
A Tree-Ring-Based Reconstruction of Delaware River Basin Streamflow Using
Hierarchical Bayesian Regression

NARESH DEVINENI

Columbia Water Center, The Earth Institute, Columbia University, New York, New York

UPMANU LALL

Department of Earth and Environmental Engineering, and Columbia Water Center, Columbia University, New York, New York

NEIL PEDERSON AND EDWARD COOK

Tree Ring Laboratory, Lamont-Doherty Earth Observatory, Palisades, New York

(Manuscript received 17 November 2011, in final form 27 December 2012)

ABSTRACT

A hierarchical Bayesian regression model is presented for reconstructing the average summer streamflow

at five gauges in the Delaware River basin using eight regional tree-ring chronologies. The model provides

estimates of the posterior probability distribution of each reconstructed streamflow series considering pa-

rameter uncertainty. The vectors of regression coefficients aremodeled as draws from a commonmultivariate

normal distribution with unknown parameters estimated as part of the analysis. This leads to a multilevel

structure. The covariance structure of the streamflow residuals across sites is explicitlymodeled. The resulting

partial pooling of information across multiple stations leads to a reduction in parameter uncertainty. The

effect of no pooling and full pooling of station information, as end points of the method, is explored. The no-

poolingmodel considers independent estimation of the regression coefficients for each streamflow gauge with

respect to each tree-ring chronology. The full-pooling model considers that the same regression coefficients

apply across all streamflow sites for a particular tree-ring chronology. The cross-site correlation of residuals

is modeled in all cases. Performance on metrics typically used by tree-ring reconstruction experts, such as

reduction of error, coefficient of efficiency, and coverage rates under credible intervals is comparable to, or

better, for the partial-pooling model relative to the no-pooling model, and streamflow estimation uncertainty

is reduced. Long record simulations from reconstructions are used to develop estimates of the probability of

duration and severity of droughts in the region. Analysis of monotonic trends in the reconstructed drought

events do not reject the null hypothesis of no trend at the 90% significance over 1754–2000.

1. Introduction

The upper Delaware River Basin System supplies

New York City, one of the largest urban water supply

systems in the United States. With a cumulative storage

capacity of 1.53 109m3 from five major reservoirs, the

Delaware River basin supplies about 3 3 106m3 day21

to the city of New York. The Delaware River Basin

Commission and the New York City Department of

Environmental Protection are primarily responsible for

managing the releases from the major reservoirs to meet

the water demand of the city of New York and to main-

tain downstream ecosystem services (DRBC 2007). The

operating rules of this reservoir system (e.g., the mini-

mumwater levels to bemaintained in the reservoir at any

specified time, or the specification of drought return pe-

riods) are based on relatively short historical records

of data. The typical record length of the naturalized

streamflow data for the major reservoirs on the system

is 50–60 years. Given that the drought of record in the

basin was in the 1960s, that is, about 50 years ago, ex-

tended records of hydrologic variability from paleo-

proxies such as tree rings could be very useful for

assessing the likely return period of this drought for re-

gional water supply planning and drought operation.
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Recently, impacts on fisheries during the summer low

flow period have led to questions concerning the res-

ervoir operating policies that are designed to avert the

1960s drought risk (Kolesar and Serio 2011).

Numerous studies have focused on the use of tree-ring

widths for developing proxy climatic and hydrologic

series using traditional regression techniques (Stockton

and Jacoby 1976; Meko and Graybill 1995). Meko et al.

(2007), Woodhouse et al. (2006), and Woodhouse and

Lukas (2006a,b) used a stepwise linear regression ap-

proach to develop multicentury reconstructed stream-

flows and investigate the medieval drought in the upper

Colorado River basin. Similarly, over the Northeast,

Cook and Jacoby (1983) used canonical regression anal-

ysis to reconstruct the July–September streamflow for

the Potomac River using tree-ring chronologies from

nearby sites. Cook and Jacoby (1977) also examined the

drought in the Hudson River Valley by reconstructing

the Palmer Drought Severity Index (PDSI) using a step-

wise regression analysis. Recently, Maxwell et al. (2011)

reconstructed the Potomac River streamflow dating

back to 950 using a network of tree-ring chronologies

from multiple species. Kauffman and Vonck (2011)

investigated the frequency and intensity of extreme

drought over the lower Delaware River basin, specifi-

cally at the mouth of the Delaware River using a re-

constructed PDSI.

These paleoreconstruction methods use a regression

model fit to the observed streamflow using tree-ring

chronologies as predictors. The streamflow data in the

preinstrumental (paleo) period are then obtained by

applying the estimated regression coefficients to the

paleo-period tree-ring indices. The paleoreconstruction

often considers multiple proxies and multiple hydro-

climatic records to be reconstructed [e.g., gridded PDSI

reconstruction as in Cook et al. (1999) or temperature

reconstruction over spatial grids using multiple proxies

as in Tingley and Huybers (2010a,b)]. The resulting

multivariate regression problem can be high dimen-

sional. Given a finite dataset, a practical question is how

best to estimate parameter uncertainty. Further, the re-

cords often have varying length, and long gaps in data

can also pose estimation problems. In this paper we

consider only the continuous common record and do

not consider expectation–maximization (EM) or re-

lated algorithms (Dempster et al. 1977; Schneider 2001)

for gap filling. A successful model also needs to preserve

the correlation of streamflow across sites to properly

constrain stochastic simulations of multireservoir oper-

ation (Gangopadhyay et al. 2009).

