

10
1

10
2

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

Top Retrieved Images

R
ec

al
l

CHoG+BoW, 1.5 s
SURF+BoHB, LSH, r = 2, 10.1s
SURF+BoHB, LSH, r = 3, 27.7s
SURF+BoHB, SPICA, r=3, 0.25s
SURF+BoHB, SPICA, r=2, 0.057s

Figure 6.6: Performance comparison between CHoG based approach and our BoHB

approach on Product DataSet 1. For BoHB, we have tried bits from two different

hash methods, SPICA hashing [83] and LSH. Search time of different approaches are

included in the legends. Graph is best viewed in color.

in the current literatures. As shown in Figure 6.7, with bits generated from PCA

hashing (PCH), and hamming distance r = 1 or 2, the proposed BoHB approach

can achieve 2-3 fold increase in terms of recall. For product quantization approach,

we utilize the product quantization method to match top K nearest neighbor local

features for each query local feature, and then rerank the candidate database images.

In our current implementation, K = 1000, and reranking is based on the counts

of matched local features in each candidate images. 3 We can see that product

quantization method achieves relatively good accuracy (slightly lower than our top

results), but (much) slower search speed. However, if LSH or ITQ [40] hash bits are

utilized, we will see the search time of the BoHB approach will be quite long. This

confirms the merit to combine compact hashing of low redundance (like PCA hashing

or SPICA hashing) with the proposed Bags of Hash Bits idea.

3We have tried otherK and different reranking methods e.g., build BoW histograms with matched

local features and compute cosine similarity between histograms, or sum the distances between query

local features and matched local features in each candidate image. We choose the current K and

ranking method, because they provides the best accuracy.

102

10
0

10
1

10
2

0

0.1

0.2

0.3

0.4

0.5

Top Retrieved Images

R
ec

al
l

BoHB, PCH, r=1 0.05s
BoHB, PCH, r=2 0.17s
BoHB, LSH, r=1 8.3s
BoHB, LSH, r=2 27.1s
BoHB, ITQ, r=2 38.0s
BoHB, ITQ, r=1 16.2s
PQ 3s
VT + BoW (1M) 0.17s

Figure 6.7: Performance comparison between the proposed BoHB approach and other

visual search methods including BoW (with Vocabulary Tree) approach and product

quantization approach, on Product DataSet 2. For BoHB, we have tried bits from

different hash methods, such ass PCA hashing (PCH), ITQ hashing [40] and LSH.

Search time of different approaches are included in the legends. Graph is best viewed

in color.

6.5.3 Performance of Boundary Reranking

If we repeat our BoHB approach with SPICA or PCH bits and r = 3 as in Figure

6.6, but include boundary reranking, the recall of top 100 results will have about

relatively 8%-10% improvement. The improvement caused by boundary reranking

seems good, but not exciting. However, that is mainly due to the strict definition of

our groundtruth. For each query, we only define one groundtruth, which is exactly the

same product as the query. Some examples of search results without/with boundary

reranking (BR) are shown in Figure 6.8. As shown, our boundary reranking is very

helpful to filter out noisy results, and improve the search quality, especially increase

the number of relevant products (in the sense of the same category). But this is not

represented in recall, under the strict definition of our groundtruth. However, the

advantage of boundary reranking will be very helpful in practice, especially when the

query product does not exist in the database, and hence relevant/similar products

will be the best we can return.

103

without
 BR

without
 BR

with
 BR

with
 BR

without
 BR

with
 BR

without
 BR

with
 BR

query

query

query

query

Figure 6.8: Example queries and their top 5 search results, without or with boundary

reranking (BR). Pictures are best viewed in color.

104

Part V

Additional Discussions on Nearest

Neighbor Search

105

Chapter 7

Theories on the Difficulty of

Nearest Neighbor Search

7.1 Introduction

Following (1.1) and (1.2), we have discussed different kinds of approximate Nearest

Neighbor (NN) search techniques. However, no matter our proposed methods in Part

II and Part III, or previous related methods discussed in Section 1.3, the performance

of all these techniques depends heavily on the data set characteristics.

For example, we have discussed a lot about how to optimize the partition Ψ in

(1.1), i.e.,

min
Ψ

T (Ψ) = Tindices(Ψ) + Tregions(Ψ) + nP̂any(Ψ)Ucheck

s.t.,

1− P̂nn(Ψ) ≤ δ

(7.1)

especially, how to optimize P̂any(Ψ) and P̂nn(Ψ) by choosing optimal parameters

for random partitions or designing optimal partition functions for learning based

partitions.

106

However, P̂any(Ψ) and P̂nn(Ψ), and hence the optimal value for (1.1), not only

depend on the partition methods, but also the data set itself.

For example, could one data set be just too difficult for NN search? And hence, no

NN search methods can achieve meaningful performance, i.e., can get a better time

complexity than linear scan? Or is it possible that one data set A is more difficult

than another data set B, and hence the possible optimal value for (1.1) on A is thus

larger than B? If one data set A is too difficult or more difficult than B, why is that?

or more specifically, how is the difficulty of a data set related to the characteristics,

such as dimension, sparsity or metric definition, etc.?

In sum, there are three fundamental questions here:

1. How to measure the difficulty of a given data set for NN search (independent

of any NN search methods)?

2. How will the data characteristics, such as dimension, sparsity or metric defini-

tion on the dataset, related to the ”difficulty” of the data set?

3. How will the performance of NN search methods, for example, the optimal value

in (1.1), be affected by the difficulty of a given data set?

We will introduce a new concrete measure Relative Contrast for the difficulty of n-

earest neighbor search problem in a given data set (independent of indexing methods).

Unlike previous works that only provide asymptotic discussions for one or two data

properties, we derive an explicitly computable function to estimate relative contrast

in non-asymptotic case. It for the first time enables us to analyze how the difficulty of

nearest neighbor search is affected by different data properties simultaneously, such

as dimensionality, sparsity, database size, along with the norm of Lp distance metric

, for a given data set, as shown in Sec. 7.2. 1 In Section 7.3, we will discuss how

the difficulty of the data set will affect the performance of NN search methods. We

1 As a comparison, most of the existing works on analyzing NN search have focused on the effect

of one data property: dimensionality, that too in an asymptotic sense, showing that NN search will

107

provide a theoretical analysis and experiment justification, in a non-asymptotic quan-

titative sense, on how the dataset difficulty and hence data properties affect the time

complexity of LSH, a special case of (1.1). We provide the proofs of the theorems of

this chapter in Section 9.4 in the Appendix. Moreover, we also show many previous

works on NN search analysis are special cases of ours, in Section 9.4.

7.2 The Difficulty of Nearest Neighbor Search for

a Given Data Set

7.2.1 Relative Contrast (Cr) – Measure the Difficulty of N-

earest Neighbor Search

Suppose we are given a data set X containing n d-dim points, X = {Xi, i = 1, . . . , n},

whereXi ∈ Rd are i.i.d samples from a random vector x with an unknown distribution

p(x). Denote xj as the j-th dimension of x. Suppose a query q is also a random vector

in Rd, following the same distribution of p(x). Denote qj as the j-th dimension of q.

Further, let D(·, ·) be the distance function for the d-dimensional data. We focus

on Lp distances in this analysis: D(x, q)=(
∑

j |xj−qj|p)1/p.

Suppose Dq
min = min

i=1,...n
D(Xi, q) is the distance to the nearest database sample2,

and Dq
mean = Ex[D(x, q)] is the expected distance of a random database sample from

the query q. We define the relative contrast for the data set X for a query q as :

be meaningless when the number of dimensions goes to infinity ([90, 91, 92]). First, non-asymptotic

analysis has not been discussed, i.e., when the number of dimensions is finite. Moreover, the effect

of other crucial properties has not been studied, for instance, the sparsity of data vectors. Since in

many applications, high-dimensional vectors tend to be sparse, it is important to study the two data

properties e.g., dimensionality and sparsity together, along with other factors such as database size

and distance metric.

2Without loss of generality, we assume that the query is distinct from the database samples, i.e.,

Dq
min ̸= 0.

108

Cq
r = Dq

mean

Dq
min

. It is a very intuitive measure of separability of the nearest neighbor

of q from the rest of the database points. Now, taking expectations with respect to

queries, the relative contrast for the dataset X is given as,

Cr =
Eq[D

q
mean]

Eq[D
q
min]

=
Dmean

Dmin

(7.2)

Intuitively, Cr captures the notion of difficulty of NN search in X. Smaller the Cr,

more difficult the search. If Cr is close to 1, then on average a query q will have

almost the same distance to its nearest neighbor as that to a random point in X.

This will imply that NN search in database X is not very meaningful.

In the following sections, we derive relative contrast as a function of various im-

portant data characteristics.

7.2.2 Estimation of Relative Contrast

Suppose xj and qj are the j-th dimensions of vectors x and q. Let’s define,

Rj = Eq[|xj − qj|p], R =
d∑

j=1

Rj. (7.3)

Both Rj and R are random variables (because xj is a random variable). Suppose each

Rj has finite mean and variance denoted as µj = E[Rj], σ2
j = var[Rj]. Then, the

mean and variance of R are given as,

µ =
d∑

j=1

µj, σ2 ≤
d∑

j=1

σ2
j .

Here, if the dimensions are independent then σ2 =
∑

j σ
2
j . Without the loss of gen-

erality, we can scale the data such that the new mean µ′ is 1. The variance of the

scaled data, called normalized variance will be:

σ′2 =
σ2

µ2
. (7.4)

The normalized variance gives the spread of the distances from query to random

points in the database with the mean distance fixed at 1. If the spread is small, it is

109

harder to separate the nearest neighbor from the rest of the points. Next, we estimate

the relative contrast for a given dataset as follows.

Theorem 7.2.1. If {Rj, j=1,...d} are independent and satisfy Lindeberg’s condition3,

the relative contrast can be approximated as,

Cr =
Dmean

Dmin

≈ 1

[1 + ϕ−1(1
n
+ ϕ(−1

σ′))σ′]
1
p

(7.5)

where ϕ is the c.d.f of standard Gaussian, n is the number of database samples, σ′ is

normalized standard deviation, and p is the distance metric norm.

