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ABSTRACT 

High-level cognitive and neural contributions to conscious experience and metacognition in visual 

perception 

Brian Maniscalco 

 

Visual processing in humans has both objective and subjective aspects. Objective aspects of 

visual processing consist in an observer’s ability to accurately discern objective properties of visual 

stimuli. Subjective aspects of visual processing consist in an observer’s visual experience of the stimuli 

and the observer’s metacognitive evaluation of the reliability of objective visual processing. What is the 

nature of the relationship between objective and subjective visual processing? A wide range of views 

exists in the literature today, but a broad distinction can be drawn between (1) views holding that 

objective and subjective visual processing are intimately interrelated, such that changes in subjective 

processing should be associated with changes in objective processing; and (2) views holding that 

subjective visual processing is a separate, higher-order process, such that it is possible to change 

subjective processing without changing objective processing. Here we perform a series of 

psychophysical experiments to arbitrate between these views. To make the data analysis more 

powerful, we created a novel extension of signal detection theory for analyzing the informational 

content of subjective ratings of perceptual clarity and confidence (Appendix A).  

We constructed a wide array of signal detection theoretic models capturing different 

hypotheses on the relationship between objective and subjective visual processing and performed a 

formal model comparison analysis in order to discern which model structures best accounted for a data 

set in which objective stimulus discrimination performance was dissociated from subjective ratings of 

visual clarity (Chapter 1). Results from this analysis favor a higher-order view of subjective visual 

processing. If the higher-order view is correct, it should be possible to disrupt the informational content 



 

 

 

 

carried by subjective ratings of perceptual clarity and decision confidence without affecting an 

observer’s objective ability to visually discriminate stimuli. We found two lines of novel empirical 

evidence for such dissociations. We show that when subjects perform a working memory task in which 

the contents of working memory require extensive manipulation, ratings of confidence in a concurrent 

perceptual task carry less information about perceptual task performance, even taking the influence of 

task performance into account (Chapter 2). Similarly, we show that transcranial magnetic stimulation to 

dorsolateral prefrontal cortex selectively impairs the metacognitive sensitivity of visual clarity ratings 

without affecting perceptual task performance (Chapter 3). Finally, we show that perceptual and 

metacognitive performance can dissociate over time as an observer performs a continuous block of 

trials in a visual discrimination task, contrary to views holding that perceptual discrimination and 

metacognition are closely intertwined processes (Chapter 4). We show that this dissociation can be 

partly attributed to individual variability in gray matter volume of regions of anterior prefrontal cortex 

previously linked to visual metacognition. We interpret these results as suggesting that limited 

prefrontal resources can be dynamically allocated to support the performance of either perceptual or 

metacognitive processes.  

Taken together, these results provide converging evidence supporting a higher-order view of 

subjective visual processing. Functionally, objective and subjective processing are organized 

hierarchically, such that downstream subjective processes reflect the properties of objective processing 

but can be independently manipulated. Anatomically, these high-level subjective processes are linked to 

regions of prefrontal cortex rather than posterior perceptual areas.  
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General Introduction 

What does it mean for an observer to “see” something? In everyday usage, the concept of 

“seeing” seems simple and straightforward. To see a stimulus is simply to be visually aware of it. On 

reflection, however, we can discern conceptual distinctions between the component processes and 

properties of seeing. For instance, at the most basic level, seeing a stimulus involves using visual 

information to register the presence of the stimulus, to identify what kind of stimulus it is, and to make 

appropriate behavioral responses to it. Aspects of vision such as these involve the observer’s ability to 

accurately assess and interact with the external world. We may refer to these as the objective aspects of 

visual processing, or objective vision in brief. 

However, for humans, seeing is not limited to the process of interpreting and interacting with 

the external world. Seeing also involves the process of knowing what one sees and knowing how well 

one is seeing. For instance, as you read this sentence, you are not merely engaged in the process of 

identifying the letters, words, word meanings, and so on. Concurrently with such objective visual 

processing, you have an explicit visual experience of colors and forms in a visual field, and a felt sense of 

how the visual stimuli cohere into wholes that have meaning. In this way, you are not only objectively 

seeing words, but you are also aware of yourself as seeing these words; that is, in addition to the bare 

process of objective seeing, there is another aspect of visual processing that represents the fact that an 

act of seeing is occurring. In addition to merely knowing that you are seeing, you may also have a sense 

of how well you are able to see. You probably experience the words in this sentence as being clearly 

legible, but in very poor viewing conditions you might have a sense that the words are difficult to see, or 

might feel uncertain that you can accurately identify a certain letter. Aspects of vision such as these 

involve an observer’s ability to register and evaluate the nature and quality of their own objective visual 

processing.  We may refer to processes such as these as the subjective aspects of visual processing, or 

subjective vision in brief.  
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A simple thought experiment helps to draw out the contrast between objective and subjective 

vision. We might imagine that a simple robot equipped with a video camera and an artificial limb could 

make basic visual discriminations and generate appropriate goal-directed behavior on the basis of this 

visual processing. Such a robot could be said to have a basic kind of objective ability to see, insofar as it 

is able to use visual information to accurately characterize the state of the world and interact 

appropriately with the world on that basis. However, our intuitions would suggest that the robot’s 

objective ability to see is not necessarily accompanied by a first-person phenomenological experience of 

subjective visual qualities such as form and color; at any rate, there seems to be no logical contradiction 

in assuming that the robot would lack such visual experience. From a computational perspective, unless 

we were to endow this robot with additional capacities, the robot would not have a representation of 

itself as a system that is seeing something, nor any way to evaluate how dependable its visual 

discriminations are. In the phrasing of Karmiloff-Smith (1992), although there may be visual knowledge 

in the robot, this is not explicitly represented as visual knowledge for the robot. This example serves to 

illustrate that subjective vision is distinct from, and not necessarily entailed by, objective vision.  

Given that objective and subjective vision are distinct processes, what is the relationship 

between them as implemented in the human observer? To what extent are they interlocked or 

dissociable? What computational architecture best describes the stream of processing in the human 

mind that allows us to objectively and subjectively see? The current work will address questions such as 

these.  Broadly speaking, our main concern will be to determine whether subjective vision is best 

characterized as a low-level sensory process, or as a higher-level process somewhat removed from the 

lower levels of basic perceptual processing. We address this question by collecting data from human 

observers in visual psychophysics experiments and using formal modeling techniques to determine 

which view is best supported by the data. To anticipate, we find converging lines of evidence that the 
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subjective aspects of visual processing are best characterized by higher-level, rather than low-level, 

perceptual processes. 

 

Aspects and measures of subjective vision 

 We have already distinguished between two aspects of subjective vision: (1) a representation or 

experience of a stimulus as being seen, and (2) a representation or experience of a stimulus as being 

seen well or poorly. The first aspect we might call visual awareness, as it concerns whether a visual 

stimulus is explicitly registered in consciousness or whether it goes unnoticed and unexperienced, 

receiving only unconscious processing. The second aspect we might call visual metacognition, as it 

concerns to what extent objective visual processing is experienced or judged to be clear, accurate, 

reliable, etc. as opposed to poor, uncertain, degraded, etc. 

 

Visual awareness 

 The study of perceptual awareness (and its complement, unconscious perceptual processing) 

has historically been beset by controversies regarding how to measure whether a stimulus is perceived 

consciously or not. Early approaches relied on taking subjective reports at face value—if an observer 

reports not being aware of a stimulus, then he is not aware of it (e.g. Peirce & Jastrow, 1884; Sidis, 1898; 

Stroh et al, 1908; Adams, 1957). However, theoretical advances in psychophysical research came to view 

perceptual reports as being a flexible, cognitive decision process that is sensitive to factors including, but 

not limited to, the nature of perceptual processing (e.g. Tanner & Swets, 1954; Green & Swets, 1966). 

Essentially, subjective reports might be contaminated by various response biases. For instance, 

consistent with reports that observers tend to be underconfident in sensory discrimination tasks 

(Björkman, Juslin, & Winman, 1993), observers might be reluctant to characterize extant but faint, 

ambiguous, or degraded experiences as instances of conscious perception. Additionally, the observer’s 
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criteria for mapping perceptual experience onto behavioral reports might shift as a function of the 

experimental context (Tanner & Swets, 1954).  

In response to such methodological concerns, Eriksen (1960) proposed that awareness be 

measured by the observer’s objective ability to discriminate the stimulus. Under this proposal, 

awareness can only be said to be absent if the observer’s objective performance in identifying the 

stimulus is at chance levels. However, this method does not seem to respect the already mentioned 

conceptual distinctions between objective and subjective processing, and a priori rules out the 

possibility of unconscious perceptual processing, a phenomenon that has subsequently received strong 

empirical support from case studies on blindsight patients (Weiskrantz, 1986). Subsequent approaches 

to measuring perceptual awareness have proposed to corroborate subjective reports with more 

objective considerations, such as by demonstrating qualitative differences between the processing of 

sub- and supra-threshold stimuli (Cheesman & Merikle, 1986; Debner & Jacoby, 1994), or by measuring 

the extent to which subjective reports of confidence or post-decision wagering predict task performance 

(Dienes, Kwan, & Goode, 1995; Kunimoto, Miller, & Pashler, 2001; Persaud, McLeod, & Cowey, 2007).  

However, for such proposals the conceptual question of what exactly we are measuring still 

looms large. For instance, if an observer consistently reports “clear” and “very clear” visual experiences 

of a stimulus, we would have strong reason to believe he experiences something, even if his distinction 

between “clear” and “very clear” experience does not carry predictive value regarding task performance 

(Dienes, 2004; Maniscalco & Lau, 2012). Considerations like these are suggestive that we should always 

take the direct contents of an observer’s subjective reports into consideration in some form or another 

when assessing perceptual awareness (Maniscalco & Lau, 2012). For all their potential methodological 

flaws, subjective reports nonetheless seem to provide a crucially important window into the nature of 

an observer’s subjective experience, since experience as such is a private, first-person phenomenon that 
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is inaccessible to direct objective measurement—alas, there is no such thing as a “consciousness meter” 

(Chalmers, 1996). 

 

Visual metacognition 

 There are some senses in which the measurement of visual metacognition is not as 

methodologically problematic as the measurement of visual awareness. Whereas assessing visual 

awareness involves making an absolute distinction between the presence or absence of a private visual 

experience, visual metacognition can be cast as making relative distinctions between visual processing 

that is experienced with more or less phenomenological clarity, or engenders more or less confidence. 

Thus, for instance, even if we cannot be sure precisely what an observer might mean to communicate by 

reporting that a visual experience is clear or cause for high confidence, it is less problematic to interpret 

differences in reports of clarity or confidence across trials or experimental conditions, particularly for 

within-subject comparisons.  

 Additionally, the construct of visual metacognition avails itself to a more straightforward 

methodological treatment than does visual awareness. Because metacognitive reports can be seen as 

evaluations of the efficacy of objective perceptual processing, and because the efficacy of objective 

perceptual processing can be directly measured, it is relatively straightforward to operationalize 

metacognition as the degree to which metacognitive reports predict objective performance (see 

Appendix A for our signal detection theory approach to doing so). The analogous procedure is not 

available in the case of measuring visual awareness, since we have no direct access to the subjective 

experiences that subjective reports of awareness bear upon.  

Thus far we have equivocated between reports on the phenomenological clarity of a visual 

experience, and the degree of confidence in the efficacy of visual processing, treating both of these as 

forms of visual metacognition. Conceptually, the degree of clarity with which a visual content is 
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experienced could be seen as a form of metacognitive appraisal intrinsically woven into the 

phenomenological character of the experience; clearer, more vivid, less ambiguous experiences are 

more likely to be associated with effective objective performance (and higher reports of confidence). 

Indeed, according to some proposals, sensory representations only enter awareness if they are assessed 

to be sufficiently statistically reliable, implying a close connection between perceptual awareness, 

perceptual clarity, and perceptual confidence (Lau, 2008a). A similar construct to perceptual clarity is 

the construct of perceptual fluency, the sense of ease with which a stimulus is perceived; perceptual 

fluency has similarly been taken to serve a kind of experientially grounded metacognitive function 

(Oppenheimer, 2008).  

Nonetheless, confidence is a more general concept, in that it characterizes the efficacy of 

perceptual performance without explicitly specifying the qualitative clarity of perceptual experience as 

the source of such characterizations. Thus, in principle, we might expect that judgments of confidence 

admit of more sources of influence than judgments of visual clarity. For instance, an observer’s 

introspective rating of confidence in his perceptual decision may be influenced not only by how clearly 

he perceived the stimulus phenomenologically, but also by more abstract, non-sensory ‘fringe’ 

experiences such as a ‘gut feeling’ of rightness (James, 1890; Mangan, 2001; cf type 2 blindsight in 

Weiskrantz, 1997), as well as other non-perceptual considerations such as the observer’s previous 

experience with similar stimuli, the observer’s access to performance feedback, etc.  

This conceptual observation that judgments of confidence may draw upon more sources of 

information than do judgments of perceptual clarity is supported by empirical observations. Patients 

with a neurological condition termed ‘blindsight’ have damage to areas of the primary visual cortex, V1, 

which entails the loss of all visual experience in the corresponding part of the patient’s visual field. Yet, 

such patients can make objective forced-choice discriminations about stimuli presented in the 

subjectively ‘blind’ portions of the visual field at above-chance levels (Weiskrantz, 1986). Interestingly, in 
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experiments where blindsight patient GY has been asked to place a wager on every trial regarding the 

accuracy of his perceptual decisions, his wagers can predict accuracy for stimuli presented to his blind 

field at above-chance levels of performance (Persaud et al., 2007; Persaud et al., 2011). Similarly, 

healthy observers are able to rate confidence in such a way as to predict objective performance in visual 

tasks at above-chance levels for trials on which they deny having detected the visual target (Kanai, 

Walsh, & Tseng, 2010).Thus, to the extent that judgments of confidence can carry effective information 

about perceptual processing even in the absence of reports of visual awareness, such judgments must 

have access to information about perceptual processing beyond what is captured by experiences of 

visual clarity.  

However, although not identical in their content, ratings of confidence and visual clarity are 

conceptually and empirically alike. Conceptually, they both carry metacognitive appraisals about the 

efficacy of objective perceptual processing. In an open-ended phenomenological study, Ramsøy and 

Overgaard (2004) had subjects perform a visual discrimination task and asked the subjects to report the 

“degree of clearness of experience” on each trial. Subjects were not presented with an a priori reporting 

scheme, but rather were invited to construct their own rating scales, assigning meaning to each 

category of the scale in such a way as to capture the range of clarity in visual experience elicited by the 

experimental stimuli. All five subjects in the experiment wound up converging on essentially the same 4-

category classification scheme, with the semantic content of the categories summarized by the authors 

as “no experience whatsoever,” “brief glimpse,” “almost clear experience,” and “clear experience.” 

Thus, subjects spontaneously reported the phenomenology of visual clarity on a graded scale resembling 

graded ratings of confidence in their ability to discriminate the target. Indeed, the subjects indicated in 

post-experiment interviews that for stimuli that elicited “no experience,” the forced choice visual 

discrimination response was experienced as a pure guess, whereas “almost clear” and “clear” stimuli 

were associated with feelings of being almost certain and certain, respectively.   
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Empirically, although dissociable, ratings of clarity and confidence tend to be well correlated. An 

indirect empirical suggestion that such correlation might exist comes from studies showing that fluency 

in memory retrieval tasks is positively related with ratings of confidence (Kelley & Lindsay, 1993; Koriat, 

1993). More direct evidence on the similarity between ratings of clarity and confidence comes from 

Sandberg, Timmermans, Overgaard, & Cleeremans (2010). Subjects performed a visual discrimination 

task and provided a metacognitive report on every trial after the forced choice visual discrimination. In 

one condition, subjects used the 4-point “perceptual awareness scale” of visual clarity previously 

described by Ramsøy and Overgaard (2004). In another condition, subjects used a 4-point confidence 

rating scale whose categories were “not confident at all,” “slightly confident,” “quite confident,” and 

“very confident.”  In a third condition, subjects placed one of 4 possible wagers on their task 

performance with imaginary monetary bets. Distributions of rating scale responses as a function of 

stimulus strength, and the relationship of task performance to stimulus strength as a function of rating 

scale response, were qualitatively similar for ratings of clarity and confidence, whereas both scales were 

relatively less similar to the wagering scale.  

Unpublished data from our lab further corroborates the relationship between ratings of visual 

clarity and confidence. Three subjects performed a metacontrast masking task similar to that described 

in Chapter 1. On each trial, a square or diamond was presented, followed by a metacontrast mask. The 

stimulus onset asynchrony (SOA) between the target and mask could take on one of eight possible 

values. In one experimental condition, after providing a forced choice discrimination regarded the 

identity of the visual target, subjects rated confidence in the discrimination on a scale of 1 to 4. In 

another condition, subjects reported the clarity with which the target was perceived on a scale of 1 to 4. 

All three subjects exhibited strong across-SOA correlations for average ratings of clarity and confidence 

(rs > .7, ps < .05). 
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For the purposes of the present work, then, we treat perceptual clarity and perceptual 

confidence as similar constructs. The distinction between these processes is not important for the 

broader questions we address in this manuscript, but nor does our methodological approach and 

interpretation of the data crucially rely upon not making a sharp distinction between them. We will 

sometimes use the phrase “perceptual metacognition” to refer to both types of judgments 

interchangeably.  

 

Candidate computational architectures relating objective and subjective vision 

 Given that objective and subjective vision are distinct processes, how are they implemented in 

the physical structure and functional architecture of the human brain? There has been an explosion of 

interest in this question in the last two decades, and a wide range of views have been put forth in the 

literature (Tong, 2003; Tononi & Koch, 2008; Dehaene & Changeux, 2011; Lau & Rosenthal, 2011). 

Consideration of the wide range of views intended to account for perceptual awareness can be helpfully 

simplified and organized by adopting the taxonomy described in Lau and Rosenthal (2011). These 

authors distinguished between first-order theories, information integration theory, neuronal global 

workspace theory, and higher-order theories. 

 First-order theories (Pins & Ffytche, 2003; Tong, 2003; Zeki, 2003; Tse, Martinez-Conde, Schlegel, 

& Macknik, 2005; Lamme, 2006) hold that perceptual awareness arises as a function of early sensory 

processing regions in the brain. For instance, in the case of vision, visual awareness should be associated 

with processing in primary visual cortex (Tong, 2003) and/or extrastriate visual cortex (Zeki, 2003; Tse et 

al., 2005; Lamme, 2006).  

 Information integration theory (Tononi, 2008) holds that awareness arises as a function of the 

computational complexity of a physical system. Specifically, systems that feature higher degrees of 

computational integration have higher degrees of awareness, where “integrated information captures 



10 

 

 

 

the information generated by causal interactions in the whole, over and above the information 

generated by the parts” (Tononi, 2008, p. 221). 

 Neuronal global workspace theory (Dehaene, Sergent, & Changeux, 2003; Dehaene & Changeux, 

2011) builds on the cognitive global workspace theory first put forth by Baars (1989). According to this 

view, the contents of consciousness correspond to activations in a ‘neuronal global workspace’ 

consisting of a dynamic, coherent network of interacting neurons based crucially upon long range 

cortico-cortical connections in prefrontal and parietal cortex. If processing in early sensory areas is 

sufficiently strong and receives top-down amplification via attentional selection, then this low-level 

sensory activation may cross a threshold and gain access to the global neuronal workspace, and thus 

enter perceptual awareness (Dehaene, Changeux, Naccache, Sackur, & Sergent, 2006).  Access to the 

global workspace entails extended processing that makes the first-order sensory processing more robust 

and accessible to a diverse range of higher cognitive functions such as introspective report and cognitive 

control (Dehaene & Changeux, 2011). 

 Higher-order theories (Lau, 2008a; Lau, 2011; Dienes, 2008; Pasquali, Timmermans, & 

Cleeremans, 2010) hold that perceptual awareness occurs as the result of higher-order cognitive and 

neural processing that is ‘about’ first-order sensory processing. For instance, a sensory representation 

may enter perceptual awareness if judged by higher-order mechanisms to have a sufficiently high 

degree of statistical reliability (Lau, 2008a; Cleeremans, 2008). Thus, in a sense, there is a relatively clean 

division of labor whereby lower-order processes are responsible for evaluating the state of the world 

(objective perceptual processing) and higher-order processes are responsible for evaluating the state of 

lower-order processes (subjective perceptual processing). 

 Thus, not only are there many views on the manner in which perceptual awareness is 

implemented anatomically and functionally, but these views span a wide gamut, ranging from views that 

locate perceptual awareness in the very earliest stages of cortical perceptual processing up through 
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views that locate perceptual awareness in the very latest stages. This situation is a reflection of the 

empirical and methodological difficulties and ambiguities in studying perceptual awareness. 

 For the purposes of the current work, we will be particularly concerned to assess the 

relationship between objective and subjective perceptual processing. Because first-order theories locate 

perceptual awareness in sensory cortex, they posit a tight relationship between objective and subjective 

perception; in particular, changes in an observer’s subjective reports about perceptual awareness and 

clarity should tend to be associated with changes in objective perceptual performance (Lau & Rosenthal, 

2011). Although neuronal global workspace theory posits that perceptual awareness is associated with 

higher-level activations in prefrontal and parietal cortex, rather than being restricted to earlier sensory 

regions, it nonetheless is similar to first-order theories to the extent that it posits a direct relationship 

between objective and subjective perception (Lau & Rosenthal, 2011). Changes in subjective reports 

reflect changes in a sensory representation’s access to the global workspace, which according to global 

workspace theory should entail changes in objective processing, e.g. changes in the robustness of the 

sensory representation and its degree of access to higher cognitive evaluation. By contrast, higher-order 

theories are unique in positing that changes in subjective perceptual processing can occur in the 

absence of a concurrent change in objective processing. (At its current stage of development, it is not 

yet entirely clear how the formalisms of information integration theory might map onto specific 

predictions about the relationship between objective and subjective perception.) 

 A similarly broad contrast between low-level and high-level views has occurred independently in 

the narrower literature focused specifically on perceptual confidence. Some labs contend that 

evaluations of confidence in perceptual processing bear simple and straightforward relationships to 

objective perceptual processing, such that confidence is essentially a direct measure of perceptual signal 

strength and the two therefore co-vary in reliable ways (Kepecs, Uchida, Zariwala, & Mainen, 2008; Kiani 

& Shadlen, 2009; Kepecs & Mainen, 2012). Other labs hold that confidence is constructed by higher-



12 

 

 

 

order evaluations of first-order perceptual processing, such that the two are partly dissociable (Fleming, 

Weil, Nagy, Dolan, & Rees, 2010; Pleskac & Busemeyer, 2010; McCurdy et al., 2013). 

 Thus, our fundamental concern in this work will be to help arbitrate between views positing that 

perceptual clarity and confidence are intimately related to objective perceptual processing and perhaps 

even based upon the same underlying information, and views positing that perceptual clarity and 

confidence are somewhat functionally removed from, and thus partially dissociable from, objective 

perceptual processing. In order to place our approach in the proper context, we will first discuss the 

conceptual and methodological importance of dissociating objective and subjective perception, prior 

empirical demonstrations of such dissociations, and the utility of analyzing objective and subjective 

perception in the computational framework of signal detection theory.  

 

Methodological importance of dissociations 

 In order to isolate the neural and functional processes underpinning subjective perception, it is 

crucial to rule out the potential influence of experimental confounds. In the context of neuroimaging 

experiments seeking to discover the neural correlates of perceptual awareness, great emphasis has 

been placed upon controlling for stimulus confounds—i.e.in making perceptual stimuli as similar as 

possible across experimental conditions, in order to ensure that comparisons of neural activity across 

conditions captures differences in perceptual awareness in and of itself, and not low-level differences in 

sensory processing due to differences in the stimuli (e.g. Dehaene et al., 2001; Blake & Logothetis, 

2002).  

However, a less appreciated principle is that it is also necessary to control for performance 

confounds (Lau, 2008b; Weiskrantz, Barbur, & Sahraie, 1995), since experimental manipulations that 

induce changes in reports of perceptual awareness also tend to induce changes in objective perceptual 

performance. Indeed, in psychophysical tasks, objective performance and subjective measures of 
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awareness and confidence typically exhibit robust correlations (see e.g. a representative example of 

how objective performance and subjective ratings exhibit similar changes as a function of stimulus 

strength in Figure B-1, reprinted from Figure S3 of Del Cul, Dehaene, Reyes, Bravo, & Slachevsky, 2009). 

Thus, the study of perceptual awareness and metacognition must take great care to disentangle the 

interrelated but distinct strands of objective and subjective perceptual processing. The most 

straightforward and effective way to accomplish this is to discover and leverage empirical dissociations 

between objective perceptual performance and subjective reports. 

Dissociating objective and subjective perception takes on an even more important role in our 

endeavor to compare different theories that make different predictions about how objective and 

subjective processing are related. In this context, such dissociations are not just serving the role of 

helping to rule out confounds in the interpretation of experimental outcomes, but rather are central to 

the project of arbitrating between the different theories. 

 

Dissociations between objective and subjective perception 

 Probably the most ubiquitous kind of objective-subjective dissociation in psychological science is 

the demonstration that some degree of stimulus processing can occur even in the absence of awareness 

of the stimulus (e.g. Kouider & Dehaene, 2007; Bargh & Morsella, 2008), even in spite of the previously 

discussed methodological difficulties involved in conclusively demonstrating the complete absence of 

stimulus awareness (Eriksen, 1960; Holender, 1986; Holender & Duscherer, 2004).  However, many such 

studies involve demonstrating indirect effects of unconscious stimuli on behavior, such as effects of an 

unconscious prime on reaction times for a subsequently presented suprathreshold stimulus. A stronger 

and more informative kind of dissociation for the present purposes would involve differences in 

objective and subjective processing related to the very same stimulus. The aforementioned 

neuropsychological deficit of blindsight (Weiskrantz, 1986) qualifies as such a direct dissociation, insofar 
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as it demonstrates that objective performance in forced-choice visual discriminations of a stimulus can 

occur at above-chance levels even though the blindsight patient profusely denies having any awareness 

of the stimuli.  

 However, even more germane to the current agenda than demonstrations of objective 

processing without awareness would be investigations on the extent to which the overall relationship 

between objective and subjective processing is malleable. This is because different theories of 

perceptual awareness and metacognition differ on how they characterize the relationship between 

objective and subjective processing, as already noted. Fortuitously, potential demonstrations of 

dissociation in the relationship between objective and subjective perception also allow us to side-step 

the methodologically thorny issues of demonstrating the absence of perceptual awareness. Such 

“objective-subjective relationship” dissociations are also conceptually stronger than “unconscious 

perception” dissociations, in the sense that weaker assumptions are needed for such dissociations to 

support inferences to underlying processes (Schmidt & Vorberg, 2006). 

  One such kind of dissociation consists in finding two experimental conditions that yield identical 

levels of objective perceptual performance and yet differ in average levels of reported perceptual clarity 

or confidence. For instance, Lau and Passingham (2006) had subjects perform a simple shape 

discrimination task and indicate whether the target was seen or unseen for stimuli that were backward-

masked with a metacontrast mask. They systematically altered the stimulus onset asynchrony (SOA) 

between target and mask, ranging from -50 ms to 133 ms. It is well known that when percentage of 

correct responses is plotted as a function of SOA, a U-shaped function results (Breitmeyer, 1984), such 

that task performance is best for short and long SOAs and worse for intermediate SOAs, and this pattern 

was replicated by Lau and Passingham. When they plotted the percentage of “seen” responses as a 

function of SOA, they found that this curve was also U-shaped, but was asymmetric with respect to the 

percent correct curve, such that they could find pairs of SOAs exhibiting the same level of percent 
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correct but differing levels of percent seen. They termed this finding a “relative blindsight” effect. 

Similarly, Rahnev et al. (2011) had subjects perform a tilt discrimination task for grating stimuli that 

could be either attended (cued) or unattended (uncued). They adjusted the contrast of the grating 

stimuli so that task performance was equivalent in the attended and unattended conditions, and found 

that subjects rated the average visibility of unattended stimuli to be higher than that of attended stimuli 

in spite of having identical levels of task performance. Notably, such dissociations significantly facilitate 

the study of subjective perception by providing a means of circumventing the problem of performance 

confounds discussed previously (Lau, 2008b). 

 A related kind of dissociation focuses on the relationship between objective perceptual 

performance and perceptual metacognitive sensitivity, where the latter term refers to the efficacy with 

which ratings of clarity or confidence discriminate between an observer’s own correct and incorrect 

perceptual decisions. Modest demonstrations that perceptual and metacognitive sensitivity can 

dissociate have come from analyses of individual differences. Maniscalco and Lau (2012) found that 

there is across-subject variability in the relationship between perceptual and metacognitive sensitivity, 

and Fleming et al. (2010) found that there is across-subject variability in metacognitive sensitivity even 

when stimuli are adjusted so as to yield the same level of objective task performance for all subjects. In 

the current work we will demonstrate several stronger, within-subject dissociations between perceptual 

and metacognitive sensitivity, and such dissociations will play a key role in abdicating between lower- 

and higher-order views of the subjective aspects of visual processing. 

Dissociations between perceptual and metacognitive sensitivity have conceptual advantages 

over dissociations between perceptual sensitivity and average levels of reports of awareness, clarity, or 

confidence. Metacognitive sensitivity measures the informational content of subjective ratings, rather 

than just the mean reported level of such ratings. As a consequence, (1) the objective measure 

(perceptual sensitivity) and the subjective measure (metacognitive sensitivity) are more directly 



16 

 

 

 

comparable, both being measures of sensitivity, and (2) the subjective measure is less prone to the 

potential influence of response biases. As we will see in the next section, comparisons of perceptual and 

metacognitive sensitivity provides a third advantage when analyzed in the context of signal detection 

theory (SDT), since this theoretical framework provides theoretical, quantitative predictions on how 

these measures should be related according to the assumptions of SDT. The comparison of such 

predictions to observed outcomes can provide useful context and insight in the interpretation of the 

data. 

 

Signal detection theory analysis of objective and subjective perception 

 Signal detection theory (Green & Swets, 1966; Macmillan & Creelman, 2005) provides a simple 

yet powerful computational framework for characterizing performance in perceptual tasks. An 

observer’s response bias in a perceptual task is fluid and can change as a function of the experimental 

context (Tanner & Swets, 1954). However, even as an observer’s criteria for how to translate perceptual 

processing into behavioral responses change, presumably the observer’s underlying ability to objectively 

process the stimuli—i.e. the observer’s perceptual sensitivity—remains unchanged. SDT’s primary 

empirical virtue is that its measure of perceptual sensitivity, d’, remains constant even as an observer’s 

response bias changes (Swets, 1986b). Thus, SDT provides a model that can distinguish and 

independently characterize an observer’s perceptual sensitivity and response bias. This aspect of SDT 

makes it an ideal framework for the current purposes, since we are concerned with characterizing the 

relationship between objective perceptual processing—perceptual sensitivity—and subjective reports. 

 Recent theoretical developments extending SDT to the domain of metacognitive performance 

(Clarke, Birdsall, & Tanner, 1959; Galvin, Podd, Drga, & Whitmore, 2003; Maniscalco & Lau, 2012; 

Appendix A) have made SDT even more useful for the current purposes. These developments show that 

SDT makes strong theoretical predictions regarding the relationship between perceptual and 
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metacognitive performance. Given that an observer exhibits a given level of objective perceptual 

processing—i.e. a certain value of d’ and response bias c—SDT makes a quantitative prediction 

regarding how informative the observer’s confidence ratings should be about his perceptual 

performance. This prediction can be quantified with the measure meta-d’, which is defined such that an 

SDT-ideal observer has d’ = meta-d’ (Maniscalco & Lau, 2012; Appendix A). This prediction provides a 

theoretical reference point against which we can evaluate an observer’s actual metacognitive 

performance. For instance, if the observer has d’ = meta-d’, then the observer exhibits metacognitive 

performance consistent with the SDT-ideal observer, whereas if d’ > meta-d’, then the observer is 

metacognitively suboptimal. 

 In addition to providing a benchmark for interpreting an observer’s metacognitive performance 

in a given experimental condition, meta-d’ also facilitates the comparison of objective and subjective 

perceptual processing across conditions. For instance, we have previously argued that analyses of 

subjective perception should be careful to control for performance confounds, and that one means of 

doing so is to compare experimental conditions where subjective perception differs and yet objective 

performance is the same. This empirical method of controlling for performance confounds is effective, 

but is limited by the (to date) relatively small number of experimental procedures that can produce the 

performance-matching dissociation. However, the framework of SDT provides a theoretical, rather than 

empirical, way of assessing subjective perception while controlling for performance confounds. 

Numerical comparisons between d’ and meta-d’ can quantify metacognitive sensitivity in such a way as 

to take into account the influence of the objective d’ measure on the subjective meta-d’ measure. For 

instance, if in condition A an observer has d’ = 1 and meta-d’ = 1, whereas in condition B he has d’ = 2 

and meta-d’ = 1.5, then we can infer that, after taking into account his level of task performance, the 

observer’s metacognition is worse in condition B, since e.g. meta-d’ only achieves 75% of the value of d’ 

as compared to the 100% value achieved in condition A. In this way, the SDT framework lends 
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considerable flexibility and power in the study of the relationship between objective, perceptual 

sensitivity and subjective, metacognitive sensitivity.  

For a fuller treatment on SDT approaches to measuring metacognition, see Appendix A and 

Maniscalco & Lau (2012).  

 

Summary of theoretical questions and methodological approach 

 A brief summary of the above could be stated as follows. Although there are many theories of 

perceptual awareness and metacognition, a common denominator is that some predict that objective 

and subjective perceptual processing are intimately related, whereas others predict that the two are 

more loosely related and can dissociate in interesting ways. In this work, we will make use of 

experimental paradigms that yield various kinds of dissociations between objective perceptual 

performance and subjective ratings of perceptual clarity and confidence. We will make extensive use of 

the computational framework of SDT in order to demonstrate the existence of these dissociations and 

model the possible underlying mechanisms. We will use the SDT analyses of these empirical data in 

order to argue that higher-order theories of perceptual awareness and metacognition are best suited to 

account for the full range of the data. 

 

Outline of the present manuscript 

 The current manuscript is composed of four chapters and two appendices. 

In Chapter 1, we replicate the relative blindsight finding from Lau and Passingham (2006). We 

create multiple SDT models intended to capture the core computational principles of three classes of 

views on perceptual awareness—single channel models (akin to first-order theories), dual channel 

models (single channel models augmented with an additional, “unconscious” processing stream), and 
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hierarchical models (akin to higher-order theories). Formal model comparison analysis suggests that the 

hierarchical model structure is best able to account for the relative blindsight dissociation. 

 In Chapter 2, we probe the effects of working memory demands on objective and subjective 

vision in two experiments. Concurrent with performing a basic perceptual task, subjects perform a 

demanding working memory task. The results suggest that when subjects are required to manipulate 

the contents of working memory under conditions of high load, metacognitive sensitivity is selectively 

reduced. The nature of the observed dissociation is consistent with higher-order, but not first-order, 

views. In conjunction with prior empirical findings, the results suggest a role of dorsolateral prefrontal 

cortex (DLPFC) in supporting perceptual metacognition. 

 In Chapter 3, we probe the effects of transcranial magnetic stimulation (TMS) to DLPFC on 

objective and subjective vision. We find that TMS selectively inhibits metacognitive sensitivity but not 

perceptual sensitivity. The nature of the observed dissociation is consistent with higher-order, but not 

first-order, views.The results provide further evidence for the role of DLPFC in supporting perceptual 

metacognition. 

 In Chapter 4, we perform four experiments to probe the dynamics of perceptual and 

metacognitive sensitivity over time in blocks of experimental trials. We find that changes in the two are 

weakly or negatively correlated, rather than the strong positive correlation that would be predicted by 

first-order views. We find that between-subject variability in this pattern can be explained by between-

subject variability in gray matter volume of anterior prefrontal cortex. We construct a cognitive resource 

account of the neural findings and corroborate a prediction of this account in two further behavioral 

experiments.  

 In Appendix A, we provide an extensive formal treatment of the SDT model of objective 

perceptual performance and our application of the SDT model to the measurement of metacognitive 

sensitivity.  
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In Appendix B, we provide a supplement to the model analysis of Chapter 1, demonstrating the 

similarity of our SDT models to alternative models described elsewhere in the literature. 
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Chapter 1 

The signal processing architecture underlying subjective reports of perceptual clarity 

 

Introduction 

What are the mechanisms that drive subjective and objective visual judgments in humans, and 

how are they related? As discussed in the General Introduction, several prominent classes of theories 

characterizing the relationship between objective and subjective vision are currently in circulation 

(Tong, 2003; Tononi & Koch, 2008; Dehaene & Changeux, 2011; Lau & Rosenthal, 2011). Here we 

consider the general forms of different signal processing architectures that map onto the various 

theories. 

The most parsimonious kind of account holds that subjective and objective judgments, though 

distinct, are generated from the same underlying process (Single Channel models, Figure 1-1 left panel). 

For instance, on a common signal detection theory (SDT) account, perceptual decisions result from a 

binary comparison between an internal signal and a criterion (Green & Swets, 1966; Macmillan & 

Creelman, 2005), whereas subjective judgments of the quality of evidence are made by evaluating some 

transformation of the signal, such as its distance from the criterion (Clarke et al., 1959; Galvin et al., 

2003). According to this kind of model, subjective and objective judgments are just different ways of 

evaluating the same underlying evidence (Figure 1-3; Appendix A). 

  Alternatively, even if subjective and objective judgments are based on the same evidence, the 

quality of evidence available for each kind of judgment might differ. For instance, a Hierarchical model 

(Figure 1-1 right panel) might suppose that evidence is first used to generate objective perceptual 

decisions, and subsequently undergoes further processing in order to make subjective judgments 

(Cleermans et al., 2007; Lau, 2008a; Fleming et al., 2010). On such an account, the evidence might  
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Figure 1-1. Schematic diagram for the three categories of models. (Left) According to a Single Channel 

model, the same process gives rise to both objective judgments (e.g. perceptual decisions about the 

identity of a stimulus) and subjective judgments (e.g. confidence ratings or visibility ratings). The model 

can still support some independence between task performance and subjective reports by supposing 

that the sensory evidence is a continuous variable that can be evaluated by setting various decision 

criteria (Figure 1-3; Appendix A; Green & Swets, 1966; Macmillan and Creelman, 2005). (Middle) An 

alternative model is that objective and subjective judgments are driven by two parallel processes, each 

influenced by independent sources of noise. Differential contribution of the two channels to objective 

and subjective judgments can lead to dissociations between the two kinds of responses. Note that the 

model can allow that each channel can contribute both kinds of judgment to some extent. In particular, 

one would expect that the channel which primarily influences one’s subjective ratings would also heavily 

influence one’s objective task response. For instance, when an observer subjectively reports clearly and 

vividly seeing squares, this should strongly correlate with objective judgments that the stimuli on the 

current trial are squares. (Right) Another alternative is that objective and subjective judgments are 

driven by different processes that are organized in a serial hierarchy, such that an early stage of 

processing generates the objective judgment and a later stage of processing generates the subjective 

judgment, as if the latter evaluates the quality of the former. Note that on this model, the second stage 

inherits the noise of the first stage, and thus the two are not entirely independent. However, the 

influence is one sided; the “subjective” stage does not influence the “objective” stage of processing.  
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become degraded by the time it is processed by subjective judgment mechanisms, due to a decaying 

signal and/or the accrual of noise (Pleskac & Busemeyer, 2010).  

