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ABSTRACT

Kernel-based association measures

Ying Liu

Measures of associations have been widely used for describing the statistical relationships

between two sets of variables. Traditional association measures tend to focus on specialized

settings (specific types of variables or association patterns). Based on an in-depth summary

of existing measures, we propose a general framework for association measures unifying

existing methods and novel extensions based on kernels, including practical solutions to

computational challenges. The proposed framework provides improved feature selection

and extensions to a variety of current classifiers. Specifically, we introduce association

screening and variable selection via maximizing kernel-based association measures. We also

develop a backward dropping procedure for feature selection when there are a large number

of candidate variables. We evaluate our framework using a wide variety of both simulated

and real data. In particular, we conduct independence tests and feature selection using

kernel association measures on diversified association patterns of different dimensions and

variable types. The results show the superiority of our methods to existing ones. We also

apply our framework to four real-word problems, three from statistical genetics and one of

gender prediction from handwriting. We demonstrate through these applications both the

de novo construction of new kernels and the adaptation of existing kernels tailored to the

data at hand, and how kernel-based measures of associations can be naturally applied to

different data structures including functional input and output spaces. This shows that our

framework can be applied to a wide range of real world problems and work well in practice.
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CHAPTER 1. INTRODUCTION 1

Chapter 1

Introduction

Measures of associations are used in a broad range of applications including genetics, com-

munication, economics, physics, etc. For example, in biology, we strive to identify associa-

tions between variants in a person’s genome and the risk of a certain disease. The existence

of such associations between two sets of variables may suggest the influence of one set of vari-

ables on the other, which is of great importance in practice. In communication, call center

managers are interested in whether having an agent or an interactive voice response (IVR)

answer incoming calls (among other factors) will have an influence on callers’ patience.

Many of today’s real-world applications involve big data, where the number of variables

involved is commonly very large. For instance, in genetics, the number of variables (vari-

ants in genome sequences) can easily reach several millions. This puts more challenges on

traditional statistical methods for the detection of associations.

A lot of statistical learning problems are deeply rooted in searching for association

or nonrandom patterns among variables. Especially, supervised learning is the learning

task of inferring a relationship between two sets of variables from an input space and

an output space, respectively. For example, the output space of a classification problem

contains labeled data. The dimensionality of the input space can be very high nowadays as

aforementioned, thus a key step in tackling such learning problems is (supervised) variable

selection, which seeks to identify the relevant variables (or features). This is usually done

based on some criteria that measure the strength of the association between the two sets of

variables.



CHAPTER 1. INTRODUCTION 2

In the statistics literature, a number of measures of associations (or independence) have

been used to evaluate and test associations between two sets of objects. The most commonly

used measure is the Pearson correlation coefficient between a univariate X and a univariate

Y , which measures correlation (or linear association) between individual continuous-valued

variables (see Section 2.1.1). However, association patterns of interest in real-world applica-

tions are very likely to be much more complicated. Therefore an ideal association measure

should have the flexibility to account for such complex patterns.

In this chapter we provide the formal definition of associations in statistics, and overview

very briefly several existing measures commonly used in practice.

1.1 Definition of association

In statistics, the definition of association is derived from the definition of independence.

Under a hypothesis test setting, the problem becomes conducting a test of independence,

with the hypotheses

H0 : fX,Y = fXfY

vs

H1 : fX,Y 6= fXfY (1.1)

where for the continuous case,

X ∈ Rp and Y ∈ Rq (1.2)

with p and q positive integers. fX,Y denotes the joint probability density function (PDF)

of (X,Y ), fX and fY denote the PDFs of X and Y , respectively; for the discrete case,

X ∈
p∏
i=1

{xi1, xi2, ..., xici} and Y ∈
q∏
j=1

{yj1, yj2, ..., yjrj} (1.3)

fX,Y denotes the joint probability mass function (PMF) of (X,Y ), fX and fY denote the

PMFs of X and Y , respectively. Association is defined as the opposite of independence

(H0 in (1.1)). Measures of associations can be treated as measures of “dependence” that

are constructed based on a sample (X,Y) = {(Xi, Yi)}, i = 1, 2, ..., n, and can therefore be

naturally used as test statistics.
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Problem (1.1) is difficult in the following senses. Random variables X and Y can be

of different types (discrete or continuous) and dimensions. The test problem is totally

nonparametric, i.e., it does not rely on what kind of distributions X and Y follow. The

alternative hypothesis is composite and includes all potential association patterns (e.g.,

functional relationships such as linear vs nonlinear, monotonic vs non-monotonic, periodic

vs non-periodic, and non-functional relationships such as superposition of two or more

functions). Therefore the main difficulty stems from the fact that it is hard to quantify all

possible departures from the null hypothesis of independence using a test statistic. Unlike

simple testing problems such as a test of a normal mean where one can find a “good” test

statistic (which leads to an unbiased uniformly most powerful test in the normal case), a

general test statistic with good properties for test of independence is still unknown. The

ideal measure of association would be nonparametric and flexible enough to accommodate

all potential dependence patterns.

1.2 An overview of this thesis

Different measures of associations have been proposed with different motivations. Each of

the measures has its own assumptions, which may give a hint on the senarios where the

measure will and will not work well. Commonly-used association measures include (among

others) Pearson’s correlation coefficient, the chi-squared statistic, rank-based measures, and

influential measures such as Partition-Retention (PR)’s I [Zheng et al., 2011; Chernoff et

al., 2009]. Especially, two new measures have attracted a lot of interests in recent years,

the maximal information coefficient (MIC) [Reshef et al., 2011] and the distance covariance

(dCov) [Szekely and Rizzo, 2009; Szekely et al., 2007]. MIC’s strength is in capturing local

patterns while dCov is supported by an elegant theoretical framework. In this thesis, we

propose a general kernel-based extension of traditional distance-based measures that will

be flexible enough to capture both global and local association patterns.

In Chapter 2 we will review several existing association measures and connect them

(including novel connections established in Propositions 1 and 2). Chapter 3 develops the

general framework for kernel-based association measures. Chapter 4 considers practical
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issues such as selecting kernel parameters. Chapter 5 illustrates the application of the

proposed framework to real-world problems. Chapter 6 concludes.
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Chapter 2

Association measures

In this chapter, we start with an overview of some representative measures often adopted

in practice in Section 2.1, with a focus on the strengths and weaknesses (assumptions and

limitations) of each of the measures. In Section 2.2, we examine connections between some

of these existing measures of associations.

2.1 Existing measures of associations

In this section we give a brief review of some popular association measures. We will begin

with ones with more assumptions and (thus) limitations, followed by more recent ones which

are intended to be more general.

2.1.1 Distribution and variable-type specific measures

As mentioned earlier, one of the major difficulties for test of independence is that there

are too many possibilities under the alternative. It would be easier to find a test with a

good power when one limits attention to a particular type of variables (either continuous

or discrete) from a specific distribution family.

For bivariate normal,

f(x, y) =
1

2πσxσy
√

1− ρ2
exp(− 1

2(1− ρ2)
[
(x− µx)2

σ2
x

+
(y − µy)2

σ2
y

− 2ρ(x− µx)(y − µy)
σxσy

])

f(x) =
1

σx
√

2π
e−

1
2

(x−µx
σx

)2 , f(y) =
1

σy
√

2π
e
− 1

2
(
y−µy
σy

)2
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where ρ is the correlation between X and Y

ρ =
cov(X,Y )

σxσy
=
E[(X − µx)(Y − µy)]

σxσy

In this case, the test in (1.1) is equivalent to

H0 : ρ = 0 vs H1 : ρ 6= 0

For a data set with n pairs of observations, (Xi, Yi), i = 1, ..., n, sample Pearson’s corre-

lation coefficient

r =

∑n
i=1(Xi − X̄)(Yi − Ȳ )√∑n

i=1(Xi − X̄)2
√∑n

i=1(Yi − Ȳ )2

is shown to be the maximum likelihood estimate (MLE) of the population correlation ρ. r

ranges from −1 to 1 and measures linear associations, thus it is invariant with respect to

linear transformations. As a test statistic, r has an asymptotic normal distribution. Fisher’s

variance-stabilizing transformation

z =
1

2
log[(1 + r)/(1− r)]1

results in a z that approaches normality faster [Fisher, 1915].

In general, ρ characterizes “correlation” instead of dependence, i.e.,

X ⊥ Y =⇒ X and Y are uncorrelated ⇐⇒ ρ = 0

but

ρ = 0 ; X ⊥ Y

where ⊥ denotes independence. This suggests that tests based on r may have low power

for non-normal data or nonlinear relationship.

For multivariate variables, canonical correlation analysis is used to measure the associa-

tion by finding linear combinations of the X’s and the Y ’s which have maximum correlation

with each other. Specifically, canonical correlation seeks vectors a and b such that the ran-

dom variables aTX and bTY maximize the correlation r =cor(aTX, bTY ). This can be

1All log used in this thesis is natural log unless otherwise mentioned.
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treated as a generalization of the correlation ρ (or r) to measure the dependence between

two vectors.

The multivariate counterpart of covariance (correlation) is the covariance (correlation)

matrix. Given a p dimensional vector X with finite second moments, the covariance matrix

Σ is defined to be the p by p matrix whose (i, j)th entry is the covariance cov(Xi, Xj). If

the covariance matrix has a block structure, the variables in different blocks are indepen-

dent with each other. The inverse of the covariance matrix is called the precision matrix,

which characterizes conditional independence in the special case of the multivariate normal

distribution. However its goal is different from measuring the overall dependence between

variables.

The odds ratio [CORNFIELD, 1951] describes the strength of association between two

binary data values. It is defined in terms of the joint distribution of the two random

variables, which can be written as

X = 0 X = 1

Y = 0 p00 p01

Y = 1 p10 p11

where p00, p01, p10 and p11 are “cell probabilities” that sum to one. The odds for Y within

the two subpopulations indicated by X = 1 and X = 0 are defined by the ratio of the

conditional probabilities given X, i.e., P (Y = 1|X)/P (Y = 0|X). For example, the odds of

Y = 1 when X = 0 is
p10/(p00 + p10)

p00/(p00 + p10)

The odds ratio is just the ratio of the odds, i.e.,

p00/(p00+p10)
p10/(p00+p10)

p01/(p01+p11)
p11/(p01+p11)

=
p00p11

p10p01
(2.1)

It can be easily seen that the odds ratio defined in (2.1) is symmetric about X and Y .

Given sampled data, one can estimate the probabilities in the joint distribution first and

define analogously the sample odds ratio. The distribution of the sample log odds ratio is

approximately normal [Agresti, 2002]. It can be shown that the odds ratio characterizes
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independence, i.e., it equals one if and only if X and Y are independent. However, it is

only available for univariate binary variables.

One generalization of the odds ratio is the Cochran-Mantel-Haenszel (CMH) statistics,

in cases where data can be arranged in a series of associated 2 × 2 tables. The corresponding

CMH test has increased ability to detect associations (see, for example, [Wallenstein and

Wittes, 1993] for details on this test).

For two general discrete random variables, chi-squared tests are commonly used for test

of independence. In this case, data can be allocated to a two-way contingency table

x1 ... xc margin

y1 O1,1 ... O1,c O1,.

... ... ... ... ...

yr Or,1 ... Or,c Or,.

margin O.,1 ... O.,c O.,.

where Oi,j is the number of observations with X = xj and Y = yi (here the notations

become simpler than those in (1.3) since we are considering the bivariate case). The expected

frequency for a cell, under the null hypothesis of independence, is

Ei,j =
Oi,.O.,j
n

The value of the test statistic is

χ2 =
r∑
i=1

c∑
j=1

(Oi,j − Ei,j)2

Ei,j

Under the null hypothesis, χ2 follows asymptotically a chi-squared distribution with (r −

1)(c− 1) degrees of freedom.

Chi-squared tests are in fact approximations of the log-likelihood ratio test, so they

may have low power in some circumstances. It is well known that the approximation to the

chi-squared distribution breaks down if expected frequencies are too low. In such cases it is

found to be more appropriate to use the G-test (recommended by [Sokal and Rohlf, 1981]),

a likelihood-ratio based test statistic

G = 2
∑
ij

Oi,j log(Oi,j/Ei,j)



CHAPTER 2. ASSOCIATION MEASURES 9

where the sum is taken over all non-empty cells. If we write Oi,j = Ei,j+δi,j , with
∑
δi,j = 0

so that the total number of observations stays the same, the G-test is then

G = 2
∑

(Ei, j + δi,j)ln(1 +
δi,j
Ei,j

)

If we Taylor expand this around
δi,j
Ei,j

= 0 (the point at which Oi,j and Ei,j agree), we get

G = 2
∑

(Ei,j + δi,j)(
δi,j
Ei,j
− 1

2

δ2
i,j

E2
i,j

+O(δ3
i,j))

= 2
∑

(δi,j +
1

2

δ2
i,j

Ei,j
) +O(δ3

i,j)

≈
∑ (Oi,j − Ei,j)2

Ei,j

= χ2

For very small samples an appropriate exact test (such as Fisher’s exact test, which

assumes fixed marginals) is preferable to either the chi-squared test or the G-test. Note

that the reason why one can find the likelihood ratio test in the current situation is that a

specific type (bivariate discrete) of variables is under consideration.

For categorical X ∈ {x1, x2, ..., xc} and continuous Y ∈ R, test of independence in (1.1)

is equivalent to one-way analysis of variance (ANOVA). Let Ȳ1, ..., Ȳc be the sample mean

within each value of X calculated on n1, ..., nc observations, respectively. One can define

SSR =

c∑
j=1

nj(Ȳj − Ȳ )2 (2.2)

to measure the association between X and Y . An F test can be carried out to test the depen-

dence of Y on X, under the assumption that Yi’s with the same Xi values are independent

and identically distributed (i.i.d.) normal random variables.

2.1.2 Rank-based measures

Pearson’s correlation coefficient r is known to be not robust [Wilcox, 2005], so its value

can be misleading if outliers are present or the distribution has a departure from Gaussian

[DEVLIN et al., 1975; Huber, 2004]. Rank-based measures have been proposed to address

such sensitivity problems. The most natural generalization is to calculate r based on rank
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values, which is named Spearman’s rho. Another rank-based measure, Kendall’s tau, is

defined as

τn =
#agreements−#disagreements

total number of pairs

=

∑
(1{(Xi −Xj)(Yi − Yj) > 0} − 1{(Xi −Xj)(Yi − Yj) < 0})

1
2n(n− 1)

where #disagreements can be treated as a distance metric (called the Kendall tau distance)

between two lists. The population version τ of Kendall’s tau is defined similarly. Specifically,

let (X1, Y1) and (X2, Y2) be independent random vectors with the same distribution as

(X,Y ). Then

τ = P[(X1 −X2)(Y1 − Y2) > 0]− P[(X1 −X2)(Y1 − Y2) < 0]

= ρ[sign(X1 −X2), sign(Y1 − Y2)]

−1 ≤ τ ≤ 1 with τ = 0 under independence. The testing problem then becomes

H0 : τ = 0 vs H1 : τ 6= 0

Note that in general the above test is not equivalent to that in (1.1) since one can find

dependent X and Y that also satisfy τ = 0. In other words, τ does not characterize

independence.

If X and Y are independent, the sampling distribution of τn has an expected value

of zero. If the agreement between the two rankings is perfect (i.e., the two rankings are

the same) the coefficient has value 1, while if the disagreement between the two rankings

is perfect (i.e., one ranking is the reverse of the other) the coefficient has value −1. For

hypothesis testing, exact probability can be calculated for small samples for significance

evaluation. Normal approximation or permutation is used for larger samples. For bivariate

normal distribution,

E(τn) =
2

π
arcsinρ

Since both Spearman’s rho and Kendall’s tau are based only on the ranks of the data,

they are invariant under rank-preserving (e.g., strictly increasing) transformations. For the

same reason, they may not have good power for non-monotonic relationships.
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As shown above, converting to rank values is one of the many procedures used to trans-

form data that do not meet the assumptions of normality. The Kruskal-Wallis H statistic is

another measure designed for situations when the normality assumption has been violated.

It conducts a standard ANOVA on the rank-transformed data [Kruskal and Wallis, 1952;

Conover and Iman, 1976].

Another group of rank-based measures is developed from the empirical copula. The

corresponding test problem is a little different from that in (1.1). Consider X̃ ∈ Rp, the

hypotheses of interest here are

H0 : the elements {X1, ..., Xp} in X̃ are mutually independent

vs

H1 : otherwise

We consider a special case that is relavent to problem (1.1) with X̃ ∈ R2. We shall denote

the two elements in X̃ by X and Y following our notation in (1.1). The idea underlying

tests based on the empirical copula relies on the fact that X and Y are independent if and

only if C = uv, where C is the copula defined implicitly by C(FX(u), FY (v)) where FX and

FY are the cumulative distribution functions (CDFs) of X and Y , respectively. The test

problem now becomes

H0 : C = uv vs H1 : C 6= uv

which is equivalent to (1.1). A natural thought would be to define some type of norm for

the (scaled) difference

Cn(u, v) =
√
n{Cn(u, v)− uv}

where Cn is the empirical copula

Cn(u, v) =
1

n

n∑
i=1

1{ Ri
n+ 1

≤ u, Si
n+ 1

≤ v}

with Ri and Si ranks of Xi and Yi, respectively. This leads Deheuvels [Deheuvels, 1979] to

a test of independence based on ∫ 1

0

∫ 1

0
{Cn(u, v)}2dudv
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which in turn leads to the Cramér-von Mises test statistic as a function of the ranks through

(see [Genest et al., 2007] for details)

Bn =
1

n

n∑
i=1

n∑
j=1

(1− Ri ∨Rj
n

)(1− Si ∨ Sj
n

)

− 2
n∑
i=1

{n(n− 1)−Ri(Ri − 1)

2n2
}{n(n− 1)− Si(Si − 1)

2n2
}

+ n{(n− 1)(2n− 1)

6n2
}d (2.3)

Like Kendall’s tau, Bn is based only on ranks, thus it is invariant under rank-preserving

transformations. However, it is not rotation invariant. Although it has been shown that

Cn(u, v) is a consistent estimator of C, the convergence rate is quite slow. Tests based on

Bn are asymptotically distribution-free. There are also many parametric copula families

available, which usually have parameters that control the strength of dependence. Tests

based on different copula families may only have high power if the underlying data structure

coincides with the specified family.

It turns out that Kendall’s tau can be expressed in terms of copula when X and Y are

continuous,

τ = 4

∫ 1

0

∫ 1

0
C(u, v)dC(u, v)− 1

2.1.3 Influential measures and variance-component scores

If one treats X as the independent variable, and Y as the response variable, association

measures can be considered as quantities that measure the influence of X on Y . An example

of such measures is Partition-Retention (PR)’s I [Zheng et al., 2011; Chernoff et al., 2009].

PR’s I was motivated by one-way ANOVA described in 2.1.1. For simplicity, consider

a subset of k binary valued variables from X denoted by {X1, X2, ..., Xk}, and Y either

continuous or discrete. The k X variables define a partition Π of the sample into m = 2k

subsets. The resulting partition elements are denoted by {A1, A2, ..., Am} corresponding to

the possible values of those k binary variables. Let nj denote the number of observations in

Aj . Each nonempty partition element Aj yields a mean of the Y values Ȳj and the overall
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mean is denoted by Ȳ =
∑m

j=1 nj Ȳj/n. The central influence measure is defined as

IΠ =

m∑
j=1

n2
j (Ȳj − Ȳ )2 (2.4)

(2.4) is similar to SSR defined in (2.2), but with different weights for the squared differences.

In practice, PR’s I is shown to be more robust.

For two-way tables as in the case of chi-squared tests, PR’s I can be written as a

particular form called the genotype-trait distortion (GTD) score. For simplicity, we consider

the single-nucleotide polymorphism (SNP) data type where X ∈ {0, 1, 2} and Y ∈ {0, 1}.

The backward genotype-trait association (BGTA) method was proposed for this type of

data with the key statistic, the GTD score [Zheng et al., 2006b]

GTD =
3∑
i=1

(
O1,i

O1,.
− O2,i

O2,.
)2 (2.5)

following the same notations in Section 2.1.1. It is easy to show that [Zheng et al., 2011;

Chernoff et al., 2009]

IΠ =
O2

1,.O
2
2,.

