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An extensive literature has considered the optimal conduct of monetary policy under the 
assumption of rational (or model-consistent) expectations. This literature has found that it is 
quite important to take account of the effects of the systematic (and hence predictable) compo-
nent of monetary policy on expectations. For example, it is found quite generally that an optimal 
policy commitment differs from the policy that would be chosen through a sequential optimiza-
tion procedure with no advance commitment of future policy. It is also found quite generally 
that optimal policy is history-dependent—a function of past conditions that no longer affect the 
degree to which it would be possible to achieve stabilization aims from the present time onward.1

Both of these conclusions depend critically, however, on the idea that an advance commitment 
of future policy should change people’s expectations at earlier dates. This may lead to the fear that 
analyses that assume rational expectations (RE) exaggerate the degree to which a policy authority 
can rely upon private sector expectations to be shaped by its policy commitments in precisely the 
way that it expects them to be. What if the relation between what a central bank plans to do and 
what the public will expect to happen is not quite so predictable? Might both the case for advance 
commitment of policy and the case for history-dependent policy be considerably weakened under 
a more skeptical view of the precision with which the public’s expectations can be predicted?

One way of relaxing the assumption of rational expectations is to model agents as forecasting 
using an econometric model, the coefficients of which they must estimate using data observed 
prior to some date; sampling error will then result in forecasts that depart somewhat from pre-
cise consistency with the analyst’s model.2 However, selecting a monetary policy rule on the 
basis of its performance under a specific model of “learning” runs the risk of exaggerating the 
degree to which the policy analyst can predict, and hence exploit, the forecasting errors that 
result from a particular way of extrapolating from past observations. One might even conclude 

1 Both points are discussed extensively in Woodford (2003, ch. 7).
2 Examples of monetary policy analysis under assumptions of this kind about private sector expectations include 

Athanasios Orphanides and John C. Williams (2005, 2007) and Vitor Gaspar, Frank Smets, and David Vestin (2006).
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that the optimal policy under learning achieves an outcome better than any possible rational-
expectations equilibrium, by inducing systematic forecasting errors of a kind that happen to 
serve the central bank’s stabilization objectives. But if such a policy were shown to be possible 
under some model of learning considered to be plausible (or even consistent with historical data), 
would it really make sense to conduct policy accordingly, relying on the public to continue mak-
ing precisely the mistakes that the policy is designed to exploit?

It was exactly this kind of assumption of superior knowledge on the part of the policy ana-
lyst that the rational expectations hypothesis was intended to prevent. Yet, as just argued, the 
assumption of RE also implies an extraordinary ability on the part of the policy analyst to predict 
exactly what the public will be expecting when policy is conducted in a particular way. In this 
paper, I propose, instead, an approach to policy analysis that does not assume that the central 
bank can be certain exactly what the public will expect if it chooses to conduct policy in a certain 
way. Yet neither does it neglect the fact that people are likely to catch on, at least to some extent, 
to systematic patterns created by policy, in analyzing the effects of alternative policies. In this 
approach, the policy analyst assumes that private sector expectations should not be too different 
from what her model would predict under the contemplated policy—people are assumed to have 
near-rational expectations (NRE). But it is recognized that a range of different beliefs would all 
qualify as NRE. The central bank (CB) is then advised to choose a policy that would not result 
in too bad an outcome under any NRE, i.e., a robustly optimal policy given the uncertainty about 
private sector expectations.

NRE are given a precise meaning here by specifying a quantitative measure of the degree 
of discrepancy between the private sector beliefs and the those of the central bank; the policy 
analyst entertains the possibility of any probability beliefs on the part of the private sector that 
are not too distant from the bank’s under this (discounted relative entropy) measure. A robustly 
optimal policy is then the solution to a min-max problem, in which the policy analyst chooses a 
policy to minimize the value of her loss function in the case of those distorted beliefs that would 
maximize her expected losses under that policy.

Both this way of specifying the set of contemplated misperceptions and the conception of 
robust policy choice as a min-max problem follow the work of Lars Peter Hansen and Thomas J. 
Sargent (2007b). The robust policy problem considered here has some different elements, how-
ever, from the type of problems generally considered in the work of Hansen and Sargent. Their 
primary interest (as in the engineering literature on robust control) has been in the consequences 
of a policy analyst’s uncertainty about the correctness of her own model of the economy,3 rather 
than about the degree to which the private sector’s expectations will agree with its own. Much 
of the available theory has been developed for cases in which private sector expectations are not 
an issue at all.

Hansen and Sargent (2003; 2007b, ch. 16) do discuss a class of “Stackelberg problems” in 
which a “leader” chooses a policy taking into account not only the optimizing response of the 
“follower” to the policy, but also the fact that the follower optimizes under distorted beliefs (i.e., 
distorted from the point of view of the leader), as a result of the follower’s concern for possible 
model misspecification.4 The problem considered here is similar, except that here the policy 
analyst is worried about the NRE beliefs that would be worst for her own objectives, while in 
the Hansen-Sargent game, the leader anticipates that the follower will act on the basis of the 

3 Of course, I do not mean to minimize the relevance of this kind of uncertainty for practical policy analysis, even 
though I abstract from it here in order to focus on a different issue.

4 Hansen and Sargent also allow for a concern with potential misspecification on the part of the leader, but in the lim-
iting case of their setup in which ϴ = ∞ while θ < ∞, only the follower contemplates that the common “approximating 
model” may be incorrect; the leader regards it as correct, but takes account of the effect on the follower’s behavior of 
the follower’s concern that the model may be incorrect.
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distorted beliefs that would imply the worst outcome for the follower himself.5 Anastasios G. 
Karantounias, Hansen, and Sargent (2007) consider an optimal dynamic fiscal policy problem, 
in which private sector expectations of future policy are a determinant of the effects of policy, as 
here.6 But, again, the concern is with possible misspecification of the policy analyst’s model, and 
since in this case the objective of the policy analyst and the representative private household are 
assumed to be the same, the misspecifications about which both the policy analyst and house-
holds are assumed to be most concerned are the same.

One might think that this difference should not matter in practice, if the policy analyst’s objec-
tive coincides with that of the private sector—as one might think should be the case in an analy-
sis of optimal policy from the standpoint of public welfare. But in the application to monetary 
stabilization policy below, the private sector is not really a single agent, even though I assume 
that all price-setters share the same distorted beliefs. It is not clear that allowing for a concern for 
robustness on the part of individual price-setters would lead to their each optimizing in response 
to common distorted beliefs that coincide with those beliefs under which average expected util-
ity is lowest.

But, more crucially, even in a case where the private sector is made up of identical agents who 
each solve precisely the same problem, the distorted beliefs that matter in the Hansen-Sargent 
analysis are those that result in an equilibrium with the greatest subjective losses from the point 
of view of the private sector. In the problem considered here, instead, the NRE beliefs that matter 
are those that result in an equilibrium with the greatest expected losses under the central bank’s 
probability beliefs. Even if the loss function is identical for the central bank and the private sec-
tor, I assume that it is the policy analyst’s evaluation of expected losses that matters for robust 
policy analysis.

A number of papers have also considered the consequences of a concern for robustness for 
optimal monetary policy using a “new Keynesian” model of the effects of monetary policy simi-
lar to the one assumed below (e.g., Richard Dennis 2007; Kai Leitemo and Ulf Söderstörm 2008; 
Carl E. Walsh 2004).7 Like Hansen, Sargent, and their coauthors, these authors assume that the 
problem is the policy analyst’s doubt about the correctness of her own model, and assume that in 
the policy analyst’s “worst case” analysis, private sector expectations are expected to be based 
on the same alternative model as she fears is correct. These papers also model the class of con-
templated misspecifications differently than is done here, and (in the case of both Dennis and 
Leitemo-Söderström) assume discretionary optimization on the part of the central bank, rather 
than analyzing an optimal policy commitment. Nonetheless, it is interesting to observe some 
qualitative similarities of the conclusions reached by these authors and the ones obtained below 
on the basis of other considerations.8

Section I introduces the policy problem I wish to analyze, defining NRE and a concept of 
robustly optimal policy. Section II then characterizes the robustly optimal policy commitment. 
Section III considers, for comparison, policy in a Markov perfect equilibrium under discretion, 
in order to investigate the degree to which commitment improves policy in the case of NRE.
Section IV concludes.

5 I also consider a different class of possible distorted probability beliefs (Hansen and Sargent allow only for shifts 
in the mean of the conditional distribution of possible values for the disturbances) and use a different measure of the 
degree of distortion of private sector beliefs (relative entropy).

6 See also Justin Svec (2008) for analysis of a similar problem.
7 An early contribution to this literature, Marc P. Giannoni (2002), considers a problem even less closely related to 

the problem treated here. Not only is Giannoni concerned with potential misspecification of the central bank’s model, 
but the policies considered are restricted to parametric families of interest-rate reaction functions.

8 For example, in three of the four cases considered by Leitemo and Söderström (2008), they find that optimizing 
policy will allow less response of inflation to “cost-push” shocks than would occur in the absence of a concern for 
robustness, as is also true here, both under a robustly optimal commitment and in a robust Markov perfect equilibrium.
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I.  Stabilization Policy with Near-Rational  Expectations

Here I develop the general idea sketched above in the context of a specific example, which 
weakens the assumption regarding private sector expectations in the well-known analysis by 
Richard Clarida, Jordi Galí, and Mark Gertler (1999) of optimal monetary policy in response to 
“cost-push shocks.” This example is chosen because the results under the assumption of rational 
expectations will already be familiar to many readers.

A. The Objective of Policy

It is assumed that the central bank can bring about any desired state-contingent evolution of 
inflation πt and of the output gap xt consistent with the aggregate-supply relation

(1)  	 πt  =  κ xt  +  β ​   
  
 E​t πt+1  +  ut ,

where κ > 0, 0 < β < 1, ​ ˆ 
  
 E​t [·] denotes the common (distorted) expectations of the private sector 

(more specifically, of price-setters—I shall call these PS expectations) conditional on the state 
of the world in period t, and ut is an exogenous cost-push shock. The analysis is simplified by 
assuming that all PS agents have common expectations (though these may not be model-con-
sistent); given this, the usual derivation9 of (1) as a log-linear approximation to an equilibrium 
relation implied by optimizing price-setting behavior follows just as under the assumption of RE.

The CB’s policy objective is minimization of a discounted loss function

(2) 	  E−1 ​∑ 
t=0

​ 
 

  ​ ​β t ​ 1 __ 
2
 ​ S ​π ​t​ 2​  +  λ (xt  −  x* )2 T ,

where λ > 0,  x* ≥ 0, and the discount factor β is the same as in (1). Here Et [·] denotes the 
conditional expectation of a variable under the CB beliefs, which the policy analyst treats as 
the “true” probabilities, since the analysis is conducted from the point of view of the CB, which 
wishes to consider the effects of possible alternative policies. (The condition expectation is taken 
with respect to the economy’s state at date − 1, i.e., before the realization of the period zero 
disturbance.) I do not allow for any uncertainty on the part of the CB about the probability 
with which various “objective” states of the world (histories of exogenous disturbances) occur, 
in order to focus on the issue of uncertainty about PS expectations.10 The CB believes that the 
exogenous state ut is drawn independently each period from a normal distribution; specifically, 
it believes that

(3) 	  ut  =  σu wt ,

where wt is distributed i.i.d. N (0, 1). 11 Note that this property of the joint distribution of the {ut } 
is not assumed to be correctly understood by the PS.

