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Generalized Kirchhoff vortices
L. M. Polvani and G. R. Flier!

Center for Meteorology and Physical Oceanography, Massachusetts Institute of Technology, Cambridge,

Massachusetts 02139

(Received 11 September 1985; accepted 28 April 1986)

A family of exact solutions of the Euler equations is presented: they are generalizations of the
Kirchhoff vortex to N confocal ellipses. Special attention is given to the case N = 2, for which the
stability is analyzed with a method similar to the one used by Love [ Proc. London Math. Soc. 1,
XXV 18 (1893) ] for the Kirchhoff vortex. The results are compared with those for the

corresponding circular problem.

I. INTRODUCTION

A two-dimensional elliptical patch of homogeneous in-
viscid fluid of uniform vorticity rotating with constant angu-
lar velocity is an exact solution of the Euler equations; it is
called a Kirchhoff vortex.! Its vorticity Q and angular veloc-
ity w are related by

Q=[(a+b)/ab]o,

where a and b are, respectively, the major and minor axes of
the ellipse. The system is stable to small perturbations pro-
vided a < 3b.> We present in this work a family of exact solu-
tions which are generalizations of the Kirchhoff vortex to N
confocal ellipses, and we investigate the stability for the spe-
cial case N = 2.

In terms of the usual Cartesian coordinates (x,y), the
elliptical coordinates ( p,0) needed to obtain an analytic so-
lution are implicitly defined by

x=ccoshpcosf, y=csinhpsind.

The lines p = const define confocal ellipses whose foci are
located on the x axis at x = +c.

Il. GENERALIZED KIRCHHOFF VORTICES

Consider now the following distribution of vorticity Q
(Fig. 1):

Q=0, for p>p,,
Q=g, forp,>p>p; 1, j=1.,N—1,

Q= Qn’ fOI' P<PN~
The stream function must then satisfy

V3, =0, for p>p,,
Vi, =@Q, for p;>p>p; 1, j=1.,N—1,

Viy =Qy, for p<py,
which in elliptical coordinates becomes

a3 a2
( +W) Y=0, p>p,

3°

a2 a2 1

(57+ 707) ¥ =7 9" (cos 20 —cos20),
pj>p>pj+19 j=19--')N_1’ (1)
(a—2+a—2)¢ —lQ c*(cosh 2p — cos 26)

> 002/ 7" 27N ’

P <Pn-
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Since the whole system is in uniform rotation with angular
velocity @, we must impose the condition that the stream
function with respect to a rotating reference frame,
¥ — } wr?, must be invariant along the boundaries, i.e.,

d

1 ,
30 (¢—70(x2+y2))=0 onp=p;, j=1.,N.
(2)

This condition eliminates all homogeneous solutions except
the ones proportional to cos 26. The solution to the inhomo-
geneous system (1) which satisfies (2) is easily found to be

o =LacPe 2P cos 20 + (I'/2m) p, for p>p,,
¥, =} Q,c¢*(cosh 2p + cos 26) + B; sinh 2p cos 26
+ C; cosh 2p cos 26 + (A;/2m) p + ¥,
forp,>p>p;j 1, j=1.,N-1,
¥n = } Quc?(cosh 2p + cos 26)
+Acosh2pcos20 + 9%, for p<py, (3)

3

where
Be - Lofo-Lo)dheten,
4 2 cosh(p; —p; 1)
C 1 2( 1 ) cosh(p; +p;1)
j =€ -5 Y% )
4 2 cosh(p; —p; 1)

A=}c%(@—}Qy)(cosh2oy) ",

The constants ¢{ can be chosen to make 3 continuous across
the boundaries; since our matching conditions are posed in
terms of the velocities—i.e., the flow in the rotating frame
must be tangent to the boundaries—these constants are im-

FIG. 1. A schematic drawing of a generalized Kirchhoff vortex.
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material. The Q’s and A,’s are determined by requiring con-
tinuity of the tangential velocities:
d a
—3— '/’j -1 =7
p dp
which guarantees continuity of pressure. This condition
yields

¥, onp=p; forj=1.,N (4)

'=A,+ma,b,Q,,
A=A +mab(Q —

J

Q) j=2.sN—1, (5)

Ay_1 =mayby(Qy — On_1),
and
=20[1+ (—1Y* coth(p, —p;. 1) ],
j=1.,N-1, (6)
QN=2a)[1+ (— 1)N+lcoth2pN],

where a; and b; are, respectively, the major and minor axes
of the jth ellipse, and are related to the p’s by

a;=ccoshp, and b, =csinhp;.