A third possibility is a Dual Channel model (Figure 1-1 middle panel) in which subjective and 

objective judgments are based on separate cognitive or neurophysiological processes (Jacoby, 1991; Jolij 

& Lamme, 2005; Del Cul et al., 2009; Morewedge & Kahneman, 2010). For instance, perhaps there are 

two independent visual processing routes, one of which supports conscious vision and another whose 

visual processing is entirely unconscious. On such an account, subjective and objective judgments access 

different sources of information (and noise). 

In this chapter, we capitalize on a psychophysical paradigm that dissociates changes in objective 

perceptual decision performance from changes in subjective visibility ratings (Lau & Passingham, 2006) 

in order to evaluate SDT implementations of the model categories described above.  

 

Methods 

In the metacontrast masking procedure, stimulus identification performance varies with 

stimulus-mask onset asynchrony (SOA) in a U-shaped fashion (Figure 1-2). Visibility judgments follow a 

similar U-shape that is asymmetrical with respect to the objective performance curve, thus yielding 

similar levels of performance associated with different levels of subjective stimulus visibility. We 

compared the ability of various implementations of the Single Channel, Dual Channel, and Hierarchical 

models to capture the relative dissociation between subjective and objective judgments found in this 

data set. 

 

Participants 

 59 students from the Columbia University undergraduate population participated in the 

experiment and were paid $10 for approximately one hour of participation. All participants were naïve 
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regarding the purpose of the experiment, had normal or corrected-to-normal vision, and signed an 

informed-consent statement. The research was approved by the Columbia University’s Committee for 

the Protection of Human Subjects.  

 

Experimental procedure 

Subjects were seated in a dim room, 60 cm away from the computer monitor. Stimuli were 

generated using Psychophysics Toolbox (Brainard, 1997; Pelli, 1997) in MATLAB® (MathWorks, Natick, 

MA) and were shown on an iMac monitor (19 inch monitor size, 1680 x 1050 pixel resolution, 60 Hz 

refresh rate). 

On each trial, a ring of eight shapes with a 4° radius was presented around a central fixation 

point (Figure 1-2). (A ring of stimuli was used with potential extension to fMRI in mind; to facilitate 

efficient retinotopic delineation of visual areas it is useful to present stimuli outside of the fovea. 

However, behavioral results similar to those reported here were also found with foveal presentation of 

single stimuli in Lau & Passingham, 2006.) Within each trial, each of the eight shapes was identical. The 

shapes could be either squares or diamonds with sides measuring 1.5° of visual angle. The shapes were 

presented for 33 ms on a gray background. Shapes were darker than the background, with the precise 

darkness determined separately for each subject by a thresholding procedure. A set of metacontrast 

masks designed to trace the outline of the square and diamond stimuli without physically overlapping 

with them (line width .025°) was subsequently displayed for 50 ms. Stimulus onset asynchrony (SOA) 

between stimulus and mask was determined randomly on each trial and counterbalanced among 8 

possible durations, ranging from 0 ms to 116.7 ms in increments of 16.7 ms. 

Following each stimulus presentation, subjects provided two responses. First, they made a 

forced choice objective judgment about the shapes of the stimuli (squares or diamonds). Next, they 

rated how subjectively visible the shape of the stimulus appeared using a 4 point scale. Specifically,  
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Figure 1-2. Experimental design and basic behavioral results. (Left) We used a paradigm based on 

metacontrast masking, similar to the one used in a previous study (Lau and Passingham, 2006). In every 

trial the subject was presented with a set of squares or diamonds (i.e. tilted squares). After a varying 

stimulus onset asynchrony (SOA; the temporal gap between the two sets of stimuli), a mask was 

presented. The mask did not overlap spatially with the targets, but nevertheless impaired their visibility. 

In each trial subjects first decided whether the targets were squares or diamonds, and then gave 

subjective visibility ratings (4 levels) to indicate how clearly they saw the identity of the targets. (Right) 

Replicating previous findings (Lau and Passingham, 2006), this masking procedure gives rise to a U-

shaped masking function when stimulus identification performance is plotted against SOA. The average 

level of subjective visibility ratings across SOAs, however, did not take the same shape, and reflected a 

bias towards giving lower ratings at lower SOAs. Shown here were data from a selected group subjects 

(n=20) who particularly demonstrated this pattern of dissociation in a relatively pronounced fashion.  

 

 

subjects were asked to rate how clearly they had perceived the stimuli. Subjects were encouraged to use 

the entire rating scale while still accurately characterizing what they had visually experienced. Stimulus 

presentation for the next trial commenced 1050 ms after subjects entered the visibility rating. However, 
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if subjects failed to enter both the stimulus identity judgment and the visibility rating within 5 seconds of 

stimulus offset, the current trial was aborted and the next trial commenced automatically. 

 After receiving task instructions, subjects completed two blocks of 28 practice trials. Following 

practice, subjects completed a block of 120 trials in order to determine the Weber contrast of the 

stimuli at which threshold performance across all SOAs could be obtained. Because performance in this 

task is close to maximal with an SOA of 0 ms (Lau & Passingham, 2006), all trials in the thresholding 

procedure had the minimum stimulus-mask SOA of 0 ms. We reasoned that if near maximal 

performance at 0 ms could be controlled to be at threshold levels, performance at other SOA values 

would also be near threshold. Stimuli were initially set to a Weber contrast of -.15 and were 

subsequently adjusted online using a QUEST procedure (Watson & Pelli, 1983). Three separate QUEST 

tracks were recorded (40 trials each). Each QUEST track provided an independent estimate of the 

stimulus contrast needed to produce threshold performance (84% correct) at the minimum SOA. Trials 

for each track were interleaved randomly. Among the 3 resulting QUEST estimates, the median stimulus 

contrast was selected as the contrast to be used throughout the remainder of the experiment. 

In the main experimental block, subjects completed 800 trials (100 trials for each of the 8 SOAs). 

SOAs were distributed across trials randomly. Every 100 trials, subjects received a self-terminated break 

lasting up to 60 seconds. 

 

Subject selection 

 In order to maximize the suitability of the data for model fitting, we omitted from analysis all 

subjects who performed below chance levels at any of the SOAs (n=16), any who performed perfectly at 

any of the SOAs (n=3), and any whose mean visibility rating was lower than 5% of the maximum possible 

value at any SOA (n=1). Most subjects were excluded due to having at least one SOA with below chance 

levels of performance, which is perhaps not surprising given that we performed the thresholding 
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procedure on only the 0 ms SOA and subjects had many chances at each of the other SOAs to perform 

considerably worse, potentially recording average performance below chance. Nonetheless, we kept 

strict inclusion criteria in order to optimize model fitting. 

 For the remaining 39 subjects, we quantified the extent to which each subject exhibited a 

dissociation between objective task performance and subjective visibility ratings across SOA as follows. 

For each subject, we ran a least-squares regression between d’ and mean visibility rating at all but one 

SOA. Empirically observed visibility at the left-out SOA was then subtracted from the “expected” 

visibility predicted by the regression on the other SOAs. We defined the absolute value of this difference 

between observed and expected visibility for the left-out SOA as the “dissociation score” for that SOA. 

We calculated the dissociation score for each SOA and defined each subject’s “dissociation index” as the 

maximum dissociation score across all SOA from that subject’s data. Each subject’s dissociation index 

provides a measure of the extent to which that subject exhibited a dissociation between task 

performance and visibility ratings.  

We performed a median split on the dissociation index, selecting the 20 subjects who exhibited 

the highest such value for model fitting. For these 20 subjects, the mean dissociation index was 0.57 and 

was greater than zero, p < .001. For all 39 subjects, the mean dissociation index was slightly weaker but 

still evident at 0.39 (p < .001). Without excluding any subjects at all (n = 59), a similar mean value of 0.41 

obtains (p < .001).  

 Note that these procedures were performed in order to improve the quality of the data analysis. 

Omitting subjects with noisy data reduces the noisiness of model fits. Selecting the subjects who show 

the strongest dissociations between task performance and stimulus visibility provides a more stringent 

test for the models and thus provides a sharper way to compare their efficacy in characterizing the data. 

All subject selection procedures were performed a priori, prior to any model fitting analysis. 
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 One might worry that selecting only those subjects with the highest dissociation index creates a 

skewed or biased sample. However, for data sets that do not exhibit a dissociation, the traditional Single 

Channel SDT model is sufficient to characterize the data, and the Dual Channel and Hierarchical models 

can mimic Single Channel model behavior by appropriate adjustment of the model parameters. Thus, 

data that do not exhibit the dissociation are not informative with respect to the model selection. The 

logic of this approach is not to claim that one model or another is the “correct” one in the broadest 

sense, but rather to answer the following question: in those subjects who exhibit a dissociation between 

objective task performance and subjective ratings of perceptual clarity, what kind of processing 

structure best accounts for this dissociation? If one model structure clearly outperforms the other, this 

suggests that we must posit that the supported model structure describes some aspect of human 

perception, although it leaves open the possibility that other structures may be necessary to account for 

other kinds of perceptual phenomena.  

 

Model assumptions 

In each model, we made standard signal detection theory assumptions, as summarized in Figure 

1-3: (1) the two stimuli used in the experiment gave rise to internal signals normally distributed along 

some decision axis; (2) perceptual decisions were made by comparing the signal on some decision axis 

to a criterion; and (3) visibility judgments were made by comparing the signal on some decision axis to 

multiple criteria, corresponding to the multiple visibility ratings available to subjects in this experiment. 

 In order to further constrain model fitting, we made one further assumption: (4) criteria for 

perceptual decisions and visibility ratings were set in the same way for each stimulus-mask SOA. That is, 

we assumed that subjects did not use different standards for deciding a stimulus's identity or visibility 

across the different SOAs. This assumption is justified by previous psychophysical findings. Gorea and 

Sagi (2000) found that when stimuli that are easy and difficult to perceive are interleaved randomly,  
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Figure 1-3. The standard signal detection theory model. All models under consideration built upon the 

foundation of the standard signal detection theory model. This model assumes that stimulus categories 

S1 and S2 each generate normal distributions of perceptual evidence along an internal decision axis. The 

observer segments the decision axis into discrete regions using a type 1 criterion (for making a stimulus 

classification response) and a set of type 2 criteria (for rating subjective levels of decision confidence or 

percept visibility). The stimulus classification and subjective rating reported by the observer on any 

given trial are determined by which region of the decision axis contains the perceptual evidence 

observed on that trial, as illustrated in the figure. The probability with which the observer produces a 

given (response, visibility) pair upon being shown stimulus SN is equal to the area under the curve 

f(x|SN) in the region of the decision axis corresponding to that response pair. For a more in-depth 

treatment, see Appendix A. 

 

 

subjects do not judge stimulus classes with separate criteria, but rather use a single, non-optimal 

criterion for both. In our experiment, task difficulty varied across SOA, but SOAs were presented 

randomly, and thus task difficulty changed randomly across trials as it did in Gorea and Sagi (2000). If 

subjects cannot maintain separate sets of criteria for only two classes of randomly interleaved stimuli, it 
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is highly unlikely that they could maintain seven distinct sets of criteria corresponding to the seven SOAs 

used in the current experiment. 

           Furthermore, in a study on the dynamics of criterion shifting, Brown and Steyvers (2005) found 

that criterion shifting is a slow process. In their experiment, task difficulty changed every 40 trials, 

requiring subjects to shift their decision criteria in order to maintain optimal task performance. 

However, even with this predictable block design, and even when subjects were forewarned that task  

difficulty would change during the experiment, subjects required about 8 - 22 trials (each trial lasting 

about 3.2 sec) to change their decision criteria. In the current experiment, task difficultly changed 

randomly and rapidly from trial to trial. The results of Brown and Steyvers suggest that this rapid and 

random shift in stimulus difficulty would far outstrip subjects' ability to slowly adjust their decision 

criteria. Taken together, these experimental results suggest that it is unlikely that subjects could have 

used different sets of decision criteria for each SOA, thus justifying our fourth modeling assumption. 

 

Model descriptions 

 All models conformed to the broad specifications listed above, but differed from each other in 

overall model structure (Single Channel, Dual Channel, or Hierarchical). Because there are many ways 

each model structure can be implemented, we compared multiple kinds of implementations for each 

model type. In total we fit 4 Single Channel models, 10 Dual Channel models, and 12 Hierarchical 

models. In the following we give brief descriptions of each model tested. The names of the models in 

this section correspond to the model names used in Table 1-1. 
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Single Channel models 

Single Channel 

parameters: μdiff (8), c (7) 

The simplest model we tested was this basic SDT model. We suppose that the distance between 

the evidence distributions, μdiff, changes for each of the 8 stimulus-mask SOAs. The observer must set 7 

decision criteria in order to partition the decision axis into 8 regions, which correspond to the 8 kinds of 

responses the observer can give on a given trial (2 stimulus classifications * 4 levels of subjective 

visibility; Figure 1-3; Appendix A). For all models, we suppose that the decision criteria are constant 

across SOA. 

 

Single Channel CV (“changing variance”) 

parameters: μdiff (8), σ (8), c (7) 

This is a modification of the Single Channel model which supposes that SOA affects not only the 

absolute distance between the stimulus distributions μ, but also their common standard deviation σ. 

 

Other CV models 

For every model listed below, we analyzed versions which did and did not allow the standard 

deviation of the stimulus distributions σ to vary across SOA. Every model following the naming format 

“Model X CV” is identical to the simpler model “Model X” with the exception that it has 8 added 

parameters in order to allow σ to vary with SOA.  

 

Decision Noise 

parameters: μdiff (8), σc (8), c (7) 
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This model supposes that the type 2 criteria (the six decision criteria used to evaluate subjective 

visibility) are not constant from trial to trial, but in fact are drawn from a normal distribution with some 

standard deviation σc, where σc can vary with SOA. This model is based on Mueller and Weidemann 

(2008).  

 

Dual Channel models 

Dual channel models suppose that two separate information processing streams accruing noise 

from independent sources contribute to the perceptual decision making process. In SDT terms, these 

models posit the existence of two decision axes, one of which corresponds to conscious processing and 

the other, unconscious processing. The versions of these models considered here differ on how they 

suppose information from the conscious and unconscious processing channels are combined. 

 

Independent Dual Channel 

parameters: μdiff C (8), μdiff U (8), cC (6), cU (1) 

The distance between stimulus distributions is modulated by SOA for both the conscious (μC) 

and unconscious (μU) decision axes. The conscious decision axis is only used to categorize stimuli that 

have a visibility of at least 2 or higher, i.e. it is not used to classify stimuli with visibility = 1. For this 

reason, only 6 decision criteria cC are set on the conscious decision axis. For stimuli whose visibility is 

only rated as 1, the stimulus classification is made by doing signal detection on the unconscious decision 

axis using the criterion cU. This model is based on Del Cul et al. (2009). (See Appendix B for an explicit 

comparison between our Independent Dual Channel model and the model used in Del Cul et al.) 

 

Modulated Dual Channel N (N = 1, 2, 3) 

parameters: μdiff C (8), μdiff U (8), cC (6), cU (1) 
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These models are identical to the Independent Dual Channel model, with one exception. 

Modulated Dual Channel N has a provision for altering subjective reports of visibility made from the 

conscious decision axis when its stimulus classification conflicts with the stimulus classification provided 

by the unconscious channel. Specifically, if visibility > 1 and visibility ≤ N+1, and if the stimulus 

classification of the conscious and unconscious channels disagree, then the classification from the 

conscious channel is used but the report of subjective visibility is reduced to 1.  

 

Weighted Dual Channel 

parameters: μdiff C (8), μdiff U (8), cC (6), cTOT (1) 

Rather than treat information from the conscious and unconscious channels separately, the 

observer combines them into a new decision axis by computing a weighted average. The weight given to 

evidence arising from the conscious channel is wC = d’C / (d’C + d’U), where d’ = μdiff / σ and σ = 1 for the 

non-CV models. This formula can give results outside of [0, 1] if negative d’ values are entered. As a 

correction for this possibility, if the computation yields wC < 0 then wC is set to 0, and if it yields wC > 1 

then wC is set to 1.  

If visibility = 1, the stimulus is classified using the combined channel. If visibility > 1 and the 

conscious channel and combined channel agree on stimulus classification, then stimulus classification is 

given with the level of visibility dictated by the conscious channel. But if visibility > 1 and the conscious 

channel and combined channel disagree on stimulus classification, then the classification from the 

conscious channel is used but the report of subjective visibility is reduced to 1.  

(Although it would be optimal to always use the stimulus classification provided by the 

combined channel, implementing this in the model would allow the nonsensical result that reports of 

stimulus classification could conflict with reports of subjective visibility, e.g. “the stimuli were squares, 

and I very clearly saw that the stimuli were diamonds.”) 
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Hierarchical models 

Hierarchical models suppose that stimulus classification occurs according to Single Channel SDT 

principles, but that the perceptual evidence used to do stimulus classification changes before it is used 

to report subjective visibility, becoming weaker and / or noisier.  

 

Decay Only 

parameters: μdiff (8), k (8), c (7) 

The perceptual evidence used for performing stimulus classification is multiplied by a factor of k 

before it is used for reporting subjective visibility, where 0 ≤ k ≤ 1. k varies across SOA. 

 

Noise Only 

parameters: μdiff (8), σh (8), c (7) 

Mechanisms for reporting subjective visibility access a noisier version of the perceptual evidence 

used for performing the stimulus classification task. The extra noise is sampled from a normal 

distribution with mean 0 and standard deviation σh. σh varies across SOA. 

 

Noise + Decay 

parameters: μdiff (8), σh (8), k (8), c (7) 

A combination of the Decay Only and Noise Only models. 

 

Noise + Constant Decay 

parameters: μdiff (8),  σh (8), k (1), c (7) 

Same as Noise + Decay, but the signal decay parameter k is constrained to be constant across 

SOA. 
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Constant Noise + Decay 

parameters: μdiff (8),  σh (1), k (8), c (7) 

Same as Noise + Decay, but the hierarchical noise parameter σh is constrained to be constant 

across SOA. 

 

Constant Noise + Constant Decay 

parameters: μdiff (8),  σh (1), k (1), c (7) 

Same as Noise + Decay, but the hierarchical noise parameter σh and signal decay parameter k 

are constrained to be constant across SOA. 

 

Model fitting 

 Past efforts to fit signal detection theory parameters to rating data have used the following 

approach (Ogilvie & Creelman, 1968; Dorfman & Alf, 1969). First, we make two simplifying assumptions: 

(1) responses on each trial are independent from one another; (2) the probability of each response type 

associated with each stimulus class is constant across trials. When these assumptions are met, the 

likelihood of a set of signal detection model parameters given the observed data can be calculated using 

the multinomial model. Formally, 

 

 (  |     )  ∏      (             |       )     (             |       )

     
 

 

where “resp” indicates stimulus classification response (square or diamond), “vis” indicates 

subjective rating of stimulus clarity (1 – 4), and “stim” indicates objective stimulus identity (square or 

diamond). r, v, and s, are indeces ranging over all possible values for the response, visibility, and 

stimulus variables, respectively.      (             |      ) denotes the probability with 
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which the subject produces the response “r” and visibility rating “v” after being presented with the 

stimulus “s”. This probability is determined by the SDT model specified with parameters θ. The set of 

parameters θ for each SDT model under consideration is listed above in the section titled “Model 

descriptions.”      (             |      ) is a count of how many times a subject actually 

produced a response “r” and visibility rating “v” for the stimulus “s”. 

The set of parameters θ that maximizes the probability of the data is referred to as the 

maximum likelihood estimate of the parameters θ, given the observed data. The signal detection models 

under consideration in this study differ in the distributions of      (             |       ) 

values they can produce, which in turn determines the extent to which the different models can fit the 

data well and achieve a high maximum likelihood in the multinomial model.  

Note that the models were not fit to summary statistics of performance such as percent correct 

or average visibility. Rather, models were fit to the full distribution of probabilities of each response and 

visibility rating contingent on each stimulus type. From this full behavioral profile of stimulus-contingent 

response probabilities, we can derive various summary statistics such as percent correct and average 

visibility (Figure 1-4), as well as type 2 performance (Figure 1-5). Thus, the behavioral data shown in 

these figures are not the data upon which the models were explicitly fit, but rather are different ways of 

highlighting aspects of that data. 

We fit all models under consideration to the observed data by finding the maximum-likelihood 

parameter values θ. Maximum likelihood fits were found using a simulated annealing procedure 

(Kirkpatrick, Gelatt, & Vecchi, 1983). Model fitting was conducted separately for each subject’s data. 

 

Formal model comparison 

 The maximum likelihood associated with each model characterizes how well that model 

captures patterns in the empirical data. However, comparing models directly in terms of likelihood can 
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be misleading; greater model complexity can allow for tighter fits to the data but can also lead to 

undesirable levels of overfitting, i.e. the erroneous modeling of random variation in the data. The Akaike 

Information Criterion (AIC), motivated by considerations from information theory, provides a means for 

comparing models on the basis of their maximum likelihood fits to the data while correcting for model 

complexity (Burnham & Anderson, 2002). We used AICc, a variant of AIC which corrects for finite sample 

sizes: 

 

           (  |     )    (
 

(     )
) 

 

where K is the number of parameters in the model and n is the number of observations being fit. In this 

data set, the number of observations is the number of response probabilities being estimated, so n = 2 

(stimulus type) * 2 (response type) * 4 (visibility rating) * 8 (SOA) = 128. Lower values of AICc are 

desirable because they indicate a higher model likelihood and/or a lower model complexity (lower 

number of parameters).  

 

We use the likelihood of each model, given the data, as a basis for model comparison: 

 

 (       |     )   
 

 
 
(     

        
)
 

 

AICci is the AICc for model i and AICcmin is the lowest AICc exhibited by all models under consideration. 

These model likelihoods can be scaled to sum to 1, and the resulting "Akaike weights" reveal the relative 

weight of evidence for each model as evaluated by its fit to the data, correcting for model complexity.  

 



38 

 

 

 

   
 

 
 
 
(     

        
)

∑  
 

 
 
(             

) 
   

 

  

The foregoing analysis can be replicated using the Baysian Information Criterion (BIC) in place of 

AICc, where 

 

          (  |     )          

 

In this case, calculating the analogue of the Akaike weights gives an estimate of the posterior 

probabilities of each model, assuming uniform prior probabilities (Burnham & Anderson, 2002): 
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Results 

Model fitting results 

Complete model comparison results are listed in Table 1-1. To simplify analysis, we focus on 

comparing the best-performing models in each model class. These are the models titled “Single Channel 

CV,” “Weighted Dual Channel,” and “Constant Noise + Decay.” Details of model specifications can be 

found in Materials & Methods under the heading “Model descriptions.”  

Figure 1-4 displays the fits of these models to stimulus classification accuracy and mean visibility 

ratings at each SOA. The same data are re-plotted in the bottom panel to show mean visibility as a 

function of accuracy, so as to emphasize the strong dissociation between the two found in the  
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Table 1-1. Complete model comparison results. 
 
 

Class Model name log L # param Akaike 
weight 

Bayesian 
posterior 
probability 

Single channel Single Channel -1243.4525 15 0.013 0.1025 

Single channel Single Channel CV -1212.9751 23 0.1572 0.1517 

Single channel Decision Noise -1329.3143 23 0 0 

Single channel Decision Noise CV -1334.7274 31 0 0 

Dual channel Independent Dual 
Channel 

-1233.6579 23 0 0.0001 

Dual channel Independent Dual 
Channel CV 

-1204.2176 31 0.0001 0 

Dual channel Modulated Dual 
Channel 1 

-1242.7603 23 0.0005 0.0001 

Dual channel Modulated Dual 
Channel 1 CV 

-1212.6913 31 0 0 

Dual channel Modulated Dual 
Channel 2 

-1272.0836 23 0 0 

Dual channel Modulated Dual 
Channel 2 CV 

-1244.7851 31 0 0 

Dual channel Modulated Dual 
Channel 3 

-1299.3272 23 0 0 

Dual channel Modulated Dual 
Channel 3 CV 

-1271.9443 31 0 0 

Dual channel Weighted Dual 
Channel 

-1223.7024 23 0.1391 0.1226 

Dual channel Weighted Dual 
Channel CV 

-1201.0265 31 0.083 0.001 

Hierarchical Decay Only -1215.7354 23 0.0119 0.0135 

Hierarchical Decay Only CV -1209.3047 31 0 0 

Hierarchical Noise Only -1222.3827 23 0.0002 0.0028 
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Hierarchical Noise Only CV -1199.8421 31 0.0763 0.0316 

Hierarchical Noise + Decay -1199.6372 31 0.0525 0.0443 

Hierarchical Noise + Decay CV -1196.0596 39 0 0 

Hierarchical Noise + Constant 
Decay 

-1221.6126 24 0.0001 0.0001 

Hierarchical Noise + Constant 
Decay CV 

-1198.2169 32 0.0086 0.0001 

Hierarchical Constant Noise + 
Decay 

-1206.93 24 0.3012 0.3627 

Hierarchical Constant Noise + 
Decay CV 

-1201.4194 32 0.0006 0 

Hierarchical Constant Noise + 
Constant Decay 

-1233.0909 17 0.0507 0.0654 

Hierarchical Constant Noise + 
Constant Decay CV 

-1204.0892 25 0.1052 0.1014 

 
“Class” denotes model category (see Figure 1-1). Descriptions of each model listed under “Model name” 

are available in Materials and Methods, Model descriptions. “log L” is the quantitative measure of 

goodness of fit for each model, the log of the likelihood of the observed empirical data given the model 

structure and optimal parameter values. Larger values indicate better fit. “# param” lists the number of 

parameters for each model, a measure of model complexity. “Akaike weight” and “Bayesian posterior 

probability” are measures of overall model quality, taking into account goodness of fit and model 

complexity. Larger values indicate better models, and the data is scaled such that both measures sum to 

1. For more details on these measures see Materials and Methods, Formal model comparison. The best 

models in each model class are highlighted in boldface. 
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Figure 1-4. Model fits for task performance and reported visibility. Three categories of models (Single 

Channel, Dual Channel, and Hierarchical) were fitted to the behavioral data from the metacontrast 

masking paradigm. We tested multiple versions of each category of model (see Materials and Methods 

for details). Shown here are the best-fitting models from each category, selected according to formal 

model comparison techniques (Figure 1-6). The Hierarchical model performed best at capturing the 

dissociation between task performance and reported levels of stimulus visibility. This dissociation is 

made readily apparent by plotting visibility reports against task performance, as depicted in the bottom 

row of figures; the relationship is not monotonic, but exhibits a sharp spike at around 80-85% correct, 

reflecting that short SOAs had lower visibility than long SOAs in spite of having similar task performance.  
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behavioral data. Visual inspection suggests that the best Single Channel model slightly but systematically 

overestimates visibility as a function of accuracy, whereas the best Dual Channel model only produces a 

relatively small dissociation between accuracy and visibility. By contrast, the Hierarchical model provides 

a close fit to the data.  

Another way of probing the relationship between objective task performance and subjective 

visibility rating is to analyze the behavior of subjective ratings conditioned on accuracy, what has been 

called “type 2” analysis to distinguish it from the “type 1” analysis of basic stimulus identification 

performance (Clarke et al., 1959; Galvin et al., 2003). In the top panel of Figure 1-5 we show model fits 

to type 2 hit rate (HR; p(high visibility | correct)) and type 2 false alarm rate (FAR; p(high visibility | 

incorrect)), where “high visibility” is defined for each subject as a visibility rating greater than that  

subject’s median visibility rating across all trials. In the bottom panel we show area under the type 2 

ROC curve (estimated using Ag; Pollack & Hsieh, 1969), a measure of how well subjective ratings 

discriminate between correct and incorrect trials. In general, the basic signal detection theory model 

predicts that as stimulus classification performance improves, type 2 HR and type 2 FAR should diverge, 

and area under the type 2 ROC curve should increase (Galvin et al., 2003; Appendix A). However, in this 

data set type 2 performance is generally lower at longer SOAs than at shorter SOAs, even though task 

performance is similar at these SOAs. This pattern is difficult for both the Single and Dual Channel 

models to reconcile; as depicted in Figure 1-5, both overestimate type 2 performance, particularly at 

long SOAs. The Hierarchical model gives a reasonably good overall fit to the type 2 data, although even 

this fit did not produce a difference between type 2 performance at short and long SOAs as pronounced 

as in the data.  

The results reported in Figure 1-5 are easy to intuit. For the Single Channel model, area under 

the type 2 ROC curve is already largely determined by specifying type 1 task performance, i.e. the 

perceptual evidence distributions and the type 1 criterion (Galvin et al., 2003; Appendix A). The strong  
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Figure 1-5. Model fits for type 2 data. In addition to the distinctive dissociation between task 

performance and visibility (Figure 1-4), the behavioral data also included a set of type 2 data that 

provided a challenge for model fitting. By “type 2 data” we refer to the probability of giving different 

levels of visibility ratings conditional upon task performance. (Top panel) Type 2 hit rate (HR; probability 

of high visibility for correct responses) and type 2 false alarm rate (FAR; probability of high visibility for 

incorrect responses) as a function of SOA. (Bottom panel) Area under the type 2 ROC curve as a function 

of SOA. In general, signal detection theory models predict that as task performance increases, type 2 hit 

rate and type 2 false alarm rate should diverge and area under the type 2 ROC curve should increase. In 

this data set, type 2 performance at long SOAs was worse than at short SOAs even though task 

performance was similar, a pattern difficult to reconcile for standard signal detection theory and its Dual 

Channel modification, but more closely approximated by the Hierarchical model. 
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relationship between stimulus classification performance and type 2 performance is essentially due to 

the fact that they are based on the same underlying information; there is no additional process by 

means of which the quality of information available to type 1 and type 2 mechanisms could differ. Thus, 

this fundamental assumption of the Single Channel models makes them somewhat inflexible in 

capturing the relationship between type 1 and type 2 data, particularly like those in the current 

experiment where area under the type 2 ROC curve exhibited a dissociation from task accuracy across 

SOA (compare Figure 1-4 and Figure 1-5). In principle, Single Channel models can reduce type 2 

performance without affecting classification accuracy by supposing that type 2 criterion setting is a noisy 

process, such that the placement of the criteria varies randomly from trial to trial (Mueller & 

Weidemann, 2008), but this class of models gave poor overall fits to the current data set (Table 1-1). 

One may expect the Dual Channel model to fare better because it postulates two different 

processes. However, this was not the case. The reason is that the “conscious” channel essentially acts 

like a Single Channel model, supposing a tight relationship between task performance and subjective 

visibility, and the “unconscious” channel is limited in the extent to which it can interfere with fully 

“conscious” processing. (For instance, one would not expect an observer to make a subjective report of 

having a distinct visual awareness of seeing squares and yet simultaneously claim that the stimuli 

presented on the screen were diamonds.)  It is possible that Dual Channel models featuring more 

extensive and complicated interactions between the two channels could fare better, but such models 

would potentially constitute a departure from the fundamental dichotomy between “conscious” and 

“unconscious” processing streams that arguably is the main conceptual motivation for proposing the 

Dual Channel class of models. As it stands, the best Dual Channel model we tested already posits that in 

cases of conflict in the stimulus classification response, the “unconscious” channel can modulate 

visibility ratings made by the “conscious” channel; simpler Dual Channel models that better respected 

the distinction between “conscious” and “unconscious” processing performed worse (Table 1-1). 
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By contrast, the dissociation between type 1 and type 2 performance is more naturally captured 

by Hierarchical models, as they stipulate a less restrictive relationship between the quality of 

information available for type 1 and type 2 decision making. Changing the degree to which the evidence 

becomes degraded at the second stage of processing provides a means of changing the patterns of 

subjective rating without affecting basic task performance, which is determined by the first stage of 

processing. 

 As models become more complex, in general they become better able to capture real patterns 

in data, but also become more prone to erroneously capture noise in the data (overfitting). Thus, one 

approach to conducting formal model analysis involves using metrics like the Akaike Information 

Criterion (AIC) or Bayesian Information Criterion (BIC), which reward models for closeness of fit to 

observed data while punishing them for complexity (number of parameters). In Figure 1-6 we present 

model comparison results based on a finite-sample correction of AIC, AICc (Burnham & Anderson, 2002). 

Overall, the hierarchical category of models collectively outperformed the Single Channel and Dual 

Channel models (top panel), and this pattern held up when comparing only the best models in each 

category (bottom panel). Essentially identical results are found using BIC (Table 1-1). Thus, the superior 

goodness of fit for the Hierarchical model evident in Figures 4 and 5 cannot be written off to overfitting. 

In fact, the three best models in each model category, though visibly differing in quality of data fitting, 

had essentially the same number of parameters (Single Channel and Dual Channel, 23; Hierarchical, 24). 

 

Parameter values for the model fits 

We can derive further insight into the way the best models in each category captured the data 

by investigating their parameter values (Figure 1-7).  

The fit for the Single Channel model indicates a U-shaped curve for σ, the standard deviation of 

the perceptual evidence distributions, such that σ takes on higher values at longer SOAs. When criteria  
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Figure 1-6. Model selection results. Formal model comparison was conducted using a finite sample size 

correction of the Akaike Information Criterion (AICc), which rewards models for closely fitting observed 

data while punishing models for the degree of complexity (i.e. number of free parameters; for list of free 

parameters for all models please see Materials and Methods). For ease of interpretation we display a 

transformation of AICc values into Akaike weights, which quantify the information theoretic evidence in 

favor of each model such that the weights sum to 1 (Burnham and Anderson, 2002). (Top panel) Model 

selection on all 26 models. The best hierarchical model had an average Akaike weight roughly twice as 

large as those of the best single channel and dual channel models. Similarly, the best model for each 

subject was roughly 2 – 3 times as likely to belong to the hierarchical class than to the other two model 

classes. The average Akaike weight summed across all hierarchical models was roughly 3 – 4 times as 

great as the Akaike weight sums for the other two classes. (Bottom panel) Similar results were found 

when restricting the analysis to the best models in each model class. Model comparison results were 

nearly identical when using the Bayesian information criterion to estimate the posterior probability of 

each model (Table 1-1). 
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Figure 1-7. Parameter values from model fits. For descriptions of model structure and parameters, see 

Methods. 

 

 

are held constant across SOA (a stipulation for all models, see Materials and Methods), larger values of σ 

entail higher levels of mean visibility rating (see e.g. Figure 1-3), and yet the model can predict similar  

levels of task performance at short and long SOAs since task accuracy depends on d’ = μdiff / σ. In this 

way, provided that the standard deviations of the evidence distributions can vary independently from 

their distance, the Single Channel model can capture the accuracy / visibility dissociation in the 

behavioral data (Figure 1-4). Thus, in order for the Single Channel model to capture this data, it must 

assume that the variance of the internal signal is highest at long SOAs where task performance and 

visibility are maximal. Although such a Poisson-like correlation of signal and noise is not in itself 

implausible, the specific patterns predicted are some cause for doubt. For instance, the model predicts 

that on average, the perceptual signal μdiff  at SOAs 0 ms and 100 ms is roughly equal, and yet the  
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simultaneous presentation of stimulus and mask is less noisy than when their presentation is separated 

by a full 100 ms. It seems more likely that, controlling for the magnitude of the absolute signal, stimulus 

representations should be noisier when the mask is presented simultaneously than when the mask is 

presented 100 ms later. 

The Dual Channel model predicts that perceptual sensitivity is greater in the “unconscious” 

channel than in the “conscious” channel for several short SOAs. Because this model resets visibility 

ratings to 1 when the two channels disagree on stimulus classification, setting the sensitivity of the 

“unconscious” channel higher at the short SOAs has the effect of increasing the frequency of 

disagreements between the two channels, thus reducing visibility at those SOAs without having a drastic 

effect on task performance. This allows visibility to be lower at shorter SOAs than at longer ones even 

though task performance at those SOAs is similar. However, the model only manages to produce a 

somewhat weak dissociation (Figure 1-4). Furthermore, it seems unlikely that processing in an 

unconscious channel could be so robustly high and consistently superior than conscious processing 

across several SOAs. 

The Hierarchical model predicts that perceptual evidence decays in the second stage of 

“subjective” processing more readily at short than at long SOAs, thus leading to lower overall levels of 

visibility at the short SOAs in spite of similar stimulus discrimination sensitivity. By contrast, the model 

supposes that noise at the late processing stage is independent of SOA. This seems plausible if we 

imagine that signal transmission from early to later stages of perceptual processing depends in part on 

the processing that occurs in early sensory areas, whereas the noise intrinsic to later processing stages is 

independent of the noise in earlier stages. 

The structure and parameter values of the Hierarchical model are also consistent with previous 

empirical findings from experiments focusing on the dissociation between objective task performance 

and subjective ratings of visibility. For instance, Lau and Passingham (2006) used a similar metacontrast  
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masking paradigm as in the present study, and in the fMRI scanner they focused on a short and a long 

SOA where task performance was matched, and yet the subjective ratings of visual awareness differed. 

Higher subjective ratings of visibility at the long SOA were associated with higher level of activity in the 

dorsolateral prefrontal cortex. Interestingly, no significant difference in level of fMRI activity was found 

in posterior sensory areas. This is compatible with the Hierarchical model if we assume that the 

prefrontal activity reflects the hierarchical model’s late stage process. Indeed, according to the 

parameter values of the best Hierarchical model (Figure 1-7), reported visibility was higher at the long 

SOAs than it was at the earlier, performance-matched SOAs due to a superior transmission of perceptual 

evidence to the late processing stage (i.e., higher values for the parameter k). This corroborates well 

with the fMRI result.  

 

The two key-press design of the task did not favor the Hierarchical models 

 One might worry that the design of the current experiment is biased in favor of the Hierarchical 

model. We required subjects to report stimulus visibility after they reported stimulus identity, with a 

second key press. Perhaps signal degradation did occur between the “objective” and “subjective” 

decisions, in a fashion predicted by the Hierarchical model, but only because the design forced subjects 

to report visibility after reporting their perceptual decisions. This timing difference between the two key 

presses could trivialize our findings.  

 However, the implicit reasoning behind this argument is that signal degradation could be 

artificially introduced by increasing response time. The longer the subject takes to respond, the more 

degraded a signal presumably becomes. If this deflationary account of the modeling results were true, 

we might expect that the Hierarchical model's estimated values of signal decay and late processing noise 

should correlate with the time separating the stimulus classification key press from the subjective rating 

key press (henceforth, “rating RT”). However, the across-SOA correlation between estimated signal 
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decay and rating RT was not significant for any subject (ps > .15), and the average correlation did not 

differ from zero (Fisher’s r-to-z transform, p = .4; Fisher, 1915).  

Since the parameter for late processing noise was constant across SOA for the best Hierarchical 

model, we cannot compute within-subject correlations of this parameters with rating RT. We did find 

that across subjects, the estimated amount of late noise correlated with average rating RT, r = -.48, p = 

.03. However, this result is in the opposite direction of that proposed by the trivializing critique 

regarding two separate key presses. That is, longer rating RTs were associated with smaller, rather than 

larger, estimates of late-stage processing noise.  

Finally, we note that rating RT was not modulated by SOA (p = .4) and that the average rating RT 

was relatively small (426 ms). This suggests that the time between the first and the second key presses 

was mainly for motor preparation, i.e. subjects probably made both objective and subjective decisions, 

and then pressed two keys to reflect them in quick succession without much “thinking” in between. In 

our subjective experience this is how one would perform the task as well. Taken together, these results 

suggest that the success of the Hierarchical model in fitting the data cannot be trivially attributed to the 

two key press design of the task.  