(O1,. +O2,.)2
GTD (2.6)

For binary data (two-by-two tables), it is also easy to show that

IΠ = 2χ2O1,.O2,.O.,1O.,2
n2

(2.7)

where O1,. =
∑2

i=1O1,i, O2,. =
∑2

i=1O2,i, O.,1 =
∑2

i=1Oi,1 and O.,2 =
∑2

i=1Oi,2 are the

row and column sums.

The Sequencing Kernel Association Test (SKAT) [Wu et al., 2011] is motivated by the

same applications. It conducts rare-variant association testing for sequencing data (see

Chapter 5 for such applications). There the variance-component score statistic is defined

as

Q = (Y − µ̂)′K(Y − µ̂)

where K = XWX′, µ̂ is the predicted mean of Y based on some covariates, X is an n× p

matrix with the (i, j)-th element being the j-th value of the i-th X, and W =diag(w1, ..., wp)

contains the weights of the p dimensions.
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2.1.4 Brownian distance covariance and maximal information coefficient

In recent years more general association measures have been proposed in order to capture

complex relationships for various data types. In this section, we discuss two recent general

measures that motivated this thesis, Brownian distance covariance (dCov) [Szekely and

Rizzo, 2009; Szekely et al., 2007] and maximal information coefficient (MIC) [Reshef et al.,

2011].

The motivation behind Brownian distance covariance is morally similar to that of copula

based measures described in 2.1.2. Instead of working with the empirical copula process,

consider hypotheses (1.1) in terms of characteristic functions. The joint characteristic func-

tion of (X,Y ) is defined as

φX,Y (t, s) = Eexp{i〈t,X〉+ i〈s, Y 〉} (2.8)

The marginal characteristic functions of X and Y are

φX(t) = Eexp{i〈t,X〉}, φY (s) = Eexp{i〈s, Y 〉} (2.9)

respectively. In terms of characteristic functions, X and Y are independent if and only if

φX,Y = φXφY . Thus the testing problem in (1.1) is equivalent to

H0 : φX,Y = φXφY vs H1 : φX,Y 6= φXφY

As in the case of copula based tests, a natural thought would be to measure the difference

between φX,Y and φXφY with a suitable distance ||φX,Y −φXφY ||. This distance turns out

to be defined through the || · ||w-norm in the weighted L2 space of functions on Rp+q

V2(X,Y ;w) = ||φX,Y (t, s)− φX(t)φY (s)||2w

=

∫
Rp+q
|φX,Y (t, s)− φX(t)φY (s)|2w(t, s)dtds (2.10)

where w(t, s) is an arbitrary positive weight function for which the above integral exists,

and for complex-valued function f(·), |f |2 = ff̄ with f̄ the complex conjugate of f . The

next step would be to choose the weight function such that the resulting measure have some

desirable properties, namely,

(i) One can also define

V2(X;w) = V2(X,X;w)
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and similarly V2(Y ;w), and then

R =


V(X,Y ;w)√
V(X;w)V(Y ;w)

, V(X;w)V(Y ;w) > 0

0, V(X;w)V(Y ;w) = 0

(ii) R characterizes independence in the sense that R = 0 if and only if independence

holds.

(iii) R is scale invariant.

The above considerations lead to the definition of the distance covariance (dCov) be-

tween X and Y with finite first moments as the nonnegative square root of (see [Szekely

and Rizzo, 2009] for details)

V2(X,Y ;w) = ||φX,Y (t, s)− φX(t)φY (s)||2

=
1

cpcq

∫
Rp+q

|φX,Y (t, s)− φX(t)φY (s)|2

|t|1+p
p |s|1+q

q

dtds (2.11)

where

cd =
π(1+d)/2

Γ((1 + d)/2)
(2.12)

and |x|p denotes the Euclidean norm of x in Rp.

One can also define naturally the sample version of the Brownian distance covariance

by

V2
n(X,Y) = ||φnX,Y (t, s)− φnX(t)φnY (s)||2

where φnX,Y (t, s), φnX(t), and φnY (s) are the joint and marginal empirical characteristic func-

tions, respectively. More specifically, these functions are defined by replacing the expecta-

tions in (2.8) and (2.9) by sample averages.

A useful alternative expression of V2
n(X,Y) is

V2
n(X,Y) = T1 + T2 − 2T3 (2.13)
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where

T1 =
1

n2

n∑
k,l=1

|Xk −Xl|p|Yk − Yl|q,

T2 =
1

n2

n∑
k,l=1

|Xk −Xl|p
1

n2

n∑
k,l=1

|Yk − Yl|q,

T3 =
1

n3

n∑
k=1

n∑
l,m=1

|Xk −Xl|p|Yk − Ym|q

with |x|p the Euclidean norm of x in Rp. It is not hard to find some analogy in the

expressions of V2
n in (2.13) and Bn in (2.3). This is not suprising considering the similar

motivations of the two methods. In fact, we will show later (see Proposition 2 in 2.2.4) that

Bn can be considered as a special case of V2
n under a specific “distance” rather than the

Euclidean distance in (2.13). One can define the sample Rn analogously.

Properties such as almost sure convergence Vn → V and R2
n → R2, weak convergence

and the limit distribution of nV2
n, and statistical consistency have been proved (see [Szekely

and Rizzo, 2009; Szekely et al., 2007] for details). A deterministic relationship between

R2(X,Y ) and correlation ρ has been established for the bivariate normal case. In particular,

R(X,Y ) ≤ |ρ|. This implies that in the normal case where ρ is optimal, tests based

on dCov will lose some power, which is as expected. It is also worth noting that the

restriction to the || · ||w-norm with the specific choice of w and the consequent Euclidean

norm in the expression of V2
n imply potential limitations of the corresponding tests. It is

not clear under what data structures the tests may have good power (which is important

information in real applications), the reason being that the measure is not data-driven but

rather defined for population first. Our simulation studies showed that the test did fail

under some circumstances (see Chapter 4). This is actually the motivation of our current

study with the aim of generalizing current measures to a broader kernel-based family and

adapting kernels in a data-driven manner.

Now we discuss the maximal information coefficient (MIC), another method based on the

idea of partitions. Recall that the reason why one can find an (approximate) likelihood-ratio

test with good properties (chi-squared and G-test) in the discrete case is that everything

is multinomial (i.e., a specific distribution family). The task becomes more challenging

when it comes to continuous random variables. A natural way to tackle this problem is
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discretizing, as was done by MIC [Reshef et al., 2011]. For X ∈ R and Y ∈ R, a grid G

is drawn on the scatterplot of the two variables. Let IG denote the mutual information

of the probability distribution induced on the cells of G, where the probability of a cell is

proportional to the number of observations falling inside that cell. More specifically, the

mutual information is defined as

MI = H(row) +H(col)−H(row, col)

where the entropy of a discrete random variable X is defined as

H(X) = −
∑
x

p(x)lnp(x)

Mutual information characterizes independence in the following sense: MI = 0 if and only

if the two random variables are independent. Define the characteristic matrix M = (ma,b),

where ma,b =max{IG}/ln min{a, b}, with the maximum taken over all a-by-b grids G for

the pair of integers (a, b). MIC is the maximum of ma,b over ordered pairs (a, b) such that

ab < B, where B = n0.6.

In fact, MIC is equivalent to conducting the G-test (discussed in 2.1.1) to the induced

discrete distribution, since it has been shown that

G = 2 · n ·MI

The default choice of the maximal grid size B is a balance of sensitivity and specificity.

However, the power 0.6 is chosen somewhat arbitrarily. This remains an open problem and

is worth studying in the future.

MIC falls between 0 and 1, is symmetric [i.e., MIC(X,Y )=MIC(Y ,X)], and because

IG depends only on the rank order of the data, MIC is invariant under order-preserving

transformations of the axes. MIC was intended to capture a wide range of association

types, although our experiments revealed some senarios where it did not have good power

(Chapter 4). One can consider the shape of the grids as a rectangular “kernel” imposed on

the data, which may explain the observed limitations of MIC.
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2.1.5 Hilbert-Schmidt independence criterion (HSIC)

Researchers in the machine learning field have also been developing association measures,

one of which is the Hilbert-Schmidt independence criterion (HSIC) [Gretton et al., 2007].

Its motivation goes back to the original definition of the test problem (1.1). As in the

case of copula-based measures and the distance covariance, a natural thought is to define a

distance directly between the joint distribution fX,Y and the product of its marginals fXfY .

This is done in HSIC with the kernel embeddings of probability measures into reproducing

kernel Hilbert spaces (RKHS, on which more in Chapter 3), which is a common approach

in machine learning. Specifically, the maximum mean discrepancy (MMD) between two

probability measures is just defined by the norm-induced metric in the RKHS. The HSIC

is then defined as the maximum mean discrepancy between the joint and the product

distributions, with the form

H = E{k(X,X ′)l(Y, Y ′)}+ E{k(X,X ′)}E{l(Y, Y ′)}

− 2E{E{k(X,X ′)|X}E{l(Y, Y ′)|Y }}

where (X,Y ) and (X ′, Y ′) are
i.i.d.∼ PXY , k(X,X ′) and l(Y, Y ′) are kernel functions. One

can readily see that this involves transforming the Euclidean distances of V2
n in Section

2.1.4, equation (2.13), by passing them through a kernel distortion [Gretton et al., 2009].

This is interesting considering the fact that dCov and HSIC are independently discovered

in the two separate fields. The similar formulations of these two types of measures imply

that a richer family of association measures could potentially be defined, which is pursued

in the current study.

2.2 Equivalence between different association measures

In this section we first provide a diagram of association measures, then prove the equivalence

between some of the association measures discussed in Section 2.1.
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2.2.1 A map of association measures

Figure 2.1 shows a diagram of the most commonly used measures of associations, with

relationships between different measures indicated by lines with arrows. It can be seen that

most of the measures are only suitable for variables of specific types (as indicated in bold on

the borders of Figure 2.1). Different measures are designed in order to capture different types

of associations as mentioned earlier. For example, Pearson’s correlation, Spearman’s rho

and Kendall’s tau can detect monotone relationships, while MIC is powerful in identifying

local patterns. It is also worth noting that the distance covariance has a lot of connections

with other measures as special cases. This actually motivates our current work to develop

a more general framework for association measures utilizing kernels (as an example, the

kernel distance covariance will be defined in Section 3.2).

2.2.2 Equivalence of IΠ and Vn(X,Y)

In this section we show the equivalence of Vn(X,Y) in (2.13) and the influence measure IΠ

in (2.4). This is stated in the following Proposition.

Proposition 1. For two-way tables with binary X and Y ,

IΠ =
n2

2
V2
n(X,Y) (2.14)

For m-by-two tables with m > 2, use m indicator variables to code X,

IΠ =
n2

2
√

2
V2
n(X,Y) (2.15)

Proof. We shall use nij , ni. and n.j instead of Oi,j , Oi,. and O.,j as in Section 2.1.

(i) Binary case.
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Pearson’s	  correla,on	  (2.1.1)	  

Spearman’s	  rho	  (2.1.2)	  

Copula	  (2.1.2)	  

Kendall’s	  tau	  (2.1.2)	  

rank	  

asympto,cally	  

con,nuous	  X,	  Y	  

Categorical	  vs	  Categorical	  

Odds-‐ra,o	  (2.1.1)	  2	  ×	  2	  

CMH	  (2.1.1)	  2	  ×	  2	  ×	  m	  
generalize	  

m
	  ×
	  n
	  

Chi	  square	  (2.1.1)	  

Fisher’s	  test	  (2.1.1)	  

G	  sta,s,c	  (2.1.1)	  

fixed	  marginal	  

approxim
ately	  

Categorical	  vs	  Numerical	  

ANOVA	  (2.1.1)	   Kruskal-‐Wallis	  (2.1.2)	  
rank	  

PR’s	  I	  (2.1.3)	  

mo,vates	  

General	  

	  
	  

Kernel	  distance	  
covariance	  (3.2)	  

Distance	  covariance	  
(2.1.4)	  

MIC	  (2.1.4)	  HSIC	  (2.1.5)	  

bivariate	  norm
al	  

Special	  
“distance”	  
(Prop.	  2)	  

categorical	  
(Prop.	  1)	  

distance	  
kernel	  

discre,zed	  
kernel	  

discre,za,on	  

Figure 2.1: A map of association measures. Our contribution is highlighted in green.

Measures in red detect monotone associations, while measure in blue (MIC) is powerful

in capturing local patterns. The broken line implies heuristic relation. The corresponding

parts in the main texts (indicated by numbers in the parentheses) provide more details on

each measure and relationships between different measures.
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For two-way tables with binary X and Y ,

T1 =
2

n2
(n00n11 + n01n10)

=
2

n4
(n00 + n01 + n10 + n11)2(n00n11 + n01n10)

=
2

n4
(n2

00 + n2
01 + n2

10 + n2
11 + 2n00n01 + 2n00n10 + 2n00n11

+ 2n01n10 + 2n01n11 + 2n10n11)(n00n11 + n01n10)

=
2

n4
(n3

00n11 + n2
00n01n10 + n2

01n00n11 + n3
01n10 + n00n11n

2
10

+ n01n
3
10 + n00n

3
11 + n01n10n

2
11 + 2n2

00n01n11 + 2n00n
2
01n10

+ 2n00n
2
10n01 + 2n2

00n10n11 + 2n2
00n

2
11 + 2n00n01n10n11 + 2n01n10n00n11

+ 2n2
01n

2
10 + 2n01n00n

2
11 + 2n2

01n11n10 + 2n10n
2
11n00 + 2n2

10n01n11)

T2 =
4

n4
(n.0n.1)(n0.n1.)

=
4

n4
(n00 + n10)(n01 + n11)(n00 + n01)(n10 + n11)

=
4

n4
(n00n01 + n00n11 + n10n01 + n10n11)(n00n10 + n00n11 + n01n10 + n01n11)

=
4

n4
(n2

00n01n10 + n2
00n01n11 + n00n

2
01n10 + n00n

2
01n11 + n2

00n10n11 + n2
00n

2
11

+ n00n01n10n11 + n00n01n
2
11 + n00n

2
10n01 + n00n10n01n11 + n2

10n
2
01 + n10n

2
01n11

+ n2
10n00n11 + n10n00n

2
11 + n2

10n01n11 + n10n01n
2
11)

T3 =
1

n3
[n00(n01 + n11)(n10 + n11) + n01(n10 + n11)(n00 + n10)

+ n10(n00 + n01)(n01 + n11) + n11(n00 + n01)(n00 + n10)]

=
1

n3
(n00n10n01 + n00n01n11 + n00n11n10 + n00n

2
11 + n01n10n00

+ n01n
2
10 + n01n11n10 + n01n11n00 + n10n00n01 + n10n00n11

+ n10n
2
01 + n10n01n11 + n11n

2
00 + n11n00n10 + n11n01n00 + n11n01n10)

=
1

n4
(n00n10n01 + n00n01n11 + n00n11n10 + n00n

2
11 + n01n10n00

+ n01n
2
10 + n01n11n10 + n01n11n00 + n10n00n01 + n10n00n11

+ n10n
2
01 + n10n01n11 + n11n

2
00 + n11n00n10 + n11n01n00 + n11n01n10)

(n00 + n01 + n10 + n11)
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V2
n(X,Y) = T1 + T2 − 2T3

=
4n2

01n
2
10 − 8n00n01n10n11 + 4n2

00n
2
11

n4

=
4(n00n11 − n01n10)2

n4

IΠ =
n2
.0n

2
.1

n2
[(
n00

n.0
− n01

n.1
)2 + (

n10

n.0
− n11

n.1
)2]

=
n2
.0n

2
.1

n2
[
(n00n.1 − n01n.0)2

(n.0n.1)2
+

(n10n.1 − n11n.0)2

(n.0n.1)2
]

= 2
n2
.0n

2
.1

n2

(n00n11 − n01n10)2

(n.0n.1)2

=
n2

2
V2
n(X,Y)

Thus V2
n(X,Y) and IΠ are equivalent conditional on the sample size n.

(ii) m-by-two tables with m > 2.

In this case, use m indicator variables to code X. We first rewrite T1, T2 and T3 in

terms of partitions based on X.

T1 =

√
2

n2

m∑
j=1

(n0j(n1. − n1j) + n1j(n0. − n0j))

T2 =
2
√

2n0.n1.

n4

m∑
j=1

n.j(n− n.j)

T3 =

√
2

n3

m∑
j=1

(n0j(n− n0.)(n− n.j) + n1j(n− n1.)(n− n.j))
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Calculations then give

n4V2
n(X,Y) = n4(T1 + T2 − 2T3)

=
√

2

m∑
j=1

(−n2
0.n0jn1. − 2n0.n0jn

2
1. − n0jn

3
1. − n3

0.n1j − 2n2
0.n0jn1j − 2n2

0.n1.n1j

− 4n0.n0jn1.n1j − n0.n
2
1.n1j − 2n0jn

2
1.n1j + 2n2

0.n1.n.j + 2n0.n0jn1.n.j + 2n0.n
2
1.n.j

+ 2n0jn
2
1.n.j + 2n2

0.n1jn.j + 2n0.n1.n1jn.j − 2n0.n1.n
2
.j)

=
√

2(−n3
0.n1. − 2n2

0.n
2
1. − n0.n

3
1. − n3

0.n1. − 2n2
0.

∑
n0jn1j − 2n2

0.n
2
1.

− 4n0.n1.

∑
n0jn1j − n0.n

3
1. − 2n2

1.

∑
n0jn1j + 2n2

0.n1.n+ 2n0.n1.

∑
n0jn.j

+ 2n0.n
2
1.n+ 2n2

1.

∑
n0jn.j + 2n2

0.

∑
n1jn.j + 2n0.n1.

∑
n1jn.j − 2n0.n1.

∑
n2
.j)

=
√

2(−2n3
0.n1. − 4n2

0.n
2
1. − 2n0.n

3
1. −

∑
n0jn1j(2n

2
0. + 4n0.n1. + 2n2

1.) + 2n2
0.n1.n

+ 2n0.n
2
1.n+ (2n0.n1. + 2n2

1.)
∑

n0jn.j + (2n2
0. + 2n0.n1.)

∑
n1jn.j − 2n0.n1.

∑
n2
.j)

=
√

2(−2n0.n1.(n0. + n1.)
2 − 2

∑
n0jn1j(n0. + n1.)

2 + 2n0.n1.n
2

+ (2n0.n1. + 2n2
1.)
∑

n0jn.j + (2n2
0. + 2n0.n1.)

∑
n1jn.j − 2n0.n1.

∑
n2
.j)

=
√

2(−2n2
∑

n0jn1j + 2n1.n
∑

n0jn.j + 2n0.n
∑

n1jn.j − 2n0.n1.

∑
n2
.j)

=
√

2(−2n2
∑

n0jn1j + 2nn1.

∑
n0j(n0j + n1j) + 2n0.n

∑
n1j(n0j + n1j)

− 2n0.n1.

∑
(n0j + n1j)

2)

=
√

2(−2n2
∑

n0jn1j + 2nn1.

∑
(n2

0j + n0jn1j) + 2nn0.

∑
(n0jn1j + n2

1j)

− 2n0.n1.

∑
(n2

0j + n2
1j + 2n0jn1j))

=
√

2(−2n2
∑

n0jn1j + 2nn1.

∑
n2

0j + 2nn1.

∑
n0jn1j + 2nn0.

∑
n0jn1j

+ 2nn0.

∑
n2

1j − 2n0.n1.

∑
n2

0j − 2n0.n1.

∑
n2

1j − 4n0.n1.

∑
n0jn1j)

= 2
√

2(n2
1.

∑
n2

0j + n2
0.

∑
n2

1j − 2n0.nj.
∑

n0jn1j) (2.16)

by noticing that n = n0. + n1. =
∑
n.j , n0. =

∑
n0j , n1. =

∑
n1j , and n.j = n0j + n1j . On

the other hand,

n2IΠ =

m∑
j=1

(n0jn1. − n1jn0.)
2

=
m∑
j=1

(n2
0jn

2
1. − 2n0.n1.n0jn1j + n2

0.n
2
1j)

= n2
1.