Range of Cr: Note that when n is large enough ϕ(−1
σ′) ≤ 1

n
+ ϕ(−1

σ′) ≤ 1
2
, so

0 ≤ 1 + ϕ−1(1
n
+ ϕ(−1

σ′))σ
′ ≤ 1 and hence Cr is always ≥ 1. And moreover, when

σ′ → 0, ϕ(−1
σ′) → 0, and Cr → 1.

Generalization 1: The concept of relative contrast can be extended easily to

the k-nearest neighbor setting by defining Ck
r = Dmean

Dknn
, where Dknn is the expected

distance to the k-th nearest neighbor. Using n̄(Dp
knn) ≈ n̄(Rknn) = k, and following

similar arguments as above, one can easily show that

Ck
r =

Dmean

Dknn

≈ 1

[1 + ϕ−1(k
n
+ ϕ(−1

σ′))σ′]
1
p

(7.6)

7.2.3 What Data Properties Affect the Relative Contrast

and How?

7.2.3.1 Effect of normalized variance σ′ on Relative Contrast Cr

From (7.5), relative contrast is a function of database size n, normalized variance

σ′2, and distance metric norm p. Here, σ′ is a function of data characteristics such

as dimensionality and sparsity. Figure 7.1 shows how Cr changes with σ′ according

3Lindeberg’s condition is a sufficient condition for central limit theorem to be applicable even

when variables are not identically distributed. Intuitively speaking, the Linderberg condition guar-

antees that no Rj dominates R.

110

10
−4

10
−3

10
−2

10
−1

10
01

1.5

2

2.5

3

3.5

σ’

R
e
l
a
t
i
v
e

C
o
n
t
r
a
s
t

 100

 1000

 10000

 100000

 1000000

 10000000

100000000

Figure 7.1: Change in relative contrast with respect to normalized data variance σ′

as in (7.5). The database size n varies from 100 to 100M and p = 1. Graph is best

viewed with color.

to (7.5) when n is varied from 100 to 100M , and 0 < σ′ < 0.2 (Note that σ′ is

usually very small for high dimensional data, e.g., far smaller than 0.1). It is clear

that smaller σ′ leads to smaller relative contrast, i.e., more difficult nearest neighbor

search.

In the above plots, p is fixed to be 1 but other values yield similar results. An

interesting thing to note is that as the database size n increases, relative contrast

increases. In other words, nearest neighbor search is more meaningful for a larger

database.4 However, this effect is not very pronounced for smaller values of σ′.

7.2.3.2 Data Properties vs σ′

Since we already know the relationship between Cr and σ′, by analyzing how data

properties affect σ′, we will find out how data properties affect Cr, i.e., the difficulty

of NN search. Though many data properties can be studied, in this section we focus

on sparsity (a very important property in many domains involving, say, text, images

and videos), together with other properties like data dimension and metric.

Suppose, the jth dimensions of vectors x and q are distributed the same way as a

random variable Vj. But each dimension has only sj probability of having a non-zero

value where 0 < sj ≤ 1. Denote mj,p as the p-th moment of |Vj|, and m′
j,p as the p-th

4It should not be confused with computational ease since computationally search costs more in

larger databases.

111

moment of |Vj1 − Vj2|, where Vj1 and Vj2 are independently distributed as Vj.

Theorem 7.2.2. If dimensions are independent,

σ′2 =
∑d

j=1 s
2
jm

′
j,2p+2(1−sj)sjmj,2p−µ2

j

(
∑d

j=1 µj)2

where µj = s2jm
′
j,p + 2(1− sj)sjmj,p. Moreover, if dimensions are i.i.d.,

σ′ =
1

d1/2

√
s[(m′

2p − 2m2p)s+ 2m2p]

s2[(m′
p − 2mp)s+ 2mp]2

− 1. (7.7)

For some distributions,mp andm′
p have a closed form representation. For example,

if every dimension follows uniform distribution U(0, 1), then pth moment is quite easy

in this case: mp =
1

(p+1)
,m′

p =
2

p+1
− 2

p+2
. However, if mp and m′

p do not have a closed

form representation, one can always generate samples according to the distribution,

and estimate mp and m′
p empirically.

7.2.3.3 Data Properties vs Relative Contrast Cr

We now summarize how different database properties and distance metric affect rel-

ative contrast.

Data Dimensionality (d): From (7.7), it is easy to see that larger d will lead

to smaller σ′. Moreover, from (7.5), smaller σ′ implies smaller relative contrast Cr,

making NN search less meaningful. This indicates the well-known phenomenon of

distance concentration in high dimensional spaces. However, when dimensions are

not independent, thankfully, the rate at which distances start concentrating slows

down.

Data Sparsity (s): From (7.7), we can see that σ′ = 1
d1/2

√
(m′

2p−2m2p)+
2m2p

s

[(m′
p−2mp)s+2mp]2

− 1.

If m′
p − 2mp ≥ 0, when s becomes smaller (i.e., data vectors have fewer non-zero

elements), σ′ gets larger, and so does the relative contrast. Another interesting case

is when p → 0+, i.e., L0 or zero-one distance. In this case, mp = m′
p = 1, and from

(7.7) σ′ = 1
d1/2

√
(1−s)2

1−(1−s)2
, which increases monotonically as s decreases. However,

for general cases, it is not easy to theoretically prove how σ′ will change when s

gets smaller. But in experiments, we have always found that smaller s will lead to

112

larger σ′. In other words, when data vectors become more sparse, NN search becomes

easier. That raises another interesting question: What is the effective dimensionality

of sparse vectors? One may be tempted to use d · s as the intrinsic dimensionality.

But as we will show in the experimental section, this is generally not the case and

relative contrast provides an empirical approach to finding intrinsic dimensionality of

high-dimensional sparse vectors.

Database Size (n): From (7.5), keeping σ′ fixed, Cr increases monotonically with

n. Hence, NN search is more meaningful in larger databases. Actually, when n→∞,

irrespective of σ′, 1+ϕ−1(1
n
+ϕ(−1

σ′))σ
′ → 0, and Cr → ∞. Thus, when the database size

is large enough, one doesn’t need to worry about the meaningfulness of NN search

irrespective of the dimensionality. However, unfortunately when dimensionality is

high, Cr increases very slowly with n, making the gains not very pronounced in

practice. This is the same phenomenon noticed in Fig. 7.1 for small values of σ′.

Distance Metric Norm (p): Since p appears in both (7.5) and (7.7), it makes

analysis of relative contrast with respect to p not as straightforward. In the special

case when data vectors are dense (i.e., s = 1), and each dimension is i.i.d with uniform

distribution, one can show that smaller p leads to bigger contrast.

7.2.4 Validation of Relative Contrast

To verify the form of relative contrast derived in Sec. 7.2.2, we conducted experiments

with both synthetic and real-world datasets, which are summarized below.

7.2.4.1 Synthetic Data

We generated synthetic data by assuming each dimension to be i.i.d from uniform

distribution U [0, 1]. Fig. 7.2 compares the predicted (theoretical) relative contrast

with the empirical one. The solid curves show the predicted contrast computed using

(7.5), where the normalized variance σ′ is estimated using (7.7). The dotted curves

show the empirical contrast, directly computed according to the definition in (7.2)

113

0 500 1000 1500 2000
1

1.5

2

2.5

dimension d

C
on

tr
as

t c
r

s=0.5,p=1,Empirical

s=0.5,p=1,Predicted

s=1,p=1,Empirical

s=1,p=1,Predicted

0 0.5 1
1

2

3

4

sparsity s

C
on

tr
as

t c
r

d=500,p=1,Empirical

d=500,p=1,Predicted

d=1000,p=1,Empirical

d=1000,p=1,Predicted

(a) (b)

0 1 2 3 4
1

2

3

4

5

6

L
p

C
on

tr
as

t c
r

d = 60,s=0.5,Empirical

d = 60,s=0.5,Predicted

1000 3000 10000 30000 100000
1

1.5

2

2.5

database size n

C
on

tr
as

t c
r

d = 30,s=1,p=1,Empirical
d = 30,s=1,p=1,Predicted
d = 60,s=1,p=1,Empirical
d = 60,s=1,p=1,Predicted

(c) (d)

Figure 7.2: Experiments with synthetic data on how relative contrast changes with

different database characteristics. Graphs are best viewed with color.

from the data by averaging the results over one hundred queries. For most of the

cases, the predicted and empirical contrasts have similar values.

Fig. 7.2 (a) confirms that as dimensionality increases, relative contrast decreases,

thus making the nearest neighbor search harder. Moreover, except for very small

d, the prediction is close to the empirical contrast verifying the theory. It is not

surprising that predictions are not very accurate for small d since the central limit

theorem(CLT) is not applicable in that case. It is interesting to note that (7.5)

also predicts the rate at which contrast changes with d, unlike the previous works

([90, 91]) which only show that NN search becomes impossible when dimensionality

114

goes to infinity.

Fig. 7.2 (b) shows how data sparsity affects the contrast for two different choices

of d. The main observation is that as s increases (denser vectors), contrast decreases,

making nearest neighbor search harder. In other words, lesser the number of non-zero

dimensions for a fixed d, easier the search. In fact, the search remains well-behaved

even in high-dimensional datasets if data is sparse. The prediction is quite accurate

in comparison to the empirical one except when s.d is small and hence CLT does

not apply any more. As a note of caution, one should not regard s.d as the intrinsic

dimensionality of the data, since a dataset with dense vectors of dimension s.d usually

has different contrast than the d-dim s-sparse data set.

The effects of two other characteristics i.e., Lp distance metric for different p and

database size n are shown in Figs. 7.2 (c) and (d), respectively. The effect of these

parameters on relative contrast is milder than that of d and s. For large d, the contrast

drops quickly and it becomes hard to visualize the effects of p and n. So, here we

show these plots for smaller values of d. From Fig. 7.2 (c) it is clear that for norms

less than 1, contrast is the highest (Note that we have an approximation for p > 1 in

Theorem 7.2.1, which causes the bias of predicted Cr for p = 3, 4). This observation

matches the conclusion from ([91]) for dense vectors. Fig. 7.2 (d) shows that as the

database size increases, it becomes more meaningful to do nearest neighbor search.

