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Abstract

To provide high performance at practical power levels, tomorrow’s chips will have to
consist primarily of application-speci�c logic that is only powered on when needed.�is
paper discusses synthesizing such logic from the functional language Haskell.�e pro-
posed approach, which consists of rewriting steps that ultimately dismantle the source
program into a simple dialect that enables a syntax-directed translation to hardware,
enables aggressive parallelization and the synthesis of application-speci�c distributed
memory systems. Transformations include scheduling arithmetic operations onto spe-
ci�c data paths, replacing recursionwith iteration, and improving data locality by inlining
recursive types. A compiler based on these principles is under development.
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Most of us can remember a world in which transistor speed limited chip performance
and waiting a year would bring bigger, faster chips with comparable prices and power

consumption, thanks to Moore’s Law [15] and Dennard scaling [8]. �is world has gone,
causing signi�cant changes in how we must design and use the chips of the future.

Power dissipation now limits chip performance. While the future promises chips with
more, faster transistors, running all these transistors at maximum speed would produce more
heat than practical cooling methods could dissipate. Intel’s chips with Turbo Boost [4] are a
harbinger of this: they are normally underclocked to respect thermal limits, but a core can
run brie�y at full speed.

My group at Columbia, and other adherents of the “Dark Silicon” movement [22, 9],
believe that to achieve decent performance at reasonable power levels, future chips will have
to consist mostly of application-speci�c logic that is only activated when needed.

To improve performance per watt, designers today employ multicores: arrays of tens
or hundreds of modestly sized processor cores on a single die. Pollack’s law [19] justi�es
them: doubling uniprocessor performance generally requires four times the transistors; the
performance of a multicore should almost double with only twice the transistors.

But multicores are at best a temporary �x. Ignoring for the moment the myriad di�culties
of programming them, implementing shared memory for hundreds of cores, and Amdahl’s
law [1], the bene�ts of multicores will diminish over time because fewer and fewer of them
will be able to be powered on at any time. Again, Intel’s Turbo Boost portends this trend.

Future chips will have to consist mostly of heterogeneous application-speci�c logic syn-
thesized from high-level speci�cations (i.e., not simply copies of a single block or standard
blocks written by others) if they are to achieve decent performance at reasonable power levels.
Specialization will be mandatory: if at any one time we can only ever use a small fraction
of a chip’s transistors, they had better be doing as much useful work as possible. Future
designs should minimize the number of logical transitions required to complete a task, not
just maximize the number of operations per second.

In this paper, I describe the beginnings of a tool to synthesize e�cient hardware from
algorithms expressed in the functional language Haskell. �is should enable designers to
quickly design the application-speci�c logic needed for tomorrow’s vast, dark chips.

Swanson and Taylor’s Conservation Cores [22] arose from similar goals. �eir tools
identify and extract “energy-intensive code regions,” synthesize each into a specialized o�oad
engine, then patch the original code to invoke the engines at the appropriate time.

�ey connect each of their cores directly to the host processor’s data cache, a key architec-
tural choice with many implications. Simplicity is the main advantage: each core uses the
same address calculations as the original code and no explicit data transfer between processor
and engine is necessary. However, it also inhibits any performance gains from improving
the data memory hierarchy. For example, their optimized code reads and writes the same
sequence of data as the processor would.�us, they e�ectively specialize only the datapath
and instruction fetch and decode logic, not the data memory system.