I shall suppose that the CB chooses (once and for all, at some initial date) a state-contingent 
policy πt = π(ht ), where ht  ≡  (wt, wt−1 , … ) is the history of realizations of the economy’s exog-
enous state. I assume that commitment of this kind is possible, to the extent that it proves to 

9 See, e.g., Woodford (2003, ch. 3).
10 Thus I abstract here from the main kind of uncertainty considered by Hansen and Sargent (2007b).
11 This notation allows us to consider the effects of variation in the volatility of the cost-push shocks, without chang-

ing the CB beliefs about the probability of different states identified by histories {wt }.
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be desirable; and we shall see that it is desirable to commit in advance to a policy different 
from the one that would be chosen ex post, once any effects of one’s decision on prior inflation 
expectations could be neglected. I also assume that there is no problem for the central bank in 
implementing the state-contingent inflation rate that it has chosen, once a given situation ht is 
reached.12 This is likely to require that someone in the central bank can observe exactly what PS 
inflation expectations are at the time of implementation of the policy (in order to determine the 
nominal interest rate required to bring about a certain rate of inflation);13 I assume uncertainty 
about PS expectations only at the time of selection of the state-contingent policy commitment. 
Note that any such strategy π(·) implies a uniquely defined state-contingent evolution of both 
inflation and the output gap (given PS beliefs), using equation (1), and thus a well-defined value 
for CB expected losses (2).

The analysis is made considerably more tractable if the set of contemplated strategies is fur-
ther restricted. A linear policy is one under which the planned inflation target at each date is a 
linear function of the history of shocks,

(4)  	 πt  =  αt  + ​ ∑ 
j=0

​ 
t

  ​ ​ϕj, t wt−j ,

for some coefficients {αt, ϕj, t } that may be time-varying, but evolve deterministically, rather than 
themselves depending on the history of shocks. Restriction of attention to policies in this class 
has the advantage that a closed-form solution for the worst-case near-rational beliefs is possible, 
as shown in Section II.14 And the optimal policy under RE, characterized by Clarida et al. (1999), 
belongs to this family of policies. In the case of a concern for robustness with respect to near-
rational expectations, the restriction to linear policies is no longer innocuous. But the character-
ization of robustly optimal policy within this class of policies is nonetheless of interest. As we 
shall see, the optimal policy under RE is no longer the optimal choice, even within this restricted 
class of policies, and the coefficients of the robustly optimal linear policy rule provide a conve-
nient parameterization of the ways in which a concern for robustness changes the optimal con-
duct of policy.15 Moreover, the (Markov perfect equilibrium) policy resulting from discretionary 
optimization under RE is also a linear policy. Thus, a consideration of robustly optimal policy 
within this class also suffices to allow us to determine to what extent allowance for departures 
from RE may lead optimal policy to resemble discretionary policy under the RE analysis.

12 Even so, the assumption that the CB commits itself to a state-contingent path for inflation, rather than to a Taylor 
rule or to the satisfaction of some other form of target criterion, is not innocuous. Using this representation of the policy 
commitment would be innocuous in a RE analysis like that of Clarida et al. (1999), since one is effectively choosing 
from among all possible RE equilibria. But here different representations of policy need not always lead to the same set 
of equilibrium allocations being consistent with near-rational expectations. This raises the question of which form of 
policy commitment is most robust to potential departures from rational expectations, a topic to be addressed in future 
work. It should not be assumed that the robustly optimal strategy within this class is necessarily optimal also within 
some broader class of specifications.

13 In general, implementation of a desired state-contingent inflation rate regardless of the nature of (possibly dis-
torted) PS inflation expectations requires the CB to directly monitor and respond to those expectations, as in the 
“expectations-based” approach to implementation proposed by George W. Evans and Seppo Honkapohja (2003).

14 To be precise, what is needed is that the policy be conditionally linear, in the sense defined in (9) below. In the case 
that {ut } evolves in accordance with a more general linear process, rather than being i.i.d., what is needed is conditional 
linearity in the period t innovation, and not necessarily linearity in the disturbance ut , as shown in Woodford (2005).

15 Consideration of the extent to which the robustly optimal policy within a more flexible class of contemplated poli-
cies may differ from the robustly optimal linear policy is an important topic for further study.
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B. Near-Rational Expectations

I turn now to the specification of PS beliefs. These will be described by a probability measure 
over possible paths for the evolution of the exogenous and endogenous variables, which need not 
coincide with that of the policy analyst. I do assume that in each of the equilibria contemplated 
by the policy analyst as possible outcomes under a given policy, the PS is expected to act on 
the basis of a coherent system of probability beliefs that are maintained over time.16 (Thus PS 
conditional probabilities at any date t are determined by Bayesian updating, given the PS prior 
over possible paths and the paths of exogenous and endogenous variables up to that date.) These 
probability beliefs need not correspond, however, to any particular theory about how inflation 
or other variables are determined. The policy analyst neither assumes that the PS believes that 
inflation is determined by a New Keynesian Phillips curve nor that it believes in some other 
theory; the assumption of “near-rationality” is, instead, an assumption about the degree of cor-
respondence between PS probability beliefs (however obtained) and those of the policy analyst 
herself.17

While I do not require the analyst to assume that PS probability beliefs coincide exactly with 
her own, I also do not propose that she should expect them to be completely unlike her own 
calculation of the probabilities of different outcomes. One reasonable kind of conformity to 
demand is to assume that private beliefs be absolutely continuous with respect to the analyst’s 
beliefs, which means that private agents will agree with the analyst about which outcomes have 
zero probability. (More precisely, I shall assume that all contemplated PS beliefs are absolutely 
continuous over finite time intervals, as in Hansen et al. (2006).18) Thus, if policy ensures that 
something always occurs, or that it never occurs, the policy analyst expects the PS to notice this, 
though it may misjudge the probabilities of events that occur with probabilities between zero and 
one.

The assumption of absolute continuity implies that there must exist a scalar-valued “distortion 
factor” mt+1 , a function of the history ht+1 of exogenous states to that point, satisfying

 	  mt+1  ≥  0  a.s.,    Et [mt+1 ]  =  1,

and such that

 	​   ˆ 
   

 E​t [ Xt+1 ] = Et [ mt+1 Xt+1 ]

for any random variable Xt+1.19 In effect, we may suppose that people correctly understand the 
equilibrium mapping from states of the world to outcomes—thus, the function Xt+1 (ht+1 )—even 
if they also do not correctly assign probabilities to states of the world, as would be required for 

16 This differs from the assumption made in analyses of optimal policy with PS “learning,” such as those of 
Orphanides and Williams (2005, 2007) or Gaspar et al. (2006).

17 Under the interpretation taken here, the conventional hypothesis of RE is not an assumption that people “know the 
true model” and correctly solve its equations, but rather an assumption that they have probability beliefs that coincide 
with the analyst’s own calculation of equilibrium outcomes. This coincidence might be thought to arise because people 
in the economy share the analyst’s model; but it might also be expected to result from observation of empirical frequen-
cies, without any understanding of why those probabilities constitute an equilibrium.

18 This means that I allow for misspecifications that should be detected in the case of a data sample of infinite length, 
as long as they are not easy to detect using a finite dataset. As Hansen et al. discuss, this is necessary if one wants the 
policy analyst to be concerned about possible misspecifications that continue to matter far in the future.

19 The existence of the function m (ht+1 ) is guaranteed by the Radon-Nikodym theorem. In the case of a discrete set 
of states w that are possible at date t + 1, given the economy’s state at date t, m (w) is simply the ratio ​      π​ (w)/π (w), where 
π (w) is the probability assigned by the CB to state w, and ​      π​ (w) is the probability assigned by the PS to that state. This 
way of describing distorted beliefs is used, for example, by Hansen and Sargent (2005, 2007a) and Hansen et al. (2006).
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an RE equilibrium. I assume this, however, not on the grounds that people understand and agree 
with the policy analyst’s model of the economy, but simply on the grounds that they agree with 
the policy analyst about zero-probability events; since in equilibrium (according to the calcula-
tions of the policy analyst), a history ht+1 is necessarily associated with a particular value Xt+1, 
the PS is also expected to assign probability one to the value Xt+1 in the event that history ht+1 is 
realized, though they need not agree with the analyst about the probability of this event.

This representation of the distorted beliefs of the private sector is useful in defining a measure 
of the distance of the private sector beliefs from those of the policy analyst. As discussed in 
Hansen and Sargent (2005, 2007a, b), the relative entropy

 	  Rt  ≡  Et [mt+1 log mt+1 ]

is a measure of the distance of (one-period-ahead) PS beliefs from the CB beliefs with a number 
of appealing properties.20 In particular, PS beliefs that are not too different from those of the 
policy analyst in the sense that Rt is small are ones that (according to the beliefs of the analyst) 
private agents would not be expected to be able to disconfirm by observing the outcome of 
repeated plays of the game, except in the case of a very large number of repetitions (the number 
expected to be required being larger, the smaller the relative entropy). One might thus view any 
given distorted beliefs as more plausible the smaller is Rt .

The overall degree of distortion of PS probability beliefs about possible histories over the 
indefinite future can furthermore be measured by a discounted relative entropy criterion,

 	  E−1 ​∑ 
t=0

​ 
∞
 ​ ​β t mt+1 log mt+1 ,

as in Hansen and Sargent (2005). We shall suppose that the policy analyst wishes to guard 
against the outcomes that can result under any PS beliefs that do not involve too large a value 
of this criterion. The presence of the discount factor β t in this expression implies that the CB’s 
concern with potential PS misunderstanding doesn’t vanish asymptotically; this makes possible 
a time-invariant characterization of robustly optimal policy in which the concern for robustness 
has nontrivial consequences.21

More precisely, I shall assume that the policy analyst seeks to ensure as small as possible a 
value for an augmented loss function

(5) 	  E−1 ​∑ 
t=0

​ 
∞
 ​ ​β t ​ 1 __ 

2
 ​ S ​π ​t​ 2​  +  λ (xt  −  x* )2 T  −  θ E−1 ​∑ 

t=0

​ 
∞
 ​ ​β t mt+1 log mt+1

in the case of any possible PS beliefs.22 The presence of the second term indicates that the policy 
analyst is not troubled by the fact that outcomes could be worse (from the point of view of the 

20 For example, Rt is a positive-valued, convex function of the distorted probability measure, uniquely minimized 
(with the value zero) when mt+1 = 1 almost surely (the case of RE).

21 If we omit the discount factor β t in our distance measure, the consequences are the same for the objective (5) as 
if one were to assume, instead of a constant “cost” θ of departure from CB beliefs, a cost θ β −t that grows the farther 
into the future one looks. But a large value of θ allows little departure from RE, so such a specification would imply 
much less allowance for potential PS misunderstanding far in the future, relative to the one adopted here. I show below 
that under the specification proposed here, the degree of distortion involved in the “worst-case” NRE beliefs contem-
plated by the policy analyst is time-invariant. See Hansen et al. (2006) for discussion of this issue, in the context of a 
continuous-time analysis.

