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ABSTRACT

Correlating Visual Speaker Gestures with

Measures of Audience Engagement to Aid Video

Browsing

John Ruoyu Zhang

In this thesis, we argue that in the domains of educational lectures and political debates,

speaker gestures can be a source of semantic cues for video browsing. We hypothesize that

certain human gestures, which can be automatically identified through techniques of com-

puter vision, can convey significant information that are correlated to audience engagement.

We present a joint-angle descriptor derived from an automatic upper body pose esti-

mation framework to train an SVM which identifies point and spread poses in extracted

video frames of an instructor giving a lecture. Ground-truth is collected in the form of 2500

manually annotated frames covering 20 minutes of a video lecture. Cross validation on the

ground-truth data showed classifier F-scores of 0.54 and 0.39 for point and spread poses,

respectively. We also derive an attribute for gestures which measures the angular variance

of the arm movements from this system (analogous to arm waving).

We present a method for tracking hands which succeeds even when left and right hands

are clasping and occluding each other. We evaluate on a ground-truth dataset of 698

images with 1301 annotated left and right hands, mostly clasped. Our method performs

better than baseline on recall (0.66 vs. 0.53) without sacrificing precision (0.65 for both)

toward the goal of recognizing clasped hands. For tracking, it results in an improvement

over a baseline method with an F-score of 0.59 vs. 0.48. From this, we are able to derive

hand motion-based gesture attributes such as velocity, direction change and extremal pose.

In ground-truth studies, we manually annotate and analyze the gestures of two instruc-

tors, each in a 75-minute computer science lecture using a 14-bit pose vector. We observe

“pedagogical” gestures of punctuation and encouragement in addition to traditional classes



of gestures such as deictic and metaphoric. We also introduce a tool to facilitate the manual

annotations of gestures in video and present results on their frequencies and co-occurrences.

In particular, we find that 5 poses represent 80% of the variation in the annotated ground

truth.

We demonstrate a correlation between the angular variance of arm movements and the

presence of those conjunctions that are used to contrast connected clauses (“but”, “neither”,

etc.) in the accompanying speech. We do this by training an AdaBoost-based binary

classifier using decision trees as weak learners. On a ground-truth database of 4243 video

clips totaling 3.83 hours, each with subtitles, training on sets of conjunctions indicating

contrast produces classifiers capable of achieving 55% accuracy on a balanced test set.

We study two different presentation methods: an attribute graph which shows a normal-

ized measure of the visual attributes across an entire video, as well as emphasized subtitles,

where individual words are emphasized (resized) based on their accompanying gestures.

Results from 12 subjects show supportive ratings given for the browsing aids in the task of

providing keywords for video under time constraints. Subjects’ keywords are also compared

to independent ground-truth, resulting in precisions from 0.50–0.55, even when given less

than half real time to view the video.

We demonstrate a correlation between gesture attributes and a rigorous method of

measuring audience engagement: electroencephalography (EEG). Our 20 subjects watch 61

minutes of video of the 2012 U.S. Presidential Debates while under observation through

EEG. After discarding corrupted recordings, we retain 47 minutes worth of EEG data

for each subject. The subjects are examined in aggregate and in subgroups according to

gender and political affiliation. We find statistically significant correlations between gesture

attributes (particularly extremal pose) and our feature of engagement derived from EEG.

For all subjects watching all videos, we see a statistically significant correlation between

gesture and engagement with a Spearman rank correlation of ρ = 0.098 with p < 0.05,

Bonferroni corrected. For some stratifications, correlations reach as high as ρ = 0.297.

From these results, we conclude what gestures can be used to measure engagement.
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Chapter 1

Introduction

1.1 Motivation

The explosive growth of digital video has led to an abundance of unstructured video content

online. Two domains are increasingly popular.

First, educational material online in the form of Massive Open Online Courses (MOOCs)

and digitally recorded video of traditional classroom lectures distributed over the Internet

by post-secondary institutions1,2. As of writing, one online video lecture repository3 reports

14,651 lectures by 11,138 authors.

Second, digital video of political events have been made available online for greater

dissemination as well as analysis in the growing field of data sciences in journalism4. In this

work, we focus on segments of the 2012 US Presidential Debates.

While the greater availability of video data provides countless benefits to the public,

it results in the problem of information overload to viewers. Non-linear semantic video

browsers such as the VAST Multimedia Browser [Haubold and Kender, 2007; Merler and

Kender, 2009; Morris and Kender, 2011] present one possible solution, whereby multimedia

features of videos are used to provide semantic cues to a video browser. These cues in turn

1Columbia Video Network, http://www.cvn.columbia.edu.

2UC Berkeley Online Learning, http://learn.berkeley.edu, http://webcast.berkeley.edu

3Videolectures.net http://www.videolectures.net.

4Brown Institute for Media Innovation, http://brown.columbia.edu.
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offer ways for the users to browse or skim through video in a non-linear fashion.

The focus of this research is to explore one possible source of semantic cues: speaker

gestures. We hypothesize that human gestures can convey significant information which

can be correlated to audience engagement. The gestures can be automatically identified

using techniques of computer vision and used as features and indices in video browsers.

1.2 Domain

In this work, we focus on videos from two domains: educational lectures and presidential

debates. They share the common property that videos in both tend to focus on a single

speaker at any given time, speaking and gesticulating in front of a (usually invisible) au-

dience, which simplifies our task. The audio is also similar, as it is limited to the voice of

a single speaker with no background noise. While we use the accompanying speech (either

from manual transcription or ASR) in Chapter 5 and subjects are presented audio along

with video as a baseline in Chapter 6, we do not directly explore the correlation between

gestures and low-level audio features in this thesis.

1.2.1 Educational Lectures

We use two sources for lecture videos: the Columbia Video Network (CVN) and MIT

OpenCourseWare5 (MIT-OCW). While media from the former source are proprietary, media

from the latter are available for public use. Examples of video from CVN and MIT-OCW

are shown in Figures 1.1 and 1.2, respectively. We do not use videos from MOOCs as

the videos of the instructors focus on little more than the face, making gesture analysis

infeasible.

The videos were recorded by amateur cameramen through an ad-hoc capture system.

As such, there is no pattern to their focus and camera effects such as pans and zooms occur

at irregular intervals. The footage of the instructors are sometimes intermixed with shots

of the instructor’s slides. Minimal post-production work has been done on these videos.

Editing is generally limited to the addition of a title screen listing the course name and

5MIT OpenCourseWare, http://ocw.mit.edu.
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Figure 1.1: Examples of recorded lectures from the Columbia Video Network.

Figure 1.2: Examples of recorded lectures from MIT OpenCourseWare.

instructor.

The CVN videos are approximately 75 minutes long each, and are recorded at a resolu-

tion of 352×240 pixels at 29.97 frames per second. The MIT-OCW videos vary in duration

and have a slightly higher resolution of 480× 270 or 478× 360 pixels, recorded at 15 frames

per second.

The set of videos span different courses and subject matter. There can be background

variation across different courses as different classrooms may be used and the instructors

may prefer using either the blackboard, whiteboard, or projector screen.

There is also heavy foreground (i.e., the instructor) variation, as the lighting conditions

were varied as well as the clothes and overall appearance of the instructors. All videos

feature a single English-speaking instructor with varying ethnicities and genders.

1.2.2 Presidential Debates

We use recorded video of the first (original air date October 3, 2012) and final (original

air date October 22, 2012) 2012 U.S. Presidential Debates between U.S. President Barack

Obama and former Massachusetts Governor Mitt Romney, which are publicly available. The

videos have a resolution of 640 × 360 pixels and are recorded at 24.58 frames per second
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using a stationary camera, and tend to focus on the upper bodies of the speakers, who

gesticulate frequently while they speak. Their hands appear in and out of view. Examples

of the videos are shown in Figure 1.3.

Figure 1.3: Examples of the 2012 U.S. Presidential Debates.

These videos have more structure than the educational lecture videos. The number of

speakers are limited to the presidential candidates and the debate moderators, and this

study will only focus on the candidates. The speakers are dressed formally in a suit and

tie, and the background and foreground are clearly distinguishable. In the first presidential

debate, the speakers are standing in front of a podium. Shots are restricted to the moderator

(with the audience behind him) and frontal and angled views of the speakers by themselves

and together. In the final debate, speakers are shown sitting at a table. The camera focus

is slightly off-frontal, but the setting is otherwise similar.

We restrict our analysis to these two debates (out of the total four debates that year)

and discard the vice-presidential debate in order to reduce the number of speakers (for our

audience engagement analysis discussed in Chapter 5), and discard the second presidential

debate as the speakers are walking while carrying a microphone, therefore biasing any

gesture information that can be derived.

1.3 Contributions

This thesis proposes to use speaker gestures as features for detecting moments of audience

engagement. Our contributions can be summarized as follows.

1. Methods for extracting gesture features automatically. We propose a number

of methods for extracting gestures—both poses and motions—of interest and their

attributes. We propose a system for the identification of the poses of point and spread
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gestures (two arms “spread” open and waving), which were identified as being often

present at semantically significant moments during manual analysis of videos. We

use a joint-angle descriptor derived from an automatic upper body pose estimation

framework to train an SVM in order to classify extracted video frames of an instructor

giving a lecture. Ground-truth is collected in the form of 2500 manually annotated

frames covering approximately 20 minutes of a video lecture. Cross validation on the

ground-truth data showed classifier F-scores of 0.54 and 0.39 for point and spread

poses. This system can also be modified to produce an attribute for gestures which

measures the angular variance of the arm movements, which we use to correlate with

parts of speech. This work was initially presented in [Zhang and Kender, 2011].

We also propose a method for tracking hands to improve the accuracy of gesture

attributes derived from hand motions. Our algorithm distinguishes when two hands

are visually merged together (i.e., clasping) and tracks their positions by propagating

tracking information from anchor frames in video. We demonstrate and evaluate

on a manually labeled dataset selected primarily for clasped hands with 698 images

of a single speaker with 1301 annotated left and right hands. Toward the goal of

recognizing clasping hands, our method performs better than baseline on recall (0.66

vs. 0.53) without sacrificing precision (0.65 for both). We also evaluate its tracking

efficacy through its ability to affect performance of a naive hand labeling heuristic,

resulting in an improvement over the baseline (F-score of 0.59 vs. 0.48 baseline). Once

left and right hands are distinguished and tracked, we can derive a number of related

gesture attributes including velocity, direction change and extremity of pose. This

work was initially presented in [Zhang and Kender, 2013].

2. Identifying semantically relevant gestures through manual analysis. We

gather ground-truth annotations of gesture appearance using a 14-bit pose vector. We

manually annotate and analyze the gestures of two instructors, each in a 75-minute

computer science lecture, finding 866 gestures and identifying 126 fine equivalence

classes which could be further clustered into 9 semantic classes. We observe these

classes encompassing “pedagogical” gestures of punctuation and encouragement, as

well as traditional classes such as deictic and metaphoric. The gestures appear to be
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both highly idiosyncratic and highly repetitive. We also introduce a tool to facilitate

the manual annotations of gestures in video and present results on their frequencies

and co-occurrences; in particular, we find that pointing (deictic) and spreading (peda-

gogical) predominate, and that 5 poses represent 80% of the variation in the annotated

ground truth. This work was initially presented in [Zhang et al., 2010].

3. How gestures are correlated with parts of speech. We demonstrate a corre-

lation between the variances of natural arm motions and the presence of those con-

junctions that are used to contrast connected clauses (“but”, “neither”, etc.) in the

accompanying speech, which we believe can indicate moments of audience interest.

An AdaBoost-based binary classifier using decision trees as weak learners classifies

videos according to whether its speech content contains such conjunctions using the

angular variance of arm movements as a feature. Our database of 3.83 hours of video

is segmented into 4243 clips, each with subtitles. We show that training on the set of

all conjunctions produces a classifier that performs no better than chance, but that

training on sets of conjunctions indicating contrast are capable of achieving 55% accu-

racy on a balanced test set. This work was initially presented in [Zhang and Kender,

2012].

4. User interfaces for presenting gesture information to viewers. We study two

different presentation methods: an attribute graph which shows a normalized measure

of the visual attributes across an entire video, as well as emphasized subtitles, where

individual words are emphasized (resized) based on their accompanying gestures. Re-

sults from a user study with 12 subjects are given, with supportive ratings given for

the browsing aids in the task of providing keywords for video under time constraints.

Subjects’ keywords are also compared to an independent ground-truth, resulting in

precisions from 0.50–0.55 even when given less than half real time to view the video.

This work was initially presented in [Zhang et al., 2013].

5. How gestures are correlated with audience EEG. Due to the difficulty of gaug-

ing audience interest through intermediary measures, we seek to build a stronger

argument by looking directly into the brain. We asked 20 subjects to watch a total
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of 61 minutes of clips of the 2012 U.S. Presidential Debates while under observation

through electroencephalography (EEG). After discarding corrupted recordings, we

retain a total of 47 minutes of EEG data for each subject. The resultant EEG mea-

surements are combined across subjects both in aggregate and in sub-groups (factored

by gender and political affiliation) and processed using an existing method for measur-

ing attentiveness. We correlate the post-processed results against gesture attributes

and find statistically significant correlations between gesture attributes (particularly

extremal pose) and our feature of engagement derived from EEG. For all subjects

watching all videos, we see a statistically significant correlation between gesture and

engagement with a Spearman rank correlation of ρ = 0.098 with p < 0.05, Bonferroni

corrected. For some stratifications, correlations reach as high as ρ = 0.297 (p < 0.05,

Bonferroni corrected). From these results, we conclude that certain gestures can be

used to engage audiences.

