
Topics in Routing and Network Coding for
Wireless Networks

Maulik Desai

Submitted in partial fulfillment of the

requirements for the degree

of Doctor of Philosophy

in the Graduate School of Arts and Sciences

COLUMBIA UNIVERSITY

2014

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Columbia University Academic Commons

https://core.ac.uk/display/161446073?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

c©2014

Maulik Desai

All Rights Reserved

ABSTRACT

Topics in Routing and Network Coding for
Wireless Networks

Maulik Desai

This dissertation presents topics in routing and network coding for wireless networks. We

present a multipurpose multipath routing mechanism. We propose an efficient packet en-

coding algorithm that can easily integrate a routing scheme with network coding. We also

discuss max-min fair rate allocation and scheduling algorithms for the flows in a wireless

network that utilizes coding.

We propose Polar Coordinate Routing (PCR) to create multiple paths between a source

and a destination in wireless networks. Our scheme creates paths that are circular segments

of different radii connecting source−destination pairs. We propose a non−euclidean distance

metric that allows messages to travel along these paths. Using PCR it is possible to maintain

a known separation among the paths, which reduces the interference between the nodes

belonging to two separate routes. Our extensive simulations show that while PCR achieves

a known separation between the routes, it does so with a small increase in overall hop count.

Moreover, we demonstrate that the variances of average separation and hop count are lower

for the paths created using PCR compared to the existing schemes, indicating a more reliable

system. Existing multipath routing schemes in wireless networks do not perform well in

the areas with obstacles or low node density. To overcome adverse areas in a network, we

integrate PCR with simple robotic routing, which lets a message circumnavigate an obstacle

and follow the multipath trajectory to the destination as soon as the obstacle is passed.

Next we propose an efficient packet encoding algorithm to integrate a routing scheme

with network coding. Note that this packet encoding algorithm is not dependent on PCR.

In fact it can be coupled with any routing scheme in order to leverage the benefits offered

by both an advanced routing scheme and an enhanced packet encoding algorithm. Our

algorithm, based on bipartite graphs, lets a node exhaustively search its queue to identify

the maximum set of packets that can be combined in a single transmission. We extend

this algorithm to consider multiple next hop neighbors for a packet while searching for an

optimal packet combination, which improves the likelihood of combining more packets in a

single transmission.

Finally, we propose an algorithm to assign max-min fair rates to the flows in a wireless

network that utilizes coding. We demonstrate that when a network uses coding, a direct

application of conventional progressive filling algorithm to achieve max-min fairness may

yield incorrect or suboptimal results. To emulate progressive filling correctly for a wireless

networks with coding, we couple a conflict graph based framework with a linear program.

Our model helps us directly select a bottleneck flow at each iteration of the algorithm,

eliminating the need of gradually increasing the rates of the flows until a bottleneck is found.

We demonstrate the caveats in selecting the bottleneck flows and setting up transmission

scheduling constraints in order to avoid suboptimal results. We first propose a centralized

fair rate allocation algorithm assuming the global knowledge of the network. We also present

a novel yet simple distributed algorithm that achieves the same results as the centralized

algorithm. We also present centralized as well as distributed scheduling algorithms that help

flows achieve their fair rates. We run our rate allocation algorithm on various topologies.

We use various fairness metrics to show that our rate allocation algorithm outperforms

existing algorithms (based on network utility maximization) in terms of fairness.

Table of Contents

1 Introduction 1

1.1 Introduction to Multipath Routing . 1

1.2 Introduction to Network Coding . 3

1.3 Thesis Contribution . 5

1.3.1 Contribution towards Multipath Routing 5

1.3.2 Contribution towards Packet Encoding Algorithms and its Integration

with a Routing Scheme . 6

1.3.3 Contribution towards Max-min Fair Rate Allocation and Scheduling 8

1.4 Outline of the Thesis . 9

2 Polar Coordinate Routing for Multiple Paths in Wireless Networks 11

2.1 Introduction . 11

2.2 Related Work . 13

2.3 Polar Coordinate Routing (PCR) . 15

2.3.1 Arc Specifications . 17

2.3.2 Non-Euclidean Distance Metric . 19

2.3.3 Separation between Arcs . 20

2.4 PCR: Results . 21

2.4.1 Path Separation . 24

2.4.2 Hop Count . 25

2.5 PCR Integrated with Robotic Routing . 26

i

2.6 Results: PCR Integrated with Robotic Routing 29

2.7 Summary . 32

3 A Packet Encoding Algorithm for Network Coding with Multiple Next

Hop Neighbor Consideration and its Integration with a Routing Scheme 33

3.1 Introduction . 33

3.2 Related Works . 37

3.3 Packet encoding algorithm . 38

3.3.1 Acquiring the knowledge of neighbors’ packets 39

3.3.2 Benefits of considering multiple next hop candidates 40

3.3.3 Integer program to find the maximum possible packet combination . 42

3.3.4 Exhaustive search: single next hop candidate 44

3.3.5 Exhaustive search: multiple next hop candidates 47

3.3.6 Benefit of considering multiple next hop candidates 49

3.3.7 A note on the complexity of the algorithm 51

3.4 Delta Routing and its Integration with Network Coding 52

3.4.1 Throughput Comparison: Delta Routing Vs. Conventional Shortest

Path Routing . 54

3.4.2 Integrating network coding with Delta routing 58

3.5 Simulation Results . 60

3.6 Summary . 63

4 Max-min Fair Rate Allocation in Multihop Wireless Networks with In-

tersession Network Coding 65

4.1 Introduction . 65

4.2 Related Work . 68

4.3 Fairness algorithm from a global perspective 70

4.3.1 Network Model . 70

4.3.2 Linear Program to Calculate Fair Rates in a Maximal Clique 71

ii

4.3.3 Update F
u and F

c . 76

4.3.4 Algorithm Complexity . 76

4.3.5 Max-min Fair Rate Allocation: Results 78

4.4 Scheduling algorithm from a global perspective 85

4.5 Distributed algorithms . 86

4.5.1 Distributed fair rate allocation algorithm 87

4.5.2 Distributed scheduling algorithm . 93

4.6 Summary . 101

5 Conclusion 102

5.1 Polar Coordinate Routing . 102

5.2 Packet Encoding for Network Coding . 103

5.3 Max-Min Fair Rate Allocation Algorithm 104

Bibliography 105

iii

List of Figures

1.1 Example of the coding scheme . 4

2.1 Polar Coordinate Routing . 17

2.2 Polar Coordinate Routing . 18

2.3 Estimation of nodes from an arc out of range of greedy forwarding path . . 20

2.4 Estimation of nodes from an arc out of range of the nodes that belong to

another arc . 22

2.5 A Comparison of PCR and BGR . 23

2.6 Percentage nodes out of range of greedy forwarding path when multi-path

routing schemes form paths at θ = 45◦ . 24

2.7 Comparison of BGR and PCR when paths are formed at 45◦ and 75◦ . . . 25

2.8 Hop count when multi-path routing schemes form paths at θ = 45◦ 26

2.9 PCR integrated with Robotic Routing . 27

2.10 PCR Integrated with Robotic routing. Nodes chosen according to PCR are

shown in black, robotic routing nodes are shown in blue 29

2.11 Percentage nodes out of range of greedy forwarding path when PCR+RR

form path at θ = 45◦ . 31

2.12 Performance of PCR+RR with obstacles in the network when paths are

formed at 45◦ and 75◦ . 31

2.13 Hop count when PCR+RR form path at θ = 45◦ 32

3.1 An example of network coding . 34

iv

3.2 There are four flows in this network (i) A to B, (ii) B to A (iii) C to D (iv)

D to A. In this case node F is a bottleneck node. 36

3.3 Opportunistic listening can be employed to combine more than two packets 39

3.4 Considering multiple next hop candidates may improve coding opportunities 41

3.5 Integer program to exhaustively search for an optimal packet combination

while considering multiple next hop neighbors for a packet 42

3.6 Graph construction based on the example given in table 3.1. 46

3.7 Original graph . 47

3.8 Extension graph . 48

3.9 Summary of packet encoding algorithm . 49

3.10 Improvement in the throughput of flow A → E by considering multiple neigh-

bors as next hop candidates . 50

3.11 Network specification: 75 nodes scattered uniformly in an area of 1000×1000m2 56

3.12 Throughput: Conventional shortest path routing: 2800 packets/sec, Delta

routing: 4000 packets/sec . 56

3.13 Contour graph of forwarding rates for conventional routing, arrival rate =

2800 packets/sec . 57

3.14 Contour graph of forwarding rates for Delta routing, arrival rate = 2800

packets/sec . 57

3.15 Network coding + Conventional routing: 3600 packets/sec, Delta routing +

Network Coding: 5100 packets/sec . 61

3.16 Throughput achieved by various routing schemes on different topologies . . 62

3.17 Trade off between the throughput and how deep we search our queue 63

4.1 An example of network coding . 65

4.2 Linear program to identify the maximum rate all the unconstrained flows can

achieve in a maximal clique . 72

4.3 Bottleneck flow in this scenario would be either f1 or f2 75

4.4 Twenty nodes scattered randomly in a 1000× 1000m2 area 79

v

4.5 Rates assigned to the flows in figure 4.4 . 80

4.6 Nodes in a structured topology . 80

4.7 Rates assigned to the flows in figure 4.6 . 81

4.8 A network with dense flows . 82

4.9 Rates assigned to the flows in figure 4.8 . 83

4.10 Rates assigned to the flows in figure 4.8, with the heterogeneous capacities . 83

4.11 Linear program to identify the maximum rate all the unconstrained flows can

achieve in a maximal clique . 86

4.12 Fraction of flows converged to their max-min fair rates vs. Number of control

messages transmitted . 92

4.13 An example of calculating total number of successful transmissions 94

4.14 A case for using a smaller contention window 96

4.15 Flow rates achieved using distributed scheduling scheme for the network

shown in figure 4.4 . 97

4.16 Error made by scheduling scheme in assigning max-min fair rates for the

flows in figure 4.4 . 98

4.17 Flow rates achieved using distributed scheduling scheme for the network

shown in figure 4.6 . 99

4.18 Error made by scheduling scheme in assigning max-min fair rates for the

flows in figure 4.6 . 99

4.19 Flow rates achieved using distributed scheduling scheme for the network

shown in figure 4.8 . 100

4.20 Error made by scheduling scheme in assigning max-min fair rates for the

flows in figure 4.8 . 100

vi

List of Tables

3.1 Sequential search:P1 ⊕ P2. Optimal combination: P1 ⊕ P3 ⊕ P4. 44

3.2 Enumeration of cycles in figure 3.6. 47

3.3 Throughput improvement (in %) achieved by the combination of network

coding and delta routing over other schemes. 62

4.1 Comparison of rate fairness using fairness indices 84

4.2 Comparison of aggregate network throughput 84

vii

Acknowledgments

I would like to express my deepest gratitude and love to Ba, Dada and Masi for their

unconditional love and care. The things I have learned from them will take me a long way.

I would also like to thank my parents and brother for their love and support throughout

my academic career.

Special thanks to my aunt Hema and uncle Mukesh for giving me an opportunity to

come to the United States and explore new academic horizons. I would also like to thank

my cousin Sejal and her husband Santosh for their help during my days as a community

college student.

I am fortunate to have more than my fair share of wonderful friends. I would like

to thank my friend Terence for having meaningful conversations about life, universe and

everything else with me almost everyday since I have known him. Thanks to Yuriy for being

the receiving end of my midnight calls every time I got a bad grade or had bad results in

my research. Thanks to Ken for making himself available every time I asked him to hang

out and having lighthearted conversations with me to keep my spirits up. Thanks to Qing

as well, without her help I would have neither taken GRE nor written an admissions essay.

Thanks to Satya for making herself available to talk during frustrating days of which there

were many. Thanks to Prateek, Ravi, Richard and Kevin for hanging out with me since the

days of our undergraduate studies.

I would also like to thank my labmates Patcharinee, Yitian and Robert. Also, many

thanks to Kyung for his help throughout my graduate studies. It is hard to imagine a better

labmate than him.

I am grateful to my thesis adviser Prof. Nick Maxemchuk for his valuable guidance,

viii

without his insightful advice this thesis would not have been possible.

I am also thankful to my committee members Prof. Gil Zussman, Prof. Vishal Misra,

Prof. Augustin Chaintreau and Dr. Thierry Klein for taking time out from their busy

schedule and attending my thesis defense.

I am thankful to Prof. Bhaskar Krishnamachari and Dr. Thyaga Nandagopal. The

motivation and inspiration they provided served me throughout my graduate studies.

ix

To,

Ba, Dada and Masi.

x

CHAPTER 1. INTRODUCTION 1

Chapter 1

Introduction

This dissertation presents topics related to routing and network coding for wireless net-

works. The mechanisms discussed in this dissertation work on the wireless networks with

stationary nodes. Examples of such networks include wireless sensor networks and wireless

mesh networks. With some modifications, the work presented here may be adapted to the

mobile ad-hoc networks where nodes in the network are not stationary. The applications of

wireless networks vary from data aggregation/dissemination to natural activity monitoring.

However, our main focus is concerned with the applications related to data delivery. In-

stead of data dissipation from a source or data aggregation towards a destination, we work

with the routing schemes where the data is always travelling between a source node and a

destination node.

1.1 Introduction to Multipath Routing

There have been several routing schemes that achieve this task with different objectives in

mind. For example a routing scheme may choose to forward packets such that they make

the maximum possible progress towards their destinations. On the other hand packets

may be forwarded through the minimum delay paths, or through the paths that reduce

the total number of expected transmissions etc. Unfortunately, there have been few efforts

CHAPTER 1. INTRODUCTION 2

focused towards multipath routing. As the name indicates in a multipath routing scheme,

the packets are forwarded towards the destinations on multiple different paths. Depending

on the nature of the application there may or may not be redundant packets travelling on

separate paths. Multipath routing can offer several advantages.

• It helps spread out the data packets towards the underutilized parts of the network,

hence it helps alleviate congestion.

• In a network with fragile connectivity, by sending the same packets on multiple paths,

one can improve the probability of data delivery. Even if the route on one of the paths

fails, the data can be still delivered to the destination on other paths.

• Multipath routing improves security of data delivery as well. By sending different data

packets from a flow on different paths, one can prevent an adversary from intercepting

and decoding the entire set of data, by intercepting one of the paths.

Two of the noteworthy efforts exploring multipath routing are [Niculescu and Nath, 2003]

and [Popa et al., 2006]. In [Niculescu and Nath, 2003] a trajectory is defined using paramet-

ric equations that connects the source and the destination. Packets are forwarded through

the nodes that are closer to this trajectory. If we define multiple trajectories to connect

the source and the destination, this scheme may be applied as a multipath routing scheme.

However, this mechanism hasn’t evaluated multipath nature of the routing scheme. [Popa

et al., 2006] does present a multipath mechanism. The goal here is to send packets at

different angles from the line connecting the source and the destination. By modifying

these angles at every hop the packets are forwarded towards the destination on different

trajectories. However this scheme fails to maintain high enough path separation and the

hop count towards the destination may fluctuate significantly. To overcome these issues we

present Polar Coordinate Routing [Desai and Maxemchuk, 2010]. Chapter 2 discusses the

mechanism of this routing scheme in more detail.

CHAPTER 1. INTRODUCTION 3

1.2 Introduction to Network Coding

[Katti et al., 2006] presented COPE, an implementation of a simple network coding scheme

on top of a packet forwarding mechanism. They showed that a simple coding mechanism

indeed helps improve throughput of a network. Since then the research interest in network

coding has been reinvigorated. We present an efficient and exhaustive packet encoding

algorithm to help integrate a routing scheme with network coding. This algorithm is not

dependent on Polar Coordinate Routing. In fact, it can be easily integrated with any

routing scheme irrespective of its objective. This helps us reap the benefits offered by both

an advanced routing scheme and an enhanced packet encoding algorithm. Moreover in

this thesis we also look at resource allocation problems in a wireless network with coding.

Namely, we present a max-min fair rate allocation as well as a scheduling algorithms for

the flows in a network with coding.

Until the implementation of network coding demonstrated in [Katti et al., 2006], the

work in this area has been theoretical. [Ahlswede et al., 2000] demonstrated that combin-

ing packets in a single transmission can lead to improving capacity of the network. [yen

Robert Li et al., 2003] showed that in a multicast network transmissions of a linear com-

bination of packets can achieve the max-flow bound on the capacity. [Koetter et al., 2003]

presented polynomial time algorithms for encoding and decoding packets for the linear

codes. [Ho et al., 2003] presented random codes and showed that probability of failure to

decode a packet decreases exponentially as the length of a codeword increases for random

codes. [Sundararajan et al., 2008] demonstrated how a random code can be integrated with

TCP.

[Li and Li, 2004] investigated how network coding can lead to throughput improvement

in unicast sessions. [Wu et al., 2005] presents a simple coding scheme where the packets

from two unicast flows travelling in opposite directions are combined using bitwise exclusive

or. The combination of these two packets is forwarded in a single transmission. Since this

idea forwards more packets in fewer transmissions, it helps improve the network throughput.

In COPE [Katti et al., 2006] this basic idea is implemented. This basic coding scheme takes

CHAPTER 1. INTRODUCTION 4

A F

mf = ma ⊕mb

B

ma mb

Figure 1.1: Example of the coding scheme

advantage of the broadcast nature of a wireless channel. Consider the scenario presented in

figure 1.1. In this scenario we have two nodes A and B exchanging messages with each other.

ma travels from A to B and mb travels from B to A. Since A and B are out of each other’s

transmission range these two messages have to be forwarded through a node F that lies in

between them. Observe that in order to avoid a collision only one packet can be transmitted

at a time in this network. Therefore in a conventional forwarding scheme it takes a total

of four transmissions for A and B to exchange ma and mb with each other. However, say

instead of forwarding ma and mb individually, node F combines these two messages and

transmits the combination mf = ma⊕mb, where ⊕ stands for bitwise exclusive or. Since it

is a wireless medium, both A and B will receive this packet combination. Since A already

has the knowledge of ma it will retrieve mb as mb = mf ⊕ ma. Similarly, B can retrieve

ma as ma = mf ⊕mb. Therefore, both A and B receive their required messages, and the

whole exchange takes only three transmissions. Since this basic scheme reduces the number

of transmissions from four to three, it improves the throughput of the network by 33%. In

this primitive example we just combined two messages. However, if a node has k packets in

its queue that are going to k different neighbors, ideally all these k packets can be combined

in a single transmission, if each of these neighbors has the knowledge of k− 1 packets other

than the one it is supposed to receive. Some of the algorithms presented in this thesis are

based on this simple coding technique.

[Omiwade et al., 2008] and [Dong et al., 2007] offer modifications to COPE that can

lead to throughput improvements. There have also been several algorithms proposed that

analyze various aspects of a network when this coding scheme is coupled with routing.

[Sengupta et al., 2007] discusses maximum throughout achieved by the network using this

CHAPTER 1. INTRODUCTION 5

scheme. [Le and Lui, 2008] gives an upper bound on the number of packets that can be

encoded using this scheme. [Zhao and Medard, 2010] shows that the local fairness enforced

by the MAC scheme plays an important role in the throughput improvement offered by this

scheme. [Ronasi et al., 2009], [Seferoglu et al., 2009] and [Seferoglu and Markopoulou, 2009]

provide a network utility maximization based rate control algorithm for the flows that use

this coding scheme. [Seferoglu et al., 2011] combines inter-session network coding with intra-

session network coding in order to make this coding scheme more resilient. However, there

hasn’t been an exhaustive packet encoding algorithm that can be coupled with a routing

scheme irrespective of the objective of the routing mechanism. Moreover, to the best of our

knowledge there hasn’t been a max-min fair rate allocation and scheduling algorithms for

the flows in a network with coding. Therefore, as mentioned earlier in this thesis we look at

these aspects of network coding. Next we describe the specifics regarding the contribution

of this dissertation.

1.3 Thesis Contribution

This thesis makes contributions in the areas of routing and network coding for wireless

networks. We present a multipath routing scheme. We propose an efficient packet encoding

algorithm that helps integrate a routing mechanism with network coding. We also look at

max-min fair rate allocation and scheduling problems for the flows in a wireless network

with coding.

1.3.1 Contribution towards Multipath Routing

Firstly we present a multipath routing mechanism called Polar Coordinate Routing (PCR).

This routing scheme serves several purposes as discussed in section 1.1. This routing scheme

can be applied to various types of networks. Ideally, it is well suited for a dense network

with a large number of nodes, such as large scale wireless sensor networks. It can also

be used to route data in wireless mesh networks, and with minor modifications it can be

applied to wireless ad-hoc networks as well.

CHAPTER 1. INTRODUCTION 6

The routing scheme defines multiple arcs in a network, these arcs are basically segments

of a circle. The objective of the routing mechanism is to forward data on these arcs. Clearly

the denser the network, the more closely packets adhere to their trajectory. We also define

a non-euclidean distance metric that helps packets travel on their respective trajectories.

Packet forwarding using this distance metric is similar to geographic routing schemes. We

also present rules to avoid routing loops when packets are travelling on a circular trajectory.

Note that this routing scheme may be used for multiple objectives (such as successful

data delivery, congestion alleviation etc). Instead of checking performance of the routing

scheme individually for each application, we specify metrics that can compare two multi-

path routing schemes, irrespective of the application they might be used for. We check

the performance of the routing scheme using the metrics such as average path separation,

fraction of nodes on various paths that are out of each other interference range, hop count

etc. We run this routing scheme on a large number of random topologies and present the

results.

When the flows are travelling longer hops, one of the biggest concerns in successfully

reaching the destination is obstacles on the paths. We integrate our routing scheme with

robotic routing [Kim and Maxemchuk, 2005], in order to help packets circumnavigate ob-

stacles. Whenever a packet fails to make forward progress on its trajectory, the packet exits

PCR and enters robotic routing. The packets circumnavigates obstacles using the rules

specified by robotic routing. Once the packet travels past the obstacle and as soon as a

packet realizes that it can make forward progress on its trajectory, it quits robotic routing

and reenters the PCR. We specify rules on how to switch between two routing mechanisms

in order to overcome obstacles.

1.3.2 Contribution towards Packet Encoding Algorithms and its Integra-

tion with a Routing Scheme

Next we work towards integrating network coding with a routing scheme. Our focus is

on a coding scheme that is suggested in [Wu et al., 2005] and implemented in [Katti et

CHAPTER 1. INTRODUCTION 7

al., 2006]. We present a novel packet encoding algorithm that searches a node’s queue

exhaustively in order to identify the maximum number of packets that can be combined in

a single transmission. Our algorithm can be easily integrated with a routing scheme such

that we can leverage the benefits offered by both an advanced routing scheme and network

coding. Our packet encoding algorithm is not dependent on a particular routing scheme

such as PCR. In fact it can be coupled with any routing mechanism. We demonstrate this

by integrating our packet encoding algorithm with a routing mechanism where the next

hop neighbors for a packet change dynamically. Our packet encoding algorithm offers the

following benefits.

• Unlike prevailing packet encoding algorithms [Katti et al., 2006], it searches a node’s

queue exhaustively.

• The algorithm runs in polynomial time. Therefore it asymptotically is faster than

näıve exhaustive search.

• The algorithm can consider multiple neighbors as next hop candidates for a packet.

Hence a node can forward the packet to a neighbor that helps combine more packets,

thus improving the network throughput.

• Our packet encoding algorithm does not depend on a routing scheme, and hence it

can be easily integrated with any routing mechanism.

We first present our packet encoding algorithm as a binary integer program. A binary

integer program is NP complete. Moreover, not all the routers may have an optimization

tool. Therefore we provide an additional algorithm to find an optimal packet combination.

We show that finding an optimal packet combination in a node’s queue is analogous to

enumerating cycles in a bipartite graph. Next we extend our algorithm to consider multiple

neighbors as next hop candidates for a packet. We demonstrate that considering multiple

next hop candidates improves the possibility of combining more packets, hence it improves

the throughput.

CHAPTER 1. INTRODUCTION 8

We also demonstrate how this packet encoding algorithm can be integrated with a

routing scheme. We couple this algorithm with a routing scheme that changes a packet’s

next hop neighbors very dynamically. We run the routing scheme along with our encoding

algorithm on a large number of topologies, and demonstrate the throughput benefits offered

by this combination.