22 Technically, this criterion is defined only for PS beliefs that satisfy the absolute continuity condition discussed 
above. But if we define the relative entropy to equal + ∞ in the case of any beliefs that are not absolutely continuous 
with respect to those of the CB, then (5) can be defined for arbitrary PS beliefs.
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stabilization objective (2) in the case of distorted PS expectations, as long as the distance of the 
beliefs in question from those of the CB (as measured by relative entropy) is sufficiently great 
relative to the increased stabilization losses. Thus, the analyst will worry only about distorted 
private sector beliefs that ought to be easy to disconfirm in the case that this particular kind of 
difference in beliefs would be especially problematic for the particular policy under consider-
ation.23 The coefficient θ > 0 measures the analyst’s degree of concern for possible departures 
from RE, with a small value of θ implying a great degree of concern for robustness, while a large 
value of θ implies that only modest departures from RE are considered plausible. In the limit, as  
θ → ∞, the RE analysis is recovered as a limiting case of the present one.

C. Robustly Optimal Commitment

In the case of any policy commitment {πt } contemplated by the policy analyst, and any dis-
torted PS beliefs described by a distortion factor {mt+1}, one can determine the implied value of 
(5) by solving for the equilibrium process {xt } implied by (1). Let this value be denoted  (π, m). 
The robustly optimal policy is then the policy π that minimizes

(6) 	​ 
__

  ​ (π) ≡ ​ sup   
m

  ​  (π, m),

so as to ensure as low as possible an upper bound for the value of (5) under any equilibrium that 
may result from the pursuit of the policy.24

The policy problem (6) can be thought of as a “game” between the CB and a “malevolent 
agent” that chooses the PS beliefs so as to frustrate the CB’s objectives. However, our interest in 
this problem does not depend on any belief in the existence of such an agent. Consideration of the 
min-max problem (6) is simply a way of ensuring that the policy chosen is as robust as possible 
to possible departures from RE, without sacrificing too much of the CB’s stabilization objectives. 
It is also sometimes supposed that selection of a policy that minimizes (6) requires extreme pes-
simism on the part of the policy analyst, since only the “worst-case” distorted beliefs are used 
to evaluate each contemplated policy. But use of this criterion does not require that the policy 
analyst believe that the equilibrium that would result from worst-case PS beliefs (the distortion 
m that solves the problem of the “malevolent agent”) is the one that must occur. The “malevolent 
agent’s” problem is considered only because this is a convenient mathematical approach to deter-
mining the upper bound on losses under a given policy.

The policy {πt } for periods t ≥ 0 that minimizes (6), under no constraints beyond the assump-
tion of linearity (4), is in general not time-invariant (the optimal coefficients for the rule for πt 
will vary with the date t), and also not time-consistent (reoptimization at some later date would 
not lead the policy analyst to choose to continue the sequence of inflation commitments chosen 
at date zero), for reasons that are familiar from the literature on policy analysis under RE.25 Both 

23 “Multiplier preferences” of this form are used extensively by Hansen and Sargent (2007b) to model robust deci-
sion making. Axiomatic foundations for preferences of this form are provided by Tomasz Strzalecki (2008).

24 Alternatively, one might suppose that the policy analyst should choose a policy that minimizes the value of (2) 
under worst-case NRE beliefs, where the latter are defined as the distortion m that solves the inner problem in (6). Apart 
from the appeal of the axiomatic foundations offered by Strzalecki (2009) for the “multiplier preferences” used here, 
this formulation has the advantage of making the objectives of the policy analyst and the “malevolent agent” perfectly 
opposed, so that the “policy game” between them is a zero-sum game. This can have advantages when characterizing 
the solution, although I have not relied on this aspect of the game in the analysis below. The monetary stabilization 
policy problem is analyzed under the alternative assumption in Woodford (2006), and the same qualitative results are 
obtained in that case, although some of the algebra is different. See Woodford (2005, Appendix A.3) for comparison of 
the results under the alternative assumptions.

25 The issue is discussed in detail in Woodford (2003, ch. 7).
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of these complications result from the fact that one supposes that the CB can choose an infla-
tion rate for period zero without having to take account of any effects of its choice on inflation 
expectations prior to date zero, while the inflation rate that it chooses for any date t ≥ 1 has con-
sequences for PS inflation expectations,26 and hence for the feasible degree of inflation and out-
put-gap stabilization in earlier periods. We can, instead, obtain an optimal policy problem with a 
recursive structure (the solution to which is a time-invariant policy rule) if, instead of supposing 
that the policy analyst chooses a sequence of (possibly time-varying) inflation commitments {πt } 
for all t ≥ 0, we consider only the problem of choosing an optimal sequence of inflation commit-
ments for periods t ≥ 1, taking as given a commitment π0 (w0 ) that the CB’s policy must fulfill.27

Let us suppose that the initial inflation commitment is itself linear,

(7)  	 π0 (w0 )  = ​ p ​−1​ 
0
  ​  + ​ p ​−1​ 

1
  ​ w0 ,

for some coefficients ( ​p ​−1​ 
0
  ​, ​p ​−1​ 

1
  ​ ), and let us suppose that the inflation commitments that are 

chosen for periods t ≥ 1 may depend on the value of ​p ​−1​ 
0
  ​ , as well as on the shocks that occur in 

periods zero through t. Thus we consider policies that can be written in the form

(8)  	 πt  =  αt  +  γt ​p ​−1​ 
0
  ​  + ​ ∑ 

j=0
​ 

t

  ​ ​ϕj, t wt−j ,

for some coefficients {αt, γt  ϕj, t }. The separate term γt ​p ​−1​ 
0
  ​ matters because I shall suppose that 

the coefficients of the linear rule are chosen before the value of ​p ​−1​ 
0
  ​ is known, and are to apply 

regardless of that value (that may depend on the economy’s state at date − 1). I shall let Φ denote 
the set of linear policies for dates t ≥ 1 of the form (8).

It will also be useful to discuss the broader set Π of conditionally linear policies, under which 
the state-contingent inflation rate one period in the future can be written

(9)  	 πt+1 (wt+1 )  = ​ p ​t​ 
0​  + ​ p ​t​ 

1​ wt+1

in any period t ≥ 0, where ​p ​t​ 
0​ may depend on both the state ht and the initial condition ​p ​−1​ 

0
  ​ , but ​

p ​t​ 
1​ depends only on the date. Any policy ϕ ∈ Φ corresponds to a policy p ∈ Π, where the coef-

ficients p are given by

 	 ​   p ​t​ 
0​ (ht ; ​p ​−1​ 

0
  ​ )  =  αt+1  +  γt+1 ​p ​−1​ 

0
  ​  + ​ ∑ 

j=1
​ 

t+1

​ ​ϕj, t+1 wt+1−j ,

 	​  p ​t​ 
1​  =  ϕ0, t+1

for each t ≥ 0.
For any given initial commitment ( ​p​−1​ 

0
  ​  ​p ​−1​ 

1
  ​ ) and policy p ∈ Π, we can compute an expected 

value for the augmented loss function  ( ​p ​−1​ 
0
  ​  ​p ​−1​ 

1
  ​, p, m) as above, in the case of any contem-

plated PS beliefs m; and we can correspondingly define the upper bound ​
__

  ​ ( ​p ​−1​ 
0
  ​, ​p ​−1​ 

1
  ​, p). Now 

suppose that the coefficient ​p ​−1​ 
0
  ​ is drawn from a distribution ρ, and that a policy p, specifying 

the coefficients of (9) for all possible states at dates t ≥ 0, must be chosen to apply in the case 

26 While I do not assume that PS expectations must exactly coincide with the CB’s policy intention, as in the RE 
analysis, the CB’s state-contingent policy intention does affect the plausibility of particular PS inflation expectations, 
as long as θ > 0. 

27 The same kind of initial commitment defines an optimal policy “from a timeless perspective” in the RE analysis 
presented in Woodford (2003, ch. 7).
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of any realization of ​p ​−1​ 
0
  ​ in the support of this distribution. (The PS beliefs m may depend on 

the realization of ​p ​−1​ 
0
  ​.) Then the upper bound on the value of Eρ[  ( ​p ​−1​ 

0
  ​, ​p ​−1​ 

1
  ​, p, m)] for a given 

policy p is equal to

 	​   ˆ 
   

 ​ ( p; ​p ​−1​ 
1
  ​  ρ)  ≡  Eρ [ ​

__
  ​ ( ​p ​−1​ 

0
  ​  ​p ​−1​ 

1
  ​  p)],

where Eρ indicates integration over the distribution ρ of possible values for ​p ​−1​ 
0
  ​. A robustly opti-

mal linear policy commitment is then a set of coefficients ϕ ∈ Φ that solve the problem

(10) 	​   inf   
ϕ∈Φ

​ ​   
   

 ​ ( p(ϕ); ​p ​−1​ 
1
  ​  ρ),

where p(ϕ) identifies the coefficients {  ​p ​t​ 
0​  ​p ​t​ 

1​ } corresponding any given linear policy ϕ.
The assumed initial commitment is self-consistent if it is a form of commitment that the policy 

analyst chooses in subsequent periods under the problem just defined.28 To be precise, initial 
commitments ( ​__

 p ​1 , ​
__
 ρ ​ ) are self-consistent if when we set ​p ​−1​ 

1
  ​ = ​

__
 p ​1 , ρ = ​

__
 ρ ​  the worst-case equi-

librium associated with the policy ϕ that solves (10) is such that (i) ​p ​t​ 
1​ = ​

__
 p ​1 for each t ≥ 0; and 

(ii) the unconditional distribution ρt of values for the coefficient ​p ​t​ 
0​ (integrating over the distribu-

tion ρ of possible values for ​p ​−1​ 
0
  ​ and over the distribution of possible shocks in each of periods 

zero through t) is equal to ​
__
 ρ ​ for each t ≥ 0. One can show that a self-consistent specification of 

the initial commitments is possible, and in this case the robustly optimal linear policy has a time-
invariant form, as discussed in the next section.

II.  The Robustly Optimal Linear Policy

In this section, I characterize the solution to the optimal policy problem under commitment 
defined in the previous section, and compare it to the optimal policy under commitment in the 
RE analysis (as derived, for example, in Clarida et al. 1999). This means finding the linear policy 
ϕ of the form (8) that solves (10) in the case that ( ​p ​−1​ 

1
  ​ , ρ) are the self-consistent initial commit-

ments ( ​__
 p ​1, ​

__
 ρ ​ ).

A. The “Worst-Case” NRE Beliefs

I begin by characterizing the “worst-case” NRE beliefs in the case of any given condition-
ally linear policy {πt }. These are characterized by the process {mt+1 } that solves the “malevo-
lent agent’s” problem on the right-hand side of (6). This is the process {mt+1 } for all t ≥ 0 that 
maximizes (5) subject to the constraint that Et mt+1 = 1 at all times, where at each date xt is the 
solution to the equation

(11)  	 πt  =  κ xt  +  β Et [ mt+1 πt+1 ]  +  ut .

This problem is, in turn, equivalent to a sequence of problems in which, for each possible 
history ht , a function specifying mt+1 as a function of the realization of wt+1 is chosen so as to 
maximize

(12) 	​   1 __ 
2
 ​ [ ​π ​t​ 

2​  +  λ (xt  −  x* )2 ]  −  θEt [mt+1 log mt+1 ],

28 See Woodford (2003, ch. 7) for the concept of self-consistency invoked here.
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subject to the constraint that Et mt+1 = 1, where, again, xt is given by (11). This single-period 
problem has a closed-form solution in the case that the commitment πt+1 (wt+1 ) is of the condi-
tionally linear form (9), where the coefficients ( ​p ​t​ 

0​ , ​p ​t​ 
1​ ) depend only on the history ht .

One notes that an interior solution to the problem of maximizing (12) exists only if 29

(13) 	  | ​p ​t​ 
1​ |2  < ​   θ ___ 

β 2
 ​ ​  κ

2
 __ λ ​ .