In contrast to the Conservation Cores project, a central goal of our project is to exploit
opportunities for specializing data memory systems.�e large fraction of power consumed
by today’s memory systems is one motivation: Dally et al. [6] found in one risc processor,
communication of data and instructions consumed 70% of the total chip power. Clock and
control accounted for 24%, and arithmetic, the “real” computation, was only 6%.�e standard
�at memory model also impedes programs from taking full advantage of data locality. Caches
attempt to harness whatever locality happens to be in the program, but it is di�cult to write a
truly cache-aware program. Finally, parallel emulation of the �at model has led to absurdities
such as weak memory consistency.
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To make progress, future programs will have to be exposed to the physical reality of com-
plex, distributed memory systems and higher-level languages will have to conceal even more
implementation details to deliver reasonable programmer productivity. It falls to compilers
to span this growing gap, as depicted in the �gure above. But the exact structure of the gap is
not yet clear. Language design moves slowly and unpredictably since programmers’ reactions
to any new advance can be as important as any underlying mathematics, so prognosticating
on potential programming paradigms is perilous. At the same time, what physical realities to
expose is also unclear and the subject of ongoing research [17].
1 Functional Programs to Hardware
�e dark arrow above represents our project: a compiler that synthesizes digital logic for �eld-
programmable gate arrays—fpgas—from the Haskell functional language.�is is intended
as a step towards building tomorrow’s heterogeneous, specialized chips. While neither today’s
functional languages nor today’s programmable hardware are ideal solutions, both have
properties that make them excellent research platforms for exploring the way forward.

Starting from a pure (side-e�ect-free) functional language solves many key problems. It is
inherently deterministic, freeing us from data-dependent races and deadlocks.�e immutable
memory model sidesteps the shared memory consistency problem, opening opportunities
to improve data locality through duplication. It is inherently parallel since the underlying
model, the lambda calculus, admits a wide variety of evaluation policies, including parallel



ones. Also compelling are the sophisticated compiler optimizations that have been developed
for functional languages. While the simple mathematical formalism helps, the absence of
side-e�ects, pointer aliasing, and related problems is the real enabler.

Modern fpgas have heterogeneous, distributed, con�gurable on-chip memory and do
not constrain us to legacy architectures. While the on-chip memory of existing fpgas is
modest, its structure is representative of the heterogeneous, distributedmemories expected on
future parallel processors. Furthermore, fpgas’ extreme �exibility avoids the biases present in
today’s parallel computers. In particular, fpgas do not mandate a speci�c instruction set and
instead permit arbitrary control strategies, ranging from a classical stored-program computer
to completely hardwired.

�is work targets irregular algorithms, not the well-studied high-performance scienti�c
or graphics workloads. Instead, the goal is algorithms similar to those of the Galois project:
“data-parallel irregular applications” that “manipulate large pointer-based data structures
like graphs” [14]. Galois even appears to be adopting aspects of the functional style: their
“optimistic iterators” are equivalent to themap and fold functions present in every functional
language.

Our choice of Haskell was due in part to the availability of the open-source Glasgow
Haskell Compiler (ghc), a sophisticated yet reasonably well-documented piece of so�ware.
We were also attracted by its purity (unlike, say, programs in OCaml or Standard ML, Haskell
programs have no side-e�ects) and its type system, both of which have attracted others [16].
We are, however, treating Haskell as being applicative (strict) instead of adopting its lazy
semantics, which seem like they would demand excessive bookkeeping overhead in hardware.

We compile Haskell into hardware by expressing the program in a functional intermediate
representation then transforming it into successively more restricted forms until a syntax-
directed translation su�ces to generate reasonable hardware. Reynolds took such an approach
in his classic 1972 paper [20], in which he shows how to express a lisp interpreter in lisp. At
�rst this seems unhelpfully circular, but Reynolds proceeds to transform the interpreter into
a simple dialect of lisp that is easy to implement. We take a similar approach to generating
hardware by dismantling features such as lambda expressions and recursion into simpler
forms that are semantically equivalent.

We employ ghc’s core intermediate representation [13], which consists of the lambda
calculus augmented with literals, primitive operations, data constructors, and case expressions.
It is powerful enough to represent all of Haskell a�er some desugaring by the ghc front end,
yet consists of only six constructs.

In the remainder of this paper, we demonstrate these ideas through a series of examples.
�e �rst shows how Haskell’s algebraic datatypes can be implemented in hardware, a corner-
stone of later techniques. Next, we demonstrate how an arithmetic-intensive algorithm can
be transformed into e�cient hardware, how to transform recursion into easy-to-implement
iteration by adding an explicit stack, and how inlining code and recursive types can improve
parallelism and locality.