1.3.3 Contribution towards Max-min Fair Rate Allocation and Schedul-

ing

While calculating the throughput of a routing scheme we observed that as the rates of

some of the flows in the network change, the total throughput of the network changes

dramatically. Therefore in order to avoid this problem, while calculating the throughput

we assumed that each flow in the network is assigned the same rate. However, this need

not be the case. A flow in the network may be assigned a rate in order to maximize the

minimum rate each flow gets (max-min fair rates) or a flow may get its rate depending on the

amount of network resources it uses (proportional fair rates). Therefore this dissertation also

contributes towards a resource allocation problem, namely max-min fair rate allocation for

the flows with network coding. Note that there already has been some work in the literature

regarding proportionally fair rates while using coding [Seferoglu et al., 2009], [Seferoglu and

Markopoulou, 2009].

We couple a conflict graph based framework with simple linear programming to achieve

max-min fairness for the flows in a wireless network with coding. We demonstrate how

to emulate progressive filling for such a scenario. First we present our fair rate allocation

algorithm from a global/centralized perspective. We show that the computational complex-

ity of this algorithm is polynomial time. We also demonstrate that emulating progressive

filling is not straight forward for a wireless network with coding. We present caveats that

yield suboptimal or incorrect results if not dealt with carefully. We run this algorithm on

a number of different topologies, and compare the rates assigned using our algorithm with

existing max-min rate control schemes using various fairness metrics. We also present a

CHAPTER 1. INTRODUCTION 9

novel distributed version of this algorithm that achieves the same results as the centralized

algorithm. We show how many messages are transmitted network wide in order for the

distributed algorithm to converge to the same results as the centralized algorithm.

We also present a centralized as well as distributed version of a scheduling mechanism

that helps flows achieve the rates allocated using our fairness mechanism. Our distributed

algorithm works with a standard CSMA scheme, therefore it can be implemented with

prevailing 802.11 standards. Hence it eliminates the need of introducing new protocols in

the network. We simulate how much throughput various flows get using this scheduling

mechanism. We calculate the error in achieving max-min fair rates using this scheduling

scheme as well.

1.4 Outline of the Thesis

This thesis is split into five chapters. In the current chapter we provided a background and

the outline of our research.

In chapter 2 we present Polar Coordinate Routing. Section 2.3 presents the mechanism

of this routing scheme. In section 2.4 we compare our routing mechanism with existing

multipath routing scheme and present the results. In section 2.5 we demonstrate how

to integrate PCR with robotic routing in order to help packets circumnavigate obstacles.

Section 2.6 presents the performance of the routing scheme when it is integrated with robotic

routing.

In chapter 3 we present our packet encoding algorithm that helps us integrate network

coding with any routing scheme. Section 3.3 gives the detailed explanation of our encoding

algorithm. More specifically section 3.3.3 presents the problem of finding the optimal packet

combination as an integer program. In section 3.3.4 we show that searching a node’s queue

exhaustively is analogous to enumerating cycles in a bipartite graph. In section 3.3.5 we

extend this exhaustive search to include multiple next hop neighbor candidates for each

packet, hence we improve the possibility of combining more packets. In section 3.4 we show

how this packet encoding algorithm can be coupled with a routing scheme. In section 3.5

CHAPTER 1. INTRODUCTION 10

we present some results regarding what kind of throughput improvements we get when our

packet encoding algorithm is integrated with a routing scheme.

In chapter 4 we present our max-min fair rate allocation algorithm for the flows in a

wireless network with coding. In section 4.3 we present our rate allocation algorithm in a

centralized fashion. Section 4.3.4 discusses the complexity of this algorithm. In section 4.3.5

we apply our rate allocation algorithm to a few topologies and compare the results with

existing rate control algorithm. In section 4.5.1 we present our rate allocation algorithm in

a distributed fashion. For a few different scenarios we also simulate how many messages are

transmitted network wide in order for the flows to achieve the same rates as the centralized

algorithm. In section 4.4 we present our centralized scheduling algorithm. Section 4.5.2

presents the scheduling algorithm in a distributed fashion. We simulate what type of rates

the flows achieve using this scheduling scheme and present the error in achieving the true

max-min fair rates.

Finally in chapter 5 we conclude our study.

CHAPTER 2. POLAR COORDINATE ROUTING FOR MULTIPLE PATHS IN
WIRELESS NETWORKS 11

Chapter 2

Polar Coordinate Routing for

Multiple Paths in Wireless

Networks

2.1 Introduction

In wireless networks geographic routing techniques follow the most direct path to a destina-

tion. However, there are instances where the direct path is not sufficient and multiple paths

are needed to connect a source and a destination. Multiple paths offer several advantages.

• Sending data through multiple paths to a destination increases reliability of data

delivery.

• In a congested network, setting up multiple paths may reduce congestion in the net-

work by spreading out packets towards the underutilized parts of the network.

• When data is segmented into multiple parts, and each data segment is transmitted

to the destination on a separate path, multiple paths prevent an adversary from

intercepting the complete set of data.

CHAPTER 2. POLAR COORDINATE ROUTING FOR MULTIPLE PATHS IN
WIRELESS NETWORKS 12

While multiple paths between a source and a destination offer a few advantages, they

also require precautions. For example, if the paths between the source and the destination

are close to each other, there will be interference between these paths. On the other hand,

when these paths are spread out in a network in order to maintain a higher separation, the

total number of hops may increase beyond an acceptable level.

Unfortunately existing solutions for multipath routing in wireless networks do not neces-

sarily offer a good solution in terms of path separation, average number of hops etc. There

is some work in the wireless networking domain that shows how to forward messages on a

trajectory, however this solution has not been tested for multiple paths. Moreover, it does

not offer a good solution to circumnavigate obstacles and the areas with low node density.

In this chapter we present a simple way to form circular arcs between a source des-

tination pair. We present a simple non−euclidean distance metric using which messages

can be forwarded through the nodes that are closest to these arcs. We also show that

the arcs maintain a high level of separation, which reduces the possibility of interference.

We integrate our message forwarding scheme with simple robotic routing, so that it can

circumnavigate the areas with obstacles and low node density. We also demonstrate that

using our non−euclidean distance metric we can continue forwarding messages along the

predefined trajectory even after the obstacle is crossed.

This chapter is organized as follows. In section 2.2 we give a short overview of existing

work on multi−path routing in wireless networks. Section 2.3 demonstrates the functionality

of PCR. In section 2.4 we show our simulation results and compare our results with existing

schemes. In section 2.5 we integrate PCR with simple robotic routing, which gives it an

ability to overcome obstacles. In section 2.6 we show the performance of PCR in adverse

conditions like areas with obstacles and low node density. Finally, we summarize our study

in section 2.7.

CHAPTER 2. POLAR COORDINATE ROUTING FOR MULTIPLE PATHS IN
WIRELESS NETWORKS 13

2.2 Related Work

Greedy forward routing [Finn, 1987] is one of the simplest forms of routing in wireless

networks where location information of nodes is available. In greedy forward routing a

node chooses its next hop neighbor such that it is geographically closest to the destination

among all the neighbors. While it is not useful in creating multiple paths between a source

destination pair, in our simulations we use this technique as a benchmark and compare the

performance of PCR with greedy forward routing.

Biased geographic routing (BGR) [Popa et al., 2006] is geared towards reducing con-

gestion in a network, and it offers a simple way of forwarding messages through multiple

paths. In this method a source initially transmits its message at an angle θ. A node located

in that direction receives this message and forwards it to a node that is located at an angle

θnew = θ− K
d2
, where K is a constant and d is the distance between the current node and the

destination. As the message gets forwarded on every hop, the value of θ decreases, which

forms an arc. Eventually θ will become zero and from that point on the message will be

forwarded directly to the destination. By choosing different values for initial angle θ, it is

possible to set up multiple paths between a source destination pair.

While this scheme can be helpful in setting up multiple paths in a network with high

node density, its performance is very poor in a network with low node density. If a message

sender does not find a receiver at the angle θ, it will send messages to a node that is far

from the desired path. Since this method does not have a way to specify a particular path,

if a message is not delivered at the correct angle θ, it will wander away from the desired

path or come too close to the greedy forwarding path. This would either lead to increasing

the total number of hops or increasing the interference with the other paths, both of which

are highly undesirable scenarios. Moreover, if the initial θ and constant K are not chosen

correctly, a message may spiral around the destination before it gets delivered. If a message

runs into obstacles this method does not propose anyway to circumnavigate them.

Trajectory based forwarding (TBF) [Niculescu and Nath, 2003] is a method that defines a

trajectory in terms of parametric equations, and it lets a message travel along this trajectory.

CHAPTER 2. POLAR COORDINATE ROUTING FOR MULTIPLE PATHS IN
WIRELESS NETWORKS 14

For example, if a message travels on a straight line that passes through a point (x1, y1) and

has a slope α, TBF will represent this trajectory as X(t) = x1 + t cos(α) and Y (t) = y1 +

t sin(α). Each node in TBF will choose its next hop neighbor such that the messages travel

along this trajectory. If we form several trajectories between a source and a destination we

can achieve multipath routing. However, performance of TBF is not tested for multipath

routing. Naturally, not all the trajectories can be ideal for multipath routing. For example,

if two trajectories overlap each other, it may lead to very high interference and disrupt the

performance of the network. Therefore, it is necessary to come up with a way to define

paths that would maintain a large separation between one another. Furthermore, in TBF

each message has to include the type of trajectory and also all of the parameters that define

the trajectory, which can amount to a very high overhead.

Unlike BGR, TBF attempts to circumnavigate an obstacle by estimating the size of it.

TBF proposes a technique in which whenever a node cannot forward a message greedily

along the trajectory, it assumes that there is an obstacle next to it. The node tries to

estimate the diameter (∆) of the obstacle and attaches it to the message in terms of a

parameter of the trajectory. This way the message will try to travel around the estimated

obstacle. Each node forwarding a message in this mode determines if it can forward the

message greedily along the original trajectory. If the node cannot forward the message

greedily along the trajectory, it is assumed that the message is still trying to overcome

the obstacle and the current process continues, otherwise the node quits the algorithm and

forwards the message greedily along the trajectory. If the estimation of obstacle diameter is

too high, a lot of nodes will unnecessarily end up performing the calculations for exit points.

An overestimation of ∆ can also mean that the message won’t be able to travel along the

trajectory even if the obstacle is crossed. On the other hand, an underestimation of ∆ can

result into a message spiraling around the obstacle multiple times before it actually gets

back on the trajectory.

[Kim et al., 2005], [Kuhn et al., 2003], [Karp and Kung, 2000], [Bose et al., 1999]

and [Kranakis et al., 1999] also present algorithms to circumnavigate obstacles. These

CHAPTER 2. POLAR COORDINATE ROUTING FOR MULTIPLE PATHS IN
WIRELESS NETWORKS 15

algorithms are primarily based on forwarding messages to the nodes that form a planar

graph. Robotic routing [Kim and Maxemchuk, 2005] is another technique that lets a message

circumnavigate obstacles, however it does not require us to pre-compute planar graphs. We

integrate PCR with robotic routing to overcome obstacles.

2.3 Polar Coordinate Routing (PCR)

Some of the objectives that are necessary for a good multipath routing scheme include,

• Trajectories created by multipath routing scheme should maintain a known separation

among each other to reduce interference.

• While the trajectories should be far from each other to reduce interference, the total

number of hops should not increase too much.

• Message overhead to define a trajectory should be low.

• If a message encounters an obstacle, it should be able to circumnavigate the obstacle,

and continue traveling on the trajectory.

In Polar Coordinate multipath routing a trajectory is represented by an arc that is a

segment of a circle. The center of this arc lies on the bisector of the line segment connecting

the source and the destination (figure 2.1(a)). The source and the destination are basically

two end points of this arc. A message from a source to the destination travels on this arc.

If we choose a different point on the bisector as the center, we can obtain another arc with

a different radius connecting the source destination pair. Using this technique we can form

multiple paths. We choose trajectories as circular arcs since they do not overlap each other.

Furthermore, it is very easy to maintain a large separation between two trajectories as we

will show in this section. The overhead of defining an arc is also relatively low. In order

to define an arc, the only thing that has to be included in a message is the location of the

source, destination and the center of the arc.

CHAPTER 2. POLAR COORDINATE ROUTING FOR MULTIPLE PATHS IN
WIRELESS NETWORKS 16

Before we formally introduce a method of defining arcs, we mention some of the as-

sumptions that we made.

• Each node in the network is aware of its location in cartesian coordinate system.

• A node is also aware of the location of its one hop neighbors.

• The source node knows the location of the destination.

• Each node is equipped with some basic computational resources that can perform

simple arithmetic operations.

PCR defines arcs with different radii that connect a source destination pair as shown

in figure 2.1(a). The objective is to send messages through the nodes that are close to

these arcs. It is relatively easy to formulate this problem in a network where the nodes are

localized according to the polar coordinate system. Say the arc connecting the source and

the destination has a radius R. Also, for the simplicity let’s assume that the center of the

arc C has coordinates (0, 0) in the polar coordinate system. Hence, the goal of PCR is to

send messages through the nodes that are R distance away from the center C. Moreover,

PCR also has to make sure that a node selects its next hop neighbor such that the message

travels the maximum angular distance. In other words the quantity ∆θ in figure 2.1(b) has

to be maximized.

These calculations are straightforward in the cartesian coordinate system as well as the

polar coordinate system. For the sake of simplicity we demonstrate these calculations in

the cartesian coordinate system.

The idea behind PCR is similar to geographic routing. However, unlike geographic

routing, PCR defines a non−euclidian distance metric, which allows messages to travel on

an arc instead of following a direct path. In this section we develop a new distance metric

and describe how to travel along an arc using this metric.

CHAPTER 2. POLAR COORDINATE ROUTING FOR MULTIPLE PATHS IN
WIRELESS NETWORKS 17

S T

(a) (b)

Figure 2.1: Polar Coordinate Routing

2.3.1 Arc Specifications

Given a source (S) and a destination (T), we can draw a line segment ST ; let line l be the

bisector of ST . We can pick any point along line l, which can represent the center of a

circular segment connecting S and T , let us call this point C. Note that C does not have

to be represented by a node. The position of C along l defines the curvature of an arc. For

example, if I represents the intersection of l and ST ,the closer the C to I, the sharper the

curve.

A more elegant way to define an arc is by its radius. If the distance between S and T

is d, let’s represent the radius of the circle as R = ad
2 , where a ∈ [1,∞). Let m be the line

passing through S and tangent to arc
⌢
ST , and θ be the angle between m and ST , then

a = 1
sin θ

(figure 2.2(a)). Hence, by controlling the value of a, it becomes easy to control the

curvature of the arc. For example, for a semicircle θ = π
2 , hence a would be 1.

Thus we can define arcs with different curvatures and traverse messages along these

arcs.

CHAPTER 2. POLAR COORDINATE ROUTING FOR MULTIPLE PATHS IN
WIRELESS NETWORKS 18

(a) Arc Specifications (b) A Non−Euclidean Distance Metric

(c) A Non−Euclidean Distance Metric (d) In PCR a node is selected as a next hop

neighbor only if it is closer to the destina-

tion along the arc

Figure 2.2: Polar Coordinate Routing

CHAPTER 2. POLAR COORDINATE ROUTING FOR MULTIPLE PATHS IN
WIRELESS NETWORKS 19

2.3.2 Non-Euclidean Distance Metric

We define a new non-euclidean distance metric, which gives this scheme the ability to

forward messages along an arc. Our goal is to define a metric such that a message not only

remains close to the arc, but it also travels as far as possible along the arc.

Let D(E, T) represent the non−euclidean PCR distance metric between the location of

a network node E and the destination T . As shown in figures 2.2(b) and 2.2(c), let point

Ep be the intersection of EC and
⌢
ST . We define D(E, T) as the length of EEp plus the

length of the arc
⌢
EpT . Now, it is possible to show that euclidean distance between Ep and

T (d(Ep,T)), and the length of
⌢
EpT are both one to one and increasing functions of α,

where α is the angle between EC and CT . Therefore, we can write D(E, T) as,

D(E, T) = d(E,Ep) + d(Ep, T).

In a network where nodes are forwarding packets according to PCR, a node X will calcu-

late the distance D(Nx, T) among all its neighbors Nx and the destination T . Node X sends

its messages to a node that yields the smallest value of D(Nx, T). The optimization crite-

rion of min{D(Nx, T)} can be broken down into two parts as min{d(Nx, Nxp)+d(Nxp, T)}.

Therefore, nodes in PCR do not necessarily pick the next hop neighbor that is closest to the

arc, nor do they select the neighbor that is farthest along the arc. In PCR a node selects

its next hop neighbor which gives the minimum aggregate value of both these criterions:

closest to the arc and the farthest along the arc.

It is a common practice in geographic routing to forward a packet to a node that is

closer to the destination compared to the current node. Hence, in geographic routing a

node chooses its next hop neighbor that is closer to the destination. Following this rule

prevents a message to be forwarded in the backward direction and hence it avoids the

routing loops. We also adhere to this principle in PCR. In figure 2.2(d), if node X is

looking to forward its messages to one of its neighbors, it will only consider nodes Y or Z,

since their projections on the arc are closer to the destination compared to the projection

of X. Note that even though node W seems geographically closer to the destination than

CHAPTER 2. POLAR COORDINATE ROUTING FOR MULTIPLE PATHS IN
WIRELESS NETWORKS 20

X, it will not be considered as a next hop candidate since it’s projection is farther to the

destination than the projection of X.

2.3.3 Separation between Arcs

So far we have established how to define an arc, and how to navigate a message along it.

Sometimes it is useful to predict what kind of results we are going to get from an arc.

For example, it may be helpful to estimate what proportion of nodes on an arc is going to

interfere with the nodes on other paths. If we can estimate the average separation between

two arcs in advance, we can make an educated guess regarding how sharp an arc should be

to yield a low interference with the neighboring arcs.

Figure 2.3: Estimation of nodes from an arc out of range of greedy forwarding path

Consider a network where all the nodes have the same transmission radius r. In figure 2.3

for a source (S) and a destination (T), let line segment ST represent the greedy forwarding

path, and
⌢
ST represent the path created by PCR. Moreover assume that

⌢
ST is formed at

an angle θ with respect to the ST , which yields an arc radius of R. All the points on
⌢
AB in

CHAPTER 2. POLAR COORDINATE ROUTING FOR MULTIPLE PATHS IN
WIRELESS NETWORKS 21

figure 2.3 are more than a transmission radius away from all the points on ST . Therefore,

probability that the nodes lying along
⌢
AB will interfere with the nodes on greedy path is

very low. Assuming that the number of hops to reach T from S along
⌢
ST is proportional to

the length of this arc, we can estimate the proportion of nodes that will not interfere with

the nodes on the greedy forwarding path as length of
⌢
AB

length of
⌢
ST

. Since the paths formed by PCR

are circular it is very easy to calculate the length of these arcs. Length of
⌢
ST would be

π×2θ, while length of
⌢
AB would be π×2α, where α = cos−1(R−h+r

R
) and h = R(1− cosθ).

It is also possible to calculate what proportion of nodes on an arc will not interfere with

the nodes belonging to another arc when PCR forms multiple trajectories. For example, in

figure 2.4 there are two arcs that connect to a source and a destination. In this scenario

we can assume that the nodes belonging to
⌢
AB will not interfere with any nodes belonging

to
⌢
CD. Let us assume that the arc on the top has a radius R1 and for simplicity let us

assume that its center is at C1 whose cartesian coordinates are (0,0). The other arc has a

radius of R2, and its center is located at point C2. Hence, the real solutions of equations

X2+Y 2 = (R1− r)2 and (X −C2x)
2+(Y −C2y)

2 = R2
2, will give the cartesian coordinates

of C(XC , YC) and D(XD, YD). Using these coordinates we can calculate the length of
⌢
CD,

and hence we can also calculate the proportion of the first arc that will not interfere with

the second arc. Similarly, it is also possible to calculate the length of
⌢
AB by calculating

coordinates of A and B. XA = XC
R1

R1−r , YA = YC
R1

R1−r , XB = XD
R1

R1−r and YB = YD
R1

R1−r .

Using this technique we can choose the curvature of an arc such that the resulting path

will yield a low interference with the other paths.

2.4 PCR: Results

In this section we check the performance of PCR compared to BGR. Multipath routing

schemes may be used for multiple objectives such as successful data delivery, congestion

alleviation, data security etc. Instead of checking performance of the routing schemes

individually for each application, we specify metrics that can compare two multipath routing

CHAPTER 2. POLAR COORDINATE ROUTING FOR MULTIPLE PATHS IN
WIRELESS NETWORKS 22

Figure 2.4: Estimation of nodes from an arc out of range of the nodes that belong to another

arc

schemes, irrespective of the application they might be used for.

Our simulations show that the non−euclidian distance metric successfully allows network

nodes to forward messages along an arc. Furthermore, if the messages have to deviate away

from the arc due to the sparse node density, this distance metric provides them with a

tendency to get back on the arc.

On the other hand, the path of the messages in BGR does not necessarily have a struc-

ture. Regardless of the initial θ, sometimes a path created by BGR can be very close to the

greedy forwarding path, and sometimes it can be unnecessarily far away from the greedy

path. Furthermore, the performance of BGR worsens if the node density is low.

Figure 2.5 compares the routing paths formed by PCR and BGR. For all three scenarios

presented here, initial θ of BGR is set equal to the angle of the arc formed by PCR. In

figure 2.5(a) messages of BGR deviate further away from the greedy forwarding path, hence

it increases the hop count unexpectedly. On the other hand, in figure 2.5(b), path of

CHAPTER 2. POLAR COORDINATE ROUTING FOR MULTIPLE PATHS IN
WIRELESS NETWORKS 23

PCR
BGR
Greedy Forwarding

S T

(a)

PCR
BGR
Greedy Forwarding

S T

(b)

PCR
BGR
Greedy Forwarding

TS

(c)

Figure 2.5: A Comparison of PCR and BGR

the BGR is closer to the greedy forwarding path, which can increase the interference. It

should be noted that in both the figures 2.5(a) and 2.5(b) messages of PCR travel along the

specified arc. Figure 2.5(b) is a quite common scenario for BGR. In BGR, nodes forward

their messages at an angle θ according to the rule θnew = θ − K
d2
, where d is the distance

between the current node and the destination. Hence, at every hop the value of θ will

decrease, which would cause the formation of an arc. However, eventually the θ will hit the

value of zero and from that point the messages will be forwarded greedily to the destination.

Thus, as a message in BGR gets close to the destination, its path becomes very close to

the greedy forwarding path, increasing the probability of interference. Finally, figure 2.5(c)

presents a scenario where BGR yields a path that is almost parallel to the greedy forwarding

path. A careful inspection of the figure will indicate that the network density is quite sparse

around the source, hence PCR and BGR both choose first couple of hops that are close to

the greedy forwarding path. However, BGR fails to recover from this and the rest of the

path also stays parallel to the greedy forwarding route. PCR on the other hand quickly

recovers from this, and chooses its nodes wisely so that rest of the path progresses along

the predefined arc.

It should be noted that the results presented in this section are based on a simulation

where 2500 nodes are uniformly scattered in a 500 × 500m2 area. Therefore, a node in

this network is surrounded by approximately 12 other nodes on average. Each node in

CHAPTER 2. POLAR COORDINATE ROUTING FOR MULTIPLE PATHS IN
WIRELESS NETWORKS 24

the network has a transmission radius of 20m. The results presented in the rest of the

section are the averages of 1000 runs. Furthermore, in all our simulations, the constant K

in θnew = θ − K
d2

is chosen in a manner such that the path formed by BGR will progress

as close to the arc as possible given the distance between the source and the destination,

where K ∈ N.

0-50 50-100 100-150 150-200 200-250 250-300 300-350 350-400

Distance between source and destination

0

10

20

30

40

50

60

70

80

P
e
rc

e
n
ta

g
e
 n

o
d
e
s
 o

u
t

o
f

ra
n
g
e
 o

f
g
re

e
d
y
 f

o
rw

a
rd

in
g
 p

a
th Percentage nodes out of range of greedy

 forwarding path: Mean Angle: 45°

BGR

PCR

(a) Percentage nodes out of range of greedy forward-

ing path: Mean

0-50 50-100 100-150 150-200 200-250 250-300 300-350 350-400

Distance between source and destination

0

100

200

300

400

500

600

P
e
rc

e
n
ta

g
e
 n

o
d
e
s
 o

u
t

o
f

ra
n
g
e
 o

f
g
re

e
d
y
 f

o
rw

a
rd

in
g
 p

a
th Percentage nodes out of range of greedy

forwarding path: Variance Angle: 45°

BGR

PCR

(b) Percentage nodes out of range of greedy forward-

ing path: Variance

Figure 2.6: Percentage nodes out of range of greedy forwarding path when multi-path

routing schemes form paths at θ = 45◦

2.4.1 Path Separation

Figure 2.6 shows the means and variances of the percentage nodes of PCR and BGR that

are completely out of range of the greedy forwarding nodes. It should be noticed that in

most of the cases PCR yields a higher percentage of nodes that are out of range of greedy

forwarding path compared to BGR. Therefore, paths created by PCR maintain a higher

separation with the greedy forwarding route. Figure 2.6(b) shows that PCR yields very

low variances compared to BGR. A low variance in separation indicates that unlike BGR,

messages in PCR stick close to the predefined path. Therefore, PCR is much more stable

compared to BGR in terms of forming paths.