1.4 Organization

The remainder of this thesis is organized as follows.

In Chapter 2 we review the literature in related areas including: the study of gestures

from a psychological standpoint, extracting gesture and visual features from video, and

methods of measuring audience engagement.

In Chapter 3 we propose a number of computer vision techniques for automatically

extracting gesture features from video. In Section 3.1 we discuss an approach for recognizing

poses of interest. In Section 3.2 we discuss a method for detecting and tracking left and right

hands. The chapter concludes with Section 3.3, where we apply some of the previous results

toward the creation of methods for extracting certain features which seek to encapsulate

gesture attributes such as how fast an arm is moving or how unusual a pose is.

In Chapters 4 and 5, we describe our progress in studying the relationship between

speakers’ gestures and the attentiveness of their audience. We begin with Chapter 4, where

we propose a tool for labeling gestures and poses in video which in turn allow researchers

manually examine lecture videos and identify meaningful gestures and their properties.
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From these observations, we derive statistics and discuss results. Inspired by some of these

results, we look at the correlation between gestures and measures of audience engagement

in Chapter 5. This includes looking at correlations between gestures and parts of speech in

Section 5.1, and how to present gesture features to viewers in a video browser by proposing

different user interface elements and performing user studies in Section 5.2.

In Chapter 6, we examine in greater detail the correlation between speaker gestures’ and

viewers’ engagement by monitoring 20 subjects, stratified by political affiliation and gender,

using electroencephalography (EEG) while they watch clips of presidential debate videos

both with and without audio. We show statistically significant correlations between gesture

attributes (as described in Section 3.3) and viewers’ neural activity even in the presence of

speech. We also identify the most important gesture attribute to be extremal poses which

speakers can use to recapture audiences’ attention.

Finally, we summarize our results, draw conclusions and discuss possible directions for

future work in Chapter 7.
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Chapter 2

Related Work

In the following, we will review the literature in a number of fields including: the represen-

tation of gestures and the study of their semantics as done in the fields of psychology and

linguistics, techniques for automatic gesture and pose recognition from computer vision, as

well as the study of measuring engagement and attentiveness with a focus on methods using

neural activity. This thesis lies at the intersection of these fields.

2.1 Representation of Gestures

We review three prominent schemes for the representation of gestures: FORM, ANVIL and

CoGesT.

2.1.1 FORM

A necessary first step is determining the appropriate representation of gestures. One such

representation, FORM, encompasses both kinematic and temporal information whereby

gestures are represented using graphs of nodes lying on the same timeline as shown in

Figure 2.1 [Martell, 2002]. The nodes represent timestamps while the arcs represent events

spanning the time between two nodes. Each arc contains a series of tracks—essentially a

list of information. Two tracks are available for each body part. One track describes the

location, scale and orientation of a part, another describes the motion of the part. Objects

placed in the tracks are attribute-value pairs that can describe temporal or physical data.
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Figure 2.1: Representation of gestures in FORM [Martell, 2002], where nodes represent

timestamps and arcs represent events (i.e., motion) spanning the time between nodes.

As FORM is a framework and designed to be extensible, tracks can be added as needed.

An arm gesture scheme is given as an example in [Martell, 2002]. To evaluate the scheme,

a user study was performed examining inter- and intra-annotator agreement revealing high

intra-annotator agreement but low inter-annotator agreement.

For our work, we choose to build a simpler model of gesture representation by deriv-

ing from the multi-phasic temporal model of [Kendon, 1980]. This approach lacks the

fine-grained temporal modeling capability but allows us to build simpler methods for auto-

matically extracting gestures and their attributes.

2.1.2 ANVIL

ANVIL (ANnotation of VIdeo and Language) is proposed as an annotation scheme for

identification and analysis of gestures [Kipp, 2001]. Annotations are made by attaching

anchored attribute-value pairs via text input to tracks. These annotations are hierarchical:

elements of one track that are time-anchored are primary. Elements can also be defined

relative to elements of other tracks. These are secondary. Annotation schemes for ANVIL

must be defined in XML (which can easily represent hierarchy through nested tags).

Like FORM, ANVIL is also meant to be generic and extensible, and the use of multiple

tracks allows support for multimodal annotation (i.e., annotations regarding text and audio

can also be made). However, the given tool for ANVIL annotations (Figure 2.2a) is not

similarly extensible and requires purely text input, when a graphical input method may be
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ideal for some kinematic information (e.g., drawing a pose).

[Kipp et al., 2007] extend their work with ANVIL by proposing a specific scheme for man-

ually transcribing gestures for the purpose of animating avatars. In this scheme, attributes

containing spatial and temporal data (following the tri-phasic gestural model proposed by

[Kendon, 1980]) are assigned to the tracks described in the ANVIL annotation scheme. The

authors of this work implemented and evaluated their scheme using the ANVIL tool. For

evaluation, 420 gestures of two speakers from 18 minutes of TV video are annotated. Eval-

uation is performed through a user study whereby collected annotations are examined by

recreating the gestures. The authors note that phases were annotated with 72% reliability.

Kipp et al.’s proposed scheme presents some strengths over other proposed representa-

tions as it captures temporal and spatial data of gestures, with particularly accurate spatial

data. However, just one minute of source material takes 90 minutes to encode, given short

annotator training.

Our tool proposed in Chapter 4 takes some inspiration from the ANVIL annotation

tool. However, to improve annotator speed, it is tailor-made according to our representation

model and uses a graphical input method (i.e., posing by avatar) rather than text input.

2.1.3 CoGesT

The CoGesT annotation scheme is proposed for capturing conversational speech-related

gestures by [Gut et al., 1993]. In this scheme, each gesture is defined according to the

following properties: phase (with a source, trajectory and target specified where trajectory

is parameterized by direction and shape), hand shape (defined according to an index of

hand poses), symmetry (whether the hand gestures are parallel or mirror), and modifiers.

Addition information such as speed, number of repetitions, etc., can be added to scheme

via the modifiers. An example of a transcription can be seen in Figure 2.2b. The authors

evaluate their scheme by comparing inter-annotator agreement and find high-agreement for

segmentation at 86% but low agreement for the actual descriptions at 23.4%.

CoGesT presents an advantageous approach whereby form and function of gestures are

distinguished. While it is meant to capture conversational gestures, it may be applicable in

a classroom setting where we imagine the teacher as having a one-sided conversation with
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each student, simultaneously.

However, CoGesT only supports arm and hand gestures with no justification given for

this choice. The software tool used to annotate videos also only uses text annotations

which proved to be a poor choice, as “typing errors” was listed as one of the reasons for

poor inter-annotator consistency. Arm and hand gestures are a cornerstone of this thesis,

but ultimately the CoGesT representation and tool were not used in favor of a simpler

representation and a graphical tool which is less prone to input errors.

(a) (b)

Figure 2.2: (a) In ANVIL [Kipp, 2001], annotations are made by attaching anchored

attribute-value pairs to tracks. (b) An example of a transcription made using the CoGesT

scheme [Gut et al., 1993], describing source, trajectory and target states.

2.2 Semantic Relevance of Gestures

In order to review the relationship between gestures and semantics, we examine literature

related to the taxonomy of gestures (as specific classes of gestures convey more meaning

than others) and how gestures are used to communicate in general and in the classroom

and political debates.
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2.2.1 Taxonomies of Gestures

Seminal work on the relationship between gestures and language done by [McNeill, 1992]

identifies five classes: iconics, metaphorics, beats, cohesives and deictics. Iconic gestures

attempt to illustrate the semantic content of speech, e.g., holding a fist in front and slightly

turning it when talking about a steering wheel. Metaphorics are similar to iconics, but

whereas iconics describe concrete objects or events, metaphorics are used to depict abstract

ideas. Beat gestures are typically simple gestures of emphasis, e.g., a light “beat” of a hand

in the air. McNeill describes cohesives as composite gestures (i.e., they consist of the other

types of gestures) which signal continuities in thematically related but temporally separated

discourse; e.g., a speaker makes a certain gesture when describing an event, makes a different

gesture when making a side note, and then returns to the original gesture to signal that they

have returned to the original topic. The last class, deictic gestures, are pointing gestures.

These classes appear frequently in the literature and we will develop them further in

our own analyses of gestures.

[Pozzer-Ardenghi and Roth, 2004] further develops the research on gesture taxonomies

by analyzing classroom videos and proposes eight classes of gestures. The task in all the

recorded lectures in the study was to communicate meaning of photographs or figures in a

lecture environment.

The eight classes proposed were mutually exclusive and based on function. They are as

follows, and can be related to McNeill’s classes:

• Representing. Gestures used to represent objects or phenomena associated with a

photograph.

• Emphasizing. Iconic gestures representing something directly in the photo, but refer-

ring to an object and so serves a deictic function.

• Highlighting. Tends to be a circular motion without referring to anything specific.

• Pointing. Deictic gestures.

• Outlining. Very specific deictic gestures, but also iconic.

• Adding. Like outlining, but traces an abstract object.
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• Extending. “Added” object can be outside the bounds of the photo.

• Positioning. Speaker is positioned in a way that puts her “inside” the photo to provide

perspective.

The classes were derived by analyzing videos of classroom lectures, so the gestures (and

classifications) arose naturally. Many of these classes will overlap with our own proposed

taxonomy as described in Chapter 4. One reason the gestural classes suggested here is

insufficient for our purposes is that some of these classes would be difficult to distinguish

automatically, e.g., for outlining and adding, objects in the photos would need to be iden-

tified and matched against gestures.

2.2.2 Gestures in Communication

It has long been known that gestures play an important role in everyday communication,

particularly in some cultures [Donadio, 2013].

[Eisenstein and Davis, 2006] addresses the question of whether or not gestures are mul-

timodal. Human raters are trained to assign one of these labels to gestures as shown in

a video: deictic, action (iconic), other (beat) or don’t know. Their labels are evaluated

for inter-annotator agreement. Then, the visual and auditory modalities are alternately

removed and the experiment is performed again. The conclusion of the authors is that

neither modality alone is sufficient to classify gestures, although vision-only gesture classi-

fication is significantly stronger. In addition, an automatic classification method based on

linguistics was introduced. For each gesture, a feature vector was constructed using words

that appeared within windows surrounding the stroke phase of the gesture. This automatic

classifier was found to outperform human classifiers when using audio only, but not as good

as humans using both audio and visual information.

The results of this study leads us to focus on gesture recognition using vision-based

techniques, although it suggests the potential efficacy of using multimodal data as well to

aid in recognition methods. We will also examine the correlation of gestures with parts of

speech in Chapter 5.

We further explore the possibility of correlating gestures with semantic significance in
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communication by examining the work of [Bavelas et al., 1995]. Here, hand gestures used

during dialogue are analyzed. In the first experiment, a person describes a cartoon to

another. Their interaction is videotaped and the number of gestures are counted. It was

shown the frequency of gestures decreased when the addressee would not see them. The

authors identified four classes of objectives of gestures in dialogue: marking the delivery of

information, citing the other’s contribution, seeking (a response from the addressee) and

turn-taking (meant to coordinate the “turn-taking” of speaking during conversations). In

a second experiment, the authors attempt to predict an addressee’s responses based on the

speaker’s gestures. A high rate of success is reported.

The correlation between gestures and possible meanings in communication is the main

contribution of this work. While a taxonomy of hand gestures is introduced here, they may

be unusable for the proposed project as they are classified by intent and function and which

are difficult to detect using machine vision.

2.2.3 Gestures in Education

In studies more specifically related to teaching, [Roth and Bowen, 1998] explore the re-

lationships between semiotics, graphs and gestures in education by analyzing an ecology

lecture. Three types of shifts in speech are identified which the authors contend correlate to

points of misunderstanding between the lecturer and the students: semantic, temporal and

structural. Semantic shifts occur when the speech describes something general while the

gesture is toward something specific or vice versa. Temporal shifts occur in events where

the gestures and utterances are asynchronous. Structural shifts occur when the lecturer

digresses in his utterances from the current gesture and topic without changing gestures.

In this work, students, seminars as well as lecturers were studied. The observation that

shifts in speech that may be points of misunderstanding between students and lecturers is

a significant result that may suggest their usefulness as cues in video browsers. However,

analyses here were restricted to lectures from a single course. Furthermore, significant

events are identified by the researchers and are subjective.

In another study, [Roth and Lawless, 2002] analyzed videos of various lectures and

made observations regarding body orientation, proximity (to an inscription such as a slide,
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Figure 2.3: Visualization of 2D and 3D inscriptions from [Roth and Lawless, 2002], i.e.,

where an instructor stands and references an inscription (e.g., a blackboard or photograph)

relative to the classroom consisting of 6 listeners. These are used to argue for the importance

of a lecturer’s position in conveying information.

photo or figure) and gestures, particularly iconic and deictic gestures. In particular, three

situations were identified: the use of 2D inscriptions, 3D inscriptions (like 2D inscriptions,

but the position of the speaker conveys information) and without using inscriptions (Figure

2.3). The primary contribution of this work was to argue for the importance of body

orientation and position in teaching. This affects our proposed research as it implies the

importance of body positions and orientation when recognizing and classifying gestures,

which is accounted for in one of our studies described in Chapter 4.