2 Implementing Algebraic Datatypes in Hardware
Interesting algorithms demand interesting data types. While it is possible to do everything
with just bytes, programmers have long relied on aggregate types and pointers to make sense
of complexity. Providing only integers and arrays, as is o�en done in traditional hardware
description languages, is not enough.

Synthesizing hardware specialized for abstract data types is a central goal of this project.
�e additional �exibility this provides the compiler should enable more optimizations than
if, say, the type system only provided bit vectors and arrays, as is typical of most hardware
description languages.

Modern functional languages provide recursive algebraic data types, a uni�cation of
aggregate and enumerated types. First introduced in 1980 [3], they provide an elegant, abstract
means of structuring virtually every kind of data, and are well-suited to expressing data in
custom hardware. In particular, they provide a high-level memory abstraction that gives a
compiler far more �exibility in choosing (and optimizing) their implementation.

An algebraic data type consists of a set of variants. Each variant has a name (data
constructor)—analogous to a name in an enumerated type—and zero or more data types
associated with that variant. A basic example is a singly-linked list of integers: a list is either
the empty list (“Nil”) or a cell (“Cons”) consisting of an integer and the rest of the list. In
Haskell, such a type can be expressed as follows.

data IntList = Cons Int IntList
| Nil

Under this de�nition, “Nil” is the empty list, “Cons 42 Nil” is the list consisting of just
“42,” “Cons 42 (Cons 17 Nil)” is the list consisting of “42” followed by “17,” and so forth.

Custom hardware is not subject to the tyranny of the byte, so we have a lot of �exibility in
how we can encode such objects. We can even consider using a variety of representations:
one for manipulation in a datapath, another for memory.

IntList

01323348
1 Consintpointer
0 Nil

�e �gure above shows one way to encode a single IntList object as a 49-bit vector.�e
least signi�cant bit indicates the variant, i.e., whether the object is a Nil or a Cons cell (unlike
a C union, it is always necessary for an algebraic data type to encode which variant is being
represented). A zero indicates the object is a Nil and the rest of the bits are don’t-cares. A one
indicates the object is a Cons cell, the next thirty-two bits represent the integer, and the �nal
sixteen represent a pointer to the next element of the list.

Choosing the size and interpretation of the pointer raises interesting questions. A
processor-like solution is to represent all pointers uniformly, following the �ction of memory



as a uniform array of bytes, but hardware has no such constraint. Instead, segregating IntList
objects into a special, dedicated memory may be wiser.�is enables a type-speci�c caching
strategy (I assume any type-speci�c local memory would be backed by much larger o�-chip
memory) and simpler memory management since all objects are of the same type. Finally,
the number of bits used to represent a pointer to an IntList can be minimized based on an
estimated bound on the maximum number of active IntList objects at runtime.

We have �exibility in storing “Nil” objects. Since they are all identical, it is unnecessary
to store more than one in memory, so the IntList memory manager could always direct them
to the same address. It could go even farther and simply never store Nil objects in memory,
instead reserving a speci�c pointer value (e.g., zero) to represent the Nil object.

Another algebraic data type poster child is the binary tree:

data IntTree = Branch IntTree IntTree | Leaf Int

IntTree

01161732
0 Branchpointerpointer
1 Leafint

�e meaning of these bits vary depending on the variant being represented.�e �rst bit
distinguishes leaves from branches; the remaining thirty-two either represent a single integer
or a pair of pointers.

As with the IntList type above, there is a choice of how many bits to use for the pointers,
which can depend on the maximum number of such objects at runtime. Again, it would
be natural to dedicate a memory system to such objects, using a type-speci�c memory
management scheme.

Distinguishing variants (e.g., Cons vs. Nil) is straightforward when there are only two,
but there is more �exibility as the number grows. A binary encoding is the most compact,
but other encodings, such as one-hot, can lead to simpler datapath logic since it is e�ectively
already decoded. Especially here, it may be better to represent in-memory data di�erently
(e.g., in binary) and add translation logic in the memory controller.