CHAPTER 2. POLAR COORDINATE ROUTING FOR MULTIPLE PATHS IN
WIRELESS NETWORKS 25

Sometimes it is desirable to send messages along more than one arc. When we send

messages across multiple arcs, it is necessary to maintain enough separation among these

paths as well. We simulated the scenarios when the paths are formed at 45◦ and 75◦ angles,

and calculated percentage of nodes on 75◦ path that are out of range of 45◦ path. These

results are shown in figure 2.7. As the figure indicates, compared to BGR, PCR clearly

generates better separated paths with low variances.

0-50 50-100 100-150 150-200 200-250 250-300 300-350 350-400

Distance between source and destination

0

10

20

30

40

50

60

70

80

P
e
rc

e
n
ta

g
e
 n

o
d
e
s
 o

f
7
5
°
 p

a
th

 o
u
t

o
f

ra
n
g
e
 o

f
4
5
°
 p

a
th Percentage nodes of 75° path

out of range of 45° path: Mean

BGR

PCR

(a) Percentage nodes of 75◦ out of range of 45◦ path:

Mean

0-50 50-100 100-150 150-200 200-250 250-300 300-350 350-400

Distance between source and destination

0

100

200

300

400

500

600

700

P
e
rc

e
n
ta

g
e
 n

o
d
e
s
 o

f
7
5
°
 p

a
th

 o
u
t

o
f

ra
n
g
e
 o

f
4
5
°
 p

a
th Percentage nodes of 75° path

out of range of 45° path: Variance

BGR

PCR

(b) Percentage nodes of 75◦ out of range of 45◦ path:

Variance

Figure 2.7: Comparison of BGR and PCR when paths are formed at 45◦ and 75◦

2.4.2 Hop Count

Even though PCR outperforms BGR in terms of path separation, it does not create higher

separations by forwarding messages through a large number of nodes. Figure 2.8 shows

that regardless of the distance between the source and the destination, PCR’s hop count

would exceed BGR by no more than a couple of hops for θ = 45◦. It also shows that greedy

forwarding routing will have the least number of hops, which is an expected result. It should

be noticed that even in this case PCR yields low variances compared to BGR. Since in PCR

messages do not digress away from the arc, it is natural that hop count in PCR will have a

low variance.

CHAPTER 2. POLAR COORDINATE ROUTING FOR MULTIPLE PATHS IN
WIRELESS NETWORKS 26

0-50 50-100 100-150 150-200 200-250 250-300 300-350 350-400

Distance between source and destination

0

5

10

15

20

25

30

35

H
o
p
 C

o
u
n
t

Hop Count: Mean
Angle: 45°

BGR

PCR

Greedy Forwarding

(a) Hop count: Mean

0-50 50-100 100-150 150-200 200-250 250-300 300-350 350-400

Distance between source and destination

0

1

2

3

4

5

6

7

8

9

H
o
p
 C

o
u
n
t

Hop Count: Variance
Angle: 45°

BGR

PCR

Greedy Forwarding

(b) Hop count: Variance

Figure 2.8: Hop count when multi-path routing schemes form paths at θ = 45◦

We performed these simulations for the paths formed at θ = 30◦, 60◦, 75◦ and 90◦ as

well. Due to space constraints we have not included results for all the values of θ. However,

it should be noticed that the performance of PCR improves as θ increases.

2.5 PCR Integrated with Robotic Routing

While BGR does create multiple paths, it does not have any provisions to overcome obstacles

in a network. TBF does try to overcome obstacles, but its performance is very poor. Since

in a multipath routing technique messages travel across a larger portion of the network,

the probability of encountering an obstacle is higher. Since obstacles are not uncommon

and they can adversely affect the performance of a routing protocol, we find it necessary to

come up with a scheme that does not fail in an environment with obstacles. We integrate

PCR with robotic routing [Kim and Maxemchuk, 2005] protocol which is specially designed

for routing messages in a network with obstacles.

Robotic routing requires a network to be divided into a zonal grid. A zone is basically

a small square area with the length of its sides equal to r√
2
, where r is the transmission

radius of the nodes. Thus zones are designed in a manner so that a node in a zone can

CHAPTER 2. POLAR COORDINATE ROUTING FOR MULTIPLE PATHS IN
WIRELESS NETWORKS 27

hear every other node in the same zone. Each zone is given a unique ID and based on its

coordinates it is possible for a network node to identify which zone it belongs too.

The idea of PCR’s integration with Robotic routing is very simple. A message travels

along an arc until it cannot find a next hop neighbor that is closer to the destination along

the arc compared to the current node. Once a node cannot find a neighbor that is closer

to the destination, it changes its routing scheme to robotic routing. Now the messages

circumnavigate the obstacle using the rules defined by robotic routing, and switch back to

PCR when it is possible to find a node that can lead closer to the destination using the

non-euclidean distance metric.

Figure 2.9: PCR integrated with Robotic Routing

While [Kim and Maxemchuk, 2005] thoroughly defines the rules of robotic routing, we

present a simplified version here. In simple robotic routing a message can overcome obstacles

using the right hand rule. We use the example presented in figure 2.9 to describe the rule.

CHAPTER 2. POLAR COORDINATE ROUTING FOR MULTIPLE PATHS IN
WIRELESS NETWORKS 28

• Each zone can have eight possible neighboring zones. These zones are labeled from 1

to 8 in the figure.

• At the source, the packet follows PCR until it reaches zone X.

• In zone X an obstacle prevents the packet from moving closer to the destination along

the arc and the packet enters the robotic routing mode.

• In zone X we start with neighboring zone 1 and try to locate a node in that zone. If

we do not find a node in zone 1, we select a zone counter clockwise, which would lead

to neighboring zone 2. If we cannot find a node in this zone either, we continue this

process until we find a zone with a node to which we can transmit the message.

• Say we find a node located in neighbor 3, hence we forward the message to a node in

that zone. Let us call that zone Y . From zone Y , we continue using right hand rule

until we reach zone Z.

• Say from zone Z we can find a node that is closer to the destination than the current

node. Hence, we leave the robotic routing, and enter PCR.

• Since PCR has a quality to direct the messages along the arc, it will bring the messages

along the arc and deliver it to the destination.

It is possible to route a message to the destination using robotic routing. However, our

objective is to route the messages along multiple trajectories. If we continue to forward

messages using robotic routing even after the obstacle is crossed, it is possible that different

paths may overlap with each other. For example consider a scenario where we are sending

messages at different angles, and all the paths run into the obstacle. Since all the nodes will

use the right hand rule, the chances are the nodes will leave the obstacle in the same zone.

Now if these messages are continued to be forwarded using robotic routing, all the messages

will go through the same set of zones to reach the destination. To avoid this undesirable

scenario it is important to leave robotic routing when an obstacle is crossed. We also define

rules on when to quit robotic routing.

CHAPTER 2. POLAR COORDINATE ROUTING FOR MULTIPLE PATHS IN
WIRELESS NETWORKS 29

PCR
RR

TS

(a) Low node density, small obsta-

cles

PCR
RR

S T

(b) High node density, large obsta-

cle

PCR
RR

TS

(c) Low node density, small and

large obstacles combined

Figure 2.10: PCR Integrated with Robotic routing. Nodes chosen according to PCR are

shown in black, robotic routing nodes are shown in blue

• If we are routing using robotic routing and it brings the messages back to the same

zone twice, and the only way out of this zone is the path that we took earlier, we

identify a routing loop and stop forwarding the message.

• If the hop count goes beyond the maximum hop count we stop forwarding a message.

In both these cases if we want to acknowledge the failure to the source depends on

the nature of the application.

• If we find a node that is closer to the destination along the arc than the current node,

we leave robotic routing and reenter PCR.

2.6 Results: PCR Integrated with Robotic Routing

Figure 2.10 shows paths generated by PCR and robotic routing. All three arcs are gener-

ated at 45◦ angle. Figure 2.10(a) presents a scenario when the node density is low (1800

nodes in 500× 500m2 area). Note that in figure 2.10(a), while approaching the destination

two transitions were made from PCR to robotic routing. In figure 2.10(b) a big obstacle

is introduced and the node density is chosen to be 2500 nodes in 500 × 500m2 area. Fig-

ure 2.10(c) presents a scenario where not only there is a big obstacle, but the node density

CHAPTER 2. POLAR COORDINATE ROUTING FOR MULTIPLE PATHS IN
WIRELESS NETWORKS 30

is also low. Usually it is difficult to route messages for long distances in such a scenario

like figure 2.10(c). In all three figures it should be noticed that once the message leaves the

robotic routing mode, the distance metric defined in section 2.3 starts to choose nodes that

are closer to the arc, and the message indeed reaches the destination along the trajectory.

We use the metrics described in section 2.4 to evaluate the performance PCR’s inte-

gration with robotic routing. For our evaluation instead of using a large obstacle in the

network we use a network with a very low node density. A network with a sparse node

density can represent a lot of small obstacles, since many parts of the network will have no

nodes closer to the destination.

For our simulations we set up a scenario where 1800 nodes are uniformly scattered in

a 500 × 500m2 area, and each node has a transmission range of 20m. We choose a node

density of 1800 because it would cause a node to have 8 neighbors on average. Some research

efforts show that a message will not be able to travel a large number of hops if the node

density goes below this [L. Kleinrock, 1978]. The results presented in this section are the

averages of 1000 runs. Since BGR does not have provisions to overcome obstacles, we only

present the results of PCR. Moreover, since robotic routing is utilized along with PCR, it

will be able to reach a destination more successfully compared to greedy forwarding. For

figures 2.11 and 2.13 we have only considered the scenarios when not only PCR but greedy

forwarding also reaches the destination.

Figure 2.11 shows percentage nodes of PCR and robotic routing that are out of range

of greedy forwarding path. Figure 2.12 shows percentage nodes of 75◦ path that are out of

range of 45◦ path, and figure 2.13 shows the hop count. Comparing the variances presented

in this section with the results shown in section 2.4 would indicate that if PCR has to

switch to robotic routing due to obstacles, overall performance of this scheme worsens. The

deterioration in the results is expected since the presence of obstacles can deviate the path

of the messages away from the predefined arc.

CHAPTER 2. POLAR COORDINATE ROUTING FOR MULTIPLE PATHS IN
WIRELESS NETWORKS 31

0-50 50-100 100-150 150-200 200-250 250-300 300-350 350-400

Distance between source and destination

0

10

20

30

40

50

60

70

80

P
e
rc

e
n
ta

g
e
 n

o
d
e
s
 o

u
t

o
f

ra
n
g
e
 o

f
g
re

e
d
y
 f

o
rw

a
rd

in
g
 p

a
th Percentage nodes out of range of

greedy forwarding path: Mean Angle: 45°

PCR_RR

(a) Percentage nodes out of range of greedy forward-

ing path: Mean

0-50 50-100 100-150 150-200 200-250 250-300 300-350 350-400

Distance between source and destination

0

100

200

300

400

500

600

700

P
e
rc

e
n
ta

g
e
 n

o
d
e
s
 o

u
t

o
f

ra
n
g
e
 o

f
g
re

e
d
y
 f

o
rw

a
rd

in
g
 p

a
th Percentage nodes out of range of

greedy forwarding path: Variance Angle: 45°

PCR_RR

(b) Percentage nodes out of range of greedy forward-

ing path: Variance

Figure 2.11: Percentage nodes out of range of greedy forwarding path when PCR+RR form

path at θ = 45◦

0-50 50-100 100-150 150-200 200-250 250-300 300-350 350-400

Distance between source and destination

0

10

20

30

40

50

60

70

80

P
e
rc

e
n
ta

g
e
 n

o
d
e
s
 o

f
7
5
°
 p

a
th

 o
u
t

o
f

ra
n
g
e
 o

f
4
5
°
 p

a
th Percentage nodes of 75°

 path out of range of 45° path: Mean

PCR_RR

(a) Percentage nodes of 75◦ out of range of 45◦ path:

Mean

0-50 50-100 100-150 150-200 200-250 250-300 300-350 350-400

Distance between source and destination

0

50

100

150

200

250

300

350

400

P
e
rc

e
n
ta

g
e
 n

o
d
e
s
 o

f
7
5
°
 p

a
th

 o
u
t

o
f

ra
n
g
e
 o

f
4
5
°
 p

a
th Percentage nodes of 75°

 path out of range of 45° path: Variance

PCR_RR

(b) Percentage nodes of 75◦ out of range of 45◦ path:

Variance

Figure 2.12: Performance of PCR+RR with obstacles in the network when paths are formed

at 45◦ and 75◦

CHAPTER 2. POLAR COORDINATE ROUTING FOR MULTIPLE PATHS IN
WIRELESS NETWORKS 32

0-50 50-100 100-150 150-200 200-250 250-300 300-350 350-400

Distance between source and destination

0

5

10

15

20

25

30

35

40

H
o
p
 C

o
u
n
t

Hop Count: Mean
Angle: 45°

PCR_RR

Greedy Forwarding

(a) Hop count: Mean

0-50 50-100 100-150 150-200 200-250 250-300 300-350 350-400

Distance between source and destination

0

5

10

15

20

25

30

35

40

45

H
o
p
 C

o
u
n
t

Hop Count: Variance
Angle: 45°

PCR_RR

Greedy Forwarding

(b) Hop count: Variance

Figure 2.13: Hop count when PCR+RR form path at θ = 45◦

2.7 Summary

We presented Polar Coordinate Routing, which creates multiple paths between a source

and a destination. Since these paths are segments of circles with different radii, it is easy

to control average separation between them. We also presented a non−euclidean distance

metric that lets messages travel on these arc greedily, and does not increase overall hop

count unnecessarily. We show that variances of hop count and average separation in PCR

are too low compared to existing multipath routing scheme, hence PCR offers a much more

reliable system. Furthermore, given a source and a destination a circular trajectory can be

easily defined by including only its center in the message, which does not impose too much

additional overhead of defining a trajectory on the system.

We also integrated PCR with robotic routing to overcome obstacles and areas with low

node density. We also showed that with the help of our distance metric a message can reach

its destination along the trajectory even after crossing the obstacle.

CHAPTER 3. A PACKET ENCODING ALGORITHM FOR NETWORK CODING
WITH MULTIPLE NEXT HOP NEIGHBOR CONSIDERATION AND ITS
INTEGRATION WITH A ROUTING SCHEME 33

Chapter 3

A Packet Encoding Algorithm for

Network Coding with Multiple

Next Hop Neighbor Consideration

and its Integration with a Routing

Scheme

3.1 Introduction

In this chapter we present an efficient and exhaustive packet encoding algorithm that helps

couple network coding with a routing scheme, irrespective of the routing scheme’s objective.

Network coding is often employed to reduce the number of transmissions in wireless

networks with omni-directional antennae, by using the packet information available at the

nodes. Alice and Bob topology illustrated in figure 3.1 provides a classic example of the

effectiveness of network coding. Suppose node A and B want to exchange ma and mb with

each other through a node F . If F forwards these messages individually, four transmissions

CHAPTER 3. A PACKET ENCODING ALGORITHM FOR NETWORK CODING
WITH MULTIPLE NEXT HOP NEIGHBOR CONSIDERATION AND ITS
INTEGRATION WITH A ROUTING SCHEME 34

will be required for A and B to exchange their messages. However, if F broadcasts mF =

ma⊕mb (⊕ represents binary addition), A can retrieve mb = mF ⊕ma, since it already has

the knowledge of ma. Node B can use the same transmission to retrieve ma = mF ⊕mb.

Thus network coding helps reduce the overall number of transmissions from four to three.

Due to its effectiveness in improving throughput, network coding is one of the most

actively explored routing paradigms. Significant research efforts focus on finding best ways

to code packets. Some schemes suggest routing flows through certain nodes in a network to

improve the probability of finding packets that can be coded with each other [Sengupta et

al., 2007]. These techniques often rely on the global knowledge of the flows in a network,

which may not always be available. Even if we are to propagate flow information throughout

the network, it is unreasonable to assume that all the flows in the network will persist until

a source makes its forwarding decisions. Therefore, in this chapter we focus on an encoding

algorithm and a routing scheme that doesn’t require the global knowledge of the network

flows.

A F

mF : ma ⊕mb

B

ma mb

Figure 3.1: An example of network coding

Our packet encoding algorithm is not dependent on PCR. It can be easily integrated with

a routing scheme, irrespective of its objective. This helps us leverage benefits offered by both

an advanced routing scheme and an efficient packet encoding algorithm. To demonstrate this

we integrate our packet encoding scheme with a routing mechanism named Delta routing

where the next hop neighbors of a packet change dynamically, since it makes the job of

encoding packets more difficult.

An important factor that can potentially limit the throughput gain due to coding is bot-

CHAPTER 3. A PACKET ENCODING ALGORITHM FOR NETWORK CODING
WITH MULTIPLE NEXT HOP NEIGHBOR CONSIDERATION AND ITS
INTEGRATION WITH A ROUTING SCHEME 35

tleneck nodes in the network. In conventional shortest path routing, due to their geographic

location or due to the flow directions, certain nodes receive packets at a rate higher than

the rate at which they can transmit them. These bottleneck nodes throttle the throughput

of the network. For example, if there are four flows (1) A to B, (2) B to A (3) C to D

and (4) D to C passing through F in the network shown in figure 3.2, node F would be-

come a bottleneck node. If such a bottleneck node manages to code one out of k packets

on average, we can expect the throughput of the network to improve by a factor of 1/k.

However, it is possible to achieve a higher throughput gain if we can identify underutilized

nodes in the network (such as E and G in figure 3.2) and route packets through these

nodes, since it helps alleviate congestion (at node F). In this chapter we advocate routing

packets according to a delta metric which helps packets circumnavigate congested parts of

the network. Thus it not only alleviates congestion, but also helps improve throughput by

allowing previously underutilized nodes to forward more packets. We use contour graphs to

compare forwarding rates offered by conventional shortest path routing and delta routing

in a randomly distributed network. Contour graphs help identify parts of the network that

act as bottleneck while using conventional shortest path routing and demonstrate how delta

routing improves the throughput by routing more packets through the underutilized parts

of the network.

We integrate this routing scheme with network coding in order to gain from the benefits

offered by both the schemes. In a scheme like delta routing a node considers multiple

neighbors as next hops before choosing to forward the packet to the neighbor with the least

value for delta metric. Depending on what neighbor is chosen as the next hop, a packet may

or may not be combined with other packets. Therefore, we present an encoding algorithm

that considers multiple neighbors as next hops (the ones with the smaller values for delta

metric), and chooses to forward the packets to the neighbors that help combine maximum

number of packets. Moreover prevailing encoding algorithm performs a sequential search to

find the maximum packet combination, while our encoding scheme searches a node’s queue

exhaustively. We present this problem as an integer program and offer a bipartite graph

CHAPTER 3. A PACKET ENCODING ALGORITHM FOR NETWORK CODING
WITH MULTIPLE NEXT HOP NEIGHBOR CONSIDERATION AND ITS
INTEGRATION WITH A ROUTING SCHEME 36

G

CA

E

D B

F

Figure 3.2: There are four flows in this network (i) A to B, (ii) B to A (iii) C to D (iv) D

to A. In this case node F is a bottleneck node.

based algorithm to solve this problem which offers the following advantages.

• Although we only apply our encoding algorithm to delta routing, it can be easily

integrated with any other routing scheme.

• Unlike a sequential search, our encoding algorithm searches a queue exhaustively.

• It considers multiple neighbors as next hop candidates for a packet and chooses to

forward the packet to a node that yields the maximum packet combination.

• The algorithm is asymptotically faster than a näıve exhaustive search since it runs in

polynomial time.

This chapter is organized as follows. Section 3.2 presents related works in the areas

of network coding and delta routing. In section 3.3 we present our encoding algorithm to

find the optimal packet combination. In section 3.4 we present the delta metric that helps

packets circumnavigate congested parts of the network and integrate it with our encoding

scheme. Section 3.5 demonstrates the results of our routing scheme that couples network

coding with delta routing. We summarize our study in section 3.6.

CHAPTER 3. A PACKET ENCODING ALGORITHM FOR NETWORK CODING
WITH MULTIPLE NEXT HOP NEIGHBOR CONSIDERATION AND ITS
INTEGRATION WITH A ROUTING SCHEME 37

3.2 Related Works

In this chapter our objective is to route packets using network coding while avoiding con-

gested parts of the network by leveraging Delta routing. The concept of Delta routing

was developed by Rudin in [Rudin, 1976], since then several routing mechanisms (such as

[Porter and Ji, 2004]) have used the basic idea behind it. We make changes to Delta rout-

ing and make it more suitable for a wireless scenario with network coding as described in

section 3.4. For any given packet if there are multiple nodes that can take the packet to the

destination, Delta routing forwards the packet to a node that has the smallest value for the

instantaneous queuing delay plus the average delay from that particular node to the final

destination. Therefore, Delta routing helps packets circumnavigate congested parts of the

network.

Network coding is a well studied subject. After Ahlswede et al.’s seminal work in

[Ahlswede et al., 2000], several research efforts have given more insight into how network

coding can be utilized to improve a network’s performance. In [Katti et al., 2006] Katti

et al. implement a routing scheme based on a simple form of network coding, which we

use in this chapter. In this scheme a node can forward a combination of k packets (add k

packets using exclusive-or:XOR) in a single transmission, if these k packets are going to k

different neighbors, and each of these neighbors has the knowledge of the remaining k − 1

packets. Upon receiving the combination of k packets, a neighbor adds k−1 packets that it

already knows to this combination and retrieves the packet it is supposed to receive. Coding

mechanism proposed in [Ho et al., 2003] can be seen as a generalization of this basic coding

scheme. Here, if all the neighbors have the knowledge of only l packets (instead of k − 1),

the forwarding node has to transmit k − l linear combinations of these k packets. Upon

receiving these k − l linear combinations, a neighbor can decode its own packet provided

these linear combinations were linearly independent. After [Katti et al., 2006] several papers

have proposed various ways to combine packets using “XOR-based” techniques to reduce

the number of transmissions, notably [Li et al.,] and [Sengupta et al., 2007]. In [Li et al.,]

a transmitting node uses information from the nodes that are as far as two hops from it. On

CHAPTER 3. A PACKET ENCODING ALGORITHM FOR NETWORK CODING
WITH MULTIPLE NEXT HOP NEIGHBOR CONSIDERATION AND ITS
INTEGRATION WITH A ROUTING SCHEME 38

the other hand [Sengupta et al., 2007] uses global flow information from the entire network

to route packets in order to achieve as much coding as possible. Our approach differs in

three different ways from these previous approaches: (a) In our routing scheme a node only

uses the information available from its immediate neighbors in order to make forwarding

and coding decisions (b) While routing packets and looking for optimal packet combination,

we also consider congestion in the network (c) We propose a novel algorithm that considers

multiple next hop candidate nodes while searching for an optimal packet combination.

Our algorithm to find optimal packet combination relies on enumeration of cycles in a

graph. There are several algorithms available in literature to precisely accomplish this task.

Tarjan [Tarjan, 1972], Johnson [Johnson, 1975], Tiernan [Tiernan, 1970], Floyd [Floyd,

1967], Liu [Liu and Wang, 2006], Rao [Bapeswara Rao and Murti, 1969] are few of the

algorithms that enumerate cycles in a graph. These algorithms differ from each other

in terms of their asymptotic time complexity and difficulty of implementation. In our

implementation we have used Johnson’s algorithm to enumerate cycles, since a survey of

literature suggests it to be the fastest among all the algorithms mentioned above.

3.3 Packet encoding algorithm

Our packet encoding algorithm is independent of PCR or Delta routing, and it can be

integrated with any routing scheme. In this section we present the problem of finding the

optimal packet combination as an integer program, and develop an algorithm to solve this

problem.

Say a node has n packets in its queue. We want to find the largest set of packets that

can be combined in a single transmission. In a queue of length n there can be
∑n

k=2

(

n
k

)

=

2n−n−1 possible combinations of more than two packets. Therefore a näıve implementation

of a thorough search could take at least O(2n) time. Note that if we are combining k packets,

our algorithm has to verify that each next hop that receives this packet combination should

have the knowledge of k− 1 packets, other then the one it is supposed to receive. If a next

hop doesn’t know the other k− 1 packets in the combination, it won’t be able to decode its

CHAPTER 3. A PACKET ENCODING ALGORITHM FOR NETWORK CODING
WITH MULTIPLE NEXT HOP NEIGHBOR CONSIDERATION AND ITS
INTEGRATION WITH A ROUTING SCHEME 39

own packet. A key question is how does a node learn which packets in its queue are known

to which of its neighbors.