But as the dimensionality is increased (from 30 to 60 in the plot), the rate of increase

of contrast with n decreases. For very high dimensional data, the effect of n is very

small.

7.2.4.2 Real-world Data

Next, we conducted experiments with four real-world datasets commonly used in

computer vision applications: sift, gist, color and image. The details of these sets are

given in Table 7.1. The sift and gist sets contain 128-dim and 384-dim vectors, which

are mostly dense. On the other hand, both color and image datasets are very high

115

Table 7.1: Description of the real-world datasets. n - database size, d - dimensionality,

s - sparsity (fraction of nonzero dimensions), de - effective dimensionality containing

85% of data variance.

n d s de

gist 95000 384 1 71

sift 95000 128 0.89 40

color (histograms) 95000 1382 0.027 22

image (bag-of-words) 95000 10000 0.024 71

dimensional as well as sparse. Color data set contains color histogram of images while

the image data set contains bag-of-words representation of local features in images.

While deriving the form of relative contrast in Sec. 7.2.2, we assumed that di-

mensions were independent. However, this assumption may not be true for real-world

data. One way to adress this problem would be to assume that the dimensions be-

come independent after embedding the data in an appropriate low-dimensional space.

In these experiments, we define effective dimensionality de as the number of dimen-

sions necessary to preserve 85% variance of the data5. The effective dimensionality

for different datasets is shown in Table 7.1. Table 7.2 compares the empirical and

predicted relative contrasts for different datasets. Since our theory is based on the

law of large numbers, the prediction is more accurate on image and gist data sets as

their effective dimensions are large enough. For the color data, de is too small (just

22) and hence the prediction of relative contrast shows more bias for this set.

One interesting outcome of these experiments is that our analysis provides an

alternative way of finding intrinsic dimensionality of the data which can be further

used by various nearest neighbor search methods. The traditional method of finding

intrinsic dimensionality using data variance suffers from the assumption of linearity of

5For large databases, one can use a small subset to estimate the covariance matrix.

116

Table 7.2: Experiments with four real-world datasets. Here, predicted contrast is

computed using the effective dimensionality containing 85% of data variance.

p=1 p=2

gist empirical contrast 1.83 1.78

gist predicted contrast 1.62 1.87

sift empirical contrast 4.78 4.23

sift predicted contrast 2.03 3.94

color emprical contrast 3.19 4.81

color predicted contrast 2.78 8.10

image empirical contrast 1.90 1.66

image predicted contrast 1.62 1.87

the low-dimensional space and the arbitrary choice of threshold on variance. On the

other hand, nonlinear methods are computationally prohibitive for large datasets. In

the relative contrast based method, for a given dataset, one can sweep over different

values of d′ where 0 < d′ < d, and find the one which gives the least discrepancy

between the predicted and empirical contrasts averaged over different p. For large

datasets, one can use a smaller sample and a few queries to estimate the empirical

contrast. Using this procedure, the intrinsic dimensionality for the four datasets turns

out to be: sift - 41, gist - 75, color - 41, image - 70. For the two sparse datasets (color

and image), it indicates the dimensionality of equivalent low-dimensional dense vector

space. It is interesting to note that intrinsic dimensionality is not equal to d · s for

the two sparse datasets as discussed before. For image dataset, it is much smaller

than d · s indicating high correlations in non-zero entries of the data vectors.

117

7.3 HowWill the Difficulty Affect the Performance

NN Search Methods

7.3.1 How Will the Difficulty Affect LSH

In this section, we will discuss how the difficulty measure, i.e., relative contrast, will

affect the complexity of LSH. We will also see how relative contrast will affect the

parameter design for LSH.

We will mainly discuss p-stable locality sensitive hashing ([22]) with a hash func-

tion h(x) = ⌊vT x+b
w

⌋, where v is a vector with entries sampled from a p-stable distri-

bution, and b is uniformly distributed as U [0, w].

We provide the following theorems to show how relative contrast (Cr) affects the

complexity of LSH.

Theorem 7.3.1. To find the exact nearest neighbor with probability 1−δ, the return-

ing candidate points, the time complexity, space complexity and the number of hash

tables needed are monotonically decreasing with Cr.

Thus, among the datasets of same size, to get the same recall of the true nearest

neighbor, the dataset with higher relative contrast Cr will have better upper bound

on the time and space complexity, the number of candidates for reranking, and the

number of hash tables, or in one word, be easier for approximate NN search with

LSH.

To verify the effect of relative contrast on LSH, we conducted experiments on

three real-world datasets.

In Fig. 7.3, performance of LSH for L1 distance (i.e., p = 1) is given on three

datasets: sift, gist and color. From Table 7.2, for p = 1, Cr for the three datasets is in

this order: sift(4.78) > color(3.19) > gist (1.83). From Fig. 7.3 (a), we can see that

for several settings of number of bits and number of tables, the number of returned

points needed to get the same nearest neighbor recall for the three sets follows sift <

118

10
0

10
1

10
2

10
3

10
4

10
5

0

0.2

0.4

0.6

0.8

1

returned points
re

ca
ll

sift
gist
color

10
0

10
1

10
2

0

0.2

0.4

0.6

0.8

number of tables

re
ca

ll

sift
gist
color

(a) (b)
Figure 7.3: Performance of LSH on three datasets: sift, gist, and color. (a) Recall

of the nearest neighbor. Each curve represents different number of bits, e.g., k =

12, 16, ...40. Each marker on the curve represents different number of hash tables l,

e.g., l = 1, 2, ...128. (b) Recall of the nearest neighbor for different number of hash

tables for k = 32. Graphs are best viewed with color.
color < gist, as predicted by Theorem 7.3.1. Moreover, from Fig. 7.3 (b), the number

of hash tables needed to get the same recall follows sift < color < gist. We have tried

experiments with k = 12, 16..., 40 and observe the same trend, but only show results

for k = 32 due to space limit.

The above experiments used the typical framework of hash table lookup. Another

popular way to retrieve neighbors in code space is via hamming ranking. When using

a k-bit code, points that are within hamming distance r to the query are returned

as candidates. In Figure 7.4, we show the recall of nearest neighbor for two different

values of k. Similar to the case of hash table lookup experiments, the number of

returned points needed to get the same recall follows sift < color < gist. This follows

the same order as suggested by relative contrast. The interesting thing is that color

has much higher dimensionality than gist, but its sparsity helps in achieving better

relative contrast and hence better search performance.

119

10
1

10
2

10
3

10
4

0

0.5

1

returned points

re
ca

ll

sift
gist
color

10
0

10
1

10
2

10
3

0

0.2

0.4

0.6

0.8

returned points

re
ca

ll

sift
gist
color

(a) k =20 (b) k = 28

Figure 7.4: Recall vs the number of returned points when using hamming ranking.

Number of bits k = 20 for (a) and k = 28 for (b). Graphs are best viewed with color.

120

Part VI

Conclusions

121

Chapter 8

Summary and Future Works

8.1 Summary of Contributions

In this thesis, we have studied the problem of large scale (approximate) nearest neigh-

bor search. Our contributions are three folds: theories, algorithms, and applications.

1. Theories

(a) Data partition framework and optimal data partition criteria for NN search:

We have unified NN search methods into the data partition framework, and

furthermore proposed the general formulation of optimal data partition for

NN search, which can be applied to explain and improve most existing NN

search methods.

(b) Theoretical bound for indexing/search with random partitions:

With the optimal data partition formulation, we have developed new bound-

s for locality sensitive hashing, and also other search methods via random

partitions, like nearest neighbor preferred hashing, or random trees/forests,

and so on. Based on the theoretical derivation of the bounds, we also have

developed new methods to design parameters for search with random par-

titions, for one particular data set.

122

(c) The Difficulty of NN search:

We have studied some fundamental theoretical problems for nearest neigh-

bor search, for example, how to measure the difficulty of a given data set

for nearest neighbor search, and how data properties will affect the difficul-

ty of nearest neighbor search. This fundamental theory is not only helpful

to understand the nearest neighbor problems, but also useful to design the

nearest neighbor search algorithms.

2. Algorithms

(a) Indexing/search with learning based partition:

Following the optimal data partition formulation, we demonstrated that

optimal partition functions should have two criteria simultaneously: p-

reserve nearest neighbors, i.e., guarantee that nearest neighbors fall into

the same or close buckets, and balance regions/buckets, i.e., make sure

each bucket contains about the same number of points. We have designed

joint optimization methods to satisfy/tradeoff the above two criteria si-

multaneously, for various indexing methods, like indexing via hashing, or

quantization.

3. Applications – Visual Search Engines via Large Scale Nearest Neighbor Search

(a) Book cover search via bag of words:

We have developed image search engine on millions of book cover data set,

with our proposed balanced K-means to search/match local features. We

show that our approach is promising enough even for practical applications,

with 88% recall for the first return result.

(b) Mobile visual search via bag of hash bits:

We have developed an end-to-end mobile product search system on iphone

platform, which is based on our Bag of Hash Bits indexing/search tech-

niques. Our system can search on the 100M local feature database within

123

0.01 second on a single desktop. We also applied interactive/automatic

segmentation to obtain product boundaries to further improve the prod-

uct search accuracy.

8.2 Future Works

There are still lots of interesting topics to be studied in the area of large scale nearest

neighbor search. Some examples are listed as follows:

1. Develop theories for NN search with learning based partitions:

To some extent, most current NN search methods with learning based parti-

tions (including ours) are heuristic. Can we develop theories (like those for

random partitions), to obtain some theoretical bounds for learning based par-

titions, and moreover, design practical methods to approximate the theoretical

bounds? This direction will deepen our understanding of NN search problem

with learning based partitions, and may also discover more practical NN search

methods.

2. Apply our large scale NN search methods to data in other domains besides

multimedia:

Currently our applications focus on multimedia data sets. It will be interesting

to see how large scale NN search will perform in other domains, especially those

domains where ”semantic gap” is less an issue, namely, nearest neighbors based

in low level feature retrieval meet the true ”application” or ”semantic” needs..

We may find more practical and meaningful applications in those domains.