 

Discussion 

 In order to compare models of how subjective reports of visibility relate to objective perceptual 

processing, we collected data from a metacontrast masking paradigm that has been shown to induce 

dissociations between stimulus classification accuracy and reported levels of visibility across different 

levels of stimulus-mask onset asynchroncy (SOA) (Lau & Passingham, 2006). We reasoned that the 

unusual, nonlinear relationship between accuracy and visibility across SOA (Figure 1-4) would pose a 

challenge to models of perceptual decision making, and thus prove useful for distinguishing amongst 

them. The data contained another dissociation that also proved difficult for the models to capture: 
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visibility ratings were more predictive of task accuracy at short than at long SOAs (Figure 1-5), even 

though stimulus classification accuracy at these SOAs was similar. Overall, the Hierarchical model 

provided the best and most parsimonious fit to the data. The model parameters it used to fit the data 

also seem plausible (Figure 1-7), and overall the model seems compatible with previous empirical 

findings (Lau & Passingham, 2006). 

 Why was the Hierarchical model successful where the Single Channel and Dual Channel models 

were not? The best-performing Hierarchical model (Constant Noise + Decay) was able to accommodate 

the relative dissociation between task performance and visibility ratings by supposing that early-stage 

perceptual processing is better transmitted to late-stage processing at long than at short SOAs. Because 

the early stage governs task performance and the late stage governs subjective reports, this allows for 

long SOAs to have higher subjective visibility than short SOAs in spite of having similar task performance.  

This concept of differential transmission of information from earlier to later stages of processing 

bears some similarity to notions of processing bottlenecks in multi-stage processing hierarchies. For 

instance, Chun and Potter (1995) accounted for the attentional blink with a two-stage model wherein 

the processing of an initial stimulus interferes with the access of subsequent stimuli to late-stage 

processing responsible for mechanisms of conscious access and report. However, the attentional blink 

concerns interrupted access for a subsequent stimulus presented 150 – 400 ms after an initial stimulus, 

whereas here we are concerned with the interrupted processing of an initial stimulus presented ~16 ms 

prior to a mask. Furthermore, whereas the attentional blink involves interruption of objective stimulus 

processing, the effect we are focusing on in the metacontrast masking paradigm concerns suppressed 

subjective processing of a stimulus whose objective processing is otherwise intact.  

 The best-performing Single Channel model (Changing Variance) was able to accommodate this 

pattern to some extent by supposing that perceptual processing becomes more variable at long SOAs, 

thus producing sensory signals that more frequently exceed the observer’s criteria for producing high 
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visibility ratings. However, although this model captured the gist of the performance-visibility 

dissociation, it sometimes produced too-high estimates of visibility ratings or too-low estimates of task 

performance (Figure 1-4, lower left panel).  

 By comparison, none of the Dual Channel models we considered appeared to capture the 

performance-visibility dissociation particularly well. Our SDT implementation of the Independent Dual 

Channel model (which most closely followed the model of Del Cul et al. (2009); see Appendix B) 

essentially acts like a Single Channel model with added flexibility for adjusting task performance at the 

lowest level of subjective visibility. This provides only a relatively limited mechanism for adjusting the 

relationship between task performance and visibility; holding the parameters of the “conscious” channel 

constant, changes in the “unconscious” channel can only influence task performance to the extent that 

subjects report the lowest level of subjective visibility. Thus, this model can accommodate only relatively 

small differences in task performance for conditions with similar mean levels of reported visibility. 

Additionally, because task performance at higher (presumably conscious) visibility levels cannot be 

affected by changing parameters of the “unconscious” channel, this model makes the relatively strong 

prediction that whatever differences in task performance do occur for visibility-matched conditions, 

they should arise purely from differences in task performance for trials with the lowest visibility rating. 

The best-performing Dual Channel model (Weighted Dual Channel) was somewhat more flexible, but 

still did not adequately capture the dissociation (Figure 1-4, bottom center panel).  

 In addition to the performance-visibility dissociation across SOA, we also found that the models 

differed in their ability to capture the degree to which visibility ratings were diagnostic of accuracy on a 

trial to trial basis. Visibility ratings for incorrect responses at short and long SOAs were generally higher 

than the model fits (Figure 1-5 top row), and the ability of visibility ratings to predict accuracy was 

generally lower than the model fits (Figure 1-5 bottom row). The Hierarchical model performed best at 

capturing these data because it posits that the sensory signal accrues additional noise at late processing 
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stages. This reduces the information that such sensory signals carry regarding task performance on the 

trial level, which manifests as lower area under the type 2 ROC curve. By contrast, the Single Channel 

model posits that the same sensory evidence is used to make both the objective response and the 

visibility rating, and thus is considerably less flexible in the relationships it allows between task 

performance and type 2 accuracy (Maniscalco & Lau, 2012; Appendix A). Dual Channel models behaved 

similarly to Single Channel models in this respect, as they primarily differed with respect to processing at 

low levels of visibility. 

 All models we tested were constructed using signal detection theory (SDT) as a basis (Figure 1-3; 

Appendix A; Green & Swets, 1996; Macmillan & Creelman, 2005). In this work, SDT provided an ideal 

basis to compare overall model architectures in a simple but powerful framework. SDT is sufficiently 

powerful to be able to dissociate perceptual sensitivity from response bias—essential for the study of 

perceptual decision making and subjective reports of visibility—while also being sufficiently general as 

to be readily adapted to different model architectures. Using the same SDT framework for all models 

also facilitated direct model comparison by minimizing idiosyncratic computational differences between 

the models. Because our SDT models captured the core computational principles lying behind broadly 

divergent theories of how perceptual decision making and subjective visibility are related, the model 

comparison analysis sheds light on these broad conceptual issues.  

 One limitation to this approach is that the conclusions we have drawn may be somewhat 

specific to the particular SDT implementations we have used. (However, see Appendix B for evidence 

that our SDT implementation of the Independent Dual Channel model behaves similarly to the dual 

channel accumulation model in Del Cul et al. (2009).) Nonetheless, the relative simplicity of the SDT 

models we have chosen, in conjunction with the broad differences in the model classes being compared 

(Figure 1-1), would seem to mitigate such concerns. We have also endeavored to perform an unusually 
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comprehensive analysis that directly compares a wide range of models’ ability to account for the data, 

rather than simply demonstrating that a single model can produce reasonable fits to the data. 

 We also acknowledge that this analysis is driven by the current data set and is thus limited in its 

generalizability. For instance, it is possible that a Dual Channel model may perform better for capturing 

other kinds of empirical phenomena. Future work employing similar formal comparison strategies needs 

to be performed in these cases.  

 

Are the models biologically realistic? 

On the face of it, the models we considered depict a purely feedforward style of information 

processing. What of the fact that anatomically, the most related brain regions are linked by both 

feedforward and feedback connections? For instance, for the Hierarchical model it is perhaps natural to 

think of the first stage as representing processing in the early sensory regions in the brain, and the 

second stage as representing processing in higher regions such as the prefrontal cortex. In this sense, 

the model ignores the presence of top-down modulations from prefrontal cortex to early sensory areas. 

However, formally the model does not necessarily commit to such anatomical identifications. Strictly 

speaking, the model is agnostic as to whether the late stage is mediated by a feedforward or feedback 

process; late stage simply means it is late in the stream of information processing and thereby inherits 

the noise of earlier stages.   

Even on the plausible and intuitive interpretation that in the Hierarchical model the first stage 

reflects early sensory processes and the second stage fronto-parietal processes, the model does not 

deny the existence of feedback connections. Nor does it deny the existence of parallel pathways as 

intuitively depicted by the Dual Channel model. The Hierarchical model suggests that with respect to 

explaining the relationships and potential dissociations of objective stimulus responses and subjective 

visibility ratings, the essential relevant structure of processing is hierarchical. This does not mean that 
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the Hierarchical model explains all facts regarding brain processes or subjective experience. It is for the 

same reasons that the Single Channel model cannot be rejected on the grounds that the brain is clearly 

more complex than a single-stage processor.  

 

Implications for theories of visual awareness 

One currently popular theory suggests that feedback, and specifically feedback from extrastriate 

to primary visual cortex, is essential for visual awareness (Lamme, 2006; Block, 2007). One might take 

the point of view that the feedforward wave of processing from primary visual cortex to extrastriate 

areas represents an early stage of processing, and that feedback represents a second stage of 

processing, such that together they form a hierarchy. 

Another dominant theory of visual awareness is the global workspace theory (Dehaene et al., 

2003; Dehaene et al., 2006), according to which early sensory processing itself does not support 

conscious experience. In order to enter consciousness, the early perceptual signal must propagate into a 

second stage of processing mediated by a global workspace structure located in prefrontal and parietal 

cortices. Considerations like these may give the impression that both theories of visual awareness 

discussed above are compatible with the Hierarchical model.  

However, it is important to emphasize that the present work focuses on the dissociation 

between objective task performance and subjective reports. According to the Hierarchical model, 

manipulation of the second stage of processing changes subjective reports but not task performance. 

But the feedback model and the global workspace model would not make such predictions. In these 

models, the supposed second stage of processing supports both subjective experience as well as 

amplification of the perceptual signal itself, which is essential for objective task performance. Thus, 

according to these theories, if the second stage of processing (feedback to striate cortex, or global 

workspace activity) is disrupted, both objective task performance and subjective reports will be 
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affected. Therefore, these models bear more functional resemblance to the Single Channel models than 

the Hierarchical models. In order for such theories to obtain a reduction in subjectively reported level of 

awareness while keeping task performance constant, one natural solution would be that the perceptual 

signal from a separate, unconscious channel (e.g. a subcortical route) would need to be increased to 

compensate for the signal loss in the “conscious” channel. In other words, a Dual Channel model would 

need to be stipulated. 

Therefore, as far as dissociations between task performance and subjective reports are 

concerned (e.g. when we are specifically trying to explain the kind of performance-matched difference 

in subjective rating and type 2 performance depicted in Figures 1-4 and 1-5), both aforementioned 

theories are more congenial with Single Channel and Dual Channel models than with Hierarchical 

models (Del Cul et al., 2009; Lau, 2011). The present results are thus surprising, or maybe even 

problematic, for these theories. 

 

Viability of the metacontrast masking paradigm for dissociating objective and subjective processing 

 Recent research has called into question the viability of the metacontrast masking paradigm 

used here and previously (Lau & Passingham, 2006) for the purposes of dissociating ratings of awareness 

from objective task performance. These objections are based upon a putative difference in the nature of 

stimulus processing at short and long SOAs, such that a direct comparison between the two is 

problematic. 

Jannati and Di Lollo (2012) argue that the “criterion contents” used to guide behavioral 

responses at short and long SOAs in Lau and Passingham’s stimulus set differ. At short SOAs, the square 

/ diamond target may perceptually ‘fuse’ with the metacontrast mask. In Lau and Passingham’s stimuli, 

square and diamond targets were always presented at the same contrast, and the mask was similar to 

the mask displayed in Figure 1-2, with the exception that the ‘star’ shape of the mask was embedded 
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within a solid-colored circle, rather than being a sparse line drawing as in the current experiment. Thus, 

at short SOAs, the square/diamond target may have perceptually fused with the circular mask, such that 

the salient perceptual feature for distinguishing between squares and diamonds would be the small 

gaps between target and mask, rather than the luminance-defined shape of the target itself (see Jannati 

and Di Lollo’s Figure 1). Thus, the salient perceptual feature used to evaluate the stimulus—the 

“criterion content”—may have differed at short (orientation of target-mask gaps) and long (luminance-

defined target shape) SOAs. To support their interpretation that the performance / awareness 

dissociation occurs due to differing criterion contents at short and long SOAs, Jannati and Di Lollo 

performed a separate metacontrast masking experiment in which they argue that the criterion content 

is the same at short and long SOAs. In this experiment, they failed to find short and long SOA pairs in 

which task performance was the same and reports of awareness significantly differed. If the criterion 

content does in fact differ between short and long SOAs, then a direct comparison between the two is 

problematic. If reports of stimulus visibility qualitatively differ, e.g. in regards to the perceptual feature 

which they evaluate, then direct quantitative comparison between them may not be meaningful. 

However, although Jannati and Di Lollo failed to find performance-matched SOAs that exhibited 

differences in awareness in their revised experiment, there was nonetheless a Measure 

(Performance/Awareness) x SOA interaction, significant at the p < .001 level, due to the fact that the 

awareness curve was lower than the performance curve at short but not long SOAs. Thus, contrary to 

their interpretation of the findings, their results in the revised, single criterion content experiment seem 

to be consistent with the general pattern we have observed here and previously. As a result, their 

interpretation that the dissociation found in Lau and Passingham is due to a criterion content confound, 

such that removing this confound also removes the dissociation, does not seem justified by their data. 

Additionally, our stimuli differ in important respects from those used in Lau and Passingham 

(2006) and Jannati and Di Lollo (2012). The metacontrast mask used in the current experiment was 
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significantly less perceptually salient due to being a 1-pixel wide line drawing rather than a shape 

embedded in a solid-colored circle. Additionally, we adjusted stimulus contrast in order to control task 

performance, such that the stimulus contrast for each subject (mean Weber contrast = -0.11) was 

substantially lower than the mask contrast (Weber contrast = -1). Thus, even at short SOAs where the 

target and mask may have perceptually fused, luminance-defined shape of the target remained a highly 

salient perceptual cue for performing the shape discrimination task, and in this respect the same 

criterion content (luminance-defined target shape) was perceptually available across all SOAs. 

Sackur (2013) used a multidimensional scaling analysis to investigate the perceptual dimensions 

underlying perceptual performance in metacontrast masking tasks. He argued that his analysis revealed 

three salient perceptual dimensions: one coding for SOA, and the other two coding separately for 

perception at short and long SOAs. Sackur argued that this finding upholds the idea that criterion 

content for metacontrast masking stimuli differs at short and long SOA. However, in Sackur’s 

metacontrast masking task, the target was a square, and the mask was a thick square frame with the 

same contrast as the target. Unlike the masks we have discussed to this point, the inner perimeter of 

this square-frame mask perfectly traced the contours of the square target, leaving no gaps. Thus, at 

short SOA when the target and mask were presented simultaneously, the target was literally no longer 

discernable as such; what was physically presented on the screen was simply an unusually large square, 

i.e. the thick frame of the mask with its center filled in by the target. Indeed, in Sackur’s analysis, the 

dimension coding for perception at short SOA time scales primarily differentiated the two SOA during 

which the target and mask physically overlapped in this way (SOA = 0 ms and 10 ms) from the remaining 

SOA (Sackur’s Figure 5). Thus, the difference in perception at short and long SOAs found in Sackur’s 

study is readily attributable to the fact that an unusually large version of the target stimulus (large 

square mask filled in with target) was briefly presented at short SOAs but not at long SOAs. No such 

disanalogy between short and long SOA is present in the stimuli used in the current experiment, and so 
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Sackur’s results do not seem to provide reason to believe that criterion content differed as a function of 

SOA with these stimuli. 

 

Potential relations to the memory literature 

         It has been proposed that there are two distinct and dissociable memory systems, one 

supporting explicit, “conscious” recollection, and the other more relevant for vaguer judgments of 

familiarity or feelings of knowing, or unconscious priming behavior (e.g. Jacoby, 1991; Hintzman & 

Curran, 1994). However, it has also been argued that a single system view is more parsimonious (Squire, 

Wixted, & Clark, 2007; Wixted, 2007; Berry, Shanks, & Henson, 2008), and that the apparent dissociation 

between conscious recollection and unconscious memory is due to different levels of activation within 

the same system. Our results may contribute to this controversy, because the paradigms used in some 

of these memory studies are conceptually very similar to the paradigm used here: subjects make an 

objective judgment about the state of the world (identity of visual stimulus, or whether an item has 

been presented previously or not), and then make a subjective judgment about how they subjectively 

feel about the first-order process (high vs low visibility, or “Remember” vs “Know” in some memory 

studies). Here we offer a third alternative to this debate between a single system versus two dissociated 

systems: it could be that there are two processes that work in hierarchy. Future studies may employ the 

same model comparison method to arbitrate which is the best model for memory function by fitting the 

models to experimental data where the objective memory performance and the subjective reports of 

recollection experience dissociate. 

 

Conclusion 

Here we introduce a distinction between different signal processing architectures supporting 

the generation of subjective reports of visual awareness. Above we discussed some limitations of this 
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approach, such as that it depends on the specific fitted dataset. Regardless of whether these results hold 

true, one important message is that we can go beyond the traditional assumption that perception 

depends on a single decision making process (Green & Swets, 1966; Macmillan & Creelman, 2005). 

These simple single process models have enjoyed great success in explaining many aspects of 

perception, and remain powerful contenders because of their simplicity, as shown in our model 

comparison analysis (which punishes complex models). But in cases where objective task performance 

and subjective reports dissociate, it may be important to consider perceptual decision models that 

postulate more than a single process, at least as possibilities. Our investigation suggests that, of the two 

models which postulate two processes, the Hierarchical model is superior to the Dual Channel model. 
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Chapter 2 

Manipulation of working memory contents impairs relative metacognitive sensitivity in a concurrent 

visual discrimination task 

 

Introduction 

 As we showed in Chapter 1, a Hierarchical modeling structure provides a good explanation for 

the behavioral phenomenon of relative blindsight discovered by Lau and Passingham (2006), whereby 

objective stimulus discrimination performance and subjective reports of stimulus visibility can 

dissociate. The functional structure of early and late processing stages of the Hierarchical model is 

suggestive of a mapping onto the anatomical structure of neural sites situated in earlier and later stages 

in the processing stream of visual information. Consistent with this notion, Lau and Passingham (2006) 

found that when subjective reports of visibility differed for target-mask stimulus onset asynchronies in 

which objective stimulus discrimination was matched, the elevated reports of subjective visibility were 

associated with enhanced activity in dlPFC but not in earlier, more posterior stages responsible for visual 

processing. 

Several additional lines of evidence in the literature link higher-level portions of the frontal 

cortex function (including dorsolateral prefrontal cortex (dlPFC), rostrolateral prefrontal cortex (rlPFC), 

and anterior prefrontal cortex (aPFC)) to visual metacognition. Activations in dlPFC and rlPFC have been 

found to inversely correlate with reports of confidence in visual and memory tasks (Henson, Rugg, 

Shallice, & Dolan, 2000; Fleck, Daselaar, Dobbins, & Cabeza, 2006; Fleming, Huijgen, & Dolan, 2012), and 

rlPFC activations have been found to directly (in a memory task; Yokoyama et al., 2010) and indirectly (in 

a visual task; Fleming et al., 2012) correlate with metacognitive sensitivity. Individual differences in gray 

matter volume in aPFC positively correlate with visual metacognitive sensitivity (Fleming et al., 2010; 

McCurdy et al., 2013), and single unit recording activity in macaque aPFC has been shown to increase 
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following correct decisions in a cuing task, even before task feedback is provided (Tsujimoto, Genovesio, 

& Wise, 2010). Finally, as we will show in Chapter 3, transcranial magnetic stimulation to bilateral dlPFC 

can impair metacognitive sensitivity. 

 dlPFC is also involved in working memory (WM) performance. Multiple lines of evidence 

implicate dlPFC particularly in the active processing of WM contents, rather than the mere storage of 

WM contents, which is typically attributed to more posterior brain regions, e.g. parietal and occipital 

cortex (Petrides, 2000; Miller & Cohen, 2001; Curtis & D’Esposito, 2003). For instance, dlPFC activations 

during delay periods in WM tasks increase when the task requires WM contents to be manipulated 

(D’Esposito, Postle, Ballard, & Lease, 1999), and other studies have found that dlPFC does not 

preferentially activate during delay periods, but rather its activation profile reflects the specific process 

of response selection performed on the basis of WM contents (Rowe, Toni, Josephs, Frackowiak, & 

Passingham, 2000; Rowe & Passingham, 2001; Rowe, Friston, Frackowiak, & Passingham, 2002). Basic 

short-term memory performance can be spared in patients with bilateral prefrontal damage (Petrides, 

1989; Owen, Morris, Sahakian, Polkey, & Robbins, 1996), but dlPFC lesions impair performance on tasks 

that require active monitoring and manipulation of WM contents in humans (Petrides & Milner, 1982) 

and macaques (Petrides 1995).  dlPFC also becomes more activated in WM tasks in which a cognitive 

strategy allows WM contents to be “chunked” into higher-level units, even though such chunking 

strategies effectively reduce the number of “items” in WM (Bor, Duncan, Wiseman, & Owen, 2003). This 

finding again suggests that dlPFC is more closely linked to strategic monitoring and manipulation of WM 

contents than it is to the overall difficulty of the memory task or to the number of items that need to be 

stored in WM. 

 Given that PFC is recruited in both metacognition and executive processing of WM contents, it is 

possible that common underlying mechanisms are at play in both kinds of cognitive functions. If so, we 

might expect that metacognitive performance would be selectively impaired by concurrently 
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manipulating WM contents, especially in light of general processing capacity limits and bottlenecks in 

PFC (Marois & Ivanoff, 2005). Here we test this hypothesis in a dual-task paradigm. While holding a 

letter string in memory and alphabetizing it, subjects performed a simple 2-interval forced choice visual 

task and provided confidence ratings. After the visual task, a probe assessed memory for the 

alphabetized string. We analyzed metacognitive performance under low and high WM load. Within the 

high WM load condition, we further distinguished between trials that placed low and high manipulation 

demand (i.e. strings requiring little or extensive alphabetization).  To anticipate, we found that 

metacognitive performance was selectively impaired under high WM load with high manipulation 

demand, suggesting that a common mechanism contributes to metacognitive evaluation of perceptual 

decision making and active manipulation of working memory contents. 

 

Methods 

Experiment 1 

Participants 

 Twenty-three Columbia University students participated in the experiment. Participants gave 

informed consent and were paid $10 for approximately one hour of participation. The research was 

approved by the Columbia University’s Committee for the Protection of Human Subjects. 

 One participant was omitted from data analysis, due to producing outlying data in the 

perceptual metacognitive task under high working memory load (Figure 2-4). 

 

Experimental procedure 

 Subjects were seated in a dimmed room 60 cm away from a computer monitor. Stimuli were 

generated using Psychophysics Toolbox (Brainard, 1997; Pelli, 1997) in MATLAB (MathWorks, Natick, 



64 

 

 

 

MA) and were shown on an iMac monitor (LCD, 24 inches monitor size, 1920x 1200 pixel resolution, 60 

Hz refresh rate). 

 On every trial, a working memory task was performed concurrently with a visual discrimination 

task (Figure 2-1). At the start of the trial, an uppercase letter string in black font was displayed on a gray 

background for 2000 ms. The letter string could consist of either one letter (low WM load) or four letters 

(high WM load). The across-trial sequence of one- and four-letter string presentations was randomized, 

such that each string size occurred with equal frequency. Letters in the four-letter strings were 

presented in random alphabetical order. Letters were chosen randomly from the following letter bank: 

{F, G, H, J, K, L, M, N, P, Q, R, S, T}. Vowels and letters early and late in the alphabet were omitted to 

increase memorization and alphabetization difficulty. Subjects were instructed to hold the letter string 

presented at the start of the trial in memory and to alphabetize it, since memory for the alphabetized 

string would be probed at the end of the trial. 

 After the letter string was presented, a crosshair (.35° wide) was presented centrally for 500 ms, 

and then the stimuli for the visual discrimination task were presented. Two stimuli were presented 

simultaneously for 33 ms, one 4° to the left of fixation and one 4° to the right. Each stimulus was a circle 

(3° diameter) consisting of randomly generated visual noise. The target stimulus contained a randomly 

oriented sinusoidal grating (2 cycles per degree) embedded in the visual noise. After stimulus 

presentation, subjects provided a forced-choice judgment of whether the left or the right stimulus 

contained a grating. The grating location was determined randomly on each trial, and gratings appeared 

equally often on the left and right. Following stimulus classification, subjects rated their confidence in 

the accuracy of their response on a scale of 1 through 4. Subjects were encouraged to use the entire 

confidence scale. If the confidence rating was not registered within 5 s of stimulus offset, the trial 

proceeded as if a confidence rating had been entered. Such trials were omitted from all analyses. There  
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Figure 2-1. Experimental design. Subjects performed a working memory (WM) task concurrently with a 

perceptual decision making task. At the start of the trial, a letter string was presented. Subjects were 

informed to hold the string in memory and sort it into alphabetical order. Strings could be either one 

letter long (low WM load) or four letters long (high WM load). Due to randomization of the four letter 

strings, these could be either easy to alphabetize (high load/easy alphabetization or “high/easy”) or 

difficult (high load/hard alphabetization or “high/hard”). Subsequently, subjects performed a 2-interval 

forced choice discrimination task. Two noisy stimuli appears to the left and right of fixation, and one of 

these contained a sinusoidal grating. Subjects indicated which side the grating appears on and rated 

decision confidence on a scale of 1 – 4. Finally, subjects performed the WM task. A memory probe 

consisting of a letter-number pair inquired as to whether the probe-letter was located at probe-number 

position of the alphabetized string. Experiments 1 and 2 used this same basic design, with slight 

modifications between them (see Methods).  
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was a 500 ms interval between the entry of confidence rating and the presentation of the memory 

probe. 

 The memory probe consisted of a letter and a number, e.g. T-3. Subjects judged whether it was 

true that the letter of the memorized and alphabetized string picked out by the probe number matched 

the probe letter. For instance, suppose that the initial letter string was TMLS, and the memory probe 

was T-3. The T-3 probe would pose the question, “is it true that the 3rd letter in the alphabetized letter 

string is a T?” Subjects indicated either “yes” or “no” in response to the probe. In this example, the 

correct answer is “no,” since the alphabetized string is LMST, and the third letter of this string is S, not T. 

Probe letters were always selected randomly from one of the letters contained in the original letter 

string. As a consequence of this policy, for one-letter strings, the correct answer was always “yes.”  For 

four-letter strings, the probe letter was chosen randomly. For half of all trials, the probe number 

corresponded to the true index of the probe letter in the alphabetized string. For the remaining half of 

all trials, the probe number was chosen randomly from one of the three remaining indeces. Thus, for 

four-letter strings, the correct answer was “yes” for half of all trials. Grating location, letter string size, 

and correct answer for four-letter strings (“yes” or “no”) were counterbalanced. 

 If no memory response was entered within 5 s of probe onset, the trial proceeded as if a 

response had been entered. Such trials were omitted from all analyses. After entry of the memory 

response, a crosshair was presented centrally for 1200 ms, after which time the next letter string was 

presented. At the beginning of this interval, a 200 ms tone indicated accuracy for the working memory 

task—a brief high-pitched tone indicated a correct memory response, and a brief low-pitched tone 

indicated an incorrect response. 

 At the start of each experimental session, subjects completed 2 practice blocks (20 trials each) 

and 1 calibration block (120 trials). In the calibration block, performance on the 2-interval forced choice 

grating localization task was adjusted continuously between trials on the basis of the subject’s task 
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performance using the QUEST threshold estimation procedure (Watson & Pelli, 1983). In order to 

shorten trial length, no letter strings or memory probes were presented during the calibration block; 

each trial consisted only of presentation of the visual stimuli, followed by the subject’s key presses 

indicating the grating location and decision confidence. Target stimuli were defined as the sum of a 

grating with Michelson contrast Cgrating and a patch of visual noise with Michelson contrast Cnoise. The 

total contrast of the target stimulus, Ctarget = Cgrating + Cnoise, was set to 0.9. The non-target stimulus 

containing only noise was also set to a Michelson contrast of 0.9. The QUEST procedure was used to 

estimate the ratio of the grating contrast to the noise contrast, Rg/n = Cgrating / Cnoise, which yielded 72% 

correct performance in the 2IFC task. Three independent threshold estimates of Rg/n were acquired, with 

40 randomly ordered trials contributing to each, and the median estimate of these was used to create 

stimuli for the main experiment.  

 In the main experiment, subjects completed 8 blocks of 50 trials each, for a total of 400 trials. 

After each block, subjects were provided with a self-terminated rest period lasting up to one minute. 

 

Experiment 2 

Participants 

 Thirty Columbia University students participated in the experiment. Participants gave informed 

consent and were paid $10 for approximately one hour of participation. The research was approved by 

the Columbia University’s Committee for the Protection of Human Subjects. 

 One participant was omitted from data analysis, due to producing outlying data in the 

perceptual metacognitive task under high working memory load (Figure 2-4). 

 

Experimental procedure 

 The experimental procedure was identical to that of Experiment 1, with three exceptions. 
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 First, in the working memory task, the probe letter was now allowed to differ from the original 

letter string for one-letter strings. For one-letter strings, the probe letter matched the original letter for 

half of all trials, and thus the correct answer for the memory task was “yes” on half of all trials. However, 

as in Experiment 1, the probe letter for four-letter strings was always randomly selected from one of the 

letters contained in the initially presented string. 

 Second, in the visual discrimination task, two levels of grating contrast were used. The higher 

level of contrast was determined in the calibration block, as in Experiment 1. The lower level of grating 

contrast was set equal to half the value of the higher grating contrast. As with the high grating contrast 

stimuli, the low grating contrast stimuli were defined by adding the low-contrast grating to a white noise 

pattern, such that the contrast of the grating+noise stimulus as a whole was set to 0.9. Contrast level 

was counterbalanced with grating location, letter string size, and correct answer for the memory task 

(“yes” or “no”). 

 Third, the presentation of one- and four-letter strings was now blocked, rather than randomly 

interleaved across trials. For 14 subjects, the first 4 blocks (200 trials) of the main experiment contained 

only one-letter strings, and the last 4 blocks (200 trials) contained only four-letter strings. For the 

remaining 16 subjects, the order was reversed. Assignment of subjects to the low-load-first and high-

load-first conditions was randomized. 

Data analysis for the perceptual task 

  We measured perceptual and metacognitive performance in the visual task using signal 

detection theory (SDT) analysis (Green & Swets, 1966; Macmillan & Creelman, 2005; Appendix A). We 

defined hit rate (HR) as the probability that the subject reported that the grating was on the right, given 

that the grating was on the right, and false alarm rate (FAR) as the probability that the subject reported 

that the grating was on the right, given that the grating was on the left. We calculated d’ = z(HR) – z(FAR) 

and used d’ to quantify sensitivity in the visual discrimination task.  
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We similarly quantified metacognitive sensitivity, i.e. the efficacy with which confidence ratings 

discriminate between a subject’s own correct and incorrect responses, with meta-d’ (Maniscalco & Lau, 

2012; Appendix A). Specifically, for each WM condition of each subject’s data, we found the value of 

meta-d’ that jointly maximized the likelihood of the response-specific type 2 ROC curves, where 

response-specific type 2 ROC curves are derived from “type 2” probabilities of the general form 

P(confidence = c | stimulus = s and response = r). Maximization of likelihood was achieved using the 

Optimization Toolbox in MATLAB (MathWorks, Natick, MA). Essentially, estimating meta-d’ in this 

analysis amounts to fitting the SDT model to the type 2 probabilities of every subject/condition for every 

possible permutation of stimulus, response, and confidence level. Please see Appendix A for a more in-

depth treatment of the methodology for estimating meta-d’.  

According to SDT, perceptual sensitivity and metacognitive sensitivity are directly correlated; as 

an observer becomes better at performing a perceptual tasks, it theoretically follows that metacognitive 

sensitivity also improves (Galvin et al, 2003; Maniscalco & Lau, 2012). Meta-d’ is defined such that, if an 

observer with perceptual sensitivity d’ exhibits metacognitive performance exactly in line with the SDT 

prediction, then meta-d’ = d’. However, if the observer underperforms SDT expectation, then meta-d’ < 

d’.   

As suggested in Maniscalco & Lau (2012), these observations suggest a useful conceptual 

distinction between absolute and relative metacognitive sensitivity. Absolute metacognitive sensitivity 

concerns how well confidence ratings discriminate correct from incorrect responses overall. Relative 

metacognitive sensitivity concerns how well confidence ratings discriminate correct from incorrect 

responses, relative to how informative we might expect those confidence ratings to be in light of the 

observer’s perceptual performance. Whereas absolute metacognitive sensitivity can be measured 

straightforwardly with meta-d’, relative metacognitive sensitivity can be measured by means of a 

numerical comparison between meta-d’ and d’. Relative metacognitive sensitivity is a useful construct in 
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that it allows us to take the theoretical relationship between perceptual and metacognitive performance 

into account when evaluating metacognitive performance, which in turn facilitates discovery of 

“genuinely” metacognitive effects, as opposed to differences in absolute metacognitive sensitivity that 

can potentially be attributed to differences in the underlying perceptual task performance. 

In Experiment 2, the low contrast condition led to unexpectedly low levels of performance in the 

perceptual task. Average d’ for the low contrast stimuli was .25, which for an unbiased observer 

corresponds to a rate of 55% correct responding. One sample t-tests revealed that both d’ and meta-d’ 

were significantly greater than zero (i.e., the chance level of responding) in the low contrast condition 

(ps < .05). However, at these near-chance levels of performance, data are noisy and subject to floor 

effects. For these reasons, we will focus on analyzing only the high contrast condition of Experiment 2. 

Nonetheless, the data from the low contrast condition are useful to the extent that they demonstrate 

that meta-d’ scales directly with d’ and can be significantly better than chance even when d’ is itself 

close to chance performance. In turn, this suggests that the function relating d’ and meta-d’ has a y-

intercept approximately equal to zero. On the assumption that the function relating d’ and meta-d’ is 

linear (with a zero y-intercept), the slope of this line would then indicate the quality of metacognitive 

performance relative to perceptual performance. But the slope of a line with zero y-intercept is just the 

ratio of y to x, as e.g. for two points on a line, y1 = mx1 and y2 = mx2, it follows that m = y1 / x1 = y2 / x2. 

Therefore, computing the ratio meta-d’ / d’ is akin to measuring the slope of the line relating meta-d’ 

and d’, and thus provides a means of measuring the quality of metacognitive performance, relative to 

perceptual performance. We therefore compute the ratio M = meta-d’ / d’ to measure relative 

metacognitive sensitivity. 

 

Results 
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 Due to the similarities in experimental design and empirical outcomes in Experiments 1 and 2, 

we will present the results from these experiments concurrently. The primary analysis of interest is to 

assess performance in the perceptual task as a function of difficulty of the working memory (WM) task. 

We therefore distinguish between low WM load (one-letter memory string) and high WM load (four-

letter memory string) conditions.  

We further categorize the four-letter strings by the degree to which these randomly created 

strings were initially presented in alphabetical order. Since subjects were required not only to hold the 

strings in memory but also to alphabetize them, the degree to which the strings were initially well-

alphabetized or scrambled could further modulate the resources or processes required to perform the 

memory task. We classified string alphabetization by counting how many of the three consecutive letter 

pairs in each four-letter string were in alphabetical order. For instance, in the string ADBC, two 

consecutive letter pairs are in alphabetical order (AD and BC) but one is not (DB). Strings with two or 

three letter pairs in alphabetical order were considered to be well alphabetized, and strings with zero or 

one letter pair in alphabetical order were considered to be poorly alphabetized. We refer to well 

alphabetized four-letter strings as “high WM load / easy alphabetization” or “high/easy” for short, and 

poorly alphabetized strings as “high WM load / hard alphabetization” or “high/hard” for short.  

 

Working memory performance 

 Overall, the WM load manipulation was successful in presenting a challenging working memory 

task (Figure 2-2), as revealed by separate 2 (WM load: high, low) x 2 (Experiment: 1, 2) mixed-measures 

ANOVAs on accuracy and reaction time in the WM task. Compared to the low load condition, high WM 

load decreased accuracy (main effect of WM load, p < .001; Experiment 1: low load mean = 97.4% 

correct, high load mean = 77.8% correct; Experiment 2: low load mean = 88.4% correct, high load mean 

= 77.7% correct) and increased median reaction time (WM load, p < .001; Expt 1: low load mean = 609  
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Figure 2-2. Working memory performance. As expected, the memory task was significantly more 

difficult under high WM load than under low load, exhibiting significantly lower rates of correct 

responding and longer reactions times. However, within the high WM load condition, the distinction 

between easy and difficult alphabetization did not manifest as an observable change in WM task 

performance. Error bars represent 1 SEM. 

 

 

ms, high load mean = 1537 ms; Expt 2: low load mean = 761 ms, high load mean = 1519 ms). However, 

alphabetization difficulty did not affect accuracy (p = .4) or median reaction time (p > .9) in the memory 

task. 

 The main effect of WM load on task performance was modulated by a significant WM load x 

Experiment interaction (p = .008). The source of this interaction was that memory performance under 

low load was significantly better in Experiment 1 than in Experiment 2 (independent samples t-test on % 

correct, p < .001). (Median reaction time on the memory task was also faster in Experiment 1, although 

the WM load x Experiment interaction for median RT did not achieve significance, p = .19.) This 

difference was due to the fact that the low load task was trivial in Experiment 1, as the probe letter was 
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always the same as the one-letter string, whereas in Experiment 2, the probe only matched the one-

letter string on half of all trials and thus posed a simple but non-trivial memory demand (see Methods). 

However, the structure of the memory task under high load was identical for the two experiments, and 

here memory performance did not differ for either accuracy or reaction time (ps > .8). 

 

Perceptual task performance as a function of WM load 

We plot d’ and meta-d’ as a function of WM load and alphabetization difficulty in Figure 2-3. We 

analyzed this data with separate 2 (WM load: high, low) x 2 (Experiment: 1, 2) mixed design ANOVAs for 

d’ and meta-d’. In both experiments, WM load impaired perceptual sensitivity (d’; WM load, p < .001; 

WM load x Experiment, p > .9; Expt 1: low load mean = 1.88, high load mean = 1.63; Expt 2: low load 

mean = 1.96, high load mean = 1.72) and metacognitive sensitivity (meta-d’; WM load, p = .004; WM 

load x Experiment, p = .6; Expt 1: low load mean = 1.26, high load mean = .95; Expt 2: low load mean = 

1.25, high load mean = 1.03). 

However, the reduction in meta-d’ due to WM load is qualified by the fact that WM load also 

reduced d’. Since d’ and meta-d’ correlate (Galvin et al., 2003; Maniscalco & Lau, 2012), the reduction in 

meta-d’ under high WM load might be attributable merely to the reduction in d’, rather than to a direct, 

independent effect on metacognitive performance per se. If WM load impaired metacognitive 

performance over and above its impairment of perceptual performance, we might expect that WM load 

would decrease the ratio meta-d’ / d’, which we shall hereafter refer to as M. Although M was 

numerically lower under high load (Expt 1: low load mean = .74, high load mean = .61; Expt 2: low load 

mean = .68, high load mean = .63), these differences were not statistically significant in the WM load x 

Experiment ANOVA (WM load, p = .16; WM load x Experiment, p > .5). Thus, overall WM load did not 

appear to reduce relative metacognitive sensitivity, as measured by M. 
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Figure 2-3. Perceptual and metacognitive performance as a function of WM load. We measured 

perceptual sensitivity with the signal detection theory (SDT) measure d’ (Green & Swets, 1966) and 

metacognitive sensitivity with the SDT measure meta-d’ (Maniscalco & Lau, 2012). If subjects perform 

according to SDT expectations, data should fall along the dashed line of unity, meta-d’ = d’. Here, 

subjects’ metacognitive sensitivity underperformed SDT expectation. Overall, under high WM load, d’ 

and meta-d’ were equally impaired. Crucially, well-scrambled WM strings were associated with an 

impaired ratio of meta-d’ to d’, suggesting that the process of manipulating the contents of working 

memory had a selective deficit on relative metacognitive sensitivity. On these plots, this result manifests 

as the data for the “high load / hard alphabetization” condition occupying a lower region on the y-axis of 

the meta-d’ vs d’ plot than the other data points in spite of having a similar x-axis value. Error bars 

represent 1 SEM. 