3.3.1 Acquiring the knowledge of neighbors’ packets

Pairwise coding: If we are combining only two packets, this task is quite easy. If two flows

are travelling in opposite directions as shown in figure 3.1, it is easy to combine packets

from these flows. Here node F can transmit the combination ma ⊕ mb because it knows

that A and B will have the knowledge of ma and mb respectively, since that’s where those

packets came from.

A

(mAD,mBC)

B

F

C

(mAD,mDA)

D

(mDA,mBC)

Figure 3.3: Opportunistic listening can be employed to combine more than two packets

Combining more than two packets: If routes are configured properly, we have to rely on

opportunistic listening to combine more than two packets. In opportunistic listening a node

listens to a transmission and stores a packet even if it is not supposed to receive this packet.

Some other node can leverage this knowledge to combine more packets in a transmission.

For example, in figure 3.3 say node F ’s queue has three messages {mAD,mDA,mBC} where

message mij is going from node i to j. In this case it is safe for F to assume that nodes

CHAPTER 3. A PACKET ENCODING ALGORITHM FOR NETWORK CODING
WITH MULTIPLE NEXT HOP NEIGHBOR CONSIDERATION AND ITS
INTEGRATION WITH A ROUTING SCHEME 40

A,C,D have the knowledge of {mAD,mBC}, {mAD,mDA} and {mDA,mBC} respectively.

For example, in a wireless medium when B forwards mBC to F , A and D cannot forward

or receive some other packet at the same time. Hence, if F successfully receives mBC , so

do A and D. The same reasoning follows for the messages at node C. Therefore F can

combine mF = mAD ⊕mBC ⊕mDA in a single transmission such that A,C,D will be able

to decode their respective messages. For example, at node C, mBC = mF ⊕mAD⊕mDA. In

[Katti et al., 2006] a node maintains probability Pmn to indicate the certainty that neighbor

n has the knowledge of packet m. For any combination of packets if the product of these

probabilities (over all ms and ns) exceeds certain threshold, the node assumes that these

packets can be combined together. However, while developing our encoding algorithm, we

do not worry about the implementation details. For the sake of simplicity we assume that

a node has accurate information regarding which neighbors have the knowledge of which

packets.

3.3.2 Benefits of considering multiple next hop candidates

So far we have assumed that each packet in a node’s queue is going to be forwarded to a

designated next hop neighbor. Prevailing encoding algorithm [Katti et al., 2006] also makes

this assumption. However, considering multiple neighbors as next hop candidates for a

packet may improve possibility of combining more packets. Consider the scenario presented

in figure 3.4, where we have three flows, from C to A, D to A and from A to E. Clearly

node B is the bottleneck node. Moreover, let’s assume that flows C → A and D → A

have a fixed rate, while flow A → E can transmit as many packets as possible as long as it

doesn’t reduce the rate of the other two flows. Say packets from A → E have a fixed path

that goes through nodes B and C. In this case, B can code packets from A → E only with

the packets from C → A. If B doesn’t have a packet from C → A in its queue, the packet

from A → E will have to be transmitted individually, which wastes bandwidth. Note that

nodes C and D are equidistant from E. If B considers multiple next hop candidates, i.e. if

it also considers D as a next hop for A → E packets, we can combine two packets as long

CHAPTER 3. A PACKET ENCODING ALGORITHM FOR NETWORK CODING
WITH MULTIPLE NEXT HOP NEIGHBOR CONSIDERATION AND ITS
INTEGRATION WITH A ROUTING SCHEME 41

as packets from either C → A or D → A are in B’s queue. This would lead to a higher

throughput for A → E. In this case we have considered only two next hop candidates;

the more next hop candidates we have, the higher the complexity of finding the optimal

combination.

E

D

B

C

A

C → A,D → A,A → E

Figure 3.4: Considering multiple next hop candidates may improve coding opportunities

Moreover, certain routing schemes do consider multiple neighbors before forwarding a

packet to one of them. For example, if we route packets on the path with the smallest delay

or according to the delta metric, a node may consider multiple next hop candidates and

choose to forward a packet to the neighbor that yields the smallest value of delay or delta

metric. For a given packet, if the next hop chosen according to these metrics doesn’t have

the knowledge of any other packets from the current node’s queue, this packet cannot be

combined with any other packets. Therefore, ideally our encoding algorithm should consider

multiple next hop candidates (neighbors with the smaller values of delay/delta metric) and

select to forward packets to the neighbors that help yield maximum packet combination.

By doing so we are meeting both the objectives, we are not only routing packets according

to delta/delay metric but we are also improving throughput by combining more packets.

AmongO(2n) packet combinations, considering multiple next hop candidates for each packet

and verifying that the next hop candidates have the knowledge of k − 1 other packets

CHAPTER 3. A PACKET ENCODING ALGORITHM FOR NETWORK CODING
WITH MULTIPLE NEXT HOP NEIGHBOR CONSIDERATION AND ITS
INTEGRATION WITH A ROUTING SCHEME 42

increases the complexity of the problem furthermore. We first represent this problem as an

integer program. In subsection 3.3.4 we present a bipartite graph based construction that

helps us exhaustively check a node’s queue for optimal packet combination. In subsection

3.3.5 we extend our algorithm to consider multiple next hop neighbors.

3.3.3 Integer program to find the maximum possible packet combination

Figure 3.5 presents our integer program to exhaustively search a node’s queue to look for an

optimal packet combination, while considering multiple next hop neighbors for each packet.

3.3.3.1 Variable definition

Objective:

max
∑

i

Ii (3.1)

Subject to:
∑

j

aij ≤ 1 ∀i (3.2)

∑

i

(Ii − bijIi) ≤ 1 ∀j (3.3)

aij + bij ≤ 1 ∀i, j (3.4)
∑

i

∑

j

aijdijIi ≥
∑

i

Ii ∀i, j (3.5)

ai,j , bi,j , di,j , Ii ∈ {0, 1} ∀i, j (3.6)

Figure 3.5: Integer program to exhaustively search for an optimal packet combination while

considering multiple next hop neighbors for a packet

1. In this integer program let Ni represent the set of next hop candidate neighbors for

a packet i. In delta routing we choose a subset of neighbors with the smallest delta

CHAPTER 3. A PACKET ENCODING ALGORITHM FOR NETWORK CODING
WITH MULTIPLE NEXT HOP NEIGHBOR CONSIDERATION AND ITS
INTEGRATION WITH A ROUTING SCHEME 43

metric as Ni. Similarly different criterion can be chosen for selecting Ni, for example

in geographic routing [Kim et al., 2005] Ni can be the set of neighbors that are

geographically closer to the destination than the current node.

2. Ii = 1 if packet i is included in the combination, otherwise 0.

3. aij = 1 if node j is chosen as packet i’s next hop, otherwise 0.

4. bij = 1 if node j has the knowledge of packet i, otherwise 0.

5. dij = 1 if node j ∈ Ni, otherwise 0. i ∈ {1, ..., p}, j ∈ {1, ..., n}

3.3.3.2 Explanation of constrains

• Objective function is straightforward.

• Equation 3.2 ensures that each packet has only one next hop.

• Equation 3.3 ensures that if we combine k packets, nodes who are supposed to receive

this combination know at least k − 1 of them.

• Equation 3.4 checks that the node that is supposed to receive a packet, doesn’t already

have the knowledge of it. This also prevents a packet from going back to its previous

forwarders.

• Equation 3.5 verifies that we have as many next hops as the packets that are combined

in a transmission.

All four constraints work together to ensure that each packet has only one next hop, and

the node that is supposed to receive a packet has the knowledge of the rest of the packets

in that combination. Equation 3.6 makes sure that all the variables are binary.

Hence, for each packet this integer program will take a set of next hop neighbor candi-

dates, and it will figure out which neighbors should the packets go to in order to combine

the maximum number of packets in a single transmission.

CHAPTER 3. A PACKET ENCODING ALGORITHM FOR NETWORK CODING
WITH MULTIPLE NEXT HOP NEIGHBOR CONSIDERATION AND ITS
INTEGRATION WITH A ROUTING SCHEME 44

3.3.4 Exhaustive search: single next hop candidate

Prevailing encoding algorithm assumes that each packet in a queue has a designated next

hop neighbor, and it searches for a packet combination sequentially. A sequential search

can yield suboptimal results. Consider the scenario presented in table 3.1. First column

represents packets in a node’s queue. Second column indicates their next hops, and the third

column indicates packets known to these next hops. Iterating through this node’s queue

sequentially suggests that the best packet combination is P1 ⊕ P2, however an exhaustive

search would indicate that the optimal packet combination is in fact P1⊕P3⊕P4. Therefore,

first we develop an efficient algorithm that searches a node’s queue thoroughly for the

optimal packet combination assuming each node is assigned a designated next hop neighbor

(i.e. | Ni |= 1), and then we extend it to accommodate for multiple neighbors as next hop

candidates.

Packets Next hop Pi known to next hop

P1 n1 P2, P3, P4

P2 n2 P1

P3 n3 P1, P4

P4 n4 P1, P2, P3

Table 3.1: Sequential search:P1 ⊕ P2. Optimal combination: P1 ⊕ P3 ⊕ P4.

Construction 1 Let us consider a directed bipartite graph G(V,E). Here V = Vp ∪ Vn

and Vp ∩ Vn = ∅. Vp represents the set of packets Pi in the queue. Vn is the set of next hop

neighbors nj . A directed edge from Pi to nj exists in E, if nj is chosen as Pi’s next hop

neighbor. Also a directed edge from nj to Pi exists if neighbor nj has the knowledge of Pi.

Before we show how this construction can be helpful in finding the best packet com-

bination, let’s introduce the definition for combination rate. If a node wants to forward k

packets to k different neighbors, and if it has to transmit this combination a minimum of m

times, we say that the rate for this combination is k
m
. For example if each of the neighbors

have the knowledge of a minimum of l packets out of k, we only have to transmit m = k− l

CHAPTER 3. A PACKET ENCODING ALGORITHM FOR NETWORK CODING
WITH MULTIPLE NEXT HOP NEIGHBOR CONSIDERATION AND ITS
INTEGRATION WITH A ROUTING SCHEME 45

linear combinations of type cm =
∑

k µm,kPk as suggested in [Ho et al., 2003]. Here, µm,k

is some scalar from a Galois field. As long as these m = k − l combinations are linearly

independent, a neighbor can use the knowledge of its l packets and solve a system of m

equations with m unknowns to retrieve the packet it desires (here it is implicitly assumed

that the scalars µm,k are previously agreed upon by the transmitter and receivers).

Theorem 1. In the graph construction presented above, if we find a cycle of length 2k, it

is possible to achieve a combination rate of k
k−1 .

Proof. Since it is a bipartite graph, all the cycles will have even lengths. The cycle of length

2k will consist of k packets and their k next hops. If a neighbor nj is supposed to receive

a packet Pi, there is no edge from nj to Pi, since nj doesn’t have the knowledge of Pi.

Therefore, the existence of the cycle means that each of k next hops have the knowledge of

at least one packet other than the packet it is supposed to receive. Hence the combination

rate k
k−1 is achievable.

However, we do not concern ourselves with the packet combinations that require multiple

transmissions in order for the next hops to decode their packets. Instead we focus only on

the packet combinations where all the packets can be delivered in a single transmission.

Therefore, if we are combining k packets in a transmission, each of the next hop neighbors

should have the knowledge of k − 1 packets other than the one it is supposed to receive.

By enumerating cycles in the graph, we have narrowed down our search to the packet

combinations that can potentially be delivered in one transmission. Now given a cycle

C ⊆ G, let us separate its vertices into packets Pi and their next hops nj . All that remains

for us is to ensure that each Pi ∈ C has an incoming edge from each nj ∈ C other than its

own next hop neighbor. If we find a cycle that meets this condition, all the packets that

are part of this cycle can be delivered in a single transmission. From this observation we

can state the following theorem.

Theorem 2. Given the graph construction above, if we can find (k − 1)! cycles of length

2k, such that each of these cycles contain the same k packets, then these k packets can be

CHAPTER 3. A PACKET ENCODING ALGORITHM FOR NETWORK CODING
WITH MULTIPLE NEXT HOP NEIGHBOR CONSIDERATION AND ITS
INTEGRATION WITH A ROUTING SCHEME 46

combined in a single transmission.

Proof. From the graph construction presented above it is immediate that if each of these

cycles has the same k packets, then they also have the same k next hop neighbors. Also,

being able to find (k−1)! such cycles means that each packet has incoming links from k−1

next hop neighbors other than its own next hop. In other words each next hop neighbor

knows k−1 packets other then the one it is supposed to receive. Therefore, these k packets

can be combined in a single transmission.

P1

P2

P3

P4

n1

n2

n3

n4

Figure 3.6: Graph construction based on the example given in table 3.1.

Based on the construction discussed above, we can generate a graph corresponding to

the example presented in table 3.1. This graph is shown in figure 3.6. Table 3.2 enumerates

all the cycles present in this graph. From theorem 2 it becomes obvious that given this queue

we can find five different combinations P1 ⊕P2, P1 ⊕P3, P1 ⊕P4, P3 ⊕P4 and P1 ⊕P3 ⊕P4.

Clearly P1 ⊕ P3 ⊕ P4 is the best combination as mentioned earlier, since it achieves the

highest combination rate.

CHAPTER 3. A PACKET ENCODING ALGORITHM FOR NETWORK CODING
WITH MULTIPLE NEXT HOP NEIGHBOR CONSIDERATION AND ITS
INTEGRATION WITH A ROUTING SCHEME 47

Packets Cycles

P1, P2 P1A n1A P2A n2A P1

P1, P3 P1A n1A P3A n3A P1

P1, P4 P1A n1A P4A n4A P1

P1, P2, P4 P1A n1A P4A n4A P2A n2A P1

P1, P3, P4

P1A n1A P3A n3A P4A n4A P1

P1A n1A P4A n4A P3A n3A P1

P1, P2, P3, P4 P1A n1A P3A n3A P4A n4A P2A n2A P1

P3, P4 P3A n3A P4A n4A P3

Table 3.2: Enumeration of cycles in figure 3.6.

3.3.5 Exhaustive search: multiple next hop candidates

Since a scheme like delta routing considers multiple next hop candidates (NPi
), if we are

to integrate network coding with it, our encoding algorithm should also consider multiple

neighbors as next hop candidates.

P1

P2

P3

n1

n2

n3

Figure 3.7: Original graph

Considering multiple next hop candidates also increases likelihood of combining more

packets. While constructing the bipartite graph according to Construction 1, we assumed

that each packet has only one neighbor as the candidate for the next hop. However, if this

particular neighbor does not have the knowledge of other packets, it might be difficult to

CHAPTER 3. A PACKET ENCODING ALGORITHM FOR NETWORK CODING
WITH MULTIPLE NEXT HOP NEIGHBOR CONSIDERATION AND ITS
INTEGRATION WITH A ROUTING SCHEME 48

obtain a higher combination rate. For example, let us consider the graph given in figure

3.7. A quick application of theorem 2 would suggest that the best packet combination for

this queue is P1 ⊕ P2. However, let us assume that there exists a neighbor n4 ∈ NP3 , and

it also happens to have the knowledge of P1 and P2. Therefore, if we choose to deflect

P3 to n4 instead of sending it to n3, we can obtain a better combination in the form of

P1 ⊕ P2 ⊕ P3. Hence, considering multiple neighbors as the candidates for the next hop

increases the chances of finding a better combination.

Construction 2: We can extend the existing construction of the bipartite graph G(V,E)

in the following manner. There exists an edge in E from Pi to nj if nj ∈ NPi
. There exists

an edge from nj to Pi, if nj has the knowledge of Pi. Vn =
⋃

Pi
NPi

, V = Vp ∪ Vn and

Vp ∩ Vn = ∅.

P1

P2

P3

n1

n2

n3

n4

Figure 3.8: Extension graph

Figure 3.8 is an extended version of graph 3.7, assumingNP1 = {n1, n2}, NP2 = {n2}, NP3 =

{n3, n4}. Once we have extended a bipartite graph in this manner, we can use theorem 3

to find the maximum packet combination, which is P1 ⊕ P2 ⊕ P3 in this case.

Theorem 3. Consider a bipartite graph that accepts multiple neighbors as a packet’s next

hop candidates. If we can find (k − 1)! cycles of length 2k in this graph, such that each of

these cycles contain the same k packets and each of these k packets have the same neighbors

CHAPTER 3. A PACKET ENCODING ALGORITHM FOR NETWORK CODING
WITH MULTIPLE NEXT HOP NEIGHBOR CONSIDERATION AND ITS
INTEGRATION WITH A ROUTING SCHEME 49

as the next hops in all (k − 1)! cycles, then these k packets can be combined in a single

transmission.

Proof. This theorem is a direct consequence of theorem 2.

Note that the next hop neighbors for these packets will be the nodes chosen by the

cycles. While it is possible that a node can be a next hop candidate for multiple packets, it

will be the next hop for at most one packet, since a node can appear in a cycle only once.

Figure 3.9 provides a quick summary of our packet encoding algorithm.

C : {} = Best cycle so far

Q : {Pi} = Current node’s queue

NPi
= Set of next hop candidates for Pi

Pni
= Set of packets known to node ni

Directed graph G = (V,E)

V = Q ∪ {
⋃

Pi∈QNPi
}

E = {(Pi, nj) | nj ∈ NPi
} ∪ {(ni, Pj) | Pj ∈ Pni

}

Enumerate cycles in G

If we find (k − 1)! cycles {c1, ...c(k−1)!} of length 2k

such that each of these cycles contain the same k

packets and if each of the k packets have the

same next hop in all (k − 1)! cycles and if 2k >| C |

⇒ C = c1

Separate Pis and njs from C and return

Figure 3.9: Summary of packet encoding algorithm

3.3.6 Benefit of considering multiple next hop candidates

To see the throughput benefit of considering multiple next hop candidates, let’s once again

consider the simple scenario presented in figure 3.4. The rates of flows C → A and D → A

CHAPTER 3. A PACKET ENCODING ALGORITHM FOR NETWORK CODING
WITH MULTIPLE NEXT HOP NEIGHBOR CONSIDERATION AND ITS
INTEGRATION WITH A ROUTING SCHEME 50

0 100 200 300 400 500 600 700 800
100

200

300

400

500

600

700

800

Fixed rate of C→ A and D→ A (packets/second)

A
ch

ie
ve

d
th

ro
ug

hp
ut

 fo
r

A
→

 E
 p

ac
ke

ts
/s

ec
on

d)

No coding: designated next hop neighbor
Network coding: designated next hop neighbor
Network coding: multiple next hop considerations

Figure 3.10: Improvement in the throughput of flow A → E by considering multiple neigh-

bors as next hop candidates

are fixed, and A → E is allowed to transmit as many packets as possible as long as it doesn’t

hurt the rates of the other two flows. We run a simulation on our custom built discrete

event simulator that allows for coding packets. The channel access scheme used is 802.11b

with RTS/CTS disabled. A slot length is 20µS. Each packet is 100µS long (≈ 1.2KB

on 90Mbps transmission rate). A node tries to retransmit a packet if a transmission fails.

Each node’s transmission and interference range is 250m. Each simulation is run for 110

seconds. Throughput of a flow is measured by calculating the number of packets that

leave the network during the last 100 seconds. We compare three routing schemes here (1)

conventional shortest path routing with a designated next hop neighbor for each packet at

any node (shortest path is chosen according to Dijkstra’s algorithm, when node B has a

packet of type A → E it is forwarded to C), (2) network coding applied to conventional

CHAPTER 3. A PACKET ENCODING ALGORITHM FOR NETWORK CODING
WITH MULTIPLE NEXT HOP NEIGHBOR CONSIDERATION AND ITS
INTEGRATION WITH A ROUTING SCHEME 51

shortest path routing (3) network coding with multiple next hop considerations (i.e. node

B considers C and D both as next hop candidates for the packets of type A → E). In figure

3.10 x-axis shows the fixed Poisson arrival rate for packets of flows C → A and D → A,

and y-axis shows the maximum throughput achieved by flow A → E, without reducing the

throughput of any other flows. As the figure indicates considering multiple neighbors always

achieves a higher throughput for A → E compared to the other two schemes. It should be

noted that this particular scenario will only allow combining at most two packets, hence

the results of a greedy search and an exhaustive search are not too different. Therefore, the

throughput improvement is obtained mainly by considering multiple next hop candidates.

3.3.7 A note on the complexity of the algorithm

Based on the discussion so far, the complexity of the algorithm to find the best possible

packet combination depends on the algorithm we use to enumerate cycles in a graph. For-

tunately enumeration of cycles in a directed graph is a well studied problem. Algorithms

presented by Tarjan [Tarjan, 1972], Johnson [Johnson, 1975], Tiernan [Tiernan, 1970], Floyd

[Floyd, 1967], Liu [Liu and Wang, 2006], Rao [Bapeswara Rao and Murti, 1969] are few of

the algorithms among many that can accomplish this task.

In our simulations we have utilized Johnson’s algorithm [Johnson, 1975] to enumerate

cycles in a graph, since it performs better than other known algorithms. Its time complexity

is O ((|V |+ |E|)(c+ 1)). Here c is the number of cycles in the graph. Since our algorithm

runs in polynomial time it is significantly faster than a näıve exhaustive search which runs

in O(2n) time.

Note that even if we extend the graph according to Construction 2, the asymptotic

complexity of the algorithm still remains O ((|V |+ |E|)(c+ 1)). However, since extending

a graph adds more edges to it, complexity of the algorithm also increases. Hence one may

have to consider the trade off between the speed of the algorithm on an extended graph

and the ability to find a better packet combination. If a new next hop candidate already

belongs to the original Vn, we are adding only an edge to the graph (P1 → n2 in graph

CHAPTER 3. A PACKET ENCODING ALGORITHM FOR NETWORK CODING
WITH MULTIPLE NEXT HOP NEIGHBOR CONSIDERATION AND ITS
INTEGRATION WITH A ROUTING SCHEME 52

3.7 (b)). On the other hand, if we introduce a new next hop candidate that is not part of

the original Vn, we will most likely end up adding multiple edges to the graph (three edges

introduced by adding n4 to graph 3.7 (b)).

3.4 Delta Routing and its Integration with Network Coding

As mentioned earlier, this packet encoding algorithm doesn’t depend on a particular routing

scheme such as PCR. It can be integrated with any routing mechanism such that we can

reap the benefits offered by the routing scheme and network coding both. To demonstrate

this, we integrate our packet encoding algorithm with Delta routing. In Delta routing a

packet’s next hop neighbor changes dynamically according to a delta metric. Hence it is

difficult to identify packets that can be combined together. We demonstrate that using our

encoding algorithm we can manage to route packets using the delta metric and yet achieve

a higher coding gain.

As mentioned in section 3.1, like any other scheme, throughput benefit offered due to

network coding can also be hampered by bottleneck nodes. Delta routing helps packets

circumnavigate congested parts of the network. By routing packets through underutilized

nodes and thus promoting spatial reuse, it improves throughput of the network. In this

section we first present the concept of Delta routing and then integrate it with network

coding.

The idea of Delta routing can be traced back to [Rudin, 1976]. It can be seen as a

derivation of the concept of routing packets on the smallest delay path. [Rudin, 1976]

explains Delta routing as follows. In a wireline network consider a node s that has two

links going to nodes n1 and n2. s maintains two separate queues for both the outgoing

links, let qs,n1 and qs,n2 be the length of these queues. Moreover let D′n1,d
and D′n2,d

be the

delay from n1, n2 to the destination, measured in terms of packet lengths. Without loss of

generality assume that D′n2,d
> D′n1,d

. Let’s define δ = D′n2,d
− D′n1,d

. When s receives a

CHAPTER 3. A PACKET ENCODING ALGORITHM FOR NETWORK CODING
WITH MULTIPLE NEXT HOP NEIGHBOR CONSIDERATION AND ITS
INTEGRATION WITH A ROUTING SCHEME 53

new packet, its next hop is assigned according to equation 3.7.

Next hop =

n2 if qs,n2 − qs,n1 < δ

n1 otherwise

(3.7)

The idea here is to use local information to compare two outgoing links’ queues with respect

to delay to the destination. If the local queue for one link is too long, conclude that the

node connected to this link is congested and send the packet elsewhere.