[Roth, 2001] presents a survey of research in gestures across lectures in different subjects.

The survey argues for the importance of hand and arm gestures relative to body motion

and position and argues that gestures can be distinguished from other body movements by

their adherence to the multi-phase model proposed by [Kendon, 1980]. Roth et al. further

review gestures relative to speech by providing a spectrum, with increasing independence

from speech: gesticulations, language-like gestures, pantomime, emblems, sign language.

Significant references are made to McNeill’s gestural classes, which are frequently used

by education researchers. The authors contend that McNeill’s classes of gestures are not

equally represented in particular events. Iconic gestures appear more often as references to

story events. Deictic, metaphoric and beat gestures appear in references to story structure.

Furthermore, the survey presents two theories for function and production of gestures.

First: gestures are a byproduct of speech, in that they do not convey additional meaning.

Second: gestures are generated along with speech and are a different way of expressing

the same meaning. As of publication, no evidence strongly supports one over the other,

although studies done with children indicate that some meaning could be conveyed through
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gestures that were sometimes not conveyed through speech.

This study is comprehensive: the gestures surveyed spans across diverse subjects as

anthropology, linguistics and psychology. However, the few physical descriptions of the

gestures, which are generally distinguished in terms of function and meaning, render them

infeasible for direct use in an automatic classification setting and leads us to explore an

alternate taxonomy.

The overarching results of Roth et al. and others reviewed here support the feasibility

of using gestures as semantic cues in the education domain.

2.2.4 Gestures in Politics

A number of studies have also been done on gestures in the context of political speeches

and debates. In many cases, gesture analysis experts (usually psychologists and linguists)

are hired in an attempt to infer personality traits about political candidates through their

gesticulations while speaking, as done in the 2012 U.S. Presidential debates [Xaquin et al.,

2012]. However, our focus is on how the gestures of the speakers elicit reactions from their

audience. In the following, we review some literature examining the relationship between

the gestures of political candidates and the corresponding spoken content.

[Bull, 1986] examined the relationship between the style and content of political speeches

with the gesticulations of the speaker. Three British political speeches made by three differ-

ent speakers with varying levels of oratory reputation were videotaped and analyzed. The

author annotated gestures using his own system [Bull and Connelly, 1985] and annotated

speech content according to purpose (e.g., an attack on another speaker, advocacy, naming,

addressing, etc.) After analysis, the author noted that gestures were correlated to vocal

intonation and often used to elicit and control applause, although this result varied heavily

based on speaker. The deliberate use of gestures to control the audience is another reason

we believe that gestures are valid as semantic cues.

More recently, [Casasanto and Jasmin, 2010] examined the co-occurrence of certain hand

gestures and the sentiment (i.e., positivity or negativity) of the accompanying speech. The

authors demonstrate their hypothesis that the sentiment of a person’s spoken clauses and

the handedness of their gestures are highly correlated. That is, right-handed speakers tend
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to say more positive things while gesticulating with their right hand, and similarly for left-

handed speakers. This analysis is done by manually examining the 2004 and 2008 U.S.

Presidential Debates. Two linguists separate the transcripts into clauses and assign each a

sentiment. They then watch the corresponding video and identifying handedness.

In this thesis, we will focus on a number of gesture attributes beyond handedness. As

previously mentioned, we also examine the correlation between speaker gesticulation and

parts of speech (but not sentiment) in Chapter 5.

2.3 Automatic Pose and Gesture Recognition

To realize our objective of automatically indexing gestures in videos, we examine the related

work at various levels: on a frame-by-frame level, we review literature of human detection,

pose estimation and body part recognition. At the gesture level, we review literature related

to temporal segmentation of gestures and recognition of gestures.

While the proliferation of infrared-based cameras allowing for depth information to be

captured along with imagery has led to an explosion of gesture-based applications and

research, we restrict our literature review to those methods using only single-camera video

information. This is because for our purpose of video analysis, this is usually the only

information available.

2.3.1 Human Detection

[Dalal and Triggs, 2005] propose the use of grids of histograms of oriented gradients (HOGs)

as features for pedestrian detection. The method works as follows. The detector image

window is divided into small cells, each cell accumulating a local 1D histogram of edge ori-

entations over the pixels of the cell. The combination of the histograms form the descriptor.

Next, cell histograms are created where each pixel in a cell casts a weighted vote (usually

the gradient value) for an orientation-based histogram channel based on the orientation of

the gradient element centered on it. Next, local contrast normalization is applied to account

for changes in illumination and contrast. The final descriptor is the vector of all components

of normalized cell responses from all blocks. Classification is done with a linear SVM.
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The end result was shown to be extremely robust against variations in backgrounds

and foregrounds with near-perfect classification of the established MIT dataset and good

performance on a introduced dataset (“INRIA”). HOGs have become one of the most widely

used features for detection of pedestrians and other objects and is a key first step in pose

estimation.

We examine similar work on human detection in video. [Niebles et al., 2008] proposed a

method for the automatic extraction of moving people in arbitrary videos . The algorithm

is divided into two stages. First, a pedestrian detector (i.e., [Dalal and Triggs, 2005]) is

applied to provide approximate information regarding the possible locations of persons.

Then, a clustering algorithm is applied across time to group together detections and reject

false positives and find false negatives based on appearance similarity. In the second step,

given the bounding boxes of each person in the video, a pose is estimated for each person

using a method such as those reviewed in Section 2.3.2. The algorithm is tested on YouTube

videos and demonstrated high precision but low recall.

Similar to this work, several of our methods for extracting upper body-based gesture

features are dependent on pictorial structures-based methods for pose estimation.

2.3.2 Pose Estimation

Toward the goal of estimating human body poses, [Ramanan, 2007] proposes an iterative

parsing approach which works as follows. For initialization, an edge-based deformable

model is used to poorly estimate body parts. In this model, the image is parsed into several

body part regions with the aid of low level cues. Then, in a first iteration, a region-based

deformable model is used to identify ten specific body parts and estimate body position to

build new region models using foreground and background color histogram models. This

step is iterated. This method is robust and allows for pose estimation of non-humans and

returns a most likely pose. However, it is not robust against occlusion.

Work on pictorial structures have been applied to improve pose estimation. In pictorial

structures, objects are represented as a collection of parts arranged in a configuration with

pairs connected by “springs” that pull each other to be in a relative location with respect

to the other. A challenge arises in that matching a structure to an image can be computa-
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tionally intensive. [Felzenszwalb and Huttenlocher, 2000] propose a dynamic programming

approach for structures restricted to trees (which are common, such as for humans). Since

the structure is a tree, the approach works by starting at leaves and guessing the location of

its parents. The approach runs in O(mn) time where m is the number of possible locations

for the parts and n is the number of vertices in the structure. This approach is optimal

and fast. In their paper, only a simple template matching is used for a cost match function,

although more complex possibilities are mentioned.

[Ferrari et al., 2008] applies this approach to the task of estimating upper- and full-body

poses in humans. The human (upper) body is modeled with 6 parts, where each part is

parameterized by location, scale and orientation. A method is introduced for estimating

these parameters. [Yang and Ramanan, 2011] uses a similar parts-based model but does not

parameterize parts with orientation, resulting in significantly faster performance. In one

interesting application of gesture analysis using pictorial structures-based posed estimation,

[Buehler et al., 2009] demonstrates a system whereby British Sign Language is automatically

learned from captioned video.

As previously mentioned, we apply these results to our some of our methods to efficiently

estimate poses for gesture recognition. The method by Ferrari et al. will be most widely

used as the method by Yang et al. is, although faster, less accurate.

2.3.3 Hand and Arm Recognition

In addition to the entire body, a closer look at hand detection and pose recognition is

needed.

Accurate hand detection in video can be achieved if augmented with full or upper body

pose estimators, as shown by [Buehler et al., 2008], who propose a method of hand detection

and tracking via a part-based model which infers the position of the hands based largely

on the position of the other body parts, starting with the head. However, when other body

parts are not always clearly visible (e.g., in videos focusing on the upper bodies of speakers

such as the US presidential debate videos used in this thesis), other features must be relied

upon.

Hand detection can be done using a number of features, often combined: skin color,
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Figure 2.4: Hand pose classes in [Kolsch and Turk, 2004] and their corresponding Fourier

transforms, indicating the level of grey level variation, which can be used to separate the

classes.

Haar-like features, and HOGs. [Mittal et al., 2011] combine skin color and shape features (as

determined by HOGs) to produce hand detectors robust to different poses and backgrounds.

However, the method is trained on images of entire hands. Similarly, [Kadir et al., 2004]

trained a boosted classifier using Haar-like features to detect entire hands. Such detection

techniques would, in general, be unable to detect when one hand is occluded by another

hand. Furthermore, our own attempts to train models using these features to recognize

partial hands (e.g., just a thumb sticking out) resulted in poor performance. This capability

is desirable for the purpose of propagating bounding boxes across frames, when hands may

appear in and out of view. However, color and shape features are still useful for hand blob

detection.

Once hands are detected, it may be possible to look further by examining the exact

poses of the hands. [Kolsch and Turk, 2004] propose a method for hand pose recognition

based the object recognition method of [Viola and Jones, 2002]. The main contribution

is a technique which greatly reduces the training time than what is necessary for [Viola

and Jones, 2002] by estimating class separability without need for training. This is done

by using a Fourier transform to describe the amount of grey level variation in an image,

for instance, as shown in Figure 2.4. The method was tested on 2300 images of hands in

varying conditions (male, female, indoor, outdoor, etc.) and shown to be robust.

During our work in developing gesture attributes derived from hand motions, we sought

to train hand detectors based on [Viola and Jones, 2002]. However, due to the high degree
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of variability in hand appearance in natural gestures, we ultimately pursued a different

approach, as described in Section 3.2.

Related research examines arm appearances. In a classroom-specific work, [Yao and

Cooperstock, 2002] seek to detect raised arms. The system they describe assumes a single

fixed-camera aimed at the students in a lecture hall with students’ heads assumed to be at

the same level. Motion is detected by subtracting frames and objects are detected based on

an edge map. The edges are used to classify shapes and, combined with a skin color model,

used to identify arms. Our own attempts to classify arms using shapes (e.g., parallel lines)

often failed due to the low quality of the test video and the poor estimations of forearms.

Nevertheless, skin color remains a good feature and is used for hand detection in Chapter

3.

2.3.4 Natural Gesture Recognition

[Wilson et al., 1997] approaches the problem of temporal segmentation of natural gestures

according to the gestural phases proposed by [Kendon, 1980] whereby gestures have tem-

poral phases separated by periods of rest. The first step is to identify candidate rest states.

This is done by representing video frames in low-dimensional space using eigenvector decom-

position then creating a distance matrix to represent the difference between every pair of

subsequences of a fixed length. Rest states would correspond to sequences that are repeated

often. Next, a Markov state description is used to identify rest states from candidates. The

states are rest, stroke and transition. The Viterbi algorithm is used to generate the best

possible parse, and if a tested subsequence is indeed a rest state, then the parsed input

should spend a significant amount of time in the rest state. The method was evaluated

against manually labeled ground-truth.

While this work provided interesting results the authors concede that temporal segmen-

tation of natural gestures is difficult to evaluate as there is currently no objective standard.

[Kettebekov et al., 2003] presents a framework for natural gesture recognition that makes

use of audio cues. The main contribution is the use of prosodic signal-level audio features.

The authors argued that because gestures and speech are loosely coupled, the use of pure

audio is not always helpful, whereas prosodic manifestations may be useful. Deictic gestures



CHAPTER 2. RELATED WORK 23

in narrated weather reports are searched for as a benchmark. The authors proposed two

approaches for classification: a feature-based co-analysis whereby the motion of the head,

hand and relative distance in-between as well as the fundamental frequency contour are

used as features in a hidden Markov model (HMM) for classification, and a co-articulation

framework whereby periods of continuous speech or lack of continuous speech are identified

and classified based on rises and falls in intonation. Finally, the combined method is tested.

That work presents us with two useful overall results: a description of a HMM-based

approach for natural gesture recognition that can use visual and audio features (separately

or combined) as well as an quantitative exploration of the multimodal nature of gestures

similar to [Eisenstein and Davis, 2006]. Although our work also examines the relationship

between gestures and speech (part of which is derived from audio features), low-level audio

features are not necessary in our methods for extracting gesture features. Future work could

investigate if they could be incorporated to improve accuracy in detection or recognition.

2.4 Measures of Audience Engagement

As our ultimate goal is to demonstrate a correlation between points of interest in videos and

the speakers’ gestures, then in order to build a ground-truth, we must be able to examine

when the audience’s attention is piqued. To this end, we briefly review the literature

for different methods of measuring audience engagement—itself an unsolved and difficult

problem.