While there is little �exibility in the layout of these examples, more complex objects admit
more alternatives and thus have optimization potential. In particular, how bits are shared
among a type’s variants can a�ect the size and complexity of the datapath and thus could be
optimized.



3 Arithmetic and Hardware Datapaths
�e ease and elegance of manipulating programs in the functional style motivates using it
to express algorithms destined for hardware. Since the functional style is based on Church’s
lambda calculus [5], transforming such programs looks like elementary algebra.�e referential
transparency of the lambda calculus enables this: an expression means exactly its value and
nothingmore, renderingmoot the problems of unexpected aliases and side-e�ects that bedevil
imperative language compilers.

As an illustration, consider a well-worn example from the high-level synthesis litera-
ture [18]: a numerical solver for the di�erential equation y′′ + 5xy′ + 3y = 0. Introducing
u = y′ gives u′ = −5xu − 3y and y′ = u; applying Euler’s method gives the algorithm below,
coded in Haskell as a tail-recursive function of �ve arguments.�is integrates from x to a,
stepping by dx, and starting from initial values y and u = y′. Running this algorithm with
integers actually gives nonsensical results, but I will do so anyway for consistency with the
literature.

di�eq a dx x u y =
if x < a then di�eq a dx (x + dx) (u − 5*x*u*dx − 3*y*dx) (y + u*dx) else y

�is is easy to translate into correct hardware. Treating the tail-recursive call as a clock
cycle boundary and asserting the call signal in a cycle where we apply new arguments to the
inputs a, dx, x, u, and y, the circuit below produces the result when done is true.

a

dx

+

x

<

done

u

−

×

×

3

−

×

×

×

5 y

+

×

result

�is single-cycle implementation is correct but uses a lot of multipliers. Mapping a
computation to a resource-constrained datapath is a classical problem in high-level synthesis;
many e�ective techniques for it exist. For example, Paulin et al. consider a two-multiplier
datapath with an adder, subtractor, and comparator [18].�eir schedule below illustrates how
to compute the function using this datapath.
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While devising schedules that minimize, say, the number of required temporary registers
is a nontrivial optimization problem [7], restructuring a functional program according to a
schedule is easy to do in a functional setting.�at it can be expressed as a series of semantics-
preserving transformations is a strong argument for adopting the functional model.

To schedule this function onto a datapath, we need to refactor the function into a sequence
of operations. First, consider decomposing the expressions into a series of simple arithmetic
operations, sequencing them with the familiar let construct:

di�eq a dx x u y =
if x < a then
let pa = u * dx

pb = 5 * x
x1 = x + dx in

let pa = pa * pb
pb = 3 * y in

...

But this is not enough: our goal is to enable a syntax-directed hardware translation yet we
would need to infer the operators in the datapath, the states in the controller, etc. Instead, we
will start with a function that models a datapath with two multipliers, an adder, a subtractor,
and a comparator:

dpath m1 m2 m3 m4 a1 a2 s1 s2 c1 c2 k =
k (m1 * m2) (m3 * m4) (a1 + a2) ( s1 − s2) ( c1 < c2)

Instead of returning its results, this function passes them as arguments to a “continuation”
function k.�is is continuation-passing style [10], and it follows from the let-form shown
above: a let binding is equivalent to applying a lambda expression, that is, “let x = e in f ”
is equivalent to “(λx . f )e”. We can move e back to the le� of f by passing (λx . f ) as an
argument: (λk.k e)(λx . f ).�is is now in continuation-passing style (cps), a form that has
been used to great success in a number of compilers, such sml/nj by Appel [2] and others.