∑
n2

0j − 2n0.n1.

∑
n0jn1j + n2

0.

∑
n2

1j (2.17)
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Combining (2.16) and (2.17), we have

IΠ =
n2

2
√

2
V2
n(X,Y)

Thus conditional on n, Vn(X,Y) and IΠ are equivalent.

It is worth mentioning that there is no essential difference between cases (i) and (ii).

Specifically, the additional factor of 1√
2

in (2.15) just comes from the Euclidean distance

between different X values coded as m dimensional vectors.

We have validated the derived equivalence using randomly generated data of different

sample sizes n and numbers of possible values m (results not shown).

Remark 1. The equivalence shown by Proposition 1 is quite interesting, considering the

very different motivations of the two classes of association measures. The definition of IΠ

for categorical Y with more than two categories has not been fully studied. The above results

may provide some insight into defining IΠ in such cases.

2.2.3 Equivalent form of Vn(X,Y) for continuous Y

(i) The form of Vn(X,Y).

For continuous Y ,

T1 =
1

n2

∑
Xk 6=Xl

|Yk − Yl|

T2 =
2

n4
#(Xk 6= Xl)

n∑
k,l=1

|Yk − Yl|

T3 =
1

n3

∑
k

#
l
(Xl 6= Xk)

∑
m

|Yk − Ym|

V2
n(X,Y) = T1 + T2 − 2T3

=
1

n4

∑
k

[n2
∑

Xl 6=Xk

|Yk − Yl|+ 2(#(Xa 6= Xb)− n#
m

(Xm 6= Xk))∑
l

|Yk − Yl|] (2.18)

(ii) Vn(X,Y) under squared distance.
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Using squared distance for Y and with binary X,

V2
n(X,Y) = T1 + T2 − 2T3

=
1

n4

∑
k

[n2
∑

Xl 6=Xk

(Yk − Yl)2 + 2(#(Xa 6= Xb)− n#
m

(Xm 6= Xk))
∑
l

(Yk − Yl)2]

where ∑
k

∑
Xl 6=Xk

(Yk − Yl)2

=
∑
l,k

(Yk − Yl)21(Xl = 0)1(Xk = 1) +
∑
l,k

(Yk − Yl)21(Xl = 1)1(Xk = 0)

∑
l,k

(Yk − Yl)21(Xl = 0)1(Xk = 1)

=
∑
l,k

(Yk − Ȳ1 + Ȳ1 − Ȳ0 + Ȳ0 − Yl)21(Xl = 0)1(Xk = 1)

=
∑
l,k

(Yk − Ȳ1)21(Xl = 0)1(Xk = 1) +
∑
l,k

(Ȳ1 − Ȳ0)21(Xl = 0)1(Xk = 1)

+
∑
l,k

(Ȳ0 − Yl)21(Xl = 0)1(Xk = 1) +
∑

2(Yk − Ȳ1)(Ȳ1 − Ȳ0)1(Xk = 1)1(Xl = 0)

+
∑

2(Yk − Ȳ1)(Yl − Ȳ0)1(Xk = 1)1(Xl = 0)

+
∑

2(Yl − Ȳ0)(Ȳ1 − Ȳ0)1(Xk = 1)1(Xl = 0)

= n0

∑
Xk=1

(Yk − Ȳ1)2 + n0n1(Ȳ1 − Ȳ0)2 + n1

∑
Xk=0

(Yk − Ȳ0)2

By symmetry, ∑
l,k

(Yk − Yl)21(Xl = 1)1(Xk = 0)

= n0

∑
Xk=1

(Yk − Ȳ1)2 + n0n1(Ȳ1 − Ȳ0)2 + n1

∑
Xk=0

(Yk − Ȳ0)2

#(Xa 6= Xb) = n0n1

#
m

(Xm 6= Xk) = n01(Xk = 1) + n11(Xk = 0)

Thus,

#(Xa 6= Xb)− n#
m

(Xm 6= Xk) = n0n1 − nn01(Xk = 1)− nn11(Xk = 0)
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∑
l,k

2(#(Xa 6= Xb)− n#
m

(Xm 6= Xk))(Yk − Yl)2

=
∑
k

2[n0n1 − nn01(Xk = 1)− nn11(Xk = 0)]

× [
∑
l

(Yk − Yl)21(Xl = 0) +
∑
l

(Yk − Yl)21(Xl = 1)]

∑
Xk=Xl=0

(Yk − Yl)2

=
∑

Xk=Xl=0

(Yk − Ȳ0 + Ȳ0 − Yl)2

= n0

∑
Xk=0

(Yk − Ȳ0)2 + n0

∑
Xl=0

(Yl − Ȳ0)2

= 2n0

∑
Xk=0

(Yk − Ȳ0)2

Similarly,

∑
Xk=Xl=1

(Yk − Yl)2

= 2n1

∑
Xk=1

(Yk − Ȳ1)2

Thus,

∑
k

[n2
∑

Xl 6=Xk

(Yk − Yl)2 + 2(#(Xa 6= Xb)− n#
m

(Xm 6= Xk))
∑
l

(Yk − Yl)2]

= (2n2n0 − 2nn2
0 − 6nn0n1)

∑
Xk=1

(Yk − Ȳ1)2

+ (2n2n1 − 2nn2
1 − 6nn0n1)

∑
Xk=0

(Yk − Ȳ0)2

+ (2n2 − 2nn0 − 2nn1)n0n1(Ȳ1 − Ȳ0)2 + 2n0n1

∑
l,k

(Yk − Yl)2

= −4nn0n1

∑
Xk=1

(Yk − Ȳ1)2 − 4nn0n1

∑
Xk=0

(Yk − Ȳ0)2 + 2n0n1

∑
l,k

(Yk − Yl)2
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where

∑
l,k

(Yk − Yl)2

=
∑

Xl=0,Xk=0

(Yk − Yl)2 +
∑

Xl=0,Xk=1

(Yk − Yl)2

+
∑

Xl=1,Xk=0

(Yk − Yl)2 +
∑

Xl=1,Xk=1

(Yk − Yl)2

= 2n0

∑
Xk=1

(Yk − Ȳ1)2 + 2n0n1(Ȳ1 − Ȳ0)2

+ 2n1

∑
Xk=0

(Yk − Ȳ0)2 + 2n0

∑
Xk=0

(Yk − Ȳ0)2 + 2n1

∑
Xk=1

(Yk − Ȳ1)2

Thus,

∑
k

[n2
∑

Xl 6=Xk

(Yk − Yl)2 + 2(#(Xa 6= Xb)− n#
m

(Xm 6= Xk))
∑
l

(Yk − Yl)2]

= 4n2
0n

2
1(Ȳ0 − Ȳ1)2

V2
n(X,Y) =

4

n4
n2

0n
2
1(Ȳ0 − Ȳ1)2 (2.19)

2.2.4 Equivalence of Vn(X,Y) and Bn

In this section we establish the equivalence of Vn(X,Y) and Bn.

Proposition 2. Define a “distance” between Xk and Xl as 2

1− Rk ∨Rl
n

(2.20)

then,

Bn = nV2
n(X,Y) (2.21)

Proof. Using the “distance” defined by (2.20),

T1 =
1

n2

n∑
k,l=1

(1− Rk ∨Rl
n

)(1− Sk ∨ Sl
n

)

2Strictly speaking, (2.20) is not a distance. For example, it is not necessarily 0 when Xk = Xl. Here we

use the term “distance” only to highlight the analogy between the two measures.
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T2 =
1

n2

n∑
k,l=1

(1− Rk ∨Rl
n

)
1

n2

n∑
k,l=1

(1− Sk ∨ Sl
n

)

where (by reordering the X’s)

n∑
k,l=1

(1− Rk ∨Rl
n

)

=
n∑
k=1

[
n∑

l=k+1

(1− Rk ∨Rl
n

) +
k∑
l=1

(1− Rk ∨Rl
n

)]

=
n∑
k=1

[
n∑

l=k+1

(1− l

n
) +

k∑
l=1

(1− k

n
)]

=
1

3
n2 − n

2
+

1

6∑n
k,l=1(1− Sk∨Sl

n ) has the same value since here only rank matters. Thus,

T2 =
1

n4
(
1

3
n2 − n

2
+

1

6
)2

= [
(2n− 1)(n− 1)

6n2
]2

T3 =
1

n3

n∑
k=1

n∑
l,m=1

(1− Rk ∨Rl
n

)(1− Sk ∨ Sm
n

)

=
1

n3

n∑
k=1

[

n∑
l=1

(1− Rk ∨Rl
n

)][

n∑
m=1

(1− Sk ∨ Sm
n

)]

where (by reordering the X’s)

n∑
l=1

(1− Rk ∨Rl
n

)

=
k∑
l=1

(1− Rk ∨Rl
n

) +
n∑

l=k+1

(1− Rk ∨Rl
n

)

=
k∑
l=1

(1− Rk
n

) +
n∑

l=k+1

(1− l

n
)

= n−
R2
k

n
− (Rk + 1 + n)(n−Rk)

2n

=
n2 − n−R2

k +Rk
2n
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Similar calculations can be done for
∑n

m=1(1− Sk∨Sm
n ) by reordering the Y ’s. Thus,

T3 =
1

n3

n∑
k=1

[
n(n− 1)−Rk(Rk − 1)

2n
][
n(n− 1)− Sk(Sk − 1)

2n
]

=
1

n

n∑
k=1

[
n(n− 1)−Rk(Rk − 1)

2n2
][
n(n− 1)− Sk(Sk − 1)

2n2
]

Therefore,

Bn = nV2
n(X,Y) (2.22)
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Chapter 3

A general framework for

kernel-based association measures

In this chapter we develop a general framework to incorporate kernels into the traditional

measures of associations. Kernel machines have been widely used to take into account

complex structures contained in data in the machine learning field. Here we provide a

unified framework linking kernels from machine learning and association measures in the

statistics literature. The hope is that taking advantage of kernels allows us to detect richer

association patterns, which is actually demonstrated by the comprehensive empirical studies

shown later.

3.1 Kernel-based association measures

Recall that in Propositions 1 and 2 in Section 2.2 we established the equivalence between

association measures with very different motivations. Especially, Proposition 2 shows that

by choosing a particular form of “distance” instead of the Euclidean distance, the distance

covariance (2.13) and the copula-based measure (2.3) can be treated as special cases of a

family of more general association measures. Besides distance covariance, most commonly-

used association measures can be decomposed to a common set of elements, specifically,

inner products and Euclidean distances within the same set of variables, and their cross

product terms. This allows general association measures to be defined by replacing the Eu-
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clidean distances in traditional measures by kernel distances, where the “distance” function

need not satisfy the triangle inequality.

3.1.1 Reproducing kernel Hilbert spaces (RKHS) and kernel distances

Here we introduce definitions and notations required to understand kernel-based association

measures. One can refer to [Bertinet and Agnan, 2004; Phillips and Venkatasubramanian,

2011; Sejdinovic et al., 2012] for a more comprehensive treatment on this topic.

Definition 1. (RKHS) Let H be a Hilbert space of real-valued functions defined on Z. A

function k : Z × Z → R is called a reproducing kernel of H if

• ∀z ∈ Z, k(, z) ∈ H

• ∀z ∈ Z, ∀f ∈ H, 〈f, k(, z)〉H = f(z)

If H has a reproducing kernel, it is called a reproducing kernel Hilbert space (RKHS).

The map z 7→ k(., z) is called the canonical feature map of k. Moore-Aronszajn theorem

(e.g., see [Bertinet and Agnan, 2004]) states that, every symmetric, positive definite function

is a reproducing kernel associated with some RKHS. This allows us to take advantage of

RKHS without considering explicitly the canonical map.

There are several kernel functions successfully used in the literature, such as

The linear kernel: zT z′

The polynomial kernel: (γzT z′ + γ0)p

The radial basis function (RBF) kernel : exp(−
∑

i σi(zi − z′i)2) or exp(−
∑

i σi|zi − z′i|)

obtain Gaussian and Laplace kernels respectively

The sigmoid kernel: tanh(γzT z′ + γ0)

Definition 2. (Kernel distance) Consider two points z,z′ and a reproducing kernel k. The

kernel distance between z and z′ is defined as

ρk(z, z
′) = k(z, z) + k(z′, z′)− 2k(z, z′) (3.1)
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We shall sometimes omit the subscript k if it is self-clarified in the context. Definition

2 ensures that given a kernel, one can define a distance by (3.1).

Definition 3. (Negative type) The distance ρ is said to have negative type if ∀n ≥ 2,

z1, ..., zn ∈ Z, and α1, ..., αn ∈ R with
∑n

i=1 αi = 0,

n∑
i=1

n∑
j=1

αiαjρ(zi, zj) ≤ 0 (3.2)

It has been shown that negative type is essential for the isometric embedding of the

original space into RKHS [Sejdinovic et al., 2012]. Also, (3.1) in Definition 2 defines a valid

distance ρ of negative type on Z.

Lemma 1. [Sejdinovic et al., 2012] Let Z be a nonempty set, and let ρ be a distance on Z.

Let z0 ∈ Z, and denote k(z, z′) = ρ(z, z0) + ρ(z′, z0)− ρ(z, z′). Then k is positive definite if

and only if ρ satisfies (3.2).

Thus given a distance of negative type, there is an induced kernel (called the distance

kernel). In addition, k is a distance kernel if and only if k(z0, z0) = 0 for some z0 ∈ Z.

Hence, it is clear that any strictly positive definite kernel, e.g., the Gaussian kernel, is not

a distance kernel.

We shall define general association measures based on either kernel distances defined in

(3.1) (Chapters 4 and 5), or directly-defined distance functions (Chapter 5). When working

in the latter way, checking whether the distance is of negative type makes sure that it is a

kernel induced distance.

3.1.2 Kernel-based association measures

Here we provide the general definition of kernel-based association measures.

Definition 4. (Kernel-based association measures) Given an association measure A =

A(d), which is a functional of the Euclidean distance denoted by d, a corresponding kernel-

based measure can be defined as

Ak = A(ρk)
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In other words, a kernel-based association measure is of the same form as a traditional

measure, with Euclidean distances replaced by kernel distances. Definition 4 is quite general

in the sense that corresponding to any association measure that is a functional of (Euclidean)

distance, there is a family of implicit measures based on kernels. Hence it actually provides

a general framework to define more flexible association measures. The rationale is that by

mapping the current space into an RKHS of a higher dimension, the association patterns

in that RKHS would be simpler enough to be captured by the original measure.

Example 1. (Kernel influential measure) The kernel influential measure is defined as

IρΠ = n−1
m∑
j=1

n2
jρ(Ȳj , Ȳ )

following the notations in (2.4), where ρ is a (kernel) distance. In particular, taking the

Mahalanobis distance,

IMΠ = n−1
m∑
j=1

n2
j (Ȳj − Ȳ )TS−1(Ȳj − Ȳ )

where S is the sample covariance matrix.

Example 2. (Kernel distance covariance) The population kernel distance covariance is

defined as the nonnegative square root of

V2
ρx,ρy(X,Y) = EXY EX′Y ′ρx(X,X ′)ρy(Y, Y

′)

+ EXEX′ρx(X,X ′)EY EY ′ρy(Y, Y
′)

− 2EX′Y ′ [EXρx(X,X ′)EY ρy(Y, Y
′)]

where (X,Y ) and (X ′, Y ′) are
i.i.d.∼ PXY , and ρx and ρy are kernel distances defined on

the spaces of X and Y , respectively. Analogously, the sample kernel distance covariance is

defined by

V2
n,ρx,ρy(X,Y) =

1

n2

n∑
k,l=1

ρx(Xk, Xl)ρy(Yk, Yl),

+
1

n2

n∑
k,l=1

ρx(Xk, Xl)
1

n2

n∑
k,l=1

ρy(Yk, Yl),

− 2

n3

n∑
k=1

n∑
l,m=1

ρx(Xk, Xl)ρy(Yk, Ym)
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3.2 Kernel distance covariance

In Chapters 4 and 5 we will study the kernel distance covariance numerically by intensive

simulations and real data applications. In this section we discuss connections to some

previous work in order to provide insights into the kernel distance covariance.

[Kosorok, 2009] extends the original Brownian distance covariance [Szekely and Rizzo,

2009; Szekely et al., 2007] to arbitrary normed spaces. There the author does not consider

RKHS embedding but rather explicitly the norm induced distances. [Lyons, 2013] studies

the distance covariance in the context of embeddings to general Hilbert spaces, and the

relation with the theory of RKHS is not exploited. [Sejdinovic et al., 2012] establishes the

equivalence between the population versions of Hilbert-Schmidt Independence Criterion

and the kernel distance covariance when distance kernels (see Lemma 1) are used. The

current work is more general in the sense that no restrictions are forced on the kernels.

In addition, the aforementioned work focuses on developing theoretical properties of the

measures under certain conditions, while the current work focuses more on practical issues

inevitably encountered when applying such measures to real applications, such as developing

criteria for kernel and parameter selection, and procedures for feature selection with kernel-

based association measures (Chapter 4).
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Chapter 4

Kernel and parameter selection

It can be imagined that a key factor in the framework presented in Chapter 3 is the choice

of the kernel. There are several kernel functions successfully used in the literature, such as

the linear kernel, the polynomial kernel, and the radial basis function (RBF) kernel (with

the Gaussian kernel as a special case). In this chapter we present systematic procedures

for the selection of kernels and their parameters for the proposed kernel-based association

measures.

4.1 Selection of kernels and their parameters

Let A(kx,θx , ky,θy) denote the association measure at hand, where kx,θx and ky,θy are kernels

for X and Y , respectively, with θx and θy corresponding kernel parameters. Then for kernels

within the same category, multiple parameters could be tuned according to

θ∗ = arg max
θ
A(kx,θx , ky,θy)

A nice feature of the above optimization problem is that most kernels are differentiable w.r.t.

θ, so one can compute the gradient easily. This may guide kernel and feature selection for

kernel machines such as support vector machines (SVMs, see Section 4.3).

For kernels of different categories, one can choose appropriate kernels according to

{kx, ky} = arg max
mx,my

A(kx,mx , ky,my)
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where mx and my are indices for candidate kernels for X and Y , respectively. Normalization

may be needed for a fair comparison between different kernels.

More generally, methods have been proposed to combine multiple kernel functions in-

stead of selecting a specific one for kernel machines recently (see, for example, [Gönen and

Alpaydin, 2011]). Similar ideas can be adopted here for multiple kernel learning in the as-

sociation testing framework. Specifically, if there are P kernels for X under consideration,

the combined kernel is then (omitting x in the subscript)

kη(Xi, Xj) = fη({km(Xi, Xj)}Pm=1)

where the combining function fη : RP → R, can be a linear or a nonlinear function, and

η is its parameter. η can be optimized with a set of predefined kernels (i.e., we know the

kernel functions and the corresponding kernel parameters before training), such that the

association measure is maximized. Or it can be integrated into the kernel functions and

optimized during training.

Remark 2. The idea behind maximizing the association measure is that we want to find a

suitable transformation of the original data by kernels that reflect the underlying structure.

The maximum value can be treated as an indication of the “strength” of the association

pattern. A maximum of 0 indicates independence.

4.2 Parameter selection for kernel distance covariance with

RBF kernels

In this section we give an example of parameter selection for the kernel distance covariance

with RBF kernels in association testing. Recall that the kernel distance covariance is defined

by its square

V2
n,ρx,ρy(X,Y) = T1 + T2 − 2T3
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where

T1 =
1

n2

n∑
k,l=1

ρx(Xk, Xl)ρy(Yk, Yl),

T2 =
1

n2

n∑
k,l=1

ρx(Xk, Xl)
1

n2

n∑
k,l=1

ρy(Yk, Yl),

T3 =
1

n3

n∑
k=1

n∑
l,m=1

ρx(Xk, Xl)ρy(Yk, Ym),

with ρx and ρy kernel distances in the X and Y spaces, respectively. Specifically (omitting

the subscript),

ρ(x, z) = k(x, x) + k(z, z)− 2k(x, z)

Here we focus on the RBF kernels with different scaling factors, defined as

kσ(x, z) = exp(−
∑
i

σi(xi − zi)2),

where σi ≥ 0 are the scaling factors, and i is the index for different dimensions. The induced

distance is then

ρσ(x, z) = 2(1− exp(−
∑
i

σi(xi − zi)2)).