It is easy to show that the N =1 case corresponds to the
Kirchhoff vortex. Using (6) one can rewrite (3) as follows:

=lwc’e™ P~ cos 20 + (T/2m) p,
¥, =} Q;c*(cosh 2p + cos 20) + (A;/27) p
sinh(p; +p;.1)

+(— 1)"’“‘iwc2

4 sinh(p; —p;11)
Xsinh 2p cos 20 N
. h( p; .
+(_1)1_1_ cch)s (p’+p’+l)cosh2p
4 sinh(p; —p; 1)

Xcos20 +¢f, j=1.,N—1,
¥y =} Qyc*(cosh 2p + cos 26) + (— DV} wc?
X (sinh 2p, ) ~! cosh 2p cos 260 + ¢3.

It should be pointed out that once @ and the p;’s
(j=1,..., N) have been chosen, the Q;’s follow necessarily
from (6) and therefore cannot be set arbitrarily. In particu-
lar it is easy to see that Q; and Q, , , always have opposite
signs, and that Q, has the sign of w. A further interesting
property of these solutions is that the total circulation I is
determined uniquely by the angular velocity @ and the size
p, of the outer ellipse. Indeed it can be shown from (5) that

I'=7nw(a, + b,)’> = mwc’e = *
for all values of ¥ and p;’s (j> 1).

lll. STABILITY OF THE N = 2 VORTEX

We now turn our attention to the special case N = 2, for
which the stream function is given by
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Yo =lwcPe =P~ cos 20 + L wc’e ™ *ip,

¥, =1 Qc*(cosh 2p + cos 20) + 1 a,b,(Q, — Q) p

L1 czwmnthcoszﬂ
4 sinh( p, — (8)
1 Q)CZC?Sh(P—l_'_pz)coshZPCOS 26 +¢?,
4 sinh( p; — p,)

¥, = — § @y’ (cosh 2p + cos 26) + } wc®
X (sinh 2p,) ™! cosh 2p cos 260 + ¢3,
with
0, =2w[1 + coth( p,
and
0, =2w(1 — coth 2p,).

Of the four parameters p,, p,, @, and ¢ only the first two
are important in determining the shape, structure, and sta-
bility of the vortices.

Contours of the quantity @,/Q in the ( p,, p,) planeare
plotted in Fig. 2. Also shown in that figure are the shapes of
the vortices for three typical values of p, and p,.

In order to investigate the stability of the steady state
(8) we use a method similar to the one in Ref. 2. We denote
by ¢, ¢;, and ¢, the perturbation stream functions. The
perturbed boundaries of the ellipses are given by

p=pi+pi(0) and p=p,+p;(6).

Both the ¢’s and the p’ ’s are understood to be infinitesimal
quantities. The ¢’s must satisfy Laplace’s equation together
with the following conditions:

—p2)1

d J
‘a— ¢o+¢o)=7(¢1+¢1) on p=p,+pi,
? )
a J
—3_ ¢1+¢1)=—(¢2+¢2) on p=p,+p;,
8
(¢o+¢o)=—(¢1+¢) on p=p, +pi,
(10)
%(¢1+¢1)=%(¢2+¢2) on p =p, + p3,
D , ,
_[P_Pl‘Pl(e)]=0 on p=p,+p,
(11)
——[p p2—p3(0)] =0 on p=p,+p;,
where
D d 1
Y _%.5 1 rz),
Dt or ('/’+¢ ©
o % afag
J %8 _9 %8
(&) = dx dy dy dx

The last condition ensures that the deformed ellipses always
contain the same fluid. It is possible to show that the above
three conditions guarantee continuity of pressure at the
boundaries.

Since the ¢’s are solutions of Laplace’s equation we can
immediately write

L. M. Polvani and G. R. Flierl 2377



2.5|
GONTOURS OF @, /Q,

2.0F
FIG. 2. Contours of @,/0Q, in the
,02 ( p1» p2) plane. The values of the pa-
rameters for the vortices shown are
1.5F as follows: (a) p,=1.0, p,=0.5,
c=194, b,/a,=0.76, b,/a,
7/ =046, a,/a,=137, Q,/0Q,
7 = —10.1. (b) p; =3.0,p,=0.5,¢
i Y/ =0.30, b,/a, = 0.99, b,/a, = 0.46,
1.0 a/a, =89, 0/Q, = — 6.4 (c) p,
(b) =25, p,=15 ¢=049, b/a,
Vs (@) =0.98, b,/a, =091, a,/a,=2.6,

Y -10 0./Q, = —4654.
0.5
-2
/
1 1 L 1 [ i 1
1.0 2.0 3.0

$o=Y (4,,e” ™ cos mf + B,.e” " sin mb),

m

b, = z (C,, cosh mp cos mé + D,, sinh mp cos mé

+ E,, coshmpsinmb + F,, (12)

X sinh mp sin m@) + 43,
¢.=Y (G, cosh mp cos m6

+ H,, sinh mp sin m@) + ¢3.