We then decompose the arithmetic expressions into a a series of nested lambda expressions
that use the datapath function to perform the arithmetic.

di�eq a dx x u y =
dpath u dx 5 x x dx 0 0 x a (λpa pb x _ c → if not c then y else
dpath pa pb 3 y 0 0 0 0 0 0 (λpa pb _ _ _ →
dpath u dx dx pb 0 0 u pa 0 0 (λpa pb _ d _ →
dpath 0 0 0 0 y pa d pb 0 0 (λ_ _ s d _ → di�eq a dx x d s ))))

�e di�eq function begins by calling dpath, which passes its result to the �rst continuation
(the �rst λ term).�e call to dpath calculates u ∗ dx, 5 ∗ x, x + dx, and x < a, which are then
bound toma, mb, x, and c.�e subtractor is not needed in this step, so it is passed 0’s and its
result is not bound (indicated by the underline).�e next three lines behave similarly.

While this is a convenient model of the data�ow and sequencing in the hardware we
want, we wish to eliminate the lambda terms, since their implementation in hardware is not
obvious. We proceed by “lambda li�ing” [12]: transforming all the in-scope variables into
formal arguments and then name each of the lambda terms as separate functions.

To illustrate lambda li�ing, consider evaluating a ∗ b + c with amul function in cps form:

mul x y k = k (x * y)
f a b c = mul a b (λt → t + c)

We want to “li�” the lambda term (λt → t + c) into a global function k0. To do this,
we must add c as an argument to k0 since it would otherwise occur free in the body of k0.

mul x y k = k (x + y)
f a b c = mul a b (k0 c)
k0 c t = t + c

Note that the continuation being passed tomul is a partially evaluated function, not the
result of calling k0. Although k0 has two arguments, we are only passing c. Whenmul calls
k, it appends the �nal argument t and thus calls k0 with all its arguments.

Liberally applying this technique to the di�eq example gives the code below, which consists
of four k functions. Note that each has nine or ten arguments, yet only four or �ve are passed
in the continuation.�e dpath function appends the remaining �ve arguments.

k0 a dx x _ _ s d _ = dpath d dx 5 x x dx 0 0 x a (k1 a dx d s)
k1 a dx u y pa pb s _ c = if not c then y else

dpath pa pb 3 y 0 0 0 0 0 0 (k2 a dx s u y)
k2 a dx x u y pa pb _ _ _ = dpath u dx dx pb 0 0 u pa 0 0 (k3 a dx x y)
k3 a dx x y pa pb _ d _ = dpath 0 0 0 0 y pa d pb 0 0 (k0 a dx x )

di�eq a dx x u y = k0 a dx x 0 0 y u False



At this point, we are still passing around partially evaluated functions as arguments, which
is not obvious to do in hardware. To eliminate these, we introduce a type that models the
continuations passed to the dpath function and merge the k functions into a single function
kk that performs the function of the continuation passed to it as an argument.

data Cont = K0 Int Int Int
| K1 Int Int Int Int
| K2 Int Int Int Int Int
| K3 Int Int Int Int

dpath m1 m2 m3 m4 a1 a2 s1 s2 c1 c2 k =
kk k (m1 * m2) (m3 * m4) (a1 + a2) ( s1 − s2) ( c1 < c2)

kk k m1 m2 a s c =
case (k, m1, m2, a , s , c) of
(K0 a dx x ,_ ,_ , s ,d,_) → dpath d dx 5 x x dx 0 0 x a (K1 a dx d s)
(K1 a dx u y,pa,pb,s ,_,c) → if not c then y else

dpath pa pb 3 y 0 0 0 0 0 0 (K2 a dx s u y)
(K2 a dx x u y,pa,pb,_,_,_) → dpath u dx dx pb 0 0 u pa 0 0 (K3 a dx x y)
(K3 a dx x y ,pa,pb,_,d,_) → dpath 0 0 0 0 y pa d pb 0 0 (K0 a dx x )

di�eq a dx x u y = kk (K0 a dx x) 0 0 y u False

Finally, we inline the call to kk in dpath, resulting in a single function that performs the
arithmetic and checks the state (the continuation) before calling itself again.