2.4.1 Identifying Moments of Engagement in Speech

One way to try to identify when a person is paying attention is by examining the accom-

panying discourse. We have already reviewed in Section 2.2.3 related work by [Roth and

Bowen, 1998] which demonstrated the relationship between students’ attention and shifts

in speech.

[Grosz and Sidner, 1986] presents a theory of discourse structure which describes atten-

tional state as one of the components supplying key information on how speech is processed.

In particular, the authors identify cue phrases and interruptions as signals for changes in
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attentional state. Cue phrases include terms such as “now, next, anyway, etc.” while in-

terruptions are more general and can include interruptions in speech by another person

(termed true interruption), digressions, (which can be identified by terms such as “by the

way, incidentally”) and satisfaction-precedes (”first, second, finally, moreover”) among oth-

ers.

The use of conjunctions to mark shifts in discourse is shown across languages, as shown

for Japanese by [Watanabe et al., 2007]. The authors examine the correspondence of pauses

in discourse (to study prosody) and conjunctions at discourse boundaries. They conclude

that both pauses and conjunctions correspond to boundary strengths, but conjunctions

show a stronger correspondence.

The heavy use of conjunctions in cue phrases inspires our work in Section 5.1 which

explores how different classes of conjunctions may co-occur with gesture with the goal of

indirectly identifying these shifts in discourse through gesture. We restrict our domain to

the English language.

2.4.2 Methods of Measuring Engagement

A number of different methods exist for capturing a person’s engagement. The most

straight-forward method is perhaps a direct user study. The field of event recognition

in computer vision research uses human subjects to manually identify and label segments

of video where an event of interest is present [Cao et al., 2011; Revaud et al., 2013]. Of

course, the task we face in this thesis is far more subjective, as what catches a viewer’s

attention can be highly idiosyncratic. More related to this are user studies in the study of

video summarization. [Ma et al., 2002] propose a fully automatic multi-modal video sum-

marization scheme and perform user studies to evaluate its efficacy. The authors recruit 20

subjects to first watch summarized video clips, followed by the original video before assign-

ing scores for “enjoyment” and “informativeness”. While this approach may be effective for

determining which segments of video may be more relevant after their extraction, it would

be difficult to apply this to gathering a ground-truth of relevant segments of video without

prior candidates.

Another approach, eye tracking—the process by which the gaze is tracked—has found
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numerous applications in determining web usability [Buscher et al., 2009], assessing the ef-

ficacy of advertising media [Buscher et al., 2010] and in the automotive industry to identify

when drivers may be distracted [Strayer et al., 2011]. [Nakano and Ishii, 2010] use eye track-

ing to estimate a person’s engagement in a conversation. In their approach, the subject’s

gaze is classified as looking at the speaker’s face, the speaker’s body, or some object. They

conclude that the subject is least likely to be engaged when their gaze is not on the speaker

(face or body) and propose a system for automatically recognizing these moments.

A third approach uses signals from social networks, particularly Twitter. [Diakopoulos

and Shamma, 2010] use Twitter to gauge audience sentiment during the 2008 U.S. Presi-

dential Debates. Tweets are aggregated by searching for related hashtags (e.g., #current,

#debate08, etc.) and then assigned a sentiment label manually using Amazon Mechanical

Turk. As the Tweets can be time-synced to the debate, the authors are able to derive

conclusions regarding audience sentiment with regard to the candidates and to the debate

topics. Naturally, there is a lag between a moment in the debate and the corresponding

Tweet.

Combining social media and neural activity, [Abelson, 2013] attempts to correlate sub-

jects’ neural activity against social media statistics. In the study, subjects are recruited

to watch the television show “The Walking Dead” while being monitored using electroen-

cephalography (EEG). The resulting data is averaged across subjects and processed using

the method of [Dmochowski et al., 2012] for identifying moments of subject attentiveness,

which we will review in greater detail in Section 2.4.3. Abelson discovers a statistically

significant correlation between these results and the corresponding number of Tweets found

online, used as a proxy for measuring particularly engaging scenes.

2.4.3 Measuring Audience Engagement from Neural Activity

The methods for measuring engagement reviewed in Section 2.4.2 are indirect. That is,

we assume a person is paying attention if they indicate it in a questionnaire, or if their

eyes follow a target, or if they Tweet about it. Here, we review methods which attempt to

identify moments of engagement at the source: the human brain.

Functional magnetic resonance imaging (fMRI) has been shown to be effective at iden-
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tifying attention [Hasson et al., 2004; Hanson et al., 2009]. However, they lack the time

resolution we desire to identify exact moments of engagement.

EEG has long demonstrated that it can capture neurological information related to

attention. For instance, EEG devices have been approved for use as tests for attention

deficit hyperactivity disorder (ADHD) in children [Tavernise, 2013]. A number of devices

exist for gathering EEG information. The wet-gel setup, as seen in Figure 2.5a, is most

common and accurate method for research purposes. However, as the technology matures,

companies are beginning to push simple inexpensive devices for public use (see Figure 2.5b),

although these devices remain considerably less accurate.

(a) (b)

Figure 2.5: (a) Subject wearing 64-electrode wet-gel EEG cap. (b) Subject wearing Neu-

roSky MindWave Mobile dry-sensor EEG headset.

EEG records electrical activity along the scalp. [Dmochowski et al., 2012] propose a

method for interpreting this data and identifying moments of heightened engagement in

subjects. Intuitively, the method works under the hypothesis that neural activity would be

most similar across subjects at moments when something piques their interest. Therefore,

the method identifies these moments by computing the points of maximum correlation of

EEG measurements across subjects and comparing it against a significance derived from a

permutation test.
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This is the approach we ultimately apply to gather a ground-truth of when subjects are

engaged when watching video. Unlike methods discussed in Section 2.4.2, it is direct, less

sensitive to lag (i.e., the subject does not need to interrupt their viewing to give feedback)

and less intrusive for the subject.
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Chapter 3

Extracting Gesture Features from

Video

The current body of work around gesture recognition tends to focus on the class of gesture,

such as pointing, waving, etc. This is an important task and drives many gesture-based

applications that have grown increasingly popular such as the Microsoft Kinect. Recognition

and classification of poses and gestures is important for our goals as well. However, much less

attention is given to the minute mid-level features or attributes of gestures: how emphatic

is the point? How fast are the hands waving? How wide are the arms spread? These

attributes are important since they appear to be related to attention, emphasis and impact.

In this chapter, we present our work toward the goal of characterizing gestures. To

accomplish this, we:

1. Propose a system for recognizing poses salient to our intended domain in Section 3.1,

where salience is determined through manual analysis described in Chapter 4.

2. Propose a method for recognizing and tracking hands even in the case where they

often clasp together in Section 3.2. This is a necessary step toward characterizing

gestures based on hand motions and positions of both hands.

3. Propose a number of gesture attributes based on the results above in Section 3.3. We

use these attributes to find correlations to audience engagement in Chapters 5 and 6.
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3.1 Classifying Upper Body Poses

We develop a system toward the goal of identifying gestures salient to teaching in lecture

videos. The system allows for the identification of the stroke poses of the point and spread

gestures discussed in Chapter 4. Much of this work was initially presented in [Zhang and

Kender, 2011].

Given a lecture video as input, the frames are extracted at a constant rate. We can

make some domain-specific assumptions which simplify the problem. We assume that the

video focuses on a single person (i.e., the instructor) who tends to be near the center of the

video. If multiple persons are detected, whether it is because a student was caught in the

frame or because of a false detection, then we can assume that the one with a midpoint

closest to the center of the image is that of the instructor. A second assumption is that

the person of interest is always standing upright, that is, the torso is vertical (with a small

range of flexibility). Anything exceeding this range can be assumed to be a poor estimation.

As an initial step, we apply a human detector [Dalal and Triggs, 2005] on all frames and

disregard those with negative results.

Next, for the actual task of pose identification, we aim to classify each input image as

belonging a point pose, a spread pose, or neither. Point and spread (two arms “spread”

open) poses were identified as being often present in gestures at semantically significant

moments during manual analysis of videos. For more details regarding their usage, please

refer to Chapter 4. We approach the problem by building binary classifiers for each class.

We elaborate on the construction of these classifiers as follows.

3.1.1 Pose Estimation

The pose of the instructor in focus is the basis for our descriptors. As discussed in [Roth,

2001; Zhang et al., 2010], the arms and torso play a significant role in gestures in teaching.

Therefore, we focus on five body parts: the torso, lower and upper right arm, lower and

upper left arm.

To extract the approximate positions and orientations of these body parts from a given

image, we use the pose estimation framework introduced by [Ferrari et al., 2008]. This
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framework provides the endpoints of each body part in question as output (among other

data). Figure 3.1 shows the output of the pose estimator overlaid on sample input images.

Examples of imperfect pose estimations are shown in Figure 3.2.

(a) (b) (c)

(d) (e) (f)

Figure 3.1: Examples of point poses (a, b, c) and spread poses (d, e, f) with automatically

estimated poses overlaid.

Figure 3.2: Examples of images where automatic pose estimation was imperfect.

The extracted pose is then represented as a set of 2D vectors pointing outwards from

the neck (see Figure 3.3). To get the appropriate directions, we begin by assuming that

the torso is more or less vertical, and then associate the related joints by finding the closest

points. Given this vector representation of the five body parts, we can compute a descriptor

comprised of joint angles.



CHAPTER 3. EXTRACTING GESTURE FEATURES FROM VIDEO 31

3.1.2 Pose Descriptors

For each pose detected in an image, we can compute a 4-dimensional descriptor D =

[α0, α1, α2, α3]
T . The values αi represent the angles between the torso and left upper arm,

torso and right upper arm, left upper arm and left lower arm, and right upper arm and

right lower arm for i = 0, . . . , 3 respectively (see Figure 3.3).

Left
Lower
Arm

Head

Torso
Right
Lower
Arm

Right
Upper
Arm

Left
Upper
Armα2

α0 α1 α3

Figure 3.3: Model and descriptor values of estimated poses. Each body part is represented

as a vector (depicted as arrows; the head is ignored).

Given vectors A,B representing a body part and the body part that is connected to it,

we can compute the angles αi as follows.

αi = ai cos
−1

(

bi
A · B

|A| |B|

)

where

ai =



















−1 if i ∈ {0, 2} and B is above A

−1 if i ∈ {1, 3} and B is below A

1 otherwise

(3.1)

bi =







1 if i ∈ {0, 1}

−1 otherwise
(3.2)

Note that for Equation 3.1, the determination of whether or not vector B is above or

below A can be done in a variety of ways and is omitted here for conciseness. It may also be

interesting to note that because this descriptor is attempting to model 3D poses using only

2D data (rotations about the shoulders are lost), the movement may not match the human

joint model precisely. That is, α2, α3 may take on values that are physically impossible for

human elbows.
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3.1.3 Classifier

We use LibSVM [Chang and Lin, 2011] to train a classifier. We empirically determined that

the RBF kernel performed best for both classes. Parameters were found using a simple grid

search.

3.1.4 Evaluation

We evaluate our pose classification system by attempting to classify point and spread poses

on manually labeled ground-truth. Approximately 20 minutes of a computer science video

lecture was manually annotated. The video was sampled at 2 frames per second (as was

done in [Zhang et al., 2010]) resulting in 2500 frames. The video features a single instructor

standing in front of both a blackboard and slide giving a lecture on computer architecture.

Occasionally, student(s) sitting near the front of the classroom can be seen in the foreground.

The videos were provided by the Columbia Video Network: cameras were human operated

by lightly trained students in ambient light with no post processing. The video is provided

at the low resolution of 352×240—audio and video quality are poor. The lighting condition

varied throughout the video as the video faded in and out, or as the instructor adjusted

the lights (to shift focus to and from the slides). The video does not focus solely on the

instructor, as it shifts focus to a view of the slides from time to time.

We trained a binary classifier for each of the point and spread classes. For the automatic

pose estimation, we use a pre-trained model provided by [Ferrari et al., 2008] which we

empirically found to produce satisfactory results.

From the 2500 frames collected for ground-truth, we identified 141 positive and 970

negative samples for the point class, and 125 positive and 986 negative samples for the

spread class. The remaining frames were discarded as they did not have a visible person.

For evaluation, we performed 2-fold cross validation. The results, as measured by F-

score are shown in Table 3.1. During training, we use all possible positive samples available

in the partition but limit the number of negative samples to 7 times the number of positive

samples (this factor was selected heuristically). This subset is randomly chosen from the

entire pool of negative samples. During testing, all samples available in the testing partition

are used.
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Class Precision Recall F-Score

Point 0.72 0.47 0.54

Spread 0.35 0.45 0.39

Table 3.1: Performance results of point and spread classifiers.

Predicted

Neither Spread Point

Actual

Neither 744 77 24

Spread 76 54 11

Point 30 38 57

Table 3.2: Confusion matrix comparing classes.

Table 3.2 shows a confusion matrix constructed from these results.

3.1.5 Observations

The performance of the classifier on identification of point poses is considerably superior

than performance for identification of spread poses. This is not surprising as it is a rather

distinctive pose. Misclassifications in this class tend to arise from poor pose estimations.

In this dataset, the point class is comprised entirely of pointing to the left. The reason

for this is straighforward, as the instructor will tend to point to notes on the slides (he

does not use the blackboard) which is always located to his right (when facing the camera).