 

 

Perceptual task performance as a function of WM load and alphabetization difficulty 

 In order to take into account the effect of alphabetization difficulty, we calculated M separately 

for the high load / easy alphabetization and high load / hard alphabetization conditions. Scatterplots 

relating M for these conditions as well as M under low load are displayed in Figure 2-4. One subject in 

each of Experiments 1 and 2 produced outlying data on these plots, and were therefore excluded from 

all analyses. Inspection of the remaining data suggests that M was lower under high load / hard 

alphabetization than in the other conditions. 
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Figure 2-4. Scatterplots of M under the different WM conditions. M, as the ratio of meta-d’ to d’, 

measures how well the subject performed metacognitively (meta-d’) in relation to perceptual 

performance (d’). For subjects behaving according to signal detection theory expectation, M = 1, 

whereas M < 1 indicates metacognitive performance that is suboptimal relative to SDT expectation. In 

the scatterplots, dashed horizontal lines connect the two data points generated by single subjects. Most 

points fall below the line of unity, suggesting that M is impaired in the “high/hard” condition compared 

to the “low” and “high/easy” conditions. Data shown in circles were considered to be outliers, and data 

from these two subjects was omitted from all analysis.  

 

 

 To investigate this possibility, we conducted a 2 (WM demand: low, high/hard) x 2 (Experiment: 

1, 2) mixed-design ANOVA on M, where we use the factor name “WM demand” rather than “WM load” 

to highlight the fact that this factor now subdivides the high load condition according to alphabetization 

difficulty. Indeed, we found that, compared to low WM load, high load / hard alphabetization impaired 

M in both experiments (WM demand, p = .003; WM demand x Experiment, p = .9; Expt 1: low load mean 

= .74, high/hard mean = .54; Expt 2: low load mean = .68, high/hard mean = .46). By stark contrast, high 

load / easy alphabetization strings did not impair M relative to low WM load (WM demand, p > .9; WM 

demand x Experiment, p > .7; Expt 1: low load mean = .74, high/easy mean = .71; Expt 2: low load mean 
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= .68, high/easy mean = .71). M under high load / hard alphabetization was also significantly lower than 

under high load / easy alphabetization (WM demand, p = .006; WM demand x Experiment, p > .6). Thus, 

relative metacognitive sensitivity in the perceptual task was not affected by the overall memorization 

load placed upon WM, but rather was selectively impaired by the need to perform extensive 

alphabetization on high load WM strings. These findings are portrayed in Figure 2-5. 

 We pursued these findings further by investigating the separate effects of alphabetization 

difficulty under high WM load on d’ and meta-d’.  A 2 (WM demand: high/easy, high/hard) x 2 

(Experiment: 1, 2) mixed-design ANOVA on d’ did not reveal any significant effects (WM demand, p = 

.12; WM demand x Experiment, p = .19; Expt 1: high/easy mean = 1.61, high/hard mean = 1.63; Expt 2: 

high/easy mean = 1.59, high/hard mean = 1.84). However, a similar ANOVA for meta-d’ did reveal an 

effect of alphabetization difficulty for both experiments (WM demand, p = .004; WM demand x 

Experiment, p > .6; Expt 1: high/easy mean = 1.05, high/hard mean = 0.78; Expt 2: high/easy mean = 

1.07, high/hard mean = 0.71). Thus, whereas overall WM load impaired both d’ and meta-d’, the added 

component of alphabetization difficulty within the high load condition did not modulate d’, but did 

impose a selective deficit for meta-d’. 

 

Confidence as a function of accuracy and WM demand 

 Metacognitive sensitivity is determined by how an observer places confidence ratings for correct 

and incorrect responses. There are several ways in which high WM demand may have impaired 

metacognitive performance—e.g. by reducing confidence for correct responses, increasing confidence 

for incorrect responses, or both. To investigate, we performed a 2 (Accuracy: correct, incorrect) x 2 (WM 

demand: low, high/hard) x 2 (Experiment: 1, 2) mixed-design ANOVA on confidence in the perceptual 

task. In addition, a significant main effect of Accuracy on confidence (p < .001), reflecting higher 

confidence for correct responses, there was also a significant Accuracy x WM demand interaction (p =  
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Figure 2-5. Average values of M across WM load conditions. In both experiments, although M was 

numerically lower under high overall WM load than under low load, the difference was not significant. 

However, M under high WM load and difficult alphabetization was significantly lower than it was under 

low load. Error bars represent 1 SEM. 

 

 

.006) which was not modulated by Experiment (Accuracy x WM demand x Experiment, p > .6). The 

Accuracy x WM demand interaction reflects the fact that under high/hard WM demand, confidence for 

correct responses decreased whereas confidence for incorrect responses increased (Figure 2-6). This 

pattern can also be seen in the pooled type 2 ROC curves described in more detail in the following 

section (Figure 2-7), as under high/hard WM demand, type 2 false alarm rates increased whereas type 2 

hit rates decreased relative to the low WM load condition. 

 

Pooled type 2 ROC curve analysis 

 One potential concern with the foregoing analyses is that trial counts were somewhat low, a 

concession necessary in the task design due to the relatively long duration of each trial. In Experiment 1,  
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Figure 2-6. Mean levels of confidence as a function of accuracy in the perceptual task and WM load. 

Overall levels of confidence did not differ for low and high/hard WM load. A qualitatively similar pattern 

arose in both experiments, whereby under high/hard WM load, confidence for correct decisions 

decreased and confidence for incorrect decisions increased. Error bars represent 1 SEM. 

 

 

200 trials contributed to the low load condition, and roughly 100 trials contributed to each of the 

high/easy and high/hard conditions. In Experiment 2, for each level of grating contrast, 100 trials  

contributed to the low load condition, and roughly 50 trials contributed to each of the high/easy and 

high/hard conditions. In order to lend further support to the findings described above, we therefore 

performed a complementary analysis that pooled data across subjects. 

 The ideal approach to performing an SDT analysis is to calculate metrics such as d’ separately for 

each subject, using their individual hit rate and false alarm rate data. But in cases where within-subject 

trial counts are a concern but there is ample between-subject data, an alternative approach is to 

average hit rates and false alarm rates across subjects, and use this pooled data to perform SDT analysis 

on the group as a whole (Macmillan & Kaplan, 1985; Macmillan & Creelman, 2005). This pooling 

approach is a legitimate way to analyze the data; for instance, it was used extensively in a classic article 
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demonstrating SDT’s ability to characterize a wide variety of empirical ROC curves (Swets, 1986a). 

Although the pooling approach potentially underestimates sensitivity if subjects have very different 

values for sensitivity or response bias (Macmillan & Kaplan, 1985), such concerns are mitigated for the 

present purposes, as we are primarily concerned in analyzing the difference in metacognitive sensitivity 

between two conditions, rather than the overall level of metacognitive sensitivity in a single condition. 

 For the present purposes, we wish to compare metacognitive performance in the low WM load 

and the high/hard WM load conditions. Thus, we pooled data across subjects to construct pooled type 2 

relative operating characteristic (ROC) curves. The type 2 ROC curve is a plot of type 2 hit rate (i.e. 

probability of high confidence for correct responses) against type 2 false alarm rate (i.e. probability of 

high confidence for incorrect responses) (Galvin et al., 2003). The “type 2” designation indicates the task 

of classifying response accuracy with confidence ratings, in contradistinction to the “type 1” task of 

performing an objective classification of the stimuli. Because subjects rated confidence on a scale of 1 

through 4, three (type 2 FAR, type 2 HR) pairs could be calculated for each subject by separately 

considering “high confidence” to consist in all confidence ratings greater than 1, all ratings greater than 

2, or all ratings greater than 3 (Macmillan & Creelman, 2005). We computed the (type 2 FAR, type 2 HR) 

pairs for each subject in the low WM load and high/hard WM load conditions and averaged these across 

subjects. The resulting ROC curves are displayed in Figure 2-7.We similarly computed the across-subject 

average (FAR, HR) for the visual discrimination task, and computed a group d’ from this pooled data. We 

used this value of pooled d’ to construct the ideal pooled type 2 ROC curve, assuming unbiased 

responding in the visual discrimination task (Maniscalco & Lau, 2012).  

Visual inspection of the pooled type 2 ROC curves confirms that metacognitive performance was 

worse under high/hard WM load than under low WM load, as under this condition the type 2 ROC curve 

lies closer to the line of chance metacognitive performance, i.e. the line where type 2 FAR = type 2 HR. 

In order to quantify this observation, we performed a bootstrap analysis (Mooney & Duval, 1993). In the  
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Figure 2-7. Pooled type 2 ROC curves. In the analyses depicted in the previous figures, d’ and meta-d’ 

were computed separately for each subject. We supplemented this analysis by pooling together 

(averaging) type 2 hit rates (p(high conf | correct)) and type 2 false alarm rates (p(high conf | incorrect)) 

across subjects and using the averaged data to construct the pooled type 2 ROC curves displayed here. 

Similar features are evident in the pooled analysis—the empirical type 2 ROC curves are closer to the 

diagonal line of chance metacognitive performance than are the SDT-ideal dashed curves (echoing the 

finding that M < 1), and the type 2 ROC curve is closer to chance in the high/hard WM load condition 

than it is under the low WM load condition (echoing the finding that M is lower for “high/hard” is lower 

than M for “low”). A bootstrap analysis provided quantitative statistical support for these qualitative 

observations (see Results). 

 

 

bootstrap procedure, the sampling distribution for a variable is estimated by repeatedly resampling with 

replacement from the original data set and computing the value of the variable for each such bootstrap  

sample. We constructed 1000 bootstrap samples of the type 1 and type 2 hit rate and false alarm rate 

data for each WM load condition. For each bootstrap sample, we calculated d’ and estimated meta-d’ by 

finding the least-squares fit of the meta-d’ model to the type 2 ROC curve (Maniscalco & Lau, 2012). We 

then analyzed the distribution of values for MD = Mlow – Mhigh/hard. For Experiment 1, the mean MD was 

.21 and only 3.9% of all bootstrap samples had MD < 0. For Experiment 2, the mean MD was .28 and only 

2% of all bootstrap samples had MD < 0. Thus, this complementary bootstrap analysis of the pooled type 
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2 ROC data provides converging evidence for the claim that metacognitive performance was impaired 

under the high WM load / hard alphabetization condition. 

 

Analysis of sequential dependencies in confidence rating 

 One possible way in which high/hard WM load might have impaired metacognitive sensitivity is 

by adding noise to type 2 criterion setting (Mueller & Weidemann, 2008; Benjamin, Diaz, & Wee, 2009). 

According to the SDT model, confidence ratings are created by comparing the magnitude of evidence for 

a perceptual decision to a set of criterion values (Macmillan & Creelman, 2005; Appendix A). (We refer 

to “type 2 criteria” to distinguish these decision criteria from the “type 1 criterion” that determines the 

observer’s perceptual decisions about the stimulus.)  If an observer uses different values for the type 2 

criteria across trials, the net effect is that metacognitive sensitivity is reduced (Mueller & Weidemann, 

2008). One tell-tale sign of noise in the criterion setting process is trial-to-trial dependencies in 

perceptual decisions (Mueller & Weidemann, 2008). If an observer’s responses from trial to trial are 

correlated in spite of stimulus strength across trials being randomized, this is evidence that criterion 

setting drifts over the course of the experiment and is therefore not perfectly stationary. However, the 

converse inference does not hold: failure to find trial-to-trial response dependencies does not indicate 

the absence of noise in criterion setting, since e.g. if criterion values were corrupted with noise drawn 

from a random distribution on each trial, such random noise in the criterion setting process would not 

produce systematic across-trial response dependencies. 

 We thus tested the hypothesis that high/hard WM load reduces metacognitive sensitivity by 

inducing sequential dependencies in confidence rating. We limited the analysis to Experiment 2, since 

this experiment used a block design for WM load which thus facilitated analysis of performance under 

the various WM load conditions in sequential trials. We limited analysis to sequential trial pairs 

satisfying the following conditions: both trial i and trial i – 1 had high contrast grating stimuli; the subject 
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successfully entered a perceptual decision and confidence rating for both trial i and trial i – 1; and the 

perceptual decision on both trial i and trial i – 1 was correct.  We enforced these conditions in order to 

minimize extraneous sources of variance in confidence ratings for each sequential trial pair. (There were 

an insufficient number of trials to conduct a similar analysis restricted only to incorrect perceptual 

decisions.) For each subject, we computed (1) the mean of the differences in confidence for each trial i 

and trial i – 1; (2) the standard deviation of the differences in confidence for each trial i and trial i – 1; (3) 

the Pearson’s correlation coefficient for confidence on trial i and trial i – 1. 

 Paired t-tests did not reveal a significant difference between low WM load and high/hard WM 

load in terms of either the mean or the standard deviation of the difference in confidence for sequential 

trials (ps > .4). We compared the sequential trial correlations in confidence for low and high/hard WM 

load by transforming each subject’s Pearson’s r value into a normal deviate z value using Fisher’s r-to-z 

transform (Fisher, 1915). A paired t-test on these z values did not reveal a significant difference in the 

trial-to-trial correlations in confidence for low and high/hard WM load (p > .6). Taken together, these 

results suggest that the decrease in metacognitive sensitivity due to high/hard WM load was not 

mediated by the kind of noisy type 2 criterion setting that would result in sequential dependencies in 

confidence rating. However, it remains possible that more random forms of noise in the type 2 criterion 

setting process might be a candidate mechanism for this effect. 

 

Discussion 

 In summary, we found that when experimental subjects had to perform a working memory task 

concurrently with a perceptual decision making task, performance on the two tasks interacted in 

interesting ways. First, there was an overall effect of WM load whereby both perceptual (d’) and 

metacognitive (meta-d’) sensitivity in the perceptual task decreased when longer letter strings had to be 

maintained in memory. Second, there was a specific effect of the manipulation demand imposed by WM 
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contents on perceptual metacognition. For letter strings that were initially poorly alphabetized, stronger 

manipulation demand was imposed upon subjects, as they had to perform more mental operations 

upon WM contents in order to arrive at a properly alphabetized string. This manipulation demand had 

selective effects upon relative metacognitive sensitivity, as measured by M = meta-d’ / d’. When 

manipulation demand for four-letter WM strings was low (i.e. the “high/easy” condition), M did not 

differ for high and low WM load. But when manipulation demand for four-letter strings was high (i.e. the 

“high/hard” condition), M was significantly lower than in the low load and high/easy load conditions. 

Thus, relative metacognitive sensitivity was insensitive to overall WM load, but was selectively impaired 

when extensive manipulation of WM contents was required. 

 It is important to interpret these results in light of the theoretical distinction between absolute 

and relative metacognitive sensitivity introduced in Maniscalco & Lau (2012). Absolute metacognitive 

sensitivity refers to the overall efficacy with which confidence ratings discriminate between correct and 

incorrect responses, as measured e.g. by area under the type 2 ROC curve (Galvin et al., 2003; Fleming 

et al., 2010). Relative metacognitive sensitivity evaluates the empirically observed level of absolute 

metacognitive sensitivity with respect to the expected level of absolute metacognitive sensitivity, given 

an observer’s performance on the primary stimulus classification task. Such an expectation can be 

derived by the theoretical machinery of signal detection theory (Galvin et al., 2003), with the important 

features that (1) task performance should place a theoretical limit on metacognitive performance, and 

(2) as task performance improves, so should metacognitive performance. These theoretical predictions 

have been validated in empirical data (Maniscalco & Lau, 2012).  

The SDT measure of absolute metacognitive sensitivity, meta-d’ (Maniscalco & Lau, 2012; 

Appendix A), was designed with an eye towards providing a straightforward way to measure relative 

metacognitive sensitivity. Meta-d’ is defined such that, for an observer whose performance conforms to 

SDT assumptions, meta-d’ = d’. Thus, relative metacognitive sensitivity can be operationalized as a direct 
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numerical comparison between meta-d’ and d’, e.g. a subtraction or division. In this study, we found 

evidence that the y-intercept of the function relating meta-d’ and d’ is zero (Figure 2-3), thus implicitly 

supporting the usage of meta-d’ / d’ as the appropriate measure of relative metacognitive sensitivity for 

these data. For instance, if we suppose that the true function relating meta-d’ and d’ for a given 

observer is meta-d’ = .8 * d’, then the ratio meta-d’ / d’ would have a constant value of 0.8 regardless of 

the value of d’, whereas the value of the difference meta-d’ – d’ would differ depending on the value of 

d’. 

In the current data set, although meta-d’ decreased under high WM load, d’ also decreased to a 

similar extent. Given the known theoretical and empirical dependence of meta-d’ upon d’ (Galvin et al., 

2003; Maniscalco & Lau, 2012), it is therefore possible to attribute the decline in meta-d’ under high 

WM load to the co-occurring decline in d’, rather than supposing that WM load had a direct effect upon 

overall metacognitive performance.  Indeed, the relative measure of metacognitive sensitivity, meta-d’ / 

d’, did not significantly differ as a function of WM load. Thus, while high WM load imposed an overall 

deficit in performance on the perceptual task, perhaps due to reduced attentional allocation to the 

visual stimuli under high load, we did not find strong evidence that WM load produced a selective deficit 

upon metacognitive processing in and of itself.  

By contrast, we found that relative metacognitive sensitivity in the perceptual task was indeed 

impaired in the specific case where the contents of WM required a substantial degree of manipulation 

(alphabetization). This finding is in keeping with prior empirical investigations on the neural bases of 

visual metacognition and WM performance. Various higher-level regions of the human and monkey 

prefrontal cortex, including dorsolateral, rostrolateral, and anterior prefrontal cortex, have been linked 

to metacognitive performance in visual and memory tasks (Henson et al., 2000; Fleck et al., 2006; 

Fleming et al., 2010; Yokoyama et al., 2010; Tsujimoto et al., 2010; Fleming et al., 2012; McCurdy et al., 

2013). Similarly, dorsolateral prefrontal cortex (dlPFC) in particular has been linked to performance in 
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WM tasks, with a strong line of evidence that dlPFC is involved particularly with the manipulation and 

selection of WM contents, rather than just the passive maintenance of items in WM (Petrides & Milner, 

1982; Petrides, 1989; Petrides, 1995; Owen et al., 1996; D’Esposito et al., 1999; Petrides, 2000; Rowe et 

al., 2000; Miller & Cohen, 2001; Rowe & Passingham, 2001; Rowe et al., 2002; Curtis & D’Esposito, 2003; 

Bor et al., 2003). In the current study, the fact that relative metacognitive sensitivity was impaired not 

by overall WM load, but rather by the specific requirement to extensively manipulate WM contents, 

suggests the working of a common, limited neural resource in dlPFC that contributes to both the 

manipulation of WM contents and the metacognitive evaluation of visual task performance.  

We note that a somewhat similar finding to the current study was previously reported in the 

context of visual search tasks by Han & Kim (2004). In that study, the time required to find a visual target 

in a cluttered display as a function of display set size (“search slope”) was compared for concurrent WM 

tasks that either did or did not require active manipulation of WM contents (backwards counting for 

number items, or alphabetization for letter items). Search slope was significantly steeper than in a 

control condition when subjects had to manipulate WM contents, but not when subjects had to 

passively maintain a number or letter string in WM. Thus, as in the present study, Han & Kim found that 

aspects of processing in a visual task could undergo selective impairment due to the requirement to 

manipulate WM contents. Han & Kim concluded that aspects of executive functioning, as reflected in 

manipulation of WM contents, may be required to perform visual search. However, it is unclear to what 

extent this impairment in visual search is related to the impairment on relative metacognitive sensitivity 

observed in the current study. 

 How might it be the case that a cognitive/neural mechanism that contributes to manipulation of 

WM contents also contributes to metacognitive evaluation of visual perception? The explanation cannot 

be an overly general mechanism, such as supposing that additional attentional resources required for 

the WM task would leave fewer attentional resources for the visual task. Such general mechanisms 
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would presumably induce global changes in visual task performance, affecting both d’ and meta-d’, 

rather than being specific to meta-d’ / d’.  

 One potential mechanism might have to do with strategies for representing and re-representing 

stimuli. In WM tasks, lateral PFC activation has been associated with encoding strategies for WM 

contents—when items are presented in a way that facilitates their reorganization into higher-level units 

or “chunks,” lateral PFC becomes more activated (Bor et al., 2003). Some views hold that metacognition 

similarly involves the construction of higher-order re-representations or meta-representations of 

cognitive/neural processing occurring at lower levels in the processing hierarchy (Nelson & Narens, 

1990; Schooler, 2002; Cleeremans, Timmermans, & Pasquali, 2007; Pasquali et al., 2010). If so, it is 

possible that the same processes involved in manipulating and re-organizing WM contents might also be 

involved in manipulating and re-organizing sensory representations for the purposes of metacognitive 

evaluation. Presumably, occupation of such a resource in the manipulation of WM contents would 

detract from its active employment in the metacognitive evaluation of visual processing, thus impairing 

relative metacognitive sensitivity. 

 Another possible set of common underlying mechanisms concerns response selection and the 

maintenance and flexible adaptation of decision rules. Response selection, defined by Curtis and 

D’Esposito (2003) as “the operation by which information in short-term storage becomes the focus of 

attention such that it can be maintained and eventually used to choose an appropriate motor response” 

(p. 421), has been tied to dlPFC activity in the context of WM tasks (Rowe et al., 2000; Rowe & 

Passingham, 2001; Rowe et al., 2002; Curtis & D’Esposito, 2003). More broadly, PFC has been theorized 

to support varying levels of sophistication and abstraction in the control and organization of behavior as 

a function of stimuli and environmental context, action contingencies, currently active goals, and so on 

(Koechlin & Summerfield, 2007; Badre, 2008). By way of comparison, the SDT model posits that 

perceptual classification of stimuli and confidence ratings are the outcomes of cognitive decision 
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processes that are not the rigid outcome of low-level perceptual processing but rather can be flexibly 

adjusted according to the prevailing task instructions, stimulus context, and reward contingencies 

(Tanner & Swets, 1954; Green & Swets, 1966; Macmillan & Creelman, 2005). According to SDT, 

perceptual and metacognitive decisions are determined by defining a set of decision criteria which 

determine the rules according to which graded and ambiguous internal perceptual evidence is mapped 

onto discrete perceptual decisions and motor outputs (Green & Swets, 1966; Macmillan & Creelman, 

2005; Appendix A).  A common mechanism in PFC underlying the processes of selecting, evaluating, and 

manipulating WM contents in the WM task and the processes of metacognitive criterion setting in the 

perceptual task could potentially explain the results of the current study. 

 Regardless of the specific manner in which manipulation of WM contents influences 

metacognitive performance, the results of this study demonstrate a dissociation between perceptual 

and metacognitive sensitivity, suggesting that these depend on separate underlying mechanisms. 

Indirect evidence for such a position comes from anatomical (Fleming et al., 2010; McCurdy et al., 2013) 

and fMRI (Henson et al., 2000; Fleck et al., 2006; Yokoyama et al., 2010; Fleming et al., 2012) studies in 

humans, and single-unit recordings in monkeys (Tsujimoto et al., 2010), that associate metacognitive 

performance with high-level structures in PFC rather than earlier visual processing regions. Here we 

provide stronger evidence for a perceptual/metacognitive dissociation than these prior associational 

studies by demonstrating the existence of an experimental intervention that selectively disrupts 

metacognitive performance. These results closely echo those discussed in Chapter 3, in which we 

demonstrate that transcranial magnetic stimulation to bilateral dlPFC can selectively impair 

metacognitive, but not perceptual, sensitivity.   
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Chapter 3 

Theta-burst transcranial magnetic stimulation to the prefrontal cortex impairs relative metacognitive 

sensitivity in a visual discrimination task 

 

Introduction 

In Chapter 1, we showed that a Hiearchical model best accounts for the dissociation between 

objective task performance and subjective reports of visibility in the metacontrast masking paradigm. 

Comparison of these modeling results with imaging results on the same paradigm (Lau & Passingham, 

2006) is suggestive that the late processing stage posited by the Hierarchical model might correspond to 

dorsolateral prefrontal cortex (dlPFC).  In Chapter 2, we demonstrated that when subjects perform a 

working memory task concurrently with a perceptual task, metacognitive sensitivity in the perceptual 

task can be selectively disrupted when extensive manipulation of the contents of working memory is 

required. These results are similarly suggestive of the recruitment of a common neural resource housed 

in dlPFC. However, in both cases the link between visual metacognition and dlPFC is indirect. 

In the current chapter, we more directly probe the influence of dlPFC upon visual metacognition 

by assessing the impact of bilateral transcranial magnetic stimulation (TMS) to dlPFC on objective and 

subjective perceptual performance. We required volunteers to perform a 2-interval forced-choice visual 

task, identifying the spatial arrangement of two visual stimuli (a square and a diamond, Figure 3-1 A). At 

the same time, they also rated the subjective visibility of the stimuli ('clear' or 'unclear'). Subjects 

performed these tasks before and after TMS applied to bilateral dlPFC (Figure 3-1 B). We used theta-

burst stimulation (TBS), a recently developed protocol that is known to effectively depress cortical 

excitability by mimicking the action of long-term potentiation and long-term depression in cortical 

tissues (Huang, Edwards, Rounis, Bhatia, & Rothwell, 2005). One advantage of this technique is that the 

effect of 20 seconds of stimulation is known to last for up to 20 minutes, which means we had the 
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opportunity to depress both sides of the dlPFC by stimulating them sequentially. We opted for bilateral 

stimulation as this has been suggested to be critical: Sahraie et al. (1997) have suggested that one 

reason visual defects do not seem to frequently follow prefrontal lesions may be that such lesions have 

to be large and bilateral. Using this sequential method to depress the dlPFC bilaterally, we found that 

the metacognitive sensitivity of reported visual awareness was reduced after TMS.   

 

Methods  

Participants 

Twenty healthy volunteers with normal or corrected-to-normal vision and no history of 

neurological disorders or head injury were recruited from the database of volunteers at the Functional 

Imaging Laboratory, Institute of Neurology, University College London, UK. Written informed consent 

was obtained from all participants. The study was approved by the joint ethics committee for the 

National Hospital for Neurology and Neurosurgery (UCLH NHS Trust) and the Institute of Neurology 

(UCL).  

 

Experimental procedure 

Subjects were asked to perform a 2-interval forced-choice task (Figure 3-1 A). Testing was 

performed in a darkened room. Stimuli were presented against the white background of a CRT monitor 

refreshing at 120 Hz. The monitor was placed 40 cm away from the subjects' eyes.  

On each trial, a diamond and square were presented on either side of a central crosshair for 33 

ms. The stimuli had sides measuring 0.8 degrees of visual angle and were centered 1 degree to the left 

and right of the central crosshair. 100 ms after stimulus onset, a metacontrast mask was displayed for 

50 ms in order to enhance task difficulty. The two possibilities for the sequence of stimuli (square on the  
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Figure 3-1. Experimental design. (A) Visual task and stimuli. Participants were required to perform a 2-

interval forced-choice visual task, identifying the spatial arrangement of two visual stimuli (square on 

the left and diamond on the right, or the other way round). They rated the subjective visibility ('clear' or 

'unclear') at the same time. Thus, in every trial subjects had 4 options as to which key to press in order 

to respond. (B) Site of stimulation. The dorsolateral prefrontal cortex (dlPFC) was the targeted site of 

stimulation, and was chosen because neural activity from this area has been shown to reflect a 

difference in the subjective ratings of visibility even when performance in a forced-choice visual task was 

matched (Lau & Passingham, 2006). The image showing the site of stimulation is based on magnetic 

resonance brain scans of 6 of the 20 subjects in this study. The scans were collected after completion of 

the TMS experiments. Right and left dlPFC coordinates were [37 26 50] and [-41 18 52], with standard 

deviations [4.6 5.6 5.3] and [4.3 5.1 3.8] respectively. 

 

 

left and diamond on the right, and vice versa) were presented with equal probability in a pseudo-

random order.  

The subjects' task was to identify which stimulus sequence had just been presented, square left 

/ diamond right or vice versa. At the same time, subjects gave subjective ratings of stimulus visibility 
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('clear' or 'unclear'). Subjects were instructed to make the visibility judgment in a relative manner, to 

distinguish between stimuli that were relatively more or less visible. Since stimulus contrast was 

adjusted so as to yield threshold performance on the stimulus classification task, stimuli used in this 

experiment were somewhat difficult to see. Nonetheless, subjects were instructed to judge stimulus 

visibility on each trial relative to the context of stimuli used in this experiment. For instance, a subject 

might judge that the stimulus on a certain trial was more readily visible than the majority of stimuli seen 

in the experiment up until that point, even if its visibility was poor by everyday standards. Subjects were 

encouraged to judge such stimuli as exhibiting "high clarity," i.e. having relatively high clarity compared 

to other stimuli observed in the experimental context. 

Performance level was controlled to be at approximately 75% correct throughout the 

experiment by titrating the contrast of the stimuli, using a standard up-down transformed-response 

staircasing procedure (Macmillan & Creelman, 2005). Each trial was randomly designated as belonging 

to staircase A or staircase B. For staircase A, contrast on the current trial was increased if the subject 

responded incorrectly on the previous 'A' trial, whereas contrast on the current trial was decreased if 

the subject responded correctly on the two previous 'A' trials. Staircase B worked in a similar manner, 

except it required 3 consecutive correct responses on 'B' trials in order to reduce contrast. 

Subjects attended two separate testing sessions, both preceded by a demonstration and a 

practice phase of 100 trials intended to familiarize the subjects with the task and to allow them to reach 

a stable level of performance. After practice, subjects underwent an initial ('pre') block of 300 trials to 

measure forced-choice task performance and subjective ratings of visibility. On average this took 

10.9 minutes, excluding brief breaks after every 100 trials. After completing this block, two real (or 

sham) continuous theta-burst stimulation (cTBS) conditioning stimulations, one to the left and one to 

the right, were delivered to the dorsolateral prefrontal area. The two stimulations were separated by a 

one minute inter-train interval. Following real (or sham) stimulation, subjects did another ('post') block 
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of 300 trials. On average this took 10.4 minutes, excluding brief breaks after every 100 trials. Session 

order by type of cTBS (real versus sham) was counterbalanced across subjects.   

 

Theta-burst stimulation  

In each TBS session, 600 biphasic stimuli, at a stimulation intensity of 80% of active motor 

threshold (AMT) for the right first dorsal interosseous (FDI) hand muscle, were given over the left and 

right DLPFC area using a Magstim Super Rapid stimulator (Whitland, Wales, UK) connected to four 

booster modules. The conditioning cTBS stimuli were delivered in two separate 20-second trains of 300 

cTBS pulses, one for the left and one for the right, separated by an inter-train interval of 1 minute. A 

similar bilateral procedure has been used in a recent clinical study (Arfeller, Vonthein, Plontke, & 

Plewnia,  2009).  

A standard figure-of-eight-shaped coil (Double 70mm Coil Type P/N 9925; Magstim) was used 

for both real and sham cTBS. Real cTBS was delivered with the coil placed tangentially to the scalp with 

the handle pointing posteriorly. In sham cTBS sessions, the coil was placed perpendicularly to the scalp, 

an ineffective position for the delivery of conditioning pulses, which provided comparable acoustic 

stimuli to the real cTBS condition. The coil was positioned with the handle at 45° to the sagittal plane. 

The current flow in the initial rising phase of the biphasic pulse in the biphasic pulse induced a posterior-

to-anterior current flow in the underlying cortex.   

The basic TBS pattern was a burst containing 3 pulses of 50 Hz magnetic stimulation given in 200 

ms intervals (i.e. at 5 Hz). In the continuous theta burst stimulation paradigm (cTBS), a 20 second train of 

uninterrupted TBS is given (300 pulses or 100 bursts). Physiological studies have shown that this 

produces a decrease in corticospinal excitability which lasts for about 20 minutes (Huang et al., 2005), 

when applied to the primary motor cortex, M1. This rTMS paradigm has the advantage of being a rapid 

and efficient method of conditioning, which has effects on corticospinal excitability that have been 
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shown to involve similar mechanisms to long-term potentiation/depression (LTP/LTD) with NMDA 

dependence (Huang, Rothwell, Edwards, & Chen, 2008), as well as effects on behavior and learning 

(Huang et al., 2005; Talleli et al., 2007).   

The site of cTBS stimulation was located 5 cm anterior to the ‘motor hot spot’ on a line parallel 

to the midsagittal line. This dlPFC location has been used in previous studies and can be shown 

consistently on structural scans (Mottaghy, Gangitano, Sparing, Krause, & Pascual-Leone, 2002; Rounis 

et al., 2006; Figure 3-1 B). The position of the motor hot spot was defined functionally as the point of 

maximum evoked motor response in the slightly contracted right FDI. The active motor threshold was 

defined as the lowest stimulus intensity that elicited at least five twitches in 10 consecutive stimuli given 

over the motor hot spot, while the subject was maintaining a voluntary contraction of about 20% of 

maximum using visual feedback. 

The use of such low subthreshold intensity (80% AMT) had the advantage of decreased spread 

of stimulation away from the targeted site thus keeping the area that was stimulated with the 

conditioning pulses more focal (Pascual-Leone, Valls-Solé, Wassermann, & Hallett, 1994; Münchau, 

Bloem, Irlbacher, Trimble, & Rothwell, 2002). Also, a previous study on the prefrontal cortex that 

applied intensity above motor threshold reported unpleasant vagal reactions in subjects (Grossheinrich 

et al., 2009). However, even at that higher intensity there was no adverse effects on mood, seizure or 

epileptiform observed in the recorded EEG. This suggests that our stimulation at this lower intensity 

should be safe to our subjects. 

Data analysis  

Metacognitive sensitivity (i.e. the efficacy with which visibility ratings distinguish between 

correct and incorrect responses) was assessed using two separate methods. The first method followed 

previous studies (e.g. Kolb & Braun, 1995; Kornell, Son, & Terrace, 2007) in using the correlation 

between accuracy and subjective rating as a measure of metacognitive sensitivity. We used the 
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correlation coefficient phi, which quantifies the degree of correlation between two binary variables, to 

calculate the correlation between task accuracy (correct/incorrect) and stimulus visibility 

(clear/unclear). Phi is equivalent to Pearson's r computed for two binary variables, and like r it ranges 

from -1 (perfect negative correlation) to +1 (perfect positive correlation). We calculated phi for the 300 

trials pre- and post- real and sham TMS for each subject. We predicted that TMS would hinder 

metacognitive sensitivity, and thus that there would be a TMS (real, sham) x Time (pre, post) interaction. 

We also performed a signal detection theoretic (SDT) analysis to estimate metacognitive 

sensitivity by estimating meta-d’ (Maniscalco & Lau, 2012; Appendix A). The need for performing a signal 

detection theory analysis is that phi can be shown to generate non-regular ROC (Receiver Operating 

Characteristic) curves, which in turn implies an underlying threshold model of detection (Swets, 1986b). 

The ROC profile and threshold model of phi are not in good agreement with the standard SDT model 

(Macmillan & Creelman, 2005), nor with theoretical derivations of type 2 ROC curves from the standard 

SDT framework (Galvin et al., 2003; Maniscalco & Lau, 2012; Appendix A). The consequence of this is 

that phi may confound sensitivity and response bias, rather than being a pure measure of sensitivity. 

Thus, we also quantified metacognitive sensitivity, i.e. the efficacy with which confidence ratings 

discriminate between a subject’s own correct and incorrect responses, using meta-d’ (Maniscalco & Lau, 

2012; Appendix A). Specifically, for each TMS x Time condition of each subject’s data, we estimated 

meta-d’ as follows.  First, we estimated the SDT parameters c’ (the stimulus classification criterion 

measured relative to d’) and s (the ratio of standard deviations of internal evidence for the two stimulus 

classes) (Macmillan & Creelman, 2005). Holding c’ and s constant, we estimated the value for meta-d’ 

that minimized the sum of squared errors (SSE) between observed and modeled type 2 ROC curve for 

trials in which the stimulus was classified as "square left/diamond right." We then estimated a separate 

meta-d’ value in the same way, this time for trials in which the stimulus was classified as "diamond 

left/square right." Thus, we generated two estimates of meta-d', corresponding to the subject's type 2 
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ROC curves conditional on each stimulus classification type. These two estimates were combined via a 

weighted average, where the weight of each meta-d’ estimate was determined by the number of trials 

used to estimate it. The mean SSE corresponding to each meta-d’ estimate was 9.1 x 10-5, indicating that 

this approach provided an excellent fit to the observed type 2 ROC data. Minimization of SSE was 

achieved using the Optimization Toolbox in MATLAB (MathWorks, Natick, MA).  

Because we are testing a directional hypothesis in a 2 x 2 factorial design (i.e. metacognitive 

sensitivity is reduced following real TMS more so than following sham TMS), we report halved p-values 

for the TMS x Time interaction on phi and meta-d’ – d’.  

 

Results  

In the following we present ANOVA analyses with within-subject factors of TMS (real, sham) and 

Time (pre, post) for several independent variables of interest such as accuracy, response time for correct 

trials, etc. None of these analyses exhibited a main effect of TMS condition (Fs < 1.7), indicating that the 

real and sham TMS sessions were comparable on baseline task performance. 

Stimulus contrast was adjusted online in order to control classification accuracy; thus, as 

expected, frequency of correct responses did not vary as a function of time or the TMS x Time 

interaction (ps > .05) (Figure 3-2 A). A more insightful measure of stimulus classification performance is 

the mean contrast required to keep classification accuracy constant. The stimulus contrast generated by 

the performance staircasing algorithm reduced over time (p < .001), suggesting a perceptual learning 

effect: over time, subjects required a lower level of contrast in order to maintain the same level of 

response accuracy. However, the TMS x Time interaction was not significant (p > .05), indicating that the 

TMS treatment had no effect on stimulus classification performance (Figure 3-2 B). Likewise, reaction 

time for correct trials improved over time (p = .016), but was not sensitive to TMS (p > .05) (Figure 3-2 

C).  
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Figure 3-2. Task performance. (A) Percent correct. Percent correct was controlled by titration of 

stimulus contrast, such that stimulus judgments were about 75% correct throughout the experiment 

(see Methods). Therefore, the lack of any significant effects on these values is trivial. (B) Mean stimulus 

contrast. Stimulus contrast was determined online by the computer program (see Methods), such that if 

subjects performed better than 75% correct, the contrast was reduced, and if subjects performed worse 

than 75% correct, the contrast was increased. There was a main effect of time on contrast (p < .001), 

indicating a perceptual learning effect; had the computer not been programmed to adjust task difficulty 

online, subjects would have shown improved accuracy over time. However, perceptual learning was not 

affected by TMS (TMS x Time interaction F = 0.73). (C) Reaction time for correct responses. Perceptual 

learning was also evident in reaction time data. Subjects were quicker to make correct responses in the 

second half of the experiment (main effect of Time, p = .016). However, again, this learning effect was 

not modulated by TMS (TMS x Time interaction F = 0.79). (D) Mean visibility ratings. Visibility ratings 

decreased over time (p = .005), but the TMS x Time interaction on visibility was not significant (p = .4). 

See the discussion for caveats about the visibility rating analysis. 'Real pre': performance level before 

real TMS. 'Real post': after real TMS. 'Sham pre': before sham TMS. 'Sham post': after sham TMS. * p < 

.05. Error bars represent 1 SEM.  
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Similarly, mean visibility ratings decreased over time (p = .005), but independently of the TMS 

manipulation (p > .05) (Figure 3-2 D). We address this null finding more fully in the discussion.  

As hypothesized, TMS significantly impaired metacognitive sensitivity. A TMS x Time interaction 

was evident for the correlation between accuracy and visibility, phi (p = .036) (Figure 3-3 A). 

Investigation of this interaction revealed that phi was lowered following real TMS (one-tailed paired t-

test, p < .001) but not sham TMS (p > .05).  

The bias-free SDT measure of metacognitive sensitivity, meta-d’ – d’, also exhibited a TMS x 

Time interaction effect (p = .015) (Figure 3-3 B). The difference between observed and ideal type 2 

sensitivity decreased following real TMS (one-tailed paired t-test, p = .006) but not sham (p > .05). 