Traditional strategies for choosing σi’s are usually based on exhaustive search. In our

framework, one can compute the gradient directly to maximize the association measure.

4.2.1 Optimizing the RBF kernel parameters

We use Newton’s method to find the maximum of the RBF kernel distance covariance.

Specifically (omitting the subscript x or y to σi),

δσi = −(∆σV2
n,ρx,ρy)

−1
∂V2

n,ρx,ρy

∂σi

where the Laplacian operator ∆ is defined by

(∆σV2
n,ρx,ρy)i,j =

∂2V2
n,ρx,ρy

∂σi∂σj

In this study we use the parameterization on the logarithmic scale, i.e., logσi, to avoid

positivity constraints in the optimization problem. This also turns out to give more stable
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Figure 4.1: Patterns for the two angles used in the simulations (adapted from Wikipedia).

results. The gradient and the second order derivatives of the RBF kernel distance is then

∂ρσ
∂logσk

= 2(1 + exp(
∑
i

−σi(xi − zi)2)(xk − zk)2σk) (4.1)

∂2ρσ
∂(logσk)2

= 2(1 + exp(
∑
i

−σi(xi − zi)2)(xk − zk)2σk)

− σ2
k(xk − zk)4exp(

∑
i

−σi(xi − zi)2)) (4.2)

∂2ρσ
∂(logσk)(logσl)

= 2(1− exp(
∑
i

−σi(xi − zi)2)(xk − zk)2σk(xl − zl)2σl) (4.3)

(4.1), (4.2) and (4.3) can be directly used when computing the gradient and the Hessian

matrix of V2
n,ρx,ρy .

4.2.2 Numerical results

In this section we compare the performance of the RBF kernel distance covariance with opti-

mized scaling factors and three state-of-the-art association measures introduced in Chapter

1, namely, the Brownian distance covariance, the maximal information coefficient, and the

copula-based Cramér-von Mises test statistic. We generated the two angles (φ, θ) in the

spherical coordinate system following seven unusual association patterns, mimicking those

at the wikipedia.org page on Pearson correlation (Figure 4.1, R code is modified from sup-

plementary files of [Newton, 2009]). Then we converted to Cartesian coordinates by

x = cosφsinθ

y = sinφsinθ

z = cosθ

We first conduct association tests with the aforementioned four measures as test statis-

tics on each of the constructed pairwise patterns. In each case we randomly sample n = 50
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and 300 points. Permutation tests are used to get P-values for tests based on the RBF

kernel distance covariance. Specifically, we permute the order of the generated data in one

dimension so that the association pattern is destroyed. Two hundred permutations are

done, thus the minimum possible P-value is 0.005. For both the original and each of the

permuted data, Newton’s method as described in Section 4.2.1 is used to find the scaling

factor in the RBF kernel for each dimension, such that the type I error is well controlled.

We set the initial values logσi = 3. Each component is normalized by its standard deviation.

Two hundred independent replicates are generated for each of the association patterns. The

constructed association patterns and the resulted parallel P-value box plots from different

tests are shown in Figure 4.2 and Figure 4.3. Given the fact that there is dependence

between horizontal and vertical components in all of the cases, smaller P-values indicate

higher power. It can be seen that the power of the considered tests tend to be higher when

the sample size is bigger. The three competing tests exhibit low power in several cases

especially when the sample size is small. In all the cases, P-values from the Monte Carlo

test of independence based on the kernel distance covariance with parameters tuned by the

proposed strategy are the smallest among the four tests.

One can roughly divide the generated association patterns into two groups: functional

(e.g., all but the case on the far right in the middle row of Figures 4.2 and 4.3) and non-

functional (most of the other patterns shown in Figures 4.2 and 4.3) relationships. It can

be seen that existing methods tend to perform better for functional associations. Non-

functional associations contain superposition of two or more functions (such as the lower-

left pattern shown in Figures 4.2 and 4.3). More complicated non-functional associations

include ones without predictability, i.e., Y cannot be predicted from X (e.g., all the patterns

shown in the first row of Figures 4.2 and 4.3 except the second one). In such patterns Y

has a constant mean across the range of X, and only the variance changes. The three

competing tests do not have a good power for such patterns, especially when the sample

size is small (Figure 4.2). As mentioned earlier, MIC has the strength in capturing local

patterns, while the distance covariance and the Cramér-von Mises test statistic can both be

treated as specialized versions of the kernel distance covariance with specific “kernels”. As

expected, the dependence is revealed by the RBF kernel distance covariance with optimized
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Figure 4.2: Association patterns and corresponding P-value box plots from four different

tests based on 50 samples. The scatter plots are based on one random simulation and the

box plots of P-values are based on 200 simulations and the P-values are calculated using

200 permutations.
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Figure 4.3: Association patterns and corresponding P-value box plots from four different

tests based on 300 samples. The scatter plots are based on one random simulation and the

box plots of P-values are based on 200 simulations and the P-values are calculated using

200 permutations.
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scaling factors in all of the cases.

In practice problems are usually of higher dimensions. However, there has been virtually

no systematic empirical evaluation on the performance of association tests for higher (more

than two) dimensional data to the author’s best knowledge. Using the patterns generated

above, we can treat a pair of the variables as a two dimensional vector, and test for the

association with the other remaining variable. We then conduct tests based on the RBF

kernel distance covariance on the 21 three-dimensional patterns as described above. Of the

three methods we evaluated on the pairwise patterns, only Brownian distance covariance

can deal with such problems. Thus we compare its results with those from our approach.

The P-value box plots in Figure 4.4 and Figure 4.5 again show the impact of the sample

size and superiority of the RBF kernel distance covariance relative to the original Brownian

distance covariance. This is because the RBF kernel is more flexible, and our approach

adapts kernel parameters in a data-driven manner.

It is a little difficult to visualize the corresponding three-dimensional association pat-

terns. Here we show a “slice plot”, i.e., scatterplots of two variables conditional on different

ranges of the third variable (Figure 4.6), for the sixth association pattern corresponding to

the sixth column in Figure 4.3 (all the other six patterns can be found in Appendix B).

This is a hard problem as indicated by the results shown in Figures 4.4 and 4.5, especially

X and Z versus Y as shown in the middle row in Figure 4.6. It can be seen that X and

Z together are associated in a certain way with Y , but the relationships between X and

Z within different ranges of Y are quite similar. Even in such cases the kernel distance

covariance can detect the association with a high power.

4.3 Parameter and feature selection with kernel-based asso-

ciation measures in classification

A lot of classifiers are built upon a metric of the feature space, such as SVM [Vapnik, 1998;

Vapnik, 2000], regression-based methods, and K nearest neighbors (KNN). Especially, fea-

ture selection for these methods can be treated as training 0/1 weights on the candidate

features, which is widely known to be critical for the performance of the classifiers. There-
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Figure 4.4: P-value box plots from two competing tests for each of the three-dimensional

association patterns based on 50 samples. The box plots are based on 200 simulations and

the P-values are calculated using 200 permutations.
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Figure 4.5: P-value box plots from two competing tests for each of the three-dimensional

association patterns based on 300 samples. The box plots are based on 200 simulations and

the P-values are calculated using 200 permutations.
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Figure 4.6: Slice plots of the sixth association pattern in Figure 4.1. The scatter plots are

based on one random simulation.
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fore, our framework of maximizing the association between two sets of variables, Y and

X, via algorithmic search of an optimal set of kernel parameters (e.g., weights for the

dimensions of Y and X) can be naturally utilized for variable selection.

There are two groups of approaches for feature selection in the literature: filtering meth-

ods and wrapper methods. Filtering methods rank the features according to some criterion

that intends to measure each feature’s individual prediction strength to the classification

question. For example, one can compute for each feature the correlation with the out-

come and then rank them accordingly. Kernel-based association measures developed in this

thesis can also be used to rank the variables, as evidenced in Section 4.2. Multi-feature

filtering criteria are also possible, one example being the pairwise influential measure (see

Section 2.1.3). Note that typically the filtering criteria are not related with the follow-up

classification. Wrapper methods select features by classification. Specifically, it starts from

all features as candidates, using all candidate features to build a certain classifier, e.g.,

SVM or a neural network, and uses classification accuracy to assess the performance. The

contribution of each feature in the classifier is evaluated by some criterion, for example,

for linear classifier, according to the weights (coefficients) of the features in the classifier.

This process is carried out recursively, i.e., a new subset of candidate features is selected

according to the above criterion and a new classifier is built by restricting the data to the

dimensions in this subset. Wrapper methods have consistent criteria for both classification

and feature selection with no extra model/criterion for the selection step. Interactions be-

tween variables are also considered. However, there might be more of a risk of overfitting

in selection. Especially when the sample size is small, the risk of getting a “good” combi-

nation of features by chance might be larger comparing to that of single-feature selection.

Furthermore, the computational burden for wrapper methods is heavier due to the con-

struction of a new classifier at each step. Hybrid procedures are also possible, e.g., certain

initial variable selection before the recursive procedure. Ideally, a feature selection method

should combine the advantages of the two types of methods, i.e., less computation and

classification-relavent criteria. We shall see (e.g., in Section 5.4) that procedures based on

kernel association measures can have this desirable characteristic by considering the same

metric space during both feature selection and classification. But before that, let us discuss
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a method developed in [Chapelle et al., 2002] with this flavor.

The problem of parameter and feature selection for Support Vector Machines (SVMs) is

very crucial to the performance of constructed classifiers and have long been studied. One

traditional strategy often used in practice is exhaustive search, i.e., running the algorithm

on a grid of parameter values. This is usually very time consuming when there are multiple

parameters, which is usually the case for SVM. Another direction is to minimize errors.

For example, [Chapelle et al., 2002] proposed such a method, which includes the following

steps. First, test errors are estimated, e.g., given a validation set {(x′i, y′i)}1≤i≤m,

T =
1

p

m∑
i=1

Ψ(−y′if(x′i))

where Ψ is a step function: Ψ(x) = 1 when x > 0 and 0 otherwise. This function is not

differentiable so that it is replaced by a smoothed version, e.g.,

Ψ(x) = (1 + exp(−Ax+B))−1

where constants A and B have to be chosen (which is difficult). Kernel parameters can

then be optimized by computing the gradient of the error estimate. It can be seen that the

above procedure contains several steps and is not very straightforward.

The situation becomes simpler in our framework. Because most commonly-used kernels

are smooth functions, one can compute the gradient directly to maximize the association

measure. We show how this can be further simplified into a greedy search procedure, and

evaluate its performance using simulations in this section. This can guide feature selection

in practice as shown in the following.

4.3.1 RBF kernel association measures for variable selection

In this section we consider a naive procedure for feature selection through finding optimal

scaling parameters as shown in Section 4.2. This is based on the conjecture that if one of

the input dimensions is irrelevant for the classification problem, its scaling factor is likely

to become small. In other words, if a scaling factor becomes small enough, it means that

it is possible to remove the corresponding component without affecting the classification

performance [Chapelle et al., 2002]. This naturally leads to the following idea for feature

selection: keep the features whose scaling factors are the largest.
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We generate a double helix data set as shown in Figure 4.7 to test the above idea.

Specifically, three dimensions out of 10 are relevant (as shown in the pairwise scatter plots

in Figure 4.8), and the rest are just Gaussian noise. The double helix consists of two “swiss

rolls”, which makes the first two dimensions symmetric and marginally non-informative (the

left panel in Figure 4.8). The third dimension also contains complete information for the

classification problem (the y axis in left panel in Figure 4.8). In other words, one can build

a perfect classifier based on either the first two features or the third feature. In this sense,

the first two dimensions and the third dimension contain redundant information.

We standardize all the features to zero mean and unit variance. We consider the kernel

distance covariance with the RBF kernel for the input space and the linear kernel on class

labels, and choose the scaling factors in the RBF kernel by maximizing the association

measure. It might be interesting to have a look at the trace of the scaling coefficients

through the optimization process, which is shown in Figure 4.9 from a simulated data of 80

points. It can be seen that the scaling parameters are initialized to the same value (1/(2d),

where d is the dimension of the data. See, e.g., [Song et al., 2012]), and stabilized after

around 20 iterations. The result is as expected in such a situation: the coefficients for the

irrelevant features are smaller, so that these coefficients may be interpreted as measures of

the relevance of the corresponding features to the classification problem. Interestingly, the

adopted measure also automatically picks one of the two redundant groups in the input

space (the first two features) for this realization. This whole optimization process runs for

only a few seconds.

4.3.2 A backward recursion procedure for kernel-based feature selection

The experiments in 4.3.1 show the promise of using kernel-based association measures for

feature selection. However the procedure presented therein requires optimizing over a large

number of parameters if the dimension is high, which is often the case in practice. One

possibility is to consider a few features at a time and use the trained weights for feature

selection. This may require shrinking some of the weights to zero, which we shall discuss

in Chapter 6. For now we treat the results shown in 4.3.1 more as a demonstration of the

meaning of the trained weights (we will come back to this in Section 5.3).
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Figure 4.7: Double helix with class labels indicated by colors.
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Figure 4.8: Pairwise scatter plots for the three informative features in the simulated double-

helix data, with class labels indicated by colors.
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Figure 4.9: The evolution of the scaling factors (weights) through the optimization pro-

cedure. For this particular realization there are 60 iterations in the optimization process

(the upper panel), of which 5 are plotted (the lower panels, indicated by dots in the upper

panel).
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Actually there are two important aspects of the feature selection problem: the choice of

a criterion and a selection algorithm ([Song et al., 2012]). An ideal criterion quantifies the

relevance of a feature subset (to the class label), so that a global optimum for the criterion

(by restricting the data to a feature subset) is the solution to the variable selection prob-

lem (under this criterion). Unfortunately, finding a global optimum is typically NP-hard

[Weston et al., 2003]. Therefore an efficient algorithm is needed to solve the combinatorial

optimization problem approximately.

Sections 4.2 and 4.3.1 shows that kernel-based association measures can be a powerful

candidate criterion to perform feature selection. In this section we shall develop a backward

elimination algorithm to be used together with kernel-based criteria. We first describe the

general procedure, and then study in detail two realizations with the criteria being the

kernel influential measure and the kernel brownian distance defined in Examples 1 and

2, respectively. Specifically, for the realization with the kernel influential measure, we

give the conditions for the corresponding procedure to be consistent (Theorem 1); for the

realization with the kernel distance covariance, we illustrate different choices of kernels using

simulations.

As discussed earlier, the goal of feature selection is to pick out the informative features.

In other words, one can treat the scaling factors in association measures as indicators.

Specifically, σi = 1 suggests keeping the ith dimension, while σi = 0 means the ith dimension

is irrelevant. Thus maximizing a criterion with scaling factors is done in a discretized space

of the σi’s. This becomes a search problem, the solution of which can be approximated by

the procedure described bellow.

1. Calculate the kernel-based criterion using all the X variables.

2. While there are still variables left

2.1 Remove each variable and re-calculate the kernel-based measure.

2.2 Eliminate the variable that results in the maximum criterion value.

We first consider the procedure with the kernel influential measure as the criterion. For

classification problems, the kernel influential measure with Mahalanobis distance can be

redefined as

IMΠ (X,Y ) = n−1
2∑
j=1

n2
j (X̄j − X̄)TS−1

x (X̄j − X̄) (4.4)
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Note that here we are treating the class label Y as X in the original definition and using

it for partition. Consider a diagonal matrix Σ with its diagonal elements scaling factors for

the corresponding dimensions, σi ≥ 0. Then one can define the rescaled features as

X ′ = ΣX (4.5)

This corresponds to a linear kernel on X. Plugging (4.5) into the definition (4.4), one can

maximize IMΠ (X ′, Y ) with respect to Σ as discussed earlier. One difficulty is that (4.4) may

be monotone increasing in σi. This can be solved by imposing some constraint on the sum

of σi’s. We will not pursue the mathematical details here since we will investigate the more

straightforward search algorithm described above.

Now let us discuss the consistency of the kernel influential measure used as the criterion

for variable selection. Model selection consistency is defined as

P ({i : σ̂ni 6= 0} = {i : σ∗i 6= 0})→ 1, as n→∞

where σ∗i ’s are the true scaling factors, and σ̂ni ’s are the outputs from a feature selection

algorithm based on n samples. This requires

IMΠ (Σ∗X,Y ) = maxΣI
M
Π (ΣX,Y ) with probability 1 (4.6)

where Σ∗ is the scaling matrix corresponding to the true features. For simplicity, assume

different dimensions of X are independent, and each component of X is normalized, such

that the covariance Sx becomes the identity matrix. (4.4) then becomes

IMΠ = n−1
2∑
j=1

n2
j

p∑
i=1

σ2
i (X̄ji − X̄i)

2 (4.7)

where X̄ji and X̄i are the corresponding averages on the ith dimension. This suggests the

following conditions (which we shall call the identifiability condition)

EXji 6= EXi for the informative dimensions

EXji = EXi for the non-informative dimensions

for j = 1, 2 (4.8)

Clearly (4.6) holds under the identifiability condition (4.8) due to central limit theorem.

Thus we have proved the following theorem for features with independent components:
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Theorem 1. Under the identifiability condition in (4.8), the kernel influential measure is

consistent in terms of model selection.

Now we move on to the kernel distance correlation as the criterion in the backward

dropping procedure. Here we use the same double-helix example as in Section 4.3.1, except

that we increase the dimensions to 23. We impose the proposed procedure with different

kernels in the distance correlation, namely, the linear kernel (which results in the original

distance correlation), the RBF kernel, and the angular kernel. The angular kernel distance

is defined between two vectors z and z′ as (see, e.g., [van der Laan and Pollard, 2003])

θ(z, z′) = arccos(
zT z′

||z||||z′||
) (4.9)

where || · || is the Euclidean norm. Thus it is simply the angle between the two vectors

under consideration. Indeed, the angular distance is extensively used in the literature for

hyperspectral data classification due to its invariance to the spectral energy [Keshava, 2004;

Honeine and Richard, 2010]. Considering the fact that each of the swiss rolls in the double-

helix in our simulated data is actually a one-dimensional manifold indexed just by the

angle in the three-dimensional space (Figure 4.7), the angular distance (4.9) can be treated

as the “right” kernel for this question. Our numerical studies as described later actually

shows that backward elimination with the angular distance covariance discovers all the three

informative features.

Consider the following example to best understand the relation between the deletion and

information changes: Figure 4.10 shows a typical application to a simulated data containing

80 points. Initially, before any feature is deleted, the class information measured by the

angular distance correlation is relatively low. This is because the amount of information has

been swamped by the noises and irrelevant dimensions due to these features. As screening

out more and more features, the information grows. The algorithm will stop at the peak

of the score, which in this case is around 0.38 (remember the kernel distance correlation is

between 0 and 1). If the deletion process is forced to continue, the information would start

to drop dramatically. For comparison, we also include in Figure 4.10 an information flow

plot for the same data but with permuted class labels. It is easily seen that there is no

important information contained in those features since the curve stays relatively constant
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throughout all deletions and eventually, the algorithm returns no features.

We then apply the backward elimination procedure with linear, RBF and angular dis-

tance correlations to randomly generated data sets to illustrate the difference in the per-

formance. We compare backward elimination with the marginal RBF distance correlation,

Pearson’s correlation, and MIC (Section 2.1.4). We aim to show that when complex depen-

dencies exist in the data, our backward dropping algorithm with appropriate kernels is very

competent in finding them.