We make modification to this idea in order to make it more suitable for a wireless

network with network coding. In a wireless network there are no separate links, a node

transmits all its packets on the same channel. Hence a node maintains just one queue. Say

a new packet arrives at s, and there are two nodes n1 and n2 that can take the packet

closer to its destination. Once a packet joins s’s queue, time to transmit this packet to

n1 or n2 is the same, since there is just one queue. Hence we may not have enough local

information to estimate congestion at the neighboring nodes. Fortunately in a wireless

medium a node can judge congestion at its neighboring nodes if they broadcast their queue

length periodically or attach them with their data packets. Once a packet is transmitted its

delay to the destination depends on the queuing delay at the next hop, delay from the next

hop to the destination, channel access delay per packet (which are greater at a congested

node) and the transmission rate. Therefore in the modified version of Delta routing, if a

node has multiple neighbors, it chooses a next hop according to equation 3.8.

Next hop = argmin
ni

{Dni,d +
Qni

Tni
Pni

} (3.8)

In equation 3.8, Dni,d is the average time between ni transmitting a packet until it

reaches d. This delay is measured in time units. Qni
is the current queue length at neigh-

bor ni. Tni
is the average transmission rate and Pni

is the probability of a successful

transmission. The packet is forwarded to a neighbor that has the smallest value for the cur-

rent queuing delay plus the average delay to the destination. In a wireless scenario different

nodes can experience different probability for a successful transmission. Clearly higher the

CHAPTER 3. A PACKET ENCODING ALGORITHM FOR NETWORK CODING
WITH MULTIPLE NEXT HOP NEIGHBOR CONSIDERATION AND ITS
INTEGRATION WITH A ROUTING SCHEME 54

probability of a successful transmission and higher the transmission rate, smaller the queu-

ing delay. In equation 3.8 we only consider neighbors that are geographically closer to the

destination than the current node. This rule helps prevent routing loops while forwarding

the packets.

Average delay (Di,j) between two nodes can be easily propagated through the network

using Bellman-Ford algorithm. In order to judge the quality of the channel a lot of times

wireless nodes maintain ETX metric [De Couto et al., 2003] which periodically calculates

the probability of a successful transmission to individual nodes. Hence one way to calculate

the probability of a successful transmission (P) is to take the weighted average of delivery

probabilities calculated by ETX, where the weights are the fraction of packets that travel to

a particular neighbor. A straightforward way to calculate P is to observe a window of last

k transmissions, and then take the ratio of successful transmissions over total transmissions

(k). We use the latter method to calculate P in our simulations. The values for transmission

rate T and the queue length Q are readily available at each node. As the values of D,Q, T, P

change, a node can either periodically broadcast them to its neighbors or attach these

values along with data packets. Therefore in this routing mechanism a node only requires

information available from its immediate neighbors to make forwarding decisions.

3.4.1 Throughput Comparison: Delta Routing Vs. Conventional Short-

est Path Routing

In this section we compare the throughput offered by conventional shortest path routing

and Delta routing. For both the routing schemes we insert packets into the network, and

observe if the packets can successfully leave the network without building up queues at the

nodes.

If Qi(t) represents node i’s queue length at time t, we define that a network is in stable

state as long as the following condition is satisfied: lim supt→∞Qi(t) < ∞, ∀t. For any

arrival rate of new packets, if this condition is violated, the queues start to build up at

the network nodes, packets leave the network at a rate slower than the arrival rate and

CHAPTER 3. A PACKET ENCODING ALGORITHM FOR NETWORK CODING
WITH MULTIPLE NEXT HOP NEIGHBOR CONSIDERATION AND ITS
INTEGRATION WITH A ROUTING SCHEME 55

the delay approaches infinity. In our simulation packets enter the network according to

Poisson process with arrival rate λ. Once a packet enters the network, it chooses its source

and destination uniformly. (We choose this traffic pattern instead of inserting flows in the

network, since it creates diversity of packets in terms of next hops in a node’s queue. This

makes the task of identifying optimal packet combinations computationally challenging.

Therefore this traffic pattern will help us test our packet encoding algorithm thoroughly.)

We gradually keep increasing λ until the queues start building towards infinity. Network

throughput is defined as the maximum arrival rate λ for which the network remains in the

stable state (i.e. maximum packet arrival rate for which departure rate equals the arrival

rate).

Using this method we test the throughput offered by both the routing schemes on

the network shown in figure 3.11. In this network 75 nodes are scattered uniformly on a

1000×1000m2 field. We run the simulation for 110 seconds, network throughput is measured

using the number of packets that leave the network in last 100 seconds. It is assumed that

each node can sustain a very large queue. Information regarding channel access scheme,

packet lengths, transmission/interference range are the same as provided in section 3.3.6.

For Delta routing Ds,d is measured by averaging the travel times of last 25 packets

between s and d. Similarly, probability of successful transmission P is measured by observ-

ing the success rate of last 25 transmissions. In order to measure the maximum possible

throughput gain, we assume the ideal scenario where the values of D,P,Q, T are made

readily available at each node during the course of the simulation.

Figure 3.12 plots departure rate vs. arrival rate for both the routing schemes. The figure

indicates that the conventional routing offers a throughput of 2800 packets/second, whereas

the modified Delta routing offers a throughput of 4000 packets/second. Thus, Delta routing

improves the throughput of this particular network by almost 43%.

Contour graphs are helpful in demonstrating the distribution of a variable over a field,

for example mountain elevations over an area. We can use contour maps to show the

distribution of forwarding rates in a network as well (i.e. forwarding rates are analogous to

CHAPTER 3. A PACKET ENCODING ALGORITHM FOR NETWORK CODING
WITH MULTIPLE NEXT HOP NEIGHBOR CONSIDERATION AND ITS
INTEGRATION WITH A ROUTING SCHEME 56

Figure 3.11: Network specification: 75 nodes scattered uniformly in an area of 1000×1000m2

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 0 1000 2000 3000 4000 5000

D
ep

ar
tu

re
 R

at
e

(p
ac

ke
ts

/s
ec

on
d)

Arrival Rate (packets/second)

Conventional: 2800
Delta: 4000

Figure 3.12: Throughput: Conventional shortest path routing: 2800 packets/sec, Delta

routing: 4000 packets/sec

CHAPTER 3. A PACKET ENCODING ALGORITHM FOR NETWORK CODING
WITH MULTIPLE NEXT HOP NEIGHBOR CONSIDERATION AND ITS
INTEGRATION WITH A ROUTING SCHEME 57

50

50

50
50

50

50

50

50

50

100

100

100

100

100

100

100

100

100

100

100

150

150

150

150

150

150

150150

150

200
200

200

200

200200

200
250

250

250

250250

300

300

300

350

350

400

400

450

100 200 300 400 500 600 700 800 900

100

200

300

400

500

600

700

800

900

Figure 3.13: Contour graph of forwarding rates for conventional routing, arrival rate = 2800

packets/sec

50

50100

100

100

100

100

100

100

100

100

100

100

100

150

150

150

150
150

150
150

150

150

150

150

150 150

200

200

200

200

200

200

200

200

200

200

200

250 250

250

250
250

100 200 300 400 500 600 700 800 900

100

200

300

400

500

600

700

800

900

Figure 3.14: Contour graph of forwarding rates for Delta routing, arrival rate = 2800

packets/sec

CHAPTER 3. A PACKET ENCODING ALGORITHM FOR NETWORK CODING
WITH MULTIPLE NEXT HOP NEIGHBOR CONSIDERATION AND ITS
INTEGRATION WITH A ROUTING SCHEME 58

elevations). When the contours are closer to each other, the magnitude of the gradient is

high, hence the variation in forwarding rates is steep. Therefore that part of the network is

congested. On the other hand, if the contours are spread far apart, it implies that the traffic

is distributed evenly in that part of the network. Figures 3.13 and 3.14 plot the forwarding

rates (packets/second) at various nodes in the contour representation for both the routing

schemes when arrival rate = 2800 packets/second. From figure 3.13 it is obvious that in

conventional routing majority of the traffic is forwarded through the center of the network,

while the remaining parts of the network are largely underutilized. Hence, the congestion

at the center is throttling the throughput of the network. Figure 3.14 demonstrates that

Delta routing has alleviated this congestion at the center by directing the traffic towards

the underutilized nodes. These results demonstrate that the network throughput can be

substantially improved by forwarding packets according to Delta routing.

3.4.2 Integrating network coding with Delta routing

In this subsection we couple network coding with Delta routing. As mentioned in sections

3.1 and 3.3, for a given packet, if the next hop chosen according to equation 3.8 doesn’t

have the knowledge of any other packets from the current node’s queue, that packet cannot

be combined with any other packet. We can improve the possibility of combining more

packets by choosing a few next hop candidates with the lower values for delta metric,

instead of choosing just a single next hop with the least delta metric value. By doing so

we are leveraging benefits of both the schemes, we are not only routing packets towards

underutilize nodes, we are improving the possibility of combining more packets as well.

To apply network coding to Delta routing we make a small change to delta metric. We

replace the probability of successful transmission in equation 3.7 with Cni
. Cni

is the rate

with which ni successfully delivers packets to its neighbors. In order to measure Cni
we

observe a window of last k transmissions. If a node combines 2, 1, 3, 2, 1 packets in its last

five transmissions, but if only 1, 0, 2, 2, 1 packets are delivered successfully, Cni
for this node

CHAPTER 3. A PACKET ENCODING ALGORITHM FOR NETWORK CODING
WITH MULTIPLE NEXT HOP NEIGHBOR CONSIDERATION AND ITS
INTEGRATION WITH A ROUTING SCHEME 59

is 1.2. The new delta metric can be written as in equation 3.9.

Next hop = argmin
ni

{Dni,d +
Qni

Tni
Cni

} (3.9)

In order to couple Delta routing with network coding, we directly build a bipartite

graph according to Construction 2. A packet Pi’s next hop candidate set (NPi
) is chosen as

neighbors with the lower values for the delta metric (equation 3.9). How many neighbors

should be included in NPi
is left to user’s discretion and it would depend on how much

computational power does the user have. Larger the size of NPi
, denser the graph and

longer it takes to enumerate cycles.

Should we find two different packet combinations that have the same number of packets

in it, we would want to give priority to the combination that will be forwarded to the

underutilize nodes. This can be done by adding weights to the edges in the graph. An edge

that goes from a packet to a node is assigned a weight w = Dni,dpi
+

Qni

Tni
Cni

. Here, dpi is

the final destination for the packet Pi. Also, every edge that goes from a node to a packet

is assigned a weight of zero. If we happen to find two different combinations that include

the same number of packets, we sum the edge weights of the cycles for these combinations.

Note that all (k − 1)! cycles for a combination of k packets will have the same total edge

weight. We choose to transmit the combination that has the lower total edge weight, since

the packets in this combination will be forwarded to the underutilized nodes of the network.

In case a node’s queue doesn’t have any packets that can be combined together, the node

would forward the packet from the top of its queue to the neighbor chosen by equation 3.9.

Even though the algorithm we presented is asymptotically faster, if a node’s queue is

too large, it can still take significant amount of time to find the optimal packet combination.

Therefore it is not ideal to use the entire queue to find the best packet combination. We

list few methods that can help improve the speed of the algorithm.

• If a node has a very large queue, the node can use only first k of its packets to build the

bipartite graph G(Vp∪Vn, E). In our simulations we have constructed G by using only first

ten packets from a node’s queue.

CHAPTER 3. A PACKET ENCODING ALGORITHM FOR NETWORK CODING
WITH MULTIPLE NEXT HOP NEIGHBOR CONSIDERATION AND ITS
INTEGRATION WITH A ROUTING SCHEME 60

• Even if we build a graph G using a partial queue, if the cardinality of NPi
is too high,

the graph can still be very dense and depending on the speed of the processor enumerating

cycles can still be time consuming. We can reduce the number of edges in a graph by

controlling the cardinality of NPi
. In our simulations we have chosen |NPi

| ≤ 3.

Advantages of this encoding algorithm are not limited to Delta routing. By replacing

the edge weights in our algorithm with the metric a routing scheme uses, this algorithm

can be applied to any routing scheme. For example, if we choose to route packets on the

smallest delay path, we can replace the edge weights with delays to the destination, and

find the optimal packet combination.

3.5 Simulation Results

In this section we check the performance of our routing scheme where we couple delta routing

with network coding. We compare its performance with network coding on the conventional

shortest path routing (XOR) as presented in [Katti et al., 2006]. Note that this scheme also

uses our improved search procedure for combining packets. The only difference is that every

packet in this routing scheme will have a designated next hop neighbor chosen according

to Dijkstra’s algorithm that selects the shortest path to the destination in terms of hop

count. The details of the simulation are provided in section 3.4.1. In order to evaluate the

best case performance for both the routing schemes, we have assumed that the information

needed from the neighbors to make coding and forwarding decisions are readily available at

every node.

Figure 3.15 indicates that combining delta routing and network coding offers a through-

put of 5100 packets/second on the network shown in figure 3.11. On the other hand,

network coding on conventional shortest path routing offers a throughput of only 3600

packets/second. Hence our routing mechanism outperforms pure coding by 41.67%. This

throughput benefit is 82.14% improvement over conventional shortest path routing (shown

in figure 3.12).

CHAPTER 3. A PACKET ENCODING ALGORITHM FOR NETWORK CODING
WITH MULTIPLE NEXT HOP NEIGHBOR CONSIDERATION AND ITS
INTEGRATION WITH A ROUTING SCHEME 61

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 1000 2000 3000 4000 5000D
ep

ar
tu

re
 R

at
e

(p
ac

ke
ts

/s
ec

on
d)

Arrival Rate (packets/second)

XOR: 3600
Delta Routing + Coding: 5100

Figure 3.15: Network coding + Conventional routing: 3600 packets/sec, Delta routing +

Network Coding: 5100 packets/sec

We run these routing schemes on a total of 40 random networks (according to the speci-

fications provided in subsection 3.4.1). Throughput achieved by various routing schemes on

these networks are demonstrated in figure 3.16. For all the topologies the combination of

delta routing with network coding significantly outperforms all the other routing schemes.

Table 3.3 summaries the throughput improvement achieved by the combination of net-

work coding and delta routing over other schemes, based on figure 3.16. The combination of

delta routing and network coding improves the throughput of a conventional shortest path

routing scheme by as much as 92.59%. While pure network coding (XOR) offers better

throughput than conventional shortest path routing (figure 3.16), the combination of delta

routing and network coding outperforms pure coding by an average of 33.34%.

As the arrival rate of new packets increases, the queues start to build up at the network

nodes. As mentioned in section 3.4.2, when the queues are very large, we cannot use the

entire queue to search for optimal packet combination without slowing the algorithm down.

However, the throughput can also suffer if we limit our search to only few packets. Figure

CHAPTER 3. A PACKET ENCODING ALGORITHM FOR NETWORK CODING
WITH MULTIPLE NEXT HOP NEIGHBOR CONSIDERATION AND ITS
INTEGRATION WITH A ROUTING SCHEME 62

 2500

 3000

 3500

 4000

 4500

 5000

 5500

 5 10 15 20 25 30 35 40

D
ep

ar
tu

re
 r

at
e

(p
ac

ke
ts

/s
ec

on
d)

Topology count

XOR+Delta
Delta

XOR
Conventional

Figure 3.16: Throughput achieved by various routing schemes on different topologies

Routing Maximum Average Minimum

Scheme improvement improvement improvement

Conventional Shortest Path 92.59 66.44 50.00

XOR 55.88 33.34 23.68

Delta 37.83 26.91 16.67

Table 3.3: Throughput improvement (in %) achieved by the combination of network coding

and delta routing over other schemes.

CHAPTER 3. A PACKET ENCODING ALGORITHM FOR NETWORK CODING
WITH MULTIPLE NEXT HOP NEIGHBOR CONSIDERATION AND ITS
INTEGRATION WITH A ROUTING SCHEME 63

 4500

 4600

 4700

 4800

 4900

 5000

 5100

 5200

 4600 4700 4800 4900 5000 5100 5200 5300D
ep

ar
tu

re
 R

at
e

(p
ac

ke
ts

/s
ec

on
d)

Arrival Rate (packets/second)

k=6: 4900
k=8: 5000

k=10: 5100
k=12: 5100

Figure 3.17: Trade off between the throughput and how deep we search our queue

3.17 studies the trade off between the throughput and how deep we search the queues to

look for a packet combination. Figure 3.17 shows network throughput when we include

6, 8, 10 and 12 packets respectively in our algorithm. Naturally, the more packets we

include in our search, the higher the coding gain, and higher the throughput. However,

as this result indicates, after having included sufficient number of packets (k = 10 in this

case), the coding benefit of adding further more packets starts to diminish. Therefore the

routers lacking enough computational resources can also obtain a higher throughput without

including all the packets in the search algorithm for the maximum packet combination.

3.6 Summary

In this chapter we proposed a novel packet encoding algorithm for network coding. This

algorithm runs in polynomial time and searches a node’s queue exhaustively for an optimal

packet combination. This algorithm also considers multiple next hop candidates for a

CHAPTER 3. A PACKET ENCODING ALGORITHM FOR NETWORK CODING
WITH MULTIPLE NEXT HOP NEIGHBOR CONSIDERATION AND ITS
INTEGRATION WITH A ROUTING SCHEME 64

packet, which increases the likelihood of combining more packets. This ability also makes

it easy to integrate this algorithm with routing schemes that consider several next hop

candidate nodes before forwarding a packet to one of them. We coupled this encoding

algorithm with delta routing. Delta routing helps packets in a combination circumnavigate

congested nodes, and improves the throughput of the network by forwarding them through

the underutilized parts of the network. Our simulations showed that integration of our

encoding algorithm with delta routing outperformed conventional shortest path routing

by 50.00% to 92.59%. This throughput benefit was 23.68% to 55.88% improvement over

utilizing coding on the shortest path routing.

CHAPTER 4. MAX-MIN FAIR RATE ALLOCATION IN MULTIHOP WIRELESS
NETWORKS WITH INTERSESSION NETWORK CODING 65

Chapter 4

Max-min Fair Rate Allocation in

Multihop Wireless Networks with

Intersession Network Coding

4.1 Introduction

In this chapter we present an algorithm to assign max-min throughput fair rates to the

flows in a wireless network that uses coding.

A F

mf = ma ⊕mb

B

ma mb

Figure 4.1: An example of network coding

Our focus is on a coding mechanism presented in [Katti et al., 2006]. Consider the

topology shown in figure 4.1. Say nodes A and B want to exchange messages ma and

mb with each other. Moreover, since these two nodes are situated far apart from each

other, the messages have to be forwarded through a node F . If F were to relay these

CHAPTER 4. MAX-MIN FAIR RATE ALLOCATION IN MULTIHOP WIRELESS
NETWORKS WITH INTERSESSION NETWORK CODING 66

messages separately, it will require a total of four transmissions for A and B to exchange

these messages. However, instead of forwarding these messages individually, say F combines

them using bitwise exclusive-or and transmits the combination mf = ma⊕mb. In a wireless

medium both A and B will receive this combination. Since A already has the knowledge of

ma, it will retrieve its desired message mb as mb = mf ⊕ma. Similarly, B will recover ma

as ma = mf ⊕mb. Therefore, the coding scheme improves the throughput by reducing the

number of transmissions from four to three. Similarly, in a large network say a node n has

k messages going to k different neighbors. If each of these neighbors have the knowledge of

k − 1 messages other than the message they are supposed to receive, n can forward these

k messages in a single transmission. Due to its simplicity, this coding scheme has garnered

significant research attention. We present an algorithm to assign max-min throughput fair

rates to the flows when a network utilizes this coding scheme.

In a network, fairness can be defined over different commodities such as time, throughput

etc. In throughput fairness, the objective is to assign various network flows a rate according

to some fairness criterion. Fairness can be defined in several different ways.

• Proportional Fairness: In proportional fairness a flow is assigned a rate that is

generally inversely proportional to the amount of network resources it consumes.

Naturally in proportional fairness a flow that travels large number of hops, suffers

in throughput.

• Max-min Fairness: Let F be the set of flows in a network. Let R be the set of

all the achievable rate vectors {rf}. A feasible rate vector r∗ ∈ R is max-min fair

if for each f ∈ F , r∗f cannot be increased while maintaining the feasibility without

decreasing r∗f ′ for some flow f ′ for which r∗f ′ < r∗f [Bertsekas and Gallager, 1992].

Max-min fairness is of interest in the objectives such as rate allocation and quality

of service maintenance, since it attempts to improve the rates of the flows who are

achieving the least rates. In max-min fairness a flow that travels more hops doesn’t

necessarily suffer in throughput.

In figure 4.1 since the flows are symmetrical, both proportional and max-min fairness

CHAPTER 4. MAX-MIN FAIR RATE ALLOCATION IN MULTIHOP WIRELESS
NETWORKS WITH INTERSESSION NETWORK CODING 67

criterion would yield the same rates for both the flows. If the network is using a CSMA

based channel access scheme such as 802.11, in figure 4.1 only one transmission can be

scheduled at a time. Therefore, if there was no coding in the network, a fair rate for the

flows would be 0.25 packets per unit transmission time. On the other hand, if the network

was utilizing coding, a fair rate would be 0.33 packets per unit transmission time. Clearly

network coding changes the fair rates of the flows in a network. Hence we must make

enhancement to the existing algorithms for fair rate allocation in order to accommodate for

network coding.

[Seferoglu et al., 2009] and [Seferoglu and Markopoulou, 2009] extend the seminal work

of Kelly et al. [Kelly et al., 1998] and provide a rate control algorithm for the flows in a

wireless network with coding. The rates assigned using this algorithm are proportionally

fair. To the best of our knowledge no algorithm has been proposed that assigns max-min

fair rates to flows in a wireless network with coding.

We propose an algorithm that emulates progressive filling [Bertsekas and Gallager, 1992],

[Jaffe, 1981] to achieve max-min fairness. From a global perspective, in progressive filling

rates of all the flows are increased gradually by an equal amount, until we identify a flow

whose rate cannot be increased further. We fix the rate of this bottleneck flow, allocate the

remaining channel capacity to the rest of the unconstrained flows and repeat the procedure

until all the flows are assigned a fixed rate. The resulting rates for the flows are max-min

throughput fair rates.

However, application of such an algorithm in a wireless network with coding is not

straightforward. We often run into scenarios where the direct application of this algorithm

may yield incorrect or suboptimal results. In order to use progressive filling, we couple a

conflict graph based framework with a linear program to directly identify the bottleneck

flows in the network. We demonstrate the caveats in setting up the constraints of the

linear program such that the resulting rates will be feasible. We also present conditions for

selecting bottleneck flows such that the flows are not assigned suboptimal rates.

Our fairness algorithm can be easily implemented in a decentralized manner. We provide

CHAPTER 4. MAX-MIN FAIR RATE ALLOCATION IN MULTIHOP WIRELESS
NETWORKS WITH INTERSESSION NETWORK CODING 68

details of a distributed algorithm that helps flows achieve the same rates as the centralized

algorithm. Using various comparison metrics (e.g. Jain’s index), we also compare the rates

achieved by our algorithm with the existing rate control algorithm.

We provide a scheduling mechanism, that helps flows realize rates allocated according to

our fairness mechanism. We avoid introducing new scheduling protocols by implementing

our scheduling mechanism using existing 802.11 standards. We simulate the behaviour of

this scheduling mechanism on different topologies and present the throughput achieved by

various flows in the network.

4.2 Related Work

The seminal work presented in [Ahlswede et al., 2000] showed that the capacity of a network

can be improved by combining packets. Since then there was a large body of theoretical

work that looked into different aspects of network coding. Among some of the notable

works is [yen Robert Li et al., 2003], which showed that in a multicast network linear codes

can achieve the capacity defined by the max-flow bound. In [Koetter et al., 2003] extends

the work of [yen Robert Li et al., 2003] to any arbitrary network, they also present a

polynomial time packet encoding and decoding algorithm for linear codes. [Ho et al., 2003]

proposes a robust approach to coding called random coding, where the probability failing

to decode the packet decreases exponentially with the codeword length. [Li and Li, 2004]

investigates how network coding can lead to throughput improvement in a network with

unicast sessions. [Chou et al., 2003] presents a distributed coding mechanism that works

with random delays, packet losses and varying channel capacities. [Wu et al., 2005] discusses

simple network coding for wireless networks with the scenarios similar to figure 4.1. [Katti

et al., 2006] presents an implementation (COPE) of such a coding scheme for a wireless

network. Since then the interest in network coding and routing has been reinvigorated.

[Sengupta et al., 2007] presents a method to calculate the maximum throughput that can

be achieved in a network that uses a method like COPE. [Zhao and Medard, 2010] shows

that the local fairness enforced by the MAC scheme plays an important role in improving

CHAPTER 4. MAX-MIN FAIR RATE ALLOCATION IN MULTIHOP WIRELESS
NETWORKS WITH INTERSESSION NETWORK CODING 69

the performance of COPE. [Le and Lui, 2008] gives an upper bound on the number of

packets that can be coded using such a coding scheme. [Seferoglu et al., 2011] couples

inter-session network coding with intra-session coding to make the scheme more resilient to

packet losses.