In this paper, we present a hierarchical Bayesian re-

gression (HBR) model for inferences on the posterior

probability distribution of the regression coefficients

and streamflow values at multiple locations of interest

using recently developed tree-ring chronologies in the

upper Delaware River basin. A multilevel model frame-

work that provides an elegant means of propagating the

parameter uncertainties through appropriate condi-

tional distributions is adopted. Further, noting that

multiple correlated predictors (regional tree-ring chro-

nologies) from different species may inform streamflow

reconstruction in a similar way, the hierarchical model

provides for partial pooling of this common informa-

tion. Partial pooling reduces the equivalent number of

independent parameters, resulting in lower uncertainty

in parameter estimates, and therefore leads to reduced

uncertainty in the reconstructed streamflows. The multi-

level or partial-pooling approach improves on estimation

on full pooling, which ignores the cross-site variations

in response, and on no pooling, which estimates in-

dependent regressions across the sites. Those two cases

are subsets or end points of the model developed, and

are compared as such.

Hierarchical Bayesian models have been used pre-

viously in the context of climate field reconstruction

over spatial grids (Tingley and Huybers 2010a,b) and

reconstructing Northern Hemisphere temperature data

using proxy datasets such as tree-ring measurements,

pollen indices, and borehole temperatures, among

others. (Li et al. 2010). Similarly, dynamic Bayesian

space–time models have also been used to develop long

lead forecasting for tropical Pacific SSTs (Berliner et al.

2000). Several other hydrologic applications have been

developed and demonstrated in Lima and Lall (2009,

2010) and Kwon et al. (2008, 2011). Readers can also

refer to Wikle (2003), Raftery (1995), Gelman and Hill

(2007), and Gelman et al. (2004) for additional infor-

mation on hierarchical Bayesian model applications.

The paper is organized as follows. A brief description

of the streamflow and tree-ring chronology data used

in the study is provided in section 2. Section 3 contains

a description of the proposed hierarchical Bayesian re-

gression model and section 4 presents the results and

analysis from the model. The drought characterization

using the reconstructed streamflow data for the region

is presented in section 5. Finally, in section 6, the key

results are discussed and summarized.

2. Data description

a. Streamflow data

The location of the five major reservoirs, selected

stream gauges, and the tree-ring sites in the upper Del-

aware River basin (DRB) is shown in Fig. 1. The DRB

extends roughly 532 km from its confluence of the East
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and West Branches in New York to the mouth of the

Delaware Bay encompassing ;34 965 km2 and includes

the states of New York, New Jersey, Pennsylvania, and

Delaware. In this study, we consider fivemajor reservoirs

in the upper DRB that serve as the primary water supply

systems for the city of New York. Specifics of the U.S.

Geological Survey (USGS) stream gauges on the major

tributaries corresponding to inflow into each reservoir are

provided in Table 1. For the purpose of this study, we

selected the stream gauges (from the USGS National

Water Information System) on the major creeks feeding

into the reservoir such that the inflows are not influenced

by any upstream diversions or regulations. The drain-

age area and record length vary across the stations

(Table 1). The Schoharie creek (USGS gauge 1350000)

has the longest (98 yr) record. All other stations have

data records in the range of 50–64 years.

b. Tree-ring data

Table 2 shows the details of the seven new and

one older collection [hemlock(2), Tsuga canadensis, in

Mohonk, New York] of tree-ring chronologies devel-

oped from forests in the upper DRB. Note the multiple

chronologies for each site. The chronology site locations

are presented in Fig. 1. Of the seven chronologies,

one was used in Pederson et al. (2004) (pitch pine in

Mohonk), three were developed and used in Pederson

(2005) (Liriodendron tulipifera and Quercus prinus in

Montgomery Place and Quercus prinus in Middleburg),

and three were used (now updated) in Cook and Jacoby

(1977) [hemlock(1), Tsuga canadensis, pitch pine, Pinus

rigida, andQuercus subgenus leucobalanus in Mohonk].

The hemlock(2) chronology was developed for the

NorthAmericanDrought Atlas (Cook et al. 1999, 2010).

The recently updated Mohonk records, except for the

Betula lenta chronology, are published here for the first

time and are available from the International Tree-Ring

Databank in their original form.

Recent research indicates that the larger number of

species used for tree-ring-based reconstructions could

enhance the final reconstruction (Cook and Pederson

2010; Maxwell et al. 2011; Pederson et al. 2013). All

chronologies used here have also been shown to be useful

for drought index reconstructions by Cook and Pederson.

All time series of tree-ringmeasurements were processed

using standard techniques (Stokes and Smiley 1968;

Fritts 1976; Cook 1985; Cook and Kairiukstis 1990).

Ring width series with growth distortions, rotten sec-

tions, or other gaps, including series from the data bank,

were filled using the gap-filling option in auto-regressive

standardization (ARSTAN) (see Pederson et al. 2004).

All series were transformed using the adaptive power

FIG. 1. Location of the tree-ring chronology sites (filled triangle marker), five major reservoirs (filled square

marker), and the respective upstream gauges (star marker) in the upper Delaware River basin (DRB). The inset in

the figure shows the location of the upper DRB in New York.
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transformation and then standardized to conserve as

much long-term variation in ring widths as possible

while reducing the influence of nonclimatic forces such

as changes in competition (Pederson et al. 2004). The

‘‘Friedman Super Smoother’’ was the primary option

used to reduce the influence of disturbance in each series

(Friedman 1984; Buckley et al. 2010). The Friedman

Super Smoother would occasionally cause ring index

inflation or deflation at either end of a series. In these

few cases, a cubic smoothing spline two-thirds the length

of each series was used (Cook and Peters 1981). The

mean value for each year was calculated using a biweight

robust function following standardization (Cook 1985).