Metacognitive sensitivity was significantly suboptimal following real TMS, i.e. meta-d' < d' (one-tailed t-

test, p = .004) but not in any other TMS x Time condition (p > .05).  

There are several ways in which TMS could have impaired metacognitive sensitivity. One 

possibility is that TMS reduced visibility for correct trials, which would amount to a kind of relative 

blindsight (Lau & Passingham, 2006). Alternatively, TMS may have increased visibility for incorrect trials, 

a kind of “hallucinatory” effect. A third possibility is that the reduction in metacognitive sensitivity was 

not specific to correct or incorrect trials. Thus, to better characterize the effect of TMS, we examined 

visibility ratings separately for correct and incorrect trials pre- and post-TMS (Figure 3-4 A). We found a 

significant Accuracy x Time interaction (p < .001), driven by the fact that TMS reduced visibility for 

correct responses (two-tailed paired t-test, p = .002) but not incorrect responses (p > .05).  Thus, TMS 

impaired metacognitive sensitivity by selectively reducing the visibility of correctly classified stimuli.  

 

Discussion 

Our results show that theta-burst TMS applied to bilateral dlPFC can reduce metacognitive 

sensitivity, i.e. the efficacy with which subjective visibility ratings distinguish between correct and  
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Figure 3-3. Effect of TMS on metacognitive sensitivity. (A) Correlation coefficient, phi. TMS significantly 

reduced phi, the correlation between stimulus classification accuracy and stimulus visibility. The effect 

of TMS is evident in a significant TMS x Time interaction, p = .036; phi was lower following real TMS (p < 

.001) but not sham TMS (p = .5). (B) Divergence from optimal metacognitive sensitivity, meta-d’ - d’. A 

signal detection theory analysis revealed that subjects’ relative metacognitive sensitivity, as measured 

by meta-d’ – d’ (Maniscalco & Lau, 2012; Appendix A), was significantly impaired by TMS (TMS x Time, p 

= .015). Metacognitive sensitivity was lower following real TMS (p = .006) but not sham TMS (p = .7). 

Subjects exhibited significantly suboptimal metacognitive sensitivity following real TMS, i.e. meta-d’ - d’ 

< 0 (p = .004) but not in any other experimental condition (ps > .3).  'Real pre': metacognitive 

performance before real TMS. 'Real post': after real TMS. 'Sham pre': before sham TMS. 'Sham post': 

after sham TMS. * p < .05, n.s. denotes not significant. Error bars represent 1 SEM.  

 

 

incorrect stimulus judgments. This effect was driven specifically by a reduction in visibility for correct 

trials, rather than by a specific elevation of visibility for incorrect trials or by a non-specific effect. In this 

sense, the direction of the effect is reminiscent of blindsight (Weiskrantz, 1997), where patients deny 

visual awareness even when they can perform visual discrimination tasks well above chance level. The 

effect of TMS was specific to metacognitive sensitivity; TMS did not disrupt stimulus classification  
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Figure 3-4. Nature of the TMS effect on metacognition. (A) Selective reduction of type 2 hit 

rate. Visibility ratings are displayed as a function of Time (pre/post TMS) and Accuracy 

(correct/incorrect) for the real TMS condition. TMS significantly reduced visibility for correct responses 

(two-tailed paired t-test, p = .002), but not for incorrect responses (p = .5). The Time x Accuracy 

interaction was significant, p < .001. These results suggest that TMS reduced metacognitive sensitivity 

(Fig 3-3) specifically by decreasing visibility ratings for correct responses (as opposed to increasing 

visibility ratings for incorrect responses). Thus, TMS induced a kind of relative blindsight, to the extent 

that TMS suppressed the reports of visibility for accurately processed stimuli. * p < .005, n.s. denotes not 

significant. Error bars represent 1 SEM. (B) Type 2 ROC analysis. Individual data points indicate the type 

2 hit rates and false alarm rates for every subject pre- and post-TMS. Type 2 ROC curves were estimated 

for each subject using estimates of meta-d’, c’, and s; the average of these ROC curves is plotted for the 

pre- and post-real TMS conditions. The distribution of individual data points and the fitted ROC curves 

indicate that TMS influenced metacognitive sensitivity, rather than just response bias. Note that the ROC 

curve reflects meta-d’, and thus is not as sensitive to the effect of TMS as the measure used in the 

analysis, meta-d’ – d’ (Fig 3-3), since some variation in meta-d’ is attributable merely to variation in d’ 

(Maniscalco & Lau, 2012; Appendix A).  

 

 

performance, as measured by contrast level (Figure 3-2 B) and reaction time for correct trials (Figure 3-2 

C). 
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We did not find a significant effect of TMS on averaged stimulus visibility itself. However, note 

that the effect of TMS is at least partially characterized by a change in visibility ratings, in that TMS 

reduced metacognitive sensitivity precisely by reducing visibility for correctly classified stimuli while 

leaving visibility for incorrectly classified stimuli unaffected (Figure 3-4 A). Indeed, although the 

interaction was not significant, separate paired t-tests show a difference in visibility pre- and post- real 

TMS (two-tailed, t(19) = 3.09, p = .002) but no difference pre- and post- sham TMS (t(19) = 1.47). There 

are two reasons why the design of the current study may not have been ideal to statistically detect an 

effect of TMS on overall stimulus visibility. One reason is that stimulus visibility was affected by an 

experimental factor other than TMS, namely the contrast levels of the stimuli, which were adjusted on-

line throughout the experiment in order to hold discrimination performance constant. Another reason is 

that subjects were instructed to use visibility ratings in a relative manner, in order to distinguish stimuli 

that were relatively more or less visible. The instruction to rate visibility in this relative way may have 

obscured the extent to which visibility ratings reflected absolute differences in stimulus visibility across 

experimental conditions. Nonetheless, these limitations are not important for the main focus of this 

study, which is the metacognitive sensitivity of visibility ratings.  

One typical argument against studies of awareness is that the manipulation in question might 

have only changed subjects' criteria for producing subjective ratings, rather than changing awareness 

per se. A change in response criterion is not necessarily uninteresting-- but more importantly, this is not 

what we found. Our type 2 SDT analysis demonstrates that TMS reduced metacognitive sensitivity (i.e. 

the efficacy with which subjective visibility ratings discriminate between correct and incorrect 

judgments), rather than merely affecting metacognitive response bias (i.e. the overall propensity to give 

high visibility ratings). TMS reduced visibility for correct trials (type 2 HR) but not for incorrect trials 

(type 2 FAR) (Figure 3-4 A), a pattern that cannot be attributed solely to changes in response bias. 

Likewise, our measure of type 2 sensitivity, meta-d’ – d’, is not sensitive to changes in type 2 response 
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bias (Maniscalco & Lau, 2012; Appendix A). We also demonstrate this point graphically in Figure 3-4 B, 

which shows the type 2 ROC points for each subject, and mean fitted ROC curves, pre- and post-TMS. 

The distribution of type 2 ROC points and the fitted type 2 ROC curves differ, indicating lower type 2 

sensitivity following TMS. If TMS only affected subjects’ criteria for reporting high visibility, the type 2 

ROC curves pre- and post-TMS should overlap (Macmillan & Creelman, 2005), contrary to our findings.  

Our results extend previous work. Similarly to the present study, Del Cul et al. (2009) showed 

that prefrontal lesions can affect subjective reports of visual experience more than visual task 

performance. Slachevsky (Slachevsky et al., 2001; Slachevsky et al., 2003) has shown that lesion to the 

prefrontal cortex can affect awareness in the monitoring of actions or sensory-motor readjustments. 

Other studies show that visual processing can be affected by lesion (Latto & Cowey, 1971) or TMS 

(Grosbras & Paus, 2003; Ruff et al., 2006) to the frontal eye field. Turatto, Sandrini, and Miniussi (2004) 

showed that TMS to the dlPFC can affect performance in change blindness.  These studies show that, 

contrary to what critics have argued (Pollen, 1995), disruption of activity in the prefrontal cortex can in 

fact influence awareness and visual processing. What is new in the present study is that it specifically 

highlights the role of the prefrontal cortex in supporting the metacognitive sensitivity of visual 

awareness. 

The prefrontal cortex is associated with many important cognitive functions, and therefore our 

interpretation is not that it is completely specific to the metacognitive sensitivity of visual awareness. It 

is likely that bilateral theta-burst TMS to the dlPFC would impair performance in other tasks where 

metacognitive visual awareness is not required. Instead of applying the same TMS treatment to 

unrelated control tasks and hoping to show a negative result in those situations, we show that TMS 

impaired a specific process involved in our task, namely metacognitive awareness, but not other 

processes involved in the same task. It is important to note that performance in the stimulus 

classification task was not influenced by TMS under the stimulation parameters currently used. Thus, it 
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is unlikely that TMS affected metacognitive sensitivity by means of non-specific disturbances such as 

reductions in visual attention or general arousal. 

As in Del Cul et al. (2009), one limitation of the present study is that we did not show that a 

similar effect could not be obtained in a control anatomical site. The lack of such control conditions is 

unfortunate and largely constrained by logistics (e.g. we did not have ethical approval for every brain 

regions for this relatively new TMS protocol, and the leading authors have since relocated elsewhere). 

However, given that the TMS was applied offline (i.e. not during task), and that the effect did not change 

basic task performance, it is unlikely that the results we obtained were due to the general distraction 

due to TMS. It is likely that TMS applied to an unrelated region, such as the somatosensory area, would 

not lead to our metacognitive effect. However, it remains an open question whether TMS applied to 

parietal areas that are connected to dlPFC would lead to similar results. 

In any case, our conclusion is not that the neural circuitry that supports metacognitive visual 

awareness is completely localized in the dlPFC. Rather, we conclude that disruption of activity in this 

area can impair the metacognitive sensitivity of visual awareness. The present results show that the 

prefrontal cortex is functionally relevant to visual awareness, in that manipulation of the former can 

affect the latter. Further, the data clarify in what way the prefrontal cortex might contribute. Activity in 

the dlPFC may play a relatively unimportant role in representing the visual signal itself, but it may be 

essential for some form of internal uncertainty monitoring that allows observers to be able to 

distinguish when visual processing is effective and when it is not. It is this introspective and 

metacogntive aspect of visual awareness for which the prefrontal cortex may be critical.  
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Chapter 4 

Limited cognitive resources explain a tradeoff between perceptual and metacognitive vigilance 

 

Introduction 

 In Chapter 2 and Chapter 3 we demonstrated the existence of cognitive and neural interventions 

that have selective effects on relative metacognitive sensitivity, findings that suggest that objective and 

subjective visual performance are dissociable and may depend on separate underlying mechanisms. In 

this chapter we demonstrate the existence of another dissociation between perceptual and 

metacognitive sensitivity that occurs naturally over the course of time, presumably as a result of 

tradeoffs in perceptual and metacognitive performance necessitated by the onset of fatigue. 

As an observer continuously performs a perceptual task, the observer’s perceptual sensitivity 

tends to decline over time, an effect known as the vigilance decrement (Davies & Parasuraman, 1982; 

Warm, 1984; See, Howe, Warm, & Dember, 1995). Research has suggested that limited cognitive 

resources (Kahneman, 1973; Matthews, Davies, Westerman, & Stammers, 2000; Wickens, 2002) become 

depleted as a vigil progresses, and so the vigilance decrement is better accounted for by resource 

exhaustion than by mindlessness or task disengagement (e.g. Grier et al., 2003; Helton & Warm, 2008; 

Helton et al., 2005; Warm, Parasuraman, & Matthews, 2008). Consistent with the resource depletion 

account, the vigilance decrement is exacerbated by increasing task demands such as stimulus 

degradation, rate of stimulus presentation, and memory load (See et al., 1995), and is associated with 

depleted ratings of energetic arousal, elevated reports of stress, and declines in cerebral blood flow 

velocity (Warm et al., 2008). 

 A seemingly unrelated line of research involves the relationship between perceptual sensitivity 

and perceptual metacognition (e.g., confidence ratings). Recent work has developed a signal detection 

theory (SDT) analysis of confidence ratings (Galvin et al., 2003; Maniscalco & Lau, 2012), allowing for a 



104 

 

 

 

bias-free measure of metacognitive sensitivity (i.e. an observer’s ability to discriminate between his own 

correct and incorrect judgments, regardless of his tendency to report high confidence). Of particular 

interest is how such measures of metacognition are related to perceptual performance. A tacit 

assumption of the classical SDT analysis of confidence rating data is that perceptual decisions and 

confidence ratings are based on the same underlying process (Galvin et al., 2003; Macmillan & 

Creelman, 2005; Maniscalco & Lau, 2012), and this view has received some empirical support (Kepecs et 

al., 2008; Kiani & Shadlen, 2009; Kepecs & Mainen, 2012). Other findings suggest that metacognition is 

subserved by high-level prefrontal mechanisms and is therefore partially dissociable from perceptual 

performance (e.g. Fleming et al., 2010; Pleskac & Busemeter, 2010; McCurdy et al., 2013). 

 In this chapter, we bring these two lines of research together by investigating the joint behavior 

of SDT measures of perceptual and metacognitive sensitivity over time. If a single process generates 

perceptual and metacognitive decisions, we should expect declines in perceptual sensitivity to be 

associated with declines in metacognitive sensitivity (Maniscalco & Lau, 2012). Conversely, if distinct 

processes generate perceptual and metacognitive decisions, we might expect vigilance decrements in 

perception and metacognition to be dissociable.  

 To anticipate, we find a robust effect whereby changes in perceptual and metacognitive 

sensitivity over time are weakly or negatively correlated, contrary to the strong positive correlation 

predicted by a single-process view of perception and metacognition. Voxel based morphometry analysis 

suggests that this finding is mediated by a common cognitive resource housed in anterior prefrontal 

cortex, a region previously associated with visual metacognitive sensitivity (Fleming et al., 2010; 

McCurdy et al., 2013). Consistent with this account, we find that alleviating metacognitive task demands 

reduces the perceptual vigilance decrement. Thus, perception and metacognition appear to be distinct 

processes that can differentially access limited cognitive resources. 
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Methods 

Experiment 1 

 Data from this experiment were originally reported in Maniscalco & Lau (2012). 

Participants 

 Thirty Columbia University students participated in the experiment. Participants gave informed 

consent and were paid $10 for approximately one hour of participation. The research was approved by 

the Columbia University’s Committee for the Protection of Human Subjects. 

 Four participants were omitted from data analysis. One exhibited perfect task performance. The 

other three used an extreme confidence rating (lowest / highest rating) more than 89% of the time, an 

extreme bias in reporting confidence that renders meaningful analysis of metacognitive sensitivity 

difficult. 

 

Experimental procedure 

 Participants were seated in a dimmed room 60 cm away from a computer monitor. Stimuli were 

generated using Psychophysics Toolbox (Brainard, 1997; Pelli, 1997) in MATLAB (MathWorks, Natick, 

MA) and were shown on an iMac monitor (LCD, 24 inches monitor size, 1920x 1200 pixel resolution, 60 

Hz refresh rate). 

 On every trial, two stimuli were presented simultaneously, one 4° to the left of fixation and one 

4° to the right (Figure 4-1 A). Stimuli were presented on a gray background for 33 ms. Each stimulus was 

a circle (3° diameter) consisting of randomly generated visual noise. The target stimulus contained a 

randomly oriented sinusoidal grating (2 cycles per degree) embedded in the visual noise. After stimulus 

presentation, participants provided a forced-choice judgment of whether the left or the right stimulus 

contained a grating. Following stimulus classification, participants rated their confidence in the accuracy 

of their response on a scale of 1 through 4. Participants were encouraged to use the entire confidence  
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Figure 4-1. Design for Experiments 1 – 4. (A) Experiments 1 – 2. Subjects performed a spatial 2-interval 

forced choice task. On each trial, two patches of visual noise simultaneously appeared to the left and 

right of fixation. One of these patches contained an embedded sinusoidal grating. Subjects first 

indicated whether the left or right patch contained the grating, and then rated decision confidence on a 

scale of 1 – 4. Trial duration was determined by subject response time. (B) Experiments 3 – 4. 

Experiment 3 was similar to Experiments 1 – 2, except that in even-numbered blocks of trials (“partial 

type 2 blocks”), subjects were not required to rate confidence for the first half (50 trials) of the block. A 

written cue appeared above fixation on all trials where subjects were required to rate confidence. Trial 

duration was fixed to be 2.533 s. In Experiment 4, subjects wagered points rather than rating 

confidence, such that they won or lost the number of points wagered depending on the accuracy of the 

left/right decision. Subjects were also provided with feedback about wagering performance after each 

block. 
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scale. If the confidence rating was not registered within 5 seconds of stimulus offset, the next trial 

commenced automatically. (Such trials were omitted from all analyses.) There was a 1 s interval 

between the entry of confidence rating and the presentation of the next stimulus. Participants were 

instructed to maintain fixation on a small crosshair (.35° wide) displayed in the center of the screen for 

the duration of each trial. 

 At the start of each experimental session, participants completed 2 practice blocks (28 trials 

each) and 1 calibration block (120 trials). In the calibration block, the detectability of the grating in noise 

was adjusted continuously between trials on the basis of the participant’s task performance using the 

QUEST threshold estimation procedure (Watson & Pelli, 1983). Target stimuli were defined as the sum 

of a grating with Michelson contrast Cgrating and a patch of visual noise with Michelson contrast Cnoise. The 

total contrast of the target stimulus, Ctarget = Cgrating + Cnoise, was set to 0.9. The non-target stimulus 

containing only noise was also set to a Michelson contrast of 0.9. The QUEST procedure was used to 

estimate the ratio of the grating contrast to the noise contrast, Rg/n = Cgrating / Cnoise, which yielded 75% 

correct performance in the 2AFC task. Three independent threshold estimates of Rg/n were acquired, 

with 40 randomly ordered trials contributing to each, and the median estimate of these was used to 

create stimuli for the main experiment. 

 

Experiment 2 

 Data from this experiment were originally reported in McCurdy et al. (2013). 

 

Participants 

 Forty-one Radboud University students participated in the experiment. Participants gave 

informed consent and were paid €8 for approximately one hour of participation. The research was 
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approved by the local ethics committee where the experiment was performed (CMO region Arnhem-

Nijmegen, the Netherlands). 

Experimental procedure 

 Experimental design was identical to Experiment 1, with the following exceptions. 

 Blocks of the visual perception task were interleaved with blocks of a memory task. (Comparison 

of visual and memory task performance is explored in McCurdy et al. (2013); data from the memory task 

is not analyzed here.) Each participant completed two experimental sessions on two consecutive days. 

On day 1, participants completed two practice blocks of the visual task, a calibration block for the visual 

task, and two blocks of the visual task consisting of 102 trials each. On day 2, participants completed 

three more blocks of the visual task, using the stimulus settings acquired from the calibration block on 

day 1. As with Experiment 1, trial duration for the visual task was determined by response times, and 

participants experienced a self-terminated rest period of up to a minute between blocks. 

 Rather than using a single value for the ratio of grating and noise contrast (Rg/n), as in the 

previous experiment, three different levels of Rg/n were used across trials. The calibration block 

determined the highest level of Rg/n, R*g/n, and the two lower levels of contrast ratio were determined 

by multiplying R*g/n by 0.75 and 0.5. In this manuscript, all analyses for Experiment 2 collapse across 

contrast level in order to yield sufficient trials for SDT analysis. 

Image acquisition 

 For thirty-two of the participants, a 1.5T Avanto MR-scanner (Siemens, Erlangen, Germany), 

using a 32-channel head coil, was used to acquire the T1-weighted anatomical MRI images (176 slices, 

echo time = 2.95ms, TR = 2250ms, voxel size 1 mm isotropic). The remaining nine participants were 

scanned using different scanning parameters, and this was included as a covariate in the multiple 

regression design matrix in SPM8. 
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Voxel-based morphometry analysis 

 VBM preprocessing was carried out using SPM8 (http://www.fil.ion.ucl.ac.uk/spm). Similar to 

the pre-processing protocol used by Fleming et al. (2010), the scans were first segmented into gray 

matter, white matter, and cerebral spinal fluid in native space. DARTEL (Ashburner, 2007) was used to 

increase the accuracy of inter-subject alignment by aligning and warping the gray matter images to an 

iteratively improved template. The DARTEL template was then registered to MNI space, and then gray 

matter images were modulated such that their tissue volumes were preserved. Images were smoothed 

using an 8 mm full width at half maximum Gaussian kernel. The resultant pre-processed gray matter 

images were analyzed using MarsBar v0.42 software (marsbar.sourceforge.net). ROIs were defined as a 

10 mm sphere around each of the two peak voxel coordinates identified by McCurdy et al. (2013) (peak 

voxel coordinate for left aPFC = [-12 54 16]; peak voxel coordinate for right aPFC = [32 50 7]; both 

survived cluster family-wise-error correction) and the gray matter volumes in each sphere was 

calculated. 

 

Experiment 3 

Participants 

 Twenty-one Columbia University students participated in the experiment. Participants gave 

informed consent and were paid $10 for approximately one hour of participation. The research was 

approved by the Columbia University’s Committee for the Protection of Human Subjects. 

One participant was omitted from data analysis due to using the highest confidence rating on 

96% of all trials, an extreme bias in reporting confidence that renders meaningful analysis of type 2 data 

difficult. 

 

Experimental procedure 
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 Experimental design was identical to Experiment 1, with the following exceptions. 

 The primary manipulation of interest in Experiment 3 was that in odd-numbered experimental 

blocks, participants did not provide confidence ratings in the first 50 of 100 trials in the block. Call these 

“partial type 2 blocks,” as opposed to “whole type 2 blocks” in which confidence ratings were provided 

on all trials. Before each block, participants were instructed which kind of block was about to be 

presented. For partial type 2 blocks, the instruction read as follows: “Upcoming block: There will be NO 

CONFIDENCE RATING for the first 50 trials. Do not enter confidence ratings until you are prompted to do 

so.” For whole type 2 blocks, the instruction read “Upcoming block: There will be confidence rating on 

EVERY trial.” 

 In order to clearly distinguish trials in which confidence ratings were and were not required, a 

text prompt reading “Confidence?” was displayed on every trial where confidence ratings were 

required. The prompt was displayed 6.4° above fixation and appeared after successful entry of the 

perceptual decision. 

 Because some trials did not require confidence ratings, partial type 2 blocks would be shorter in 

duration than whole type 2 blocks if trial duration depended on participant response times, as it did in 

Experiments 1 and 2. Therefore, in order to standardize the temporal duration of the experiment, the 

duration of each trial and the duration of each break period were set constant. In Experiment 1, 

participants entered both the stimulus judgment and confidence rating in 2 seconds or less for 92% of all 

trials. Therefore, following each stimulus presentation in Experiment 2, there was a fixed response 

period of 2 seconds, during which participants had to enter the required stimulus and confidence 

responses. After the response period and prior to the next stimulus presentation, a crosshair was 

displayed for 0.5 sec. Altogether, each trial lasted 2.533 s, a close match to the mean trial duration of 

2.315 s in Experiment 1. Additionally, all break periods between blocks were set to 1 minute. When only 

10 s of break time were left, three auditory tones alerted participants to prepare for the upcoming 
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block, and a timer counting down the remaining seconds of the break period was presented on the 

screen. 

 

Experiment 4 

Participants 

 Thirty-three Columbia University students participated in the experiment. Participants gave 

informed consent and were paid $10 for approximately one hour of participation. The research was 

approved by the Columbia University’s Committee for the Protection of Human Subjects. 

 Six participants were omitted from data analysis due to using the highest point wager (see 

below) on 93% of all trials, an extreme bias in wagering that renders meaningful analysis of type 2 data 

difficult. 

 

Experimental procedure 

 Experimental design was identical to Experiment 3, with the following exceptions. 

 In Experiment 4, the confidence rating system was replaced with a point wagering system. 

Participants were instructed that, following each stimulus identification response, they would 

sometimes be prompted to wager points on their stimulus decision. Participants could wager between 1 

and 4 points. For correct trials, the number of wagered points was added to a running point tally, 

whereas for incorrect trials, the number of wagered points was subtracted from the tally.  

 Participants were instructed that their goal was to maximize the number of points they received 

over the whole course of the experiment. They were given the following guidelines for maximizing 

points: (1) get as many stimulus decisions correct as possible; (2) although the optimal wagering strategy 

is to wager 4 points for correct trials and 1 point for incorrect trials, the participant does not have 

perfect knowledge of which trials are incorrect, and high wagers for incorrect responses are costly. Thus, 
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participants were encouraged to wager points according to the best estimate of the likelihood that the 

stimulus response was correct, and so the entire wagering scale should be utilized in order to reflect 

variations in this estimated likelihood across trials. 

 For non-wagering trials, participants were instructed that correct trials would add 3 points to 

their tally and incorrect trials would subtract 3 points from their tally. Additionally, in order to 

incentivize participants to enter all required responses for each trial, they were informed that 10 points 

were subtracted from the tally for any trial where not all required responses were entered within the 2 

second time limit. 

 During break periods, participants were provided with feedback on their wagering performance. 

They were shown how many points they had earned in the previous block, how many points they could 

have earned with an “optimal” wagering strategy (i.e., had they wagered 4 points for all correct 

responses and 1 point for all incorrect responses), and their overall wagering efficiency (the former 

quantity divided by the latter). The same information was provided for overall wagering performance 

across all blocks thus far completed. 

 The text prompts used in Experiment 3 to inform participants which kind of block was about to 

come up, and to prompt them to enter wagers on trials where wagers were required, were the same as 

in Experiment 2 except the word “confidence” was replaced by “wager.” 

 

Data analysis 

  We measured perceptual and metacognitive performance in the visual task using signal 

detection theory (SDT) analysis (Green & Swets, 1966; Macmillan & Creelman, 2005; Appendix A). We 

defined hit rate (HR) as the probability that the subject reported that the grating was on the right, given 

that the grating was on the right, and false alarm rate (FAR) as the probability that the subject reported 
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that the grating was on the right, given that the grating was on the left. We calculated d’ = z(HR) – z(FAR) 

and used d’ to quantify sensitivity in the visual discrimination task.  

We similarly quantified metacognitive sensitivity, i.e. the efficacy with which confidence ratings 

discriminate between a subject’s own correct and incorrect responses, with meta-d’ (Maniscalco & Lau, 

2012; Appendix A). Specifically, we found the value of meta-d’ that jointly maximized the likelihood of 

the response-specific type 2 ROC curves, where response-specific type 2 ROC curves are derived from 

“type 2” probabilities of the general form P(confidence = c | stimulus = s and response = r). 

Maximization of likelihood was achieved using the Optimization Toolbox in MATLAB (MathWorks, 

Natick, MA). Essentially, estimating meta-d’ in this analysis amounts to fitting the SDT model to the type 

2 probabilities for every possible permutation of stimulus, response, and confidence level. Please see 

Appendix A for a more in-depth treatment of the methodology for estimating meta-d’.  

 

Monte Carlo SDT simulations 

 We performed Monte Carlo SDT simulations in order to assess the extent to which observed 

changes in perceptual and metacognitive performance over time deviated from SDT expectation. We 

structured the simulation so as to closely mirror key features of the empirical data across Experiments 1 

– 4.  

 For each subject in Experiments 1 – 4, we binned together all trials occurring in the first half of 

an experimental block and computed d’ (call this d’1), and similarly binned together all trials occurring in 

the second half of an experimental block and computed d’ (call this d’2). (For Experiments 3 and 4, data 

was gathered only from blocks in which confidence ratings or wagers were provided on every trial.) 

Visual inspection of the scatterplot of d’2 vs d’1 suggested that these variables were roughly distributed 

as a bivariate normal distribution. Therefore, we computed the mean  1.56371.6464  and covariance 
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








0.45900.4105

0.41050.4520
 for d’1 and d’2 across all experiments, and used a bivariate normal distribution with 

this mean and covariance as the basis for subsequent statistical sampling. 

 In Experiment 1, 500 trials contributed to each estimate of d’1 and d’2, whereas this number was 

reduced to 255 trials in Experiment 2 and 250 trials in Experiments 3 and 4 (after limiting the analysis to 

blocks where confidence ratings were provided on every trial). Therefore, in all simulations, 250 

simulated “trials” contributed to the estimate of each SDT parameter for each simulated subject. 

Because the average number of subjects entered into the analysis for Experiments 1 – 4 was 28.5, each 

simulation contained data for 30 simulated subjects. 

 

Simulation procedure 

 Simulations proceeded as follows. We simulated 2000 experiments, where each experiment had 

30 simulated subjects, with a total of 500 simulated trials for each subject.  

 For each subject, we first obtained “true” values for d’1 and d’2 by randomly sampling from the 

bivariate normal distribution described above. If this resulted in any negative values, the sampling 

procedure was repeated until both d’ values were positive. These “true” d’ values were used as the basis 

for subsequent sampling in order to obtain “simulated” values for d’ and meta-d’, as described below. 

 We also created a unique set of decision criteria for each subject. Decision criteria were 

initialized to values of -2, -1.75, -.75, 0, .75, 1.75, 2. In order to create different decision criteria for 

different simulated subjects, a small amount of random noise from N(0, .5) was added to the initial 

values of the decision criteria. Decision criteria were then re-sorted to ensure they were in ascending 

order. Once the values of the decision criteria were determined for a simulated subject, these same 

criteria values were used for all simulated trials without any further variation. 
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 For the first block half consisting of 250 trials, 125 simulated “S1” trials (corresponding to the 

experimental condition where the grating was on the left) generated 125 sensory samples drawn from 

the normal distribution N(-d’1/2,  1). Another 125 simulated “S2” trials (corresponding to the 

experimental condition where where the grating was on the right) generated 125 sensory samples 

drawn from N(+d’1/2,  1). (These reflect the normal distributions of sensory evidence contingent on 

stimulus presentation posited by SDT.) Each such sample was compared to the decision criteria, and this 

comparison determined the simulated subject’s response for each trial (Macmillan & Creelman, 2005). 

Responses for the perceptual task could be either “S1” (i.e. “grating was on the left”) or “S2” (i.e. 

“grating was on the right”), and responses for the metacognitive task were a confidence rating ranging 

from values of 1 through 4. A similar procedure was used to simulate sensory samples and behavioral 

responses for the second block half of 250 trials. 

 Now that each trial was associated with a “true” stimulus configuration as well as the simulated 

subject’s perceptual and metacognitive judgments, we were able to compute d’ and meta-d’ for the first 

and second block half for each simulated subject using standard SDT analyses (Macmillan & Creelman, 

2005; Maniscalco & Lau, 2012). 

 

Modulation of simulated results using aPFC data from Experiment 2 

 Analysis of Experiment 2 suggested a model whereby aPFC gray matter volume is positively 

associated with both meta-d’1 and Δd’ (Results; Figure 4-5). In order to take these effects into account in 

the simulations, we used the following procedure. Using the data from Experiment 2, we applied a 

regression analysis to estimate the β values for the following equation: 

(1) aPFCdata = β1 * Δd’data + β0 

For the analysis of metacognitive performance, we defined the ratio of meta-d’ to d’ in the first 

block half as 



116 

 

 

 

(2) M1, data = meta-d’1, data / d’1, data 

 Using data from Experiment 2, we applied another regression analysis to estimate the β values 

for the following equation: 

(3) M1, data = β3 * aPFCdata + β2 

 On the basis of the β values obtained from the regression analysis on (1) and the simulated 

values of Δd’, we assigned each simulated subject an aPFC volume: 

(4)  aPFCsim = β1 * Δd’sim + β0 

 We then used the obtained value of aPFCsim to adjust the simulated subject’s simulated value for 

M1 as follows. 

(5) M1, adj = β3 * aPFCsim + M1, sim 

 Since aPFCdata was scaled in such a way that the mean value was 0, the coefficient β2 derived 

from regression analysis on equation (3) codes the mean value of M1 in the data, which was 0.865. 

However, in SDT simulations, the mean value of M1 was 0.996, consistent with the SDT expectation that 

meta-d’ = d’ and therefore meta-d’ / d’ = 1 (Maniscalco & Lau, 2012). Thus, applying the β2 coefficient to 

the simulated data would have been inappropriate. Instead, we replaced the β2 coefficient (an estimate 

of the mean value of M1 in the empirical data) with the actual value of M1 derived for each simulated 

subject. This has the benefit of retaining natural between-subject sampling variation in the values of M1 

arising from the Monte Carlo simulation procedure when calculating the value for M1, adj. 

 Finally, we obtained a new value for meta-d’1, sim using the following equation. 

(6) meta-d’1, adj = M1, adj * d’1, sim 

 Results of the “SDT + aPFC” simulation displayed in Figure 7 are derived by taking the same 

simulated data used for the “SDT” simulation, with the exception that values of meta-d’1, sim were 

replaced by the value of meta-d’1, adj calculated for each simulated subject. This had the effect of 
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modulating the simulated data set such that the relationships between simulated aPFC volume, Δd’, and 

meta-d’1 were similar to the relationships empirically observed in Experiment 2. 

Analysis of correlations between Δmeta-d’ and Δd’ 

 Each of the 2000 simulated experiments contained 30 simulated subjects, and so 30 values of 

Δd’sim and Δmeta-d’sim. For each simulated experiment, we calculated the Pearson’s r correlation 

coefficient between Δd’sim and Δmeta-d’sim. In order to mitigate the influence of outliers, we excluded 

data from all simulated subjects with any d’ value lower than 0.25 or higher than 3. 

 This resulted in 2000 simulated values for Pearson’s r. We used these 2000 values in order to 

estimate the sampling distribution of r with and without the aPFC modulation of the SDT simulations, as 

displayed in Figure 7C. Estimates of the sampling distribution in turn allowed us to characterize the 

likelihood of the empirically observed r values in Experiments 1 – 4 under the null SDT model and the 

SDT model augmented by the aPFC findings. 

 

Regression of Δmeta-d’ onto Δd’ 

 For Experiments 1 – 4, one analysis of interest was to characterize the empirical relationship 

between Δmeta-d’ and Δd’. Ideally, regressions between these variables should take into account that 

both are subject to sampling error. However, errors-in-variables approaches to regression typically 

require some knowledge or assumptions about the error structures of the dependent and independent 

variables.   

 We capitalized on the results of the Monte Carlo SDT simulations in order to characterize the 

error structures for these measures. As described above, for each simulated subject, we selected “true” 

values for d’1, true and d’2, true, and then repeatedly performed a sampling procedure using the SDT model 

parameterized with d’1, true and d’2, true in order to obtain corresponding “simulated” values d’1, sim, d’2, sim, 

meta-d’1, sim, and meta-d’2, sim. For each simulated subject, we calculated the sampling error for Δd’ as 
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(7) errorΔd’ = Δd’ true - Δd’ sim 

 Likewise, since on the basic SDT model used here, meta-d’ = d’, it follows that Δmeta-d’ true = Δd’ 

true. Thus, we calculated error for meta-d’ as 

(8) errorΔmeta-d’ = Δd’true - Δmeta-d’sim 

 Sampling errors for Δd’ and Δmeta-d’ were not correlated (Pearson’s r = -0.015). Therefore, it 

was appropriate to use Deming regression to characterize their relationship (Deming, 1943). Deming 

regression requires knowing the value of the parameter δ, which is the ratio of the variances of error in 

the dependent and independent variables. On the basis of the simulation outcomes, we estimated that 

δ = var(errorΔmeta-d’) / var(errorΔd’) = 2.1535. Therefore, for all regressions of Δmeta-d’ onto Δd’ reported 

in this paper, we used Deming regression with δ = 2.1535. 

 

Results 

 According to SDT, for an ideal observer, perceptual performance should be related to 

metacognitive performance such that d’ = meta-d’ (Maniscalco & Lau, 2012). Deviations from this 

expectation due to sampling error and suboptimal metacognitive performance are to be expected, but a 

robust SDT prediction is that between and within subjects, d’ and meta-d’ should positively correlate. 

Substantiating this general prediction, we found that overall d’ correlated positively with overall meta-d’ 

in all four experiments (rs > .5, ps < .03), and also that d’ correlated positively with meta-d’ within each 

block-half for all experiments (rs > .4, ps < .02), with the lone exception of a non-significant correlation in 

the first block-half of Experiment 3 (r = .15, p = .5). It is thus surprising that, although d’ and meta-d’ 

were consistently positively correlated overall and within each block half, changes in these measures 

across block half consistently failed to positively correlate, as described below. 

 

Experiment 1 
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 In Experiment 1, we analyzed the time course of perceptual and metacognitive performance 

within brief experimental blocks of trials. Subjects completed 10 blocks, each containing 100 trials, and 

received a self-terminated rest period of up to one minute between blocks.  

 On each trial, two patches of visual noise were presented to the left and right of fixation, and in 

one of these patches a sinusoidal grating was present (Figure 4-1 A). Subjects provided a two interval 

forced choice discrimination on whether the grating was in the left or right stimulus, and then rated 

decision confidence on a scale of 1 through 4. Trial duration depended on response times; mean block 

duration across all participants was 231.5 s.  

 To analyze perceptual and metacognitive performance over the course of a block of trials, we 

binned the trials from the first and second half of each experimental block. Thus, bin 1 contained the 

first 50 trials from all 10 blocks, for a total of 500 trials, and bin 2 similarly contained the last 50 trials 

from all 10 blocks. For each block half, we measured stimulus identification performance independently 

of response bias by using the signal detection theoretic (SDT) measure d’ (Macmillan & Creelman, 2005). 

We measured metacognitive sensitivity (i.e. how well confidence ratings track accuracy) independently 

of biases in confidence rating using the SDT-inspired measure meta-d’ (Maniscalco & Lau, 2012). For 

convenience, we will sometimes refer to stimulus identification performance as “type 1 performance” 

and metacognitive sensitivity as “type 2 performance” (Clarke et al., 1959). Because meta-d’ expresses 

type 2 performance on the same scale as the type 1 measure d’, numerical values of meta-d’ and d’ may 

be compared directly. Meta-d’ is defined such that meta-d’ = d’ for an observer whose metacognitive 

performance conforms to the expectations of the classical SDT model (Maniscalco & Lau, 2012). 

 The results of this analysis are plotted in Figure 4-2 A. To assess the effects of time passage 

within a block of trials on task performance, we conducted a 2 (Task Type: type 1, type 2) x 2 (Time: 1st 

block half, 2nd block half) repeated measures ANOVA. The ANOVA revealed a significant Task Type x  
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Figure 4-2. Results for Experiment 1. (A) Mean perceptual (d’) and metacognitive (meta-d’) 

performance over time. We analyzed the dynamics of subjects’ task performance over the timecourse 

of blocks of 100 trials. Interestingly, we observed that meta-d’ decreased over time whereas d’ 

remained constant (Task Type x Time, p = .02), suggestive of a selective fatigue effect for metacognition. 

Error bars represent within-subjects standard errors (Morey, 2008). (B) Between-subject correlation of 

changes in perceptual and metacognitive performance. We computed the change in d’ and meta-d’ 

between the first and second half of all blocks (i.e. Δd’ = d’2nd block half – d’1st block half; Δmeta-d’ = meta-d’2nd 

block half – meta-d’1st block half) and found that these measures were inversely related, in stark contrast to SDT 

expectation. This suggests a tradeoff effect whereby maintenance of perceptual performance comes at 

the expense of maintenance in metacognitive performance, and vice versa.  

 

 

Time interaction (p = .024), driven by the fact that over time, d’ remained constant (p = .7) whereas 

meta-d’ decreased (p = .011).  