Otherwise, the objective (12) is convex, and the worst-case expectations involve extreme distor-
tion, resulting in unbounded losses for the CB. Obviously, it is optimal for the CB to choose a 
linear policy such that ​p ​t​ 

1​ satisfies the bound (13) at all times. This provides an immediate con-
trast with optimal policy under RE, where the optimal coefficient p1 (which is constant over time) 
is proportional to σu , the standard deviation of the cost-push shocks.30 At least for large values 
of σu , it is evident that concern for robustness leads to less sensitivity of inflation to cost-push 
disturbances (smaller | ​p ​t​ 

1​ |). One also observes that it leads to a failure of certainty equivalence, 
as this would require ​p ​t​ 

1​ to grow in proportion to σu .
In the case of a linear policy satisfying (13), under the worst-case NRE, the CB fears that the 

PS will expect wt+1 to be conditionally distributed as N (μt , 1).31 If ​p ​t​ 
1​ = 0, μt = 0, while if ​p ​t​ 

1​ ≠ 0,

(14)  	 μt  =  ( ​__
 π ​t  − ​ p ​t​ 

0​ )/​p ​t​ 
1​ ,

where the worst-case inflation expectation (value of ​ ˆ 
   

 E​t πt+1 ) is given by

(15) 	​ 
__

 π ​t  = ​ Δ ​t​ 
−1 ​ c ​p ​t​ 

0​  −  (πt  −  ut  −  κ x* ) ​ βλ ___ 
θκ2 ​ | ​p ​t​ 

1​ |2 d ,

(16)  	 Δt  ≡  1  − ​ 
β 2

 ___ θ ​ ​ 
λ __ 
κ2 ​ | ​p ​t​ 

1​ |2  >  0.

The worst-case NRE beliefs distort PS inflation expectations with respect to ​p ​t​ 
0​ (the CB’s expec-

tation) in the direction opposite to that needed to bring xt closer to x* ; and this distortion is 
greater the larger is the sensitivity of (next period’s) inflation to unexpected shocks, becoming 
unboundedly large as the bound (13) is approached. As a consequence of this possibility, the CB 
fears an output gap equal to

(17) 	​  x ​t​ 
pess​  −  x*  = ​ 

(πt  −  ut  −  κ x* )  −  β ​p ​t​ 
0​
   ___________________  κ Δt

 ​  .

Note that xt  −  x* is larger than it would be under RE by a factor ​Δ ​t​ 
−1​ , which exceeds one, except 

in the limit in which θ is unboundedly large (the RE limit), or if ​p ​t​ 
1​ = 0, so that inflation is per-

fectly predictable.
The probabilities assigned by the PS to different possible realizations of wt+1 are distorted by 

a factor mt+1 such that

29 See the Appendix A1, for derivation of this condition, as well as the results stated in the following two paragraphs. 
Strictly speaking, it is possible for the inequality (13) to be only weakly satisfied, if ​p ​t​ 

0​ satisfies a certain linear relation 
stated in the Appendix; the Appendix treats this case as well, omitted here for simplicity. It is shown in Section A2 that 
in the robustly optimal linear policy, the inequality is strict.

30 See, e.g., equation (26) below.
31 As shown in Woodford (2005), this result can easily be extended to the case of a vector of innovations upon which 

πt+1 may depend linearly, generalizing the formulas for the scalar case presented here.
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 	  log mt+1  =  ct  − ​ 
β __ θ ​ ​ 

λ __ κ ​ (xt  −  x* ) πt+1 ,

where the constant ct takes the value necessary in order for Et mt+1 to equal one. This implies 
that the degree of distortion of the worst-case NRE beliefs (as measured by relative entropy) is 
equal to

(18) 	 ​   R ​t​ 
pess​  ≡ ​    

  
 E​t[ log mt+1 ]  = ​  1 __ 

2
 ​ c ​ β __ θ ​ ​ 

λ __ κ ​ (xt  −  x* )​d​ 
2

​ | ​p ​t​ 
1​ |2  ≥  0.

Note that the degree of distortion against which the policy analyst must guard is greater, the 
larger the degree of inefficiency of the output gap (i.e., the larger is | xt − x* |), as this increases 
the marginal cost to the CB’s objectives of (the most unfortunate) forecast errors of a given size; 
and greater the larger the degree to which inflation is sensitive to disturbances (i.e., the larger is 
| ​p ​t​ 

1​ |), as this increases the scope for misunderstanding of the probability distribution of possible 
future rates of inflation, for a given degree of discrepancy between CB and PS beliefs (as mea-
sured by relative entropy). Of course, it is also greater the smaller is θ, the penalty parameter that 
we use to index the CB’s degree of concern for robustness to PS expectational error.

Substituting (17) for the output gap and (18) for the relative entropy term in (5), we obtain a loss 
function for the CB of the form32

(19) 	​   ˆ 
   

 ​ ( p; ​p ​−1​ 
1
  ​ , ρ)  =  E ​∑ 

t=0

​ 
∞
 ​ ​β t L ( pt−1; pt ; wt ),

defined for any policy p ∈ Π, where pt is shorthand for the pair ( ​p ​t​ 
0​ , ​p ​t​ 

1​ ), and the unconditional 
expectation of any random variable Xt in a period t ≥ 0 is defined as

	 E [ Xt ]  ≡  Eρ E−1[ Xt ].

The robust policy problem (10) can then be described as the choice of a linear policy that maxi-
mizes (19).

B. Dynamics of Optimal Commitment

Rather than directly considering the problem of finding the linear policy ϕ ∈ Φ that maxi-
mizes (19), it is simpler to consider the problem of finding the conditionally linear p ∈ Π that 
maximizes this objective, for some specification of the initial commitment ( ​p ​−1​ 

1
  ​ , ρ). In fact, the 

robustly optimal policy within this class is always a fully linear policy, so that we will have also 
found the robustly optimal element of the more restrictive class of policies Φ.

The reason for this is fairly simple. The optimal conditionally linear policy p must involve a 
process {  ​p ​t​ 

0​ } that is optimal, taking as given the sequence {  ​p ​t​ 
1​ }. But for a given sequence { ​p ​t​ 

1​ } 
satisfying (13) at all dates, the loss function L ( pt−1; pt ; wt ) is a (convex) quadratic function of 
( ​p ​t−1​ 

0
  ​ , ​p ​t​ 

0​ , wt ), with coefficients that vary with t (in the case that the sequence {  ​p ​t​ 
1​ } is not constant 

over time). The problem of choosing an optimal state-contingent commitment {  ​p ​t​ 
0​ } given the 

sequence {  ​p ​t​ 
1​ } is therefore a convex linear-quadratic (LQ) optimal control problem, albeit one 

32 See Appendix A1 for the explicit form of the function L ( pt−1 ; pt ; wt ).
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with (deterministically) time-varying coefficients. Hence, the optimal solution is a linear policy 
of the form

(20) 	​  p ​t​ 
0​  =  λt  +  μt ​p ​t−1​ 

0
  ​  +  νt wt ,

where the coefficients { λt , μt , νt } are deterministic sequences that depend on the sequence { ​p ​t​ 
1​ }. 

But equation (20), which must hold for all t ≥ 0, together with the fact that the sequence {  ​p ​t​ 
1​ } 

is deterministic, imply that the sequence of conditionally linear inflation commitments (9) con-
stitute a linear policy of the form (8). Hence, the optimal conditionally linear policy must be a 
linear policy, and since all linear policies are conditionally linear, it must be the optimal linear 
policy.

The linear law of motion (20) also implies that if the unconditional distribution ρt−1 for ​p ​t−1​ 
0
  ​ is 

a normal distribution N (μp, t−1 , ​σ   ​p, t−1​ 
2
  ​ ), then the unconditional distribution ρt for ​p ​t​ 

0​ will also be a 
normal distribution, with mean and variance given by a law of motion of the form

(21)  	 ( μp, t , ​σ  ​p , t​ 
2
  ​ )  =  Ψ ( μp , t−1 , ​σ  ​p , t−1​ 

2
  ​ ; ψt ),

where ψt ≡ (λt , μt , νt ) is the vector of coefficients of the law of motion (20). Because of my 
interest in choosing a self-consistent initial commitment, I shall suppose that ρ is some normal 
distribution N ( μp, −1 , ​σ ​p, −1​ 

2
  ​ ), in which case ρt will also be normal for all t ≥ 0 under the optimal 

linear policy.
Finally, the first-order conditions for the optimal choice of the sequence {  ​p ​t​ 

1​ } can be written 
in the form33

(22) 	  g ( ​p ​t−1​ 
1
  ​ , ​p ​t​ 

1​ , ​p ​t+1​ 
1
  ​ ; μp, t−1 , ​σ  ​p , t−1​ 

2
  ​ ; ψt , ψt+1 )  =  0

for each t ≥ 0. The conditionally linear policy that maximizes (19) for given initial conditions 
( ​p ​−1​ 

1
  ​ , μp, −1 , ​σ ​p, −1​ 

2
  ​ ) then corresponds to deterministic sequences { ​p ​t​ 

1​ ; μp, t , ​σ ​p, t​ 
2
  ​ ; ψt } for t ≥ 0 that 

satisfy (21) and (22) for all t ≥ 0, where the sequence of coefficients {ψt } describe the solution to 
the LQ problem defined by the sequence of coefficients { ​p ​t​ 

1​ }.
The self-consistent initial conditions ( ​__

 p ​1, ​__
 μ ​p , ​​

__
 σ ​​p​ 2​ ) are simply the steady-state solution to the 

system of difference equations above. I show in Appendix A.2 that such a steady state exists. The 
robustly optimal linear policy, i.e., the policy that maximizes (19) in the case of initial conditions 
( ​__

 p ​1, ​
__

 μ ​p ,​ ​
__

 σ ​ ​p​ 2​ ), is then a policy with time-invariant coefficients, as asserted earlier. Here, I compare 
the properties of this policy with the optimal policy under RE, and also compare equilibrium 
outcomes under the worst-case equilibrium consistent with this policy to the RE equilibrium 
outcomes under the RE-optimal policy.