c. Diagnostic analysis and predictor selection

The tree-ring chronologies represent the annual

growth cycle of the trees resulting from less dense (inner

portion) early-wood formation during the photosyn-

thetically active growing season (late spring and sum-

mer) and the more dense (outer portion) late-wood

formation during the fall and winter. These chronologies

vary in size each year depending upon the regional cli-

mate phenomena. Consequently, the tree rings (mea-

sured as the width of early wood plus late wood) are

wider during years with adequate moisture availability

and narrow during drought years. Hence, analogous

to streamflow, the growth index is an integrator of

moisture and energy availability in the region. This

commonality between annual growth index and stream-

flow enables us to develop predictive models that can

be utilized to understand the long-term variability of

the climate in the region. The summer season average

[June–August (JJA)] streamflow for each of the five

major gauges in the upper DRB was identified for re-

construction under the hypothesis that growing season

of the trees, concurrent to the streamflow, may present

the best sensitivity across flows and trees. This rela-

tively dry period is also critical for reservoir operations

given the fishing and ecological impacts. Preliminary

analyses of the seasonality of inflows (Fig. 2a) show that

typically 45% of annual inflows occur during March–

May and the flows during JJA contribute 20% of the

annual inflows. From a water management perspective,

developing reconstructed inflows for the summer sea-

son is important to assess the frequency and recurrence

of severe droughts and to better quantify the operational

rule curves for downstream release purposes (Kolesar

and Serio 2011). Summer (JJA) is also the growth sea-

son when the trees are photosynthetically active and

thus most sensitive to moisture limitations and loss

through transpiration.

For a preliminary assessment of this hypothesis, we

computed the Pearson correlation coefficient between

the tree-ring chronologies and 1) the annual average

streamflows and 2) the JJA streamflows for the five

stations (Fig. 2). The correlation coefficients statistically

TABLE 1. Details of the stream gauges on major tributaries and the corresponding reservoir systems in the Delaware River basin. These

reservoirs serve as the primary water supply systems for the city of New York. The table shows the number of years of streamflow record

and the drainage area corresponding to each stream gauge.

Reservoir Feeder creek Stream gauge Data record Number of years Drainage area (km2)

Schoharie Schoharie 1350000 1903–2000 98 611

Neversink Neversink 1435000 1937–2000 64 173

Roundout Roundout 1365000 1937–2000 64 98

Canonsville West Branch Delaware River 1423000 1950–2000 51 857

Pepacton East Branch Delaware River 1413500 1937–2000 64 421

TABLE 2. Details of the tree-ring chronology data used in the study. The information regarding the site, species, number of trees per site

and number of cores sampled is given in the table. The species are TSCA (Tsuga canadensis), QUSP (Quercus subgenus leucobalanus),

BELE (Betula lenta), PIRI (pitch pine), QUPR (Quercus prinus), and LITU (Liriodendron tulipifera). TheMohonk records are available

from the International Tree-Ring Databank (ITRDB) in their original form.

Tree-ring

chronology

Site

(New York) Species

Number of

trees

Number of

cores Actual data record

Data record used

(247 yr)

MH(1) Mohonk TSCA 25 43 1626–2002 1754–2000

MWO Mohonk QUSP 20 34 1450–2002 1754–2000

MH(2) Mohonk TSCA 18 25 1658–2002 1754–2000

MSB Mohonk BELE 17 27 1614–2002 1754–2000

MPP Mohonk PIRI 23 45 1618–2002 1754–2000

MoCO Montplace QUPR 21 34 1727–2002 1754–2000

MoTP Montplace LITU 20 32 1754–2002 1754–2000

MiCO Middlebergh QUPR 23 42 1507–2000 1754–2000
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significant at the 95% confidence interval for a given

sample size are highlighted. One can see that all tree

chronologies correlate better with the summer than with

annual streamflow. The tree ring–streamflow correla-

tion with winter/spring flows was also lower than for the

summer flows. Regional studies also show that the tree-

ring response to regional climate is greatest during the

active growing season (summer) (Cook and Jacoby 1977,

1983; Maxwell et al. 2011; Pederson et al. 2013).

One can also observe from Fig. 2c that there is a po-

tential opportunity for ‘‘grouping’’ or pooling the re-

lationships across trees and streamflow. For instance,

the correlation coefficient between the annual tree-ring

growth index of hemlock [MH(1)] and the summer

average streamflow of the five stations is in the range

0.35–0.4, indicating that the hemlock relationship to

streamflow is similar across the five stations. Similarly,

the correlation of the flows of the five stations to the

tulip poplar species (MoTP) ranges from 0.6 to 0.75.

This suggests that pooling the regression coefficients

across stations with respect to a specific tree-ring chro-

nology may be useful, while pooling regression co-

efficients for a streamflow station across different tree

chronologies may not be as effective.

FIG. 2. Diagnostic analysis of streamflows and tree-ring chronologies: (a) boxplot of monthly flows and plot of the

mean monthly rainfall for the Schoharie station; (b) correlation coefficient between tree rings and annual average

flows; and (c) correlation between tree rings and summer (JJA) season average streamflow at the five selected

stations. The horizontal line marks the one-sided 95% significance level for correlation.
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We also investigated the possibility of lagged corre-

lation (e.g., t21, t22, t23) between tree rings and

streamflow that could result from longer use of stored

energy in the trees from prior growth (Trumbore et al.

2002; Kagawa et al. 2006). However, we did not find any

statistically significant relations (results not shown) at

these lags. Hence, only the tree-ring chronologies of the

current year were used to predict the summer seasonal

streamflows.

The Shapiro–Wilk normality test (Royston 1995) ap-

plied to the log transformed summer seasonal (JJA)

average flows for each station did not reject the null

hypothesis of the transformed values being normally

distributed at the 5% level (p values ranged from 0.05

to 0.27). The Box–Cox transform led to the same con-

clusion. The log transformed streamflows were modeled

as the response variables, but all subsequent model vali-

dation results are presented in terms of the real space

summer flows.