Conditions (9) and (10) can be combined to eliminate four
of the eight unknowns. After some algebra they can be
shown to simply reduce to

S me™ [(C,, + D,,)cos m6 + (E,, + F,,)sin 6 ]

vt (g
ki (13)
D E
Zm(——-"‘—cosmﬁ——_L—sinm9>
s cosh mp, sinh mp,
1 P2
""‘2— (Qz - Q])(E) == 09

where we have defined
h .~ 2=c*(cosh 2p, —cos20), i=12.

In a similar way (11) must be Taylor expanded about the
unperturbed boundaries. After much algebra we obtain

=-i(ﬁ>_Lwi(£i_)
o at\nt) 2 a46\n2)’
. at\nt)" 2 30 \h2
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d
20
(14)

a
"'979"152

Sincep; and p; always appear in combination with 4 | > and
A ;% we can expand them together as follows:

(pi/h1)(0) =Y (a,, cos mb + B, sin mb),

(15)
(p3/h3)(0) =3 (Vm cos mb + 6, sin mb).

Upon substitutions of (15) into (13) it immediately follows
that

&, = — (2m/Q)(C,, + D, )e™",

ﬁm = - (Zm/Ql)(Em +Fm )emply

and
7’ _ 2m Dm
™ (@, — Q) coshmp,’
5 — —2m Em

(Q, — @,) sinh mp,

The final step is the substitution of (12) and (15) into (14).
Setting the coefficients of cos m& and sin m8 to zero yields a
system of four homogeneous equations in four unknowns. If
the coefficients in (12) are assumed to be proportional to
e~ the equation for o is obtained by requiring that a non-
trivial solution exist, i.e., that the determinant of the system
vanish. This leads to an equation of the form:

(0/w)* — A(m, py, p2) (0/w)> — B(m, p,, py) =0,

(16)
where the coefficients 4 and B are given by
Ad=af ~ 5 +yQ2a—2B+L+6—7),
B=af(y* — &) —y(@®s +B%),
and
L. M. Polvani and G. R. Flieri 2378
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stable

FIG. 3. Stability curves for N = 2 for
the modes m = 3,4,5. The dotted
curve is calculated from Flierl’s the-
ory for circular vortices for m = 3 as

a = (1/2w)Q, coshmpe™™" — 1 m,

B = (1/2w)Q, sinh mp,e~ ™" — i m,

¥ = (1/20)(Q, — @,)sinh mp, cosh mp,,

¢ = (1/20) (@, — @,)sinh? mp, — } m tanh mp,,
&= (1/2w)(Q, — @,)cosh? mp, + } m coth mp,.

From the form of (16) it is clear that @ plays no role in
determining the stability of the vortex. Furthermore it is
easy to show that for stability the following conditions must
be satisfied:

A>0, B<0O, and A?+4B>0. (17

Because of the complexity of the coefficients 4 and B
one has to resort to numerical methods in order to determine
the shape of the critical curves in the ( p,, 0,) plane for each
mode m; they are shown in Fig. 3. The following results have
been established:

(1) The modes m = 1 and m = 2 are stable (or neutral)
for all values of p, and p, as was the case for the Kirchhoff
vortex (N =1).

(2) In the limit of very large p, the vortex becomes un-
stable if p, < 0.347 which corresponds to b,/a, <}, in agree-
ment with Love’s result for the Kirchhoff vortex.

(3) In general, given an inner ellipse of size p, > 0.347
the system will be stable for all m’s provided the size of the
outer ellipse exceeds some critical value. For very large val-
ues of p, and p, (i.e., for virtually circular boundaries) the
vortex will become unstable for ( p; — p,) <0.7.

Finally, we compare our results with the linear stability
theory of Ref. 3 for the circular problem. To each point in the
( p1; p2) plane we associate a unique pair of concentric cir-
cles of uniform vorticity; if the inner one has radius 1 and
vorticity 1, and the outer one radius » and vorticity ¢, we
establish a one-to-one correspondence between ( p,, p,) and
(r,q) by choosing

2379 Phys. Fluids, Vol. 29, No. 8, August 1986

described in the text.
1 1
3.0 35 4.0
posiohldp, oo _ O
. ’
sinh 2p, 2,

which means that the outer to inner ratios of area and vorti-
city are the same for the concentric circles and the confocal
ellipses.

The stability curve for the m = 3 mode is shown in Fig.
3. As expected, it agrees well with the curve for the confocal
ellipse for large values of p, and p,. The circular theory
breaks down for p, < 1.2, which corresponds to b,/a, < 0.83.

In conclusion, we point out that two quite different
kinds of instabilities can be identified from the curves of Fig.
3. The lower branch of these curves (which is asymptotic to
p2=0.347, i.e, b,/a, = | for the mode m = 3) represents a
Love-type instability due to excessive ellipticity of the inner
boundary. The upper branch, on the contrary, is really a
Rayleigh-type shear instability associated with the fact that
the vorticity gradient does not have a unique sign through-
out the vortex.
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