C. Characteristics of Optimal Policy

Under the stationary policy corresponding to the steady state of the system (21)–(22), ​p ​t​ 
1​ = ​__

 p ​1 
each period, where ​__

 p ​1 is a positive quantity satisfying the bound (13). It then follows that the LQ 
problem that we must solve for the optimal state-contingent evolution { ​p ​t​ 

0​ } involves a period loss 
function with constant coefficients. It follows that the coefficients of the law of motion (20) are 
time-invariant as well. In fact, one can show34 that the law of motion takes the form

33 See Appendix A.2 for further discussion.
34 This and the other results cited in this section are derived in Appendix A.2.
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(23) 	​  p ​t​ 
0​  =  μ ​p ​t−1​ 

0
  ​  +  μ ( ​__

 p ​1  −  σu )wt ,

where 0 < μ < 1 is the smaller root of the quadratic equation

(24) 	  P (μ)  ≡  β μ2  −  a1  +  β  + ​  κ
2 ​

__
 Δ ​ ____ λ ​ b μ  +  1  =  0.

Here, 0 < ​
__

 Δ ​ ≤ 1 is the constant value of (16) associated with ​__
 p ​1. It then follows from (9) that the 

state-contingent inflation target evolves according to an ARMA(1, 1) process,

(25)  	 πt  =  μ πt−1  +   ​__
 p ​1 wt  −  μσu wt−1,

for all t ≥ 1.
Because 0 < μ < 1, (23) implies that { ​p ​t​ 

0​ } is a stationary process, with a well-defined uncon-
ditional mean and variance ( ​__

 μ ​p ,​ ​
__

 σ ​ ​p​ 2​ ). Moreover, the unconditional mean is zero—so that (25) 
implies that the inflation rate fluctuates around a long-run average value of zero as well—just as 
in the optimal policy commitment in the RE case, regardless of the assumed value of θ. Thus, 
the optimal long-run inflation target is unaffected by the degree of concern for robustness; in 
particular, allowance for NRE does not result in an inflation bias of the kind associated with 
discretionary policy.35

According to the RE analysis, inflation also evolves according to a stationary ARMA(1, 1) 
process with mean zero. But in the RE case, one can further show that

(26) 	   ​__
 p ​1  =  μ σu ,

so that (25) involves only the first difference of the cost-push shock. (In this case, the law of 
motion can equivalently be written as a stationary AR(1) process for the log price level.) In the 
case of a finite value of θ, instead, the optimal response coefficient necessarily satisfies

(27) 	  0  <   ​__
 p ​1  <  μ σu ,

so that the price level is no longer stationary.
Figure 1 shows how ​__

 p ​1 varies with σu for alternative values of θ.36 In the RE case, ​__
 p ​1 increases 

linearly with σu , as indicated by (26) and as required for certainty-equivalence. For any given 
amplitude of cost-push shocks, lower θ (greater concern for robustness) results in a lower optimal ​
__
 p ​1, indicating less sensitivity of inflation to the current cost-push shock. The extent to which this 

is true increases in the case of larger shocks; in the case of any finite value of θ, ​__
 p ​1 increases 

less than proportionally with σu , indicating a failure of certainty equivalence. In fact, ​__
 p ​1 remains 

bounded above, as required by (13).
Thus, a concern for robustness results in less willingness to let inflation increase in response 

to a positive cost-push shock. This is because larger surprise variations in inflation increase the 
extent to which PS agents may overforecast inflation, worsening the output/inflation trade-off 
facing the CB. This conclusion recalls the one reached by Orphanides and Williams (2005) on 
the basis of a model of learning.

35 On the inflation bias associated with discretionary policy, see Clarida et al. (1999) or Woodford (2003, ch. 7).
36 In this figure, I assume parameter values β = 0.99, κ = 0.05, λ = 0.08, and x* = 0.2. A low value of λ is justified 

by the welfare-theoretic foundations of the loss function (2) discussed in Woodford (2003, ch. 6).
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At the same time, a concern for robustness increases the degree to which optimal policy is 
history-dependent. As in the RE case, an optimal commitment involves a lower inflation rate (on 
average) in periods subsequent to a positive cost-push shock.37 Moreover, (24) implies that μ is 
closer to one in the finite-θ case (where ​

__
 Δ ​ < 1) than in the RE case (in which μ is also a root of 

(24), but with ​
__

 Δ ​ = 1). Hence the effect of a past cost-push shock on average inflation should last 
longer, so that the history-dependence of the optimal inflation commitment is even greater than 
under RE.

And not only should the CB commit to eventually undo any price increases resulting from 
positive cost-push shocks (as in the RE case); when θ is finite, it should commit to eventually 
reduce the price level below the level it would have had in the absence of the shock. This is 
illustrated in Figure 2 in the case of the numerical example just discussed.38 The lower-right 
panel shows the impulse response of the log price level; while under rational expectations, the 
optimal commitment returns the price level eventually to precisely the level that it would have 
had in the absence of the shock, when θ = 0.001, the optimal commitment eventually reduces 
the price level, by an amount about twice as large as the initial price-level increase in response 
to the shock. The result that the sign of the initial price-level effect is eventually reversed is quite 
general, and follows from the fact that lagged MA term in (25) is larger than the contemporane-
ous term according to (27).

37 This is shown by the negative coefficient multiplying wt in (23). Note that since μ < 1, (27) implies that ​
__
 p ​  1 < σu . 

38 In the figure, optimal impulse responses to a one-standard-deviation positive cost-push shock are shown, both in 
the case of infinite θ (the standard RE analysis) and for a value θ = 0.001. Other parameter values are as in Figure 1; in 
addition, it is assumed here that σu = 0.02. In the upper-left panel, the inflation rate is an annualized rate; given that the 
model periods are interpreted as quarters, “inflation” is four times the change in the log price level.
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Of course, (25) describes the dynamics of inflation as they are understood by the CB. PS fore-
casts of future inflation need not correspond to what this equation for inflation dynamics would 
imply. In the equilibrium with worst-case NRE expectations, PS inflation expectations evolve in 
accordance with (15). Substitution of the law of motion (23) allows this to be rewritten as

(28) 	​ 
__

 π ​t  =  Λ ​p ​t​ 
0​  +  β −1 (​

__
 Δ ​−1  −  1) κ x*,

where Λ < 1. This implies that PS inflation expectations are a linear function of CB inflation 
expectations, but with a bias (E [ ​__

 π ​ ] > 0—since ​
__

 Δ ​ < 1 in the case of finite θ)—and a derivative 
less than one.39

The fact that Λ < 1 means that the CB cannot count on its intention to lower inflation (on aver-
age) following a positive cost-push shock to lower PS expectations of inflation by as much as the 
CB’s own forecast of future inflation is reduced. But the consequence of this for robustly optimal 
policy is not that the CB should not bother to try to influence inflation expectations through a 

39 In the limit, as θ → ∞ , ​
__

 Δ ​ → 1, and Λ → 1 so that (15) implies that ​
__

 π ​t = ​p ​t​ 
0​, the case of RE.
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history-dependent policy; instead, it is optimal to commit to adjust the subsequent inflation target 
to an even greater extent and in a more persistent way (as shown in Figure 2), in order to ensure 
that inflation expectations are affected even if expectations are not perfectly model-consistent.

In the limit, as θ → 0 (extreme concern for possible departures from RE), the optimal ​
__
 p ​1 → 0. 

(In fact, this can be immediately seen from the bound (13).) In the limit, it is optimal for the 
CB to prevent cost-push shocks from having any immediate effect on inflation at all. This does 
not, however, mean that inflation is completely stabilized, for (23) still implies that the planned 
inflation rate in the next period is reduced in the event of a positive cost-push shock. (Note that μ 
remains bounded away from zero in this limit, since (24) implies that 0 < μRE < μ < 1 for any 
value 0 < ​

__
 Δ ​ < 1.) It remains desirable to reduce intended subsequent inflation, because a reduc-

tion in ​ ˆ 
   

 E​t πt+1 at the same time as an increase in ut reduces the extent to which the output gap 
must become more negative due to the cost-push shock; even though PS expectations of inflation 
cannot be counted on to fall as much as the CB’s intended inflation rate does, it is still worthwhile 
to reduce intended future inflation, in order to ensure some moderation of inflation expectations.

III.  Near-Rational Expectations and the Importance of Policy Commitment

I have observed above that robustly optimal policy involves advance commitment, in a simi-
lar way as optimal policy under the assumption of rational expectations. But does the degree 
to which PS expectations may depart from model-consistency affect the degree to which com-
mitment matters? In order to address this question, it is necessary to characterize equilibrium 
policy under discretionary optimization on the part of a CB that understands that private sector 
expectations need not be fully model-consistent, and compare this to the robustly optimal policy 
under commitment.

Suppose that the objective of the CB is to minimize (5), as above, but that each period the CB 
chooses a short-run inflation target πt after learning the current state wt , without making any 
commitment as to the inflation rate that it may choose at any later dates. Because the payoffs and 
constraints of both the CB and the malevolent agent in the continuation game at date t are inde-
pendent of the past, in a Markov perfect equilibrium (MPE), πt will depend only on wt . I shall 
assume an equilibrium of this kind;40 hence there is assumed to exist a time-invariant policy 
function ​

__
 π ​(·) such that in equilibrium πt = ​

__
 π ​ (wt ) each period. Under discretionary optimization, 

the CB takes for granted the fact that it will choose to follow the rule ​
__

 π ​ (·) in all subsequent peri-
ods, though it is not committed to follow it in the current period. The CB also takes for granted 
the set of possible NRE beliefs of the PS regarding the economy’s future evolution, given that 
(at least in the view of the CB) the truth is that the exogenous state will be drawn independently 
each period from a unit normal distribution, monetary policy will follow the rule ​

__
 π ​ (·), and output 

will be determined by (1). It then chooses an inflation rate πt to implement in the current period, 
given its own model of the economy’s subsequent evolution and guarding against the worst-case 
NRE beliefs given that model. In a MPE, the solution to this problem is precisely the inflation 
rate πt = ​

__
 π ​ (wt ).

I shall formally define a robust MPE as follows. Given a policy rule ​
__

 π ​ (·), let V (π0; w0 ) be the 
value of the objective (5) if the initial state is w0 ; the CB chooses an inflation rate π0 in that 
initial state and then follows the rule ​

__
 π ​ (·) in all periods t ≥ 1; and PS beliefs correspond to the 

worst-case NRE beliefs given this policy. Then, given the inflation rate chosen in any period, the 
worst-case NRE beliefs mt+1 (·) solve the problem

40 The restriction to MPE is commonplace in the literature on discretionary monetary policy under rational expecta-
tions; the equilibrium concept proposed here generalizes the one used by Clarida et al. (1999) in their RE analysis of 
this model.
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(29) 	​   max    
mt+1(·)

​ ​ 1 __ 
2
 ​ [ ​π ​t​ 

2​  +  λ (xt  −  x* )2 ]  −  θ Et β t mt+1 log mt+1  +  β Et V ( ​__
 π ​ (wt+1 ); wt+1 ),

where xt is the solution to

  	 πt  =  κ xt  +  β Et [ mt+1 ​
__

 π ​ (wt+1 )]  +  ut .

A robust MPE is then a pair of functions ​
__

 π ​ (·) and V (· ; ·) such that for any pair (πt ; wt ), V (πt ; wt ) 
is the maximized value of (29), and for any state wt , ​

__
 π ​ (wt ) is the inflation rate that solves the 

problem

(30) 	​  min   πt
  ​ V (πt ; wt ).

A robust linear MPE is a robust MPE in which ​
__

 π ​ (·) is a linear function of the state,

(31) 	​ 
__

 π ​ (st )  =   ​__
 p ​ 0  +   ​__

 p ​1 wt ,

for some constant coefficients ​__
 p ​  =  ( ​__

 p ​ 0,  ​__
 p ​1 ).41

A linear policy (31) is an example of the kind of conditionally linear policy considered in the 
previous section. Moreover, because the final term in (29) is independent of the choice of mt+1 (·), 
the function mt+1 (·) that solves the problem (29) is also the one that maximizes (12), so that the 
characterization of worst-case NRE beliefs in Appendix A1 again applies. Once again, | p1 | must 
satisfy the bound (13) in order for there to be well-defined worst-case beliefs;42 and when this 
bound is satisfied, the worst-case beliefs are again described by (14)–(15).

Given this characterization of worst-case beliefs, the problem (30) of the discretionary central 
bank reduces to

(32) 	​  min   πt
  ​ ​   

  
 L​ (πt ;  ​

__
 p ​; wt ),

where ​   
   

 L​ (πt ; pt ; wt ) is the loss function defined in Appendix A.1.43 Since, for any wt , ​   
   

 L​ is a strictly 
convex, quadratic function of πt , the discretionary policy ​

__
 π ​ (wt ) is implicitly defined by the first-

order condition

 	​     
   

 L​π (πt ;  ​
__
 p ​; wt )  =  0.