Presumably, pointing in the other direction could be trained in the same way.

Classification of spread poses was considerably more difficult. It encompasses a wider

range of possible poses, some of which—e.g., standing with both arms outstretched—are

difficult to distinguish in 2 dimensions. Two reasons were noticed which may account for

the difficulty in training good models. One was the high number of incorrectly estimated

poses, particularly of the arms, when the person is posing with arms outstretched (e.g.,

Figure 3.4d). Future work could explore the addition of hand detectors which may be used

to aid pose estimation. A second reason was the granularity of the angles and the inherent
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noisiness of spread poses. For instance, the person with both arms straight with hands

resting on the table, and the person with slightly bent elbows with hands outstretched may

both produce the same pose estimation.

Figure 3.4 shows examples of misclassifications for both point and spread classes.

(a) (b) (c) (d)

Figure 3.4: Examples of misclassifications. Figure (a) is a false positive point, (b) is a false

positive spread, (c) is a false negative point, (d) is a false negative spread. As can be seen

here, poor pose-estimation results are at least partly the cause of misclassifications.

3.2 Recognizing and Tracking Hands

In attempting to better discriminate poses, we shifted our focus from the upper body to

focus on the hands specifically. Tracking hands in video is an important step in many

applications of computer vision, particularly in gesture recognition for computer-human

interfaces and gesture analysis. While the growing popularity of the Microsoft Kinect and

other depth-sensing devices have greatly improved the efficacy of body part tracking and

pose estimation, there is still a need for video-based methods for analysis applications. To

this end, one frequently occurring challenge is the tracking of two hands simultaneously,

particularly in natural communicative gestures when the hands may clasp together—a state

which can confuse blob trackers.

We propose an algorithm for video processing which can track hands separately even

if they clasp together. Intuitively, this is achieved by propagating bounding boxes from

frames with many disjoint hand blobs to nearby frames with fewer distinct blobs. This is

done iteratively until boxes have been propagated to all frames. Much of this work was

initially presented in [Zhang and Kender, 2013].
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The proposed method can be divided into three stages. We assume an input video con-

taining a frontal shot of a single gesticulating person decomposed into individual frames.

First, skin color detection and skin pixel clustering produce candidate hand blobs. As the

primary contribution is not simply hand detection, we developed this method to accom-

modate mutual hand occlusion on input videos with clear hand blobs. Second, tracking

is performed in a non-temporal manner by pushing frames (with associated blobs) into a

priority queue which prioritizes frames with the most disjoint, separate blobs. Tracking is

performed in priority order and blobs are associated across frames using a disjoint set data

structure. Finally, a post-processing step identifies blobs which are hands. Note that this

method cannot be applied in real-time except with a fixed-time delay. The overall method

is illustrated in Figure 3.5.

Detect blobs
Push into priority 

queue P
Pop from P

Track with 
neighboring 

frames

Update 
neighbors' blobs 

in P

P empty? Post-process

Associate blobs using optical flow
and disjoint-sets data structure

Assign labels to
hand blobs

Input video

Output labels 
associates

with tracked 
blobs

No

Yes

Figure 3.5: Overview of the proposed tracking algorithm.

3.2.1 Detecting Hand Blobs

This stage may be replaced with any method that produces candidate hand blobs such as

[Mittal et al., 2011]. For our purposes, we use the following method.

Given an input video V decomposed into frames Fi, 0 ≤ i < n, we extract skin blobs

from each frame as follows.

First, we train a simple skin color model using a subset of all frames (in our work, we

trained using 10% of all frames in each input video):

1. Apply face detection [Viola and Jones, 2002].

2. Apply a general skin color model such as [Gomez and Morales, 2002] to identify skin

pixels, and take a convex hull of these pixels in the image. Use the normalized red
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and blue components of the encompassed pixels as samples.

3. Fit the sample pixels to a normal distribution.

To determine if a pixel is skin-colored or not, compute its probability based on the

distribution estimated above, as shown in Figure 3.6b for the original image shown in Figure

3.6a. Automatically determine a threshold based on the sample pixels from the face and

threshold the image as shown in Figure 3.6c (the lower 10th percentile of skin likelihoods

worked well in our case).

The reason for training a new video-specific skin color model is to account for weaknesses

in general color models such as [Gomez and Morales, 2002], which is less precise for darker

skin tones. In [Gomez and Morales, 2002], a pixel with color (r, g, b) is a skin pixel if it

satisfies all of the following conditions:

r/g > 1.185 (3.3)

r × b/(r + g + b)2 > 0.107 (3.4)

r × g/(r + g + b)2 > 0.112 (3.5)

Next, we cluster the skin pixels into blobs according to spatial image distance, as shown

in Figure 3.6d. Note that in this step, two clasped hands would usually be clustered together

into a single blob. As a simplification, we represent each blob using the convex hull of its

constituent skin pixels.

Each video can now be treated as a collection of blobs bi,j, 0 ≤ j < mi for each frame

Fi.

3.2.2 Tracking

In this stage, we seek to track blobs in such a way that single blobs enclosing two hands

(e.g., two hands clasped together) are automatically split into two blobs. We also seek to

assign labels to blobs in such a way that blobs tracked across time would have the same

label. To achieve this, we propose the following greedy algorithm which gives priority to

frames with well separated blobs.
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(a) (b)

(c) (d)

Figure 3.6: Blob detection stage: (a) is the original image, (b) shows the skin color prob-

abilities, (c) shows the skin color probabilities thresholded and (d) is the result of the

thresholded skin pixels clustered into blobs.

1. Given blobs Bi = {bi,j} and corresponding labels Li = {li,j} for each frame i (ini-

tialized to a unique ID for each blob), we push all Bi into a priority queue P , which

prioritizes first by maximizing |Bi| (since more blobs means greater likelihood of hav-

ing 2 separate hands) then by maximizing the total pairwise spatial distances of blob

centroids.

2. Pop the top frame from the priority queue: Fi = top(P ), where i is the position of

the frame in the video.

3. Process frames Fi with Fi−1 and Fi with Fi+1 (i.e., propagate blobs from Fi). Without

loss of generality, we describe the algorithm for processing frame Fi with Fi+1:

(a) If frame Fi+1 is already flagged (i.e., processed), then continue to the next frame.

(b) Otherwise, for each blob bi,j ∈ Bi, compute the optical flow of its pixels from
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frames Fi to Fi+1 using a method such as [Farnebäck, 2003], which gives prefer-

ence to matching pixels within blobs of Bi+1.

(c) Retain only these pixels, with their convex hull forming a new blob b′i,j. Insert

this new blob into the updated blob set B′
i+1. Set B′

i = Bi. Also, associate

the label li,j with label l′i+1,j (initialized to be unique) in a disjoint-set data

structure via union-find, that is, find(li,j) = find(l′i,j), and set l′i,j = li,j. Add

labels l′i,j, l
′
i+1,j to L′

i, L
′
i+1, respectively.

(d) Repeat from step (a) until all blobs in frame Fi are processed. Then flag Fi as

processed.

4. Repeat step 3 until P is empty.

By processing frames in this manner the bounding boxes of larger blobs may be

overwritten with more smaller blobs. It will never be the case that two smaller blobs

need to join into a single, larger blob. Also, scenes where the hands are initially

clasped but come apart are therefore processed correctly.

5. Output updated blobs B′
i and labels L′

i for each frame.

Note that by processing frames in this order—unlike existing approaches which process

frames sequentially—it becomes possible to infer when one blob contains two hands based

on their neighboring frames. Of course, this approach only works if the hands are separate

blobs at one point in the video sequence. That is, it will not be effective for a video sequence

where the person’s hands are constantly clasped together. As previously mentioned, one

disadvantage of processing frames out of order is that tracking cannot be applied in real-time

except with a fixed-time delay.

Examples of a sequence of frames with hand blobs propagated through tracking com-

pared against hand blobs detected independently are shown in Figure 3.7.

Some statistics were collected from processing 47 video clips totaling 28 minutes and

sampled at 15 Hz. It was observed that forward propagation and backward propagation

tend to occur approximately equally (49.6% forward vs. 50.4% backward), and that there

are few long runs, where a run length is defined as the total number of frames affected by
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(a) (b) (c) (d) (e)

Figure 3.7: The top row shows the original blobs produced by clustering skin-colored pixels.

Note every column except for (c) the two touching hands are clustered together into one

blob. The bottom row shows the blobs after applying the proposed tracking algorithm.

a seed frame, propagating both forward and backward. That is, while the longest detected

run is 140 frames, the average run length is only 4 frames. A visualization of the propagation

of bounding boxes across frames and processing time for a single video clip totaling 71.5

seconds is shown in Figure 3.8. It can be seen that seed frames tend to be random.

Figure 3.8: Propagation of blob bounding boxes across frames (horizontal axis) and process-

ing time (vertical axis, starting at the top). Green and red indicate forward and backward

propagation, respectively. Note the near equality of red and green.

3.2.3 Post-Processing

3.2.3.1 Associate Overlapping Blobs

In some cases, due to the imprecisions in computing optical flow and the proposed method,

single blobs may be split into multiple overlapping small blobs within a frame. Also, blobs

in roughly the same positions in neighboring frames may also not get associated with the



CHAPTER 3. EXTRACTING GESTURE FEATURES FROM VIDEO 40

same label. To reduce these errors, we can simply apply a post-processing stage whereby

labels for blobs with significant overlap (i.e., over 75% of area) with other blobs within the

same frame or with neighboring frames are associated.

3.2.3.2 Labeling Blobs as Hands

To finally associate blobs with hands as in Figure 3.9, we need to apply a hand detection

algorithm to “seed” the labels at points throughout the video. These seed bounding boxes

may be determined automatically (e.g., using [Mittal et al., 2011]) or possibly even provided

manually. One naive heuristic for the single-speaker case is simply to use the detected blobs

(minus the face) and label hands as left or right based on their relative position to the face.

In our experiments described in Section 3.2.5, we use this naive heuristic as a baseline. To

take advantage of tracking, we can improve on results by assigning labels based on the most

frequently occurring label for a tracked blob across time.

Figure 3.9: Results of blob tracking algorithm which recognizes the face and left and right

hands.

3.2.4 Ground-Truth Data

For our experiments, we used recorded video of the first and third 2012 US Presidential

debates, which are widely available online. The videos are very high quality with a resolution

of 640 × 360 pixels, a stationary camera, and tend to focus on the upper bodies of the

speakers, who gesticulate frequently while they speak. Their hands appear in and out of

view.

To select these shots, we automatically segmented the videos using HSV color histogram

comparison with 3D histograms with 16 bins for each dimension and compared using the L2
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distance and a threshold of 0.1 similar to [Smeaton et al., 2010]. We manually selected 322

frontal shots of a single speaker, totaling 142.8 minutes. We applied our baseline hand blob

detection technique to extract 4163 images of hand blobs at 1 Hz, which were presented

to Amazon Mechanical Turk raters. From this, 155 images of hand blobs were identified

to contain two hands. Using this set as seeds, we took 4 additional surrounding frames at

2 Hz (2 frames before and after) to generate a new dataset of 698 images (some frames

overlapped) spanning 47 video segments. Our proposed method processed each of these

segments at 15 Hz. This final dataset was then manually annotated using the Mechanical

turk box labeling tool of [Xiao et al., 2010] for each hand present, producing 1301 instances

of hands. Each hand was also labeled as a left or right hand (at most two hands are present

in each shot).

3.2.5 Evaluation

We evaluate two different aspects of our proposed method. First, we evaluate its ability

to identify when a single hand-blob actually contains two hands. This step can be done

without the post-processing step. For this, the baseline method is simply the hand blob

detection step without tracking (i.e., only Section 3.2.1).

Second, we evaluate its ability to track hands across time by augmenting a naive heuristic

and assigning left and right hand labels to detected hands, as described in Section 3.2.3. For

this, the baseline method is simply the naive heuristic applied to each frame independently

without using the tracking information.

We detected bounding boxes of hand blobs using our baseline and proposed methods.

Normally, a bounding box around the head is detected as well but they were removed

automatically.

To evaluate our bounding boxes, we adopted the metric of [Mittal et al., 2011] and

[Everingham et al., 2010]. That is, an overlap between a candidate bounding box Bc and

a ground truth bounding box Bg is calculated according to: O(Bc, Bg) =
area(Bc∩Bg)
area(Bc∪Bg)

, and

the boxes are considered equivalent if O(Bc, Bg) > 0.5. Using this measure, we computed

precision P and recall R for the baseline and the proposed methods, where P = TP
TP+FP

and R = TP
TP+FN

, where TP, TN,FP, FN refer to true positive, true negative, false positive
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Method Precision Recall F-Score

Baseline 0.65 0.53 0.59

Propagation Tracking Method 0.65 0.66 0.65

Table 3.3: Performance of baseline and presented propagation tracking (without post-

processing) methods on evaluation dataset of 698 images with 1301 instances of hands,

regardless of labels.

Method Precision Recall F-Score

Baseline 0.53 0.43 0.48

Propagation Tracking Method 0.63 0.56 0.59

Table 3.4: Performance of baseline and presented propagation tracking (with post-

processing) methods on evaluation dataset using left / right hand labels.

and false negative, respectively.