We instantiate the artificial data sets over a range of sample sizes (from 40 to 160),

and plot the median rank, produced by various methods, for the first three dimensions of

the data. All numbers in Figure 4.11 are from 300 independent runs, with the sizes of

the ovals proportional to the standard errors. It can be seen that backward elimination

with kernel distance correlations shows good performance. More specifically, we observe

backward elimination with angular dCor correctly selects the first three dimensions of the

data almost every time even for small sample sizes. Backward elimination with RBF-

kernel dCor selects the first two interactive features (one of the two groups of redundant

features), which is consistent with the observations in Section 4.3.1. The third dimension

is dropped out because only the first two features contain complete information for the

classification problem as measured by the RBF kernel. We manually remove one of the

first two dimensions, and the third dimension gets a lower rank (results not shown), which

confirms the above conjecture. This implies that in practice when the data structure is

unknown, RBF kernels are still a safe choice. Backward elimination with the original dCor

also converges to the first two features as the sample size increases, but cannot pick up the

correct answer for small samples. Since the first two features have nonlinear interactions

between each other and do not contain marginal information, the three marginal methods

should only find the third feature that is marginally associated with the class label. This

is what is observed for the marginal RBF-kernel dCor. Pearson’s correlation fails because

it evaluates the goodness of each feature independently. Hence it is unable to capture the

nonlinear interaction between the first two features, and the nonlinear association between

the third feature and the class label (See Figure 4.8). MIC captures the third feature as

expected, but may have overfitting problems for the first two marginally non-informative
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Figure 4.10: Information (the angular distance correlation) flow during screening (due to

the properties of the angular distance, the distance correlation for the last round is set

to 0). As shown in the left plot: at first the information regarding the class label is

contaminated by the noise due to the unassociated features; as screening out more and

more irrelevant features, the information indicated by the distance correlation begins to

grow and the algorithm will stop at the peak (due to a significant drop after this deletion),

thereby returning the 3 important features. The right plot: the class labels are permuted

so that no feature has an association with the labels. Thus the information stays relatively

low throughout the screening and the algorithm will return no features.
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Figure 4.11: The performance of different methods when varying the number of observa-

tions. Plotted is the median rank (y-axis) of the three relevant features as a function of

sample size (x-axis) for the double helix data sets. The sizes of the ovals are proportional

to the standard deviations from the 300 simulations.

features when the sample size is large. This may be because MIC conducts finer partitions

for larger samples (see Section 2.1.4).

In practice there may be a lot more variables. The above procedure might become

computationally intractable. In this case one can select a subset of variables of a moderate

size at random from the original set of all the variables (as in the Partition Retention

method [Chernoff et al., 2009] or the random forest [Breiman, 2001]). This process is to be

carried out many times, and variables can be selected based on the return frequencies (see

Section 5.4 in Chapter 5).
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Chapter 5

Real data applications

In this chapter we show how kernel-based association measures can be used in practical

problem by four real data applications. Specifically, the first three are problems from

statistical genetics, while the last one is gender prediction from handwriting. We focus on

four aspects in each of the applications, respectively: (1) de novo kernel construction, i.e.,

defining kernels that are tailored for the problems at hand; (2) adopting existing kernels;

(3) functional output spaces; (4) functional input spaces.

5.1 Association screening for genes with multiple potential

rare variants using inverse-probability weighted kernel

Here we consider applications of the proposed framework to genome-wide association studies

(GWAS). GWAS is an examination of many genetic variants in different individuals to see if

any variants or their combinations are associated with a trait. It has been believed that both

common variants and rare variants are involved in the etiology of most complex diseases

in humans. Developments in sequencing technology have led to the identification of a high

density of rare variant single-nucleotide polymorphisms (SNPs) on the genome, each of

which affects only at most 1% of the population. Genotypes derived from these SNPs allow

one to study the involvement of rare variants in common human disorders. In this section,

we propose an association screening approach that treats genes as units of analysis. SNPs

within a gene are used to create partitions of individuals, and inverse-probability weighting
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is used to overweight genotypic differences observed on rare variants. The focus is to show

how kernels based on genotypes can be defined for the particular application. The partition

of individuals allows association between a phenotype trait and the constructed cluster

label readily evaluated by existing association measures. Specifically, we consider three

association tests (one-way ANOVA, chi-square test, and the partition retention method) and

compare these strategies using the data from the Genetic Analysis Workshop 17 [Almasy

et al., 2011]. The proposed method identifies several genes that contain causal SNPs as top

genes.

5.1.1 Background

Rare variants are common on the genome and have long been speculated to be involved

in the etiology of most human disorders [Pritchard, 2001]. In the 2000s, a large number

of genome-wide association studies (GWAS) were conducted using relatively more common

single-nucleotide polymorphisms (SNPs) (with minor allele frequency [MAF] > 5%). Most

of the common variants identified in these studies have borderline odds ratios and can ex-

plain only a small fraction of susceptibility to a disease [Asimit and Zeggini, 2010]. As a

result, there has been increasing interest in the study of rare variants for complex diseases.

This concern has also been fueled by advancements in sequencing technology. In particu-

lar, the availability of such technology has directly led to the implementation of the 1000

Genomes Project (http://www.1000genomes.org/), in which 1,000 genomes from individuals

of different ethnic backgrounds were sequenced, consequently leading to the identification

of a large number of rare variants (SNPs) with MAF < 1% and some very rare variants

with MAF < 0.5%. Because of such low MAFs, association methods developed for common

variants have limited efficiency for mapping rare variants in population studies. For these

methods to have adequate power to detect individual rare variants, the sample size needs

to increase substantially as the MAF decreases.

It is also more likely for a rare variant to contribute to the susceptibility of a disease

as part of a group of rare variants in the same gene or pathway. Therefore grouping or

collapsing rare variants is the most feasible option to improve efficiency in studying rare

variants. Usually, the grouping is constructed on the basis of functional relevancy, physical
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proximity, or both. Once rare variants have been grouped, their genotypic information is

combined, or collapsed, into a usually univariate score, and the association between the

group of rare variants and the disease is then studied using the association between the

univariate score and the disease traits. See [Asimit and Zeggini, 2010] and [Dering et al.,

2011] for excellent reviews of different methods for rare variant association analysis, includ-

ing single-marker, multimarker, and various collapsing strategies. A popular alternative to

collapsing genotypic information is to combine single-SNP statistics.

In this application, we consider a gene-based association analysis for rare variants.

This is equivalent to grouping based on the gene affiliation of SNPs. We propose using

a clustering-based method for collapsing genotypic information of multiple SNPs within

each gene. The clustering is based on an inverse-probability weighted sum of genotypic dis-

tances that highlights the variation at rare variant loci. Association between the collapsed

partition label and the disease traits can then be readily evaluated using single-marker as-

sociation methods, such as one-way analysis of variance (ANOVA), a chi-square test, and

the partition retention method [Zheng et al., 2011; Chernoff et al., 2009]. We apply our

approach to the data of the Genetic Analysis Workshop 17 (GAW17) without knowledge of

the models that generate the association based on real sequencing data. After the workshop,

a comparison of our results with the answers led to interesting observations regarding both

the method and the data. We discuss these observations in Section 5.1.5.

5.1.2 Data set

The data set of GAW17 is a combination of real sequence data and simulated phenotypes.

An exome of 3,205 autosomal genes, corresponding to 24,487 SNPs, was selected. Sequences

of these SNPs were obtained from the 1000 Genomes Project on 697 unrelated subjects.

SNPs with missing values were imputed using fastPhase. A majority of the SNPs (74%) were

rare variants (MAF < 1%). Two hundred phenotype sets were simulated based on these

common genotype data. Each simulated unrelated-individual data set has three quantitative

trait values (Q1, Q2, Q4) and the Affected status Y, with 209 case subjects and 488 control

subjects. Gene information and SNP information were provided. Especially, whenever

available, SNPs were labeled as synonymous or nonsynonymous [Almasy et al., 2011].
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Table 5.1: Inverse probability kernel: allelic similarity scores

Individual 1

Individual 2 a A

a 1
p2a

− 1
pa(1−pa)

A − 1
pa(1−pa)

1
(1−pa)2

5.1.3 Inverse probability weighted kernels for gene-based grouping and

collapsing of SNP genotypes

We propose to evaluate an individual gene’s association with disease traits. SNPs within a

gene are grouped for the association analysis. Our main focus is a collapsing strategy for

multiple-SNP genotypes within a gene. We propose to create partitions of individuals (or

observed genotypes) based on their genotypic similarities evaluated by inverse-probability

weighted kernels. It is easier to start with considering alleles at a single SNP locus first. For

two individuals, we can count when they have the same alleles or different alleles. When

the MAF is small, the chance of having a random match for the major allele is high. On the

other hand, if a rare variant is involved in the etiology of a disease, then the case subjects

are more likely to have the same rare variants than the control subjects are. Therefore for

rare variant association analysis we want to overweight the allelic or genotypic similarity

for the minor alleles but not that for the major alleles.

We use the inverse-probability weighted kernel, as defined in Table 5.1 (where pa is

the population frequency of minor allele a). Actually, the kenrel is used as a similarity

measure here. This measure has a mean similarity 0, which is also a desirable property.

The allelic kernel can be straightforwardly generalized to the genotypic kernel in Table 5.2.

For example, an individual 1 with genotype aa and an individual 2 with genotype Aa will

have one match (a, a) and one mismatch (a, A). Because a is the minor allele, the (a,

a) match will dominate the (a, A) mismatch, and these two individuals will have a high

similarity score. Such a weighting scheme implicitly assumes that individuals with the same

rare variants will be clustered together for association analysis with the disease outcomes.

We denote the genotypic similarity score between two individuals i and j at SNP k by
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Table 5.2: Inverse probability kernel: genotypic similarity scores

Individual 1

Individual 2 aa aA AA

aa 2
p2a

1
p2a
− 1

2pa(1−pa) − 1
pa(1−pa)

aA 1
p2a
− 1

2pa(1−pa)
1
2 [ 1
p2a

+ 1
(1−pa)2

− 1
pa(1−pa) ] 1

(1−pa)2
− 1

2pa(1−pa)

AA − 1
pa(1−pa)

1
(1−pa)2

− 1
2pa(1−pa)

2
(1−pa)2

sim(i, j; k). For a given gene G, the similarity between i and j is defined as the sum of the

similarity scores on SNPs within the gene:

sim(i, j) =
∑
k∈G

sim(i, j; k) (5.1)

For the 697 individuals, pairwise similarity scores, the sim(i, j)’s, are evaluated first and

are then converted to a distance measure using the transformation

d(i, j) = exp[−asim(i, j)] (5.2)

where a is a normalizing constant such that the distance calculated at each gene is bounded

by e20. We then apply hierarchical clustering using Wards method [Dasgupta et al., 2011]

and partition individuals into groups by cutting the hierarchical clustering tree into a pre-

specified number of groups (we consider partition sizes of 5 to 10). See Figure 5.1 for an

example using FLT1. We also take advantage of the synonymy information about the SNPs

by carrying out two separate analyses using nonsynonymous SNPs only or every SNP in a

gene.

5.1.4 Partition-based association analysis

After obtaining the partition of individuals, for each gene we tested the association be-

tween the partition indexes obtained from the SNPs in that particular gene and the disease

phenotypes. For the disease status Y , we considered one-way ANOVA, the chi-square test

of independence, and the partition retention method [Zheng et al., 2011]. For continuous-

valued disease outcomes Q1, Q2, and Q4, we considered one-way ANOVA and the partition

retention method.
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Figures 
Figure 1  - Clustering of individuals using non-synonymous SNPs for FLT1. 
Each row is a SNP and each column is an individual. Green vertical bars were used to 
indicate cases. Genotypes are plotted using aA-blue and AA-white, with a being the 
minor allele (no aa was observed). The partitions of the 697 individuals are indicated 
by dotted lines. One can see that partition element 2 is driven by similarity on SNP 
C13S431 but not on the more common SNPs C13S522 and C13S523. 

      

 
 
 

 

Figure 2  - Summary of top 10 genes for different traits by different methods.  
Genes with causal SNPs are highlighted (yellow for Q1 and blue for Q2).  

 

Case/Control Labels 

In this example, the 
hierarchical tree was 
cut to form a partition 
of 5 elements. 

partition element 2 

Figure 5.1: Clustering of individuals using nonsynonymous SNPs for FLT1. Each row is a

SNP, and each column is an individual. Green vertical bars indicate case subjects. Genotype

aA is plotted in blue, and genotype AA is plotted in white (a is the minor allele); genotype

aa was not observed. The partitions of the 697 individuals are indicated by dotted lines.

Partition element 2 is driven by similarity on SNP C13S431 but not on the more common

SNPs C13S522 and C13S523.
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Recall that the partition retention method is based on association measure I defined

between an outcome variable Y and a partition Π (see Section 2.1.3). More specifically,

here we use the normalized measure

I =
∑
Πi

ni
n

(Ȳi − Ȳ )2

s2/
√
n

(5.3)

where ni is the number of individuals in partition element i and Ȳi is the sample mean of

element i. Ȳ and s are the sample mean and the standard deviation of all n individuals,

respectively. Under the null hypothesis, I asymptotically converges to a weighted sum of

chi-square distributions with 1 degree of freedom and therefore has mean 1. The partition

retention method is more robust to sparse partition than the chi-square test and can be

applied to both dichotomous disease status and continuous-valued traits [Zheng et al., 2011].

Intuitively, the I in the partition retention method evaluates the amount of influence a

particular gene has on the disease phenotypes.

P-values for the ANOVA test and the chi-square test are derived from corresponding

asymptotic distributions. To address the multiple testing issue, we control the family-

wise error rate using the conservative Bonferroni correction. For the evaluation using the

partition retention I, we simply chose the top 0.1% of genes for each trait. A further

examination of results from chromosome 4 revealed that, by using a cutoff of the top 0.1%,

only 15 of the 200 replicates returned any null gene (a family-wise type I error rate), which

suggests that the top 0.1% is a reasonable threshold. In practice, we suggest evaluating

P-values using permutations (see Section 5.3) and controlling the false discovery rate in

order to have better sensitivity to real genetic signals.

5.1.5 Results

Because we have 200 simulated sets of phenotypes, for each gene we counted the number

of times it was selected (either in the top 0.1% for I using the partition retention method

or significant by Bonferroni correction for ANOVA and the chi-square test) for each trait

for each method. We also compared the effects of partition sizes (results not shown). The

significance varied between different partition sizes, and the partition size that corresponded

to the most significant results also changed from simulation to simulation. Therefore we
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Figure 5.2: Top ten genes identified by each of the methods and for each of Y , Q1, Q2, and

Q4. Ninety-one genes are shown, displayed by chromosome. Genes with causal SNPs are

highlighted (yellow for Q1 and blue for Q2).

used the average count across six partition sizes (from 5 to 10) to rank genes. By visually

examining the average counts (not shown), we observed that Q1 had strong genetic signals

and that Q2 and Affected status were harder to map. For Q4, the one-way ANOVA identified

many noncausal genes, or false positives, to which the partition retention method was

relatively more immune.

Figure 5.2 summarizes the results from the 200 simulations. The top 10 genes for each

method and each trait are plotted by chromosome. Note that for Q2 the top 10 genes are

identified less than 25% of the time and that the six genes that contain “answers” or causal

genes are identified as top genes but with less than 5% probability, with the exception of

VNN1, which is identified by the partition retention method 22% of the time. Two genes

for Q1 (FLT1 and KDR) are identified in more than 50% of the simulated replicates. It

is interesting to note that excluding synonymous SNPs led to better identification of FLT1

and had less effect on identification of KDR.

To better understand the “consistent false positives” problem that arose during GAW17,
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Table 5.3: Association between a consistent false-positive gene (OR2T3 ) and a causal SNP

at C13S523 (p = 1.8× 1018 by Fishers exact test)

C13S523 genotype
Partition based on SNPs of OR2T3

1 2 3 4 5

1 41 29 3 9 11

2 525 59 5 8 7

we studied several consistent false-positive genes identified by our methods. All of them

were found to be significantly associated with multiple causal SNPs. See Table 5.3 for an

example between the gene OR2T3 on chromosome 1 and a causal SNP at C13S523.

We further investigated the relation between power to detect (probability of true posi-

tive) and the effect size of a gene. The effect size for each SNP is provided by [Almasy et

al., 2011]. For each gene, we define its total effect size as

effectg =
∑

SNP i∈g

MAFiβi (5.4)

where βi is the effect size β used in the simulation model for SNP i, which is 0 for noncausal

SNPs.

Figure 5.3 plots the frequencies of each gene with causal genes identified by the best

performing method for each trait against the gene-wise effect size, that is, the one-way

ANOVA with Bonferroni correction for Q1 and Y and the I from the partition retention

method for Q2. The power of our approach suffers greatly for extreme rare variants if the

effect size does not scale up as MAF drops.

5.1.6 Discussion

In this section, we propose a novel strategy for gene-based association analysis for genes with

multiple potentially rare variants. The inverse-probability weighted clustering approach

automatically adjusts weights for rare variants and overweights their genotypic variation

when comparing individuals for an association study. Individuals are first partitioned on

the basis of their genetic similarity on multiple SNPs in a gene, and this partition is then
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Figure 5.3: Power to identify a causal gene versus effect size. For each trait, we plot

the power to detect using the best performing method against the effect size used in the

simulation model. That is, we plot the one-way ANOVA with Bonferroni correction for Q1

and Y , and the I from the partition retention method for Q2. The gene-wise effect size is

defined as the sum of SNP-wise MAF × causal SNP effect in the simulation model.
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used to calculate association between a gene and a disease trait.

We also considered several association scores and the effect of including synonymous

variants. Different methods seem to focus on nonoverlapping signals, which suggests a

multimethod approach for future association studies. From our results, we can conclude

that our method gains power by considering multiple rare variants in a gene, as illustrated

in Figure 5.1 for one of our identified causal genes. It is probably beneficial to consider

synonymous and nonsynonymous SNPs in future practice. Filtering out synonymous SNPs

corresponds to a weight of 0 being assigned to synonymous SNPs and a weight of 1 being

assigned to nonsynonymous SNPs, which can be extended to a smoother weighting scheme

as a possible future direction.

For this study, we used asymptotic P-values and the conservative Bonferonni correction

because we needed to analyze 200 sets of data. In practice, we suggest evaluating P-

values using permutations and controlling the false discovery rate in order to have better

sensitivity to real genetic signals. Population information is provided with the data. Some

consistent false positives may have resulted from confounding due to population admixture.

We recommend using existing methods, such as Eigensoft [Price et al., 2006], to adjust for

population stratification in other real applications when applying our method. It should be

pointed out that algorithms such as Eigensoft [Price et al., 2006] may convert the original

discrete genotype data to continuous values, which requires modification to the kernels

defined in Tables 5.1 and 5.2.

5.2 A dual clustering framework for association screening

with whole genome sequencing data and longitudinal traits

We have discussed the de novo kernel construction for the independent variables (i.e., genetic

variants) in the previous section. There we only considered scalar responses (e.g., disease

status). In this section we shall present a framework incorporating the inverse probability

kernels (defined in Tables 5.1 and 5.2), and able to deal with multivariate response variables.

As mentioned earlier, current sequencing technology enables generation of whole genome

sequencing data sets that contain a high density of rare variants, each of which is carried
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by at most 5% of the sampled subjects. Such variants are involved in the etiology of most

common diseases in humans. These diseases can be studied by relevant longitudinal phe-

notype traits. Tests for association between such genotype information and longitudinal

traits allow the study of the function of rare variants in complex human disorders. In this

section, we propose an association-screening framework that highlights both the genotypic

differences observed on rare variants and the longitudinal nature of phenotypes. In particu-

lar, both variants within a gene and longitudinal phenotypes are used to create partitions of

subjects. Association between the two sets of constructed partitions is then evaluated. We

apply the proposed strategy to the sequencing data from the Genetic Analysis Workshop 18

and compare the obtained results with those from sequence kernel association test (Section

2.1.3) using the receiver operating characteristic curves.

5.2.1 Background

Rare variants have been speculated to be involved in the etiology of complex human diseases

[Pritchard, 2001]. Such diseases usually progress over time so that measures of relevant traits

at different time points can provide information on the disease development process. For

example, the Type 2 Diabetes Genetic Exploration by Next-generation sequencing in Ethnic

Samples (T2D-GENES) Project 2 aims to identify rare variants influencing susceptibility to

type 2 diabetes using information from whole genome sequencing (WGS) and measurements

of related traits (such as blood pressure) at up to four time points. Such WGS genotype and

longitudinal phenotype data present new challenges to commonly used statistical methods

for association testing in genome-wide studies.