3. Hierarchical Bayesian regression: Methodology

A general multilevel modeling structure that allows

pooling of information across stream gauges for re-

gression on available tree-ring chronologies, and con-

siders correlation of model residuals across stations was

explored under the hierarchical Bayesian regression

framework. We term the general model the ‘‘partial

pooling model.’’ Several subsets of this model were ex-

plored to develop intuition as to how different end points

of this model perform.We consider the following subsets:

a no-pooling model, where regression coefficients for

each streamflow series are modeled independently, and

a full-pooling model, where all streamflow sequences

have the same regression coefficient for a specific tree-

ring series. In each case, we considered estimation of the

full covariance matrix across sites of residuals as well as

a diagonal structure that treats them as uncorrelated.

a. The general model (partial pooling)

yi,t jai, bi5ai 1Xtbi1 «i,t i5 1, . . . , 5 ,

«i,t jSe ;N(0,Se), and

bi jmb,Sb ;MVN(mb,Sb) ,

with priors modeled as

ai ;N(0, 104) ,

mb ;MVN(0, 104I) ,

Sb ; Inv-Wishartn
0
(L0), and

Se ; Inv-Wishartn
1
(L1) . (1)

Equation (1) represents the regression of yi,t (log of

the streamflow) on Xt, the vector of the eight predictors

(tree-ring growth indices) for year t. MVN stands for

multivariate normal distribution. The bi is a vector of

the eight regression slopes relating these predictors to the

streamflow at station i. The ai are the intercepts of the

regressionmodel at each station and can be interpreted as

the mean streamflow at site i. Since the drainage area of

the river basin varies across sites, the ai are not expected

to have a common mean. They could be modeled as a

function of the drainage area, as in Lima and Lall (2010),

but given the small number of sites we did not consider

that for the current application. The regression errors

«i,t are assumed to be normally distributed and corre-

lated across the stream gages. Their covariance across

streamflow sites is modeled through the 5 3 5 matrix

Se. The bi can be interpreted as the streamflow sensi-

tivities to the transient climate as recorded in the tree-

ring chronologies.

Noting that the correlation of a given tree-ring

chronology is very similar across the five stations; we

consider a multilevel model that allows for pooling of

information across stations for a given tree for esti-

mating the regression slope parameters to reduce the

associated uncertainty. The model has a multilevel

structure where the model parameters are presumed to

be drawn from a common distribution, whose param-

eters (e.g., the bi) are in turn described by a set of hy-

perparameters (e.g., mb and Sb). Here mb is a vector

of length 8 representing the common regression slope

for each of the five stations for each of the eight tree-

ring chronologies. Correspondingly, Sb is an 8 3 8

covariance matrix of themb. This representation allows

partial pooling across the stations by shrinking the es-

timates of bi toward a common mean mb (Gelman and

Hill 2007), with dispersion matrix Sb, estimated as part

of the solution.

The priors for the covariance matrices (Sb and Se)

are taken to be the inverse Wishart distribution with

scale matrices (L0 and L1) and n0 and n1 degrees of

freedom. In our applications, the scale matricesL0 and

L1 were specified as an identity matrix I and the degrees

of freedom n0 and n1 were set to one more than the

dimension of the matrix (i.e., the total number of pre-

dictors, 8, for Sb and total number stations, 5, for Se)

to induce a uniform prior distribution on the variance

(Gelman and Hill 2007). This choice of conjugate

priors was made for computational convenience

(Gelman 2005). The joint posterior distribution p(u j y)
for the partial-pooling case of the complete parameter

vector u [which includes regression intercepts (ai), slopes

(bi), and covariance (Se)] is derived by defining the

posterior distribution function p(u j y) as follows:
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p(u j y)} P
5

i51
P
n
i

t51

N[yi(t) jai 1biX(t),Se]Inv-Wishart(Se j n1,L1)N(ai j 0, 104)

3N(bi jmb,Sb)N(mb j 0, 104)Inv-Wishart(Sb j n0,L0) . (2)

Here ni is the number of observations at station

i available for fitting the model.

b. No-pooling model

yi,t jai,bi 5ai 1Xtbi 1 «i,t; i5 1, . . . ,5 and

«i,t ;N(0,Se) ,

with priors modeled as

ai;N(0, 104) ,

bi ;MVN(0, 104I), and

Se ; Inv-Wishartn
1
(L1) . (3)

In the no-pooling case, the regression coefficients

bi are allowed to be estimated independently for each

streamflow station. To allow a comparison with the

partial-pooling model, we modeled the covariance struc-

ture of the errors «i,t across the stations. We choose

weakly informative prior distributions (Gelman and

Hill 2007; Gelman et al. 2004) for the model parame-

ters. The priors for ai and bi are taken to be normal

with a mean of zero and a large variance. Similar to the

partial-pooling scheme, the prior distribution for the

covariance matrix Se is taken to be the inverse Wishart

distribution with a scale matrix L1 and n1 degrees of

freedom. The joint posterior likelihood p(u j y) for the
no-pooling case is given as follows:

p(u j y)} P
5

i51
P
n
i

t51

N[yi(t) jai 1biX(t),Si]Inv-Wishart(Si j n1,L1)N(ai j 0, 104)N(bi j 0, 104I) . (4)

c. Full-pooling model

yi,t jai, b5ai 1Xtb1 «i,t; i5 1, . . . ,5 and

«i,t ;N(0,Se) ,

with priors modeled as

ai ;N(0, 104) ,

b;N(0, 104), and

Se; Inv-Wishartn
1
(L1) . (5)

The full-pooling model has the regression coefficient

for all stations for a given tree; that is, bi 5 b. The

posterior likelihood p(u j y) is given as follows:

p(u j y)} P
5

i51
P
n
i

t51

N[yi(t) jai 1bX(t),Se]Inv-Wishart(Se j n1,L1)N(ai j 0, 104)N(b j 0, 104) . (6)

As before, the error covariance across stations is esti-

mated. This allows for a consistent model structure across

the three schemes.