3. Parallelize our indexing/search algorithms to deal with web scale data:

Currently, all our algorithms and experiments are done on a single machine. To

deal with web scale data, like web multimedia, thousands of machines or even

more will be necessary. How to parallelize our methods in this case? How to

124

design new systems based on our methods for this distributed environment? All

these problems are crucial to scale up our methods/systems for the web scale

data.

4. Extend our works to large scale machine learning and data mining area:

Large scale nearest neighbor search is also a crucial step for many algorithms in

large scale machine learning and data mining (e.g., many graph based methods

or non-parametric methods). We would like to apply and generalize our theories

and algorithms to help understand and solve problems from large scale machine

learning/data mining etc.

125

Part VII

Bibliography

126

Bibliography

[1] N. Bhatia and et.al. Survey of nearest neighbor techniques. arXiv preprint

arXiv:1007.0085, 2010.

[2] K.L. Clarkson. Nearest-neighbor searching and metric space dimensions. Nearest-

Neighbor Methods for Learning and Vision: Theory and Practice, pages 15–59,

2006.

[3] A. Andoni. Nearest neighbor search: the old, the new, and the impossible. PhD

thesis, Citeseer, 2009.

[4] L. Cayton and S. Dasgupta. A learning framework for nearest neighbor search.

Advances in Neural Information Processing Systems, 20, 2007.

[5] P.M. Riegger. Literature survey on nearest neighbor search and search in graphs.

2011.

[6] K. Yamaguchi, E. Tanaka, and Y. Shirasaka. Data structure and algorithm

for nearest neighbour search. IEIC Technical Report (Institute of Electronics,

Information and Communication Engineers), 98(562):73–80, 1999.

[7] J. L. Bentley. Multidimensional binary search trees used for associative searching.

Communications of the ACM, 1975.

[8] J.H. Friedman, J.L. Bentley, and R.A. Finkel. An algorithm for finding best

127

matches in logarithmic expected time. ACM Transactions on Mathematical Soft-

ware (TOMS), 3(3):209–226, 1977.

[9] S.M. Omohundro. Five balltree construction algorithms. International Computer

Science Institute, 1989.

[10] J.K. Uhlmann. Satisfying general proximity/similarity queries with metric trees.

Information Processing Letters, 40(4):175–179, 1991.

[11] T. Liu, A.W. Moore, A. Gray, and K. Yang. An investigation of practical approx-

imate nearest neighbor algorithms. Advances in neural information processing

systems, 17:825–832, 2004.

[12] A. Beygelzimer, S. Kakade, and J. Langford. Cover trees for nearest neighbor.

In Proceedings of the 23rd international conference on Machine learning, pages

97–104. ACM, 2006.

[13] S. Dasgupta and Y. Freund. Random projection trees and low dimensional man-

ifolds. In Proceedings of the 40th annual ACM symposium on Theory of comput-

ing, pages 537–546. ACM, 2008.

[14] M. Muja and D.G. Lowe. Fast approximate nearest neighbors with automatic al-

gorithm configuration. In International Conference on Computer Vision Theory

and Applications (VISSAPPâ 09), pages 331â, volume 340. Citeseer, 2009.

[15] N. Verma, S. Kpotufe, and S. Dasgupta. Which spatial partition trees are adap-

tive to intrinsic dimension? In Proceedings of the Twenty-Fifth Conference on

Uncertainty in Artificial Intelligence, pages 565–574. AUAI Press, 2009.

[16] M. McCartin-Lim, A. McGregor, and R. Wang. Approximate principal direction

trees. arXiv preprint arXiv:1206.4668, 2012.

128

[17] P.N. Yianilos. Data structures and algorithms for nearest neighbor search in

general metric spaces. In Proceedings of the fourth annual ACM-SIAM Sympo-

sium on Discrete algorithms, pages 311–321. Society for Industrial and Applied

Mathematics, 1993.

[18] T. Bozkaya and M. Ozsoyoglu. Distance-based indexing for high-dimensional

metric spaces. In ACM SIGMOD Record, pages 357–368. ACM, 1997.

[19] A. Gionis, P. Indyk, and R. Motwani. Similarity search in high dimensions via

hashing. In Proceedings of the 25th International Conference on Very Large Data

Bases, pages 518–529. Morgan Kaufmann Publishers Inc., 1999.

[20] P. Indyk and R. Motwani. Approximate nearest neighbors: towards removing the

curse of dimensionality. In Proceedings of the thirtieth annual ACM symposium

on Theory of computing, pages 604–613. ACM, 1998.

[21] M.S. Charikar. Similarity estimation techniques from rounding algorithms. In

Proceedings of the thiry-fourth annual ACM symposium on Theory of computing,

pages 380–388. ACM, 2002.

[22] M. Datar, N. Immorlica, P. Indyk, and V.S. Mirrokni. Locality-sensitive hashing

scheme based on p-stable distributions. In Proceedings of the twentieth annual

symposium on Computational geometry, pages 253–262. ACM, 2004.

[23] Rina Panigrahy. Entropy based nearest neighbor search in high dimensions. In

In Proceedings of SODA, 2006.

[24] Zhe Wang Moses Charikar Kai Li Qin Lv, William Josephson. Multiprobe lsh:

Efficient indexing for high-dimensional similarity search. In In Proceedings of

VLDB, 2007.

[25] A. Joly and O. Buisson. A posteriori multi-probe locality sensitive hashing. In

Proceedings of ACM MM, 2008.

129

[26] K. Grauman and T. Darrell. Pyramid match hashing: sub-linear time indexing

over partial correspondences. In CVPR, 2007.

[27] Prateek Jain, Brian Kulis, and Kristen Grauman. Fast image search for learned

metrics. In CVPR, 2008.

[28] Hervé Jégou Löıc Paulevé and Laurent Amsaleg. Locality sensitive hashing: A

comparison of hash function types and querying mechanisms. In Pattern Recogn.

Lett., 2010.

[29] D. Gorisse, M. Cord, and F. Precioso. Locality-sensitive hashing for chi2 distance.

Pattern Analysis and Machine Intelligence, IEEE Transactions on, 34(2):402–

409, 2012.

[30] R. Salakhutdinov and G. Hinton. Semantic hashing. In In Proceedings of SIGIR,

2007.

[31] R. Salakhutdinov and G. Hinton. Learning a nonlinear embedding by preserving

class neighbourhood structure. In AI and Statistics, 2007.

[32] Y. Weiss, A. Torralba, and R. Fergus. Spectral hashing. In NIPS, 2008.

[33] R. Fergus A. Torralba and Y.Weiss. Small codes and large image databases for

recognition. In CVPR, 2008.

[34] Shumeet Baluja and Michele Covell. Learning to hash: forgiving hash functions

and applications. 2008.

[35] Brian Kulis and Trevor Darrell. Learning to hash with binary reconstructive

embeddings. In NIPS, 2009.

[36] M. Raginsky and S. Lazebnik. Locality sensitive binary codes from shift-invariant

kernels. In NIPS, 2009.

130

[37] Brian Kulis and Kristen Grauman. Kernelized locality-sensitive hashing for s-

calable image search. In ICCV, 2009.

[38] Mohammad Norouzi and David Fleet. Minimal loss hashing for compact binary

codes. In Proceedings of the 28th International Conference on Machine Learning

(ICML-11), ICML ’11, 2011.

[39] J. Wang, S. Kumar, and S.F. Chang. Sequential projection learning for hashing

with compact codes. In Proceedings of International Conference on Machine

Learning, 2010.

[40] Y. Gong and S. Lazebnik. Iterative quantization: A procrustean approach to

learning binary codes. In Computer Vision and Pattern Recognition (CVPR),

2011 IEEE Conference on, pages 817–824. IEEE, 2011.

[41] A. Bergamo, L. Torresani, and A. Fitzgibbon. Picodes: Learning a compact code

for novel-category recognition. Citeseer, 2011.

[42] W. Liu, J. Wang, S. Kumar, and S.F. Chang. Hashing with graphs. In Proceedings

of the 28th International Conference on Machine Learning, pages 1–8, 2011.

[43] W. Liu, J. Wang, R. Ji, Y.G. Jiang, and S.F. Chang. Supervised hashing with

kernels. In Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Con-

ference on, pages 2074–2081. IEEE, 2012.

[44] W. Kong, W.J. Li, and M. Guo. Manhattan hashing for large-scale image re-

trieval. In Proceedings of the 35th international ACM SIGIR conference on Re-

search and development in information retrieval, pages 45–54. ACM, 2012.

[45] W. Kong and W.J. Li. Double-bit quantization for hashing. In Twenty-Sixth

AAAI Conference on Artificial Intelligence, 2012.

[46] P. Jain, B. Kulis, and K. Grauman. Fast image search for learned metrics. In In

Proceedings of CVPR, 2008.

131

[47] Y. Matsushita and T. Wada. Principal component hashing: An accelerated

approximate nearest neighbor search. Advances in Image and Video Technology,

pages 374–385, 2009.

[48] T. Shibata and O. Yamaguchi. Local fisher discriminant component hashing for

fast nearest neighbor classification. Structural, Syntactic, and Statistical Pattern

Recognition, pages 339–349, 2008.

[49] J. Sivic and A. Zisserman. Video google: A text retrieval approach to object

matching in videos. In ICCV, 2003.

[50] H. Jégou, M. Douze, and C. Schmid. Product quantization for nearest neighbor

search. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 2011.

[51] S. Lazebnik and M. Raginsky. Supervised learning of quantizer codebooks by

information loss minimization. Pattern Analysis and Machine Intelligence, IEEE

Transactions on, 2009.

[52] T. Tuytelaars and C. Schmid. Vector quantizing feature space with a regular

lattice. In ICCV, 2007.

[53] R. Motwani, A. Naor, and R. Panigrahi. Lower bounds on locality sensitive hash-

ing. In Proceedings of the twenty-second annual symposium on Computational

geometry, 2006.

[54] Aapo Hyvarinen and Erkki Oja. Independent component analysis: Algorithms

and applications. 2000.

[55] Aapo Hyvarinen. Fast and robust fixed-point algorithms for independent com-

ponent analysis. 1999.

[56] Karsten M. Borgwardt Nino Shervashidze. On the convergence of ica algorithms

with symmetric orthogonalization. 2009.

132

[57] Karsten M. Borgwardt Nino Shervashidze. Fast subtree kernels on graphs. In

NIPS, 2009.