This linear equation in πt is easily solved, yielding

(33) 	​ 
__

 π ​ (wt )  = ​   λ ________ 
κ2 ​

__
 Δ ​  +  λ

 ​ [ κ x*  +  ut  + β  ​__
 p ​ 0 ].

41 Note that it is not necessary, as in our discussion of robustly linear policy under commitment, to suppose that the 
CB optimizes over a restricted class of policy rules; in fact, in the discretionary policy problem (30), the CB does not 
choose a rule at all, but only an inflation rate in the particular state that has been realized. Nonetheless, I do not address 
the question whether the linear MPE discussed below are the only possible kind of robust MPE.

42 In the case of discretionary policy, I can no longer argue that the CB will surely choose a policy that satisfies (13) 
in order to avoid unbounded losses. For now, the CB is assumed to choose πt+1 without taking into account the effect 
of the way in which the dependence of πt+1 on wt+1 affects the worst-case choice of mt+1 (·), given that the distorted PS 
beliefs are a historical fact by the time that πt+1 is chosen. Nonetheless, there can be no well-defined equilibrium in 
which (13) is violated.

43 It is the same as the period loss function in (19), simply written in terms of different variables, because we are 
now interested in the CB’s state-by-state choice of πt rather its advance choice of the coefficients pt−1 of a rule that will 
determine πt. 
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This, in turn, implies that ​
__

 π ​ (·) is indeed a linear function of the form (31), where44

(34) 	   ​__
 p ​ 0  = ​   λ κ x*

 ______________  
κ2 ​

__
 Δ ​  +  (1  −  β)λ

 ​  >  0,

(35) 	   ​__
 p ​ 1  = ​   λ ________ 

κ2 ​
__

 Δ ​  +  λ
 ​ σu  >  0.

In both of these expressions, 0 < ​
__

 Δ ​ ≤ 1 is defined as

(36) 	​ 
__

 Δ ​  =  1  − ​ 
β 2

 ___ θ ​ ​ 
λ __ 
κ2 ​ | ​

__
 p ​ 1 |2.

Because a MPE solves a fixed-point problem that does not correspond to an optimization 
problem, depending on parameter values there may be a unique fixed point, multiple fixed 
points, or none at all; in the last case, no robust linear MPE exists. Here the fixed-point prob-
lem reduces to finding values ( ​__

 p ​1, ​
__

 Δ ​ ) that satisfy the two equations (35)–(36) along with the 
bound (13), so that 0 < ​

__
 Δ ​ ≤ 1. One can show that if λ/κ2 ≥ 2, there is a unique robust linear 

MPE if σu < ​      p​1, while no MPE exist if σu ≥ ​      p​1, where ​      p​1 is the upper bound on | ​__
 p ​ 1 | defined 

in (13).45 If, instead, λ/κ2 < 2, then there is a unique MPE if σu ≤ ​      p​1, but two distinct MPE if 
​      p​1 < σu < ​σ ​u​ 

*​, where

(37)  	 ​σ ​u​ 
*​  ≡ ​   2 ____ 

3​ √ 
_
 3 ​
 ​ c ​ θ ___ 

β 2
 ​ a​ κ

2  +  λ ______ λ ​​ b​ 
3

​ ​d​ 
1/2

​.

There is, again, a unique MPE in the special case that σu = ​σ ​u​ 
*​, but there exist no MPE if 

σu > ​σ ​u​ 
*​.46

The possibility of multiple solutions is illustrated numerically in Figure 3. Here the parameter 
values assumed are as in Figure 1, except that now κ = 0.15,47 and I graph the locus of solutions 
only for the case θ = 0.001. A unique solution exists for values of σu smaller than 0.068,48 two 
solutions exist for values between 0.068 and 0.159, and no solutions exist for larger values of σu . 
In the intermediate range, the second solution (in which inflation is more sensitive to cost-push 
shocks) is shown by the dotted branch of the locus of fixed points. While these solutions also 
satisfy the definition above of a robust linear MPE, they are less appealing than the ones on the 
branch shown as a solid line in the figure, on grounds of what Evans and Honkapohja (2001) refer 
to as “expectational stability.”

One can reduce the system (35)–(36) to the single equation

(38) 	   ​__
 p ​1  =  Φ ( ​__

 p ​1 ),

44 See Woodford (2005, sect. 4) for a generalization of this result to the case of more general linear processes for {ut }. 
45 See Appendix A.3 for the proof of this result and the ones stated next, and equation (A13) in the Appendix for 

the definition of ​      
 p​1.

46 Regardless of the value of σu > 0, this bound will be violated in the case of small enough θ, which is to say, in the 
case of a large enough concern for robustness on the part of the CB.

47 A larger value of κ is used in this example in order to illustrate the possibility of multiple solutions, which do not 
exist under the baseline calibration.

48 As the graph suggests, there are actually two solutions to the system of equations in this region as well—the dotted 
branch of the locus of solutions can be extended further to the left. But for values of σu this small, the solutions on the 
dotted branch involve ​

__
 Δ ​ < 0, and so do not correspond to MPE.
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where Φ ( ​      p​ ) is the value of ​__
 p ​1 that satisfies (35), when ​

__
 Δ ​ in this equation is the value obtained 

by substituting ​__
 p ​1 = ​      p​ in equation (36). Note that Φ (​p ​t​ 

1​) indicates the degree of sensitivity of 
inflation to cost-push shocks that would optimally be chosen by a CB choosing under discretion 
in period t, if it expects the sensitivity of inflation to cost-push shocks in the following period to 
be given by ​p ​t​ 

1​.49 One can show that the lower branch of solutions corresponds to fixed points at 
which 0 < Φ′(  ​__

 p ​1 ) < 1, while the upper branch corresponds to fixed points at which Φ′( ​__
 p ​1 ) > 1. 

Hence, in the former case, an expectation that policy will be near the fixed point far in the future 
will justify choosing a policy very close to the fixed point now, while in the latter case, even an 
expectation that policy will be near that fixed point in the distant future will not lead the CB to 
choose policy near that fixed point now. Only if future policy is expected to coincide precisely 
with the fixed point will similar behavior be justified now. Hence, this fixed point is “unstable” 
under perturbations of expectations regarding future policy in a way that makes it less plausible 
that successive central bankers should coordinate on those particular expectations.50

What happens in the case of an economy in the region where σu is too large for any MPE to 
exist? (Note that this requires that σu > ​      p​1.) One observes that Φ (0) > 0, and also that Φ (​      p​1 ) 
= σu > Φ ( ​      p​1 ). Then, if there are no fixed points in the interval (0, ​      p​1 ), Φ ( p ) > p over the entire 

49 Thus Φ (·) is a mapping from the discretionary CB’s “perceived law of motion” to the “actual law of motion” result-
ing from its optimizing decisions, in the terminology of Evans and Honkaphja (2001).

50 One can also show that the expectationally stable MPE is an asymptotically stable rest point under adaptive learn-
ing dynamics, in which a sequence of central bankers seek to forecast the policies of their successors by extrapolating 
observed policy in the past, while the expectationally unstable MPE will also be unstable under the learning dynam-
ics. On the connection between expectational stability and stability under adaptive learning dynamics, see Evans and 
Honkapohja (2001).
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interval.51 This means that whatever value of p1 may be expected to describe monetary policy in 
the following period, a CB that optimizes under discretion will choose a larger value in the cur-
rent period. There is then no MPE; but the situation is clearly one in which (an attempt at) discre-
tionary optimization would be expected to lead to very large responses of inflation to cost-push 
shocks. There would be no reason for the inflation response to remain within any finite bounds!

In the case of rational expectations (the limit as θ → ∞), there is always a unique solution, 
given by

(39) 	   ​__
 p ​1  = ​   λ ______ 

κ2  +  λ
 ​ σu  >  0.

This is the characterization of policy under discretion given by Clarida et al. (1999); the linear-
ity in σu again indicates that a principle of certainty equivalence applies. Comparison with (26) 
indicates that under discretionary policy, inflation responds more strongly to a cost-push shock 
than under the optimal commitment, according to the RE analysis. Moreover, because ​__

 p ​ 0 > 0 
in the case of discretion, while the long-run average value of ​p ​t​ 

0​ is zero under the optimal com-
mitment, discretionary policy is characterized by an “inflationary bias.” These discrepancies 
between what policy would be like in the best possible RE equilibrium and what it is like in the 
MPE with discretionary policy indicate the importance of advance commitment to an optimal 
decision procedure for monetary policy.

How are these familiar results affected by allowing for near-rational expectations? We see 
from (34) that whenever a robust linear MPE exists, it involves a positive average inflation rate 
π* =  ​__

 p ​ 0; so again discretionary policy results in an inflationary bias. Moreover, this equation 
indicates that π* is a decreasing function of ​

__
 Δ ​; hence the inflationary bias is increased by a 

concern for robustness on the part of the CB (which makes ​
__

 Δ ​ less than one). The problem of 
excessive sensitivity of the inflation rate to cost-push shocks is also increased by a concern for 
robustness. We observe from (35) that

(40) 	   ​__
 p ​1  > ​   λ ______ 

κ2  +  λ
 ​ σu

when ​
__

 Δ ​ < 1, so that ​__
 p ​1 is larger than in the RE case, described by (39). One can also show52 that 

if we select the lower-sensitivity MPE as the prediction of the model when multiple solutions 
exist, then the solution for ​__

 p ​1 is monotonically decreasing in θ over the range of values for which 
a robust linear MPE exists, which means that ​__

 p ​1 is higher the greater the concern for robustness.
In the RE analysis, a discretionary policymaker allows inflation to respond more to cost-push 

shocks, because of her inability to commit to a history-dependent policy under which a positive 
cost-push shock would reduce subsequent inflation (as would occur under an optimal commit-
ment). In the absence of such a commitment, inflation expectations do not move in a direction 
that helps to offset the effects of the disturbance on the short-run Phillips-curve trade-off; and 
in the absence of such mitigation of the shift in the Phillips-curve trade-off, it is necessary to 
allow inflation to respond to a greater extent. When the discretionary policymaker must guard 
against possible departures from RE, her situation is even more dire. Under the worst-case NRE 
beliefs, inflation expectations increase following a positive cost-push shock, precisely because 
this moves the Phillips curve in the direction that worsens the policymaker’s trade-off; and so the 

51 If, instead, there are two fixed points, the sign of Φ (p) − p changes between them; this is what makes the lower 
solution expectationally stable while the upper is unstable.

52 Again, see Appendix A.3 for the proof.
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extent to which the discretionary policymaker finds it necessary to allow inflation to increase is 
even greater than under the RE analysis (where inflation expectations do not change).

While a concern for robustness increases the sensitivity of inflation to cost-push shocks under 
discretionary policy, we found in Section II that it reduces the sensitivity to cost-push shocks 
under an optimal commitment. This is illustrated numerically in Figure 4, which extends Figure 
1 to show how the equilibrium value of ​__

 p ​1 varies with σu under discretionary policy, as well as 
under the optimal commitment from a timeless perspective, both with and without an allowance 
for NRE.53 (The two lower curves correspond to cases also shown in Figure 1.) When RE are 
assumed, ​__

 p ​1 is larger under discretionary policy, as just shown; but with a concern for robust-
ness (finite θ), the gap between the values of ​__

 p ​1 under discretionary policy and under a robustly 
optimal linear policy is even larger.