The results of the hand detection evaluation are shown in Table 3.3. It can be seen that

while precision of the proposed method is no better than baseline, recall is significantly

higher as it successfully detects when a single blob actually contains two hands.

The results of the tracking evaluation are shown in Table 3.4. Because the left / right

hand labels are shared across frames through tracking, it is more accurate.

An examination of the results indicates some possible reasons for failure including:

the subjective manual annotations in cases where the hands are clasped (Figure 3.10a).

Note that while the proposed method successfully identified that two hands are present,

the inaccuracy of the exact bounding box contributed to it being marked as a mismatch.

Another case is when only the thumb and forefingers of a hand are visible, resulting in

two separate blobs from the proposed method but usually resulting in only one bounding

box in the ground truth (Figure 3.10b). Finally, in some cases, a single large blob may

be incorrectly clustered into several small blobs, which register as false positives (Figure

3.10c).
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(a) (b) (c)

Figure 3.10: Green and red boxes indicate insufficient overlap / mismatch for ground-truth

and detected boxes, respectively. Magenta indicates successful match for both ground-truth

and detected boxes.

3.3 Gesture Attributes

In Section 3.1 we described a method for recognizing semantically relevant poses. In Section

3.2 we described a robust method for tracking hands in video. In this section, we will apply

some of these results toward extracting certain characteristics of gestures which we will

correlate with audience engagement in Chapters 5 and 6.

3.3.1 Arm Angular Variance

Given an input video V , let If , If+1 represent two consecutive image frames of V . We

automatically estimate the pose of the speaker according to a 6-part upper body model

by applying the method described in [Ferrari et al., 2008] to image If . This outputs for

each body part p and pixel i an L1-normalized likelihood bp,i, that pixel i belongs to part

p where:

p ∈ 〈Head,Torso,UL,UR,LL,LR〉

UL, UR, LL, LR represent upper and lower left and right arms, respectively. Next,

dense optical flow between If , If+1 is found using [Farnebäck, 2003], producing an image

flow vector Fi for each pixel i ∈ If . Then, a weighted mean vector F̄ of the flows can be

computed for each part p within frame If so F̄p,f =
∑

i bp,iFi. Let F̄p =
{

F̄p,f : If ∈ V
}

,

i.e., the set of all flow vectors in the video.

The mean image flow of the torso is subtracted from those of the arm parts (i.e., UL, UR,

LL, LR) to account for any body locomotion, and the resulting motion-compensated vectors
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are collected into their corresponding four arms sets across all frames in the sequence V .

We suspect that information in the lower arms (or possibly even the lower dominant arm)

may be sufficient. However, currently, too much noise is introduced by the pose estimation

method for lower arms.

Finally, for a each arm set (i.e., the motion vector of the arm across frames in V ), we

compute their circular variance to produce a 4D feature vector X(V ), as follows:

X(V ) = [Var(F̄p) : p ∈ 〈UL,UR,LL,LR〉] (3.6)

Where Var computes the circular variance which is defined in Equation 3.7 [Fisher,

1996]. Intuitively, the circular variance is a statistic for computing variance for angles, so

unlike the usual definition of sample variance, it allows for values which “wrap around”.

Var(F̄p) = 1−

∣

∣

∣

∣

∣

∣

1

|V |
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∑
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∣

(3.7)

Feature generation is summarized in Figure 3.11 and examples of estimated poses and

computed flows are shown in Figure 3.12.

Intuitively, this method for feature generation will represent the amount of “arm-waving”

in a given segment, revealed by sudden and drastic changes in movement orientation. While

the use of movement magnitude information could also be useful, the imperfect performance

of the pose estimator introduces too much noise. Our justification for using circular variance

is similar. While the use of circular variance discards potentially useful temporal informa-

tion, it also mitigates the effects of false negatives (i.e., frames mistakenly believed to not

contain a speaker) and poorly estimated poses as these vectors are averaged with the other

flow vectors for the part in the video.

3.3.2 Velocity and Direction Change

Here, we describe two strongly related gesture attributes: velocity and direction change.

While the measure of “arm waving” described in Section 3.3.1 seeks to capture how “fran-

tically” an arm is being waved as a single scalar, by using both velocity and direction we

hope to distinguish between more nuanced versions of the movements.
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Figure 3.11: Overview of feature generation. For each video sequence, we sample frames

uniformly. For each pair of consecutive frames, the pose is estimated and dense optical flow

computed and averaged for each part. The final feature vector is the circular variance of

the orientations of average optical flow across frames separated by part.

We begin by applying the hand detection and tracking algorithm described in Section

3.2 to distinguish and track left and right hands, as well as the face, as shown in Figure 3.7.

From this we can derive our attributes, anchored at each frame, computed solely from the

positions of the bounding boxes of detected hands and faces.

The attributes we initially explored include: distance from hands to each other (in cases

where there are two hands), distance from each hand to the face, velocity of motion for each

hand, and direction change for each hand. Preliminary analysis using PCA on the set of

all attributes suggested that velocity and direction change were responsible for a significant

part of the variation in the features, therefore, we focus on these two attributes here.

3.3.2.1 Velocity

For each frame f , we can compute the velocity of a hand’s motion simply by summing up

the distances that a point on the hand (e.g., the upper left corner of the bounding box)

moves within a neighborhood of the anchor frame, and dividing by the number of frames

elapsed. In our case, the velocity can also be normalized to the range of [0, 1] by dividing by

the maximum velocity across all videos. This is acceptable since the speakers are centered

in the shots in roughly the same way. We denote the normalized velocity at frame f by vf .
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Figure 3.12: Examples of pose estimations (i.e., estimating the position and orientations

of the head, torso, upper and lower left and right arms, which are shaded) and part-based

optical flows (visualized by the white arrows from the centroids of each part). The originals

are shown in the top row while the parts and flows are visualized in the bottom row. The

rightmost column shows an example of a poor pose estimation.

3.3.2.2 Direction Change

For each frame f , we can also compute the degree of change of direction in the gestures.

First, for each hand, we concatenate the (x, y) positions of the centroids of each hand

bounding box within the neighborhood of each frame g as a row matrix Mg. We subtract

the mean of these centroids from each row of the matrix and apply PCA to recover the

principal components and the amount of variance associated with each. If a principal

component is responsible for a majority of the variance (in our work, at least 75%) then

that component is retained as a measure of the direction of the hand movement within the

window of frames. We denote this vector at frame g by ~pg

Next, to compute the degree of direction change in the neighborhood of frame f , we find

the maximum angle between principal components in the set of frames. Since the angle is

between [0, π], it can also be normalized to the range [0, 1]. We can compute the normalized

angle by:

df = maxi,j

{

arccos

(

~pi · ~pj

‖~pi‖ · ‖~pj‖

)}

/π (3.8)

for all i, j in the neighborhood of f .



CHAPTER 3. EXTRACTING GESTURE FEATURES FROM VIDEO 47

Figure 3.13: Examples of gestures with high velocity and a low amount of direction change

(e.g., a “swipe” motion) and low velocity and high amount of direction change (e.g., a

“jittery” beat motion). The graphs of the velocity and direction change are center-aligned.

3.3.2.3 Combining Attributes Across Hands

The attributes are computed for each hand, but can be combined simply by taking the

maximum (across hands) for each frame.

Based on both the velocity and direction change attributes, it is possible to identify

certain types of motions, such as long “swipe” motions or short and quick “jittery” motions,

as shown in Figure 3.13.

3.3.3 Extremal Poses

One frequent observation across the related literature and our own research is that gestures

are highly idiosyncratic—that is, they vary greatly from person to person. Even so, each

individual often forms their own habits (this is often heavily influenced by their cultural

background, but that is beyond the scope of this thesis). This means that given sufficient

information about a person’s gestural habits during speech across time, we can therefore

identify the moments when they use unusual or extremal poses. We hypothesize that these
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moments when their body language deviates from their regular patterns may correlate to

significant events in the corresponding speech.

In the following, we describe our approach for building a measure to identify these

moments for two speakers in one of our domains of interest.

3.3.3.1 Ground-Truth Data

In our domains of interest, it is possible to get a significant amount of information regarding

a speaker’s gestural habits. We focus here on the Presidential debates and the gestural

habits of the two U.S. presidential candidates: (President Barack) Obama and (former

Massachusetts Governor Mitt) Romney.

We use video of the first and third (i.e., final) debates (not counting the Vice Presidential

debates). In their original form, the first debate video is 1:31:50 hours long while the third is

1:36:20 long. Both have a resolution of 640× 360 pixels and are recorded at 24.58 fps using

stationary cameras, and tend to focus on the upper bodies of the speakers, who gesticulate

frequently while they speak. Their hands appear in and out of view.. These are available

through a number of sources, including the Internet Archive1.

The full footage includes a variety of shots, including shots of the moderator and wide-

angle shots of the candidates together. For simplicity, we only wish to use frontal shots of

the each candidate alone. To automatically extract the desired shots we used a combination

of automatic and manual techniques (fully automating this task is non-trivial and beyond

the scope of this thesis). First, we automatically segmented the videos using HSV color

histogram comparison with 3D histograms with 16 bins for each dimension and compared

using the L2 distance and a threshold of 0.1 similar to [Smeaton et al., 2010], resulting in

322 shots. Next, we manually discard the shots which do not contain a frontal view of a

single candidate, leaving us with 291 shots of interest.

Finally, we apply the method for hand tracking and labeling described in Section 3.2

to the each of the desired shots at 12 Hz to obtain bounding boxes and associated labels

(i.e., left or right hand). We use the centroid of the bounding boxes for each hand in each

frame. A summary of all the data used and a breakdown of the number of frames for each

1The Internet Archive, http://www.archive.org
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First debate Third debate

Desired shots featuring Obama

Number of shots 59 81

Total number of frames 29046 22430

Desired shots featuring Romney

Number of shots 72 79

Total number of frames 23577 23121

No. frames where Obama’s hand(s) are detected

Only right 1949 907

Only left 6532 12343

Both 11023 4377

No. frames where Romney’s hand(s) are detected

Only right 2662 3517

Only left 4774 786

Both 6228 1023

Table 3.5: Summary of video data used to learn extremal pose models for Obama and

Romney. It is interesting to note that Obama’s left-handedness is very apparent.

speaker-video-hand grouping is shown in Table 3.5.

3.3.3.2 Model

We propose to model the likelihood of a pose as defined by the position of centroids of the

bounding boxes of the visible hand(s) in a frame. To do this, we first stratify the data

according to speaker and video. Throughout each of our videos, the speakers maintain a

roughly constant pose, simplifying our task. However, the poses cannot be combined across

videos as their poses vary, that is, in the first debate they stand in front of a podium while

in the second, they sit a table.

The model will also depend on how many hands are present—whether it is a left-handed

gesture, a right-handed gesture, or a gesture using both hands. The hands in our videos
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may be partially occluded or simply out of view, but since we are focusing on how gestures

affect the audience who sees it, this is nevertheless valid.

We examine the position of the hands for each speaker, across each video, as seen in

the heatmaps in Figures 3.14 and 3.15. We model the position of each hand as a 2D

gaussian distribution. Estimating the gaussians in the cases where only one hand is visible

is straightforward. In the case where both hands are visible, we model the positions as a

mixture of 2 gaussians, estimated using the expectation-maximization (EM) algorithm.

Finally, as a measure of the likelihood of a given pose, we use a function of the Maha-

lanobis distance. Since the distance is bounded in our case (i.e., the size of the image is

finite), this also provides us a way to normalize the measure to the range [0, 1] consistent

with the velocity and direction change attributes described in Section 3.3.2. In the case

where there are 2 hands, we simply take the maximum Mahalanobis distance of the two

(i.e., the most unlikely position).

Formally, for each frame of video, we can compute the likelihood that a pose is unusual

as follows. Let H = {left, right,both} be the set of hand(s) which may be detected in the

frame. Suppose we have trained gaussian mixture models Gi for each i ∈ H representing the

likelihood of the hand position. Let X = {(xi, yi), . . . |i ∈ H} be the set of hand positions

in the frame and h ∈ H be the hand(s) detected in the frame, then the likelihood measure

M is simply:

M(X|h) = max
x∈X

{

DGh
(x)

Dmax

}

(3.9)

where D is the Mahalanobis distance and Dmax is the maximum Mahalanobis distance given

the size of the image, which we use as a normalization factor.

We have now presented a number of gesture attributes and techniques for extracting

them. In the following chapters, we will examine how they correlate with different measures

of audience engagement and identify those that drive correlation.
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Figure 3.14: Hand positions and estimated mixtures of Gaussians for the first debate.

Contours represent Mahalanobis distances.
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Figure 3.15: Hand positions and estimated mixtures of Gaussians for the third debate.

Contours represent Mahalanobis distances.
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Chapter 4

Annotation and Taxonomy of

Gestures in Videos

As part of our goal to identify and categorize salient gestures in lecture videos, we examine

over 2 hours of recorded lectures, totaling over 14,000 frames. We collected the gestures by

developing a novel annotation tool, manually labeling gestures in videos, and analyzing the

results. We also propose a new taxonomy which encapsulates the gestures which we argue

to correlate to pedagogic significance and worthy of further investigation. This work was

intially presented in [Zhang et al., 2010].