For each model, the parameters u are estimated using

WinBUGS (the Windows-based version of Bayesian

inference using Gibbs sampling, Lunn et al. 2000;

Spiegelhalter et al. 1996). WinBUGS employs the Gibbs

sampler, aMarkov chainMonte Carlo (MCMC)method,

for simulating the posterior probability distribution of

the parameters conditional on the current choice of

parameters and the data. The Gibbs sampler sequen-

tially samples one parameter from the conditional dis-

tribution of that parameter relative to the others and

provides an effective sampling-based numerical solution

for parameter estimation (Gilks and Roberts 1995). We

simulated five chains starting from random initial values

for the parameters to verify the convergence of the

posterior distribution based on the shrink factor sug-

gested by Gelman and Rubin (1992). The shrink factor

compares the variance in the sampled parameters within

the chains and across the chains to describe the improve-

ment in the estimates for an increasing number of itera-

tions. Gelman and Rubin suggest running the chains until

the estimated shrink factors are less than 1.1 for all the

parameters. For this application, each chain was run for

a 500-cycle burn in to discard the initial state followed by

15000 simulations of model parameters until the shrink

factor was close to 1. The R2WinBUGS and WinBUGS
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codes with detailed instructions and the relevant data to

implement the above described simulation can be found

at http://water.columbia.edu/education/software/.

4. Results and analysis

The fit of the three models (no pooling, full pooling,

and partial pooling) was compared initially using the

Bayesian deviance statistics, that is, the measure of lack

of fitD, the effective number of parameters pD, and the

deviance information criteria (DIC) computed using the

posterior distributions of the model parameters

(Gelman et al. 2004). The D statistic defined as D5
22 logp(y j u) is a measure of the model’s lack of fit,

expressed as a negative factor multiplied by the log

likelihood averaged over the posterior samples of the

data given the model and its parameters. Lower D in-

dicates better model fit. For the no-pooling, full-pooling,

and the partial-pooling models, the D values are 107,

113, and 94, respectively. Similarly, the pD (defined as

D 2 D̂), a measure of the effective number of parame-

ters in the model for the no-pooling, full-pooling, and

partial-pooling models are 60, 28, and 45, respectively.

For the no-pooling and full-pooling cases the number of

model parameters can easily be estimated from the

model fit. For example, in the no-pooling case, the

model has 5 regression intercepts, 40 (5 stations 3
8 chronologies) regression coefficients or slopes, and 15

variance–covariance terms. Note that D̂ is similar to

D but is a point estimate computed on the parameter

means. The reduction in pD for the partial-pooling

model is seen as a result of pooling of information in the

multilevel structure. Finally, DIC (5D 1 pD) provides

an assessment of the model predictive skill. Smaller

values of the DIC indicate better estimated predictive

capacity of the model. The DIC of the no-pooling, full-

pooling, and partial-pooling models are 169, 141, and

139, indicating that the partial-pooling HBR model has

better predictive capacity compared to the no-pooling

or full-pooling regression models. A detailed discussion

on the Bayesian deviance statistics can be found in

Gelman et al. (2004).

a. Comparison of regression parameters
and the reconstructed flows

The posterior probability distributions of the regres-

sion slope parameter vector (i.e., bi) for the five stream-

flow stations from the no-pooling, full-pooling, and

partial-pooling models for the Tsuga canadensis species

are illustrated in Fig. 3. The posterior distributions of the

FIG. 3. Boxplots of the posterior distribution of the regression coefficients (i.e.,bi) from the full-pooling, no-pooling, and partial-pooling

models for MH(1) species (Tsuga canadensis) for all stations: (left) diagonal covariance matrix for residuals and (right) full covariance

matrix for residuals. The interquartile range across the stations for each model scheme is shows as a horizontal line (solid for partial

pooling, and dashed for no pooling).
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regression coefficients under two model schemes (with

correlated errors and without correlated errors) are

shown in separate plots. In each subset, the first column

corresponds to the regression coefficient for the full-

pooling case, where all stations have the same coefficient.

This is followed by the boxplots of the regression co-

efficients for the five stations under no pooling and

the five stations under partial pooling. The results for

uncorrelated residuals are presented in Fig. 3a and for the

case where the covariance matrix is modeled are pre-

sented in Fig. 3b. The interquartile range (IQR) from the

full-pooling, no-pooling, and partial-pooling models for

the estimated bi is shown in Table 3. Note that the in-

terquartile range across the bi for a particular tree

shrinks substantially across the sites for the partial-

pooling case relative to no pooling. Also, the IQR in-

creases for the full-pooling and partial-pooling models

as the correlation of the residuals is estimated, as ex-

pected given the additional parameters to be estimated.

The reduction in variance of the regression coeffi-

cients in turn leads to a reduction in the uncertainty in

the streamflow estimates. An examination of the corre-

lation structure resulting from the posterior distribution

from the no-pooling, full-pooling, and partial-pooling

models of the resulting yi(t) indicated the need for

modeling the full 5 3 5 covariance matrix Se. The un-

certainty in estimating the coefficients is larger for the

partial-pooling case where the covariance is modeled

explicitly, but still less than for the no-pooling case.

Subsequent results are presented only for the case where

the full covariance matrix is modeled.

A boxplot of the posterior distribution of the mean

of the vector of regression coefficients across sites (i.e.,

mb) for each tree species from the joint normal distri-

bution is shown in Fig. 4. Most of the chronologies [ex-

cept the tree rings from the MH(2) (Tsuga canadensis)

chronology] have positive coefficients. Given the high

correlation in the chronologies of the tree species [0.8

for MH(1) and MH(2)], the coefficients are expected to

be negatively correlated. The off-diagonal elements in

the estimatedSb are typically small, suggesting that even

though the tree-ring chronologies are correlated with

each other, the correlation of the mb is weak.

The posterior probability distributions of the recon-

structed flows from the no-pooling approach and the

partial-pooling approach for the Roundout and Can-

onsville stations during the period 1754–2000 are com-

pared in Fig. 5. For the sake of brevity, all subsequent

results are presented for only the no-pooling and partial-

pooling models, with results from the full-pooling model

discussed only where appropriate. Predicting or extra-

polating data back in time using the tree-ring indices may

be associated with a larger uncertainty due to potential

extrapolation of the fitted data. From a comparison of the

uncertainty bands (5th and 95th percentiles) in Fig. 5, we

can see that the partial-pooling HBR approach results in

a modest reduction in uncertainty in estimating the pos-

terior distribution of the flows. This can be also be seen

from Fig. 5c, which shows the boxplot of the width (i.e.,

the difference of the 95th percentile and the 5th percen-

tile) for the 247 years from the no-pooling and partial-

pooling models. The reduction in uncertainty is similar

for other stations.