[Bertsekas and Gallager, 1992] offers a progressive filling algorithm to assign max-min

fair rates to the flows in a network. However, their solution is limited to the wireline

networks. We extend this progressive filling algorithm to wireless networks that use network

coding. [Nandagopal et al., 2000], [Huang and Bensaou, 2001] offer a conflict graph based

framework to achieve max-min fairness for the flows in wireless networks. However, their

work is limited to the networks with single hop flows. [Gambiroza et al., 2004] also offers a

conflict graph based solution to assign max-min fair rates to the multihop flows in backhaul

networks. However, their solution is limited to smaller networks where only one transmission

can be scheduled at a time. Apart from these [Sridharan and Krishnamachari, 2007],

[Rangwala et al., 2006] and [Dong et al., 2006] work on a routing tree based framework to

assign max-min fair rates to the flows in a network. However, since it is relatively easier to

adapt a conflict graph based framework for a wireless network with coding, we work with

such a framework instead of working with a routing tree based model.

There has been significant work done on assigning proportional fair rates to the network

flows as well. The most prominent of them is [Kelly et al., 1998]. They discuss assigning

network flows rates that maximize a concave utility function of flow rates. It has been

shown that rates assigned using this scheme are proportionally fair rates. [Lin and Shroff,

2004] present a rate control algorithm for multihop wireless networks. [Ronasi et al., 2009],

[Seferoglu et al., 2009] and [Seferoglu and Markopoulou, 2009] extend these algorithms to

assign proportionally fair rates to the flows in a wireless network with coding. However, to

the best of our knowledge there hasn’t been any work that discusses max-min fair rates for

the flows in a wireless network with a coding scheme such as COPE.

CHAPTER 4. MAX-MIN FAIR RATE ALLOCATION IN MULTIHOP WIRELESS
NETWORKS WITH INTERSESSION NETWORK CODING 70

4.3 Fairness algorithm from a global perspective

In this section we present our fairness algorithm from a global perspective. As mentioned

in section 4.1, our algorithm attempts to emulate progressive filling in order to achieve

max-min fairness. In progressive filling one gradually increases rates of all the flows by an

equal amount until a flow is identified whose rate cannot be increased any more. This flow

is the bottleneck flow. We fix the rate of this flow, allocate the remaining channel capacity

to the rest of the unconstrained flows and repeat the procedure until all the flows have

a fixed rate. Since progressive filling maximizes the minimum rate a flow can achieve, it

achieves max-min fairness. However in a wireless network that utilizes network coding, the

task of identifying a bottleneck flow is not straightforward. A direct application of such

an algorithm may yield incorrect or suboptimal results. In this section we first define a

network model that helps identify the sets of conflicting transmissions in a network. We

also present a linear program that helps us calculate fair rates for the flows that are part of

each set of conflicting transmissions. We list the caveats in setting up the constraints for this

linear program such that the flows will be assigned feasible rates. The fair rates assigned

according to this linear program will help us identify the bottleneck flows. We will also

present conditions for selecting bottleneck flows such that their rates are not suboptimal.

4.3.1 Network Model

We represent a network by a graph G(V,E). Here V is the set of nodes/routers {ni} in the

network. An edge (ni, nj) ∈ E if nodes ni and nj can forward messages to each other. Each

edge (ni, nj) is assigned a capacity cij . This capacity is usually inversely proportional to a

power of the distance between two nodes.

Let rji represent a transmission by some node ni. Index j in rji is the set of flows whose

packets the transmission is forwarding. For example if node ni is combining packets from

flows fk and fl in a single transmission, this transmission would be represented by r
{k,l}
i . In

figure 4.1, let’s represent the flow from A to B as fa and the flow from B to A as fb. In this

case the network has five transmissions r
{a}
A , r

{a}
F , r

{b}
B , r

{b}
F and r

{a,b}
F . Each transmission

CHAPTER 4. MAX-MIN FAIR RATE ALLOCATION IN MULTIHOP WIRELESS
NETWORKS WITH INTERSESSION NETWORK CODING 71

is assigned a corresponding capacity Cj
i . If a transmission is combining multiple packets,

this capacity is the minimum capacity of the edges on which this packet combination is

forwarded. For example in figure 4.1, C
{a}
F = cFA, while C

{a,b}
F = min(cFA, cFB). Also let

tji be the channel access time allocated to the transmission rji .

From these definitions we can construct a conflict graph Gc(Vc, Ec). Here Vc is the set

of all the possible transmissions in the network. An edge (rji , r
l
k) ∈ Ec if rji and rlk cannot

be scheduled at the same time. A clique in a graph is a subset of vertices where every two

vertices are connected to each other. A maximal clique is a clique that cannot be extended

by including any more vertices to it. Therefore a maximal clique in the conflict graph

Gc is the set of transmissions that cannot be scheduled at the same time. Since only one

transmission in a maximal clique can be scheduled at a time, in order to meet the objective

of rate fairness, we must allocate channel access times to the transmissions in a clique such

that their flows will have fair rates. Next we define a linear program that helps determine

the fair rates for the flows in a maximal clique.

4.3.2 Linear Program to Calculate Fair Rates in a Maximal Clique

In this subsection we present a linear program to assign fair rates to the flows that are part

of a maximal clique. This linear program is run on all the maximal cliques in Gc. Naturally,

the clique that assigns the smallest rate to its flows is identified as the bottleneck clique.

A bottleneck clique can have multiple flows going through it. We also demonstrate which

flow in the bottleneck clique serves as the bottleneck flow and we fix its rate.

4.3.2.1 Variable Definition

Let F = {fl} be the set of all the flows in the network. Furthermore, we split F into two

disjoint sets F
c and F

u. Here F
c is the set of constrained flows, whose rates have been

fixed by our algorithm. F
u is the set of unconstrained flows in the network. Let S be the

set of all the maximal cliques in Gc. Notice that a clique is a collection of transmissions

rji . For a maximal clique Sk ∈ S let Fk be the set of flows that are part of Sk, i.e. Fk

CHAPTER 4. MAX-MIN FAIR RATE ALLOCATION IN MULTIHOP WIRELESS
NETWORKS WITH INTERSESSION NETWORK CODING 72

Objective function

maximize λk (4.1)

Subject to
∑

{(i,j)|rji∈Sk}

tji ≤ 1− ǫ (4.2)

λk =
∑

{(i,j)|rji∈Rl
i}

Cj
i t

j
i , ∀R

l
i ∈ {Rq

p|fq ∈ Fk ∩ F
u, np ∈ Nk} (4.3)

ρl =
∑

{(i,j)|rji∈Rl
i}

Cj
i t

j
i , ∀R

l
i ∈ {Rq

p|fq ∈ Fk ∩ F
c, np ∈ Nk} (4.4)

tji ≥ 0, ∀tji , i.e.{(i, j)|rji ∈ ∪kSk} (4.5)

Figure 4.2: Linear program to identify the maximum rate all the unconstrained flows can

achieve in a maximal clique

= {fl|l ∈ j, rji ∈ Sk}. Let Nk be the set of nodes that yield the transmissions in Sk, i.e.

Nk = {ni|r
j
i ∈ Sk}.

Let Rl
i = {rji |l ∈ j} be the set of transmissions that forward packets from flow fl at node

ni. For example in figure 4.1, Ra
F = {r

{a}
F , r

{a,b}
F }. Let λk represent the fair rate allocated

according to the linear program for maximal clique Sk. Our algorithm iterates through all

the cliques, identifies the bottleneck flow that is assigned the smallest rate and fixes its

rate. Once a flow’s rate is fixed we begin the new iteration to fix the rates of the other

unconstrained flows. If a flow fl’s rate has been fixed in previous iterations, in the linear

program we represent this rate by ρl.

4.3.2.2 Constraint explanation

The objective function is straightforward. Although we want to assign all the unconstrained

flows in a clique the same rate, the objective function dictates that we want to maximize

CHAPTER 4. MAX-MIN FAIR RATE ALLOCATION IN MULTIHOP WIRELESS
NETWORKS WITH INTERSESSION NETWORK CODING 73

this rate.

Equation 4.2 is the channel access constraint. It ensures that all the transmission times

in a clique are constrained to a unit time, hence only one transmission can be scheduled at

a time in the clique. ǫ is the time lost due to channel access scheme. In reality ǫ is difficult

to measure. In our simulations we have assumed perfect scheduling, hence ǫ = 0.

The constraint presented in equation 4.3 applies to unconstrained flows in the network

and it serves several purposes. It indicates that the rate achieved by a flow fl at node ni

comprises of the rates achieved by all the transmissions that forward the packets of fl at

ni. For example, in figure 4.1 rate achieved by flow fa at node F equals the rate achieved

by transmissions r
{a}
F and r

{a,b}
F both. Hence, we will have λk = C

{a}
F t

{a}
F + C

{a,b}
F t

{a,b}
F .

For a flow fl this constraint is applied to all the nodes through which fl travels in the

current clique. Since each of these nodes is assigning fl a rate of λk, this serves as a flow

conservation constraint as well. Furthermore this constraint is applied to all the flows that

are part of the clique, which means that the channel access times will be chosen such that

all the flows in the clique will have an equal rate λk.

Constraint in equation 4.4 is applied to the constrained flows whose rates have already

been fixed, and it is similar to constraint 4.3. Constraint 4.4 determines the channel access

times of the transmissions whose flow’s rate has already been fixed to ρl. Hence this con-

straint determines what portion of the channel is already utilized. The remaining channel

access time is used by constraint 4.3 to determine fair rate λk for the unconstrained flows.

Finally, constraint in equation 4.5 states that all the channel access times should be

nonnegative.

Topology in figure 4.1 has only one clique. If we assume that all the links have unit

capacity, the linear program in figure 4.2 would yield t
{a}
A = t

{b}
B = t

{a,b}
F = 1

3 and t
{a}
F =

t
{b}
F = 0. Hence both the flows in figure 4.1 will achieve a rate of 1

3 .

CHAPTER 4. MAX-MIN FAIR RATE ALLOCATION IN MULTIHOP WIRELESS
NETWORKS WITH INTERSESSION NETWORK CODING 74

4.3.2.3 A note on constraints 4.3 and 4.4

It should be noted that constraint in equation 4.2 is applied to the transmissions that are

only part of a maximal clique Sk, since these are the transmissions that cannot be scheduled

simultaneously. However a careful observation of constraints in equations 4.3 and 4.4 will

indicate that these constraints may contain some transmissions that are not part of Sk. For

example, if figure 4.1 were a subgraph of a larger topology, it is possible that r
{a}
F may not

be part of some clique that has r
{a,b}
F as a vertex. However, these constraints have to be

applied to every flow at every node that is part of a clique. Therefore in order to maintain

feasibility in the linear program, for a given flow fl at any node ni, all the transmissions

that carry the packets of fl must be included in these two constraints. Therefore in our

example both r
{a}
F and r

{a,b}
F must be included in these constraints, even though only r

{a,b}
F

may be part of some maximal clique Sk and not r
{a}
F (i.e. λk = C

{a}
F t

{a}
F + C

{a,b}
F t

{a,b}
F).

4.3.2.4 Selecting the bottleneck flow

If a topology has multiple maximal cliques, this linear program is applied to every maximal

clique Sk in the conflict graph and the corresponding rate λk is recorded. All the flows in

Sk should be able to achieve the rate λk. Clearly the bottleneck flow will be part of the

clique that has the least value of λk.

Let’s call the maximal clique that assigns the least rate to its flows Smin, and call this

rate λmin. If there was no coding in the network, all the unconstrained flows that are part

of Smin can be assigned a rate of λmin, since it is impossible for these flows to achieve any

higher rate. However, when there is coding in the network, λmin has to be looked at as the

minimum of maximum rate flows in Smin can achieve. One can always generate scenarios

where it is possible for some flows in a clique to achieve a rate higher than λmin. We

demonstrate this by an example.

Let’s consider a subgraph of a path graph topology shown in figure 4.3. While we may

have other flows going through different parts of the network as well as through nodes A

to D, let’s only consider three unconstrained flows f1, f2 and f3. Under standard CSMA

CHAPTER 4. MAX-MIN FAIR RATE ALLOCATION IN MULTIHOP WIRELESS
NETWORKS WITH INTERSESSION NETWORK CODING 75

A B C D

f1

f2

f3

Figure 4.3: Bottleneck flow in this scenario would be either f1 or f2

model, following transmissions of flows f1, f2, f3 at nodes A,B and C will be part of a

clique Sk: r
{1}
A , r

{1}
B , r

{1}
C , r

{2}
A , r

{2}
B , r

{2}
C , r

{3}
B , r

{3}
C , r

{1,3}
A , r

{1,3}
B , r

{1,3}
C , r

{2,3}
A , r

{2,3}
B and

r
{2,3}
C .

Say during the ith iteration of the algorithm, using the linear program in figure 4.2 we

identify this clique (Sk) as the bottleneck clique with a rate λmin. We have three choices

f1, f2 and f3 for choosing the bottleneck flow. Notice that for the purpose of this clique,

f1 and f2 are identical flows. Hence if this clique is the bottleneck clique, both these flows

will end up achieving the same rate ρ1 = ρ2 = λmin. Say during the iteration number i

and i+ 1 we choose f1 and f2 as the bottleneck flows. During the next iteration when the

linear program is applied to Sk, we will have only one unconstrained flow f3 and the linear

program will calculate its rate as λk = ρ1 + ρ2. This happens because at every node in the

clique, packets from f3 can be combined with packets from f1 and f2. Hence once the rates

of f1 and f2 are fixed, f3 will be able to achieve the rate of f1 plus the rate of f2. The same

results would not follow if f3 was chosen as the bottleneck flow before f1 or f2. Since f1

and f2 cannot achieve any higher rate, in such a case all three flows will achieve a rate of

λmin.

For such a scenario to take place there must be a flow in a maximal clique that can

be combined with two or more flows at every node it travels through in the clique. Let

Nk,l ⊂ Nk be the set of nodes that make transmissions rji ∈ Sk, carrying packets of flow fl

(l ∈ j). For each ni ∈ Nk,l we count how many other flows packets from fl can be combined

with. We define coding opportunity γk,l as the minimum of these counts. For example, in

figure 4.3 flow f3 can be combined with two other flows at each node A, B and C, hence

CHAPTER 4. MAX-MIN FAIR RATE ALLOCATION IN MULTIHOP WIRELESS
NETWORKS WITH INTERSESSION NETWORK CODING 76

γk,3 = 2, while γk,1 = γk,2 = 1. When a clique Sk is identified as the bottleneck clique

in an iteration, we identify the unconstrained flow with the least value of γk,l. This flow

is chosen as the bottleneck flow. By doing so we ensure that the rates of the flows are

fixed in ascending order of their coding opportunities. Hence the flow with a higher coding

opportunity can achieve a higher rate by leveraging the fixed rates of the constrained flows.

Therefore, in figure 4.3 flows f1 and f2 will be chosen as the bottleneck flows before f3.

4.3.3 Update F
u and F

c

We use the linear program in figure 4.2 to identify the bottleneck clique Smin and corre-

sponding rate λmin. Using the variable γk,l we identify the flow fl in Smin that is the bottle-

neck flow. We fix the rate of this flow ρl = λmin. For the future iterations of our algorithm,

this flow is considered a constrained flow. Hence we update F
u and F

c as F
u = F

u − {fl}

and F
c = F

c ∪ {fl}.

Algorithm 1 provides pseudo code for our algorithm to assign max-min fair rates to the

flows in a wireless network with network coding.

4.3.4 Algorithm Complexity

Our algorithm to assign max-min fair rates runs in polynomial time. From algorithm 1 we

can deduce that its complexity is O (|F| (|S|O(LP) + |F|)). Here |F| is the total number

of flows in the network. |S| is the number of maximal cliques in the conflict graph of the

network. O(LP) is the complexity to solve a linear program. O(LP) is generally a function

of the variables it contains. As figure 4.2 shows, the only variables in our linear programs

are transmission times tji and λk. It has been shown that such a simple linear program

can be solved in polynomial time, yielding the complexity of our fairness algorithm to be

polynomial time as well.

CHAPTER 4. MAX-MIN FAIR RATE ALLOCATION IN MULTIHOP WIRELESS
NETWORKS WITH INTERSESSION NETWORK CODING 77

Algorithm 1 Algorithm to assign max-min fair rates to flows in a wireless network with

coding. Procedure “calculate-rate” calculates rate λk for a maximal clique Sk according to

linear program in figure 4.2.
1: Fu ← F

2: Fc ← ∅
3: while |Fu| do
4: bc← 0 ⊲ Holds index of bottleneck clique

5: λmin ←∞
6: for k = 1 to |S| do
7: if Fk ∩ Fc 6= ∅ then
8: λk ← calculate-rate(Sk)

9: if λk < λmin then

10: bc← k

11: λmin ← λk

12: end if

13: end if

14: end for

15: bf ← 0 ⊲ Holds index of bottleneck flow

16: γmin ←∞ ⊲ Holds minimum γbc,l

17: for all fl ∈ Fbc ∩ Fu do

18: if γbc,l < γmin then

19: bf ← l

20: γmin = γbc,l

21: end if

22: end for

23: ρbf ← λmin

24: Fu ← Fu − {fbf}
25: Fc ← Fc ∪ {fbf}
26: end while

27: return ρ

CHAPTER 4. MAX-MIN FAIR RATE ALLOCATION IN MULTIHOP WIRELESS
NETWORKS WITH INTERSESSION NETWORK CODING 78

4.3.5 Max-min Fair Rate Allocation: Results

In this section we apply our rate allocation algorithm to a few flow configurations in different

topologies.

We compare rates assigned using our algorithm with the rate control algorithm presented

in [Seferoglu et al., 2009] and [Seferoglu and Markopoulou, 2009]. This algorithm extends

the work of Kelly et al. [Kelly et al., 1998] for the flows in a wireless network with coding.

Their rate control algorithm is represented by a linear program. Here, the objective is to

assign flows rates that maximize a concave utility function, subject to channel access and

flow conservation constraints. For more details we refer the reader to [Seferoglu et al., 2009]

and [Seferoglu and Markopoulou, 2009]. In our simulations we have chosen summation of

logarithms of the flow rates as the concave utility function, which is a standard choice for

such an objective function. Notice that this type of an objective function generally yields

proportionally fair rates. We compare our scheme with this algorithm, since to the best of

our knowledge this is the only existing rate control algorithm for flows in a wireless network

with coding. We use fmincon function from Matlab [MATLAB, 2010], which uses interior

point method to solve the optimization problem. All the variables are initialized to 10−8.

For both the schemes, we have assumed perfect scheduling (i.e. ǫ = 0 in equation 4.2).

Finally, for this part of the results we assume that each edge connecting two nodes have

unit capacity.

Figure 4.4 shows a network where twenty nodes are scattered uniformly in a 1000 ×

1000m2 area. We have inserted four flows in the network. Figure 4.5 shows the rates

of these flows assigned using two different algorithms. The rates with label ‘Max-Util’

are assigned using the rate control algorithm of [Seferoglu et al., 2009] and [Seferoglu and

Markopoulou, 2009]. While the rates with label ‘Max-Min’ are the rates allocated using our

algorithm.

Flows f1 and f2 travel longer distances. Moreover they do not have much coding op-

portunities. Since these two flows use more network resources, as figure 4.5 indicates,

proportional fairness assigns these two flows lesser rates compared to f3 and f4. However,

CHAPTER 4. MAX-MIN FAIR RATE ALLOCATION IN MULTIHOP WIRELESS
NETWORKS WITH INTERSESSION NETWORK CODING 79

when we create a conflict graph of this network, we realize that there exists a maximal clique

which contains the transmissions belonging to all four flows. Instead of giving more rates

to f3 and f4, our algorithm will try to be fair to all four flows. It identifies the bottleneck

clique, and allocates some of the channel capacity from f3 and f4 to f1 and f2. As the

figure indicates our rate allocation is fairer, since all four flows end up achieving the same

rates.

f1

f2

f3

f4

Figure 4.4: Twenty nodes scattered randomly in a 1000× 1000m2 area

Figure 4.6 gives an example of a structured topology, where we have inserted six flows

in the network. Figure 4.7 shows the rates allocated to these flows. Once again, rate

assignment by maximizing a utility function is quite unfair to some of the flows. Flows f5

and f6 end up achieving quite a high rate, while the rates of the flows f1 and f2 is completely

suffocated. On the other hand, as the figure indicates, rates assigned using our algorithm

are much fairer.

Figure 4.8 is an example of a network with heavy traffic. Flows in this network have

CHAPTER 4. MAX-MIN FAIR RATE ALLOCATION IN MULTIHOP WIRELESS
NETWORKS WITH INTERSESSION NETWORK CODING 80

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 1 2 3 4

R
at

e
(p

ac
ke

ts
 /

un
it

tim
e)

Flow ID

Rate Allocation

Max-Util
Max-Min

Figure 4.5: Rates assigned to the flows in figure 4.4

f1

f2

f3

f4

f5

f6

Figure 4.6: Nodes in a structured topology

CHAPTER 4. MAX-MIN FAIR RATE ALLOCATION IN MULTIHOP WIRELESS
NETWORKS WITH INTERSESSION NETWORK CODING 81

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 1 2 3 4 5 6

R
at

e
(p

ac
ke

ts
 /

un
it

tim
e)

Flow ID

Rate Allocation

Max-Util
Max-Min

Figure 4.7: Rates assigned to the flows in figure 4.6

several coding opportunities. This network is also an example of the scenario where if

one overlooks the caveats presented in sections 4.3.2.3 and 4.3.2.4, the algorithm may give

suboptimal results or the linear program of figure 4.2 may yield incorrect results. When

a fairness mechanism tries to maximize a utility function, some flows (f5 in this example)

may end up getting significantly lower rates. Our scheme tries to maximize the minimum

rate a flow is getting. Hence the rate of a flow such as f5 is improved significantly, by taking

away the channel capacity from the other flows.

When we run our algorithm on this network, during the first iteration we identify a

bottleneck clique that has transmissions from flows f1, f2, f3, f4 and f5. Since the coding

opportunity γ is zero for all five flows in this clique, they all end up achieving the same

rate. As mentioned in section 4.3.2.4, if coding opportunity γ ≥ 2 for a flow, it may end

up achieving a higher rate. During subsequent iterations we do identify a bottleneck clique

for which coding opportunity γ = 2 for flow f6, hence it ends up achieving a higher rate.

Flow f7 achieves a higher rate as well since it conflicts with fewer flows, and it has a higher

CHAPTER 4. MAX-MIN FAIR RATE ALLOCATION IN MULTIHOP WIRELESS
NETWORKS WITH INTERSESSION NETWORK CODING 82

channel capacity available since f6 is using up less channel capacity by combining its packets

with f1 and f5.

n1 n2

n3

n4

n5 n6 n7 n8 n9 n10 n11

n12

n13

f1

f2
f3

f4 f5

f6
f7

Figure 4.8: A network with dense flows

So far all the edges in the networks had a unit capacity. We modify the capacities

of some of the links in figure 4.8 to create a network with heterogeneous capacities. In

the new configuration, capacity of edges (n2, n5), (n7, n8), (n8, n9), (n9, n12) and (n9, n13)

are changed to 2, while the remaining edges still have unit capacities. Figure 4.10 shows

the rates assigned to various flows using two algorithms. As the figure indicates, the rates

assigned using our algorithm are more fair.

We also compare the fairness of these rates using fairness indices. One of the popular

fairness index is Jain’s index [Jain et al., 1984]. For a rate vector ρ = (ρ1, ρ2, . . . , ρn), Jain’s

index is defined in equation 4.6.