[58] C. Schmid S. Lazebnik and J. Ponce. Beyond bags of features, spatial pyramid

matching for recognizing natural scene categories. In CVPR, 2006.

[59] Matthias Seeger Christopher Williams. Using the nystrom method to speed up

kernel machines. In NIPS, 2001.

[60] Ali Rahimi and Benjamin Recht. Random features for large-scale kernel ma-

chines. In NIPS, 2007.

[61] Wei Liu Junfeng He and Shih-Fu Chang. Scalable similarity search with opti-

mized kernel hashing. In KDD, 2010.

[62] A. Oliva and A. Torralba. Modeling the shape of the scene: A holistic repre-

sentation of the spatial envelope. International Journal of Computer Vision,

42(3):145–175, 2001.

[63] S. Winder and M. Brown. Learning local image descriptors. CVPR, 2007.

[64] R.O. Duda, P.E. Hart, and D.G. Stork. Pattern classification. John Willey &

Sons, 2001.

[65] Y. Avrithis, Y. Kalantidis, G. Tolias, and E. Spyrou. Retrieving landmark and

non-landmark images from community photo collections. In ACM MM, 2010.

[66] H. Bay, T. Tuytelaars, and L. Van Gool. Surf: Speeded up robust features.

ECCV, 2006.

[67] Roelof van Zwol and Lluis Garcia Pueyo. Spatially-aware indexing for image

object retrieval. In WSDM 2012, 2012.

[68] Ricardo Baeza-Yates and Berthier Ribeiro-Neto. Modern Information Retrieval.

Boston, MA, USA, 1999.

133

[69] Andrei Z. Broder, David Carmel, Michael Herscovici, Aya Soffer, and Jason Zien.

Efficient query evaluation using a two-level retrieval process. In CIKM, 2003.

[70] J. Yang, Y.G. Jiang, A.G. Hauptmann, and C.W. Ngo. Evaluating bag-of-visual-

words representations in scene classification. In MIR, 2007.

[71] E. Voorhees and D. Harman. Trec experiment and evaluation in information

retrieval. MIT Press, 2005.

[72] B. Girod, V. Chandrasekhar, D.M. Chen, N.M. Cheung, R. Grzeszczuk,

Y. Reznik, G. Takacs, S.S. Tsai, and R. Vedantham. Mobile visual search. Signal

Processing Magazine, IEEE, 2011.

[73] F.X. Yu, R. Ji, and S.F. Chang. Active query sensing for mobile location search.

In ACM MM, 2011.

[74] J. He, T.H. Lin, J. Feng, and S.F. Chang. Mobile product search with bag of

hash bits. In Demo session of ACM MM, 2011.

[75] G. Takacs, V. Chandrasekhar, N. Gelfand, Y. Xiong, W.C. Chen, T. Bismpi-

giannis, R. Grzeszczuk, K. Pulli, and B. Girod. Outdoors augmented reality on

mobile phone using loxel-based visual feature organization. In MIR, 2008.

[76] D.G. Lowe. Distinctive image features from scale-invariant keypoints. IJCV,

2004.

[77] S.S. Tsai, D. Chen, V. Chandrasekhar, G. Takacs, N.M. Cheung, R. Vedantham,

R. Grzeszczuk, and B. Girod. Mobile product recognition. In ACM MM, 2010.

[78] V. Chandrasekhar, M. Makar, G. Takacs, D. Chen, S.S. Tsai, N.M. Cheung,

R. Grzeszczuk, Y. Reznik, and B. Girod. Survey of sift compression schemes. In

Proceedings of International Mobile Multimedia Workshop (IMMW), 2010.

134

[79] V. Chandrasekhar, Y. Reznik, G. Takacs, D. Chen, S. Tsai, R. Grzeszczuk,

and B. Girod. Quantization schemes for low bitrate compressed histogram of

gradients descriptors. In CVPR Workshops, 2010.

[80] D. Nister and H. Stewenius. Scalable recognition with a vocabulary tree. In

CVPR, 2006.

[81] H. Jégou, M. Douze, and C. Schmid. Product quantization for nearest neighbor

search. PAMI, IEEE Transactions on, 2011.

[82] V. Chandrasekhar, G. Takacs, D. Chen, S. Tsai, R. Grzeszczuk, and B. Girod.

Chog: Compressed histogram of gradients a low bit-rate feature descriptor. In

CVPR, 2009.

[83] J. He, S.F. Chang, R. Radhakrishnan, and C. Bauer. Compact hashing with

joint optimization of search accuracy and time. In CVPR, 2011.

[84] M. Yang, K. Kpalma, J. Ronsin, et al. A survey of shape feature extraction

techniques. Pattern Recognition, 2008.

[85] F. Berrada, D. Aboutajdine, SE Ouatik, and A. Lachkar. Review of 2d shape

descriptors based on the curvature scale space approach. In ICMCS, 2011.

[86] M.M. Cheng, G.X. Zhang, N.J. Mitra, X. Huang, and S.M. Hu. Global contrast

based salient region detection. In CVPR, 2011.

[87] C. Rother, V. Kolmogorov, and A. Blake. Grabcut: Interactive foreground ex-

traction using iterated graph cuts. In ACM Transactions on Graphics, 2004.

[88] R.B. Yadav, N.K. Nishchal, A.K. Gupta, and V.K. Rastogi. Retrieval and classi-

fication of shape-based objects using fourier, generic fourier, and wavelet-fourier

descriptors technique: A comparative study. Optics and Lasers in engineering,

2007.

135

[89] V.R. Chandrasekhar, D.M. Chen, S.S. Tsai, N.M. Cheung, H. Chen, G. Takacs,

Y. Reznik, R. Vedantham, R. Grzeszczuk, J. Bach, et al. The stanford mobile

visual search data set. In ACM conference on Multimedia systems, 2011.

[90] K. Beyer, J. Goldstein, R. Ramakrishnan, and U. Shaft. When is nearest neighbor

meaningful? Database Theory ICDT99, pages 217–235, 1999.

[91] C. Aggarwal, A. Hinneburg, and D. Keim. On the surprising behavior of distance

metrics in high dimensional space. Database Theory ICDT 2001, pages 420–434,

2001.

[92] D. Francois, V. Wertz, and M. Verleysen. The concentration of fractional dis-

tances. IEEE Transactions on Knowledge and Data Engineering, pages 873–886,

2007.

136

Part VIII

Appendix

137

Chapter 9

Proofs

9.1 Proofs for Chapter 2

9.1.1 Sketch of the Proofs for Theorem 2.3.1

In this section, we will provide the sketch of proof for Theorem 2.3.1. More details,

i.e., the proofs for theorems and lemmas in this section, can be found in next Section.

9.1.1.1 There is one global minimal kmin

From Pnn−miss(k, L) = (1− (pnn)
k)L = δ, we have

L =
log δ

log(1− (pnn)
k)
.

Note that when z is a small positive number, log(1−z) = −
n∑

i=1

zi

i
≈ −z. Since pknn

is a very small positive number, therefore L = log δ

log(1−(pnn)
k)

can be well approximated

as L =
log 1

δ

(pnn)
k . Since L now is a function of k, both T (k, L) and S(k, L) depend on k

only. So we denote T (k, L) and S(k, L) as T (k) and S(k) in the following discussion,

where

T (k) = UhashkL+ UcheckLn(pany)
k = [Uhashk + Ucheckn(pany)

k]
log 1

δ

(pnn)
k

(9.1)

138

and

S(k) = nL+ nd = nd+ n
log δ

−(pnn)
k

(9.2)

First note that dT (k)
dk

=
d((ak+bpkany)p

−k
nn)

dk

dT (k)
dk

= p−k
nna(k log p

−1
nn + 1)− b(pany

pnn
)k log pnn

pany
.

The following two lemmas shows dT (k)
dk

will have only one local/global minimum.

Lemma 9.1.1. dT (k)
dk

is monotonically increasing with k.

Lemma 9.1.2. When the database size n is large enough, there will be one and only

one kmin, such that T
′
(kmin) = 0, and hence T (kmin) will be minimal.

9.1.1.2 The tight bound of kmin

From T
′
(kmin) = 0, we can obtain Theorem 9.1.3, which gives some estimation about

kmin.

Theorem 9.1.3. pkmin
any = Uhash

Ucheckn
1

log pnn
pany

(kmin log p
−1
nn + 1)

We can find the tight bound kmin, as shown in the following two lemmas.

Lemma 9.1.4. kmin = O(logp−1
any

(α1n)) where α1 =
Ucheck log(pnn/pany)

Uhash
.

Lemma 9.1.5. kmin = Ω(logp−1
any

(α1n)) where α1 =
Ucheck log(pnn/pany)

Uhash
.

From the above two lemmas, we know

kmin = Θ(logp−1
any

(α1n)).

9.1.1.3 The proof of Theorem 2.3.1

Putting Theorem 9.1.3 into (9.1), we can obtain Theorem 9.1.6 to provide the value

of T (kmin) and the corresponding S(kmin).

139

Theorem 9.1.6. T (kmin) = log 1
δ
Uhashn

ρ(kmin log p
−1
any + 1)(kmin log p

−1
nn + 1)−ραρ

1
1

log(pnn/pany)

S(kmin) = dn+(log 1
δ
)n1+ραρ

1(kmin log p
−1
nn + 1)ρ where ρ = log pnn

log pany
and α1 =

Ucheck log(pnn/pany)

Uhash
.

Moreover, the number of hash tables L = (log 1
δ
)[α1n

(kmin log p−1
nn+1)

]ρ. The number of re-

turned points is (log 1
δ
)nρα1

1−ρ(kmin log p
−1
nn + 1)1−ρ.

However, T (kmin) and S(kmin) in Theorem 9.1.6 still depends on kmin.

Put kmin = Θ(logp−1
any

(α1n)) into Theorem 9.1.6, we can get

T (kmin) = Θ(log
1

δ
nρUhash[

Ucheck

Uhash

]ρα0α
−ρ)

where α0 =
log(τ

Ucheck
Uhash

n)+1

τ
, α =

ρ log(τ
Ucheck
Uhash

n)+1

τ
, ρ = log pnn

log pany
and τ = log(pnn/pany).