 We also assessed the relationship between changes in perceptual task performance and 

metacognitive performance over time. For each participant, we calculated d’ and meta-d’ using trials 

from the first and second halves of all blocks. We defined Δd’ = d’2 - d’1 and Δmeta-d’ = meta-d’2 - meta-

d’1 , where subscripts indicate block half. Since the expectation under SDT is that meta-d’ = d’, it follows 

that under SDT expectation, Δmeta-d’ = Δd’.  



121 

 

 

 

 Contrary to SDT expectation, empirically Δd’ and Δmeta-d’ exhibited an inverse relationship 

(Figure 4-2 B). The observed Pearson’s r correlation was -.18, whereas the SDT-expected value for r, 

according to computational simulations, was .41 (see Figure4- 7 C and “Monte Carlo SDT simulations” in 

Methods). Under the null hypothesis that changes in d’ and meta-d’ are generated by an SDT process 

with an expected r = .41, we estimate that the empirically observed r = -.18 corresponds to a one-tailed 

p-value of 0.0015 (Figure 4-7 C).  Thus, according to SDT, the observed inverse relationship between Δd’ 

and Δmeta-d’ is highly unlikely. The Deming regression slope relating Δd’ and Δmeta-d’ was -3.12, lower 

than the SDT-expected value of 1 (see “Regression of Δmeta-d’ onto Δd’” in Methods).  

 These findings suggest that the observed dynamics of perceptual and metacognitive 

performance over time violate SDT expectation in multiple respects. We found that over time, meta-d’ 

decreased even as d’ remained constant (Figure 4-2 A), suggesting that overall, perceptual and 

metacognitive performance may vary independently. We further found that changes in perceptual and 

metacognitive performance over time were negatively, not positively, correlated (Figure 4-2 B). This 

surprising result is suggestive of a tradeoff in vigilance for the two types of tasks. In order to shed 

further light on this finding, we used a similar experimental design in Experiment 2 and collected 

structural MRI data. 

 

Experiment 2 

 In Experiment 2, we used a nearly identical task design as in Experiment 1, with minor 

adjustments (see Methods). For each subject, we collected estimates of gray matter volume and 

analyzed the relationship between task performance over time and brain structure using voxel-based 

morphometry. 

 As in Experiment 1, trial duration was not fixed, but determined by participant response times. 

On average, each block of 102 trials lasted 242.2 s. We performed a 2 (Task Type: type 1, type 2) x 2  
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Figure 4-3. Brain regions selected for voxel based morphometry analysis. Two regions of interest in 

anterior prefrontal cortex (aPFC) were selected for analysis on the basis of positive correlations with 

metacognitive efficiency (meta-d’ / d’). These regions were identified in a previous analysis of the data, 

conducted in McCurdy et al. (2013), and are consistent with previous findings relating metacognitive 

sensitivity to aPFC gray matter volume (Fleming et al., 2010). To obtain the most robust estimate of 

aPFC volume, we combined both aPFC clusters to produce an average volume, as in McCurdy et al. Peak 

voxel coordinate for left aPFC = [-12 54 16]. Peak voxel coordinate for right aPFC = [32 50 7]. Both 

survived cluster family-wise-error correction. Figure adapted from McCurdy et al. 

 

 

(Time: 1st block half, 2nd block half) repeated measures ANOVA, but there was neither a main effect of 

Time (p = .3) nor a Task Type x Time interaction (p = .14; Figure 4-4 A). However, as in Experiment 1, the 

between-subject relationship between Δd’ and Δmeta-d’ failed to conform to SDT expectation (Figure 4-

4 B). The Pearson’s r correlation coefficient for Δd’ and Δmeta-d’ was .07, whereas the SDT-expected 

value for r, according to computational simulations, was .41 (see Figure 4-7 C and “Monte Carlo SDT 

simulations” in Methods). Under the null hypothesis that changes in d’ and meta-d’ are generated by an 

SDT process with an expected r = .41, we estimate that the empirically observed r = .07 corresponds to a 

one-tailed p-value of 0.026 (Figure 4-7 C).  The Deming regression slope relating Δd’ and Δmeta-d’ was 

0.18, lower than the SDT-expected value of 1 (see “Regression of Δmeta-d’ onto Δd’” in Methods). Thus,  
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Figure 4-4. Results for Experiment 2. A) Mean perceptual (d’) and metacognitive (meta-d’) 

performance over time. On average, neither perceptual nor metacognitive performance changed over 

time (Time, p = .3; Task Type x Time, p = .14). B) Between-subject correlation of changes in perceptual 

and metacognitive performance. As in Experiment 1, the relationship between changes in d’ and meta-

d’ failed to match SDT expectation. C, D) Perception and metacognition as a function of aPFC volume. A 

median split analysis revealed that subjects with lower aPFC volume tended to experience decreases in 

d’ and increases in meta-d’ (Task Type x Time x aPFC Volume, p = .03), contrary to the pattern of 

subjects with higher aPFC volume. This suggests that the between-subject inverse relationship between 

changes in d’ and meta-d’ may be partially accounted for by individual differences in aPFC volume. Error 

bars in panels A, C, and D represent within-subjects standard errors (Morey, 2008). 
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as in Experiment 1, the relationship between maintenance of perceptual and metacognitive 

performance was below SDT expectation.  

 We went on to relate this variability in metacognitive efficiency to inter-individual differences in 

brain structure. In a previous study (McCurdy et al., 2013), we defined a measure of metacognitive 

efficiency on a visual behavioral task (Figure 4-1 A) as the ratio meta-d’ / d’; for SDT-ideal observers, this 

ratio should equal 1, and for metacognitively suboptimal observers it should be less than 1. Voxel-based 

morphometry analysis revealed that metacognitive efficiency was positively correlated with gray matter 

volume in regions in anterior prefrontal cortex (aPFC) (Figure 4-3; adapted from McCurdy et al.). In the 

present study, we focused on the two regions in the aPFC identified by McCurdy et al. as regions of 

interest (ROIs). (Peak voxel coordinate for left aPFC = [-12 54 16]; peak voxel coordinate for right aPFC = 

[32 50 7], both survived cluster family-wise-error correction.) The two clusters were used to define ROIs 

using the MarsBar toolbox (Brett, Anton, Valabregue, & Poline, 2002) and gray matter volume in the 

aPFC clusters was calculated. To obtain the most robust estimate of aPFC volume, we combined both 

aPFC clusters in the region to produce an average volume, as in McCurdy et al.; all subsequent analyses 

refer to this combined data as aPFC. 

 In order to assess how aPFC volume influenced the tradeoff effect, we performed a median split 

on aPFC volume and calculated d’ and meta-d’ over time for subjects with low and high aPFC volume 

(Figure 4-4 C-D). A 2 (Task Type: type 1, type 2) x 2 (Time: 1st block half, 2nd block half) x 2 (aPFC 

Volume: low / high) ANOVA revealed a significant Task Type x aPFC Volume interaction (p = .002) and a 

significant Task Type x Time x aPFC Volume interaction (p = .03). On average, subjects with high aPFC 

volume did not exhibit decreases in d’ or meta-d’ over time (Task Type x Time, p = .7), and were also 

metacognitively optimal in the sense that meta-d’ was not significantly different from d’ (Task Type, p = 

.4). By contrast, subjects with low aPFC volume were metacognitively suboptimal overall in the sense 

that meta-d’ was significantly lower than d’ (Task Type, p = .002). Crucially, low aPFC subjects also 
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exhibited a numerical decrease in d’ over time as well as an increase in meta-d’, such that the 

interaction was significant (Task Type x Time, p = .01). This pattern of changes in d’ and meta-d’ having 

the opposite sign for low aPFC subjects mirrors the tradeoff effect exhibited in Experiment 1 (Figure 4-2 

B), Experiment 2 (Figure 4-4 B), and Experiments 3 and 4 (Figure 4-6 C). Thus, individual differences in 

aPFC volume are a candidate mechanism to explain the observed tradeoff effect between Δd’ and 

Δmeta-d’.  

 We further explored the relationship of aPFC volume to changes over time in d’ and meta-d’ by 

analyzing the patterns of correlation between d’1, meta-d’1, d’2, meta-d’2, and aPFC volume. As 

expected, d’1 and d’2 positively correlated (Pearson’s r = 0.82, p < .001; Figure 4-5 A). Consistent with 

SDT expectation, meta-d’ positively correlated with d’ in each block half (rs = 0.57, 0.51; ps < .001; Figure 

4-5 B). 

aPFC volume did not correlate with either d’1 (p = .8) or d’2 (p = .2), but a partial correlation 

between aPFC volume and d’2, controlling for d’1, was significant (r = .33, p = .03; Figure 4-5 C). Thus, 

larger aPFC volume was associated with better perceptual vigilance (higher Δd’).  

 aPFC volume was significantly correlated with meta-d’1 (r = .43, p = .005), and this correlation 

remained significant when controlling for d’1 (r = .50, p = .001; Figure 5C). Although aPFC volume also 

correlated with meta-d’2 (r = .33, p = .04), this correlation did not remain significant when controlling for 

d’2 (r = .26, p = .1) or meta-d’1 (r = -.02, p = .9). Indeed, although aPFC regions were selected on the basis 

of their correlation with overall meta-d’ / d’ (r = .34, p = .03), aPFC volume correlated with meta-d’1 / d’1 

(r  = .51, p = .0006) but not meta-d’2 / d’2 (r = .1, p = .5). Thus, aPFC volume robustly correlated with 

metacognitive sensitivity only in the first block half. The significant correlation between aPFC volume 

and meta-d’2 appears to be attributable to the fact that aPFC volume correlates with d’2, which in turn 

correlates with meta-d’2. Because larger aPFC volume was associated with higher initial metacognitive  

 



126 

 

 

 

 

Figure 4-5. Model of the relationship between aPFC volume and changes in perceptual and 

metacognitive performance. Correlation analyses from Experiment 2 reveal significant positive 

correlations between (A) d’ across block halves (p < .001); (B) meta-d’ and d’ within block halves (ps < 

.001); (C) aPFC volume with first-half meta-d’ (p = .001) and second-half d’ (p = .03), after removing 

variation due to first-half d’. (Lines of best fit for both correlations overlap.) (D) A schematic 

representation based on the correlations exhibited in panels A-C. 

 

 

sensitivity only, the sign of the correlation between aPFC volume and Δmeta-d’ was negative (though 

non-significant; r = -.15, p = .3). 

 In Figure 4-5 D, we present a simple schematic account to summarize these patterns of 

correlations. On this account, d’ in the 2nd block half depends heavily on initial d’, and meta-d’ in each 
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block half is largely a consequence of d’. Without further components, this account would be consistent 

with SDT expectation. However, there is an additional component corresponding to aPFC volume, and 

this factor contributes both to better initial metacognition and to better maintenance of perceptual 

performance over time. Larger aPFC is associated with larger meta-d’1 and therefore with smaller 

Δmeta-d’. Larger aPFC is also associated with larger Δd’. Since larger aPFC is associated with positive 

values for Δd’ and negative values for Δmeta-d’, the contributions of aPFC appear to drive the deviation 

from SDT expectation encapsulated in the tradeoff relationship between Δd’ and Δmeta-d’. (See also 

“SDT simulations better characterize the data when taking into account the aPFC model” below.) 

 On this account, aPFC could be considered as a flexible cognitive resource that can contribute to 

both metacognitive monitoring and top-down control of perceptual task performance. To provide an 

additional test of this account, in Experiments 3 and 4 we included conditions where subjects did not 

have to provide metacognitive judgments in the first half of some experimental blocks. On this 

“resource” account, we might expect that when subjects do not have the initial cognitive burden of 

placing metacognitive judgments, the resources shared by perceptual and metacognitive processes can 

be better applied to the task of maintaining perceptual vigilance. 

 

Experiments 3 and 4 

 In Experiment 3, we used a design similar to Experiment 1, with the primary difference that in 

even-numbered blocks, subjects were not asked to provide confidence ratings in the first half of each 

block (Figure 4-1 B). We shall call these blocks “partial type 2 blocks,” as opposed to the blocks in which 

metacognitive judgments are required on every trial, which we shall call “whole type 2 blocks.” 

According to a resource interpretation of the aPFC schematic (Figure 4-5 D), in the absence of the need 

to “boost” metacognitive performance, subjects should be better at maintaining perceptual 

performance over time in partial than in whole type 2 blocks (Figure 4-6 D). Experiment 4 was similar to 
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Experiment 3, but used a point-wagering system with feedback on perceptual and metacognitive after 

each block (Figure 4-1 C). In both experiments, trial length was a constant 2.533 s, yielding blocks of a 

253.3 s duration. 

 We verified that, as in Experiments 1 and 2, Δd’ and Δmeta-d’ in whole type 2 blocks exhibited a 

tradeoff in violation of SDT expectation (Figure 4-6 C). The Pearson’s r correlation coefficients for Δd’ 

and Δmeta-d’ were -.22 and -.08 in Experiment 3 and 4, respectively, whereas the SDT-expected value 

for r, according to computational simulations, was .41 (see Figure 4-7 C and “Monte Carlo SDT 

simulations” in Supplemental Information). Under the null hypothesis that changes in d’ and meta-d’ are 

generated by an SDT process with an expected r = .41, we estimate that the empirically observed values 

of r = -.22 and r = -.08 correspond to one-tailed p-values of 0.001 and .004 in Experiment 3 and 4, 

respectively (Figure 4-7 C).  The Deming regression slope relating Δd’ and Δmeta-d’ were -6.22 and -2.29, 

lower than the SDT-expected value of 1 (see “Regression of Δmeta-d’ onto Δd’” in Supplemental 

Information). 

 Next, we tested whether the manipulation on task demand yielded the expected effect on 

perceptual performance over time. A 2 (Block Type: partial type 2, whole type 2) x 2 (Time: 1st block 

half, 2nd block half) x 2 (Experiment: 3, 4) mixed design ANOVA on d’ revealed a significant Block Type x 

Time interaction (p = .002). The interaction is driven by the fact that Δd’ is smaller for whole type 2 

blocks (mean = -.20) than for partial type 2 blocks (mean = .04) (Figure 4-6 A, B).  

 The Block Type x Time x Experiment interaction was not significant (p = .4), suggesting that the 

difference in Δd’ for whole and partial type 2 blocks is robust across Experiment 3 (where participants 

made metacognitive judgments by rating confidence) and Experiment 4 (where participants made 

metacognitive judgments by wagering points, were instructed to maximize points earned, and received 

performance feedback after each block). Thus, the observed decrement in perceptual performance is  
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Figure 4-6. Results for Experiments 3 and 4. (A, B) Mean perceptual (d’) and metacognitive (meta-d’) 

performance over time. When subjects were not required to place metacognitive judgments in the first 

block half (partial type 2 blocks), perceptual vigilance increased (Block Type x Time interaction, p = .002) 

but metacognition in the second block half, as measured by meta-d’2 / d’2,  was not affected (Block type, 

p > .4). Error bars represent within-subjects standard errors (Morey, 2008). (C) Between-subject 

correlation of changes in perceptual and metacognitive performance. As in Experiments 1 and 2, the 

between-subject relationships between changes in d’ and meta-d’ were substantially lower than SDT 

expectation. (D) Resource account of findings. The results of Experiments 3 and 4 can be understood in 

terms of the model derived from Experiment 2. By relieving subjects of the requirement to place 

metacognitive judgments in the first block half, aPFC resources normally dedicated to initial 

metacognitive performance may have been spared for the separate task of maintaining perceptual 

vigilance. 
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not attributable to lack of motivation or lack of a clear objective for how to perform the metacognitive 

task. 

 A 2 (Block Type: whole, partial) x 2 (Experiment: 3, 4) ANOVA yielded a nearly significant main 

effect of Block Type on meta-d’2 (p = .053), such that meta-d’2 was higher for partial type 2 blocks. 

However, the same ANOVA design shows that d’2 was also higher for partial type 2 blocks (p < .001), and 

so the larger value for meta-d’2 in partial type 2 blocks was likely mediated by the larger d’2 value. 

Indeed, the same ANOVA analysis, when applied to the ratio meta-d’2 / d’2, did not reveal a main effect 

of Block Type (p > .4). Thus, the experimental manipulation on initial metacognitive demand did not 

influence metacognitive sensitivity in the second block half. 

 

SDT simulations better characterize the data when taking into account the influence of aPFC 

 Finally, we performed Monte Carlo SDT simulations in order to computationally assess the 

empirical results in light of SDT expectation, and to investigate whether the SDT model could yield a 

closer fit to the empirical data when taking into account the relationship between aPFC volume and task 

performance (Figure 4-5 D). See “Monte Carlo SDT simulations” in Methods for full methods.  

 For each simulated subject, we defined the parameters of an SDT model specifying performance 

in the first and second block half of a binary decision task with confidence ratings. SDT model 

parameters were sampled from distributions closely reflecting the statistical patterns in Experiments 1 – 

4. Random samples were then drawn from the SDT models in order to generate a simulated value for 

Δd’ and Δmeta-d’. In all, we simulated 2000 experiments, each containing 30 simulated subjects. 

Consistent with SDT expectation, these simulations yielded a strong positive correlation between Δd’ 

and Δmeta-d’ (Figure 4-7 A). Next, we adjusted the initial simulation values for meta-d’1 on the basis of 

regression-estimated relationships between Δd’, meta-d’1, and aPFC volume in Experiment 2. This  
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Figure 4-7. Signal detection theory simulations of the relationship between changes in perceptual and 

metacognitive sensitivity. (A) Basic SDT model. In a series of SDT simulations closely matching the 

properties of Experiments 1 – 4, changes in d’ and meta-d’ across block half are strongly positively 

related. Displayed is a contour plot based on the two-dimensional histogram of Δmeta-d’ vs Δd’ for all 

simulated subjects in all simulated experiments. White line is line of best fit to simulated data; gray 

dashed lines are lines of best fit from data in Experiments 1 – 4. (B) SDT model with aPFC adjustment. 

We adjusted the outcomes of the initial SDT simulation so as to conform to the empirically observed 

relationships between aPFC volume, Δd’, and meta-d’1 / d’1 in Experiment 2 (see Methods for details). 

This substantially weakened the relationship between Δd’ and Δmeta-d’ in the simulated data, as 

demonstrated by a more circular contour plot and smaller slope for the line of best fit. (C) Distributions 

of correlation coefficients for Δd’ and Δmeta-d’. Across 2000 simulated experiments, the basic SDT 

model yielded correlation values consistently higher than those observed in Experiments 1 – 4 (one-

tailed p-values: 0.002, 0.026, 0.001, 0.004). The adjusted model incorporating the aPFC findings from 

Experiment 2 yielded a distribution of correlations more closely in line with the data (one-tailed p-

values: 0.067, 0.383, 0.043, 0.161). 
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adjustment significantly attenuated the positive correlation between simulated values for Δd’ and 

Δmeta-d’ (Figure 4-7 B).  

 For each simulated experiment, we computed the Pearson’s r correlation for Δd’ and Δmeta-d’, 

yielding 2000 r values. The distribution of simulated r values under the “SDT” and “SDT + aPFC” models 

is displayed in Figure 4-7 C alongside the empirically observed r values from Experiments 1 – 4.  Under 

the “SDT” model, the distribution’s mean value is 0.412 and only 0.9% of all values are lower than zero. 

Under the “SDT + aPFC” model, the mean shifts to 0.127 and 25.7% of all values are lower than zero, 

which is in better agreement with the data. For each empirical r value, we can compute a corresponding 

one-tailed p-value using the r distribution for the “SDT” and “SDT + aPFC” models. The empirical r values 

from Experiments 1 – 4 are -0.18, 0.07, -0.22, and -.08. Under the “SDT” model, these correspond to p-

values of 0.002, 0.026, 0.001, and 0.004. Under the “SDT + aPFC” model, these p-values increase on 

average by a factor of about 30, to 0.067, 0.383, 0.043, and 0.161. Thus, the “SDT + aPFC” model is 

considerably better in accommodating the observed patterns of correlation between Δd’ and Δmeta-d’ 

than is the standard SDT model. 

 

Discussion 

 In summary, across four experiments, we find a robust tradeoff effect whereby changes in 

perceptual and metacognitive sensitivity within a block of trials are negatively or weakly correlated, 

contradicting the strong positive relationship predicted by single-process signal detection theory (SDT). 

Voxel-based morphometry analysis suggests that this tradeoff effect may be explained by the 

contribution of neural resources in anterior prefrontal cortex (aPFC). Consistent with this account, 

perceptual vigilance decrements are alleviated when subjects are not required to provide metacognitive 

judgments in the first half of a block of trials. 
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Tradeoff relationship between perceptual and metacognitive vigilance 

 The classical SDT model, which has enjoyed considerable success in modeling two-choice 

decision paradigms with confidence ratings (Swets, 1986a; Macmillan & Creelman, 2005), predicts a 

strong, positive relationship between primary task performance and metacognitive performance (Galvin 

et al., 2003; Maniscalco & Lau, 2012). In agreement with this prediction, we found that overall d’ 

correlated positively with overall meta-d’ in all four experiments, and also that d’ correlated positively 

with meta-d’ in seven out of eight block halves in the four experiments. Thus, when considering the 

Pearson’s correlation between Δd’ and Δmeta-d’, we used SDT as the null hypothesis describing the 

expected distribution of correlation coefficients. We used Monte Carlo SDT simulations to construct the 

SDT-expected distribution of r values for Δd’ and Δmeta-d’, which yielded a distribution with a mean r 

value of .41 (see Figure 4-7 C and “Monte Carlo SDT simulations” in Methods). 

 We found that, although d’ and meta-d’ were robustly positively correlated overall and within 

block halves, nonetheless, changes in these measures across block half failed to exhibit positive 

correlations, contradicting SDT expectation. Importantly, although the correlation coefficients for Δd’ 

and Δmeta-d’ were small in magnitude, the relevant point of comparison is not with a distribution 

whose mean r = 0, but rather with the SDT distribution whose mean r > 0. The correlations in 

Experiments 1 – 4 significantly deviated from this SDT expectation. Thus, relative to the SDT-expected 

positive relationship, perceptual and metacognitive vigilance appeared to “trade off,” such that 

improvement in one precluded comparable improvement in the other. 

 

Interpreting the tradeoff relationship 

 Research on the perceptual vigilance decrement has suggested that the decrement is caused by 

the depletion of limited cognitive resources (e.g. Grier et al., 2003; Helton & Warm, 2008; Helton et al., 

2005; Warm et al., 2008). Experiment 2 of the present study suggests that regions of aPFC whose 
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anatomical structure has previously been associated with metacognitive sensitivity in visual tasks 

(Fleming et al., 2010; McCurdy et al., 2013) may partially instantiate the resources supporting 

perceptual vigilance, since larger gray matter volume in these regions is associated with smaller declines 

in perceptual sensitivity.   

 The gray matter volume of aPFC was also associated with better metacognitive sensitivity during 

the first, but not second, half of each block (Figure 4-4 C-D; Figure 4-5 C). This may have driven a 

negative relationship between aPFC volume and Δmeta-d’ in two ways. First, higher values for meta-d’1 

would directly lead to lower values for Δmeta-d’. Second, according to SDT, meta-d’ is theoretically 

constrained to be less than or equal to d’ (Maniscalco & Lau, 2012). Therefore, all else being equal, 

better meta-d’1 leaves less room for meta-d’2 to improve, entailing a smaller maximum possible value 

for Δmeta-d’.  

 Thus, aPFC simultaneously exhibited a positive association with Δd’ and a negative association 

with Δmeta-d’. Subjects with larger aPFC exhibited strong perceptual vigilance (higher Δd’) as well as 

SDT-ideal metacognitive performance (meta-d’ = d’; Figure 4-4 D). Conversely, subjects with smaller 

aPFC exhibited poorer perceptual vigilance (lower Δd’) and poorer initial metacognition (contributing to 

higher Δmeta-d’; Figure 4-4 C). In this way, individual differences in aPFC volume could produce the 

tradeoff effect whereby Δd’ and Δmeta-d’ failed to positively correlate (Figure 4-2 B, 4-4 B, 4-6 C). 

 One way of interpreting these findings is that perception and metacognition are subserved by 

separate processes that can independently tap into a common cognitive resource housed in aPFC. 

Presumably, as a block of trials wears on, resources would be increasingly allocated to the perceptual 

process (and thus away from the metacognitive process) in order to counteract the perceptual vigilance 

decrement (Figure 4-5 D).  

 This account views perception and metacognition as separate processes that can draw upon a 

common set of limited cognitive resources in a flexible manner, creating the potential for interference 
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and competition for resources when both tasks are performed concurrently (Kahneman, 1973; 

Matthews et al., 2000; Wickens, 2002). More generally, this interpretation is consistent with accounts 

ascribing a broadly domain-general functionality to prefrontal cortex in guiding behavior (e.g. Koechlin & 

Summerfield, 2007; Badre, 2008; Passingham & Wise, 2012).  

 An alternative account is that since larger aPFC is associated with superior visual metacognition, 

the positive association between aPFC volume and perceptual vigilance could be mediated by superior 

metacognitive monitoring. Higher metacognitive sensitivity entails better ability to gauge ongoing 

perceptual performance, which could enable better ongoing regulation of task performance. On this 

account, aPFC is not a domain-general resource, but rather serves a specifically metacognitive function. 

 However, if better metacognitive monitoring directly contributes to superior perceptual 

vigilance, we might expect that perceptual vigilance should decrease when subjects are not required to 

engage in metacognitive monitoring. The resource account makes the opposite prediction; relieving the 

burden of placing confidence ratings should free up resources to support perceptual vigilance. In 

Experiments 3 and 4, we found that subjects were indeed more perceptually vigilant when not required 

to place confidence ratings in the first half of a block, more in line with the resource account than the 

metacognitive monitoring account. However, we take this result to be suggestive rather than decisive. 

Ultimately, these hypotheses will need to be further explored in future research. 

 

Implications for models of metacognition 

 An active area of research concerns the relationship between perceptual and metacognitive 

processing. According to some accounts, seemingly complex and high-level functions such as 

metacognition and awareness actually bear simple and direct relationships to basic perceptual 

processing (Kepecs et al., 2008; Kiani and Shadlen, 2009; Kepecs and Mainen, 2012). The intuition 

behind these models is captured well by the conventional SDT model of confidence ratings, which 
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characterizes perceptual judgments and confidence ratings as originating from the comparison of the 

same sensory information to different decision criteria (Macmillan & Creelman, 2005; Appendix A). 

Crucially, if perceptual and metacognitive judgments are different evaluations of the same underlying 

sensory information, then they should have similar informational content (formally, d’ = meta-d’; Galvin 

et al., 2003; Maniscalco & Lau, 2012). 

 However, whereas the SDT model predicts a strong positive relationship between perceptual 

and metacognitive vigilance, we consistently observed this relationship to be neutral or negative. In our 

SDT-based simulations, we found that the empirical correlations between Δd’ and Δmeta-d’ could not 

plausibly be accounted for by sampling variation under the SDT model (Figure 4-7 A, C). However, 

adjusting the simulation outcomes to reflect the mediating effect of aPFC volume on the behavioral 

measures entailed a theoretical outcome more in line with the data (Figure 4-7 B, C). In turn, the fact 

that aPFC volume had an opposite direction of association with Δd’ and Δmeta-d’ suggests that 

perception and metacognition are separate processes with dissociable levels of sensitivity. 

 

Why do we give subjects short breaks in perceptual experiments? 

 Though originally found in the context of long task durations (30+ min), the vigilance decrement 

has been shown to arise as early as the first 5 – 10 minutes of task performance (e.g. Nuechterlein, 

Parasuraman, & Jiang, 1983; Temple et al., 2000), dependent on factors such as overall perceptual 

sensitivity, rate of stimulus presentation, type of stimuli used, and memory load (See et al., 1995). 

Vigilance decrements are further associated with subjective effects such as reduced arousal and 

elevated feelings of stress (Helton & Warm, 2008; Warm et al., 2008). Thus, a wide range of 

experimental tasks may be subjectively fatiguing and induce relatively rapid decrements in task 

performance. 
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 In the current work, we found that perceptual (Experiments 3 – 4) and metacognitive 

(Experiment 1) vigilance decrements can occur even in experimental blocks of approximately 4 – 5 

minutes in a fairly simple and standard visual discrimination task. Because we analyzed performance as 

a function of time across repeated blocks of trials, rather than analyzing the dynamics of task 

performance across a single prolonged block of trials, these results suggest a systematic pattern of 

performance decrements occurring within repeated blocks of trials that are nonetheless alleviated by 

regular intervals of rest. 

 What cognitive mechanisms benefit from the regular intervals of rest commonly used in 

perceptual experiments? The tradeoff between perceptual and metacognitive vigilance found in 

Experiments 1 – 4, and the elevation of perceptual vigilance solely by relieving metacognitive task 

demand in Experiments 3 – 4, suggest the workings of a higher-level cognitive resource. The results of 

Experiment 2 identify aPFC as a contributor to this resource. Thus, our results suggest that rest primarily 

refreshes high-level cognitive resources, located at least partially in aPFC, rather than lower-level 

sensory mechanisms. 
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General Discussion 

 

Summary of findings 

 The main thrust of this dissertation is to probe the relationship between objective and 

subjective performance in visual tasks in order to make inferences about the overall structure of the 

processes that underlie objective and subjective vision. We have demonstrated dissociations between 

objective and subjective aspects of visual processing caused by a variety of factors: stimulus properties 

(Chapter 1), dual task demands (Chapter 2), direct interference with brain activity (Chapter 3), and 

naturally occurring changes in performance over time (Chapter 4). In each case, the existence of the 

observed dissociation appears to be attributable to properties of the prefrontal cortex. Taken together, 

these findings are difficult to reconcile for some currently popular theories of subjective visual 

experience and metacognition, but are readily accounted for by higher-order, hierarchical models of the 

nature of subjective visual perception. 

 In Chapter 1, we replicated the finding of Lau and Passingham (2006) that objective stimulus 

discrimination performance and subjective reports of perceptual clarity in the metacontrast masking 

paradigm can dissociate. Although both objective and subjective measures are U-shaped functions of 

the target-mask stimulus onset asynchrony (SOA), these functions are asymmetric, such that there exist 

certain SOAs for which objective performance is equivalent but subjective reports of perceptual clarity 

differ. A formal comparison of a wide array of signal detection (SDT) models implementing Single 

Channel, Dual Channel, and Hierarchical structures suggests that the data are best accounted for by a 

Hierarchical model in which there exists an early, objective processing stage and a late, subjective 

processing stage. Processing in the early stage determines objective stimulus discrimination 

performance. Processing in the late stage, which generates a subjective report of perceptual clarity, 

inherits a somewhat weaker and noisier version of the information used to make the objective stimulus 
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judgment. According to the parameter values of the best-fitting Hierarchical model, short and long SOAs 

can elicit the same objective discrimination performance and different reports of subjective visibility 

because although early, objective perceptual processing is similar at both SOAs, the sensory signal is 

better transmitted to the later, subjective processing stage at the long SOA than at the short SOA. This 

characterization is consistent with the finding of Lau and Passingham (2006) that higher visibility at the 

long SOA is associated with heightened activation of dorsolateral prefrontal cortex (dlPFC). 

 Comparison of the Single Channel, Dual Channel, and Hierarchical model structures in Figure 1-1 

suggests a general way in which the models can be distinguished. According to the Hierarchical model, 

interference with sensory representations at late-stage subjective processing should impair visual 

metacognition while leaving objective processing intact. By way of contrast, the Single Channel and Dual 

Channel models both suppose that differences in processing that manifest as differences in 

metacognitive sensitivity should also manifest as differences in perceptual sensitivity. Thus, further 

support for the Hierarchical model can be provided by demonstrating interventions that selectively 

impair metacognitive sensitivity by targeting late stage neural processing. We provided two such 

demonstrations in Chapters 2 and 3. 

 In Chapter 2, we investigated objective and subjective visual processing in the context of a 

concurrent working memory (WM) task. Specifically, we assessed the impact of maintenance and 

manipulation of WM contents on perceptual and metacognitive sensitivity. We found that overall, 

increasing the burden of WM maintenance impairs both objective and subjective visual performance. 

However, increasing the burden of active manipulation of WM contents selectively impaired 

metacognitive sensitivity.  Since active manipulation of WM contents has been previously associated 

with dlPFC function, and since dlPFC and nearby regions of PFC have been previously associated with 

visual metacogniton, these findings suggest that a common mechanism in dlPFC may contribute to both 

manipulation of WM contents and metacognitive evaluation of objective perceptual performance. 
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 In Chapter 3, we investigated the effect of transcranial magnetic stimulation (TMS) to bilateral 

dlPFC.  We found that this intervention selectively impairs metacognitive sensitivity while leaving basic 

perceptual performance intact. This result more directly demonstrates the connection between dlPFC 

function and metacognitive sensitivity that was suggested by the findings in Chapter 2.  

We note also that Chapter 2 and 3 showed similar results even though the study in Chapter 2 

made use of confidence ratings entered after the objective stimulus discrimination response, whereas 

the study in Chapter 3 made use of perceptual clarity ratings entered simultaneously with the stimulus 

discrimination response. These similarities further corroborate the close relationship between clarity 

and confidence ratings discussed in the General introduction, and to some extent help mitigate concerns 

over the potential impact of simultaneous or sequential entry of objective and subjective perceptual 

responses on behavioral outcomes. 

 In Chapter 4, we find a naturally occurring dissociation between perceptual and metacognitive 

sensitivity. As time progresses within a continuous block of trials, perceptual and metacognitive 

sensitivity change, but these changes do not correlate with each other across subjects. This failure to 

correlate is surprising, given the robust theoretical expectation (Galvin et al., 2003) and empirical 

evidence (Maniscalco & Lau, 2012) that perceptual and metacognitive sensitivity should positively 

correlate. Indeed, perceptual and metacognitive sensitivity do positively correlate, as expected, within 

each block half. It is only the change between the two across block halves that surprisingly fails to 

correlate. We found that between-subject variation in the relationship between perceptual and 

metacognitive vigilance was associated with gray matter volume in regions of the anterior prefrontal 

cortex (aPFC) that correlate with overall visual metacognition (Fleming et al, 2010; McCurdy et al., 

2013). We took these findings as suggestive of a tradeoff between perceptual and metacognitive 

vigilance that is mediated by a common resource in aPFC. This resource account was corroborated by 
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findings that, when subjects did not have to rate confidence in the first half of a block of trials, 

perceptual vigilance improved. 

 

Relations and contributions to ongoing research 

 As reviewed in the General Introduction, there currently exist a rather wide range of views on 

the cognitive and neural bases of visual awareness and metacognition. Lau & Rosenthal (2011) 

categorized views of visual awareness into first order-views, neuronal global workspace theory, 

information integration theory, and higher-order views. With respect to characterizing the relationship 

between objective and subjective visual processing, first-order views and neuronal global workspace 

theory are alike in that they assume a direct and intimate relationship between objective and subjective 

vision. Thus, in this respect, both first-order theories and neuronal global workspace theory can be 

considered to have a Single Channel model structure (Figure 1-1). A revision to neuronal global 

workspace theory that includes a separate processing channel for unconscious processing has recently 

been proposed (Del Cul et al., 2009), thus taking on a Dual Channel structure (Figure 1-1). Higher-order 

theories of visual awareness closely map onto the Hierarchical model structure supported in Chapter 1. 

 In the domain of studying perceptual confidence judgments, there is a similar bifurcation 

between views that suppose a direct and intimate relationship between objective stimulus processing 

and ratings of confidence (Kepecs et al., 2008; Kiani & Shadlen, 2009; Kepecs & Mainen, 2012), and 

views that suppose that confidence ratings are driven by higher-order mechanisms evaluating lower-

level perceptual processing (Fleming et al., 2010; Pleskac & Busemeyer, 2010; McCurdy et al., 2013). 

Here, too, the former kind of view resembles a Single Channel structure and the latter, a Hierarchical 

structure. 
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 We have presented evidence favoring the Hierarchical view, but this is not the first 

demonstration of evidence consistent with such a view. So what novel perspectives, methods, points of 

emphasis, and empirical findings have we introduced in order to advance the discussion? 

 

A signal detection theoretic framework for analyzing and interpreting metacognitive sensitivity 

 How should we analyze metacognitive performance? A straightforward approach is to simply 

compute averages for subjective ratings of perceptual clarity or confidence in different experimental 

conditions. However, raw subjective rating data is determined in large part by an observer’s 

idiosyncratic response biases, and it cannot tell us how well the observer is able to distinguish between 

his own correct and incorrect perceptual responses. Simple measures of metacognitive accuracy, such as 

a correlation between accuracy and confidence (Kornell et al., 2007), can be computed, but such 

measures are in danger of confounding sensitivity and response bias—in general, a measure does not 

purely capture sensitivity unless it can provide a satisfactory fit to Receiver Operating Characteristic 

(ROC) curves (Swets, 1986a). Previous attempts to use SDT to measure metacognitive sensitivity 

(Kunimoto et al., 2001) have been empirically shown to be inadequate (Evans & Azzopardi, 2007) due to 

not properly contextualizing the analysis of subjective ratings into the structure of traditional SDT 

(Galvin et al., 2003).  

Our methodology (Maniscalco & Lau, 2012; Appendix A) builds on the theoretical analysis of 

Galvin et al and provides a straightforward way to measure metacognitive sensitivity, independently 

from response bias. Furthermore, this SDT framework allows us to meaningfully interpret the actual 

level of metacognitive sensitivity (meta-d’) by way of comparison to the SDT-expected level of 

metacognitive sensitivity (equivalent to d’).  Thus, the framework is very useful for measuring and 

comparing perceptual and metacognitive sensitivity, and the comparisons between the two can be quite 
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informative and useful for hypothesis testing. This methodological advance has formed the backbone of 

the current work and can be fruitfully put to use in future studies. 

 

Isolating subjective measures from performance confounds 

 Most studies on objective and subjective visual processing to date have not properly controlled 

for aspects of objective perceptual processing when studying awareness and metacognition. For 

instance, a common approach is to create experimental conditions where the stimuli are similar or 

identical and yet subjective reports differ, and investigate differences in behavior, cognition, and brain 

activity (e.g. Dehaene et al, 2001). A related approach is to compare trials where a subject successfully 

reports the presence of a stimulus (‘hits’) to trials where the stimulus is presented but the subject 

reports not having seen it (‘misses’) (e.g. Lamy, Salti, & Bar-Haim, 2009), or to compare trials where 

reports of confidence are high against trials where reports of confidence are low (e.g. Kiani and Shadlen, 

2009).  

 The problem with approaches such as these is that the comparison groups typically do not differ 

only with respect to subjective reports, but also with respect to objective perceptual processing 

capacity. Experimental conditions where a stimulus is clearly visible, all else being equal, tend to also be 

associated with better, more accurate objective processing of the stimulus. Even the approach of 

comparing aware vs unaware trials, or high vs low confidence trials, suffers a similar problem. Such an 

approach implicitly assume a so-called threshold model of perception, according to which all ‘aware’ 

trials are essentially identical manifestations of the same underlying perceptual state, but this model 

contradicts signal detection theory and provides a poor fit to empirical ROC curves (Swets 1986b). On 

the SDT model, the objective perceptual signal associated with hits and high confidence responses is 

variable, but is higher on average than it is for misses and low confidence responses. Thus, these single 

trial comparisons do not succeed in avoiding performance confounds (Lau, 2008b). 
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 Our approach is careful to isolate subjective measures from associated performance confounds. 

In Chapter 1, we capitalized on an experimental paradigm which dissociates objective and subjective 

measures, including conditions in which the ability to objectively discriminate the target is equivalent, 

but average reports of perceptual clarity differ. In Chapters 3 – 4, we use the theoretical SDT framework 

to measure relative metacognitive sensitivity, i.e. the observed value of metacognitive sensitivity in 

comparison with the SDT-expected value based on objective task performance. This computational 

approach allows us to theoretically isolate aspects of metacognitive processing in and of themselves, 

even when perceptual sensitivity is not equated by experimental means (Maniscalco & Lau, 2012; 

Appendix A). 