J (ρ) =
(
∑

i ρi)
2

n
∑

i ρi
2

(4.6)

Under the best case scenario Jain’s index would be 1, when all the flows are assigned

the equal rate. Under the worst case scenario, it will be 1
n
, when only one flow is assigned

a rate, and the rest of the flows are assigned a rate of zero. Closer the index to 1, more

fair the rate allocation. Note that it makes sense to use Jain’s index only after the channel

capacity is completely utilized. Otherwise one may assign the same low rates to all the flows

in the network without completely using the channel and still have Jain’s index as 1. The

CHAPTER 4. MAX-MIN FAIR RATE ALLOCATION IN MULTIHOP WIRELESS
NETWORKS WITH INTERSESSION NETWORK CODING 83

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 1 2 3 4 5 6 7

R
at

e
(p

ac
ke

ts
 /

un
it

tim
e)

Flow ID

Rate Allocation

Max-Util
Max-Min

Figure 4.9: Rates assigned to the flows in figure 4.8

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 1 2 3 4 5 6 7

R
at

e
(p

ac
ke

ts
 /

un
it

tim
e)

Flow ID

Rate Allocation

Max-Util
Max-Min

Figure 4.10: Rates assigned to the flows in figure 4.8, with the heterogeneous capacities

CHAPTER 4. MAX-MIN FAIR RATE ALLOCATION IN MULTIHOP WIRELESS
NETWORKS WITH INTERSESSION NETWORK CODING 84

Jain’s Index Max/Min

Network Max-Util Max-Min Max-Util Max-Min

Figure 4.4 0.98001 1.0 1.3328 1.0

Figure 4.6 0.7031 0.9608 12.0515 1.4997

Figure 4.8 0.8167 0.9174 6.4036 2.0

Unit capacities

Figure 4.8 0.7645 0.8401 4.9068 2.3326

Heterogeneous capacities

Table 4.1: Comparison of rate fairness using fairness indices

second index we try is the ratio of maximum and minimum flow rates: Max(ρ)/Min(ρ).

This index is quite intuitive. Closer the ratio to one, fairer the rate allocation. Table 4.1

compares these two indices for the two rate allocation schemes. As the results indicate,

according to both the indices, our scheme offers a more fair rate assignment.

While proportional fairness attempts to allocate fair rates based on the network re-

sources, max-min fairness ensures that the flows that end up using more of a network

resource (such as channel capacity) do not suffer in throughput. Since a relatively higher

rate is assigned to the flows that consume more resources, max-min fairness generally re-

sults in a lower aggregate throughput for the network. Table 4.2 compares the aggregate

throughput of a network when two different fairness criterion are used.

Network Max-Util Max-Min

Figure 4.4 0.5832 0.5716

Figure 4.6 1.5562 1.1668

Figure 4.8: Unit capacities 0.9888 0.9444

Figure 4.8: Heterogeneous capacities 1.1948 1.2084

Table 4.2: Comparison of aggregate network throughput

CHAPTER 4. MAX-MIN FAIR RATE ALLOCATION IN MULTIHOP WIRELESS
NETWORKS WITH INTERSESSION NETWORK CODING 85

4.4 Scheduling algorithm from a global perspective

In this section we present our scheduling algorithm which helps flows achieve rates that are

assigned using the fair rate allocation algorithm in section 4.3.

For a small enough network whose conflict graph has only one clique, rate allocation

and scheduling algorithms both can be represented by the linear program shown in figure

4.2. Once the optimization problem is solved, we can obtain values for transmission times

tji . A node ni can transmit packets from flow fl for t
j
i (l ∈ j) amount of time.

However, when we have multiple maximal cliques in the network, we cannot always use

the transmission times assigned using the same linear program. The objective of the linear

program in figure 4.2 is to identify the maximum rate λk that all the unconstrained flows

in a bottleneck clique Sk can achieve. There may be multiple transmission time allocations

that can achieve this rate. For example consider channel access times tji and tj
′

i′ that are

allocated to two different transmissions. Say the bottleneck flow in Sk will achieve a rate

λk irrespective of whether tji = τhi, tj
′

i′ = τ lo or tji = τ lo, tj
′

i′ = τhi, where τhi > τ lo. Say

transmission rj
′

i′ is part of some other clique Sk′ as well, i.e. r
j′

i′ ∈ Sk∩Sk′ , while r
j
i /∈ Sk∩Sk′ .

Say the optimizer chooses to fix the transmission times to tji = τ lo and tj
′

i′ = τhi. In this

case during the subsequent iteration, when the linear program is run on Sk′ , unconstrained

flows in this clique will have less channel access time available to them, hence these flows

may end up achieving suboptimal rates. Therefore, when we have multiple maximal cliques

in the conflict graph, we are better off running a scheduling algorithm only after we have

fixed the rates of all the flows using the algorithm in section 4.3.

Definitions of all the variables in the linear program of figure 4.11 are identical to the

variables in figure 4.2.

Equation 4.8 is the channel access constraint. It constrains the transmission times in

a maximal clique to a unit time, hence only one transmission can be scheduled at a time.

This constraint is applied to all the maximal cliques in the conflict graph. Equations 4.9

indicates that for a node ni, rates achieved by all the transmissions that forward packets

of a flow fl should add up to the rate assigned to fl. Finally, constraint 4.10 forces all the

CHAPTER 4. MAX-MIN FAIR RATE ALLOCATION IN MULTIHOP WIRELESS
NETWORKS WITH INTERSESSION NETWORK CODING 86

Objective function

minimize
∑

{(i,j)|rji∈
⋃

k Sk}

tji (4.7)

Subject to
∑

{(i,j)|rji∈Sk}

tji ≤ 1− ǫ, ∀Sk ∈ S (4.8)

ρl =
∑

{j|l∈j}
Cj
i t

j
i , ∀ni ∈ V, ∀, fl ∈ F (4.9)

tji ≥ 0, ∀tji , i.e.{(i, j)|rji ∈ ∪kSk} (4.10)

Figure 4.11: Linear program to identify the maximum rate all the unconstrained flows can

achieve in a maximal clique

transmission times to be nonnegative.

Note that the objective function of equation 4.7 says that we want to minimize the total

transmission time in the network. However, this objective function isn’t necessary. Any

allocation of transmission times that meets the constraints 4.8, 4.9 and 4.10 can sustain the

rates assigned using our fair rate allocation algorithm.

Once we have determined the rates for the flows in a network, we can run this linear

program to assign channel access times to each transmission. Note that unlike algorithm

1, we have to run this linear program only once. We do not have to run multiple iterations

of it. After figuring out the channel access times, one can run a graph coloring algorithm

[Gross and Yellen, 2005] on the conflict graph. The nodes in the network can take turns as

suggested by the colors and forward packets for the alloted time.

4.5 Distributed algorithms

After having presented centralized fair rate allocation and scheduling algorithms, in this

section we present distributed versions of these mechanisms.

CHAPTER 4. MAX-MIN FAIR RATE ALLOCATION IN MULTIHOP WIRELESS
NETWORKS WITH INTERSESSION NETWORK CODING 87

4.5.1 Distributed fair rate allocation algorithm

The objective in this subsection is to assign the same rates to the flows as shown in section

4.3, however in a decentralized fashion.

Our centralized rate allocation algorithm depends on the maximal cliques in the conflict

graph of the network. In a CSMA based channel access scheme only the transmissions that

are at most two hops away can conflict with each other. Therefore, if a node can exchange

information with its neighbors that are at most two hops away, it can identify a subset

of maximal cliques that are part of the global conflict graph. [Huang and Bensaou, 2001]

provides an algorithm to achieve that, hence to avoid redundancy we won’t repeat such an

algorithm here. When each node in the network runs this algorithm, each maximal clique

in the conflict graph will be identified by at least one node in the network.

Once the network nodes identify what maximal cliques their transmissions are part of,

they can run algorithm 1 to determine the rates of the flows that are part of the cliques they

have identified. After that a node can communicate the rates it calculates with relevant

nodes in the network. However, two key questions are (a) When we are running a distributed

algorithm, how do we determine which flows’ rates have been fixed (constrained) and which

flows are still unconstrained? (b) Different nodes may calculate different rates for the same

flow, how do they agree on a rate for a flow?

To address both these questions we devise a novel yet simple mechanism. Each node

contains a map indicating the flows that are part of its locally identified maximal cliques

and the rates assigned to them. Note that a flow may not travel through a node, but it can

still be part of the maximal clique that the node identifies. Moreover, a node may identify

multiple maximal cliques that are part of the global conflict graph. Initially each flow is

assigned a rate zero. In this mechanism the source of each flow sends a control packet to

the flow’s destination, and receives the packet back from it. The control packet contains

following fields (flow, currentRate, minRate, complete, direction). flow is a tuple containing

the source and destination of the flow. currentRate indicates the flow’s currently assigned

rate, initially it is set to zero. Initial values for minRate, complete and direction are ∞,

CHAPTER 4. MAX-MIN FAIR RATE ALLOCATION IN MULTIHOP WIRELESS
NETWORKS WITH INTERSESSION NETWORK CODING 88

True and “toDst” respectively. All the information contained in a control packet may also

be embedded in the data packets, but for the sake of simplicity, we stick to control packets

while describing this scheme. While the packet is travelling towards the destination, it asks

each node in its path (including the source) to run algorithm 1 on its local snapshot of the

global conflict graph. While running this algorithm, the node treats each flow in its map

whose rate is less than currentRate as constrained flow. The flows that have rates greater

than or equal currentRate are considered unconstrained flows. By doing so each control

packet is trying to see if its flow can achieve a rate higher than its currently assigned rate.

After running algorithm 1 the node informs the control packet what rate it (or its maximal

cliques) is willing to allocate to its flow. If this newly computed rate is less than minRate,

the minRate is updated to the new value. Therefore, when the control packet reaches flow’s

destination, it knows what minimum rate (minRate) different nodes (maximal cliques) are

willing to allocate to its flow. The destination node sets direction to “toSrc”, and forwards

the packet back towards the source of the flow. On its way back towards the source, the

control packet asks each node on its path to update its map and set the new flow rate

to minRate. The node not only updates its local map, but it also informs its two hop

neighboring nodes to update their maps to minRate. Once the control packet returns to

the flow’s source, currentRate is assigned the value of minRate and minRate is set to ∞

again. This process is repeated until the convergence is achieved.

It is easy to show that this process converges to the same rates as assigned by the

centralized algorithm. Say all the flows in the network are unconstrained, and the source

of each flow sends a control packet to the flow’s destination and receives it back. Let’s

consider what happens to the flow that gets the least rate after every control packet has

come back to its source for the first time. Since all the flows were unconstrained, this control

packet must have gone through the clique that gets identified during the first iteration of

the centralized algorithm as the bottleneck clique. Hence the flow will get the same rate as

the flow that was constrained after the first iteration of the centralized algorithm. Without

loss of generality let’s call this flow f1, its rate ρ1. The source of this flow may not know

CHAPTER 4. MAX-MIN FAIR RATE ALLOCATION IN MULTIHOP WIRELESS
NETWORKS WITH INTERSESSION NETWORK CODING 89

that its flow has achieved the minimum rate. When the sources send out control packets

again towards the destinations, there are two scenarios that will take place.

1. f1’s control packet goes through the same nodes (maximal cliques): Since

every other flow has been allocated a rate higher than f1, when f1’s control packet

reaches a node, the node considers all other flows as unconstrained flows. However,

f1 achieved its current rate only after considering all the flows in the network as

unconstrained flows. Therefore, when the control packet comes back to its source, f1

still will be assigned a rate that it originally had.

2. Some other flow’s control packet goes through some of the nodes (maximal

cliques) that f1 has gone through: During its journey back towards its source,

f1’s control packet asks all the nodes on its path to update its rate to ρ1. Hence some

of the maximal cliques on its path other than the bottleneck clique will have some

additional capacity that can be allocated towards the flows other than f1. (a) If the

flow goes through f1’s bottleneck clique as well, it may get the same rate as f1. In this

case this flow could have been chosen as the bottleneck flow as well, and in this regard

it is no different than f1. Hence it will also keep getting the same rate as f1 during

subsequent message passing. (b) Now consider a flow that goes through some of the

maximal cliques of f1, but not through its bottleneck clique. Since f1 had the least

rate, when some other flow asks a node to recalculate the fair rates, it will consider

f1 as a constrained flow. After updating f1’s rate to ρ1, the cliques other than the

bottleneck clique will have some additional capacity that was previously assigned to

f1. But now this capacity will be allocated to the remaining flows, and hence such

a flow will always get a rate higher than f1. Hence f1 will always be considered a

constrained flow. Therefore essentially its rate is fixed and the problem reduces to

settling the rates for the remaining flows.

During subsequent iterations of the message passing, the flow with the second least rate will

ask its nodes to consider all the flows other than f1 as unconstrained flow, and the process

CHAPTER 4. MAX-MIN FAIR RATE ALLOCATION IN MULTIHOP WIRELESS
NETWORKS WITH INTERSESSION NETWORK CODING 90

will continue until all the flows have been assigned a fixed rate.

Once a node realizes that all of the flows in its locally identified maximal cliques are

requesting to update to the same rates, it sets complete flag in a control packet to True,

otherwise the complete will be set to False. When all the nodes have set the complete flag

to True, upon reception of such a control packet the source will realize that all the flows

have converged to their fair rates, and it will stop sending more control packets.

Algorithm 2 describes the procedure a node follows upon receiving a packet pkt. In this

algorithm, functions sendPacketTowardsDestination and sendPacketTowardsSource forward

the control packet towards the destination and the source of the flow respectively. After

updating the rates map to minRate a node uses updateTwoHopNeighbors function to inform

its two hop neighbors to update their rates maps. checkForConvergence is a function that

checks if all the flows in a node’s locally identified cliques have started to request the same

rates. One way to implement this function is to, keep track of all the control packets that

are travelling towards the source, as well as neighbors’ update requests (updateTwoHop-

Neighbors). When all the update requests and control packets have requested the same

rates at least twice, checkForConvergence would return True, otherwise, it would return

False.

Note that ideally every time all the sources in the network send control packets to the

destination and receive it back, at least one flow must get its rate fixed. Maximum distance

a control packet has to travel is 2D where D is the diameter of the network (diameter is

defined as the maximum distance between two vertices in a graph [Gross and Yellen, 2005]).

Say U is the maximum number of packets a node has to forward to update the rate maps of

its two hop neighbors. In that case we can conclude that the network may have to transmit

O(|F|DU) packets until the distributed rate allocation algorithm converges. In reality it is

difficult to determine the worst case number of packets that are transmitted in the network

to determine the fair rates. Since the packets are transmitted in asynchronous manner, it is

not necessarily true that when one source receives its control packet back, all other sources

will have received their control packets back as well.

CHAPTER 4. MAX-MIN FAIR RATE ALLOCATION IN MULTIHOP WIRELESS
NETWORKS WITH INTERSESSION NETWORK CODING 91

Algorithm 2 Algorithm a node follows upon receiving a control packet
1: if pkt.direction = “toDst” then

2: newRatesMap = ratesMap

3: for flow ∈ newRatesMap do

4: if newRatesMap[flow] ≥ pkt.currentRate then

5: newRatesMap[flow] = “unconstrained”

6: end if

7: end for

8: rates = Algorithm-1(newRatesMap)

9: if rates[pkt.flow] < pkt.minRate then

10: pkt.minRate = rates[pkt.flow]

11: end if

12: sendPacketTowardsDestination(pkt)

13: end if

14: if node = pkt.flow.destination then

15: pkt.direction = “toSrc”

16: end if

17: if pkt.direction = “toSrc” then

18: if ratesMap[pkt.flow] 6= pkt.minRate then

19: ratesMap[pkt.flow] = pkt.minRate

20: updateTwoHopNeighbors(pkt)

21: end if

22: flag = checkForConvergence()

23: pkt.complete = pkt.complete and flag

24: sendPacketTowardsSource(pkt)

25: end if

26: if node = pkt.flow.source then

27: if pkt.complete then

28: terminateProcess()

29: else

30: pkt.direction = “toDst”

31: pkt.currentRate = pkt.minRate

32: pkt.minRate = ∞

33: pkt.complete = True

34: end if

35: newRatesMap = ratesMap

36: rates = Algorithm-1(newRatesMap)

37: if rates[pkt.flow] < pkt.minRate then

38: pkt.minRate = rates[pkt.flow]

39: end if

40: sendPacketTowardsDestination(pkt)

41: end if

CHAPTER 4. MAX-MIN FAIR RATE ALLOCATION IN MULTIHOP WIRELESS
NETWORKS WITH INTERSESSION NETWORK CODING 92

Figure 4.12 shows the fraction of flows that are converged to their max-min rates vs.

number of control messages transmitted in the network. As the figure indicates it takes

only 44 control messages for all four flows in network 4.4 to converge to their max-min

fair rates. Flows in figure 4.6 take 69 control messages to converge to their fair rates. It

takes 160 messages for the flows in figure 4.8 to converge to their fair rates. Network 4.8

is much smaller in size compared to the networks in figures 4.4 and 4.6. However, this

network transmits significantly more number of control messages to achieve max-min fair

rates. This happens because it has more number of flows and they travel longer distances.

This verifies that the number of messages transmitted in the network are a function of total

number of flows in the network and how many hops they travel. It should also be noted

that the number of control messages transmitted are also a function of how many flows

travel through a bottleneck clique. For example, if all the flows in a network pass through a

clique, this clique may serve as a bottleneck clique and the control messages have to travel

to the destination and come back only once.

0 20 40 60 80 100 120 140 160
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of control messages transmitted in the network

F
ra

ct
io

n
of

 fl
ow

s
co

nv
er

ge
d

to
 th

ei
r

m
ax

−
m

in
 fa

ir
ra

te
s

Random Topology (4 flows)
Hexagonal Grid Topolog (6 flows)
High Density Flows Topology (7 flows)

Figure 4.12: Fraction of flows converged to their max-min fair rates vs. Number of control

messages transmitted

CHAPTER 4. MAX-MIN FAIR RATE ALLOCATION IN MULTIHOP WIRELESS
NETWORKS WITH INTERSESSION NETWORK CODING 93

4.5.2 Distributed scheduling algorithm

Our distributed scheduling algorithm is similar to the one presented in [Akyol et al., 2008],

[Gupta and Stolyar, 2006], [Gupta et al., 2005], [Huang and Bensaou, 2001] and [Nandagopal

et al., 2000]. This scheme operates on a random channel access mechanism such as CSMA.

Therefore we can implement our scheduling scheme on widely used 802.11 standard without

adding an additional layer of protocol.

In 802.11 before transmitting a new packet a node waits for a random period of time.

This random waiting period is chosen uniformly from (0, 2CW − 1). Every time a node

senses that the channel is busy or if its packet experiences collision, the value of CW is

incremented by one, until it reaches some value CWmax. After a successful transmission

CW reduces back to CWmin. Commonly accepted values for CWmin and CWmax are 5 and

10 respectively. After agreeing upon the rates for the flows in a network, nodes can calculate

the cumulative rate at which they are supposed to forward the messages. For example if

a node ni is supposed to forward packets from the flows f1, . . . , fk with rates ρ1, . . . , ρk,

its cumulative rate would be ξi =
∑k

j=1 ρj . The idea here is to keep track of neighbor’s

cumulative rates, and adjust the contention window based on what rate the neighbors

have achieved. If a node has transmitted more packets than its neighbors with respect to

their cumulative rates, it chooses a higher contention window and waits for a longer period

before transmitting a new packet. On the other hand, if a node has forwarded less number

of packets (after normalizing with cumulative rates) compared to all its neighbors, a smaller

contention window is chosen, giving the node a higher priority in sending its packets.

Once the convergence for the rate allocation is achieved, a node keeps track of the rate

at which its neighbors are transmitting data packets. To achieve this a node keeps track

of how many data packets as well as acknowledgements its neighbors are transmitting. By

doing so a node is able to determine the rate with which some of its two hops neighbors

are transmitting packets. Note that a node may not be able to hear packets from all

the relevant flows from its two hop neighbors. In this case it has to estimate a node’s

total packet transmission from the flows it is able to observe. For example consider the

CHAPTER 4. MAX-MIN FAIR RATE ALLOCATION IN MULTIHOP WIRELESS
NETWORKS WITH INTERSESSION NETWORK CODING 94

scenario presented in figure 4.13. Note that f1 conflicts with the packets from f2 and f3

both. Upon reception of an f2 packet whenever n2 sends an acknowledgement back to n3,

n1 can estimate the rate achieved by f2. However, n1 has no way of knowing what rate

f3 is achieving. Let’s denote the number of packets from flow fl transmitted by a node

ni as xli. If n1 observes that n3 has forwarded x23 packets of f2, it can estimate that n3

may have forwarded x33 = x23
ρ3
ρ2

packets of the flow f3. Let χi denote the total packets

successfully forwarded by a node ni. From this information node n1 can estimate the total

packets transmitted by n3 as χ3 = x23 + x33. In general if a node can only partially observe

the packets from a two hop neighbor, it can calculate the unobserved packets as follows:

total unobserved packets = (total observed packets) × total rate of unobserved flows
total rate of observed flows . Note that

if a node ni forwards k packets in a single transmission it adds k to the tally of χi not 1. It

should also be noted that a node ni does not have to exchange additional information with

its neighbors to convey flow rates or ξi. During the distributed rate allocation algorithm a

node requests its two hop neighbors to update their flow rate maps, every time a control

packet requests a new rate. ξj for a neighbor nj can be calculated using these updates.

n1 n2 n3 n4

f1 f2 f3

Figure 4.13: An example of calculating total number of successful transmissions

4.5.2.1 Contention Window Adjustment

Once a node ni has calculated the number of packets χj its neighbor nj has forwarded,

it standardizes χj with respect to cumulative rates to obtain weights wj =
χj

ξj
. A node

ni compares its weight wi with the neighbors’ weights. Contention window of a node ni

is adjusted by comparing its weight wi with its neighbors’ weights. Scheduling schemes

of [Akyol et al., 2008], [Huang and Bensaou, 2001] also calculate some form of weights in

their mechanism. If a node does not have the smallest weight among all its neighbors,

CHAPTER 4. MAX-MIN FAIR RATE ALLOCATION IN MULTIHOP WIRELESS
NETWORKS WITH INTERSESSION NETWORK CODING 95

it chooses a contention window higher than CWmin before transmitting a new packet.

Otherwise, the contention window is chosen to be CWmin. These schemes use RTS/CTS to

estimate the number of packets a node’s neighbors are transmitting. Unfortunately, in their

implementation of the coding scheme COPE, [Katti et al., 2006] does not have RTS/CTS

enabled. Therefore, we have to rely on the data packets and acknowledgements to count

a neighbor’s successful transmissions. Consider the scenario presented in figure 4.14. This

scenario is similar to figure 4.13, except there is no flow f2. In the absence of RTS/CTS,

if we only observe data packets and acknowledgements n3 can estimate how many packets

n1 is forwarding by observing the acknowledgements from n2. However, n1 has no way of

knowing how many packets n3 is forwarding. Therefore if we were to follow the schemes

in [Akyol et al., 2008], [Huang and Bensaou, 2001], in this case only n3 will adjust its

contention window to a higher value. n1 will never have to adjust its contention window,

resulting in a higher throughput for f1. To avoid such a scenario wherever a node identifies

that it has the smallest weight wi, it chooses a smaller contention window than CWmin.

Therefore in our scheme, before transmitting a new packet, a node adjusts it CW according

to the following rules.

• CW = CWmin+2 if a node ni does not have the smallest weight among its neighbors

(CW = 7 in our experiments).

• CW = CWmin− 2 if a node ni has the smallest weight among its neighbors (CW = 3

in our experiments).

• CW = CWmin if a node ni does not know the weight of its neighbors (for example

node n1 in figure 4.14).

Whenever a node gets access to the channel it has to determine which flow’s packet it

should transmit. In order to decide this a node ni once again calculates the weight for the

flow fl as w
l
i =

xl
i

ρl
The node ni decides on the packet from the flow fl that has the smallest

CHAPTER 4. MAX-MIN FAIR RATE ALLOCATION IN MULTIHOP WIRELESS
NETWORKS WITH INTERSESSION NETWORK CODING 96

n1 n2 n3 n4

f1 f3

Figure 4.14: A case for using a smaller contention window

weight wl
i. It looks for the other packets in its queue that can be combined with this packet

and transmits the combination.

4.5.2.2 Performance of the distributed scheduling algorithm

As mentioned earlier our distributed fair rate allocation algorithm achieves the same rate

as the centralized algorithm. In this section we check the performance of our distributed

scheduling mechanism on our custom built discrete event simulator that allows network

nodes to combine packets. The simulator implements 802.11 with RTS/CTS disabled and

slot length = 9µSec. Each link between two nodes in the network has the same capacity,

according to which each packet is 0.0001 seconds long. It is assumed that each flow always

has a packet to transmit. The simulation is run for 110 seconds, and the rate of the

flows is measured by calculating the number of packets that leave the network in last 100

seconds. Each node in the network is assigned a buffer length of 100 packets. The buffer is

divided into several virtual buffers, where each virtual buffer stores a packet belonging to

a particular flow that the node transmits. If the virtual buffer for a flow is full, the node

drops its packets. The size of the virtual buffers are proportional to the rate of the flows

the node is transmitting.