The correlation of flow across streamflow stations is

also estimated from the posterior distribution of the

flows. The observed correlation between stations ranged

between 0.92 (for Neversink and Roundout) and 0.74

(for Neversink and Canonsville). The median correla-

tion between Neversink and Roundout estimated from

the 1000 posterior draws is 0.89 with the interquartile

range between 0.88 and 0.93. Similarly, the median of

the correlation between Neversink and Canonsville esti-

mated from the 1000 posterior draws is 0.72 with the

interquartile range between 0.65 and 0.79. Results for

other stations are similar. In the next section, we present

the results from cross-validation over varying calibra-

tion periods using performance statistics common to

the tree-ring reconstruction literature.

b. Validation tests under varying calibration periods

We used two performance metrics, reduction of error

(RE) and coefficient of efficiency (CE), as measures of

model performance to compare the reconstructed pos-

terior mean of the streamflow estimates with the actual

streamflow data. Thesemetrics were estimated using the

leave-m-out cross-validation method. The procedure is

carried out by leaving out m randomly selected data

points from the observational dataset for validation, and

the model is developed using the remaining (n 2 m)

observations (n is the total number of observational data

points). This process is repeated several times to obtain

an ensemble of validation metrics resulting from each

randomly selected model. We used the 50-yr (1950–99)

common data period across all streamflow stations for

this purpose. The cross-validation approach taken was

to draw a sample of size 40 from the 50-yr common re-

cord without replacement and fit the Bayesian model on

this dataset: then predictions were made on the 10 ob-

servations that were left out. This procedure was re-

peated 50 times to compute the validation statistics.

Note that analysts who fit Bayesian models are typically

interested in the coverage rates (discussed later), un-

certainty levels, and model checking using the poste-

rior draws. However, we include comparisons across

the cross-validated statistics here so that traditional

tree-ring analysts who use such a procedure are given
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TABLE 3. Interquartile ranges for the regression coefficients (i.e., bi) from both model schemes.

No correlation in errors Correlation in errors

Reservoir

MH(1)

Full pool No pool Partial pool Full pool No pool Partial pool

Schoharie 0.45 1.10 0.62 0.83 1.05 0.93

Neversink 0.88 0.60 0.86 0.82

Roundout 1.06 0.62 0.96 0.89

Canonsville 1.13 0.69 0.99 0.94

Pepacton 0.94 0.62 0.90 0.88

MWO

Full pool No pool Partial pool Full pool No pool Partial pool

Schoharie 0.43 0.99 0.65 0.76 1.04 0.87

Neversink 0.96 0.60 0.85 0.74

Roundout 1.11 0.62 0.99 0.86

Canonsville 1.04 0.64 0.97 0.83

Pepacton 0.96 0.61 0.95 0.78

MH(2)

Full pool No pool Partial pool Full pool No pool Partial pool

Schoharie 0.54 1.16 0.66 0.90 0.91 0.93

Neversink 1.01 0.66 0.75 0.88

Roundout 1.24 0.66 0.95 0.94

Canonsville 1.28 0.73 0.95 0.99

Pepacton 1.18 0.69 0.89 0.93

MSB

Full pool No pool Partial pool Full pool No pool Partial pool

Schoharie 0.20 0.43 0.34 0.31 0.43 0.41

Neversink 0.39 0.31 0.35 0.34

Roundout 0.46 0.35 0.44 0.38

Canonsville 0.45 0.38 0.42 0.40

Pepacton 0.42 0.35 0.35 0.39

MPP

Full pool No pool Partial pool Full pool No pool Partial pool

Schoharie 0.18 0.38 0.30 0.30 0.36 0.35

Neversink 0.34 0.30 0.32 0.32

Roundout 0.41 0.32 0.39 0.38

Canonsville 0.47 0.36 0.40 0.37

Pepacton 0.41 0.31 0.34 0.31

MoCO

Full pool No pool Partial pool Full pool No pool Partial pool

Schoharie 0.39 0.95 0.64 0.67 1.04 0.77

Neversink 0.86 0.57 0.69 0.72

Roundout 0.94 0.57 0.83 0.81

Canonsville 0.90 0.63 0.90 0.76

Pepacton 0.78 0.55 0.81 0.73

MoTP

Full pool No pool Partial pool Full pool No pool Partial pool

Schoharie 0.27 0.64 0.46 0.49 0.66 0.63

Neversink 0.60 0.44 0.54 0.54

Roundout 0.75 0.46 0.70 0.59

Canonsville 0.79 0.51 0.65 0.57

Pepacton 0.67 0.45 0.58 0.56
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a benchmark consistent with their approach. The entire

Bayesian fitting process is repeated for each sample of

size 40.

The reduction of error is defined as

RE[ 12

2
4�(xi 2 x̂i)

2

�(xi 2 xc)
2

3
5 . (7)

In Eq. (7) xi and x̂i are the observed and the predicted

posterior mean of the streamflows (transformed back to

real space by taking antilogs) in year i of the validation

period and xc is the mean of the observational data in

the calibration period (Lorenz 1956; Fritts 1976). RE

ranges from 2‘ to 11 and is similar to the R2 statistic.

RE . 0 indicates that the reconstructed streamflow

contains useful information not contained in the cali-

bration period. Similarly, RE , 0 indicates that the

reconstructions are poorer than climatology; that is,

the reconstructions are not better than the mean flows

in the calibration period. The coefficient of efficiency is

defined as

CE[ 12

2
4�(xi 2 x̂i)

2

�(xi 2 xn)
2

3
5 . (8)

In Eq. (8) xi and x̂i are the observed and the predicted

streamflows in year i of the validation period, and xn
is the mean of the observational data in the validation

period. CE , 0 indicates that the reconstructions are

poorer than validation climatology; that is, the recon-

structions are not better than the mean flows in the

validation period. CE is similar to RE, but used as a

measure to evaluate the model under the validation

period, as it is a more rigorous metric. For more details

on the CE and RE, see Cook et al. (1999) and Fritts

(1976).