Moreover, putting kmin = Θ(log(α1n)

log p−1
any

) into S(kmin) = dn+(log 1
δ
)n1+ραρ

1(kmin log p
−1
nn + 1)−ρ,

we get

S(kmin) = Θ(dn+ (log
1

δ
)n1+ρ[

Ucheck

Uhash

]ρα−ρ)

Moreover, the number of hash tables L = (log 1
δ
)[α1n

(kmin log p−1
nn+1)

]ρ = Θ(log 1
δ
nρ[Ucheck

Uhash
]ρα−ρ).

The number of returned points is log 1
δ
nρα1

ρ−1(kmin log p
−1
nn+1)1−ρ = Θ(log 1

δ
nρ[Ucheck

Uhash
]ρ−1α1−ρ).

This completes the proof.

9.1.2 Details of Proofs for Theorem 2.3.1

Proof of Lemma 9.1.1:

First, it is easy to see p−k
nna(k log p

−1
nn+1) is monotonically increasing with k. Moreover,

note that pany

pnn
< 1, so −b(pany

pnn
)k log pnn

pany
will be monotonically increasing with k too.

So dT (k)
dk

= p−k
nna(k log p

−1
nn + 1) − b(pany

pnn
)k log pnn

pany
is monotonically increasing with k.

This completes the proof.

Proof of Lemma 9.1.2:

When k = 0, dT (k)
dk

= Uhash(− log δ) − log pnn

pany
Ucheck(− log δ)n. When the database

size is large enough, i.e., n > Uhash

log pnn
pany

Ucheck
, dT (k)

dk
< 0, for k = 0.

Moreover, when k → +∞ , p−k
nna(k log p

−1
nn + 1) → +∞ , and −b(pany

pnn
)k log pnn

pany
=

−Ucheck(− log δ)n(pany

pnn
)k log pnn

pany
→ 0.

140

In conclusion, dT (k)
dk

< 0, for k = 0. dT (k)
dk

> 0, when k is large. There must be

some k such that dT (k)
dk

= 0.

Moreover, dT (k)
dk

is monotonically increasing with k, so there must be only one kmin

such that T
′
(kmin) = 0, at which T (kmin) will be minimal.

Proof of Lemma 9.1.4:

Since p−kmin
any = Ucheckn log(pnn/pany)

Uhash

1
(kmin log p−1

nn+1)
,

p−kmin
any ≤ nUcheck log(pnn/pany)

Uhash

. Or in other words,

kmin ≤ log(α1n)

(− log pany)

where

α1 =
Ucheck log(pnn/pany)

Uhash

.

Proof of Lemma 9.1.5:

First recall that p−kmin
any = α1n

(kmin log p−1
nn+1)

where α1 =
Ucheck log(pnn/pany)

Uhash
.

so P
−kopt
any ≥ α1

(logP−1
nn +1)

nk−1
opt,

kopt logP
−1
any ≥ log(

α1n

(logP−1
nn + 1)

)− log kopt

From the lemma above, we know that kopt ≤ log(α1n)

logP−1
any

, so when n is large enough

log(kopt) ≤ log(
log(α1n)

logP−1
any

) ≪ log(
α1n

(logP−1
nn + 1)

)

And we can ignore log kopt, and get

kopt logP
−1
any ≥ log(

α1n

(logP−1
nn + 1)

)

so

kopt ≥
log(α1n

(logP−1
nn +1)

)

logP−1
any

= Ω(
log(α1n)

logP−1
any

)

Proof of Theorem 9.1.6:

From T
′
(kmin) = 0, we have

T
′
(kmin) = p−kmin

nn a(kmin log p
−1
nn + 1)− b(

pany
pnn

)kmin log
pnn
pany

= 0.

141

pkmin
any =

1

log pnn

pany

a

b
(kmin log p

−1
nn + 1)

⇔ pkmin
any =

Uhash

Ucheckn

1

log pnn

pany

(kmin log p
−1
nn + 1)

(9.3)

Putting (9.3) into

T (kmin) = (akmin + bpkmin
any)p−kmin

nn

we get

T (kmin) = (akmin + bpkmin
any)p−kmin

nn

= p−kmin
nn [Uhash log

1

δ
kmin + Ucheck log

1

δ
n{ Uhash

Ucheckn

1

log pnn

pany

(kmin log p
−1
any + 1)}]

= p−kmin
nn Uhash log

1

δ
(
kmin log p

−1
any + 1

log(pnn/pany)
)

(9.4)

Moreover, note that p−kmin
any = α1n

(kmin log p−1
nn+1)

where α1 = Ucheck log(pnn/pany)

Uhash
and

x = y
log x
log y , so

p−kmin
nn = (p−kmin

any)
log pnn
log pany = [

α1n

(kmin log p−1
nn + 1)

]ρ

T (kmin) = [
α1n

(kmin log p−1
nn + 1)

]ρ[Uhash log
1

δ
(
kmin log p

−1
nn + 1

log(pnn/pany)
)]

which can be rewritten as

T (kmin) = log
1

δ
Uhashn

ρ(kmin log p
−1
nn + 1)(kmin log p

−1
nn + 1)−ραρ

1

1

log(pnn/pany)
(9.5)

Note that nL = n− log δ

p
kmin
nn

= n(− log δ)(p−kmin
any)

log pnn
log pany so the space complexity is

S(kmin) = dn+ (log
1

δ
)n[

α1n

(kmin log p−1
nn + 1)

]ρ

142

or rewritten as

S(kmin) = dn+ (log
1

δ
)n1+ραρ

1(kmin log p
−1
nn + 1)−ρ

Moreover, the number of hash tables L = (log 1
δ
)[α1n

(kmin log p−1
nn+1)

]ρ. The number of

returned points is Lnpkmin
any = (kmin log p−1

nn+1)
α1

(log 1
δ
)[α1n

(kmin log p−1
nn+1)

]ρ = (log 1
δ
)nρα1

ρ−1(kmin log p
−1
nn+

1)1−ρ

9.2 Proofs for Chapter 3

Proof of Theorem 3.1.1

Denote pi as the probability for one random point to fall into cluster i. Then when

n is large enough, the probability for a random query and a random database point

both falls into the cluster i is p2i . Then

P̂any(Ψ) =
K∑
i=1

p2i =
1

n2

K∑
i=1

n2
i

Note that
∑

i=1,...,K

ni = n,
K∑
i=1

(ni)
2 will minimized if ni are equal, i.e., ni = n/K,

i = 1, ..., K.

Proof of Theorem 3.1.2

Note that Entropy(y) = {−
2k∑
i=1

P (y = ai) logP (y = ai)} = {−
2k∑
i=1

ni

n
log(ni

n
)}. It

is easy to see that ni =
n
2k

for i = 1, ..., 2k, if and only if Entropy(y) gets its maximum

value.

As shown in [54, 55],

Entropy(y) =
k∑

m=1

Entropy(ym)− I(y1, ..., ym, ..., yk) (9.6)

where I() is the mutual information.

So Entropy(y) would be maximized, if
k∑

m=1

Entropy(ym) is maximized and I(y1, ..., ym, ..., yk)

is minimized. Moreover, note that ym is a binary random variable. If the mathemat-

ical expectation E(ym) = 0, half samples would have bit +1 and the other half would

have bit −1 for ym, which means Entropy(ym) = 1, and is maximized.

143

In conclusion, if E(ym) = 0,m = 1, ..., k and I(y1, ..., ym, ..., yk) is minimized,

Entropy(y) would be maximized, and the search time would be minimized.

Derivation for Algorithm 1:

The optimization for SPICA and GSPICA is non-convex. It is not trivial to get

the solution especially when the data size is large. In this section, we provide a

simple but fast and practical algorithm to solve the optimization problem. Moreover,

by replacing Xiwith KXi
in the following discussion, we can easily extend the solution

to GSPICA.

Suppose E(xxT) = Σ = ΩΛΩT , where ΩΛΩT is the SVD decomposition of Σ . Λ

is a diagonal matrix, and Ω is the orthogonal matrix. Denote

Q = ΩkΛ
− 1

2
k (9.7)

where Λk is a diagonal matrix consisting of k largest eigen values of Λ, and Ωk are

the corresponding columns of Ω.

Denote Tm = QT̃m, x̃ = QTx, X̃i = QTXi , and C̃ = QTCQ. The formulation of

SPICA equals to

max
Tm,m=1...k

k∑
m=1

||g0 − E(G(T̃ T
mx̃))||2

s.t., T̃ T
mT̃j = δmj, 1 ≤ m, j ≤ k

k∑
m=1

T̃ T
mC̃T̃m ≤ η

(9.8)

After T̃m is obtained, Tm can be computed as: Tm = QT̃m .

Since ||g0 − f ||2 can get maximal value only when f is maximized or minimized,

the optimal solution in Equation (9.8) can only come from two following solutions:

min
Tm,m=1...k

k∑
m=1

E(G(T̃ T
mx̃))m =

k∑
m=1

1
N

N∑
i=1

(G(T̃ T
mX̃i))

s.t., T̃ T
mT̃j = δmj, 1 ≤ m, j ≤ k

k∑
m=1

T̃ T
mC̃T̃m ≤ η

(9.9)

144

or

max
Tm,m=1...k

k∑
m=1

E(G(T̃ T
mx̃)) =

k∑
m=1

1
N

N∑
i=1

(G(T̃ T
mX̃i))

s.t., T̃ T
mT̃j = δmj, 1 ≤ m, j ≤ k

k∑
m=1

T̃ T
mC̃T̃m ≤ η

(9.10)

Following a process similar to that used in [19] which is proved to be one of the

fastest and most practical algorithms for ICA, we provide a similar iteration method

to solve our optimization problem. For problems in equation (9.9) and (9.10), we

would obtain T̃m for m = 1, .., k iteratively, i.e., one by one.

Suppose we already got T̃1, ...T̃m−1, now we want to obtain T̃m . First we apply

QR decomposition to matrix [T̃1, ...T̃m−1] to get matrix B, such that [T̃1, ...T̃m−1, B]

is an orthogonal matrix. Denote T̃m = Bw. The constraint

T̃ T
mT̃j = δmj, for1 ≤ j ≤ m

now becomes

wTBTBw = wTw = 1

Substituting T̃m = Bw to equation (9.9), we can get the KKT condition in terms

of w in equation (9.9) as

L(w) = E(G(wT x̂))− γwTAw − βwTw

with γ ≤ 0, where x̂ = BT x̃ = BTQTx,A = BT C̃B.