4.1 Gesture Annotation Tool

We introduce a novel tool designed for annotation of gestures in video. In this section, we

focus on a discussion of the tool’s usage and user interface design.

The tool takes as input a sequence of still images, an optional audio file, as well as an

index file stored in a directory. The audio and still images are usually extracted from a

video. This was done mainly to increase the ease of integration between the annotation tool

and many implementations of computer vision algorithms, which often process still images

or sequences of still images rather than video files directly. This has the added benefit that

the tool becomes less concerned with video formats. Producing the requisite files from a

video is simplified through the use of a script (available as part of the tool). Video frames
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are usually stored at a rate of 30 frames per second but we find they may be extracted at

a rate as low as 2 per second without loss of significant gestural information, for memory

efficiency.

Once the appropriate files are available, the user can create a new project in the anno-

tator tool, specify generic metadata (e.g., project author, comments) as well as the index to

the video, and begin the process of annotation. The annotations and associated metadata

can be exported to XML.

Gestures in the tool are represented as a collection of keyframes within a subsequence

of the images where the poses are specified in detail. As we generally follow the three-phase

(or multi-phase) model of gestures as described in [Kendon, 1980; Wilson et al., 1997], the

use of keyframes allows us to roughly identify the phases in addition to the distinguishing

poses of the gesture and their temporal relationships. The representation was inspired by

existing work, but modified to acknowledge their restriction on upper body gestures, and

to gestures that preferentially occur in one-sided communications (teacher monologues).

4.1.1 User Interface

The main user interface (Figure 4.1) is divided into two sections: the video player, and the

gesture editor. The video player gives users the ability to watch the sequence of images in

rapid succession as a video, and optionally provides audio if an audio stream is available

and the operating system is capable of supporting the codec. The user is capable of jumping

to specific frames, speed up and slow down playback, and other common features.

The gesture editor itself is divided into two tabs: video frames and a list of gestures.

The video frames tab is visible in Figure 4.1 and shows a sequence of the video frames in

a timeline format. This timeline feature was developed after we observed that it facilitated

the identification of the various phases of a gesture, as well as the exact frames those phases

occur as the user can see “across” time. We also observed that at least two gestures may

sometimes overlap. Specifically, out of 372 annotated gestures in our collected data, 26

of them were overlapping with another gesture (for example, the lecturer simultaneously

shrugged while making hand/arm gestures). Therefore, the user is capable of specifying

sequences of frames for different gestures, which are shown as different gestural tracks. The
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Figure 4.1: The main user interface of the gesture annotator tool.

Figure 4.2: The tree-view tab of the gesture editor internal window, which lists the existing

annotations in a project in a hierarchical format.
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list of gestures tab is shown in Figure 4.2 and contains a tree UI structure which displays

hierarchical data and provides the user with a textual overview of the current annotations

in the project.

To mark a sequence of frames as belonging to a gesture, the user can select the sequence

and use the pop-up menu that appears. The user is then asked to provide a description of

the gesture. This highlights the sequence and makes other options available, particularly

the ability to mark individual frames (within the newly marked sequence) as a keyframe,

which are highlighted as a darker color in the gesture sequence (see the bottom of Figure

4.1).

An alternate way to mark the start and end timestamps of a gesture is to play the video

and mark the endpoints with hotkeys.

A third interface is shown when the user identifies a keyframe and wishes to specify the

pose of the instructor. This interface allows the user to choose the best way to describe the

pose, according to their judgment. The user may choose to use the avatar poser (as seen

in Figure 4.3), provide a textual description, or specify that there is no human visible in

the frame. The user may also specify the phase of the keyframe (i.e., in deference to the

three-phase gestural model) as well as provide an optional comment.

4.1.2 Annotating Poses By Avatar

Once a user has identified a keyframe and wishes to further illustrate the pose of the lecturer,

the graphical poser can be used.

In our preliminary findings, we observed that most significant gestures in teaching can

be represented using simple upper body, arm and head movements. We chose this as a

starting point which is reflected in the granularity of our poser. The state of the poser can

be represented in 14 bits, with all possible selections shown in Figure 4.3. Some examples of

gesture and their approximate avatar representations are shown in Figure 4.4. A discussion

on the appropriate level of granularity is given in Section 4.2.5.

The user interface is defined to balance the user’s ability to describe the pose both

accurately and quickly. The radio buttons in the graphical UI are positioned in a way as to

correspond to the parts of the body and also to minimize the distance between one another,
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Figure 4.3: The avatar poser controls in the default configuration, along with the corre-

sponding avatar preview image.

Figure 4.4: Examples of gestures and their avatar representations below.
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so users may select them faster.

The avatar control radio buttons are placed beside a preview window, which changes to

reflect the latest pose selected by the user. The avatar in the preview window will always

face forward regardless of body orientation, as we noticed it was easy for annotators to

mirror the lecturer’s pose, even when they are turned around. We also considered other

avatar representations, including the possibility of using two separated avatars to represent

the lecturer from different perspectives; our present version seems sufficient.

4.2 Annotation and Analysis

Two 75-minute computer science video lectures have been manually annotated for gestures

using the proposed tool. In following with Martell’s observation of strong intra-annotator

but weak inter-annotator consistency [Martell, 2002], both videos were annotated by the

same person. Each video captures a different instructor from different cultural backgrounds,

presenting topics from different areas of computer science (one lecture is on machine learn-

ing, the other is on computer architecture). During preprocessing, the video frames were

extracted and collected as a sequence of still images at a rate of 2 frames per second. The

videos were provided by the Columbia Video Network and have characteristics described

in Section 1.2. The videos do not focus solely on the instructor but sometimes switch to a

view of the slides presented for a period of time (for the computer architecture video and

the machine learning video, 24% and 41% of the frames extracted were marked as belonging

to a gesture, respectively).

Part of one of the videos was also annotated by a second person to explore inter-

annotator consistency; see Section 4.2.5.

Finally, observations were collected from both annotators regarding the level of granu-

larity for the avatar poser, the frame rates of the extracted video, and high-level patterns

noticed in the gestures.

The first lecture video (video A by instructor A) presents an introduction to computer

architecture, an outline of the course, and an overview of the material without elaborating

on the theory.
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The second video (video B by instructor B) provides an introduction to machine learn-

ing but goes directly into a detailed explanation of linear regression, presenting a lot of

mathematics.

4.2.1 Proposed Taxonomy

During annotation, gestures were assigned a textual label according to the template “body

part, semantic class, orientation.” For example, a gesture where the instructor points with

his right hand would be labeled as right hand point right, where right hand is the body

part, point is the semantic class and right is the orientation (i.e., the direction in which he

is pointing). We identified 126 unique labels falling into nine semantic classes. We defined

a new semantic class whenever we noticed that the gesture was frequently repeated or that

the gesture was semantically relevant to the lecture content.

The nine semantic classes were identified as follows. We note that some of them do not

cleanly fall into the four or five classes commonly assumed in the literature. We introduce

the class of “pedagogic” gestures to label those gestures whose purpose seems to be to

structure the lecture or to encourage or remind the students. This category has not been

documented in the prior literature, but is apparent in this context, since much teaching

depends on developing and maintaining a supportive but asymmetric relationship with the

students.

• Put. These can be iconic or metaphoric gestures, where the instructor “puts” ab-

stract concepts or objects somewhere into the visible space to help describe their

relationships to one another.

• Spread. These are gestures where both hands and arms are extended in front of the

body and spread outward in a circular fashion. Spread gestures may be iconic or

metaphoric, and often correspond to an important point in the discourse. However,

they often serve as pedagogical commentary, independent of lecture content, indicating

the difficulty of the content.

• Swipe. These occur when one or both arms are moved simultaneously in one direction.

These tend to be metaphoric gestures, e.g., an instructor makes a swipe gesture to
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indicate that an abstract object has moved.

• Close & Open. These encompass a set of gestures that are visually similar to spread

gestures, i.e., hands and arms are spread outward or inward in a circular motion,

however, arms are generally not extended and therefore they form a much smaller

spread. They are considered a separate class since they are less semantically relevant

than spreads and are best considered as beats.

• Flip & Swing. These are gestures where one or both hands are flipped in a small circle.

These pedagogical gestures indicate the continuation of a theme in the discourse.

These gestures can also be considered as a beat (two phase) form of a cohesive gesture,

a kind of pedagogic punctuation or backward reference.

• Touch. These are simple beat gestures where the instructor touches an object (usually

the table, glasses, etc.) as a beat or as a pedagogic “timeout”.

• Pointing. These are clearly deictic gestures and accounted for the majority of gestures

in both videos (see Table 4.1). When an instructor points, it generally means that

they wish the students to pay attention to a specific region of the slide or blackboard.

• Hold. In between gestures, instructors are sometimes noticed to stay relatively mo-

tionless. Some of the existing literature may consider this non-gesture to be a phase

separating the preparation, stroke and retraction phases. Holds usually indicate that

the discourse is focused on a specific point, and it can often be a deliberate pedagogical

gesture.

• Others. A number of gestures were observed but held no noticeable semantic signif-

icance or did not occur frequently enough to merit their own class. These gestures

were assigned the “others” class.

4.2.2 Granularity of Avatar Poser Tool

One of the lecture videos was used to examine and improve the completeness of the gesture

grammar. If a pose could not be expressed by the current grammar, the annotator verbally

described possible additions to the grammar that would enable it to express that pose. From
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the video, 183 poses were encoded using the current tool, whereas 91 poses could not be

expressed by the grammar. From analyzing the necessary additions for these 91 poses, we

explored five additions that significantly increased the expressiveness of the grammar. Extra

precision on shoulder direction and elbow angle helped encode 51 of the poses; 22 poses

needed shoulder joint rotation; and 44 needed forearm pronation/supination. Otherwise,

the grammar appeared well-matched to what was observed.

We also found several ambiguities when proposing additions to increase the expressive-

ness of the gesture grammar, since different joint configurations can lead to almost the same

overall pose. The main source of ambiguities occur when two rotation axes coincide, such

as the forearm and shoulder when the arm is straight.

4.2.3 Dimensionality Reduction

We applied Principal Component Analysis (PCA) to the pose data to gain additional data

which can help us refine the tool and pose representation, as well as provide insights re-

garding the pattern of poses in gestures.

Examining the entire corpus of poses for one instructor (instructor A), we compressed

each pose using the annotation tool, into a ten-dimensional vector whose components en-

coded the quantized positions of: “body, face, left hand, right hand, left arm, left shoulder,

left elbow, right arm, right shoulder, right elbow.” We map each component of the pose

to a value either between -1 to 1 or 0 to 1, divided into equal intervals. We used PCA

for dimensionality reduction, and found that the first two principal components account

for more than half of the variance of poses (51%), and the first five account for nearly all

(81%). These eigengestures can be roughly interpreted as:

• Right arm raised with elbow straightened versus right arm lowered with elbow bent,

which is basically a point versus a rest gesture (33%, see Figure 4.5).

• Both arms used symmetrically from the shoulder, either both to the side or both

forward, which is basically a spread versus a rest gesture (18%).

• Right elbow used anti-symmetrically from the left elbow in a “Mr. Roboto dance”-like

chop (12%).
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Figure 4.5: Example of an eigengesture. The left and right poses correspond to the maxi-

mum and minimum values and basically represent a point versus a rest.

• Both hands opened or closed symmetrically (9%).

• Right arm raised, but with bent elbow (9%).

We note that the position of body and face did not contribute much to the gesture

variance, which is expected, since the body of the lecturer is usually turned towards the

class. Also, due to low granularity in the hand annotation, independent hand information

also did not significantly contribute to the variance.

4.2.4 Inter-Annotator Analysis

Approximately 60% of video A was annotated by two independent, novice annotators. We

attempted to compare these results. As previously stated, there is no standardized method

for comparing gesture annotations, so we approached this intuitively.

As a rough metric, we compared the work of the two annotations in terms of segmenta-

tion. A visualization of the comparison is shown in Figure 4.6. Colored regions represent

frames that are marked as belonging to a gesture. It can be seen from the figure that, using

this metric, inter-annotator agreement is strong: roughly 74% agreement, not too far from

reports in the existing literature.
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Figure 4.6: Inter-annotator comparison. The colored regions indicate parts of (roughly

half) of video A that have been marked as a frame belonging to a gesture. The line in the

middle separates the work of the two independent annotators: one on top, one below. Red

and green ticks mark the boundaries of gestures: green ticks indicate the beginning of a

gesture, and red ticks indicate the end.

More precise segmentation however is notably more difficult. In Figure 4.6, green tick

marks indicate the start of gestures, and red ticks mark the end of gestures. From this

perspective, inter-annotator agreement is very low and is difficult to compare. As previously

mentioned, what one annotator may mark as one long gesture, another may break into

several smaller gestures.

4.2.5 Observations and Evaluation

We observed 372 and 494 gestures from videos A and B respectively. These gestures were

broken down into the nine classes as summarized in Table 4.1. We noticed in these lecture

videos three observations about which the literature is basically silent.