The results for RE and CE performance under cross-

validation for both no pooling and partial pooling for

each station are shown in Fig. 6. We observe that un-

der most calibration periods, both the no-pooling and

partial-pooling methods show RE and CE greater than

zero, indicating that the reconstructed streamflows (from

both methods) contain useful information not con-

tained in the calibration period. Further, we also ob-

serve that, on average, the RE and CE across all the

validation periods from the partial-pooling HBRmethod

is comparable to or better than the no-pooling method

for the stations. The improved average metrics for the

HBR method reflect the reduction in the uncertainties

in estimating the model parameter and the resulting

flows. A comparison of the average bias and variance of

the estimates from both the no-pooling and partial-

pooling methods showed that the reduction in average

error for the partial-pooling method is primarily due to

a lower parameter variance.

In addition to computing the cross-validated RE and

CE, the performance of the posterior probability dis-

tribution is assessed by examining the model’s ability

TABLE 3. (Continued)

No correlation in errors Correlation in errors

Reservoir

MiCO

Full pool No pool Partial pool Full pool No pool Partial pool

Schoharie 0.31 0.74 0.55 0.62 0.83 0.66

Neversink 0.66 0.49 0.65 0.56

Roundout 0.81 0.54 0.73 0.63

Canonsville 0.88 0.57 0.75 0.65

Pepacton 0.78 0.52 0.65 0.61

FIG. 4. Boxplots of the mb coefficients from the partial pooling

hierarchical Bayesian regression model. MH(1) and MH(2) are

strongly correlated series.
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to cover the observed flows within a specified credible

interval. Here, we estimated the coverage rates (Li el al.

2010) for the 90% credible intervals for the validation

periods for both the models. For each validation pe-

riod, we count the number of failures or the number of

observations (during the validation period) that are

outside the 5th and 95th percentile of the posterior

distribution resulting from the model developed using

the remaining years as calibration for each station.

Henceforth by computing the total number of failures

from all the randomly selected models, we estimated the

coverage rate as the percentage of failures in the total

of 500 (50 3 10 years) samples. The average coverage

rate across the stations is approximately 92% for the

no-pooling model and 91.5% for the partial-pooling

model, indicating the robustness of the fitted Bayesian

models.

From the above results, we see that the performance

of the partial-pooling HBR method for streamflow re-

constructions of the Delaware River is comparable to

or better than the no-pooling traditional regression

method. In the next section, we use simulations of

the reconstructed streamflow for regional drought

characterization.

FIG. 5. JJA reconstructed seasonal average streamflow for the Roundout and Canonsville stations from (a) no-pooling traditional

regression and (b) partial-pooling hierarchical Bayesian regression, along with the uncertainty bands that represent the 5th and

95th percentile flows. (c) The boxplots of the in the width of the uncertainty bands (95th percentile 2 5th percentile) for the two

models.
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5. Drought characterization based on
reconstructed streamflows

The drought of record in the region is the one from

the early to mid 1960s (Namias 1966, 1967). A similar

drought could cause severe stress on regional water re-

sources, given the increased population and services

today. Subsequent moderate droughts have led to water

restrictions in the region due to reduced reservoir stor-

ages (NYCDEP 2011). In this section, we attempt to

1) characterize the duration and severity of the 1960s

drought along with its return periods and 2) investigate

for any changes/trends in the extreme drought events

using the reconstructed streamflow from the general

partial pooling model.

a. Quantifying the duration and severity of droughts

We define a drought as an event during which the

streamflow is continuously below a certain level. A

schematic representation (based on historical data for

the Canonsville station) of the drought statistics is

shown in Fig. 7. For a selected threshold (90% of mean

observed summer flows here), a drought event is de-

fined as the sequence of years that are under the

threshold with event duration defined as the numbers

of years the flow is continuously below the threshold.

The magnitude or the severity is the cumulative deficit

over the drought duration estimated as the area under

the curve below the threshold. The number of historical

drought events and their severity for the Canonsville

station is shown in Fig. 7b. The 1960s drought is seen

to be the most severe in terms of duration (5 yr) and

severity (a cumulative deficit of 132 3 106m3). Hence,

purely based on the historical record, the return period

of this drought event is approximately 1 in 54.

b. Quantifying the duration and severity of
droughts based on reconstructed flows

We used the posterior probability distribution of the

247-yr-long reconstructed streamflow records condi-

tioned on tree-ring data to quantify the duration and

severity of droughts greater than or equal to the 1960s

drought in the historical record for each station. For

example, for the Canonsville station the 1960s drought

with a severity of 132 3 106m3—we identify all events

that are more severe in terms of duration and severity in

each simulation of length 247 years from the posterior

probability distribution of the model. The return period

of drought severity can then be estimated from the

number of such events in a 247-yr simulation. One

thousand realizations, each of length 247yr, were gener-

ated from the posterior distribution and the number of

events that exceed the duration and severity of the

FIG. 6. Boxplots of (a) reduction of error (RE) and (b) coefficient

of efficiency (CE) for the 50 randomly selected cross-validation

cases.
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1960s drought at each streamflow station was counted

for each realization. The results from the partial-pooling

model for the exceedance attributes of the severity and

duration of the 1960s drought are shown in Fig. 8. From

Fig. 8a we see that the median return period of the

1960s drought is around 80 yr for the region with an

interquartile range between 50 and 125 yr. However,

we also see that the return periods for the Neversink

and the Roundout stations, which have small drainage

areas, are lower than the regional median. To under-

stand the correlated nature of these droughts, in Fig. 8b

we show the histograms of the number of stations that

are simultaneously under drought from all the simula-

tions. We observe that most commonly all five stations

are under drought. However, Neversink experiences

more frequent droughts of the 1960s severity and duration

and corresponds to the case where there is a lone station

under drought. Further, the number of simulations that

FIG. 7. (top) Schematic representation of the duration and severity of drought and (bottom)