We run our distributed rate allocation algorithm on the networks shown in figures 4.4,

4.6 and 4.8. Once the algorithm converges, we observe what rates the network flows are

able to achieve using our distributed scheduling scheme. Generally it is difficult to calculate

the channel access time lost due to the MAC scheme. This time is represented by ǫ in the

linear program of figure 4.2. In our simulation we assume that ǫ = 0. Since each link in the

network has the same capacity (1 packet per 0.0001 seconds), distributed rate allocation

CHAPTER 4. MAX-MIN FAIR RATE ALLOCATION IN MULTIHOP WIRELESS
NETWORKS WITH INTERSESSION NETWORK CODING 97

algorithm assigns rates assuming each link has a unit capacity. This in turn achieves the

same results as shown in figures 4.5, 4.7 and 4.9 respectively. The rates assigned using our

scheduling algorithm should be proportional to the rates presented in figures 4.5, 4.7 and

4.9.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 1 2 3 4

R
at

e
(p

ac
ke

ts
 /

un
it

tim
e)

Flow ID

Rates Achieved using Distributed Scheduling Mechanism

Rates achieved using the scheduling scheme

Figure 4.15: Flow rates achieved using distributed scheduling scheme for the network shown

in figure 4.4

Figure 4.15 shows the flow rates achieved using distributed scheduling scheme for the

network shown in figure 4.4. By comparing figures 4.5 and 4.15, it is easy to observe that

after having compensated for a different channel capacity and the lost channel access time,

distributed scheduling mechanism achieves the same rates as calculated according to our

fair rate allocation algorithm. To further assess the accuracy of our scheduling mechanism

we devise the following scheme. For each flow in the network, we calculate what fraction

of total network throughput is contributed by a flow using two methods: (1) fair rate

allocation of algorithm 1 (2) distributed scheduling scheme. For each flow we calculate the

relative difference between these two values, and report the error. For example according

to figure 4.5, all the flows in network 4.4 are assigned a max-min fair rate 1
7 . Hence flow

CHAPTER 4. MAX-MIN FAIR RATE ALLOCATION IN MULTIHOP WIRELESS
NETWORKS WITH INTERSESSION NETWORK CODING 98

f1 contributes 25% to the total throughput. Now, according to figure 4.15 distributed

scheduling scheme achieves rates of 165.72, 165.73, 165.72 and 165.72 packets/second for

flows f1, . . . , f4 respectively. Hence using this scheduling scheme f1 contributes 24.9996% to

the overall network throughput. In other words, the scheduling scheme makes 24.9996−25
25 ×

100 = −0.0015% error in assigning f1 its max-min fair rate. Figure 4.16 shows error in

assigning max-min fair rates for all four flows in the network shown in figure 4.4. The fact

that these errors are close to zero, demonstrate the accuracy of the distributed scheduling

mechanism.

-0.002

-0.001

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 1 2 3 4

E
rr

or
 (

%
)

Flow ID

Error in achieving max-min fair rates

Error in rates achieved using the scheduling scheme

Figure 4.16: Error made by scheduling scheme in assigning max-min fair rates for the flows

in figure 4.4

Figure 4.17 shows the rates achieved by the flows in network 4.6 using this scheduling

scheme. Figure 4.18 shows the error in achieving the true max-min rates for the same flows.

Figure 4.19 shows the rates achieved by the flows in network 4.8 using this scheduling

scheme. Figure 4.20 shows the error in achieving the true max-min rates for the same flows.

For all three scenarios, small errors in achieving the true max-min fair rates indicate the

accuracy of the scheduling scheme.

CHAPTER 4. MAX-MIN FAIR RATE ALLOCATION IN MULTIHOP WIRELESS
NETWORKS WITH INTERSESSION NETWORK CODING 99

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 1 2 3 4 5 6

R
at

e
(p

ac
ke

ts
 /

un
it

tim
e)

Flow ID

Rates Achieved using Distributed Scheduling Mechanism

Rates achieved using the scheduling scheme

Figure 4.17: Flow rates achieved using distributed scheduling scheme for the network shown

in figure 4.6

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1 2 3 4 5 6

E
rr

or
 (

%
)

Flow ID

Error in achieving max-min fair rates

Rates achieved using the scheduling scheme

Figure 4.18: Error made by scheduling scheme in assigning max-min fair rates for the flows

in figure 4.6

CHAPTER 4. MAX-MIN FAIR RATE ALLOCATION IN MULTIHOP WIRELESS
NETWORKS WITH INTERSESSION NETWORK CODING 100

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 1 2 3 4 5 6 7

R
at

e
(p

ac
ke

ts
 /

un
it

tim
e)

Flow ID

Rates Achieved using Distributed Scheduling Mechanism

Rates achieved using the scheduling scheme

Figure 4.19: Flow rates achieved using distributed scheduling scheme for the network shown

in figure 4.8

-1

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 3

 1 2 3 4 5 6 7

E
rr

or
 (

%
)

Flow ID

Error in achieving max-min fair rates

Error in rates achieved using the scheduling scheme

Figure 4.20: Error made by scheduling scheme in assigning max-min fair rates for the flows

in figure 4.8

CHAPTER 4. MAX-MIN FAIR RATE ALLOCATION IN MULTIHOP WIRELESS
NETWORKS WITH INTERSESSION NETWORK CODING 101

4.6 Summary

In this chapter we presented an algorithm to assign max-min fair rates to the flows in a

network with coding. We emulated progressive filling on a wireless network with coding by

coupling a conflict graph based framework with a linear program. We used various fair-

ness metrics to compare our rate allocation algorithm with existing schemes, and showed

that we our mechanism outperforms exiting algorithms in terms of fairness. We demon-

strated that our fair rate allocation algorithm runs in polynomial time. We also presented

a novel yet simple distributed fair rate assignment algorithm that achieves the same rates

as the centralized version. We also presented centralized as well as distributed versions of

a scheduling scheme that helps flows achieve max-min fair rates assigned using our rate

control algorithm. We demonstrate that the error in achieving the max-min fair rates is

significantly small, which indicates the accuracy of our distributed scheduling scheme.

CHAPTER 5. CONCLUSION 102

Chapter 5

Conclusion

In this dissertation we presented several topics in the areas of routing and network coding.

We presented a multipurpose multipath routing scheme. We proposed an efficient and

exhaustive packet encoding algorithm that can integrate network coding with any routing

scheme, irrespective of the routing mechanism’s objective. We also presented max-min fair

rate allocation and scheduling algorithms for the flows in a wireless network that use coding.

5.1 Polar Coordinate Routing

We presented a multipath routing mechanism called Polar Coordinate Routing. It can be

used to serve multiple purposes, such as (a) congestion alleviation (b) reliable data delivery

(c) security against an intercepting adversary etc. PCR sends packets on multiple different

trajectories that are segments of circles with different radii. It also helps maintain a known

separation between the paths. By varying the radii of these circles we can change the

separation between different trajectories. This allows us to control the interference the

nodes in these two trajectories will have. We demonstrated that even though PCR helps

maintain a known separation between paths, it doesn’t increase the hop count by too much.

We presented a non-euclidean distance metric that helped packets travel in a fashion similar

to the geographic routing. Our distance metric serves two purposes. It not only ensures

CHAPTER 5. CONCLUSION 103

that the packet is travelling towards its destination, but it also makes sure that this forward

progress is closer to the trajectory. We also presented rules to avoid routing loops while

forwarding packets. We compared the performance of PCR with existing multipath schemes

using the metrics such as average separation between trajectories, fraction of nodes in two

trajectories that are out of each other’s range, hop count etc. Our extensive simulations

showed that PCR not only outperformed existing scheme, but it did so with a low variance,

indicating the stability of our mechanism.

One of the issues that prevent successful data delivery is the presence of obstacles in the

network. We integrated PCR with simple robotic routing. Robotic routing helps packets

circumnavigate obstacles much like the robots in a maze. While travelling towards a des-

tination using PCR’s non-euclidean distance metric, if a packet encounters an obstacle, it

switches its routing rule to robotic routing. The packet circumnavigates the obstacle using

robotic routing, and after that switches its routing mode back to PCR in order to follow the

path towards the destination on the predefined trajectory. We presented concrete rules to

help packets switch their routing modes back and forth between PCR and robotic routing

in order to overcome obstacles.

5.2 Packet Encoding for Network Coding

Next we presented our novel packet encoding algorithm to integrate a routing scheme with

network coding. Our packet encoding algorithm is not dependent on PCR. In fact it can

be coupled with any routing scheme. This helps us leverage the benefits offered by both an

advanced routing scheme and an efficient packet encoding algorithm. Our packet encoding

algorithm offers several benefits. (a) It searches a node’s queue exhaustively to look for

maximum number of packets that can be combined in a single transmission. (b) It can con-

sider multiple next hop neighbor candidates for a packet. Hence it improves the probability

of combining more packets in a single transmission. (c) The algorithm is asymptotically

faster than a näıve exhaustive search. (d) It can be easily integrated with a routing scheme.

We first presented our packet encoding algorithm as a binary integer program. We observed

CHAPTER 5. CONCLUSION 104

that such a mathematical program falls under NP Complete complexity class. Hence we

offered a novel bipartite graph based algorithm to look for an optimal packet combination.

We demonstrated that looking for an optimal packet combination is analogous to enumer-

ating cycles in a bipartite graph. We extended this algorithm to consider multiple next

hop neighbor candidates for a packet. We gave examples to show that considering multiple

next hop neighbor candidates may improve possibility of combining more packets. We also

showed its throughput benefits using a simple simulation scenario.

We also integrated our packet encoding algorithm with a routing scheme. If we force

packets to go to the neighbors that help yield a better packet combination, we may lose

the advantages offered by the routing scheme. Therefore we presented rules to combine a

routing scheme with our encoding algorithm such that we can reap the benefits offered by

the routing scheme and enhanced packet encoding both. We coupled our packet encoding

algorithm with a routing scheme where a packet’s next hop neighbor is changed frequently

in a dynamic manner. We also presented the throughput benefit offered by this combination

of routing and packet encoding schemes.

5.3 Max-Min Fair Rate Allocation Algorithm

While calculating the throughput for different scenarios using our packet encoding algo-

rithm, we assumed that each flow in the network is assigned the same rate. We observed

that if we fluctuate the rates of some of the flows, the total throughput of the network

would change disproportionately. Therefore we worked on the resource allocation problem

as well. Namely, we presented an algorithm to calculate max-min fair rates for the flows in

the network. We combined a conflict graph based framework with a simple linear program

to allocate max-min fair rates to the flows in a wireless network with coding. While our

algorithm emulated progressive filling to achieve max-min fairness, we demonstrated that

this task wasn’t straightforward. We pointed out caveats in setting up constraints of the

linear program and selecting the bottleneck flows, such that the resulting rates wouldn’t

be incorrect or suboptimal. We first presented our algorithm in a centralized manner.

CHAPTER 5. CONCLUSION 105

We demonstrated that its complexity is polynomial time. We ran our algorithm on a few

topologies. We compared the rates allocated using our algorithm with prevailing rate con-

trol mechanism that rely on maximizing a utility function. We used metrics such as Jain’s

index and Max/Min rates to demonstrate that the rates assigned using our algorithm were

fairer than the existing algorithms. We also presented a distributed rate allocation algo-

rithm that helps achieve the same rates as the centralized algorithm. We also simulated

how many total number of messages are transmitted network wide before the distributed

algorithm achieves the same rates as the centralized algorithm.

Coming up with a rate control algorithm is not enough. Ideally we should also have

a scheduling scheme that helps flows achieve their max-min fair rates. We presented cen-

tralized as well as distributed scheduling mechanisms that help flows achieve rates that are

proportional to their max-min fair rates. We simulated the throughput that can be achieved

using our scheduling scheme. We also calculated the error in achieving the max-min fair

rates using this scheduling method. We demonstrated that the errors were significantly low,

indicating the accuracy of our scheduling mechanism.

BIBLIOGRAPHY 106

Bibliography

[Ahlswede et al., 2000] Rudolf Ahlswede, Ning Cai, Shuo yen Robert Li, and Raymond W.

Yeung. Network information flow. IEEE TRANSACTIONS ON INFORMATION THE-

ORY, 46(4):1204–1216, 2000.

[Akyol et al., 2008] Umut Akyol, Matthew Andrews, Piyush Gupta, John D. Hobby, Iraj

Saniee, and Alexander L. Stolyar. Joint scheduling and congestion control in mobile

ad-hoc networks. In INFOCOM, pages 619–627. IEEE, 2008.

[Bapeswara Rao and Murti, 1969] V.V. Bapeswara Rao and V.G.K. Murti. Enumeration

of all circuits of a graph. Proceedings of the IEEE, 57(4):700 – 701, april 1969.

[Bertsekas and Gallager, 1992] Dimitri P. Bertsekas and Gallager. Data Networks (2nd

Edition). Prentice Hall, 2 edition, January 1992.

[Bose et al., 1999] Prosenjit Bose, Pat Morin, Ivan Stojmenović, and Jorge Urrutia. Rout-

ing with guaranteed delivery in ad hoc wireless networks. In Proceedings of the 3rd

international workshop on Discrete algorithms and methods for mobile computing and

communications, DIALM ’99, pages 48–55, New York, NY, USA, 1999. ACM.

[Chou et al., 2003] Philip A. Chou, Yunnan Wu, and Kamal Jain. Practical network coding,

2003.

[De Couto et al., 2003] Douglas S. J. De Couto, Daniel Aguayo, John Bicket, and Robert

Morris. A high-throughput path metric for multi-hop wireless routing. MobiCom ’03,

New York, NY, USA, 2003. ACM.

BIBLIOGRAPHY 107

[Desai and Maxemchuk, 2010] Maulik Desai and Nicholas Maxemchuk. Polar coordinate

routing for multiple paths in wireless networks. In World of Wireless Mobile and Mul-

timedia Networks (WoWMoM), 2010 IEEE International Symposium on a, pages 1 –9,

June 2010.

[Dong et al., 2006] Q. Dong, S. Banerjee, and B. Liu. Throughput optimization and fair

bandwidth allocation in multi-hop wireless lans. In INFOCOM, 2006.

[Dong et al., 2007] Qunfeng Dong, Jianming Wu, Wenjun Hu, and Jon Crowcroft. Practical

network coding in wireless networks. In Evangelos Kranakis, Jennifer C. Hou, and Ram

Ramanathan, editors, MOBICOM, pages 306–309. ACM, 2007.

[Finn, 1987] G. G. Finn. Routing and Addressing Problems in Large Metropolitan-Scale

Internetworks, 1987.

[Floyd, 1967] Robert W. Floyd. Nondeterministic algorithms. J. ACM, 14(4):636–644,

October 1967.

[Gambiroza et al., 2004] Violeta Gambiroza, Bahareh Sadeghi, and Edward W. Knightly.

End-to-end performance and fairness in multihop wireless backhaul networks. In In

Proceedings of ACM MOBICOM, pages 287–301, 2004.

[Gross and Yellen, 2005] Jonathan L. Gross and Jay Yellen. Graph Theory and Its Appli-

cations. 2005.

[Gupta and Stolyar, 2006] P. Gupta and A. L. Stolyar. Optimal Throughput Allocation in

General Random-Access Networks. In Proc.˜of CISS, Princeton, NJ, March 2006.

[Gupta et al., 2005] P. Gupta, Yogesh Sankarasubramaniam, and Alexander L. Stolyar.

Random-access scheduling with service differentiation in wireless networks. In INFO-

COM, pages 1815–1825. IEEE, 2005.

BIBLIOGRAPHY 108

[Ho et al., 2003] T. Ho, B. Leong, M. Medard, R. Koetter, Y. Chang, and M. Effros. The

benefits of coding over routing in a randomized setting. In Proc. IEEE ISIT’03, june

2003.

[Huang and Bensaou, 2001] Xiao Long Huang and Brahim Bensaou. On max-min fairness

and scheduling in wireless ad-hoc networks: analytical framework and implementation.

In Proceedings of the 2nd ACM international symposium on Mobile ad hoc networking &

computing, MobiHoc ’01, pages 221–231, New York, NY, USA, 2001. ACM.

[Jaffe, 1981] J. Jaffe. Bottleneck Flow Control. Communications, IEEE Transactions on,

29(7), July 1981.

[Jain et al., 1984] Rajendra K. Jain, Dah-Ming W. Chiu, and William R. Hawe. A Quanti-

tative Measure Of Fairness And Discrimination For Resource Allocation In Shared Com-

puter Systems. Technical report, Digital Equipment Corporation, September 1984.

[Johnson, 1975] Donald B. Johnson. Finding all the elementary circuits of a directed graph.

SIAM J. Comput., 4(1):77–84, 1975.

[Karp and Kung, 2000] Brad Karp and H. T. Kung. Gpsr: greedy perimeter stateless rout-

ing for wireless networks. In Proceedings of the 6th annual international conference on

Mobile computing and networking, MobiCom ’00, pages 243–254, New York, NY, USA,

2000. ACM.

[Katti et al., 2006] Sachin Katti, Hariharan Rahul, Wenjun Hu, Dina Katabi, Muriel

Médard, and Jon Crowcroft. Xors in the air: practical wireless network coding. In

Proceedings of the 2006 conference on Applications, technologies, architectures, and pro-

tocols for computer communications, SIGCOMM ’06, 2006.

[Kelly et al., 1998] F. P. Kelly, A. K. Maulloo, and D. K. H. Tan. Rate Control for Com-

munication Networks: Shadow Prices, Proportional Fairness and Stability. The Journal

of the Operational Research Society, 49(3):237–252, 1998.

BIBLIOGRAPHY 109

[Kim and Maxemchuk, 2005] Daejoong Kim and Nick Maxemchuk. Simple robotic routing

in ad hoc networks. In ICNP ’05: Proceedings of the 13TH IEEE International Conference

on Network Protocols, pages 159–168, Washington, DC, USA, 2005. IEEE Computer

Society.

[Kim et al., 2005] Young-Jin Kim, Ramesh Govindan, Brad Karp, and Scott Shenker. Ge-

ographic routing made practical. In Proceedings of the 2nd conference on Symposium

on Networked Systems Design & Implementation - Volume 2, NSDI’05, pages 217–230,

Berkeley, CA, USA, 2005. USENIX Association.

[Koetter et al., 2003] Ralf Koetter, Muriel Mdard, and Senior Member. An algebraic ap-

proach to network coding. IEEE/ACM Transactions on Networking, 11:782–795, 2003.

[Kranakis et al., 1999] Evangelos Kranakis, Harvinder Singh, and Jorge Urrutia. Compass

routing on geometric networks. In IN PROC. 11 TH CANADIAN CONFERENCE ON

COMPUTATIONAL GEOMETRY, pages 51–54, 1999.

[Kuhn et al., 2003] Fabian Kuhn, Rogert Wattenhofer, Yan Zhang, and Aaron Zollinger.

Geometric ad-hoc routing: of theory and practice. In Proceedings of the twenty-second

annual symposium on Principles of distributed computing, PODC ’03, pages 63–72, New

York, NY, USA, 2003. ACM.

[L. Kleinrock, 1978] J.A. Silvester L. Kleinrock. Optimum transmission radii for packet

radio networks or why six is a magic number. In IEEE National Conference on Telecom-

munication, 1978.

[Le and Lui, 2008] Jilin Le and John C. S. Lui. How many packets can we encode? - an

analysis of practical wireless network coding. In Proceedings of IEEE INFOCOM, 2008.

[Li and Li, 2004] Z. Li and B. Li. Network coding: The case for multiple unicast sessions.

In Proc. of Allerton, sep 2004.

[Li et al.,] Li Li, R. Ramjee, M. Buddhikot, and S. Miller. Network coding-based broadcast

in mobile ad-hoc networks. In INFOCOM 2007.

BIBLIOGRAPHY 110

[Lin and Shroff, 2004] Xiaojun Lin and Ness B. Shroff. Joint rate control and scheduling

in multihop wireless networks. In in Proceedings of IEEE Conference on Decision and

Control, pages 1484–1489, 2004.

[Liu and Wang, 2006] Hongbo Liu and Jiaxin Wang. A new way to enumerate cycles in

graph. In Telecommunications, 2006. AICT-ICIW ’06., page 57, feb. 2006.

[MATLAB, 2010] MATLAB. version 7.10.0 (R2010a). The MathWorks Inc., Natick, Mas-

sachusetts, 2010.

[Nandagopal et al., 2000] Thyagarajan Nandagopal, Tae-Eun Kim, Xia Gao, and Vaduvur

Bharghavan. Achieving mac layer fairness in wireless packet networks. In Proceedings of

the 6th annual international conference on Mobile computing and networking, MobiCom

’00, pages 87–98, New York, NY, USA, 2000. ACM.

[Niculescu and Nath, 2003] Dragos Niculescu and Badri Nath. Trajectory based forward-

ing and its applications. In MobiCom ’03: Proceedings of the 9th annual international

conference on Mobile computing and networking, pages 260–272, New York, NY, USA,

2003. ACM.

[Omiwade et al., 2008] Soji Omiwade, Rong Zheng, and Cunqing Hua. Butterflies in the

mesh: lightweight localized wireless network coding. 2008.

[Popa et al., 2006] Lucian Popa, Costin Raiciu, Ion Stoica, and David Rosenblum. Reduc-

ing congestion effects in wireless networks by multipath routing. In ICNP ’06: Proceed-

ings of the Proceedings of the 2006 IEEE International Conference on Network Protocols,

pages 96–105, Washington, DC, USA, 2006. IEEE Computer Society.

[Porter and Ji, 2004] George Porter and Minwen Ji. Delta routing: improving the price-

performance of hybrid private networks. In NOMS (1), 2004.

[Rangwala et al., 2006] Sumit Rangwala, Ramakrishna Gummadi, Ramesh Govindan, and

Konstantinos Psounis. Interference-aware fair rate control in wireless sensor networks. In

In Proceedings of the ACM SIGCOMM, pages 63–74, 2006.

BIBLIOGRAPHY 111

[Ronasi et al., 2009] Keivan Ronasi, Amir Hamed Mohsenian Rad, Vincent W. S. Wong,

Sathish Gopalakrishnan, and Robert Schober. Reliability-based rate allocation in wireless

inter-session network coding systems. In GLOBECOM, pages 1–6. IEEE, 2009.

[Rudin, 1976] H. Rudin. On routing and ”delta routing”: A taxonomy and performance

comparison of techniques for packet-switched networks. Communications, IEEE Trans-

actions on, 24(1):43 – 59, jan 1976.

[Seferoglu and Markopoulou, 2009] Hulya Seferoglu and Athina Markopoulou. Distributed

rate control for video streaming over wireless networks with intersession network coding.

In In Packet Video, 2009.

[Seferoglu et al., 2009] Hulya Seferoglu, Athina Markopoulou, and Ulas Kozat. Network

coding-aware rate control and scheduling in wireless networks. In Proceedings of the 2009

IEEE international conference on Multimedia and Expo, ICME’09, pages 1496–1499,

Piscataway, NJ, USA, 2009. IEEE Press.

[Seferoglu et al., 2011] Hulya Seferoglu, Athina Markopoulou, and K. K. Ramakrishnan.

I2nc: Intra- and inter-session network coding for unicast flows in wireless networks. In

INFOCOM, pages 1035–1043. IEEE, 2011.

[Sengupta et al., 2007] Sudipta Sengupta, Shravan Rayanchu, and Suman Banerjee. An

analysis of wireless network coding for unicast sessions: The case for coding-aware rout-

ing. In in Proc. of IEEE INFOCOM, pages 1028–1036, 2007.

[Sridharan and Krishnamachari, 2007] Avinash Sridharan and Bhaskar Krishnamachari.

Maximizing network utilization with max-min fairness in wireless sensor networks. In

WiOpt, pages 1–9. IEEE, 2007.

[Sundararajan et al., 2008] Jay Kumar Sundararajan, Devavrat Shah, Muriel Médard,

Michael Mitzenmacher, and João Barros. Network coding meets tcp. CoRR,

abs/0809.5022, 2008.

BIBLIOGRAPHY 112

[Tarjan, 1972] Robert Tarjan. Enumeration of the elementary circuits of a directed graph.

SIAM Journal on Computing, page 211, 1972.

[Tiernan, 1970] James C. Tiernan. An efficient search algorithm to find the elementary

circuits of a graph. Commun. ACM, 13(12):722–726, December 1970.

[Wu et al., 2005] Y. Wu, P. A. Chou, and S. Y. Kung. Information exchange in wireless

networks with network coding and physical-layer broadcast. In Proc. 39th Annual Conf.

Inform. Sci. and Systems (CISS), 2005.

[yen Robert Li et al., 2003] Shuo yen Robert Li, Raymond W. Yeung, and Ning Cai. Linear

network coding. IEEE Transactions on Information Theory, 49:371–381, 2003.

[Zhao and Medard, 2010] Fang Zhao and Muriel Medard. On analyzing and improving cope

performance. In ITA, pages 317–322. IEEE, 2010.