The stationary point for the KKT condition can be found by

F (w) = ∂L
∂w

= E(x̂G′(wT x̂))− γAw − βw = 0, γ ≤ 0 (9.11)

where G′ is the derivative of function G.

Multiplicating wT to equation (9.11), we can get

E(wT x̂G′(wT x̂))− γwTAw − βwTw = 0, γ ≤ 0

⇒ β = E(wT x̂G′(wT x̂))− γwTAw, γ ≤ 0
(9.12)

145

Similarly, for equation (9.10) , we will have

F (w) = E(x̂G′(wT x̂))− γAw − βw = 0, γ ≥ 0 (9.13)

where β = E(wT x̂G′(wT x̂))− γwTAw, γ ≥ 0.

By combining the above two cases (9.11) and (9.13), we have:

F (w) = E(x̂G′(wT x̂))− γAw − βw = 0 (9.14)

where β = E(wT x̂G′(wT x̂)) − γwTAw, and γ is a parameter to be tuned through

empirical validation.

Similarly as discussed in [19] the Jacobin function for F (w) is:

JF (w) ≈ E(G′′(wT x̂))I − γA− βI

where G′′ is the second derivative of function G. So we will update w as w =

w − JF−1(w)F (w).

A complete workflow to solve SPICA 1 is shown in algorithm 1 in Chapter 3.

Proof of Theorem 3.4.1:

With the same relaxation as in spectral hashing by ignoring the constraint of Yi ∈

{−1, 1}k, we will have

Yi = ATKi − b

Hence, from the constraint of
n∑

i=1

Yi = 0 , we can get

n∑
i=1

(ATKi − b) = 0 ⇒ b = AT ā (9.15)

1By replacing Xi with KXi , we can easily obtain the implementation for GSPICA.

146

Moreover, since

n∑
i=1

YiY
T
i =

n∑
i=1

(ATKi − b)(ATKi − b)
T

= AT (Kp×nK
T
p×n

−
n∑

i=1

Kiā
T (9.16)

−
n∑

i=1

āKT
i +

n∑
i=1

āāT)A

= AT (Kp×nK
T
p×n

− nāāT)A

from the constraint of 1
n

n∑
i=1

YiYi
T = I, we can get

AT 1

n
(Kp×nK

T
p×n

− nāāT)A = I

And because

1

2

n∑
i,j=1

Wij||Yi − Yj||2 (9.17)

= tr
(
AT (Kp×n(D −W)KT

p×n)A
)

(9.18)

So the optimization problem in (3.16) becomes:

min
A

tr(ATCA)

s.t. ATGA = I (9.19)

where

C = Kp×n(D −W)KT
p×n

G =
1

n
Kp×nK

T
p×n − āāT

Moreover, note that

tr(ATCA) = tr((ATCA)T) = tr(ATCTA)

147

so

tr(ATCA) = tr(AT (C + CT)

2
A)

which completes the proof of Proposition 1.

9.3 Analysis for Chapter 4

The relationship between P̂nn(Ψ) and K-means cost function

First we show that larger P̂nn(Ψ) will somewhat lead to a smaller quantization

error. Actually, when P̂nn(Ψ) is larger, a point and its nearest or near neighbors will

have high probability to be in the cluster. For two points x and y, supposed Cx and

Cy are their cluster center. Note that a point y and its nearest neighbor x should

have small distance D(x, y). Moreover, the distance between two cluster centers is

usually much larger than the distance of two nearest neighbors. In other words, if

two points are nearest neighbors but fall into different clusters, then usually we have

D(Cx, Cy) ≫ D(x, y), and increase the quantization error, where the quantization

error is defined as ∫
(D(x, y)−D(Cx, Cy))

2p(x)p(y)dxdy.

So larger P̂nn(Ψ) will often help to reduce the quantization error.

Moreover, following a similar discussion as in [50], we will see the quantization

error is bounded by within-cluster distances, i.e., mean squared error (mse),

D(x, y)−D(y, Cy)−D(x,Cx) ≤ D(x,Cy)−D(x,Cx) ≤ D(Cx, Cy) (9.20)

≤ D(x,Cy) +D(x,Cx) ≤ D(x, y) +D(y, Cy) +D(x,Cx) (9.21)

which equals to (D(x, y) − D(Cx, Cy))
2 ≤ (D(y, Cy) + D(x,Cx))

2 ≤ 2[D(y, Cy)
2 +

D(x,Cx)
2]. And hence ∫

(D(x, y)−D(Cx, Cy))
2p(x)p(y)dxdy (9.22)

≤ 2

∫
[D(y, Cy)

2 +D(x,Cx)
2]p(x)p(y)dxdy (9.23)

148

= 4

∫
D(x,Cx)

2p(x)dx (9.24)

For a K-means clustering with data points Xi, i = 1, ..., n and cluster center Cj,∫
D(x, cx)

2p(x)dx can be empirically computed as
K∑
j=1

∑
i∈Sj

(Xi − Cj)
2.

9.4 Proofs for Chapter 7

9.4.1 Proofs

Proof of Theorem 7.2.1:

Since Rj are independent and satisfy Lindeberg’s condition, from central limit

theorem, R will be distributed as Gaussian for large enough d with mean µ =
∑

j µj

and variance σ2 =
∑

j σ
2
j . Normalizing the data by dividing by µ, the new mean is

µ′ = 1, and new variance is σ′2 as defined in (7.4). Now, the probability that R ≤ α

for any 0 ≤ α ≤ 1 is given as

P (R ≤ α) ≈ ϕ(
α− 1

σ′)− ϕ(
0− 1

σ′), (9.25)

where ϕ is the c.d.f of standard Gaussian, and the second term in RHS is the correction

factor since R is always nonnegative.

Let’s denote the number of samples for which R ≤ α as n(α). Clearly, n(α) follows

Binomial distribution with probability of success given in (9.25):

P (n(α) = k) =

n

k

 (P (R ≤ α))k(1− P (R ≤ α))n−k.

Hence the expected number of database points, n̄(α) that satisfy R ≤ α can be

computed as

n̄(α)=E[n(α)]=nP (R ≤ α) = n(ϕ(
α− 1

σ′)− ϕ(
−1

σ′)).

Recall Dmin is the expected distance to the nearest neighbor and Rmin ≈ Dp
min.

2

2The approximation becomes exact when metric L1 is considered. For other norms (e.g., p = 2),

bounds on Dmin can be further derived.

149

Thus, n̄(Dp
min) ≈ n̄(Rmin) = 1. Hence,

Dmin ≈ (n̄−1(1))
1
p ≈ [1 + ϕ−1(

1

n
+ ϕ(

−1

σ′))σ
′]

1
p (9.26)

Moreover, after normalization, R follows a Gaussian distribution with mean 1. So,

Rmean = 1, and Dmean ≈ R
1
p
mean = 1. Thus, the relative contrast can be approximated

as:

Cr =
Dmean

Dmin

≈ 1

[1 + ϕ−1(1
n
+ ϕ(−1

σ′))σ′]
1
p

which completes the proof.

Proof of Theorem 7.2.2:

The probability for both xj and qj to be non-zero is s2j , and the probability for

one of them to be non-zero is 2(1− sj)sj. Hence, the mean

µj = E[Rj] = E[|xj − qj|p]

for sparse vectors can be computed as,

µj = s2jm
′
j,p + 2(1− sj)sjmj,p

Similarly, the variance

σ2
j = V ar[Rj] = E[R2

j]− E[Rj]
2 = E[|xj − qj|2p)− µ2

j

for sparse vectors can be given as,

σ2
j = s2jm

′
j,2p + 2(1− sj)sjmj,2p − µ2

j ,

Thus, the normalized variance for sparse vectors is:

σ′2 =

∑d
j=1 σ

2
j

(
∑d

j=1 µj)2
. (9.27)

If we assume each dimension to be i.i.d, i.e., all Vj have the same distribution with

E[Vj] = µd, var[Vj] = σ2
d, and also assume sj = s, mj,p = mp and m′

j,p = m′
p, then

σ′ =
1

d1/2
σd

µd

=
1

d1/2

√
s[(m′

2p − 2m2p)s+ 2m2p]

s2[(m′
p − 2mp)s+ 2mp]2

− 1 (9.28)

150

Proof of Theorem 7.3.1:

With the hash functions of

h(x) = ⌊v
Tx+ b

w
⌋

it can be shown that([22]),

P (h(Xi) = h(q)) = fh(||Xi − q||p) (9.29)

where function fh(a) =
∫ w

0
1
a
fp(

z
a
)(1− z

w
)dz is monotonically decreasing with a. Here

fp is the p.d.f. of the absolute value of a p-stable variable.

Suppose the data are normalized by a scale factor such that Dmean = 1. Note that

such a normalization will not change the nearest neighbor search results at all. In

this case, Dmin = 1/Cr. Denote pnn (pany) as the probability for one random query

q and its nearest neighbor (q and a random database point) to have the same code

with one hash function. According to equation (9.29),

pnn = fh(1/Cr)

and

pany = fh(1),

since the expected distance between q and its nearest neighbor is Dmin = 1/Cr, and

the expected distance between q and a random database point is Dmean = 1.

So ρ = log pnn

log pany
is actually a function of Cr, denoted as g(Cr).

ρ = g(Cr) =
log pnn
log pany

=
log fh(1/Cr)

log fh(1)
.

Since fh(·) is a monotonically decreasing function, when Cr is larger, g(Cr) will be

smaller3

Since, the returning candidate points, the time complexity, space complexity and

the number of hash tables needed are monotonically increasing with ρ, so they are

monotonically decreasing with Cr.

3Note that both log fh(1/Cr) and log fh(1) are negative, since fh(·) is always ≤ 1.

151

9.4.2 Previous Works on the Difficulty of Nearest Neighbor

Search

One of the influential works that analyzed nearest neighbor search in high dimensional

spaces is from Beyer et.al. ([90]), whose main result is shown in Theorem 9.4.1.