As mentioned in Section 5.1, many genetic variants are rare variants (here we refer

to rare variants with minor allele frequencies [MAFs] < 5%). Due to their low MAFs,

traditional association methods may suffer from low power. A natural idea for improving

power is grouping or collapsing together certain variants. Such collapsing methods are

based on the assumption that rare variants in a group (e.g., gene or pathway) may function

in combination [Bailey-Wilson et al., 2011]. For example, sequence kernel association test

(SKAT) [Wu et al., 2011] assigns different weights to variants in a region and incorporates

them into a kernel matrix. We have proposed the inverse-probability weighted clustering
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approach in Section 5.1 (see also [Liu et al., 2011]), a gene-based method where inverse-

probability weighting is used to overweigh genotypic differences observed on rare variants.

The above methods can deal with both continuous and dichotomous traits and have obtained

insightful results in different studies. However, leveraging them in an effort to efficiently

address longitudinal traits remains a major obstacle.

Longitudinal traits (i.e., time-series phenotypes) provide valuable information regarding

the progression of diseases. Traditionally, such longitudinal data can be analyzed using

the so-called cross-sectional strategies. In particular, such methods involve repeating the

same analysis at various, specific points in time. Since at each time point the trait under

consideration reduces to a scalar, methods such as inverse-probability clustering can be

conducted for association screening. Then, variants can be selected based on the results

from each time point. The assumption underlying this type of strategy is that genetic

variants maintain similar influences at different time points. However, it is more likely that

those variants influence the pattern of the traits across time; e.g., a group of variants may

affect how blood pressure changes in a time-dependent manner. Cross-sectional analysis may

fail under such circumstances. A method that takes full consideration of the longitudinal

nature of traits is thus desired to capture such genetics-time interactions.

In this section we propose a dual clustering framework, which highlights both rare vari-

ants and the longitudinal structure of traits. Here by “dual” clustering we mean individuals

are clustered based on both genotypic information through inverse-probability weighting

and longitudinal traits through ordinary hierarchical clustering. The focus here is to apply

different kernels (corresponding to different metric spaces) to input and output spaces, and

use them for partitioning. Association between the two sets of partition labels can then be

readily evaluated using existing single-marker and scalar-trait association methods, such as

one-way analysis of variance (ANOVA) or the partition retention (PR) method [Zheng et

al., 2011; Chernoff et al., 2009]. We apply the proposed approach to the data of the Genetic

Analysis Workshop 18 (GAW18) and compare the obtained results with those by SKAT,

with some interesting findings.
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5.2.2 Data set

The data set of GAW18 is a combination of real WGS data and simulated longitudinal

traits. The sequence data is drawn from T2D-GENES Project 2. In this section we use the

dosage genotype data on chromosome 3, which include 773,088 SNPs that can be mapped

to the genome. Two hundred phenotype sets were simulated based on genotype data. For

each data set, we analyze systolic blood pressure (SBP) and diastolic blood pressure (DBP),

each with measurements at 3 time points, for 849 related subjects. We map the SNPs to

its host gene, resulting in 1,426 genes.

5.2.3 Inverse-probability clustering based on genotypes

Here we use the same inverse-probability kernels as defined in Tables 5.1 and 5.2 to mea-

sure the similarity between individuals based on genotypes. In Section 5.1 we adopted

an exponential type transformation to induce a distance from the inverse-probability ker-

nel. Other bounded monotone-decreasing transformations can also be applied. Here we

try another form of transformation. Specifically, for the 849 individuals, pairwise sim-

ilarity scores, sim(i, j)s, are converted to a distance measure using the transformation:

d(i, j) = −sim(i, j)+max(sim(i, j)), such that the pair with the largest similarity has dis-

tance 0. We then conduct hierarchical clustering based on the above distances as in Section

5.1 and partition individuals into groups by cutting the hierarchical clustering tree into a

pre-specified number of groups (again we consider partition sizes of 5 to 10, Figure 5.4(a)).

5.2.4 Hierarchical clustering based on longitudinal phenotypes

The main difficulty of dealing with longitudinal traits is that most existing association

methods only consider scalar phenotypes. Thus it is natural to transform longitudinal

traits into some one-dimensional summary statistics. Here we adopt ordinary hierarchical

clustering using phenotype vectors and treat the resulting class labels as a summary statistic.

Since hierarchical clustering uses the whole longitudinal trait as features, we expect that

it can capture the structure contained in the phenotypes. In this study we cluster the 849

individuals into two groups. Results show that these two groups can be treated as with

high and low blood pressures (Figure 5.4(b)). Our main focus here is a strategy that turns
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Figure 5.4: Clustering of individuals using SNPs with MAFs between 0.01 and 0.05 for

MAP4. (a) Shown are 10 clusters, with the numbers at the top odds ratios within each

partition block based on blood pressures (see Section 2.1.1 for the definition of odds ratios).

Each row is a SNP, and each column is an individual. SNPs are ordered with decreasing

MAFs (from top to bottom). Green vertical bars indicate subjects with higher blood pres-

sures (see text). Genotype aa is plotted in red, aA is plotted in blue, and AA is plotted

in white (a denotes the minor allele). The partitions of the 849 individuals are indicated

by dotted lines. Most partition elements are driven by similarity on rarer SNPs but not on

more common SNPs. (b) Clustering of individuals using their SBP curves from the first

simulation. It can be seen that individuals are reasonably grouped into one high blood

pressure cluster and one low blood pressure cluster.
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longitudinal traits into one-dimensional summaries. Other dimension reduction techniques

can also be used for this task. We choose to adopt hierarchical clustering for illustration

purpose here due to its simplicity, and get reasonable results (see Section 5.2.6).

5.2.5 Association analysis based on obtained clusters

After clustering individuals base on both genotypes and phenotypes, for each gene we test

the association between the corresponding two sets of partition indices. We consider one-

way ANOVA and the partition retention method [Zheng et al., 2011; Chernoff et al., 2009].

Recall that the partition retention method is based on an association measure I defined

between an outcome variable Y and a partition Π. Here we take the variable that indicates

which cluster an individual is in from longitudinal traits as Y .

5.2.6 Results

We first apply the proposed method to the WGS dosage data including all the 773,088

SNPs and the SBP trait. Three genes are discovered after Bonferroni correction, of which

one gene, Y RNA, is significant in 15 out of the 200 replicates. It turns out that this gene

resides within MAP4, which has the strongest signal in the simulated model, and produces

a non-coding RNA.

One reason for the relatively few significant genes obtained above may be that there is a

very high density of variants within most genes. We then conduct similar analysis using only

SNPs with MAFs between 0.01 and 0.05 to increase power. SBP and DPB are regressed on

age, sex, age × sex, and medication, and the residuals are used in the clustering analysis.

For method comparison, we treat genes containing at least one causal SNP in the simulated

model as causal genes, resulting in 21 genes for SBP and 26 genes for DBP. We compare the

receiver operating characteristic (ROC) curves by the proposed dual clustering framework

and SKAT (Figure 5.5). SKAT cannot get results for some of the replicates. It can be seen

from Figure 5.5 that all the three methods have relatively low power, among which our dual

clustering approach with PR’s I has a bigger area under curve (AUC). Results are similar

for other partition sizes resulted from inverse-probability clustering.
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!
P-values from paired Wilcoxon 

signed rank test SBP DBP 

anova vs pr 0.0001 4×10-7 
anova vs skat 4×10-11 0.3664 
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Figure 5.5: Average ROC curves across simulation replicates for three methods. Shown are

results by 10 clusters using inverse-probability weighting. Areas under curve (AUCs) by

different methods are compared using paired Wilcoxon signed rank tests based on the 200

replicates, with resulting P-values shown in the table below.
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5.2.7 Discussion

In this section, we propose a dual clustering framework for gene-based association analysis

with WGS and longitudinal traits. The first clustering is based on the inverse-probability

weighted kernel, which automatically increases weights for rare variants. The kernel values

are calculated from empirical MAF estimates. If better estimates are available, the proposed

method can incorporate these to achieve improved power. The second clustering treats

trait vectors of individuals as features, which accounts for the longitudinal nature of the

phenotypes. Individuals are then partitioned based on their genetic similarity on the SNPs

in a gene, as well as the similarity of their traits. These two partitions are then used to

calculate association between a gene and a longitudinal trait.

Our proposed framework is actually quite general. We define the kernel (used as a simi-

larity measure) based on inverse-probability weighting. Other kernels, such as the one used

in SKAT, can also be incorporated into our framework. Other distance-based clustering ap-

proaches can be adopted for the first clustering based on similarity measures. The proposed

kernel can detect variants with variable directions of the effects. For longitudinal traits,

we choose hierarchical clustering due to its simplicity. Hierarchical clustering does not take

into account the correlation induced by time. Considering there are only 3 time points in

the GAW18 data, we believe that not much information has been lost. If more time points

are available, time series clustering methods can be used (see [Liao, 2005] for a survey on

commonly-used time-series clustering algorithms). More generally, we use clustering as a

means of summarization, so other summarization strategies can also be integrated into the

proposed framework. After obtaining the two sets of clustering indices, any association

method can be used to measure the association between them. In this study, we choose

ANOVA and PR’s I. The obtained results are similar but a little better than that from

SKAT in terms of ROC curves (Figure 5.5). SKAT has shown superiority to more tra-

ditional methods in the simulation studies presented in [Wu et al., 2011]. Many of those

traditional methods assume that causal variants have effects with the same direction and

magnitude, and do not consider the potential effects of rarer variants to boost power. The

purpose of the current study is not to show the absolute superiority of our method, but

rather to present a general framework that can incorporate different choices of kernels and
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association measures, such as that from SKAT.

Although the simulation model did not take family structures into account, the ANOVA

P-values may be inflated due to such structures. However, P-values will be inflated (if any)

for both causal and non-causal variants. Therefore the main conclusion based on ROC

curves is still valid. In practice, we suggest evaluating P-values using permutations and

controlling the false discovery rate in order to have better sensitivity to real genetic signals.

This may introduce more computational burden, but it is worth mentioning that the two

clustering tasks can be done independently and simultaneously so that the computational

time can be reduced. Multilevel models with MCMC techniques may also address the

multiple comparisons problem encountered here by partial pooling [Gelman et al., 2012].

5.3 Adaptive kernels for association screening with longitu-

dinal traits

In Section 5.1 we demonstrated the use of customized kernels with pre-defined weights.

Such inverse-probability weights are defined so as to highlight the effect of rare variants.

In this section we study a more flexible approach, allowing the weights in the kernels to be

selected adaptively with data. In Section 5.2 we started dealing with longitudinal traits,

where we used the Euclidean distance to cluster the individuals. In this section we use the

more flexible kernel distance covariance instead, so that clustering is not required.

5.3.1 Background

There are several methods that use pre-defined weights for testing the association between

rare variants and diseases, including the weighted sum statistic [Madsen and Browning,

2009] and our inverse-probability weighted approach as discussed in Section 5.1 and [Liu

et al., 2011]. Different methods tend to define different weights that reflect their particular

assumptions. One natural question is that, given a particular data set, which weights are

optimal. Or rather, can we find a set of optimal weights in a data-driven manner instead of

pre-defining them a priori? In this section we explore this question by using the strategies

developed in Chapter 4. We also study longitudinal data in this section. The ability of the
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kernel distance covariance (Chapter 3) to deal with both X and Y in arbitrary dimensions

makes it a natural choice for such data.

We discussed the possibility of permutation tests but did not actually conduct permuta-

tions in Sections 5.1 and 5.2. One challenge for such tests is the large number of candidate

variants and (thus) the huge number of permutations needed to reach the genome-wide

significance level. This makes the computation very expensive and often infeasible. In this

section we propose a stepwise multiple test procedure considering randomness in P-values.

This procedure can save a large number of permutations and produce credible intervals for

P-values as a by-product.

We apply the proposed methods to a GWAS data set for poplars. Poplars are widely

distributed in the Northern Hemisphere, from subtropical to boreal forests. They are cul-

tivated for pulp and paper, wood products, lumber and energy. The data set contains

measurements of different wood property indices, as well as growth records across 24 years

(1987-2010). We obtain interesting results by using our methods, which may lead to novel

findings.

5.3.2 Data set

The poplar data contain genotypes of 156,362 SNPs for 66 samples (trees), two of which

are parents producing the other 64 progenies. For the genome-wide association screening

in this study we only include the 64 progenies. The 156,362 SNPs are on different scaffolds,

of which we analyze the first 19 scaffolds corresponding to the 19 chromosomes in the

poplar genome. The phenotype data contains various wood property and tree growth traits,

including longitudinal data. The eight wood property indices are: fiber length, fiber lumen

width, fiber double-wall thickness, fiber diameter (the sum of width and thickness), wood

basic density, air-dry density, the rankle ratio defined as double-wall thickness divided by

lumen width, and the slenderness ratio defined as fiber length divided by diameter. An

increase in wood density is partially due to the increase in the cell wall thickness. The

above traits also have the following indications on paper production: higher fiber lengths

will result in higher resistance of paper; higher slenderness ratios (>33) are preferred; rankle

ratios greater than 1 indicate thick walls and least suitable for paper production, a rankle
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ratio of 1 indicates medium thickness and suitable for paper production, while rankle ratios

less than 1 indicate thin cell walls and most suitable for paper production. The eight growth

records are: the total growth of DBH (diameter at breast height), the average growth of

DBH, the annual increment of DBH, the total growth of tree height, the average growth of

tree height, the annual increment of tree height, the total growth of volume, the average

growth of volume, and the annual increment of volume for 24 years, thus each record is a

longitudinal curve of 24 dimensions. Climate information (annually average temperature

and participation) is also available.

5.3.3 Association between tree growth and wood properties

We first do some exploratory analysis. Since there are two types of traits, namely, scalar

wood properties and longitudinal growth records, a natural question is if there is any as-

sociation between them. Here we adopt similar strategies as in Section 5.2: first clustering

the samples based on the growth time series, then conducting ANOVA test with the cluster

index as the group variable, and wood properties as the response. For example, Figure 5.6

shows by different colors the 3 clusters according to the total growth of DBH. It can be

seen that the 66 trees are reasonably clustered into three groups featuring fast, medium and

slow DBH growth. The following three wood properties are significantly associated with

DBH growth according to the ANOVA results: basic density (P-value 0.016), lumen width

(P-value 0.026), and slenderness ratio (P-value 0.031).

5.3.4 Association screening with the kernel distance correlation

We use a fixed-bin approach with 10 SNPs per region, thus X is the SNP phenotype (10

dimensional). This relies on the assumption that proximity and similarity go hand in hand.

Tree growth is regressed on temperature and precipitation with tree indicator as a random

effect, and the residuals are treated as Y and used in the association analysis. We use

the kernel distance correlation with RBF kernels for both X and Y as defined in Section

4.2 for association screening. The 10 scaling factors in the RBF kernel for the SNPs are

tuned with the approach described in Section 4.2. The idea is to let the data pick the right

weighting for each SNP instead of presetting the weights. Such a strategy would adaptively
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Figure 5.6: Clustering of the trees according to DBH. Green, red and blue curves indicate

three groups featuring fast, medium and slow DBH growth.

highlight the SNPs that are more relevant to the traits, as evidenced by the experiments in

Section 4.3.1. We run permutations to get the significance level for each of the bins, with

the approach described in the next section.

5.3.5 A stepwise multiple test procedure considering randomness in P-

values

Permutation tests have become a standard nonparametric tool for the assessment of sta-

tistical significance. On one hand, there are some methods aiming fewer permutations

(e.g., [Knijnenburg et al., 2009; Gandy, 2012]), often producing P-value estimates with a

guaranteed error bound. On the other hand, confidence intervals for P-values have been

constructed with several existing methods available in the literature [Li et al., 2009]. In this

section we propose a novel stepwise multiple test procedure that combines the above two

aspects: estimating P-values with fewer permutations, by considering (credible) intervals

for P-values. Our approach is based on Bayesian sample size determination for binomial
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proportions [M’lan et al., 2007].

Consider a one-sided test with a large value of the test statistic (denoted by T ) favoring

the alternative hypothesis. The P-value for such a test is defined as

P = PH0(T ∗ ≥ T ) (5.5)

where T ∗ has a probability distribution in accordance with the specification of H0. In per-

mutation tests, the P-value is estimated as the fraction of permutation values at least as

extreme as the original statistic derived from non-permuted data, i.e. (with B permuta-

tions),

P̂ =

B∑
b=1

I(T ∗b ≥ T )/B

= MB/B (5.6)

where T ∗b is the same statistic calculated from the bth permuted sample, thus MB is the

number of more extreme values out of the B permuted statistics. Thus conditional on the

original data, the estimation of P-values in permutation tests is just estimating binomial

proportions.

A naive way to save computation when conducting multiple tests is to run only a few

(say, 10) permutations for all the bins at the first stage, then drop the bins with non-zero

estimated P-values (this is because we know those bins will have P-values at least 10%).

Since most of the bins come from the null hypothesis, this would leave ∼10% of the bins

for the next stage. One can then conduct more permutations (say, 100) for those remaining

bins. The process goes on until no bins are left. One problem of the above naive procedure

is that even if the estimated P-value is greater than 0 at the first stage, one cannot be

100 percent sure that the true P-value is greater than 10% due to random error. Such

randomness should be taken into account when designing the permutation procedure so as

to avoid false negatives. We do this by controlling the precision (in terms of the length of

the credible interval) of the estimation at each stage using the approach as described briefly

below (one is referred to [M’lan et al., 2007] for details).

We assume the following Bayesian model following [Joseph et al., 1995]: P ∼Beta(a, b),

and MB|P ∼Binomial(B,P ), B ≥ 2. As a result, the marginal predictive distribution of



CHAPTER 5. REAL DATA APPLICATIONS 81

MB, pMB
(mB|B, a, b), is Beta-Binomial, and the posterior distribution of P is Beta(a +

MB, B + b−MB). If MB is known, one can construct the highest posterior density (HPD)

interval for P with Monte Carlo methods. Let HPD(MB, B, a, b, 1−α) be an HPD interval

for P of a given coverage 1 − α, and define l1−α(MB|B, a, b) =
∫
HPD(MB ,B,a,b,1−α) dP to

be the actual length of that interval. The idea of the proposed test procedure is that at

different stages one can specify the maximum length l (minimum precision) of the say, 50%

HPD interval, so as to find the smallest number of permutations B required. This can be

easily done with MB known. However, the value of MB is unavailable before conducting

any permutations. Thus one need to define alternative criteria to determine B.

Here we adopt the average length criterion as defined in [M’lan et al., 2007], which seeks

the minimum B such that

B∑
mB=0

l1−α(mB|B, a, b)pMB
(mB|B, a, b) ≤ l

For this criterion, an approximate sample size formula has been developed as

B = 4
z2
α/2

l2

(B(a+ 1/2, b+ 1/2)

B(a, b)

)2
− a− b, for a ≥ 1, b ≥ 1 (5.7)

where B(a, b) indicates the beta function with parameters a and b.

The procedure begins with specifying a ladder of desired precisions, for example, 0.1,

0.01, ..., for each of the stages. The number of permutations can then be calculated using

(5.7) for every stage (e.g., for the first stage, B = 27), and bins with non-zero estimated

P-values are dropped. One issue is the choice of the prior parameters a and b. For the first

stage, a = b = 1, for which values the prior distribution is the uniform distribution. For

the following stages, one needs to incorporate the information from previous stages in the

prior. Since a and b correspond to the number of pseudo counts, and the mean of the beta

distribution is a/(a + b), it is reasonable to keep a = 1 and assign b to be the cumulative

number of permutations done so far. In our study we use a more conservative setting with

b = 1/(precision in the previous stage) which is less than B.

Figure 5.7 shows the required numbers of permutations for the conventional (non-

stepwise) and the proposed stepwise procedures. One can see that the number of permuta-

tions is much reduced by our strategy. Credible intervals can be produced for the estimated
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Figure 5.7: The numbers of permutations for the conventional procedure (red) and the

proposed stepwise procedure (blue). The x axis (on the square-root scale) is the fraction of

the total number of tests. Thus the number of permutations required corresponds to the

area under the curve. It shows that the total number of permutations by our procedure is

negligible compared to the traditional non-stepwise procedure.