dpath m1 m2 m3 m4 a1 a2 s1 s2 c1 c2 k =
case (k, m1*m2, m3*m4, a1+a2, s1−s2, c1<c2) of
(K0 a dx x ,_ ,_ , s ,d,_) → dpath d dx 5 x x dx 0 0 x a (K1 a dx d s)
(K1 a dx u y,pa,pb,s ,_,c) → if not c then y else

dpath pa pb 3 y 0 0 0 0 0 0 (K2 a dx s u y)
(K2 a dx x u y,pa,pb,_,_,_) → dpath u dx dx pb 0 0 u pa 0 0 (K3 a dx x y)
(K3 a dx x y ,pa,pb,_,d,_) → dpath 0 0 0 0 y pa d pb 0 0 (K0 a dx x )
di�eq a dx x u y = dpath u dx 5 x x dx 0 0 x a (K1 a dx u y)

�is is now easy to translate into hardware.�e K’s encode control states; the tail calls
represent clock cycle boundaries; the case construct checks the state and generates arguments
to feed to the next call of the function. �e wiring, which may appear complex, follows
directly from the de�nitions and uses of each identi�er.
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4 Recursion and Memory
Recursion is fundamental to functional programs; this section illustrates how it can be
compiled into hardware. Tail recursion, such as that in the previous example, is easy to
implement with �ip-�ops and feedback, but true recursion demands a stack. Fortunately, a
series of rewriting steps like those in the last section also su�ce to transform recursion into
something that is easily implemented in hardware.�is di�ers from the approach of Ghica et
al. [11], which replaces each register in a recursive function with a stack.

To illustrate, consider the usual naïve algorithm for computing Fibonacci numbers.

�b n = case n of
1 → 1
2 → 1
n → �b (n−1) + �b (n−2)

First, consider how the expression “ �b (n−1) + �b (n−2)” would be evaluated in an
imperative setting. Typically, �b (n−1) would be called �rst, the result stored in a temporary,
�b (n−2) would be called, and its result added to the temporary and returned.�e imperative
pseudocode below illustrates this.

tmp = �b (n−1) // Compute �b (n-1)
n1 = tmp
tmp = �b (n−2) // Compute �b (n-2)
n2 = tmp
tmp = n1 + n2 // Compute and return �b (n-1) + �b (n-2)
return tmp

In assembly language, a procedure call is o�en considered to pass control to the statement
following it, but the reality is more complex. It is actually an unconditional jump that passes
the address of the next statement—the return address—to the called routine.�e callee, when



it wants to return, places its result in a mutually agreed-upon location (e.g., a register) and
performs an unconditional jump back to the return address.

In continuation-passing style, “the address of the instruction following the call” is the
continuation passed to the called function, which “returns” by calling this continuation.�e
argument of the continuation is the agreed-upon location for the result.

�is viewmakes it straightforward to transform the recursive�b function into continuation-
passing style. A continuation argument k is added to the function. �e �rst recursive call
is passed a continuation that stores the result before performing the second recursive call,
which is passed a continuation that receives the result, adds it to the previous result, and
“returns” it to the original continuation k by calling it.

�bk n k = case n of
1 → k 1
2 → k 1
n → �bk (n−1) (λn1 → −− Compute �b (n-1)

�bk (n−2) (λn2 → −− Compute �b (n-2)
k (n1 + n2))) −− Compute and return �b (n-1) + �b (n-2)

�b n = �bk n (λx → x)

As before, we next transform the lambda terms into top-level functions named k0, k1,
and k2, being careful to capture live variables as arguments.