Thus, the distortions of policy resulting from optimization under discretion are increased 
when the CB allows for the possibility of NRE, and the lessons of the RE analysis become only 
more important. When the CB’s concern for robustness is sufficiently small (i.e., θ is large)—and 
when the volatility of fundamentals is sufficiently small (i.e., σu is small)—a robust linear MPE 
exists, but the degree to which it involves both an excessive average rate of inflation and excessive 
responsiveness of inflation to cost-push shocks, relative to what would occur under the robustly 
optimal linear policy, is even greater than is true in the RE analysis. In the case of a sufficiently 
great concern for robustness, or a sufficiently unstable environment, a robust linear MPE fails 
even to exist; in this case, the dangers of discretionary policy are even more severe, and to an 
extent much greater than would be suggested by the RE analysis.

53 The parameter values used in the figure are again those used in Figure 1. The RE curves assume that θ−1 = 0, 
while the ones allowing for NRE beliefs assume that θ−1 = 1,000. 
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IV.  Conclusion

I have shown how it is possible to analyze optimal policy for a central bank that recognizes 
that private expectations may not be model-consistent, without committing oneself to a particu-
lar model of expectational error. The approach leads to a one-parameter family, robustly optimal 
linear policies, indexed by a parameter θ that measures the degree of concern for possible mis-
understanding of equilibrium dynamics.

Even when the central bank’s uncertainty about private expectations is considerable (the case 
of low θ), calculation of the effects of anticipations of the systematic component of policy is 
still quite an important factor in policy analysis. Optimal policy is still history-dependent even 
when rational expectations are not assumed. Indeed, a concern for robustness only increases the 
optimal degree of history-dependence.

Moreover, just as in the RE analysis, commitment is important for optimal policy. The distor-
tions predicted to result from discretionary policymaking become even more severe when the 
central bank allows for the possibility of near-rational expectations, so that the importance of 
commitment is increased. And, as in the RE analysis, a crucial feature of an optimal commit-
ment is a guarantee that inflation will be low and fairly stable. The fact that private beliefs may 
be distorted does not provide any reason to aim for a higher average rate of inflation, while it does 
provide a reason for the central bank to resist even more firmly the inflationary consequences of 
“cost-push” shocks.

Appendix: Details of Derivations

A1. Worst-Case NRE Beliefs

Suppose that the policy commitment is of the conditionally linear form (9) for some process 
{ ​p ​t​ 

0​ (ht , ​p ​−1​ 
0
  ​ )} and some deterministic sequence { ​p ​t​ 

1​ }. The problem of the “malevolent agent” in 
any state of the world at date t (corresponding to a history ht up to that point) is to choose a func-
tion specifying mt+1 as a function of the realization of wt+1 so as to maximize (12) subject to the 
constraint that Et mt+1 = 1, where at each date xt is implied by the equilibrium relation (11).

It is obvious that the choice of the random variable mt+1 matters only through its consequences for 
the relative entropy (which affects the objective (12)) on the one hand, and its consequences for PS 
expected inflation (which affects the constraint (11)) on the other. Hence, in the case of any θ > 0, the 
worst-case beliefs will minimize the relative entropy Et [ mt+1 log mt+1 ] subject to the constraints that

(A1) 	  Et mt+1  =  1,    Et [ mt+1 πt+1 ]  = ​
__

 π ​t ,

whatever degree of distortion the PS inflation expectation ​
__

 π ​t may represent. I first consider this 
subproblem.

Since r (m) ≡ m log m is a strictly convex function of m, such that r′ (m) → − ∞ as m → 0 and  
r′ (m) → + ∞ as m → + ∞, it is evident that there is a unique, interior optimum, in which the 
first-order condition

 	  r′ (mt+1 )  =  ϕ1t  +  ϕ2t πt+1

holds in each state at date t + 1, where ϕ1t , ϕ2t are Lagrange multipliers associated with the two 
constraints (A1). This implies that

(A2) 	  log mt+1  =  ct  +  ϕ2t πt+1
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in each state, for some constant ct . The two constants, ct and ϕ2t, in (A2) are then the values that 
satisfy the two constraints (A1).

Under the assumption of a conditionally linear policy (9), πt+1 is conditionally normally dis-
tributed, so that (A2) implies that mt+1 is conditionally log-normal. Hence, the first constraint 
(A1) is satisfied if and only if 54

(A3) 	  ct  =  − ϕ2t ​p ​t​ 
0​  − ​  1 __ 

2
 ​ ​ϕ ​2t​ 

2
 ​ | ​p ​t​ 

1​ |2,

and the second constraint (A1) is satisfied if and only if

(A4)  	 ϕ2t  = ​
__

 π ​t  − ​ 
​p ​t​ 

0​
 ____ 

| ​p ​t​ 
1​ |2

 ​ .

Condition (A3) then uniquely determines ct as well, and mt+1 is completely described by (A2), 
once we have determined the value of ​

__
 π ​t that should be chosen by the “malevolent agent.” Note 

that the bias μt is given by expression (14), as asserted in the text.
It remains to determine the worst-case choice of ​

__
 π ​t . It follows from (11) that

(A5)  	 (​x ​t​ 
pess​  −  x* )2  = ​  1 __ 

κ2 ​ (πt  −  ut  −  κ x*  −  β ​
__

 π ​t )2 .

Substituting this for the squared output gap (and similarly solving for the worst-case relative 
entropy) in (12)), we obtain an objective for the “malevolent agent” that is a quadratic function Q (​__

 π ​t ; 
ut , πt , pt ) of the distorted inflation forecast ​

__
 π ​t, and otherwise independent of the distorted beliefs; 

thus, ​
__

 π ​t is chosen to maximize this function. The function is strictly concave (because the coef-
ficient multiplying ​​

__
 π ​ ​t​ 2​ is negative) if and only if ​p ​t​ 

1​ satisfies the inequality

(A6) 	  | ​p ​t​ 
1​ |2  < ​   θ ___ 

β 2
 ​ ​  κ

2
 __ λ ​ .

If the inequality is reversed, the function Q is instead convex, and the “malevolent agent” can 
achieve an unboundedly large positive value of its objective; hence, a robustly optimal policy can 
never involve a value of ​p ​t​ 

1​ this large.
When (A6) holds, the maximum value of Q occurs for the value of ​

__
 π ​t such that ​Q ​​__

 π ​​ = 0. This 
implies that the worst-case value of ​

__
 π ​t is given by (15)–(16), as stated in the text. Substituting 

this solution, one obtains the implied output gap (17) and relative entropy (18) under the worst-
case NRE beliefs, as stated in the text. Substituting these expressions into the objective (12), one 
obtains an objective for the CB of the form (19), in which the period loss is given by

(A7) 	    L ( pt−1 ; pt ; wt )  ≡ ​  1 __ 
2
 ​ ​π ​t​ 

2​  + ​   λ _____ 
2κ2 Δt

 ​ [πt
  −  ut

  −  κ x*  −  β ​p ​t​ 
0​ ]2,

where 0 < Δt < 1 is the function of ​p ​t​ 
1​ defined by (16), πt is the function of pt−1 and wt defined 

by (9), and ut = σu wt . Note that we can alternatively write

 	  L ( pt−1 ; pt ; wt )  = ​    
   

 L​ (πt ; pt ; wt ),

54 A longer version of this Appendix with additional details is available on the AER Web site (http://www.aeaweb.
org/articles.php?doi=10.1257/aer.100.1.274).
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where the function ​   
   

 L​ is defined by the right-hand side of (A7), since the coefficients pt−1 enter 
only through their consequences for the value of πt .

A2. Robustly Optimal Linear Policy

Given the worst-case PS beliefs characterized in the previous section, the problem of the CB is 
to choose a { pt } for all t ≥ 0 so as to minimize (19), for given initial conditions ​p ​−1​ 

1
  ​ and a distribu-

tion ρ of possible values for ​p ​−1​ 
0
  ​. The CB must choose a policy under which ​p ​t​ 

0​ may depend on 
both ​p ​−1​ 

0
  ​ and the history of shocks ht , but ​p ​t​ 

1​ must be a deterministic function of time.
One can show that the objective (19) is a convex function of the sequence { pt }. Convexity 

implies that the CB’s optimal policy can be characterized by a system of first-order conditions, 
according to which

(A8) 	  L3 ( pt−1 ; pt ; wt )  +  β Et L1 ( pt ; pt+1 ; wt+1 )  =  0

for each possible history ht at any date t ≥ 0, and

(A9) 	  E [ L4 ( pt−1 ; pt ; wt )  +  β L2 ( pt ; pt+1 ; wt+1 )]  =  0

for each date t ≥ 0. Here, L1 through L4 denote the partial derivatives of L ( ​p ​t−1​ 
0
  ​, ​p ​t−1​ 

1
  ​ ; ​p ​t​ 

0​ , ​p ​t​ 
1​ ; wt ) 

with respect to its first through fourth arguments, respectively. Substituting (9) for πt and (16) for 
Δt in these expressions, one can express the first-order conditions (A8)–(A9) as restrictions upon 
the sequence { pt }.

Taking as given the deterministic sequence { ​p ​t​ 
1​ }, one observes that (A8) is a linear stochastic 

difference equation for the evolution of the process { ​p ​t​ 
0​ }, with coefficients that are time-varying 

insofar as they involve the coefficients { ​p ​t​ 
1​ }. One can show that these linear equations must have 

a linear solution of the form (20). Under the assumption that ​p ​t​ 
1​ =  ​__

 p ​1 for all t ≥ − 1, (A8) is of 
the form

(A10) 	  Et [ A (L) ​p ​t+1​ 
0
  ​ ]  =  (σu  −   ​__

 p ​1 ) wt ,

where

 	  A (L)  ≡  β  −  a1  +  β  + ​  κ
2 ​
__

 Δ ​ ____ λ ​ b L  +  L2.

(Here, ​
__

 Δ ​ is the constant value of Δt implied by the constant value ​__
 p ​1.) By factoring the lag 

polynomial in (A10), one can easily show that (A10) has a unique stationary solution, given by

(A11) 	​  p ​t​ 
0​  =  μ ​p ​t−1​ 

0
  ​  −  μ (σu  −   ​__

 p ​1 ) wt ,

where 0 < μ < 1 is the smaller root of the characteristic equation (24) given in the text. Since 
0 < ​

__
 Δ ​ < 1, one can show that μRE < μ < 1, where μRE is the root in the RE case (corresponding 

to ​
__

 Δ ​ = 1).
The law of motion (A11) implies that if the unconditional distribution for ​p ​t−1​ 

0
  ​ is 

N (μp, t−1 , ​σ ​p , t−1​ 
2
  ​ ), then (given the assumption that wt is i.i.d. N (0, 1)) the unconditional distribution 

for ​p ​t​ 
0​ is also normal, with mean and variance

  	 μp, t   =  μ μp, t−1 ,  ​σ ​p, t​ 
2
  ​  =  μ2 [ ​σ ​p, t−1​ 

2
  ​  +  (σu  −   ​__

 p ​1 )2 ].
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These difference equations have a unique fixed point, corresponding to the stationary or ergodic 
distribution implied by the law of motion (A11), namely,

 	​ 
__

 μ ​p  =  0,  ​​
__

 σ ​ ​p​ 2​  = ​ 
μ2 (σu  −   ​__

 p ​1 )2

  ___________ 
1  −  μ2 ​  .

I turn next to the implications of condition (A9). Note that for each period t ≥ 0, the left-hand 
side of this equation involves the values of the three quantities ( ​p ​t−1​ 

1
  ​ , ​p ​t​ 

1​ , ​p ​t+1​ 
1
  ​ ) and the uncondi-

tional joint distribution of ( ​p ​t−1​ 
0
  ​ , ​p ​t​ 

0​ , ​p ​t+1​ 
0
  ​ ; wt , wt+1 ). Given the assumption of a normal distribution 

N ( μp, t−1 , ​σ ​p , t−1​ 
2
  ​ ) for ​p ​t−1​ 

0
  ​ and the law of motion (20) for { ​p ​t​ 

0​ } under optimal policy, we can write 
this joint distribution as a function of the parameters (μp, t−1 ,​σ ​p , t−1​ 

2
  ​ ) of the marginal distribu-

tion for ​p ​t−1​ 
0
  ​ and the parameters (ψt , ψt+1 ) of the conditional distribution ( ​p ​t​ 

0​ , ​p ​t+1​ 
0
  ​ ; wt , wt+1 | ​p ​t−1​ 

0
  ​ ). 