P-values using Monte Carlo methods (we develop a method named Spin for error-reduced

credible intervals, see Appendix A).

5.3.6 Results

Figures 5.8 and 5.9 are the Manhattan plots (negative logarithm P-values) for chromosome 1

with the traits being the eight wood properties and the nine longitudinal tree growth records,

respectively (Appendix C contains Manhattan plots for the other chromosomes and tree

growth). Focusing on tree growth, the bin with the smallest P-value (HPD [3×10−6, 3×10−4]
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Figure 5.8: Manhattan plot for chromosome 1 and the wood properties.

from the Spin method in Appendix A) is a region (positions 29505890-29531308) associated

with total growth of DBH (diameter at breast height). Table 5.4 lists the four genes within

this region, together with functional annotations if available.

5.3.7 Discussion

In this section we have proposed a data-driven method for association screening with adap-

tive kernel distance correlations. The weights for SNPs within a region are selected so

Table 5.4: The four genes in chromosome 1 most associated with total growth of DBH

Gene Function

POPTR 0001s31170.1 Protein binding / zinc ion binding

POPTR 0001s31180.1 Plant protein of unknown function (DUF869)

POPTR 0001s31190.1 Unknown

POPTR 0001s31200.1 Unknown
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Figure 5.9: Manhattan plot for chromosome 1 and the longitudinal tree growth.

as to maximize the association measure. This is supposed to highlight (in an adaptive

way) the SNPs that are more associated with the outcome. We also develop a novel step-

wise procedure for multiple permutation tests. The bayesian framework introduced in this

procedure naturally incorporates available information from previous steps, which reduces

computation to a great extent.

5.4 Feature selection with functional input spaces

In the previous section we demonstrated the use of adaptive kernel distance covariance with

functional output spaces. In this section we consider functional input spaces and show how

carefully-chosen kernel association measures can be applied in such cases.

5.4.1 Background

We consider feature selection in classification problems in this section. As discussed in Chap-

ter 4, traditional feature selection methods either consider one feature at a time (filtering
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methods), or integrate variable selection with classification (wrapper methods). However,

most of those methods do not take into account the specific structures of the feature space,

especially when the space is functional (the features are samples from one or more func-

tional forms). If such information is available, one can choose an appropriate kernel in the

association measures to accomodate the corresponding structure.

In this section we analyse a handwriting data set for gender prediction (i.e., the goal

is to predict if a handwritten document has been produced by a male or a female writer) from

Kaggle (http://www.kaggle.com/c/icdar2013-gender-prediction-from-handwriting). The pre-

diction of gender from handwriting is a very interesting research field [Bandi and Srihari,

2005; Liwicki et al., 2007; Marcus Liwicki, 2010]. It has many applications, e.g., the forensic

application where it can help investigators focus more on a certain category of suspects.

5.4.2 Data set

The handwriting data set consists of the same Arabic handwritten texts produced by 282

writers (Arabic native speakers), for which the genders are provided. We have extracted

4584 non-constant features for each writer. The features have a group structure, specifically,

features within the same group form a histogram of a certain geometrical characteristic of

the handwriting (curvatures, directions, tortuosities) with different numbers of bins (see

[Hassane et al., 2012] for descriptions of those features). In other words, each group of the

features is an approximation to the corresponding density function. Readers are referred to

[Al-Madeed et al., 2012] for a more detailed description of this dataset. In this study we

separate 1/5 of the data (57 individuals) to be a test set.

5.4.3 Classification using RBF kernel distance covariances

We first try RBF kernel distance correlations with both marginal screening and the back-

ward elimination procedure discussed in Chapter 4. Since the dimension is relatively high,

we first compute all the pairwise RBF distance correlations with scaling factors optimized,

then use the top 400 features to conduct the following backward elimination. Specifically,

we randomly pick 10 out of these 400 features and conduct the backward dropping proce-

dure. This process is repeated for 5,000 times. The final set of selected features are based on
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Figure 5.10: Classification errors for the handwriting data set with different numbers of

features from different feature selection methods (shown in different colors).

the return frequencies. We also use Pearson’s correlation (Section 2.1.1) and MIC (Section

2.1.4) to select the features for comparison purposes.

Figure 5.10 shows the prediction errors on the testing set for different methods with

different numbers (1-70) of top features using the RBF-kernel SVM. It can be seen that the

lowest error is from our backward elimination procedure with the RBF distance correlation.

However, all the errors are relatively high (∼30%). This may be due to the fact that some

of the informative features did not show up in the prescreening stage by only pairwise

considerations. This problem may be overcome by a strategy called resuscitation (See

Chapter 6 for more discussion). Another explanation may be that the above tried methods

do not take the specific functional structure of the feature space into account. This is

confirmed by the experiments described in the next section.
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5.4.4 Adapting the kernel distance covariance

Here we treat features within the same group as a “functional” feature. As described above,

each of these features can actually be treated as a discrete distribution. This makes the

Kullback-Leibler (KL) distance and the maximum distance between components of two vec-

tors (supremum norm) naturally choices for the distance on the feature space. Specifically,

for discrete probability distributions P and Q, the Kullback-Leibler divergence of Q from

P is defined to be (see [Kullback and Leibler, 1951] for details)

DKL(P ||Q) =
∑
i

ln
(P (i)

Q(i)

)
P (i) (5.8)

The KL divergence defined in (5.8) is not symmetric so it is not a metric. We therefore use

the following KL distances for our experiments.

DKLD(P ||Q) = DKL(P ||Q) +DKL(Q||P ) (5.9)

We use the Euclidean distance on the labels as usual.

We compute the KL distance correlation for each group of the features and rank them

accordingly. Figure 5.11 shows the two feature groups ranked top and bottom, respectively.

It can be seen that the informative feature group has a bigger variance, and a more dis-

crepancy between the two classes. We then use this feature group (shown in the left plot

in Figure 5.11), and K nearest neighbors (K = 1, 3, ..., 15) with the KL distance (5.9) to

classify the writers. An error rate of 24.6% is obtained with K=5 (compared to the error

rates shown in Figure 5.10). This implies that by considering the structure of the feature

space by appropriate kernels (distances) in the association measure, and using the same

metric for the classifier, one can improve the classification accuracy.

5.4.5 Discussion

In this section we briefly describe an application of the kernel distance covariance to a

problem with a functional feature space. The results shows that one can improve the

classification performance by taking into account the specific structures of the feature space,

when such information is available. In practice when such information is not available, our
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Figure 5.11: The most informative (left) and the least informative (right) feature groups in

the handwriting data set according to KL distance correlation. Male is plotted with blue

and female with red. For each feature and each class, 21 quantiles are plotted using dots.

The connected lines show the medians of the features for male and female, respectively.
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backward elimination procedure with kernel distance correlation is still a safe choice as

evidence by the experiments in Section 5.4.3 (Figure 5.10).
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Chapter 6

Conclusions

In this thesis, we propose a general framework for kernel-based measures of associations.

Our work makes three main contributions. First, we show the connections (including some

novel relationships) between several existing association measures (Chapter 2). Second, we

propose a general framework for kernel-based association measures unifying existing meth-

ods and novel extensions based on kernels (Chapter 3). Kernel introduces flexibility. Third,

more importantly, we show how to implement algorithms incorporating such measures,

specifically, optimization and backward elimination (Chapter 4). Our general framework

has been applied to a diversified set of simulations and applications with different variable

types, where we have observed improved performance (Chapters 4 and 5). We demonstrate

de novo construction of kernels tailored to the data at hand. We also provide a way for

selecting informative dimensions for classification problems. In our results, we have shown

that kernel association measures can adapt to the quantity of information in different di-

mensions of the data and determine an optimal weighting strategy. We have also shown

that the distance metric used in the association measures can be coupled with that used

in the classification scheme, which bridges the filtering methods and the wrapper methods

in the traditional feature selection literature (Section 5.4.4). More accurate classifiers can

be built this way via considering the structure of the feature space. Kernel association

measures can handle different data types, including functional input and output spaces in a

natural way. As two by-products, we propose a novel stepwise multiple test procedure that

can save computation dramatically and (at the same time) produce interval estimates for
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P-values (Section 5.3.5); we also propose a method to construct simulation-efficient shortest

probability intervals (Spin, Appendix A).

Although optimization issues are not the focus of this work, the performance of the

proposed algorithms may depend on the quality of the optimization method adopted. We

mainly use the Newton-Raphson method for optimization in our experiments. We observe

that it may be sensitive to initial values for the parameters, which should be carefully chosen

in practice especially for high dimensions. One needs the gradient and the Hessian matrix

of the objective function (the association measure) for such optimization. These are easy

to compute analytically for simple functions, which can save computational time. Finite-

difference gradients and Hessians are computed for more complex functions, as in most of

our examples. Other optimization methods are available, e.g., the BFGS method [Broyden,

1970; Fletcher, 1970; Goldfarb, 1970; Shanno, 1970] and simulated annealing [Bélisle, 1992].

Those methods may be less sensitive to the starting point.

We have shown how to search a large space of variables mainly in Chapter 5. There

we use two types of strategies to deal with computational issues: considering one group of

variables at a time (e.g., Section 5.3), or prescreening based on say, pairwise association

measures (Section 5.4.3). The latter may be sensitive to the pairwise effects of two variables,

and an influential variable may not show up well in this process if it does not have a

high value of the association measure when combined with another variable. This may

be overcome by resuscitating variables in a later stage [Chernoff et al., 2009]. Specifically,

variables previously neglected are considered again using the association measure combined

with variables selected by prescreening.

We use smoothed weights in kernel-based association measures to highlight informative

dimensions (Sections 4.2, 4.3 and 5.3). One can also add an L1 penalty when maximizing

the association measure with free scaling factors (denoted by θ), the same penalty in the

lasso method [Tibshirani, 1996]

θ∗ = arg max
θ
{A(kx,θx , ky,θy) + λ|θ|} (6.1)

This will shrink some of the weights to zero, so that achieve the goal of feature selection.

Efficient algorithms are available for computing the entire path of solutions for lasso [Efron

et al., 2004]. Similar methods may need to be developed for the problem shown in (6.1).
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We show how to use the kernel-based association measures for feature selection in binary

classification problems in Section 4.3. The same backward elimination approach is directly

applicable to multi-class and regression problems as well. Different kernels can be defined

on the corresponding output spaces. For multi-class classification, the simplest kernel would

be [Song et al., 2012]

k(y, y′) = cδy,y′ where c > 0

For regression, kernels such as linear and RBF can be readily used. Thus our framework is

quite unified and can deal with different supervised learning problems.
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Appendix A

Efficient shortest probability inter-

vals

Here we present the details of the Spin method discussed in Chapter 5.

Bayesian highest posterior density (HPD) intervals can be estimated directly from sim-

ulations via empirical shortest intervals. Unfortunately, these can be noisy (that is, have

a high Monte Carlo error). We derive an optimal weighting strategy using bootstrap and

quadratic programming to obtain a more computationally stable HPD, or in general, short-

est probability interval (Spin). We prove the consistency of our method. Simulation studies

on a range of theoretical and real-data examples, some with symmetric and some with asym-

metric posterior densities, show that intervals constructed using Spin have better coverage

(relative to the posterior distribution) and lower Monte Carlo error than empirical shortest

intervals. We implement the new method in an R package (SPIn) so it can be routinely

used in post-processing of Bayesian simulations.

A.1 Introduction

It is standard practice to summarize Bayesian inferences via posterior intervals of specified

coverage (for example, 50% and 95%) for parameters and other quantities of interest. In the

modern era in which posterior distributions are computed via simulation, we most commonly

see central intervals: the 100(1−α)% central interval is defined by the α
2 and 1−α2 quantiles.
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Figure A.1: Simple examples of central (black) and highest probability density (red) in-

tervals. The intervals coincide for a symmetric distribution; otherwise the HPD interval is

shorter. The three examples are a normal distribution, a gamma with shape parameter 3,

and the marginal posterior density for a variance parameter in a hierarchical model.

Highest-posterior density (HPD) intervals (recommended, for example, in the classic book

of [Box and Tiao, 1973]) are easily determined for models with closed-form distributions

such as the normal and gamma but are more difficult to compute from simulations.

We would like to go back to the HPD, solving whatever computational problems nec-

essary to get it to work. Why? Because for an asymmetric distribution, the HPD interval

can be a more reasonable summary than the central probability interval. Figure A.1 shows

these two types of intervals for three distributions: for symmetric densities (as shown in the

left panel in Figure A.1), central and HPD intervals coincide; whereas for the two examples

of asymmetric densities (the middle and right panels in Figure A.1), HPDs are shorter than

central intervals (in fact, the HPD is the shortest interval containing a specified probability).

In particular, when the highest density occurs at the boundary (the right panel in

Figure A.1), we strongly prefer the shortest probability interval to the central interval; the

HPD covers the highest density part of the distribution and also the mode. In such cases,

central intervals can be much longer and have the awkward property at cutting off a narrow

high-posterior slice that happens to be near the boundary, thus ruling out a part of the

distribution that is actually strongly supported by the inference.

One concern with highest posterior density intervals is that they depend on parame-

terization. For example, the left endpoint of the HPD in the right panel of Figure A.1
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is 0, but the interval on the logarithmic scale does not start at −∞. Interval estimation

is always conditional on the purposes to which the estimate will be used. Beyond this,

univariate summaries cannot completely capture multivariate relationships. Thus all this

work is within the context of routine data analysis (e.g., [Spiegelhalter et al., ]) in which

interval estimates are a useful way to summarize inferences about parameters and quantities

of interest in a model in understandable parameterizations. We do not attempt a conclu-

sive justification of HPD intervals here; we merely note that in the pre-simulation era such

intervals were considered the standard, which suggests to us that the current preference for

central intervals arises from computational reasons as much as anything else.

For the goal of computing an HPD interval from posterior simulations, the most direct

approach is the empirical shortest probability interval, the shortest interval of specified

probability coverage based on the simulations [Chen and Shao, 1998]. For example, to

obtain a 95% interval from a posterior sample of size n, you can order the simulation draws

and then take the shortest interval that contains 0.95n of the draws. This procedure is

easy, fast, and simulation-consistent (that is, as n→∞ it converges to the actual HPD

interval assuming that the HPD interval exists and is unique). The only trouble with the

empirical shortest probability interval is that it can be too noisy, with a high Monte Carlo

error (compared to the central probability interval) when computed from the equivalent

of a small number of simulation draws. This is a concern with current Bayesian methods

that rely on Markov chain Monte Carlo (MCMC) techniques, where for some problems the

effective sample size of the posterior draws can be low (for example, hundreds of thousands

of steps might be needed to obtain an effective sample size of 500).

Figure A.2 shows the lengths of the empirical shortest 95% intervals based on several

simulations for the three distributions shown in Figure A.1, starting from the kth order

statistic. For each distribution and each specified number of independent simulation draws,

we carried out 200 replications to get a sense of the typical size of the Monte Carlo error.

The lengths of the 95% intervals are highly variable when the number of simulation draws

is small.

In this section, we develop a quadratic programming strategy coupled with bootstrap-

ping to estimate the endpoints of the shortest probability interval. Simulation studies show
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Figure A.2: Lengths of 95% empirical probability intervals from several simulations for

each of three models. Each gray curve shows interval length as a function of the order

statistic of the interval’s lower endpoint; thus, the minimum value of the curve corresponds

to the empirical shortest 95% interval. For the (symmetric) normal example, the empirical

shortest interval is typically close to the central interval (for example, with a sample of

size 1000, it is typically near (x(26), x(975))). The gamma and eight-schools examples are

skewed with a peak near the left of the distribution, hence the empirical shortest intervals

are typically at the left end of the scale. The red lines show the lengths of the true shortest

95% probability interval for each distribution. The empirical shortest interval approaches

the true value as the number of simulation draws increases but is noisy when the number

of simulation draws is small, hence motivating a more elaborate estimator.
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Figure A.3: Efficiency of Spin for 95% shortest intervals for the three distributions shown

in Figure A.1. For the eight-schools example, Spin is compared to a modified empirical

HPD that includes the zero point in the simulations. The efficiency is always greater than

1, indicating that Spin always outperforms the empirical HPD. The jagged appearance of

some of the lines may arise from discreteness in the order statistics for the 95% interval.
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that our procedure, which we call Spin, results in more stable endpoint estimates compared

to the empirical shortest interval (Figure A.3). Specifically, define the efficiency as

efficiency =
MSE(empirical shortest interval)

MSE(Spin)
,

so that an efficiency greater than 1 means that Spin is more efficient. We show in Figure

A.3 that, in all cases that we experimented on, Spin is more efficient than the competition.

We derive our method in Section A.2, apply it to some theoretical examples in Section A.3

and in two real-data Bayesian analysis problems in Section A.4. We have implemented our

algorithm as SPIn, a publicly available package in R [R Development Core Team, 2009].

A.2 Methods

A.2.1 Problem setup

Let X1,. . . , Xn
iid∼ F , where F is a continuous unimodal distribution. The goal is to estimate

the 100(1 − α)% shortest probability interval for F . Denote the true shortest probability

interval by (l(α), u(α)). Define G = 1− F , so that F (l(α)) +G(u(α)) = α.

To estimate the interval, for 0 ≤ ∆ ≤ α, find ∆ such that G−1(α −∆) − F−1(∆) is a

minimum, i.e.,

∆∗ = argmin∆∈[0,α]{G−1(α−∆)− F−1(∆)}.

Taking the derivative,

∂

∂∆
[(1− F )−1(α−∆)− F−1(∆)] = 0,

we get
1

f(G−1(α−∆))
− 1

f(F−1(∆))
= 0, (A.1)

where f is the probability density function of X. The minimum can only be attained at

solutions to (A.1), or ∆ = 0 or α (Figure A.4). It can easily be shown that if f ′(x) 6= 0 a.e.,

the solution to (A.1) exists and is unique. Then

l(α) = F−1(∆∗),

u(α) = G−1(α−∆∗).
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Figure A.4: Notation for shortest probability intervals.

Taking the lower end for example, we are interested in a weighting strategy such

that l̂ =
∑n

i=1wiX(i) (where
∑
wi = 1) has the minimum mean squared error (MSE),

E
(∣∣∣∣∑n

i=1wiX(i) − l(α)
∣∣∣∣2). It can also be helpful to calculate MSE(X([n∆∗])) = E

(
||X([n∆∗]) − l(α)||2

)
.

In practice we estimate ∆∗ by ∆̂ such that

∆̂ = argmin∆∈[0,α]{Ĝ−1(α−∆)− F̂−1(∆)}, (A.2)

where F̂ represents the empirical distribution and Ĝ = 1− F̂ . This yields the widely used

empirical shortest interval, which can have a high Monte Carlo error (as illustrated in Figure

A.2). We will denote its endpoints by l∗ and u∗. The corresponding MSE for the lower

endpoint is E(||X([n∆̂]) − l(α)||2).

A.2.2 Quadratic programming

Let l̂ =
∑n

i=1wiX(i). Then

MSE(l̂) = E(l̂ − F−1(∆∗))2

= E (l̂ − E l̂ + E l̂ − F−1(∆∗))2

= E (l̂ − E l̂)2 + (E l̂ − F−1(∆∗))2

= Var + Bias2,
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where E(l̂) =
∑n

i=1wiEX(i) and Var =
∑n

i=1w
2
i VarX(i) + 2

∑
i<j wiwjcov(X(i), X(j)). It

has been shown (e.g., [David and Nagaraja, 2003]) that

E(X(i)) = Qi +
piqi

2(n+ 2)
Q′′i + o(n−1),

where qi = 1− pi, Q = F−1 is the quantile function, Qi = Q(pi) = Q(EU(i)) = Q( i
n+1), and

Q′′i = Qi
f2(Qi)

. Thus

E(l̂)
.
=

n∑
i=1

wi

(
Qi +

piqi
2(n+ 2)

Q′′i

)
. (A.3)

It has also been shown (e.g., [David and Nagaraja, 2003]) that

VarX(i) =
piqi
n+ 2

Q′2i + o(n−1)

cov(X(i), X(j)) =
piqj
n+ 2

Q′iQ
′
j + o(n−1), for i < j,

where Q′i = 1
dpi/dQi

= 1
f(Qi)

(f(Qi) is called the density-quantile function). Thus,

Var(l̂) =

n∑
i=1

w2
i

piqi
n+ 2

Q′2i + 2
∑
i<j

wiwj
piqj
n+ 2

Q′iQ
′
j + o(n−1). (A.4)

Putting (A.3) and (A.4) together yields,

MSE(l̂) =

n∑
i=1

w2
i

piqi
n+ 2

Q′2i + 2
∑
i<j

wiwj
piqj
n+ 2

Q′iQ
′
j +

+

[
n∑
i=1

wi(Qi +
piqi

2(n+ 2)
Q′′i )−Q(∆∗)

]2

+ o(n−1). (A.5)

Finding the optimal weights that minimize MSE as defined in (A.5) is then approximately

a quadratic programming problem.