�bk n k = case n of
1 → k 1
2 → k 1
n → �bk (n−1) (k1 n k)

k1 n k n1 = �bk (n−2) (k2 n1 k)
k2 n1 k n2 = k (n1 + n2)
k0 x = x
�b n = �bk n k0

�e next step is to merge the k functions and replace passed functions (the continuations)
with a data type, but this time the k passed to �b is passed as part of the new continuations.�is
means the continuation data type needs to be recursive; it e�ectively describes the traditional
stack used to implement recursion.



data Cont = K0
| K1 Int Cont
| K2 Int Cont

�bk n k = case (n,k) of
(1, k) → kk k 1
(2, k) → kk k 1
(n, k) → �bk (n−1) (K1 n k)

kk k a = case (k, a) of
((K1 n k ), n1) → �bk (n−2) (K2 n1 k)
((K2 n1 k ), n2) → kk k (n1 + n2)
(K0, x ) → x

�b n = �bk n K0

To merge the �bk and kk functions, we introduce one more data type that distinguishes
between calls to each.

data Cont = K0 | K1 Int Cont | K2 Int Cont
data Call = Fibk Int Cont −− Recursive call

| KK Cont Int −− Call a continuation

�bk z = case z of
(Fibk 1 k ) → �bk (KK k 1)
(Fibk 2 k ) → �bk (KK k 1)
(Fibk n k ) → �bk (Fibk (n−1) (K1 n k))
(KK (K1 n k) n1) → �bk (Fibk (n−2) (K2 n1 k))
(KK (K2 n1 k) n2) → �bk (KK k (n1 + n2))
(KK K0 x ) → x

�b n = �bk (Fibk n K0)

We need to be able to express the Cont recursive type in hardware. Interpreting it literally
would require an unbounded number of bits, so instead we will take the standard approach of
expressing each self-reference with a pointer and assume the presence of a memory system.

We introduce a new type, CRef—a reference to a Cont object, and two functions—load
and store—that read and write memory. Note that the store function returns a pointer to the
newly created object, which presumes the memory is responsible for its own allocation policy.

As usual, the types e�ectively dictate how we must write the program: where a CRef is
required, we must construct a Cont and pass it to store; load gives us a Cont when we have a
CRef.



load :: CRef → Cont −− Type signatures of memory operations
store :: Cont → CRef
data Cont = K0 | K1 Int CRef | K2 Int CRef
data Call = Fibk Int CRef | KK Cont Int

�bk z = case z of
(Fibk 1 k) → �bk (KK (load k) 1)
(Fibk 2 k) → �bk (KK (load k) 1)
(Fibk n k) → �bk (Fibk (n−1) ( store (K1 n k )))
(KK (K1 n k) n1) → �bk (Fibk (n−2) ( store (K2 n1 k )))
(KK (K2 n1 k) n2) → �bk (KK (load k) (n1 + n2))
(KK K0 x) → x

�b n = �bk (Fibk n ( store K0))

Below is a block diagram illustrating how this can be translated into hardware.�e main
�bk block receives a Call object, which either it or the �b block generates.�e Call include
either a CRef from a call to store, or a Cont from a call to load.�e logic inside the �bkmostly
steers data according to the type of the Call object passed to it; it also computes n-1, n-2, and
n1 + n2.

Memory for the stack is assumed to take one clock cycle: an address and possibly data in
is presented at the end of one cycle and read data (if any) appears in the next.

�e load function is broken into two pieces.�e �rst operates before the clock tick and
uses the CRef to calculate an address for the stack memory.�e second piece, load′, packages
the object by combining the integer from the stack memory with an adjusted CRef ; e�ectively
performing the “pop” operation.

�b

�bk

load

store

mem

load′

Call

do

we
di
a

CRef

CRef

Cont

result

n

Cont



5 Inlining Code and Recursive Types
Since replacing arguments with their values is the central operation in the lambda calculus,
it is not surprising that inlining is the key operation in any optimizing functional language
compiler [13]. Many imperative compilers inline functions, sometimes to reduce the overhead
of recursion [21], but in a functional setting it also subsumes loop unrolling.