drought events based on a selected threshold of 90% of the average streamflow in the historical

streamflow data record of 50 years for the Canonsville station.
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indicate an exceedance of the 1960s drought for Can-

onsville over the paleoreconstructed record is illus-

trated in Fig. 8c. Note that each bar (showing the total

number of posterior draws per year that indicate the

drought) corresponds to the year in which the simu-

lated drought ends. A cluster of these years, as in 1965–

70, indicates a high probability of such a drought. The

1960s period is striking in this regard. However, it is

within the fitting sample and, hence, is expected to be

more prominent. The years 1912–14, 1850s–60s, 1790–

1810, and the 1770s appear to be other periods of in-

terest. Similar observations were also made by Pederson

et al. in theNortheast region. The simulations provide the

ability to also analyze reservoir fill and drain proba-

bilities as a function of drought intermittence and re-

currence. Bayesian regime and changepoint analysis

models integrated with the reconstruction model could

also be employed to inform reservoir and drought man-

agement policies.

c. Trend analysis to detect changes in drought events

The analysis presented thus far attempted to analyze

the probability of occurrence of the 1960s drought

using the long run simulations of reconstructed stream-

flow for each station. In this section, we assess mono-

tonic trends in the joint drought events from the 1000

posterior draws that exceed the 1960s drought thresh-

old level using theMann–Kendall nonparametric trend

tests (Mann 1945; Helsel and Hirsch 1992). The Mann–

Kendall test is a rank-based test that is typically used

for detecting trends in extremes with no assumption

of the underlying distribution of the data (Helsel and

Hirsch 1992). For each posterior draw of streamflow,

we identify the drought events in the 247-yr simulation

with a duration and severity greater than the target

duration and severity, and apply the Mann–Kendall

trend test for monotonic increase or decrease in the in-

cidence of these historical drought events. The incidence

FIG. 8. (a) Boxplots of the return period of the 1960s drought identified for the five stations from the 1000 simulations of the partial-

pooling model; (b) histogram of the number of stations that are simultaneously under drought; and (c) time series marking Canonsville

droughts with duration and severity greater than 1960s drought from posterior simulations, marked at the end of each drought.
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is recorded as a binary variable (1 for exceedance, 0 for

nonexceedance). Results show that the slope (tau) from

the test as percentiles across the 1000 simulations ranges

from 20.2 to 0.2, suggesting that there is little evidence

for a monotonic trend in the incidence of droughts for

the target threshold.

6. Discussion and summary

A restricted goal of our hierarchical Bayesian model

for streamflow reconstruction was to consider 1) the

use of processed tree-ring chronologies as the primary

predictors; 2) all chronologies of the common length;

3) no expectation–maximization (Dempster et al. 1977;

Schneider 2001) or similar algorithm for imputation

of predictors or response variables, that is, full record

lengths; 4) no exogenous predictors for streamflow

such as drainage area; and 5) no consideration of the

spatial structure on the river drainage network.

We were interested in seeing whether partial pool-

ing through hierarchical Bayesian regression (HBR)

offered 1) reductions in uncertainty over the relatively

short lengths of time series available in the Delaware

basin for a small number of streamflow stations for rel-

atively small drainage area basins, 2) insights on how

best to pool (or share information about the regression

coefficients) across streamflow stations or trees, and 3)

an ability to model multivariate correlations across sites

and trees. These questions were explored with the Del-

aware application, with the idea that we would even-

tually build a HBR model that considers the entire

reconstruction process more generally, relaxing the re-

strictions imposed here. For example, as in Lima and

Lall (2010), one can easily extend the model to consider

exogenous predictors for the slopes and intercepts and

to link different levels together. Intuitively, such an ap-

proach is advantageous compared to some traditional

applications where, for instance, only the conditional

mean of one modeling step (e.g., tree-ring chronology

processing) is used as ‘‘data’’ for the next modeling step

(e.g., flow reconstruction). Extensions of this model to

explore whether there are cyclical patterns (e.g., re-

lated to the North Atlantic Oscillation or other low-

frequency climate modes) or hidden states may allow

further investigation of the drought onset and with-

drawal as part of system operation. So far, very few

such models have been pursued for this application. In-

tegration of models such as the wavelet autoregressive

models presented in Kwon et al. (2007) would be of

interest in this regard.

A relatively simple HBR model structure was con-

sequently used and justified in the application. We

found partial pooling across stations for a particular tree

species, and modeling the correlation of residuals across

streamflow stations to be best for this dataset. This is

also consistent with the biological and climate intuition

of tree-ring specialists and hydrologists. Comparisons

with traditional models in our preliminary work (not

reported here) showed that the HBR is competitive or

superior in terms of the validation statistics typically

used by paleoclimate modelers. We are able to see the

effectiveness of the HBR under partial pooling to de-

liver reduced uncertainty in reconstruction and im-

proved cross-validation performance statistics, as well

as provide ways to assess the joint probability distri-

bution of drought severity and duration and its un-

certainty. Such information is important both in terms

of adding value from long records and in terms of

developing precision in the return period estimates.

Finally, nonstationarity in drought incidence was ex-

plored for the longer record using simulations from the

posterior density of the reconstructed flows and the

conclusion was that the evidence for monotonic trend

was not statistically significant. The implications for

water resource managers are that, at least for now, 1)

drought planning and management could use the in-

formation from the historical and paleoreconstructions

for the dry period in each year, 2) the return periods

of droughts of different severity and duration can be

estimated, including its uncertainty, and 3) synthetic

streamflow sequences for summer period inflows into

the reservoir system can be developed to explore the

risk implications for different drought sequences.
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