Hence, the left-hand side of (A9) is a function of the form

 	  g ( ​p ​t−1​ 
1
  ​ , ​p ​t​ 

1​, ​p ​t+1​ 
1
  ​ ; μp, t−1 , ​σ ​p, t−1​ 

2
  ​ ; ψt , ψt+1 ),

as asserted in (22).
Using the solution above for the unconditional joint distribution of ( ​p ​t−1​ 

0
  ​ , ​p ​t​ 

0​ , ​p ​t+1​ 
0
  ​ ; wt , wt+1 ) in 

the case of self-consistent initial conditions, condition (A9) then becomes a second-order nonlin-
ear difference equation in ​p ​t​ 

1​. One observes that

 	  E [ L4 ( pt−1 ; pt ; wt )]  = ​ 
β 2

 ___ θ ​ a​ λ __ 
κ2 ​​b​ 

2

​  ​ ​
__
 p ​1
 ___ 

​
__

 Δ ​2
 ​ [a  +  2b ​__

 p ​1  +  ( ​__
 p ​1)2 ],

where

 	  a  ≡  E [( ​p ​t−1​ 
0
  ​  −  ut  −  κx*  −  β ​p ​t​ 

0​ )2 ],

 	  b  ≡  E [ wt ( ​p ​t​ 
0​  −  ut  −  κx*  −  β ​p ​t​ 

0​ )].

Similarly, one can show that

 	  E [ L2( pt ; pt+1 ; wt+1 )]  =   ​__
 p ​1  + ​   λ ____ 

κ2 ​
__

 Δ ​
 ​ [  ​__

 p ​1  +  b ].

Hence condition (A9) is equivalent to

(A12)	   f (  ​__
 p ​1 )  ≡ ​  β 2

 ___ θ ​ a ​ λ __ 
κ2 ​ ​b​ 

2

​ ​  c ___ 
​
__

 Δ ​2
 ​  ​__

 p ​1  +   ​__
 p ​1  + ​   λ ____ 

κ2 ​
__

 Δ ​
 ​ [ ​__

 p ​1  +  b]  =  0,

where

 	  c  ≡  a  +  2b  ​__
 p ​1  +  ( p1 )2 .

A robustly optimal linear policy then exists if and only if (A12) has a solution ​__
 p ​1 that satisfies 

the bound (A6).
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When { ​p ​t​ 
0​ } evolves in accordance with the stationary dynamics (A11), the definitions above 

imply that

 	  a  =  (κ x* )2  + ​ 
(1  −  βμ)2 μ2

  __________ 
1  −  μ2 ​  (σu  −   ​__

 p ​1 )2  +  [(1  −  βμ)σu  +  β μ  ​__
 p ​1 ]2 ,

 	  b  =  − (1  −  β μ)σu   −  β μ  ​__
 p ​1.

I furthermore observe that a = a0 + b2, where

 	  a0  ≡  (κ x* )2  + ​ 
(1  −  βμ)2 μ2

  __________ 
1  −  μ2 ​  (σu  −   ​__

 p ​1 )2  >  0.

Hence,

 	  c  =  a0  +  (b  +   ​__
 p ​1 )2  >  0

can be signed for all admissible values of ​__
 p ​1. Substituting this function of ​__

 p ​1 for c and (16) for ​__
 Δ ​ in (A12) yields a nonlinear equation in ​__

 p ​1, which is solved numerically in order to produce 
Figure 1.

One can easily show that a solution to this equation in the admissible range must exist. Note, 
first, that (A6) can alternatively be written in the form

(A13) 	  |  ​__
 p ​1 | < ​      p​1  ≡ ​   κ ____ 

λ1/2
 ​ ​ θ

1/2
 ___ β ​  .

I next observe that

 	  f (0)  = ​   λ ____ 
κ2 ​

__
 Δ ​
 ​ b  =  −  ​ λ __ 

κ2 ​ (1  −  βμ)σu  <  0.

On the other hand, in the case of any finite θ, as p1 → ​      p​1, the first term in expression (A12) becomes 
larger than the other two terms, so that f ( p1 ) > 0 for any value of p1 close enough to (while still 
below) the bound, Since the function f (·) is well defined and continuous on the entire interval [0, ​      p​1 ), 
there must be an intermediate value 0 <  ​__

 p ​1 < ​      p​1 at which f (  ​__
 p ​1 ) = 0. Such a value satisfies both 

(A6) and (A12), and so describes a robustly optimal linear policy.
One can further establish that

(A14) 	  0  <   ​__
 p ​1  <  μσu ,

as asserted in the text. When evaluated at the value p1 = μσu, the second two terms in (A12) are 
equal to

 	  − ​  λ ____ 
κ2 ​

__
 Δ ​
 ​ P (μ)σu  =  0,

where P (μ) is the polynomial defined in (24). Moreover, in the limiting case in which θ → ∞ 
(the RE case), the first term in condition (A12) is identically zero, so that f (μσu ) = 0, and 
​__
 p ​1 = μσu is a solution. Instead, when θ is finite, the first term is necessarily positive, so that 
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f (μσu) > 0. If μσu < ​      p​1 , this implies that there exists a solution to (A9) such that (A14) holds. If, 
instead, ​      p​1 ≤ μσu , then (A14) follows from the result in the previous paragraph. Hence, in either 
case, the robustly optimal policy satisfies (A14) for any finite θ, while the upper bound holds with 
equality in the limiting case of infinite θ.

Substitution of the law of motion (A11) for ​p ​t​ 
0​ in (15) leads to the solution

 	​ 
__

 π ​t  =  Λ ​p ​t​ 
0​  +  β −1 ( ​

__
 Δ ​−1  −  1)κx*,

where

  	 Λ  ≡ ​
__

 Δ ​−1  −  β −1 μ−1 ( ​
__

 Δ ​−1  −  1)  <  1.

A3. Existence and Stability of Robust Linear MPE

A robust linear MPE corresponds to a pair ( ​__
 p ​1 , ​

__
 Δ ​ ) that satisfy equations

(A15) 	   ​__
 p ​1  = ​   λ ________ 

κ2 ​
__

 Δ ​  +  λ
 ​ σu  >  0,

(A16) 	​ 
__

 Δ ​  =  1  − ​ 
β 2

 ___ θ ​ ​ 
λ __ 
κ2 ​ |  ​

__
 p ​1 |2 ,

with ​
__

 Δ ​ > 0 so that (A6) is satisfied. Equivalently, we are looking for solutions to the two equa-
tions in the interval 0 <  ​__

 p ​1 < ​      p​1, where ​      p​1 is defined by (A13).
If we write these equations as ​

__
 Δ ​ = Δ1( ​

__
 p ​1 ) and ​

__
 Δ ​ = Δ2( ​

__
 p ​1 ), respectively, we observe that 

Δ1( p) is a decreasing, strictly concave function for all p > 0, while Δ2( p) is a decreasing, strictly 
convex function over the same domain. Moreover, Δ1( p) < Δ2( p) for all small enough p > 0, 
and also for all large enough p. Hence, there are either no intersections of the two curves with 
​__
 p ​1 > 0, or two intersections, or a single intersection at a point of tangency between the two curves.
One can also show that Δ′2 ( p) is less than, equal to, or greater than Δ′1 ( p) according to whether 

p is less than, equal to, or greater than ​      p​1 , where

 	​        p​1  ≡  a​  θ ___ 
β 2

 ​ ​ σu __ 
2
 ​​b​ 

1/3

​  >  0.

From this, it follows that there are two intersections if and only if Δ2( ​      p​1 ) < Δ1( ​      p​1 ), which holds 
if and only if σu < ​σ ​u​ 

*​ , where ​σ ​u​ 
*​ is defined as in (37). Similarly, the two curves are tangent to 

each other if and only if σu = ​σ ​u​ 
*​ ; the two curves fail to intersect if and only if σu > ​σ ​u​ 

*​ .
It remains to consider how many of these intersections occur in the interval 0 <  ​__

 p ​1 < ​      p​1. 
One notes that there is exactly one solution in that interval (and hence a unique robust linear 
MPE) if and only if Δ2( ​      p​1 ) < 0, which holds if and only if σu < ​      p​1. When σu = ​      p​1 exactly, 
Δ2( ​      p​1 ) = Δ1( ​      p​1 ) = 0, and the curves intersect at ​__

 p ​1 = ​      p​1. This is the larger of two solutions for ​
__
 p ​1 if and only if

(A17)  	 Δ′1 ( ​      p​1 ) < Δ′2 ( ​      p​1 ),

which holds if and only if λκ2 < 2. In this case, there are two solutions in the interval (0, ​      p​1 ) for 
all σu < ​σ ​u​ 

*​ ; a unique intersection if σu = ​σ ​u​ 
*​ ; and no intersection if σu > ​σ ​u​ 

*​ .
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If, instead, λ/κ2 > 2, then the inequality in (A17) is reversed, and when σu = ​      p​1 , the intersec-
tion at ​__

 p ​1 = ​      p​1 is the smaller of the two solutions. Then, there are no solutions with ​__
 p ​1 < ​      p​1 for 

any σu ≥ ​      p​1.
The “expectational stability” analysis proposed in the text involves the properties of the map

  	 Φ( p)  ≡ ​ Δ ​2​ 
−1​ (Δ1( p)).

Formally, a fixed point ​__
 p ​1 of Φ (which corresponds to an intersection of the two curves studied 

above) is expectationally stable if and only if there exists a neighborhood P of ​__
 p ​1 such that

 	​   lim    
n→∞​ Φn( p)  =   ​__

 p ​1

for any p ∈ P. Our observations above about the functions Δ1(·), Δ2(·) imply that Φ(·) is a mono-
tonically increasing function. Hence, a fixed point ​__

 p ​1 is stable if and only if Φ′( ​__
 p ​1 ) < 1, which 

is satisfied if and only if

(A18)  	 Δ′2 (  ​
__
 p ​1 )  <  Δ′1 (  ​

__
 p ​1 )  <  0.

Because of the concavity of Δ1(·) and the convexity of Δ2(·), this condition necessarily holds at 
the fixed point with the smaller value of ​__

 p ​1, and not at the higher value.
Finally, let us consider the way in which ​__

 p ​1 changes as θ is reduced (indicating that a broader 
range of NRE beliefs are considered possible). Letting ​__

 p ​1 be implicitly defined by the equation

  	 Δ1 ( ​
__
 p ​1 )  =  Δ2 ( ​

__
 p ​1 ),

the implicit function theorem can be used to show that d ​__
 p ​1/dθ < 0.
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