 Thus, our experimental and methodological approach has allowed us to handle the problem of 

performance confounds and make inferences relating specifically to the subjective aspects of visual 

processing. 

 

Evidence for a causal role of dlPFC in visual metacognitive sensitivity 

 While prior studies have suggested a link between PFC and ratings of visual clarity and 

confidence (e.g. Lau & Passingham, 2006; Fleming et al., 2010; Fleming et al, 2012), it has not been as 

well established in the literature that PFC plays a causal role in visual metacognition. A notable recent 

study in this regard is Del Cul et al. (2009), which found that subjects with prefrontal lesions have similar 

objective visual performance as healthy controls for trials in which they report seeing or not seeing the 

stimulus, and yet have lower mean levels of reported visibility for correct and incorrect trials. However, 

patients also performed worse on the task overall (posing a potential performance confound), and Del 

Cul et al. did not explicitly analyze metacognitive sensitivity.  

 In Chapters 2 and 3, we provided converging evidence that dlPFC plays a causal role in relative 

metacognitive sensitivity. We showed that cognitive and neural interference with this region can 
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selectively impair metacognitive performance, even when variability in objective task performance is 

taken into account mathematically in the SDT framework. This suggests the relationship between the 

anatomy and activity of PFC and subjective visual processing is not epiphenomenal, but rather that PFC 

plays a causal role in determining reports of visual clarity and confidence. Importantly, the effects of the 

experimental manipulations reported in Chapters 2 and 3 cannot be attributed to mere changes in 

response bias for the subjective rating task, since we demonstrated that these manipulations affect 

metacognitive sensitivity—the informational capacity with which the subjective ratings distinguish 

between correct and incorrect responses, regardless of response biases in the subjective rating. 

 

Competition between perceptual and metacognitive processes 

 The evidence presented in Chapter 4 suggests that perceptual and metacognitive processes are 

not only separate, but may even compete for limited resources. In turn, this suggests that the common 

experimental scenario of performing a perceptual task and then providing a subjective rating may 

constitute a kind of dual-task scenario, with the potential for the two processes to interfe or compete 

with each other. Along these lines, Petrusic and Baranski (2003) compared performance on a perceptual 

task in two conditions in which confidence ratings were and were not required. They found that when 

subjects had to provide confidence ratings, reaction times for the primary perceptual task became 

longer, although there was no apparent effect on accuracy in the perceptual task. An interesting 

question for future research is whether tradeoffs between perceptual and metacognitive processing can 

be controlled by experimental manipulations or task instruction in a way analogous to the well-known 

speed-accuracy tradeoff. 

If perceptual and metacognitive processes can compete for prefrontal resources, this also raises 

the possibility that certain contributions of the PFC to metacognition may reflect domain general 

functions that happen to be commonly recruited for metacognitive evaluation, rather than being 
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functions that are specifically dedicated to metacognition per se (Koechlin & Summerfield, 2007; Badre, 

2008; Passingham & Wise, 2012).  

 

Addressing a common critique from first-order theorists 

 Proponents of first-order views hold that visual awareness and/or metacognition occurs in early 

sensory processing regions, rather than at later, higher-order stages. A common critique of first-order 

theorists is that higher-order processing, as expressed e.g. in prefrontal and frontoparietal networks, 

may reflect cognitive functions such as attention, memory, language, mechanisms for generating 

perceptual reports, and so on (Lamme, 2006). In terms of neural structure and function, such 

mechanisms could conceivably be downstream, higher-level functions that are reliably co-activated with 

aspects of subjective visual processing and yet do not constitute the core features of visual awareness, 

clarity, or confidence per se (Pins & Ffytche, 2003). In terms of cognition and behavior, it may be difficult 

to disentangle such secondary functions from subjective visual processing since these functions, 

especially the function of generating introspective reports, are typically the very means by which we 

access and measure subjective vision. This is particularly so in the case of visual awareness and ratings of 

visual clarity, as subjective reports on these processes constitute direct commentaries on the nature of 

the observer’s private and otherwise inaccessible subjective experience.  

 However, all of our findings have pertained to selective effects on ratings of perceptual clarity 

(Chapter 1) and metacognitive sensitivity (Chapters 1 – 4), controlling for differences in objective 

perceptual performance experimentally (Chapter 1) or mathematically (Chapters 2 – 4). Thus, to the 

degree that the current findings implicate PFC in subjective visual processing, the specific role played by 

PFC cannot be attributed to broad mechanisms such as attention or perceptual decision making. If PFC’s 

effect on visual metacognition were mediated by general purpose attentional or perceptual decision 

making mechanisms, such effects would presumably also be made apparent in objective perceptual 
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performance. Thus, the fact that PFC’s involvement was specific to metacognition at the very least 

implies the existence of separate underlying mechanisms for objective and subjective visual processing. 

 Furthermore, the findings that disruption of PFC impairs metacognitive, but not perceptual 

sensitivity, suggests that PFC not only has specific associations with subjective vision, but that this 

relationship is causal in nature. These findings are inconsistent with the interpretation that PFC reflects 

a downstream process that follows as a typical secondary result of subjective visual processing without 

directly contributing to such processing. Instead, PFC function appears to be necessary for the optimal 

functioning of metacognitive evaluation. 

 A third observation is that in the TMS study reported in Chapter 3, the subjective rating was a 

rating of perceptual clarity rather than a confidence rating. This suggests that the role of PFC in 

subjective visual processing is not purely decisional, in the sense of making an abstract overall 

evaluation of objective visual processing, but rather that PFC contributes to the informational integrity 

carried by direct reports on the nature of ongoing visual experience. Of course, it is possible to object 

that PFC may only be contributing to the report of perceptual clarity, rather than to the 

phenomenological clarity of the visual experience itself. We acknowledge that this is a possibility, and 

take this observation regarding the visual phenomenology only to be suggestive. At the very least, 

however, the current results support the claim that the report on perceptual clarity, whatever its 

ultimate nature, is specific to subjective visual processing, rather than being subsumed into a more 

general process that includes the reporting of both objective and subjective perceptual decisions. 

 

Relation of perceptual metacognition to PFC function 

 In Chapter 2, we showed that metacognitive sensitivity is impaired when subjects have to 

perform extensive operations on the contents of working memory. In turn, this suggests the possibility 

that a common cognitive mechanism, presumably housed in dlPFC, contributes to both activities. 
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However, working memory and metacognition are not typically thought of as being interrelated 

processes, to the extent that they draw upon a common, crucial, limited set of functions or resources.  

In fact, recent proposals suggest that there may be no part of PFC that is specialized for the 

cognitive function of “working memory” as such. Instead, working memory may be an emergent 

phenomenon that arises from the flexible coordination of multiple cognitive/neural mechanisms that 

themselves are specialized for separate functions (Postle, 2006; D’Esposito, 2007). For instance, working 

memory could be characterized as the top-down attentional maintenance of sensory-, representation, 

or action-related functions (Postle, 2006). 

In turn, it may similarly be the case that perceptual metacognition is not a unitary cognitive 

function carried out by a specialized part of the brain, but rather emerges as the result of the 

coordination of a set of more basic component perceptual/cognitive/neural processes. For instance, as 

discussed in the Discussion section of Chapter 2, if dlPFC houses a common mechanism that contributes 

to both manipulation of WM contents and perceptual metacognition, at least two possibilities for such a 

mechanism present themselves. One is that dlPFC may contribute to the re-organization and re-

representation of sensory information, as captured by the phenomenon of “chunking” large amounts of 

information into more parsimonious, higher-level units of organization in memory tasks (Bor et al., 

2003), and the idea that perceptual metacognition may involve the construction of meta-

representations or “representational re-descriptions” of sensory information (Nelson & Narens, 1990; 

Schooler, 2002; Timmermans, Schilbach, Pasquali, & Cleeremans, 2012). Another possible common 

mechanism concerns the phenomenon of response selection in working memory (Curtis & D’Esposito, 

2003), whereby a mapping from the current context to an appropriate motor response is computed, and 

the phenomenon of criterion setting in metacognition, whereby a mapping from perceptual information 

onto a categorical confidence response is computed (Green & Swets, 1966; Appendix A).  
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 A similar consideration is suggested by the findings of Chapter 4, in which aPFC appears to 

contribute to the dynamics of both perceptual and metacognitive vigilance. The pattern of results in that 

series of studies suggested that while aPFC supports metacognitive sensitivity at the outset of a block of 

trials, as time wears on and perceptual sensitivity potentially declines due to vigilance decrement 

effects, aPFC shifts to supporting perceptual sensitivity and no longer supports metacognition. Here 

again is a case where a metacognitive process seems to share crucial yet limited resources with a 

seemingly unrelated cognitive function (in this case, perceptual vigilance). Perhaps, then, perceptual 

metacognition arises as an emergent phenomenon from the right coordination of a set of component 

neural processes, processes that are themselves not intrinsically “metacognitive” but rather can serve as 

essential components to a wide array of other complex functions that are similarly dynamic and 

emergent, such as working memory and perceptual vigilance. 

However, from a broader point of view, the evaluative function of subjective judgments of 

perceptual clarity and confidence do seem to dovetail well with the overall function or purpose of 

prefrontal cortex, which can be characterized as the sophisticated control of behavior, taking into 

account context, contingencies, and goals at various levels of conceptual abstraction and temporal 

separation (Fuster, 2001; Koechlin & Summerfield, 2007; Badre, 2008; Passingham & Wise, 2012). 

Metacognitive judgments presumably participate in this process by modulating stimulus-response 

mappings according to confidence in the perceptual identification of the stimulus. For instance, the 

same perceptual identification of a message written on a sign in the distance can be occasion for slightly 

different behaviors depending on the level of confidence with which the perceptual identification is 

made. If one reads the message clearly and fluently, one might resume the previously ongoing behavior; 

however, had one been less confident in the perceptual identification of the message, one might have 

looked at the sign longer or approached it in order to get a better look, until metacognitive evaluation 

confirmed that the perceptual identification was indeed trustworthy and behavior could now be 
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engaged in a new pursuit. Such a role for perceptual metacognition in the control of behavior would be 

in keeping with theories postulating an anterior-posterior organization of abstract-concrete motor 

planning functions (Koechlin & Summerfield, 2007; Badre, 2008), to the extent that metacognition is 

generally associated with more anterior regions of lateral PFC such as anterior, rostrolateral, and 

dorsolateral PFC and plausibly serves the general function of supporting relatively sophisticated and 

abstract modulations of sensorimotor processing. 

 

Functions of subjective visual processing 

 We have argued that subjective visual processing is a kind of secondary, late stage process that 

supports explicitly represented knowledge about first-order perceptual processing, but does not directly 

participate in that first-order perceptual processing by means of which perceptual decisions about the 

state of the objective world are derived. On the way to arriving at this view, we have emphasized the 

need to treat objective perceptual performance as a confound in the study of subjective visual 

processing, and that only when such objective processing is “factored out” can we make inferences 

specific to subjective vision. This may give one the impression that there is not much work left for 

subjective visual processing to do in the cognitive economy. Indeed, many cognitive functions that once 

were thought to require conscious awareness, such as relatively complex cognitive control functions 

involved with task cuing (Lau & Passingham, 2006) and response inhibition (Van Gaal, Lamme, & 

Ridderinkhof, 2010), have been shown to be functional even when the relevant stimuli are not 

consciously perceived (Lau, 2009). In the face of such considerations, it may seem as if subjective visual 

processing is essentially epiphenomenal, and that in principle any function could potentially be carried 

out unconsciously. 

 However, even if subjective visual processing does not directly participate in the objective 

perceptual process, and even if certain cognitive control functions can be performed in the absence of 
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awareness of the stimuli triggering the relevant control mechanisms, there are still several candidate 

functions for subjective visual processing that are congruent with its role as a purely evaluative function 

that does not directly intervene in first-order objective visual processing. 

 

Initiation of spontaneous behavior 

 It is possible that demonstrations of the influence of unconscious stimuli on ongoing behavior 

may be relatively limited to the modulation of a behavior that has been initiated for some other 

reason—e.g. as a response to a consciously perceived stimulus, or as a result of task instruction, rather 

than resulting from spontaneous initiation. That is to say, visual awareness and/or higher levels of visual 

clarity or confidence may support a unique role for the spontaneous initiation of behavior or adoption of 

task sets. For instance, although blindsight patients can perform visual discriminations above chance 

level when prompted to make forced choice responses (Weiskrantz, 1997), their absence of visual 

awareness entails that they will not knowingly initiate spontaneous action on the basis of visual 

stimulation, since in a sense they do not know about (are not aware of) whatever objective visual 

processing is taking place. By way of illustration, de Gelder et al. (2008) reported that a blindsight 

patient with complete cortical blindness across the whole visual field, TN, was successfully able to 

skillfully navigate a hallway filled with obstacles. In a news article about the study, de Gelder is quoted 

as saying, “At first he [TN] was nervous. He said he wouldn't be able to do it because he was blind.” 

Thus, although TN was able to navigate the hallway quite skillfully even without visual awareness, his 

residual visual processing was not sufficient to prompt the spontaneous execution of such behavior. 

 

Information seeking, error monitoring, and error correction 

Metacognitive evaluations of perceptual clarity and confidence are closely related to error 

monitoring and correction (Yeung & Summerfield, 2012). Subjects are capable of spontaneously 
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detecting and correcting their own errors in simple tasks without external feedback (Rabbitt, 1966), 

particularly under conditions of high time pressure (Yeung & Summerfield, 2012). Subjects also tend to 

have longer reaction times on trials following errors (Rabbitt, 1966). Error correction and post-error 

slowing demonstrate a direct way in which metacognitive evaluation can influence behavior. (Although 

post-error slowing may also be attributed to objective performance confounds in the comparison of 

correct and incorrect trials.) A related concept is that low levels of confidence may prompt information 

seeking behavior in order to resolve the perceptual uncertainty. 

 

Learning 

A phenomenon known as the “hypercorrection effect” in the memory literature concerns the 

influence of confidence upon error correction (Butterfield & Metcalfe, 2001; Butterfield & Mangels, 

2003; Fazio & Marsh, 2010). When subjects perform a memory test and receive performance feedback, 

on a subsequent re-test of the same items they are more likely to correct first-test errors that were 

endorsed with high, rather than low, confidence. Thus, confidence modulates learning following 

performance feedback, such that larger discrepancies between expectation and reality occasion 

stronger learning.  

 

Communication 

Accurate reporting of perceptual confidence can facilitate group decision making, and in fact 

two freely communicating observers who accurately calibrate their confidence ratings can perform 

better than a lone observer (Bahrami et al., 2010). Thus, metacognitive evaluation can facilitate the 

communication and integration of information coded in internal states across observers.  

 

Conclusion 
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 This dissertation demonstrates that objective and subjective aspects of visual processing are not 

only conceptually distinct, but are also functionally dissociable and dependent upon different brain 

structures. Converging evidence suggests that metacognitive judgments of perceptual clarity and 

confidence are subserved by a high-level processing stage housed in regions of anterior and lateral 

prefrontal cortex. Our methodological approach of controlling for performance confounds and situating 

analysis of metacognitive performance in a signal detection theory framework will hopefully continue to 

shed light in the future on the evolving field of research concerning the relationship between objective 

and subjective vision. 
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Appendix A 

Signal detection theory analysis of type 1 and type 2 data: d’ and meta-d’ 

 

Introduction 

Signal detection theory (SDT; Green & Swets, 1966; Macmillan & Creelman, 2005) has provided 

a simple yet powerful methodology for distinguishing between sensitivity (an observer’s ability to 

discriminate stimuli) and response bias (an observer’s standards for producing different behavioral 

responses) in stimulus discrimination tasks. In tasks where an observer rates his confidence that his 

stimulus classification was correct, it may also be of interest to characterize how well the observer 

performs in placing these confidence ratings. For convenience, we can refer to the task of classifying 

stimuli as the type 1 task, and the task of rating confidence in classification accuracy as the type 2 task 

(Clarke, Birdsall, & Tanner, 1959). As with the type 1 task, SDT treatments of the type 2 task are 

concerned with independently characterizing an observer’s type 2 sensitivity (how well confidence 

ratings discriminate between an observer’s own correct and incorrect stimulus classifications) and type 

2 response bias (the observer’s standards for reporting different levels of confidence). 

In this Appendix, we present an overview of the SDT analysis of type 1 and type 2 performance. 

We first provide a brief overview of type 1 SDT. We then demonstrate how the analysis of type 1 data 

can be extended to the type 2 task, with a discussion of how our approach compares to that of Galvin, 

Podd, Drga, & Whitmore (2003). We provide a more comprehensive methodological treatment of our 

SDT measure of type 2 sensitivity, meta-d’ (Maniscalco & Lau, 2012), than has previously been 

published.  

 

The SDT model and type 1 and type 2 ROC curves 

Type 1 SDT 
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Suppose an observer is performing a task in which one of two possible stimulus classes (S1 or 

S2)1 is presented on each trial, and that following each stimulus presentation, the observer must classify 

that stimulus as “S1” or “S2.”2 We may define 4 possible outcomes for each trial depending on the 

stimulus and the observer’s response: hits, misses, false alarms, and correct rejections (Table A-1).  

When an S2 stimulus is shown, the observer’s response can be either a hit (a correct classification as 

“S2”) or a miss (an incorrect classification as “S1”). Similarly, when S1 is shown, the observer’s response 

can be either a correct rejection (correct classification as “S1”) or a false alarm (incorrect classification as 

“S2”).3  

A summary of the observer’s performance is provided by hit rate and false alarm rate4: 

 

             (          |        )  
 (      S2  ,        )

 (       )
 

 

                      (          |        )  
 (      S2          )

 (       )
 

 

where n(C) denotes a count of the total number of trials satisfying the condition C. 

Relative operating characteristic (ROC) curves define how changes in hit rate and false alarm 

rate are related. For instance, an observer may become more reluctant to produce “S2” responses if he  

                                                 
1
 Traditionally, S1 is taken to be the “signal absent” stimulus and S2 the “signal present” stimulus. Here we follow 

Macmillan & Creelman (2005) in using the more neutral terms S1 and S2 for the sake of generality. 
 
2
 We will adopt the convention of placing “S1” and “S2” in quotation marks whenever they denote an observer’s 

classification of a stimulus, and omitting quotation marks when these denote the objective stimulus identity. 
 
3
 These category names are more intuitive when thinking of S1 and S2 as “signal absent” and “signal present.” 

Then a hit is a successful detection of the signal, a miss is a failure to detect the signal, a correct rejection is an 
accurate assessment that no signal was presented, and a false alarm is a detection of a signal where none existed. 
 
4
 Since hit rate and miss rate sum to 1, miss rate does not provide any extra information beyond that provided by 

hit rate and can be ignored; similarly for false alarm rate and correct rejection rate. 
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  Response 

  “S1” “S2” 

Stimulus S1 Correct Rejection (CR) False Alarm (FA) 

 S2 Miss Hit 

 

Table A-1. Possible outcomes for the type 1 task. 

 

 

is informed that S2 stimuli will rarely be presented, or if he is instructed that incorrect “S2” responses 

will be penalized more heavily than incorrect “S1” responses (e.g. Tanner & Swets, 1954; Macmillan & 

Creelman, 2005); such manipulations would tend to lower the observer’s probability of responding “S2,” 

and thus reduce false alarm rate and hit rate. By producing multiple such manipulations that alter the 

observer’s propensity to respond “S2,” multiple (FAR, HR) pairs can be collected and used to construct 

the ROC curve, which plots hit rate against false alarm rate (Figure A-1 B5).  

On the presumption that such manipulations affect only the observer’s standards for responding 

“S2,” and not his underlying ability to discriminate S1 stimuli from S2 stimuli, the properties of the ROC 

curve as a whole should be informative regarding the observer’s sensitivity in discriminating S1 from S2, 

independent of the observer’s overall  response bias for producing “S2” responses. The observer’s 

sensitivity thus determines the set of possible (FAR, HR) pairs the observer can produce (i.e. the ROC 

curve), whereas the observer’s response bias determines which amongst those possible pairs is actually 

exhibited, depending on whether the observer is conservative or liberal in responding “S2.” Higher 

sensitivity is associated with greater area underneath the ROC curve, whereas more conservative  

 

                                                 
5 Note that the example ROC curve in Figure A-1 B is depicted as having been constructed from confidence data 

(Figure A-1 A), rather than from direct experimental manipulations on the observer’s criterion for responding “S2”. 
See the section titled “Constructing pseudo-type 1 ROC curves from type 2 data” below. 
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Figure A-1. Signal detection theory models of type 1 and type 2 ROC curves. (A) Type 1 SDT model. On 

each trial, a stimulus generates an internal response x within an observer, who must use x to decide 

whether the stimulus was S1 or S2. For each stimulus type, x is drawn from a normal distribution. The 

distance between these distributions is d’, which measures the observer’s ability to discriminate S1 from 

S2. The stimulus is classified as “S2” if x exceeds a decision criterion c, and “S1” otherwise. In this 

example, the observer also rates decision confidence on a scale of 1 – 3 by comparing x to the additional 

response-specific type 2 criteria (dashed vertical lines). (B)Type 1 ROC curve. d’ and c determine false 

alarm rate (FAR) and hit rate (HR). By holding d’ constant and changing c, a characteristic set of (FAR, 

HR) points—the ROC curve—can be generated. In this example, shapes on the ROC curve mark the (FAR, 

HR) generated when using the corresponding criterion in panel A to classify the stimulus. (Note that, 

because this type 1 ROC curve is generated in part by the type 2 criteria in panel 1A, it is actually a 

pseudo-type 1 ROC curve, as discussed later in this paper.) (C) Type 2 task for “S2” responses. Consider 

only the trials where the observer classifies the stimulus as “S2,” i.e. only the portion of the graph in 
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panel A exceeding c. Then the S2 stimulus distribution corresponds to correct trials, and the S1 

distribution to incorrect trials. The placement of the type 2 criteria determines the probability of high 

confidence for correct and incorrect trials—type 2 HR and type 2 FAR. d’ and c  jointly determine to 

what extent correct and incorrect trials for each response type are distinguishable. (D) Type 2 ROC curve 

for “S2” responses. The distributions in panel C can be used to derive type 2 FAR and HR for “S2” 

responses. By holding d’ and c constant and changing c2,”S2”, a set of type 2 (FAR, HR) points for “S2” 

responses—a response-specific type 2 ROC curve—can be generated. In this example, shapes on the 

ROC curve mark the (FAR2,”S2”, HR2,”S2”) generated when using the corresponding criterion in panel C to 

rate confidence.  

 

 

response bias is associated with (FAR, HR) points falling more towards the lower-left portion of the ROC 

curve.  

Measures of task performance have implied ROC curves (Swets, 1986a; Macmillan & Creelman, 

2005). An implied ROC curve for a given measure of performance is a set of (FAR, HR) pairs that yield the 

same value for the measure. Thus, to the extent that empirical ROC curves dissociate sensitivity from 

bias, they provide an empirical target for theoretical measures of performance to emulate. If a proposed 

measure of sensitivity does not have implied ROC curves that match the properties of empirical ROC 

curves, then this measure cannot be said to provide a bias-free measure of sensitivity. 

A core empirical strength of signal detection theory (SDT; Green & Swets, 1966; Macmillan & 

Creelman, 2005; Figure A-1 A) is that it provides a simple computational model that provides close fits to 

empirical ROC curves (Green & Swets, 1966; Swets, 1986b). According to SDT, the observer performs the 

task of discriminating S1 from S2 by evaluating internal responses along a decision axis. Every time an S1 

stimulus is shown, it produces in the mind of the observer an internal response drawn from a Gaussian 

probability density function. S2 stimulus presentations also generate such normally distributed internal 
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responses. For the sake of simplicity, in the following we will assume that the probability density 

functions for S1 and S2 have an equal standard deviation σ. 

The observer is able to discriminate S1 from S2 just to the extent that the internal responses 

produced by these stimuli are distinguishable, such that better sensitivity for discriminating S1 from S2 is 

associated with larger separation between the S1 and S2 internal response distributions. The SDT 

measure of sensitivity, d’, is thus the distance between the means of the S1 and S2 distributions, 

measured in units of their common standard deviation: 

 

    
       

 
 

 

By convention, the internal response where the S1 and S2 distributions intersect is defined to 

have the value of zero, so that µS2 = σ d’ / 2 and µS1 = – σ d’ / 2. For simplicity, and without loss of 

generality, we can set σ = 1. 

In order to classify an internal response x on a given trial as originating from an S1 or S2 

stimulus, the observer compares the internal response to a decision criterion, c, and only produces “S2” 

classifications for internal responses that surpass the criterion.  

 

         {
   S1 ,         ≤ c
   S2 ,         > c

 

 

Since hit rate is the probability of responding “S2” when an S2 stimulus is shown, it can be 

calculated on the SDT model as the area underneath the portion of the S2 probability density function 

that exceeds c. Since the cumulative distribution function for the normal distribution with mean µ and 

standard deviation σ evaluated at x is 
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then hit rate can be derived from the parameters of the SDT model as 

 

      (     )      (  
  

 
) 

 

And similarly, 

 

       (     )      (   
  

 
)     

 

where omitting the σ parameter in ϕ is understood to be equivalent to setting σ = 1. 

By systematically altering the value of c while holding d’ constant, a set of (FAR, HR) pairs 

ranging between (0, 0) and (1, 1) can be generated, tracing out the shape of the ROC curve (Figure A-1 

B). The family of ROC curves predicted by SDT matches well with empirical ROC curves across a range of 

experimental tasks and conditions (Green & Swets, 1966; Swets, 1986a; Swets, 1986b). 

The parameters of the SDT model can be recovered from a given (FAR, HR) pair as 

 

     (  )    (   ) 

 

      [  (  )   (   ) ] 
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where z is the inverse of the normal cumulative distribution function. Thus, SDT analysis allows us to 

separately characterize an observer’s sensitivity (d’) and response bias (c) on the basis of a single (FAR, 

HR) pair, obviating the need to collect an entire empirical ROC curve in order to separately characterize 

sensitivity and bias—provided that the assumptions of the SDT model hold. 

 

Type 2 SDT 

Suppose we extend the empirical task described above, such that after classifying the stimulus 

as “S1” or “S2,” the observer must provide a confidence rating that characterizes the likelihood of the 

stimulus classification being correct. This confidence rating task can be viewed as a secondary 

discrimination task. Just as the observer first had to discriminate whether the stimulus was S1 or S2 by 

means of providing a stimulus classification response, the observer now must discriminate whether that 

stimulus classification response itself was correct or incorrect by means of providing a confidence 

rating.6 Following convention, we will refer to the task of classifying the stimulus as the “type 1” task, 

and the task of classifying the accuracy of the stimulus classification as the “type 2” task (Clarke et al., 

1959; Galvin et al., 2003). 

 

Type 2 hit rates and false alarm rates 

A similar set of principles for the analysis of the type 1 task may be applied to the type 2 task. 

Consider the simple case where the observer rates confidence as either “high” or “low.” We can then 

distinguish 4 possible outcomes in the type 2 task: high confidence correct trials, low confidence correct 

                                                 
6
 In principle, since the observer should always choose the stimulus classification response that is deemed most 

likely to be correct, then in a two-alternative task he should always judge that the chosen response is more likely 
to be correct than it is to be incorrect. Intuitively, then, the type 2 decision actually consists in deciding whether 
the type 1 response is likely to be correct or not, where the standard for what level of confidence merits being 
labeled as “likely to be correct” is determined by a subjective criterion than can be either conservative or liberal. 
Nonetheless, viewing the type 2 task as a discrimination between correct and incorrect stimulus classifications 
facilitates comparison with the type 1 task. 
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trials, low confidence incorrect trials, and high confidence incorrect trials. By direct analogy with the 

type 1 analysis, we may refer to these outcomes as type 2 hits, type 2 misses, type 2 correct rejections, 

and type 2 false alarms, respectively (Table A-2).7 

Type 2 hit rate and type 2 false alarm rate summarize an observer’s type 2 performance and 

may be calculated as 

 

               (          |          )  
 (                 )

 (       )
 

 

                 (          |           )  
 (                   )

 (         )
 

 

Since the binary classification task we have been discussing has two kinds of correct trials (hits 

and correct rejections) and two kinds of incorrect trials (misses and false alarms), the classification of 

type 2 performance can be further subdivided into a response-specific analysis, where we consider type 

2 performance only for trials where the type 1 stimulus classification response was “S1” or “S2” (Table 

A-3).8 

                                                 
7
 The analogy is more intuitive when thinking of S1 as “signal absent” and S2 as “signal present”. Then the type 2 
analogue of “signal absent” is an incorrect stimulus classification, whereas the analogue of “signal present” is a 
correct stimulus classification. The type 2 task can then be thought of as involving the detection of this type 2 
“signal.” 
 
8 It is also possible to conduct a stimulus-specific analysis and construct stimulus-specific type 2 ROC curves. For S1 

stimuli, this would consist in a plot of p(high conf|correct rejection) vs p(high conf|false alarm). Likewise for S2 
stimuli—p(high conf|hit) vs p(high conf|miss). However, as will be made clear later in the text, the present 
approach to analyzing type 2 ROC curves in terms of the type 1 SDT model requires each type 2 (FAR, HR) pair to 
be generated by the application of a type 2 criterion to two overlapping distributions. For stimulus-specific type 2 
data, the corresponding type 1 model consists of only one stimulus distribution, with separate type 2 criteria for 
“S1” and “S2” responses generating the type 2 FAR and type 2 HR. (e.g. for the S2 stimulus, a type 2 criterion for 
“S1” responses rates confidence for type 1 misses, and a separate type 2 criterion for “S2” responses rates 
confidence for type 1 hits.) Thus there is no analogue of meta-d’ for stimulus-specific type 2 data, since d’ is only 
defined with respect to the relationship between two stimulus distributions, whereas stimulus-specific analysis is 
restricted to only one stimulus distribution. It is possible that an analysis of stimulus-specific type 2 ROC curves 
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  Confidence 

  Low High 

Accuracy Incorrect Type 2 Correct Rejection Type 2 False Alarm 

 Correct Type 2 Miss Type 2 Hit 

 

Table A-2. Possible outcomes for the type 2 task. 

 

 

    Confidence 

    Low High 

Response 

“S1” Accuracy 

Incorrect  
(Type 1 Miss) 

CR2,”S1” FA2,”S1” 

Correct 
(Type 1 Correct Rejection) 

Miss2,”S1” Hit2,”S1” 

“S2” Accuracy 

Incorrect  
(Type 1 False Alarm) 

CR2,”S2” FA2,”S2” 

Correct 
(Type 1 Hit) 

Miss2,”S2” Hit2,”S2” 

 

Table A-3. Possible outcomes for the type 2 task, contingent on type 1 response (i.e. response-specific 

type 2 outcomes) 

 

 

Thus, when considering type 2 performance only for “S1” responses, 

 

                                                                                                                                                             
could be conducted by positing how the type 2 criteria on either side of the type 1 criterion are coordinated, or 
similarly by supposing that the observer rates confidence according to an overall type 2 decision variable. For more 
elaboration, see the section below titled “Comparison of the current approach to that of Galvin et al (2003).” 
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where the subscript “S1” indicates that these are type 2 data for type 1 “S1” responses. 

Similarly for “S2” responses, 
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From the above definitions, it follows that overall type 2 FAR and HR are weighted averages of 

the response-specific type 2 FARs and HRs, where the weights are determined by the proportion of 

correct and incorrect trials originating from each response type: 
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And similarly, 
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Confidence rating data may be richer than a mere binary classification. In the general case, the 

observer may rate confidence on either a discrete or continuous scale ranging from 1 to H. In this case, 

we can arbitrarily select a value h, 1 < h ≤ H, such that all confidence ratings greater than or equal to h 

are classified as “high confidence” and all others, “low confidence.” We can denote this choice of 

imposing a binary classification upon the confidence data by writing e.g.   
      

, where the superscript 

conf=h indicates that this type 2 hit rate was calculated using a classification scheme where h was the 

smallest confidence rating considered to be “high.” Thus, for instance, 

 

        
      

  (          |                   )   (        |    ) 

 

Each choice of h generates a type 2 (FAR, HR) pair, and so calculating these for multiple values of 

h allows for the construction of a type 2 ROC curve with multiple points. When using a discrete 

confidence rating scale ranging from 1 to H, there are H – 1 ways of selecting h, allowing for the 

construction of a type 2 ROC curve with H – 1 points.  

 

Adding response-specific type 2 criteria to the type 1 SDT model to capture type 2 data 

As with the type 1 task, type 2 ROC curves allow us to separately assess an observer’s sensitivity 

(how well confidence ratings discriminate correct from incorrect trials) and response bias (the overall 

propensity for reporting high confidence) in the type 2 task. However, fitting a computational model to 

type 2 ROC curves is somewhat more complicated than in the type 1 case. It is not sufficient to assume 

that correct and incorrect trials are associated with normal probability density functions in a direct 
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analogy to the S1 and S2 distributions of type 1 SDT. The reason for this is that specifying the 

parameters of the type 1 SDT model—d’ and c—places strong constraints on the probability density 

functions for correct and incorrect trials, and these derived distributions are not normally distributed 

(Galvin et al., 2003). In addition to this theoretical consideration, it has also been empirically 

demonstrated that conducting a type 2 SDT analysis that assumes normal distributions for correct and 

incorrect trials does not give a good fit to data (Evans & Azzopardi, 2007).  

Thus, the structure of the SDT model for type 2 performance must take into account the 

structure of the SDT model for type 1 performance. Galvin et al. (2003) presented an approach for the 

SDT analysis of type 2 data based on analytically deriving formulae for the type 2 probability density 

functions under a suitable transformation of the type 1 decision axis. Here we present a simpler 

alternative approach on the basis of which response-specific type 2 ROC curves can be derived directly 

from the type 1 model.  

In order for the type 1 SDT model to characterize type 2 data, we first need an added 

mechanism whereby confidence ratings can be generated. This can be accomplished by supposing that 

the observer simply uses additional decision criteria, analogous to the type 1 criterion c, to generate a 

confidence rating on the basis of the internal response on a given trial, x. In the simplest case, the 

observer makes a binary confidence rating—high or low—and thus needs to use two additional decision 

criteria to rate confidence for each kind of type 1 response. Call these response-specific type 2 criteria c2, 

”S1” and c2,”S2”, where c2, “S1” < c and c2, “S2” > c. Intuitively, confidence increases as the internal response x 

becomes more distant from c, i.e. as the internal response becomes more likely to have been generated 

by one stimulus distribution or the other9. More formally, 

 

                                                 
9 See “Comparison of the current approach to that of Galvin et al (2003)” and footnote 11 for a more detailed 

consideration of the type 2 decision axis. 
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In the more general case of a discrete confidence scale ranging from 1 to H,  then H – 1 type 2 

criteria are required to rate confidence for each response type. (See e.g. Figure A-1 A, where two type 2 

criteria on left/right of the type 1 criterion allow for confidence for “S1”/“S2” responses to be rated on a 

scale of 1 – 3.) We may define  
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where e.g.         is a tuple containing the H – 1 type 2 criteria for “S1” responses. Each        
      

 denotes 

the type 2 criterion such that internal responses more extreme (i.e. more distant from the type 1 

criterion) than        
      

 are associated with confidence ratings of least y. More specifically, 
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The type 1 and type 2 decision criteria must have a certain ordering in order for the SDT model 

to be meaningful. Response-specific type 2 criteria corresponding to higher confidence ratings must be 

more distant from c than type 2 criteria corresponding to lower confidence ratings. Additionally, c must 

be larger than all type 2 criteria for “S1” responses but smaller than all type 2 criteria for “S2” responses. 

For convenience, we may define 
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) 

 

The ordering of decision criteria in            from first to last is the same as the ordering of the 

criteria from left to right when displayed on an SDT graph (e.g. Figure A-1 A). These decision criteria are 

properly ordered only if each element of            is at least as large as the previous element, i.e. only 

if the Boolean function  (          ) defined below is true: 

 

 (          )  ⋀           (   )            (

    

   

 ) 

 

It will be necessary to use this function later on when discussing how to fit SDT models to type 2 

data. 

 

Calculating response-specific type 2 (FAR, HR) from the type 1 SDT model with response-specific type 2 

criteria 

Now let us consider how to calculate response-specific type 2 HR and type 2 FAR from the type 1 

SDT model. Recall that 
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As discussed above, p(hit), the hit rate, is the probability that an S2 stimulus generates an 

internal response that exceeds the type 1 criterion c. Similarly, p(conf   h, hit), the probability of a hit 

endorsed with high confidence, is just the probability that an S2 stimulus generates an internal response 

that exceeds the high-confidence type 2 criterion for “S2” responses,        
      

. Thus, we can 

straightforwardly characterize the probabilities in the numerator and denominator of         
      

 in 

terms of the type 1 SDT parameters, as follows:  
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By similar reasoning, 
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And likewise for “S1” responses, 
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Figure A-1 C illustrates how type 2 (FAR, HR) arise from type 1 d’ and c along with a type 2 

criterion. For instance, suppose h = 3. Then the type 2 hit rate for “S2” responses,         
      

, is the 

probability of a high confidence hit (the area in the S2 distribution beyond        
      

) divided by the 

probability of a hit (the area in the S2 distribution beyond c). 

By systematically altering the value of the type 2 criteria while holding d’ and c constant, a set of 

(FAR2, HR2) pairs ranging between (0, 0) and (1, 1) can be generated, tracing out a curvilinear prediction 

for the shape of the type 2 ROC curve (Figure A-1 D). Thus, according to this SDT account, specifying type 

1 sensitivity (d’) and response bias (c) is already sufficient to determine response-specific type 2 

sensitivity (i.e. the family of response-specific type 2 ROC curves).  

 

Comparison of the current approach to that of Galvin et al (2003) 

Before continuing with our treatment of SDT analysis of type 2 data, we will make some 

comparisons between this approach and the one described in Galvin et al. (2003).  

 

SDT approaches to type 2 performance 

Galvin et al were concerned with characterizing the overall type 2 ROC curve, rather than 

response-specific type 2 ROC curves. On their modeling approach, an (FAR2, HR2) pair can be generated 

by setting a single type 2 criterion on a type 2 decision axis. All internal responses that exceed this type 2 

criterion are labeled “high confidence,” and all others “low confidence.” By systematically changing the 
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location of this type 2 criterion on the decision axis, the entire overall type 2 ROC curve can be traced 

out.  

However, if the internal response x is used to make the binary confidence decision in this way, 

the ensuing type 2 ROC curve behaves oddly, typically containing regions where it extends below the 

line of chance performance (Galvin et al, 2003). This suboptimal behavior is not surprising, in that 

comparing the raw value of x to a single criterion value essentially recapitulates the decision rule used in 

the type 1 task and does not take into account the relationship between x and the observer’s type 1 

criterion, which is crucial for evaluating type 1 performance. The solution is that some transformation of 

x must be used as the type 2 decision variable, ideally one that depends upon both x and c.  

For instance, consider the transformation t(x) = |x – c|. This converts the initial raw value of the 

internal response, x, into the distance of x from the type 1 criterion. This transformed value can then 

plausibly be compared to a single type 2 criterion to rate confidence, e.g. an observer might rate 

confidence as high whenever t(x) > 1. Other transformations for the type 2 decision variable are 

possible, and the choice is not arbitrary, since different choices for type 2 decision variables can lead to 

different predictions for the type 2 ROC curve (Galvin et al, 2003). The optimal type 2 ROC curve (i.e. the 

one that maximizes area under the curve) is derived by using the likelihood ratio of the type 2 

probability density functions as the type 2 decision variable (Galvin et al, 2003; Green & Swets, 1966). 