In this study we impose triangle kernels centered around the endpoints of the empirical

shortest interval on the weights for computational stability. Specifically, the estimate of the

lower endpoint has the form,

l̂ =
∑i∗+b/2

i=i∗−b/2
wiX(i),

where i∗ is the index of the endpoint of the empirical shortest interval, b is the bandwidth

in terms of data points, and wi decreases linearly when i moves away from i∗. We choose
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b to be of order
√
n in this study. This optimization problem is equivalent to minimizing

MSE with the following constraints:

i∗+b/2∑
i=i∗−b/2

wi = 1

wi − wi−1

X(i) −X(i−1)
=

wi−1 − wi−2

X(i−1) −X(i−2)
for i = i∗− b/2+2, . . . , i∗, i∗+2, . . . , i∗+b/2

wi∗ − wi∗−1

X(i∗) −X(i∗−1)
=

wi∗ − wi∗+1

X(i∗+1) −X(i∗)

wi∗−b/2 ≥ 0

wi∗+b/2 ≥ 0

wi∗ − wi∗+1 ≥ 0. (A.6)

The above constraints reflect the piecewise linear and symmetric pattern of the kernel. In

practice, Q, f , and ∆∗ can be substituted by the corresponding sample estimates Q̂, f̂ , and

∆̂.

The above quadratic programming problem can be rewritten in the conventional matrix

form,

MSE(l̂)
.
=

1

2
wTDw − dTw,

where

w = (wi∗−b/2, . . . , wi∗+b/2)T ,

and D = (dij) is a symmetric matrix with

dij =

 2(Q2
i + piqi

n+2Q
′2
i ), i = j

2(
Q′iQ

′
j

n+2 piqj +QiQj), i < j,

dT = 2Q(∆∗)Qi,

subject to

ATw ≥ w0,

with appropriate A and w0 derived from the linear constraints in (A.6).
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A.2.3 Proof of simulation-consistency of the estimated HPD

The following result ensures the simulation-consistency of our endpoint estimators when we

use the empirical distribution and kernel density estimate.

Under regularity conditions, with probability 1,

lim
n→∞

min
w

(
1

2
wT D̂nw − d̂Tnw

)
= min

w

(
1

2
wTDw − dTw

)
,

where D̂n and d̂n are empirical estimates of D and d based on empirical distribution function

and kernel density estimates.

To see this, we first show that D̂n → D and d̂n → d uniformly as n→∞ almost surely.

By the Glivenko-Cantelli theorem, ||F̂ − F ||∞
a.s.→ 0, which implies Q̂  Q almost surely,

where denotes weak convergence, i.e., Q̂(t)→ Q(t) at every t where Q is continuous (e.g.,

[van der Vaart, 1998]). It has also been shown that
∫

Ef (f̂(x)−f(x))2dx = O(n−4/5) under

regularity conditions (see, e.g., [van der Vaart, 1998]), which implies that f̂(x)→f(x) almost

surely for all x. The endpoints of the empirical shortest interval are simulation-consistent

[Chen and Shao, 1998].

The elements in matrix D̂n result from simple arithmetic manipulations of Q̂ and f̂ , so

d̂ij → dij with probability 1, which implies,

D̂n → D uniformly and almost surely,

given D is of finite dimension. We can prove the almost sure uniform convergence of d̂n to

d in a similar manner.

The optimization problem minw(1
2w

T D̂nw− d̂Tnw) corresponds to calculating the small-

est eigenvalue of an augmented matrix constructed from D̂n and d̂n. The above uniform

convergence then implies,

lim
n→∞

min
w

(wT D̂nw − d̂Tnw) = min
w

(wTDw − dTw).

The same proof works for the upper endpoint.

A.2.4 Bootstrapping the procedure to get a smoother estimate

Results from quadratic programming as described above show that, as expected, Spin has a

much reduced bias than the empirical shortest intervals. This is because the above procedure
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Figure A.5: Bootstrapping procedure to get more stable weights.

takes the shape of the empirical distribution into account. However, the variance remains

at the same magnitude as that of the empirical shortest interval (as we shall see in the left

panel in Figure A.10), because the optimal weights derived from the empirical distribution

are also subject to the same level of variability as the empirical shortest intervals. We

can use the bootstrap [Efron, 1979] to smooth away some of this noise and thus further

reduce the variance in the interval. Specifically, we bootstrap the original posterior draws

B times (in this study we set B = 50) and calculate the Spin optimal weights for each of

the bootstrapped samples. Here, we treat the weights as general functions of the posterior

distribution under study rather than the endpoints of HPD interval of the posterior samples.

We then compute the final weights as the average of the B sets of weights obtained from

the above procedure (Figure A.5).

A.2.5 Bounded distributions

As defined so far, our procedure necessarily yields an interval within the range of the

simulations. This is undesirable if the distribution is bounded with the boundary included

in the HPD interval (as in the right graph in Figure 1). To allow boundary estimates, we

augment our simulations with a pseudo-datapoint (or two, if the distribution is known to be

bounded on both sides). For example, if a distribution is defined on (0,∞) then we insert

another datapoint at 0; if the probability space is (0, 1), we insert additional points at 0
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and 1.

A.2.6 Discrete and multimodal distributions

If a distribution is continuous and unimodal, the highest posterior density region and short-

est probability interval coincide. More generally, the highest posterior density region can

be formed from disjoint intervals. For distributions with known boundary of disjoint parts,

Spin can be applied to different regions separately and a HPD region can be assembled using

the derived disjoint intervals. When the nature of the underlying true distribution is un-

known and the sample size is small, the inference of unimodality can be difficult. Therefore,

in this study, we have focused on estimating the shortest probability interval, recognizing

that, as with interval estimates in general, our procedure is less relevant for multimodal

distributions.

A.3 Results for simple theoretical examples

We conduct simulation studies to evaluate the performance of our methods. We generate

independent samples from the normal, t(5), and gamma(3) distributions and construct 95%

intervals using these samples. We consider sample sizes of 100, 300, 500, 1000 and 2000. For

each setup, we generate 20,000 independent replicates and use these to compute root mean

squared errors (RMSEs) for upper and lower endpoints. We also construct empirical shortest

intervals as defined in (A.2), parametric intervals and central intervals for comparison. For

parametric intervals, we calculate the sample mean and standard deviation. For the normal

distribution, the interval takes the form of mean ± 1.96 sd (for the t distribution we also

implement the same form as “Gaussian approximation” for comparison); for the gamma, we

use the mean and standard deviation to estimate its parameters first, and then numerically

obtain the HPD interval using the resulted density with the two estimates plugged in.

The empirical 95% central interval is defined as the 2.5%th and 97.5%th percentiles of the

sampled data points. We also use our methods to construct optimal central intervals (see

Section A.5) for the two symmetric distributions.

Figure A.6 shows the intervals constructed for the standard normal distribution and the
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Figure A.6: Spin for symmetric distributions: 95% intervals for the normal and t(5) dis-

tributions, in each case based on 500 independent draws. Each horizontal bar represents

an interval from one simulation. The histograms of the lower ends and the upper ends are

based on results from 20,000 simulations. The dotted vertical lines represent the true end-

points of the HPD intervals. Spin greatly outperforms the raw empirical shortest interval.

The central interval (and its quadratic programming improvement) does even better for

the Gaussian but is worse for the t(5) and in any case does not generalize to asymmetric

distributions. The intervals estimated by fitting a Gaussian distribution do the best for the

normal model but are disastrous when the model is wrong.
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t(5) distribution based on 500 simulation draws. The empirical shortest intervals tend to

be too short in both cases, while Spins have better endpoint estimates. Empirical central

intervals are more stable than empirical shortest intervals, and Spins have comparable

RMSE for N(0, 1) and smaller RMSE for t(5). Our methods can further improve RMSE

based on the empirical central intervals as shown in the “central (QP)” row in Figure A.6.

The RMSE is the smallest if one specifies the correct parametric distribution and uses that

information to construct interval estimates, while in practice the underlying distribution

is usually not totally known, and mis-specifying it can result in far-off intervals (the right

bottom panel in Figure A.6).

Figure A.7 shows the empirical shortest, Spin, and parametric intervals constructed from

500 samples of the gamma distribution with shape parameter 3. Spin gets more accurate

endpoint estimates than empirical shortest intervals. Specifically, for the lower end where

the density is relatively high, Spin estimates are less variable, and for the upper end at the

tail of the density, Spin shows a smaller bias. Again, the lowest RMSE comes from taking

advantage of the parametric form of the posterior distribution, which is rarely practical in

real MCMC applications. Hence the RMSE using the parametric form represents a rough

lower bound on the Monte Carlo error in any HPD computed from simulations.

Figure A.8 shows the intervals constructed for MCMC normal samples. Specifically, the

Gibbs sampler is used to draw samples from a standard bivariate normal distribution with

correlation 0.9. We use this example to explore how Spin works on simulations with high

autocorrelation. Two chains each with 1000 samples are drawn with Gibbs sampling. For

one variable, every ten draws are recorded for Spin construction, resulting in 200 samples,

which is roughly the level of the effective sample size in this case. This is a typical senario

in practice when MCMC techniques are adopted for multivariate distributions. Again Spin

greatly outperforms the empirical shortest interval in case of highly correlated draws.

We further investigate coverage probabilities of the different intervals constructed (Fig-

ure A.9). Empirical shortest intervals have the lowest coverage probability, which is as

expected since they are biased towards shorter intervals (see Figure A.6 and Figure A.7).

Coverage probabilities of Spin are closer to the nominal coverage (95%) for both normal and

gamma distributions. Comparable coverage is observed for central intervals. As expected,
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Figure A.7: Spin for an asymmetric distribution. 95% intervals for the gamma distributions

with shape parameter 3, as estimated from 500 independent draws. Each horizontal bar

represents an interval from one simulation. The histograms are based on results from 20,000

simulations. The dotted vertical lines represent the true endpoints of the HPD interval.

Spin outperforms the empirical shortest interval. The interval obtained from a parametric

fit is even better but this approach cannot be applied in general; rather, it represents an

optimality bound for any method.
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Figure A.8: Spin for MCMC samples. 95% intervals for normal samples from Gibbs sampler,

in each case based on 200 draws. Each horizontal bar represents an interval from one sim-

ulation. The histograms are based on results from 20,000 simulations. The dotted vertical

lines represent the true endpoints of the HPD intervals. Spin greatly outperforms the raw

empirical shortest interval. The central interval (and its quadratic programming improve-

ment) does even better. Again the intervals estimated by fitting a Gaussian distribution do

the best.
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Figure A.9: Distribution of coverage probabilities for Spin and other 95% intervals calcu-

lated based on 500 simulations for the normal and gamma(3) distributions.
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Figure A.10: Bias-variance decomposition for 95% intervals for normal and gamma(3) ex-

amples, as a function of the number of simulation draws. Because of the symmetry of the

normal distribution, we averaged its errors for upper and lower endpoints. Results from

Spin without bootstrap are shown for normal for description purpose.

parametric intervals represent a gold standard and have the most accurate coverage.

Figure A.10 shows the bias-variance decomposition of different interval estimates for

normal and gamma distributions under sample sizes 100, 300, 500, 1,000 and 2,000. We

average lower and upper ends for the normal case due to symmetry. For both distributions,

Spin has both well-reduced variance and bias compared to the empirical shortest intervals.

The upper end estimates of empirical central intervals for the gamma have a large variance

since the corresponding density is low so the observed simulations in this region are more

variable. It is worth pointing out that the computational time for Spin is negligible compared

to sampling, thus it is a more efficient way to obtain improved interval estimates. In the

normal example shown in the left panel in Figure A.10, rather than increasing the sample

size from 300 to 500 to reduce error, one can spend less time to compute Spin with the 300

samples and get an even better interval.

We also carried out experiments with even bigger samples and intervals of other cov-

erages (90% and 50%), and got similar results. Spin beats the empirical shortest interval

in RMSE (which makes sense, given that Spin is optimizing over a class of estimators that

includes the empirical shortest as a special case).
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A.4 Results for two real-data examples

In this section, we apply our methods to two applied examples of hierarchical Bayesian

models, one from education and one from sociology. In the first example, we show the

advantages of Spin over central and empirical shortest intervals; in the second example, we

demonstrate the routine use of Spin to summarize posterior inferences.

Our first example is a Bayesian analysis from [Rubin, 1981] of a hierarchical model of

data from a set of experiments performed on eight schools. The group-level scale parameter

(which corresponds to the between-school standard deviation of the underlying treatment

effects) has a posterior distribution that is asymmetric with a mode at zero (as shown in

the right panel of Figure A.1). Central probability intervals for this scale parameter (as

presented, for example, in the analysis of these data by [Gelman, 2004]) are unsatisfying

in that they exclude a small segment near zero where the posterior distribution is in fact

largest. Figure A.11 shows the 95% empirical shortest intervals and Spin constructed from

500 draws. The results of empirical shortest intervals for 8 schools are from including the

zero point in the simulations. Spin has smaller RMSE than both empirical shortest and

central intervals (Figure A.11 and Figure A.12).

For our final example, we fit the social network model of [Zheng et al., 2006a] using

MCMC and construct 95% Spins for the overdispersion parameters based on 200 posterior

draws. The posterior is asymmetric and bounded below at 1. Figure A.13 is a partial

replot of Figure 4 from [Zheng et al., 2006a] with Spins added. For this type of asymmetric

posterior we prefer the estimated HPDs to the corresponding central intervals as HPDs

more precisely capture the values of the parameter that are supported by the posterior

distribution.

A.5 Discussion

We have presented a novel optimal approach for constructing reduced-error shortest prob-

ability intervals (Spin). Simulation studies and real data examples show the advantage

of Spin over the empirical shortest interval. Another commonly used interval estimate in

Bayesian inference is the central interval. For symmetric distributions, central intervals and
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Figure A.11: Spin for the group-level standard deviation parameter in the eight schools

example, as estimated from 500 independent draws from the posterior distribution (which

is the right density curve in Figure A.1, a distribution that is constrained to be nonnegative

and has a minimum at zero). The histograms in this figure are based on results from 20,000

simulations. The dotted vertical lines represent the true endpoints of the HPD interval

as calculated numerically from the posterior density. Spin does better than the empirical

shortest interval, especially at the left end, where its smoothing tends to (correctly) pull

the lower bound of the interval all the way to the boundary at 0.
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Figure A.12: Bias-variance decomposition for 95% intervals for the eight-school example,

as a function of the number of simulation draws.
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Figure A.13: 95% central intervals (black lines) and Spins (red lines) for the overdispersion

parameters in the “How many X’s do you know?” study. The parameter in each row is a

measure of the social clustering of a certain group in the general population: groups of people

identified by first names have low overdispersion and are close to randomly distributed in

the social network, whereas categories such as airline pilots or American Indians are more

overdispersed (that is, non-randomly distributed). We prefer the Spins as providing better

summaries of these highly skewed posterior distributions. However, the differences between

central intervals and Spins are not large; our real point here is not that the Spins are much

better but that they will work just fine in routine applied Bayesian practice, satisfying the

same needs as were served by central intervals but without that annoying behavior when

distributions are highly asymmetric.
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HPDs are the same; otherwise we agree with [Box and Tiao, 1973] that the HPD is generally

preferable to the central interval as an inferential summary (Figure A.1). In our examples

we have found that for symmetric distributions Spin and empirical central intervals have

comparable RMSEs and coverage probabilities (Figures A.6, A.9, and A.10). Therefore

we recommend Spin as a default procedure for computing HPD intervals from simulations,

as it is as computationally stable as the central intervals which are currently standard in

practice.

We set the bandwidth parameter b in (A.6) to
√
n, which seems to work well for a

variety of distributions. We also carried out sensitivity analysis by varying b and found that

large b tends to result in more stable endpoint estimates where the density is relatively high

but can lead to noisy estimates where the density is low. This makes sense: in low-density

regions, adding more points to the weighted average may introduce noise instead of true

signals. Based on our experiments, we believe the default value b =
√
n is a safe general

choice.

Our approach can be considered more generally as a method of using weighted averages

of order statistics to construct optimal interval estimates. One can replaceQ(∆∗) in (A.5) by

the endpoints of any reasonable empirical interval estimates, and obtain improved intervals

by using our quadratic programming strategy (such as the improved central intervals shown

in Figure A.6).

One concern that arises is the computational cost of performing Spin itself. Our simu-

lations show Spin intervals to have better simulation coverage and appreciably lower mean

squared error compared to the empirical HPD, but for simple problems in which one can

quickly draw direct posterior simulations, it could be simpler to forget Spin and instead

just double the size of the posterior sample. More and more, though, we find ourselves

computing Bayesian models using elaborate Markov chain simulation algorithms for which

it can take hundreds of thousands of steps, and hours or even days of computing time, to

obtain an effective sample size of a few hundred posterior simulation draws. In this case,

the Spin calculations are a small price to pay for obtaining more accurate and stable HPD

intervals.

We have demonstrated that our Spin procedure works well in a range of theoretical and
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applied problems, that it is simulation-consistent, computationally feasible, addresses the

boundary problem, and is optimal within a certain class of procedures that include the

empirical shortest interval as a special case. We do not claim, however, that the procedure

is optimal in any universal sense. We see the key contribution of the present work as

developing a practical procedure to compute shortest probability intervals from simulation

in a way that is superior to the naive approach and is competitive (in terms of simulation

variability) with central probability intervals. Now that Spin can be computed routinely,

we anticipate further research improvements on posterior summaries.
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Appendix B

Two-vs-one dimensional

association patterns

In this appendix we show the other six two-vs-one dimensional patterns tested in Chapter

4.
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Figure B.1: Slice plots of the first association pattern in Figure 4.1.
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Figure B.2: Slice plots of the second association pattern in Figure 4.1.
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Figure B.3: Slice plots of the third association pattern in Figure 4.1.
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Figure B.4: Slice plots of the fourth association pattern in Figure 4.1.
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Figure B.5: Slice plots of the fifth association pattern in Figure 4.1.
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Figure B.6: Slice plots of the seventh association pattern in Figure 4.1.
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Appendix C

Manhattan plots for tree growth

In this appendix we show manhattan plots for the other chromosomes (supplementary to

Chapter 5).
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Figure C.1: Manhattan plots for chromosome 2.
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Figure C.2: Manhattan plots for chromosome 3.
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Figure C.3: Manhattan plots for chromosome 4.
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Figure C.4: Manhattan plots for chromosome 5.
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Figure C.5: Manhattan plots for chromosome 6.
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Figure C.6: Manhattan plots for chromosome 7.
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Figure C.7: Manhattan plots for chromosome 8.
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Figure C.8: Manhattan plots for chromosome 9.
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Figure C.9: Manhattan plots for chromosome 10.
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Figure C.10: Manhattan plots for chromosome 11.
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Figure C.11: Manhattan plots for chromosome 12.
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Figure C.12: Manhattan plots for chromosome 13.
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Figure C.13: Manhattan plots for chromosome 14.
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Figure C.14: Manhattan plots for chromosome 15.
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Figure C.15: Manhattan plots for chromosome 16.
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Figure C.16: Manhattan plots for chromosome 17.
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Figure C.17: Manhattan plots for chromosome 18.
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Figure C.18: Manhattan plots for chromosome 19.
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