Theorem 9.4.1. ([90]) Denote Dq
max = max

i=1,...n
D(Xi, q) and Dq

min = min
i=1,...n

D(Xi, q).

If lim
d→∞

var(D(Xi,q)
p

E[D(Xi,q)p]
) → 0, then for every ϵ ≥ 0,

lim
d→∞

P [Dq
max ≤ (1 + ϵ)Dq

min] = 1.

Intuitively speaking, Theorem 9.4.1 points out if the condition lim
d→∞

var(D(Xi,q)
p

E[D(Xi,q)p]
) →

0 is true (for example when the dimensions are i.i.d), Dq
max will be approximately the

same as Dq
min with probability 1, and hence searching nearest neighbors will not be

meaningful in the case of d → ∞.

Moreover, under the assumption that every dimension is not only i.i.d., but al-

so uniformly distributed, Aggarwal et.,al. ([91]) have extended Beyer’s theory and

proved that Dq
max−Dq

min will asymptotically grow as d
1
p
− 1

2 (here p represents distance

metric Lp), and hence smaller p results in better contrast. Its main result is shown

in Theorem 9.4.2.

Theorem 9.4.2. Aggarwal et.,al. ([91]:)

Suppose every dimension of the data is i.i.d., and lp distance metric is considered.

Denote Dq
max = max

i=1,...n
||Xi − q||p, Dq

min = min
i=1,...n

||Xi − q||p, then

Ap ≤ lim
d→∞

[
Dq

max −Dq
min

d
1
p
− 1

2

] ≤ (n− 1)Ap,

where Ap is a constant related to p.

In ([92]), a measurement called ”relative variance” defined as

√
V ar(||Xi−q||p)
E(||Xi−q||p) , which

is a modification of the condition var(D(Xi,q)
p

E[D(Xi,q)p]
) in Beyer’s work, is discussed. If every

dimension is i.i.d, the result is shown in Theorem 9.4.3.

152

Theorem 9.4.3. ([92]) If every dimension of the data is i.i.d., when d → ∞,√
V ar(||Xi−q||p)
E(||Xi−q||p) ≈ 1√

d
1
p

σj

µj
, where σj = V ar(||Xj

i − qj||pp) and µj = E(||Xj
i − qj||pp) are

the variance and mean on each dimension.

It shows the ”relative variance” will be worse if d is larger or p is larger. However,

it is not clear how ”relative variance” affects Dq
mean and Dq

min, or the complexity of

approximate NN search.

9.4.3 Relations Between Our Analysis and Previous Works

Relation to Beyer’s Work

Note that if the distance function D(Xi, q) in Beyer’s work is Lp distance, then

var(D(Xi,q)
p

E[D(Xi,q)p]
) = σ2

µ2 = (σ′)2. When σ′ → 0(d → ∞), Beyer’s work shows that

Dq
max ≈ Dq

min, and our theory shows Cr → 1, or equivalently Dmean → Dmin. So we

will get the same conclusion: when d → ∞, NN search is not very ”meaningful” ,

because we can not differentiate the nearest neighbor from other points. However,

Beyer’s theory works for the worst case (i.e., compare NN point to the worst point

with maximum distance), while ours works for the average case.

Relation to Francois’s Work

In Theorem 9.4.3, a measurement called ”relative variance”, defined as

√
V ar(||Xi−q||p)
E(||Xi−q||p) ,

is discussed, which is a modification of the condition var(D(Xi,q)
p

E[D(Xi,q)p]
) in Beyer’s work.

If

√
V ar(||Xi−q||p)
E(||Xi−q||p) → 0 , NN search will become meaningless. The following theory

reveals the relationship between relative variance and relative contrast.

Theorem 9.4.4. In (7.5), if σ′ → 0 (e.g., d → ∞),

Cr ≈ 1

1+ϕ−1(1
n
) 1
p

1

d1/2

σj
µj

.

Proof: If σ′ is very small, for example,

ϕ(
−1

σ′) ≪
1

n
,

then in Theorem 2.1, we can omit ϕ(−1
σ′) and then we can get

Cr =
Dmean

Dmin

≈ 1

(1 + ϕ−1(1
n
)σ′)

1
p

.

153

Moreover, note that

ϕ−1(
1

n
)σ′ ≫ ϕ−1(ϕ(

−1

σ′))σ
′ = −1

In other words, ϕ−1(1
n
)σ′ is a negative number with very small absolute value, so we

can further apporximate the result as

(1 + ϕ−1(
1

n
)σ′)

1
p ≈ 1 +

1

p
ϕ−1(

1

n
)σ′.

If we have i.i.d assumption for each dimension, then

σ′ =
1

d1/2
σj

µj

.

And hence
Dmean

Dmin

=
1

1 + ϕ−1(1
n
)1
p

1
d1/2

σj

µj

.

From Theorem 9.4.4, we see when σ′ → 0 (e.g., d → ∞), the relative contrast

monotonically depends on 1
p

1
d1/2

σj

µj
, which equals to ”relative variance” as in Theorem

9.4.3.

Though relative variance have been used as a measurement of contrast before, our

work is the first one that explicitly discovers the relationship between relative variance

and relative contrast, and hence connects it to the complexity of approximate NN

search like LSH.

To summarize, most of the known analysis can be derived as special asymptotic

cases (when σ′ → 0, e.g., d → ∞) of the proposed measure with the focus on only one

or two data properties. In contrast to the existing works, the proposed relative con-

trast can be utilized to analyze how NN search is affected by various data properties

in not only asymptotic but also non-asymptotic cases.

154

	I Introduction
	1 Introduction and Overview
	1.1 Motivation
	1.2 Problem Definition
	1.3 Overview on Related Works
	1.3.1 NN Search via Tree Based Partition
	1.3.2 NN Search via Hashing Based Partition
	1.3.3 NN Search via Clustering Based Partition
	1.3.4 Discussions

	1.4 Unified Formulation of Optimal Data Partition for Approximate NN Search
	1.5 Thesis Outline

	II Nearest Neighbor Search via Random Partitions
	2 Theories On the Complexity of NN Search via Random Partitions
	2.1 Introduction to Previous Works On the Complexity of LSH
	2.2 Formulation of the Time and Space Complexity for LSH
	2.3 The Complexity of Tmin
	2.4 The Complexity of LSH
	2.4.1 Lower Bound of LSH
	2.4.2 New Upper Bounds

	2.5 Parameters for Locality Sensitive Hashing
	2.6 Other NN Search Methods with Random Partitions
	2.6.1 Time and Space Complexity for Nearest Neighbor Preferred Hashing (NPH) Methods
	2.6.2 Time Complexity for Nearest Neighbor Preferred Partition (NPP)
	2.6.3 Parameters for NPH and NPP

	III Nearest Neighbor Search via Learning Based Partitions
	3 Algorithms of Optimal Partitions for Hashing Based NN Search
	3.1 Optimal Partition Criteria for Hashing
	3.1.1 Bucket Balancing for Search Time (P"0362Pany())
	3.1.2 Preserve Nearest Neighbors for Search Accuracy (P"0362Pnn())
	3.1.3 Intuition

	3.2 Hashing with Joint Optimization
	3.2.1 Formulation of Hashing with Joint Optimization
	3.2.2 Relaxation for D(Y)
	3.2.3 Relaxation for minimizing I(y1,...,ym,...,yk)
	3.2.4 Similarity Preserving Independent Component Analysis (SPICA)

	3.3 Optimization
	3.3.1 Optimization Algorithm
	3.3.2 Complexity and Scalability

	3.4 Degenerated Case with a Simple Solution
	3.4.1 Formulation
	3.4.2 Derivation
	3.4.3 Implementation

	3.5 Experiments
	3.5.1 Experiment Setup
	3.5.2 Evaluation Metrics
	3.5.3 Experiment Results

	4 Algorithms of Optimal Partition for Clustering based NN Search
	4.1 Background of K-means Clustering
	4.2 Optimal Clustering for NN Search–Balanced K-Means
	4.3 Iteration Algorithms for Balanced K-Means Clustering
	4.4 Experiments
	4.4.1 Data Sets
	4.4.2 Experiments of Balanced K-means Clustering
	4.4.3 Experiments on Image Retrieval with Local Feature Quantization via Balanced K-means

	IV Systems and Applications
	5 Bookcover Search with Bag of Words
	5.1 Data and System Outline
	5.2 Experiment Results

	6 Mobile Product Search with Bag of Hash Bits
	6.1 Introduction
	6.2 An Overview for the Proposed Approach
	6.3 Mobile Visual Search with Bag of Hash Bits
	6.3.1 Hash Local Features into Bits
	6.3.2 Geometry Verification with Hash Bits

	6.4 Boundary Reranking
	6.5 Experiments
	6.5.1 Data Sets
	6.5.2 Performance of Bag of Hash Bits
	6.5.3 Performance of Boundary Reranking

	V Additional Discussions on Nearest Neighbor Search
	7 Theories on the Difficulty of Nearest Neighbor Search
	7.1 Introduction
	7.2 The Difficulty of Nearest Neighbor Search for a Given Data Set
	7.2.1 Relative Contrast (Cr) – Measure the Difficulty of Nearest Neighbor Search
	7.2.2 Estimation of Relative Contrast
	7.2.3 What Data Properties Affect the Relative Contrast and How?
	7.2.4 Validation of Relative Contrast

	7.3 How Will the Difficulty Affect the Performance NN Search Methods
	7.3.1 How Will the Difficulty Affect LSH

	VI Conclusions
	8 Summary and Future Works
	8.1 Summary of Contributions
	8.2 Future Works

	VII Bibliography
	Bibliography

	VIII Appendix
	9 Proofs
	9.1 Proofs for Chapter 2
	9.1.1 Sketch of the Proofs for Theorem 2.3.1
	9.1.2 Details of Proofs for Theorem 2.3.1

	9.2 Proofs for Chapter 3
	9.3 Analysis for Chapter 4
	9.4 Proofs for Chapter 7
	9.4.1 Proofs
	9.4.2 Previous Works on the Difficulty of Nearest Neighbor Search
	9.4.3 Relations Between Our Analysis and Previous Works