We have adopted a different approach thus far. Rather than characterizing an overall (FAR2, 

HR2) pair as arising from the comparison of a single type 2 decision variable to a single type 2 criterion, 

we have focused on response-specific (FAR2, HR2) data arising from comparisons of the type 1 internal 

response x to separate type 2 decision criteria for “S1” and “S2” responses (e.g. Figure A-1 A). Thus, our 

approach would characterize the overall (FAR2, HR2) as arising from a pair of response-specific type 2 

criteria set on either side of the type 1 criterion on the type 1 decision axis, rather than from a single 

type 2 criterion set on a type 2 decision axis. We have posited no constraints on the setting of these type 
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2 criteria other than that they stand in appropriate ordinal relationships to eachother. For the sake of 

brevity in comparing these two approaches, in the following we will refer to Galvin et al’s approach as G 

and the current approach as C. 

 

Type 2 decision rules and response-specific type 2 criterion setting 

Notice that choosing a reasonable type 2 decision variable for G is equivalent to setting 

constraints on the relationship between type 2 criteria for “S1” and “S2” responses on C. For instance, 

on G suppose that the type 2 decision variable is defined as t(x) = |x – c| and confidence is high if t(x) > 

1. On C, this is equivalent to setting t(c2,”S1”) = t(c2,”S2”) = |c2,”S1” – c| = |c2,”S2” – c| = 1. In other words, 

assuming (on G) the general rule that confidence is high whenever the distance between x and c exceeds 

1 requires (on C) that the type 2 criteria for each response type both satisfy this property of being 1 unit 

away from c. Any other way of setting the type 2 criteria for C would yield outcomes inconsistent with 

the decision rule posited by G. Similarly, if the type 2 decision rule is that confidence is high when type 2 

likelihood ratio LR2(x) > cLR2, this same rule on C would require LR2(c2,”S1”) = LR2(c2,”S2”) = cLR2, i.e. that type 

2 criteria for both response types be set at the locations of x on either side of c corresponding to a type 

2 likelihood ratio of cLR2. 

On G, choosing a suboptimal type 2 decision variable can lead to decreased area under the 

overall type 2 ROC curve. This can be understood on C as being related to the influence of response-

specific type 2 criterion placement on the response-specific type 2 (FAR, HR) points, which in turn affect 

the overall type 2 (FAR, HR) points. As shown above, overall type 2 FAR and HR are weighted averages of 

the corresponding response-specific type 2 FARs and HRs. But computing a weighted average for two 

(FAR, HR) pairs on a concave down ROC curve will yield a new (FAR, HR) pair that lies below the original 

ROC curve. As a consequence, more exaggerated differences in the response-specific type 2 FAR and HR 

due to more exaggerated difference in response-specific type 2 criterion placement will tend to drive 
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down the area below the overall type 2 ROC curve. Thus, the overall type 2 ROC curve may decrease 

even while the response-specific curves stay constant, depending on how criterion setting for each 

response type is coordinated. This reduced area under the overall type 2 ROC curve on C due to 

response-specific type 2 criterion placement is closely related to reduced area under the overall type 2 

ROC curve on G due to choosing a suboptimal type 2 decision variable.  

For example, consider the SDT model where d’ = 2, c = 0, c2,”S1” = -1, and c2,”S1” = 1. This model 

yields FAR2,”S1” = FAR2,”S2” = FAR2 = .14 and HR2,”S1” = HR2,”S2” = HR2 = .59. The type 1 criterion is optimally 

placed and the type 2 criteria are symmetrically placed around it. This arrangement of criteria on C turns 

out to be equivalent to using the type 2 likelihood ratio on G, and thus yields an optimal type 2 

performance. Now consider the SDT model where d’ = 2, c = 0, c2,”S1” = -1.5, and c2,”S1” = .76. This model 

yields FAR2,”S1” = .04, HR2,”S1” = .37, FAR2,”S2” = .25, HR2,”S2” = .71, and overall FAR2 = .14, HR2 = .54. 

Although d’ and c are the same as in the previous example, now the type 2 criteria are set 

asymmetrically about c, yielding different outcomes for the type 2 FAR and HR for “S1” and “S2” 

responses. This has the effect of yielding a lower overall HR2 (.54 vs .59) in spite of happening to yield 

the same FAR2 (.14). Thus, this asymmetric arrangement of response-specific type 2 criteria yields worse 

performance on the overall type 2 ROC curve than the symmetric case for the same values of d’ and c. 

On G, this can be understood as being the result of choosing a suboptimal type 2 decision variable in the 

second example (i.e. a decision variable that is consistent with the way the response-specific type 2 

criteria have been defined on C).In this case, the asymmetric placement of the response-specific type 2 

criteria is inconsistent with a type 2 decision variable based on the type 2 likelihood ratio. 

 

A method for assessing overall type 2 sensitivity based on the approach of Galvin et al 

In the upcoming section, we will discuss our methodology for quantifying type 2 sensitivity with 

meta-d’. meta-d’ essentially provides a single measure that jointly characterizes the areas under the 
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response-specific type 2 ROC curves for both “S1” and “S2” responses, and in this way provides a 

measure of overall type 2 sensitivity. However, in doing so, it treats the relationships of type 2 criteria 

across response types as purely a matter of criterion setting. However, as we have discussed, 

coordination of type 2 criterion setting could also be seen as arising from the construction of a type 2 

decision variable, where the choice of decision variable influences area under the overall type 2 ROC 

curve. We take it to be a substantive conceptual, and perhaps empirical, question as to whether it is 

preferable to characterize these effects as a matter of criterion setting (coordinating response-specific 

type 2 criteria) or sensitivity (constructing a type 2 decision variable). However, if one were to decide 

that for some purpose it were better to view this as a sensitivity effect, then the characterization of type 

2 performance provided by Galvin et al may be preferable to that of the current approach.  

In the interest of recognizing this, we provide free Matlab code available online (see note at the 

end of the manuscript) that implements one way of using Galvin et al’s approach to evaluate an 

observer’s overall type 2 performance. Given the parameters of an SDT model, this code outputs the 

theoretically optimal10 overall type 2 ROC curve—i.e. the overall type 2 ROC curve based on type 2 

likelihood ratio, which has the maximum possible area under the curve. Maniscalco & Lau (2012), 

building on the suggestions of Galvin et al (2003),  proposed that one way of evaluating an observer’s 

type 2 performance is to compare her empirical type 2 ROC curve with the theoretical type 2 ROC curve, 

given her type 1 performance. By comparing an observer’s empirical overall type 2 ROC curve with the 

theoretically optimal overall type 2 ROC curve based on type 2 likelihood ratios, the observer’s overall 

type 2 sensitivity can be assessed with respect to the SDT-optimal level. This approach will capture 

potential variation in area under the overall type 2 ROC curve that is ignored (treated as a response-

specific criterion effect) by the meta-d’ approach. 

 

                                                 
10

 Provided the assumptions of the SDT model are correct. 
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Advantages of the current approach 

Our SDT treatment of type 2 performance has certain advantages over that of Galvin et al. One 

advantage is that it does not require making an explicit assumption regarding what overall type 2 

decision variable an observer uses, or even that the observer constructs such an overall type 2 decision 

variable to begin with.11 This is because our approach allows the type 2 criteria for each response to vary 

independently, rather than positing a fixed relationship between their locations. Thus, if an observer 

does construct an overall type 2 decision variable, our treatment will capture this implicitly by means of 

the relationship between the response-specific type 2 criteria; and if an observer does not use an overall 

type 2 decision variable to begin with, our treatment can accommodate this behavior. The question of 

what overall type 2 decision variables, if any, observers tend to use is a substantive empirical question, 

and so it is preferable to avoid making assumptions on this matter if possible. 

A second, related advantage is that our approach is potentially more flexible than Galvin et al’s 

in capturing the behavior of response-specific type 2 ROC curves, without loss of flexibility in capturing 

the overall type 2 ROC curve. (Since overall type 2 ROC curves depend on the response-specific curves, 

as shown above, our focus on characterizing the response-specific curves does not entail a deficit in 

capturing the overall curve.) A third advantage is that our approach provides a simple way to derive 

response-specific type 2 ROC curves from the type 1 SDT model, whereas deriving the overall type 2 ROC 

curve is more complex under Galvin et al’s approach and depends upon the type 2 decision variable 

being assumed. 

 

Characterizing type 2 sensitivity in terms of type 1 SDT: meta-d’  

                                                 
11

 Of course, our approach must at least implicitly assume a type 2 decision variable within each response type. In 
our treatment, the implicit type 2 decision variable for each response type is just the distance of x from c. 
However, for the analysis of response-specific type 2 performance for the equal variance SDT model, distance from 
criterion and type 2 likelihood ratio are equivalent decision variables. This is because they vary monotonically with 
eachother (Galvin et al 2003), and so produce the same type 2 ROC curve (Egan, 1975; Swets, Tanner, & Birdsall, 
1961).  
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Since response-specific type 2 ROC curves can be derived directly from d’ and c on the SDT 

model, this entails a tight theoretical relationship between type 1 and type 2 performance. One practical 

consequence is that type 2 sensitivity—the empirical type 2 ROC curves—can be quantified in terms of 

the type 1 SDT parameters d’ and c (Maniscalco & Lau, 2012). However, it is necessary to explicitly 

differentiate instances when d’ is meant to characterize type 1 performance from those instances when 

d’ (along with c) is meant to characterize type 2 performance. Here we adopt the convention of using 

the variable names meta-d’ and meta-c to refer to type 1 SDT parameters when used to characterize 

type 2 performance. We will refer to the type 1 SDT model as a whole, when used to characterize type 2 

performance, as the meta-SDT model. Essentially, d’ and c describe the type 1 SDT model fit to the type 

1 ROC curve12, whereas meta-d’ and meta-c – the meta-SDT model—quantify the type 1 SDT model 

when used exclusively to fit type 2 ROC curves.   

How do we go about using the type 1 SDT model to quantify type 2 performance? There are 

several choices to make before a concrete method can be proposed.  In the course of discussing these 

issues, we will put forth the methodological approach originally proposed by Maniscalco & Lau (2012). 

 

Which type 2 ROC curves? 

As discussed in the preceding section “Comparison of the current approach to that of Galvin et 

al (2003),” we find the meta-SDT fit that provides the best simultaneous fit to the response-specific type 

2 ROC curves for “S1” and “S2” responses, rather than finding a model that directly fits the overall type 2 

ROC curve. As explained in more detail in that prior discussion, we make this selection primarily because 

(1) it allows more flexibility and accuracy in fitting the overall data set, and (2) it does not require 

                                                 
12 When the multiple points on the type 1 ROC curve are obtained using confidence rating data, it is arguably 

preferable to calculate d’ and c only from the (FAR, HR) pair generated purely by the observer’s type 1 response. 
The remaining type 1 ROC points incorporate confidence rating data and depend on type 2 sensitivity, and so 
estimating d’ on the basis of these ROC points may confound type 1 and type 2 sensitivity.  
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making an explicit assumption regarding what type 2 decision variable the observer might use for 

confidence rating.  

 

Which way of combining meta-d’ and meta-c? 

A second consideration is how to characterize the response-specific type 2 ROC curves using 

meta-d’ and meta-c. For the sake of simplifying the analysis, and for the sake of facilitating comparison 

between d’ and meta-d’, an appealing option is to a priori fix the value of meta-c so as to be similar to 

the empirically observed type 1 response bias c, thus effectively allowing meta-d’ to be the sole free 

parameter that characterizes type 2 sensitivity. However, since there are multiple ways of measuring 

type 1 response bias (Macmillan & Creelman, 2005), there are also multiple ways of fixing the value of 

meta-c on the basis of c. In addition to the already-introduced c, type 1 response bias can be measured 

with the relative criterion, c’: 

 

         ⁄  

 

This measure takes into account how extreme the criterion is, relative to the stimulus distributions.  

Bias can also be measured as β, the ratio of the probability density function for S2 stimuli to that 

of S1 stimuli at the location of the decision criterion: 

 

       

 

Figure A-2 shows an example of how c, c’, and β relate to the stimulus distributions when bias is 

fixed and d’ varies. Panel A shows an SDT diagram for d’ = 3 and c = 1. In panel B, d’ = 1 and the three 

decision criteria are generated by setting c, c’, and β to the equivalent values of those exhibited by these  
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Figure A-2. Example behavior of holding response bias constant as d’ changes for c, c’, and β. (A) An 

SDT graph where d’ = 3 and c = 1. The criterion location can also be quantified as c’ = c / d’ = 1/3 and log 

β = c * d’ = 3. (B) An SDT graph where d’ = 1. The three decision criteria plotted here represent the 

locations of the criteria that preserve the value of the corresponding response bias exhibited in panel A. 

So e.g. the criterion marked c’ in panel B has the same value of c’ as the criterion in panel A (= 1/3), and 

likewise for c (constant value of 1) and β (constant value of 3).  

 

 

measures in panel A. Arguably, c’ performs best in terms of achieving a similar “cut” between the 

stimulus distributions in panels A and B. This is an intuitive result given that c’ essentially adjusts the 

location of c according to d’. Thus, holding c’ constant ensures that, as d’ changes, the location of the 

decision criterion remains in a similar location with respect to the means of the two stimulus 

distributions.  

By choosing c’ as the measure of response bias that will be held constant in the estimation of 

meta-d’, we can say that when the SDT and meta-SDT models are fit to the same data set, they will have 
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similar type 1 response bias, in the sense that they have the same c’ value. This in turn allows us to 

interpret a subject’s meta-d’ in the following way: “Suppose there is an ideal subject whose behavior is 

perfectly described by SDT, and who performs this task with a similar level of response bias (i.e. same c’) 

as the actual subject. Then in order for our ideal subject to produce the actual subject’s response-

specific type 2 ROC curves, she would need her d’ to be equal to meta-d’.” 

Thus, meta-d’ can be found by fitting the type 1 SDT model to response-specific type 2 ROC 

curves, with the constraint that meta-c’ = c’. (Note that in the below we list meta-c, rather than meta-c’, 

as a parameter of the meta-SDT model. The constraint meta-c’ = c’ can thus be satisfied by ensuring 

meta-c = meta-d’ * c’.) 

 

What computational method of fitting? 

If the response-specific type 2 ROC curves contain more than one empirical (FAR2, HR2) pair, 

then in general an exact fit of the model to the data is not possible. In this case, fitting the model to the 

data requires minimizing some loss function, or maximizing some metric of goodness of fit.  

Here we consider the procedure for finding the parameters of the type 1 SDT model that 

maximize the likelihood of the response-specific type 2 data. Maximum likelihood approaches for fitting 

SDT models to type 1 ROC curves with multiple data points have been established (Ogilvie & Creelman, 

1968; Dorfman & Alf, 1969). Here we adapt these existing type 1 approaches to the type 2 case. The 

likelihood of the type 2 data can be characterized using the multinomial model as 

 

       ( |    )  ∏      (       |               )     (      |              )

     

 

 

Maximizing likelihood is equivalent to maximizing log-likelihood, and in practice it is typically 

more convenient to work with log-likelihoods. The log-likelihood for type 2 data is given by 
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θ is the set of parameters for the meta-SDT model: 

  

  (                                     ) 

 

     (       |               ) is a count of the number of times in the data a confidence rating 

of y was provided when the stimulus and response were s and r.  

y, s, and r are indeces ranging over all possible confidence ratings, stimulus classes, and stimulus 

classification responses, respectively. 

     (       |               ) is the model-predicted probability of generating confidence 

rating y for trials where the stimulus and response were s and r, given the parameter values specified in 

θ.  

Calculation of these type 2 probabilities from the type 1 SDT model is similar to the procedure 

used to calculate the response-specific type 2 FAR and HR. For notational convenience, below we 

express these probabilities in terms of the standard SDT model parameters, omitting the “meta” prefix.  

For convenience, define 
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An illustration of how these type 2 probabilities are derived from the type 1 SDT model is 

provided in Figure A-3. 

The multinomial model used as the basis for calculating likelihood treats each discrete type 2 

outcome (conf=y | stim=s , resp=r) as an event with a fixed probability that occurred a certain number of 

times in the data set, where outcomes across trials are assumed to be statistically independent. The 

probability of the entire set of type 2 outcomes across all trials is then proportional to the product of the 

probability of each individual type 2 outcome, just as e.g. the probability of throwing 4 heads and 6 tails 

for a fair coin is proportional to .54*.56.  

Likelihood, L(θ), can be thought of as measuring how probable the empirical data is, according 

to the model parameterized with θ. A very low L(θ) indicates that the model with θ would be very 

unlikely to generate a pattern like that observed in the data. A higher L(θ) indicates that the data are 

more in line with the typical behavior of data produced by the model with θ. Mathematical optimization 

techniques can be used to find the values of θ that maximize the likelihood, i.e. that create maximal  
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Figure A-3. Type 2 response probabilities from the SDT model. (A) An SDT graph with d’ = 2 and 

decision criteria c = .5, c2,”S1” = (0, -.5, -1), and c2,”S2” = (1, 1.5, 2). The type 1 criterion (solid vertical line) is 

set to the value of 0.5, corresponding to a conservative bias for providing “S2” responses, in order to 

create an asymmetry between “S1” and “S2” responses for the sake of illustration. Seven decision 
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criteria are used in all, segmenting the decision axis into 8 regions. Each region corresponds to one of 

the possible permutations of type 1 and type 2 responses, as there are two possible stimulus 

classifications and four possible confidence ratings. (B-I) Deriving probability of confidence rating 

contingent on type 1 response and accuracy. How would the SDT model depicted in panel (A) predict 

the probability of each confidence rating for correct “S1” responses? Since we wish to characterize “S1” 

responses, we need consider only the portion of the SDT graph falling to the left of the type 1 criterion. 

Since “S1” responses are only correct when the S1 stimulus was actually presented, we can further limit 

our consideration to internal responses generated by S1 stimuli. This is depicted in panel (B). This 

distribution is further subdivided into 4 levels of confidence by the 3 type 2 criteria (dashed vertical 

lines), where darker regions correspond to higher confidence. The area under the S1 curve in each of 

these regions, divided by the total area under the S1 curve that falls below the type 1 criterion, yields 

the probability of reporting each confidence level, given that the observer provided a correct “S1” 

response. Panel (D) shows these probabilities as derived from areas under the curve in panel (B). The 

remaining panels display the analogous logic for deriving confidence probabilities for incorrect “S1” 

responses (F, H), correct “S2” responses (C, E), and incorrect “S2” responses (G, I). 

 

 

concordance between the empirical distribution of outcomes and the model-expected distribution of 

outcomes.  

The preceding approach for quantifying type 2 sensitivity with the type 1 SDT model—i.e. for 

fitting the meta-SDT model—can be summarized as a mathematical optimization problem: 

 

          
θ  

        ( |    )                              (              ) 

 

where type 2 sensitivity is quantified by          . 

  (              ) is the Boolean function described previously, which returns a value of “true” 

only if the type 1 and type 2 criteria stand in appropriate ordinal relationships. 
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We provide free Matlab code, available online, for implementing this maximum likelihood 

procedure for fitting the meta-SDT model to a data set (see note at the end of the manuscript). 

 

Toy example of meta-d’ fitting 

An illustration of the meta-d’ fitting procedure is demonstrated in Figure A-4 using simulated 

data. In this simulation, we make the usual SDT assumption that on each trial, presentation of stimulus S 

generates an internal response x that is drawn from the probability density function of S, and that a type 

1 response is made by comparing x to the decision criterion c. However, we now add an extra 

mechanism to the model to allow for the possibility of added noise in the type 2 task. Let us call the 

internal response used to rate confidence x2. The type 1 SDT model we have thus far considered 

assumes x2 = x. In this example, we suppose that x2 is a noisier facsimile of x. Formally, 

 

                 (    ) 

 

Where N(0, σ2) is the normal distribution with mean 0 and standard deviation σ2. The parameter 

σ2 thus determines how much noisier x2 is than x. For σ2 = 0 we expect meta-d’ = d’, and for σ2 > 0 we 

expect meta-d’ < d’. 

The simulated observer rates confidence on a 4-point scale by comparing x2 to response-specific 

type 2 criteria, using the previously defined decision rules for confidence in the type 1 SDT model.13 

                                                 
13 Note that for this model, it is possible for x and x2 to be on opposite sides of the type 1 decision criterion c. This 

is not problematic, since only x is used to provide the type 1 stimulus classification. It is also possible for x2 to 
surpass some of the type 2 criteria on the opposite side of c. For instance, suppose that x = -0.5, x2 = +0.6, c = 0, 

and        
      

 = +0.5. Then x is classified as an S1 stimulus, and yet x2 surpasses the criterion for rating “S2” 

responses with a confidence of h. Thus, there is potential for the paradoxical result whereby the type 1 response is 
“S1” and yet the type 2 confidence rating is rated highly due to the relatively strong “S2”-ness of x2. In this 
example, the paradox is resolved by the definition of the type 2 decision rules stated above, which stipulate that 
internal responses are only evaluated with respect to the response-specific type 2 criteria that are congruent with 
the type 1 response. Thus, in this case, the decision rule would not compare x2 with the type 2 criteria for “S2” 
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We first considered the SDT model with d’ = 2, c = 0, c2,”S1” = (-.5, -1, -1.5), c2,”S2” = (.5, 1, 1.5) and 

σ2 = 0. Because σ2 = 0, this is equivalent to the standard type 1 SDT model. The SDT graph for these 

parameter values is plotted in Figure A-4 A. Using these parameter settings, we computed the 

theoretical probability of each confidence rating for each permutation of stimulus and response. These 

probabilities for “S1” responses are shown in panels C and D, and the corresponding type 2 ROC curve is 

shown in panel E. (Because the type 1 criterion c is unbiased and the type 2 criteria are set 

symmetrically about c, confidence data for “S2” responses follow an identical distribution to that of “S1” 

responses and are not shown.)  

Next we simulated 10,000,000 trials using the same parameter values as the previously 

considered model, with the exception that σ2 = 1. With this additional noise in the type 1 task, type 2 

sensitivity should decrease. This decrease in type 2 sensitivity can be seen in the type 2 ROC curve in 

panel E. There is more area underneath the type 2 ROC curve when σ2 = 0 than when σ2 = 1.  

We performed a maximum likelihood fit of meta-d’ to the simulated type 2 data using the 

fmincon function in the optimization toolbox for Matlab (MathWorks, Natick, MA), yielding a fit with 

parameter values meta-d’ = 1.07, meta-c = 0, meta-c2,”S1” = (-.51, -.77, -1.06), and meta-c2,”S2” = (.51, .77, 

1.06). The SDT graph for these parameter values is plotted in Figure A-4 B.  

Panels C and D demonstrate the component type 2 probabilities used for computing the type 2 

likelihood. The response-specific type 2 probabilities for σ2 = 0 are not distributed the same way as those 

for σ2 = 1, reflecting the influence of adding noise to the internal response for the type 2 task. 

Computing meta-d’ for the σ2 = 1 data consists in finding the parameter values of the ordinary type 1 

SDT model that maximize the likelihood of the σ2 = 1 response-specific type 2 data. This results in a type 

1 SDT model whose theoretical type 2 probabilities closely match the empirical type 2 probabilities for  

                                                                                                                                                             
responses to begin with. Instead, it would find that x2 does not surpass the minimal confidence criterion for “S1” 

responses (i.e. x2 > c >         
      

) and would therefore assign x2 a confidence of 1. Thus, in this case, the paradoxical 

outcome is averted. But such potentially paradoxical results need to be taken into account for any SDT model that 
posits a potential dissociation between x and x2. 
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Figure A-4. Fitting meta-d’ to response-specific type 2 data. (A) Graph for the SDT model where d’ = 2 

and σ2 = 0 (see text for details). (B) A model identical to that in panel A, with the exception that σ2 = 1, 

was used to create simulated data. This panel displays the SDT graph of the parameters for the meta-d’ 

fit to the σ2 = 1 data. (C-D) Response-specific type 2 probabilities. The maximum likelihood method of 

fitting meta-d’ to type 2 data uses response-specific type 2 probabilities as the fundamental unit of 

analysis. The type 1 SDT parameters that maximize the likelihood of the type 2 data yield distributions of 

response-specific type 2 probabilities closely approximating the empirical (here, simulated) 

distributions. Here we only show the probabilities for “S1” responses; because of the symmetry of the 

generating model, “S2” responses follow identical distributions. (E) Response-specific type 2 ROC 

curves. ROC curves provide a more informative visualization of the type 2 data than the raw 

probabilities. Here it is evident that there is considerably less area under the type 2 ROC curve for the σ2 

= 1 simulation than is predicted by the σ2 = 0 model. The meta-d’ fit provides a close match to the 

simulated data. 
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the simulated σ2 = 1 data (Figure A-4 C and D). Because type 2 ROC curves are closely related to these 

type 2 probabilities, the meta-d’ fit also produces a type 2 ROC curve closely resembling the simulated 

curve, as shown in panel E. 

 

Interpretation of meta-d’ 

Notice that because meta-d’ characterizes type 2 sensitivity purely in terms of the type 1 SDT 

model, it does not explicitly posit any mechanisms by means of which type 2 sensitivity varies. Although 

the meta-d’ fitting procedure gave a good fit to data simulated by the toy σ2 model discussed above, it 

could also produce similarly good fits to data generated by different models that posit completely 

different mechanisms for variation in type 2 performance. In this sense, meta-d’ is descriptive but not 

explanatory. It describes how an ideal SDT observer with similar type 1 response bias as the actual 

subject would have achieved the observed type 2 performance, rather than explain how the actual 

subject achieved their type 2 performance. 

The primary virtue of using meta-d’ is that it allows us to quantify type 2 sensitivity in a 

principled SDT framework, and compare this against SDT expectations of what type 2 performance 

should have been, given performance on the type 1 task, all while remaining agnostic about the 

underlying processes. For instance, if we find that a subject has d’ = 2 and meta-d’ = 1, then (1) we have 

taken appropriate SDT-inspired measures to factor out the influence of response bias in our measure of 

type 2 sensitivity; (2) we have discovered a violation of the SDT expectation that meta-d’ = d’ = 2, giving 

us a point of reference in interpreting the subject’s metacognitive performance in relation to their 

primary task performance and suggesting the possibility of suboptimal metacognition; and (3) we have 

done so while making minimal assumptions and commitments regarding the underlying processes. 

Another important point for interpretation concerns the raw meta-d’ value, as opposed to its 

value in relation to d’. Suppose observers A and B both have meta-d’ = 1, but d’A = 1 and d’B = 2. Then 
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there is a sense in which they have equivalent metacognition, as their confidence ratings are equally 

sensitive in discerning correct from incorrect trials. But there is also a sense in which A has superior 

metacognition, since A was able to achieve the same level of meta-d’ as B in spite of a lower d’. In a 

sense, A is more metacognitively ideal, according to SDT. We can refer to the first kind of metacognition, 

which depends only on meta-d’, as “absolute type 2 sensitivity,” and the second kind, which depends on 

the relationship between meta-d’ and d’, as “relative type 2 sensitivity.” Absolute and relative type 2 

sensitivity are distinct constructs that inform us about distinct aspects of metacognitive performance. 

 

Code for implementing overall and response-specific meta-d’ analysis 

We provide free Matlab scripts for conducting type 1 and type 2 SDT analysis, including 

functions to find the maximum likelihood fits of overall and  response-specific meta-d’ to a data set, at 

http://www.columbia.edu/~bsm2105/type2sdt 
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Appendix B 

Comparison of dual channel SDT models in Chapter 1 and Del Cul et al (2009) 

 

Although our SDT implementation of the independent dual channel model described in Chapter 

1 (call it DCSDT) is intended to capture the primary computational features of the model described in Del 

Cul, Dehaene, Reyes, Bravo, and Slachevsky (2009) (call it DCaccum), it is not identical. In this supplement, 

we discuss the relevant similarities and differences between the models. Despite their technical 

differences, they share core computational features that encapsulate a general theory of the sensory 

processing structures underlying perceptual decision making and reports of conscious awareness. Here 

we discuss the conceptual similarities between the models and demonstrate that the core behavioral 

patterns captured by DCaccum in Del Cul et al can also be produced by DCSDT. Thus, DCSDT is an acceptable 

stand-in for DCaccum in the present work, capturing the core features of its sensory processing 

architecture. 

Computationally, both models describe the perceptual decision making process as arising from 

the comparison of noisy sensory evidence to a decision criterion. The primary difference between the 

models is that DCaccum is an accumulator model that explicitly describes the dynamics of this perceptual 

decision process within the level of individual trials (Laming, 1968; Link, 1992; Ratcliff & Rouder, 1998), 

whereas DCSDT does not.  

The full details of DCaccum are described in the supplementary material of Del Cul et al. (2009). 

Here, we provide a brief summary. In DCaccum, two separate processing channels, one “conscious” and 

the other “unconscious,” accumulate noisy sensory evidence over time for each possible stimulus 

identification response (e.g. evidence for responding “squares” and evidence for responding “diamonds” 

would be accumulated simultaneously). Response alternatives “race” each other in each channel, such 

that a behavioral identification of the stimulus is produced as soon as a response alternative in one of 
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the channels achieves a threshold level of evidence. The first channel to achieve this threshold level of 

evidence for a response alternative within a predefined time period δ emits the corresponding stimulus 

identification response. If the stimulus identification response arises from the conscious channel, the 

observer additionally reports that the stimulus was “seen.” Conversely, if the stimulus identification 

response arises from the unconscious channel, the observer reports that the stimulus was “not seen.” If 

no stimulus identification response achieves the threshold level of evidence within δ, then the 

unconscious channel emits a response on the basis of the stimulus alternative that currently has the 

most sensory evidence. 

Crucially, independent sources of noise contaminate sensory processing in the two channels, so 

that noisy fluctuations in evidence accumulation in one channel are not reflected in the noisy 

fluctuations of the other. These independent sources of noise correspond to the physiological notion 

that sensory computations are taking place in separate, unconnected processing streams. 

DCSDT does not explicitly describe the temporal dynamics corresponding to evidence 

accumulation within a trial. However, for two main reasons, it remains conceptually comparable to 

DCaccum:  

(1) DCSDT and DCaccum share the same core computational principle, namely that trials associated 

with subjective reports of high and low stimulus visibility are associated with distinct processing 

channels which are subject to independent sources of noise. This general principle is what we wish to 

assess by including DCSDT in the model comparison analysis described in the manuscript. 

(2) One major advantage of accumulator models over atemporal SDT models is that the former 

can model patterns in behavioral response time data. However, although Del Cul et al’s model posits a 

dynamic evidence accumulation process, they did not constrain their model fitting procedure with 

response time data. Rather, they fit the model only to measures of task performance and reports of 

stimulus visibility. Thus, the same behavioral indeces of performances used to fit DCaccum to the data in 
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Del Cul et al were also used to fit DCSDT to the data in the current manuscript. It is thus not the case that 

DCaccum, as described in Del Cul et al, accounts for a wider range of behavioral data than does DCSDT, in 

spite of their computational differences.  

In summary, DCSDT and DCaccum are broadly comparable in that they posit the same core 

computational principle in order to account for patterns in the same sorts of behavioral data.  

Nonetheless, it remains possible that the technical differences between the models are 

sufficient to make them different in the particular patterns of behavioral data that they can account for. 

Below, we perform a simulation analysis that reproduces the key patterns of behavioral data in patient 

and control populations used to support DCaccum in Del Cul et al, and show that DCSDT can also generate 

these patterns. Thus, the two models are comparable not just at a broad conceptual level but also in the 

specific patterns of data that they can generate. 

 

Simulation 

DCaccum  

In Del Cul et al, subjects performed a digit identification task. One of ten digits (0 – 9) was 

displayed on every trial, followed by a mask. The target-mask stimulus onset asynchrony could take on 

one of eight possible values. Subjects verbally indicated whether the masked digit was seen or not, and 

then provided a forced-choice judgment regarding the digit identitiy. The authors computed measures 

of task performance and subjective report for frontal lesion patients and healthy controls, and fit DCaccum 

to this data set. 

DCaccum has 5 free parameters: 

 

σi : standard deviation of the noise added to sensory signals at every time step during the “input” stage; 

this noise is shared by both channels 
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σr : standard deviation of the noise added to sensory signals at every time step for the unconscious 

channel 

σw : standard deviation of the noise added to sensory signals at every time step for the conscious 

channel 

θ : the decision threshold describing how probable a given response alternative must be in order for the 

corresponding behavioral response to be emitted 

δ : the period of time during which evidence accumulation occurs; if no response is generated within δ 

time units, then the best-supported stimulus identification response in the unconscious channel is 

emitted as the behavioral response 

 

In their data fitting, Del Cul et al constrained θ to be equal in the conscious and unconscious 

channels, and a priori set δ = 6 (corresponding to the number of SOAs; although data was collected at 8 

SOAs, the model was fit to data from the first 6 SOAs only). They first fit DCaccum to the data from the 

healthy subjects, yielding parameter values of σi = 3.44, σr = 9.07, σw = 1.12, and θ = 0.893. They then fit 

the model to the patient data, using the same parameter values and allowing only σw to vary. The value 

of σw obtained for patients was 2.53. 

We created a simulation aiming to reproduce the relevant features of the behavioral data in Del 

Cul et al by using DCaccum. In all simulations, we specified the parameter values of DCaccum a priori, 

simulated 20,000 trials at each SOA for each subject group (patients / controls), and subsequently 

computed mean levels of task performance and subjective report as a function of SOA and subject 

group.  

In order to compare DCaccum to DCSDT, it was necessary to adjust DCaccum to account for 2 stimulus 

alternatives rather than 10. All other specifications of the model were set as described in Del Cul et al.  
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Initially, we set the parameter values in our simulation equal to those found for healthy subjects 

in Del Cul et al, as described above. However, this had the effect of yielding near-chance levels of task 

performance in the simulated data. It is possible that this occurred due to the fact that, after each time 

step, accumulated evidence is normalized and converted into a probability value. The normalization 

factor grows larger with the number of response alternatives. Thus, with only 2 stimulus alternatives, 

evidence for response alternatives may more rapidly arrive at the decision threshold than it would in the 

10 stimulus case, even in spite of having the same level of sensory noise. This reduction in the time 

devoted to evidence accumulation would have the effect of reducing task performance.  

In order to correct for this, we adjusted the parameter values as follows. We defined constraints 

on the parameter values such that 

 

σr = (9.07/3.44) * σi 

σw, control = (1.12/3.44) * σi 

σw, patient = (2.53/3.44) * σi 

 

and manually searched for the value of σi that would yield a similar profile of behavioral data to that 

found in Del Cul et al. Thus, we tuned the parameter values of DCaccum to be suitable for adaptation to 

the 2-stimulus case, while still preserving the ratios between parameter values found by Del Cul et al. 

We found that setting σi = 0.2 yielded a satisfactory result, as displayed in Figure B-2 (compare 

with our Figure B-1, which is a reproduction of the results of model fitting originally presented in Del Cul 

et al’s Figure S3). In particular, our implementation of DCaccum captured the primary patterns of interest 

in the behavioral data as identified by Del Cul et al: 

 Overall task performance (p(correct)) and subjective report (p(seen)) increase with SOA, and 

these measures are higher in controls than in patients (Figure B-2 A, B) 
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 Task performance conditioned on subjective report (p(correct | seen) and p(correct | not seen)) 

is virtually identical for patients and controls (Figure B-2 C) 

 Subjective report conditioned on task performance (p(seen | correct) and p(seen | incorrect)) is 

larger for controls than for patients (Figure B-2 D) 

 

 

Figure B-1. The model fit of DCaccum to patient and control data originally described in Del Cul et al 

(2009). All displayed curves are generated by the model (i.e. actual data from patients and controls, to 

which the model was fit, are not displayed in this figure). Reproduced from Figure S3 of Del Cul et al. 
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Figure B-2. Adaptation of DCaccum to the 2-stimulus case. We adapted the model described in Del Cul et 

al (2009) to apply to tasks with 2 response alternatives rather than 10, but otherwise adhered to the 

model specifications described in the supplemental material in Del Cul et al (see Appendix B for details). 

Here we show that our 2-stimulus implementation of the model can produce results similar to those 

found by Del Cul et al in the 10-stimulus case (Figure B-1). 
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DCSDT  

Next, we investigated whether DCSDT could produce a pattern of results similar to those of 

DCaccum, as originally found by Del Cul et al (Figure B-1) and reproduced in our adaptation to the 2-

stimulus case (Figure B-2). DCSDT was implemented as described under “Independent Dual Channel” in 

the “Model descriptions” section of the manuscript, with minor differences.  

 

 Because we needed to simulate 6 SOA levels rather than 8 as in the manuscript, we required 

only 6 levels of μdiff C and μdiff U.  

 To simplify modeling, we assumed that stimulus identification responses arising from the 

unconscious channel were unbiased, and so we set cU = 0.  

 Because we needed to simulate 2 levels of stimulus visibility (“not seen” and “seen”) rather than 

4 as in the manuscript, we required only 2 levels of the decision criteria for subjective report, cC. 

To further simplify the model, we also assumed that these two criteria were set symmetrically 

about 0, the point of unbiased responding, so that we needed to specify only one value of cC.  

 

We adopted a heuristic approach to converge upon an appropriate set of parameter values, as 

follows.  

First, we computed the mean values of p(correct) at each SOA level for the patient and control 

groups in the DCaccum simulation (Figure B-2).  We converted these to d’ values by assuming unbiased 

responding using the formula d’ = 2*z[p(correct)], where z is the inverse of the normal cumulative 

distribution function (Macmillan & Creelman, 2005). Call these d’ values d’SOA. For the simulated control 

group, we set μdiff C, control = d’SOA at each SOA level. This ensured that, for the control group, p(correct) as 

a function of SOA resembled the corresponding curve generated by DCaccum. The values of μdiff C, control thus 

obtained were 0.54, 1.03, 1.45, 1.78, 2.04, and 2.23. 
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To further constrain the search space, we ensured that the following relationships between 

parameter values were enforced at each level of SOA: 

 

μdiff U, control  = w1 * μdiff C, control 

μdiff C, patient  = w2 * μdiff C, control 

μdiff U, patient  = μdiff C, control 

 

The first constraint characterizes sensitivity in the unconscious channel as some constant 

fraction of the sensitivity in the conscious channel for controls. The second constraint characterizes 

sensitivity in the conscious channel for patients as some constant fraction of the sensitivity in the 

conscious channel for controls. The third constraint is that sensitivity in the unconscious channel for 

patients and controls is equal, mirroring the assumption of equally noisy unconscious channels posited 

by Del Cul et al in their model fitting. 

We manually adjusted values of w1, w2, cC, control, and cC, patient so as to produce a pattern of results 

resembling that produced by DCaccum, as depicted in Figure B-1. We found that setting w1 = .14, w2 = .9, 

cC, control = .45, and cC, patient = .65 accomplished this result well (Figure B-3). The key patterns in the data 

originally found in Del Cul et al are reproduced by the DCSDT model, and the specific numerical values for 

all plotted curves produced by DCSDT (Figure B-3) closely approximate the numerical values for the 

curves produced by DCaccum (Figure B-2). 

Thus, not only do DCaccum and DCSDT share core assumptions about the computational 

architecture underlying perceptual decision making, but they also can generate (and therefore account 

for) similar patterns of behavioral data. We therefore are justified in using DCSDT as a model 

encompassing the core assumptions of DCaccum when comparing SDT models in the main manuscript. 
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Figure B-3. Reproduction of DCaccum results with DCSDT. Our SDT implementation of the independent 

dual channel model, DCSDT, was able to produce results closely matching those produced by the 

accumulator model of dual channel processing, DCaccum, posited by Del Cul et al (2009) (compare this 

figure with Figure B-2).  

 