Inlining is evenmore useful in hardware, with its abundant available parallelism. Consider
the following fragment of a Hu�man decoder, which walks a binary tree while stepping
through a list of bits.

data HTree = Branch HTree HTree
| Leaf Char

data BitList = Cons Bool BitList
| Nil

decode t hd = case t of
Leaf c → (c , hd) −− Reached a leaf; return the character
Branch l r → case hd of
Cons True tl → decode l tl −− Next bit is 1: follow the le� branch
Cons False tl → decode r tl −− Next bit is 0: follow the right branch

Inlining the function once lets us decode a pair of bits between recursive calls, which can
be interpreted as increasing the amount of work done per clock cycle.

decode t hd = case t of
Leaf c → (c , hd)
Branch l r → case hd of
Cons True tl → case l of −− decode l tl
Leaf c → (c , tl )
Branch ll lr → case tl of
Cons True ttl → decode ll ttl
Cons False ttl → decode lr ttl

Cons False tl → case r of −− decode r tl
Leaf c → (c , tl )
Branch rl rr → case tl of
Cons True ttl → decode rl ttl
Cons False ttl → decode rr ttl

Going one step further, a compiler can inline the recursive HTree and BitList types to
improve data locality.�e algorithm now works on pairs of bits and triplets of tree nodes.�e
logic gets signi�cantly more complicated, and the code below omits a number of corner cases
that would have to be considered in practice, but this is exactly the sort of thing a compiler is
good at worrying about.



data HTree2 = Leaf Char
| BranchBB HTree HTree HTree HTree
| BranchBL HTree HTree Char
| BranchLB Char HTree HTree
| BranchLL Char Char

data BitList2 = Cons2 Bool Bool BitList
| Cons1 Bool BitList
| Nil

decode t hd = case t of
Leaf c → (c , hd)
BranchBB ll lr rl rr → case hd of
Cons2 True True ttl → decode ll ttl
Cons2 True False ttl → decode lr ttl
Cons2 False True ttl → decode rl ttl
Cons2 False False ttl → decode rr ttl

−−may other cases omitted

�is implementation improves locality and reduces memory tra�c by packing more data
into a single “word.” Consider the following layouts for HTree and BitList objects, which
assumes 16-bit pointers for the BitList and 8-bit pointers for the HTree:

BitList

01217
1 Consbpointer
0 Nil

HTree
018916
0 Leafchar
1 Branchpointerpointer

Reading a single bit from the BitList requires an entire word to be fetched from memory;
each HTree object only contains information about a single bit. By contrast, BitList2 and
HTree2 represent pairs of bits. Although each object is bigger (BitList2 is only one bit larger;
HTree2 is twice as large), using them halves the number of memory operations required.

BitList2

01218
1 Consbbpointer
0 Nil

HTree2

02310111819262734
000 Leafchar
001 BranchBBpointerpointerpointerpointer
101 BranchBLpointerpointerchar
011 BranchLBcharpointerpointer
111 BranchLLcharchar



6 Looking Ahead
Our Haskell-to-hardware compiler is a work-in-progress. We are currently automating these
transformations but do not yet have experimental results on their e�cacy.

�e goal of this paper was to introduce through examples our approach to translating
a functional language into hardware: a series of semantics-preserving rewrite steps that
ultimately produce a functional dialect that admits a reasonable syntax-directed translation
into hardware.

One of the challenges this project suggests is a new class of encoding problem: data
representation synthesis. Given a potentially recursive algebraic type, determine one or more
ways to represent it in hardware that leads to small and/or fast hardware for manipulating it.
While mechanical procedures can easily produce correct results, choosing a representation
judiciously can greatly improve the quality of generated hardware. Part of this problem
amounts to the classical �nite-state machine state assignment problem, but it becomes more
complicated when algebraic types that includes scalars and pointers are also considered.

Another challenge that arises in this approach is how much inlining/unrolling of expres-
sions and types to apply. While some work has been done on this for so�ware, the best choices
for hardware will be di�erent because of the abundance of parallelism, the even larger bene�ts
of locality, and the availability of custom datapaths.

Con�guring a distributed memory system and allocating data in it is a central challenge
in this work, yet we have barely touched on it here. Broadly, the challenge is to partition the
memory and data into appropriate-sized chunks and allocate them wisely. It is natural to
place objects of di�erent types into di�erent memories, but this is just a starting point. We
expect this aspect of the project will present many stimulating challenges.
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