First, we noticed that gestures are highly idiosyncratic. For instance, instructor B

seldom does the spread gesture and tends to do more point and hold gestures than the

instructor A. The lecture content clearly impacts the gesture distribution. For example, in-

structor B uses two hands to point at slides to explain details of matrices, while instructor A

points with just one hand since discourse was mostly about theoretical topics. Nevertheless,

habits of each instructor clearly exist. In video B, the instructor relies on slides more, so

deictic gestures occur more frequently. In video A, the instructor refers to the slides less,

and so relies on iconic or metaphoric gestures more.

Second, we observed that the gestures are often pedagogic and are correlated to the
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Semantic Class A A (%) B B (%)

Close & Open B 42 11.29 49 9.91

Flip & Swing B, C, P 21 5.65 4 0.81

Hold P 33 8.87 71 14.37

Point D 123 33.06 292 59.11

Put I, M 16 4.30 10 2.02

Spread I, C, P 81 21.77 24 4.86

Swipe M 8 2.15 5 1.01

Touch B, P 5 1.34 7 1.41

Others 43 11.56 32 6.48

Total 372 494

Table 4.1: Counts and distributions of gestures according to the nine semantic classes for

videos A and B. The abbreviations I, M, B, C, D, P stand for iconic, metaphoric, beat,

cohesive, deictic and pedagogic respectively. Four of the gesture classes (spread, flip &

swing, touch, hold) appear to be pedagogic.
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difficulty and pacing of the lecture material. Explanatory gestures, such as swinging or

spreading, suggested that key points were being told. More intense gestures indicated that

the material was more difficult or an important concept, while slower gestures seemed to

indicate content that was less important.

Third, we noticed that successive gestures tend to overlap on their ends, and do not

completely follow the three-phase model of gestures. This has made it difficult to tag

adjacent gestures, because there is no hard boundary between when one gesture ends and

the next gesture begins. Our tool was modified to allow overlapping gestures, shown as

separate layers.

The observations made here influence much of the work in this thesis, such as the

importance of the point and spread gestures we seek build classifiers for in Section 3.1,

and the idiosyncrasy of gestures lead to investing across a greater variation of speakers in

Section 5.1 as well as to our exploration of extremal poses as defined by speaker-dependent

models in Section 3.3.3 which turn out to be significantly correlated with audience neural

activity in Chapter 6.
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Chapter 5

Gestures and Indirect Measures of

Engagement

In Chapter 3 we introduced methods for extracting gesture attributes from video. In Chap-

ter 4 we manually examined video to find correlations between gestures and semantically

relevant segments. In this chapter, we build on these results to demonstrate the correlation

between gestures and semantics quantitatively. We approach this in three ways:

First, we hypothesize that parts-of-speech can be used as indicators of semantically

relevant segments of video. There is precedence for this as reviewed in Section 2.2.2. We

look for correlations between gestures and conjunctions.

Next, we perform user studies which allow us to explore different methods of presenting

gesture data to users in a video browser in a useful way and to receive feedback on the types

of gestures that may be engaging their attention.

Finally, to demonstrate the relationship between speaker gestures and audience engage-

ment we perform an experiment whereby volunteers watch videos under observation by

electroencephalography, allowing us to gather detailed engagement data at the neurological

level. This data is then correlated to gesture attributes. Significance tests are performed

to demonstrate the effect of speaker gestures on audience attentiveness, and specifically to

identify the type of gestures which may pique the audience’s interest.
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5.1 Correlating Gestures with Conjunctions Indicating Con-

trast

In this section, we explore the correlation of arm gesture velocity with semantically sig-

nificant moments in speech, as indicated by the use of certain conjunctions which indicate

shifts in semantic weight between clauses. To demonstrate this, we produce a fully auto-

matic classifier which labels a segment of text according to whether or not it contains a

conjunction of a certain functional class using only visual features as input. We restrict

ourselves to the domain of educational lectures, each with a single English speaker pre-

senting a variety of subject matter. Our proposed system automatically extracts features

based on arm motions of the lecturer. The features are extracted from segments of video

corresponding to predetermined segments of text, provided in the form of subtitles which

may be either generated through automatic speech recognition (ASR) or manual labeling.

These results were initially presented in [Zhang and Kender, 2012].

5.1.1 Classifier

We frame this task as a binary classification problem. For each segment of video, we

regularly sample every nth frame into a sequence of frames and associate with it the set

of words of its corresponding natural language subtitle. In our experiments, a sampling

rate of 3 frames per second was sufficient. We assign a binary label Y to the video and

subtitle segment, where Y is +1 if its subtitles intersects with a set of conjunctions of

interest, and −1 otherwise. In Section 5.1.3, we will discuss experiments with different sets

of conjunctions

For classification, we use an AdaBoost-based classifier [Freund and Schapire, 1996] with

decision trees as weak learners. We train using samples (X,Y ) with arm angular variance

as visual features X derived from only the video frames, as described in Section 3.3.1. The

classifier and training system is depicted in Figure 5.1.
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Figure 5.1: Overview of the classification and training system. For each video we compute

gestural features through pose and flow estimation on sampled frames. Training labels are

assigned based on the presence of certain conjunctions in segments of subtitles accompanying

the video. The classifier attempts to assign labels to test samples based on gestural features

alone.

5.1.2 Video and Subtitle Data

For our experiments we use data gathered from MIT OpenCourseWare which is free for

public use. We extract clips from 10 videotaped lectures from three courses, each from a

different field of study (MIT course numbers in parentheses): Abdul Latif Jameel Poverty

Action Lab Executive Training: Evaluating Social Programs 2009 (RES.14-001), Principles

of Chemical Science (5.111) and Multicore Programming Primer (6.189). Over 12 different

speakers of different genders and ethnic backgrounds are present in these videos, mainly

from RES.14-001 which is a seminar-based course. Each video features an individual English

speaker lecturing in front of a classroom, usually standing in front of a slide or blackboard.

The lighting condition varies, as do the appearance of the speakers due to clothes and other

attributes. The videos are low-resolution (480×270 for RES.14-001 and 5.111, and 478×360

for 6.189) with a frame rate of 15 frames per second.

In addition to the video data, time-synced subtitles are also available for each lecture.

For RES.14-001, the subtitles are produced by ASR from YouTube. Subtitles for 5.111 and

6.189 are manually produced by MIT.

We apply an automatic upper-body detector to the lecture videos and apply a simple
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greedy heuristic to produce video segments at least 10 seconds long (subtitles are segmented

correspondingly). Further, we manually remove videos which do not fit our criteria such as

those containing multiple speakers in one frame (i.e., guest lecturers), the speaker writing

on a blackboard, shots of the classroom, shots of the slides without a full shot of the speaker.

Finally, we segment the remaining video according to each individual time-synced subtitle,

producing the best association we have between word and gesture. This leaves us with

4243 video clips and corresponding subtitles totaling 3.83 hours, averaging 3.25 seconds in

duration and 7.89 words each. We sample these videos at 3 frames per second.

Our reasons for using publicly available subtitle data rather than purely ASR-generated

data are three-fold. Primarily, the quality of the manually produced subtitles are impossible

to surpass. This is closely followed by the YouTube-generated subtitles which has quality

significantly surpassing that of our own using open source software such as Sphinx1. Finally,

we argue that the short duration of each subtitle and the intuitive need to search for gestures

within a radius of a spoken word justifies the use of these subtitles even if they do not

produce the finest grain word-to-gesture association.

5.1.3 Classes of Conjunctions

Conjunctions are parts of speech that connect sentences of clauses together. It is com-

monly classified into three categories, with differing semantic connotations: coordinating,

correlative and subordinating.

We are particularly interested in conjunctions as they can indicate semantically impor-

tant points in speech, such as points of contrast, emphasis or complexity. Being able to

successfully identify these points could be applicable for video summarization or as cues in

non-linear semantic video browsers. Furthermore, as common particles, conjunctions can

be found in discourse regardless of subject matter. Another advantage in their being so

common is their relatively high rate of recognition in ASR.

In this paper, we experiment with subsets of 45 commonly used English conjunctions

denoted C. They are listed with their frequencies of occurrence in our dataset in Figure

5.2.

1Available at http://cmusphinx.sourceforge.net/.
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Figure 5.2: List of conjunctions C and their frequencies of occurrence in the dataset.

We experiment with the following subsets of C, which have different semantic implica-

tions. We test the common classes of coordinating CCoor, correlative CCorr and subordi-

nating CSub conjunctions. We also introduce a class of “contrasting” conjunctions CCont,

with words and phrases which indicate contrasts between the joined sentences or clauses.

Examples of the members of these sets are given in Table 5.1. These sets are not necessarily

mutually exclusive. The current classification of conjunctions (except for “contrasting”) is

derived from standard linguistics research [Scharton and Neuleib, 2001].

5.1.4 Observations

Using the 4243 samples described in Section 5.1.2 and sets of conjunctions described in

Section 5.1.3, we perform experiments using 4-fold cross validation. Three folds are used

for training, while the remaining fold is balanced (i.e., the same number of positive and

negative samples are taken) and used for testing. The classifier selects from the testing fold

those samples it believes, on the basis of gestures, must contain a conjunction of the given

class. We measure performance of this selection according to precision (P = TP
TP+FP

), recall

(R = TP
TP+FN

), F1 score ( 2PR
P+R

), as well as overall classification accuracy ( TP+TN
TP+TN+FP+FN

).

Recall that TP, TN,FP, FN refer to true positive, true negative, false positive and false

negative, respectively.
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Class Members Pos (%)

C See Figure 5.2 72.2

CCoor and, but, for, nor, or, so, yet 49.6

CCorr both, either, just as, neither, nor, not only, or, whether 21.0

CSub after, although, as, as far as, as if, as long as, as soon as, as

though, because, before, if, in order that, since, so, so that,

than, though, unless, until, when, whenever, where, whereas,

wherever, while

44.8

CCont although, but, for, however, if, neither, nor, or, so, though,

yet

46.2

Table 5.1: Subsets of C and examples of their members, as well as the percentage of the

dataset which contains those conjunctions.

C CCoor CCorr CSub CCont

Accuracy 0.508 0.556 0.500 0.530 0.549

Table 5.2: Classification accuracies. That is, the percentage of the balanced test set (both

positive and negative samples) that is correctly classified.

We begin by computing the overall classification accuracy (i.e., number of positive and

negative samples correctly classified) by training and testing on the sets of conjunctions.

The results are summarized in Table 5.2. In the case of CCorr, the output classifier was

simply classifying all samples as negative. One possible reason for this is the dearth of

positive training samples which appears to prevent learning. As such, we will exclude it

from further analysis.

We evaluate the classifiers trained and tested on all classes except for CCorr according

to precision/recall/F-score, as shown in Figure 5.3. Perhaps unsurprisingly, C results in a

classifier that produces extremely high recall, but at a precision of 0.508 on a balanced test

set, it is not better than chance. Not all conjunctions, e.g., “and”, appear to have strongly

associated gestures. That is, “and” is truly a stopword.
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Figure 5.3: Overview of classification performance for different conjunction classes.

Classifiers trained on CSub offers slightly higher classification accuracy (0.530) and higher

precision (0.548) but low recall (0.354). We speculate that the reason for this is the lack

within CSub of very common conjunctions such as “and” and “or” (both with very high

frequencies in the dataset, as seen in Figure 5.2). In fact, it can be seen in Figure 5.3

that “and” results in greater recall in CCorr versus CCont, followed by “or” which results in

greater recall in CCont versus CSub.

Classifiers trained on CCoor and CCont offer perhaps the strongest argument for the

correlation between arm gesture motion and some conjunctions. These classifiers performed

similarly, although CCoor resulted in significantly higher recall, but slightly less precision.

The reason for the similar performance is likely due to the overlap between conjunctions

in these sets, with the exception of “and”, which is likely the cause for the difference in

recall, as it is an extremely common conjunction. Set CCont contains conjunctions which

are usually used to denote significant changes in meaning during discourse, and its high

classification accuracy and precision offer slight but existent evidence of a correlation with

arm gesture motion.
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5.2 Gestures as Indicators of Segments of Interest for Video

Browsing

To investigate how other gesture attributes may correlate with engagement, we perform a

user study with two goals: first, to explore ways to present gesture data to viewers in a useful

way through a video browser, and second, to gain additional feedback from viewers as to

which speaker gestures may be particularly interesting. In this section, we will propose two

user interface elements, describe the user study, and summarize some of the observations

gathered based on subjects’ feedback (both quantitative and qualitative).

5.2.1 User Interface

We propose two possible ways to present gesture-based features to users to aid them in

video browsing. They are presented to users underneath a standard video player as shown

in Figure 5.4.

5.2.1.1 Gesture Attributes Graph

The most straightforward approach is to simply present the results of the gesture attribute

computations (particularly velocity and direction change as described in Section 3.3) visually

in the form of a center-aligned graph. The graph is center-aligned so that small signals are

more easily distinguished from no signal. A graph for each attribute is displayed on a

separate row. A red line indicates the playback time of the video in the gesture attributes

graph, as shown in Figure 5.4 highlighted by 3©. The gesture attributes graph is illustrated

in Figure 5.4 under 1©. Users can click anywhere on the gesture graph to jump to the

corresponding time in the video. Intuitively, we hope to observe that users would skip

sections with low gestural activity, and pay more attention to segments with high gestural

activity.

5.2.1.2 Emphasized Subtitles

Another way to highlight segments of interest is through emphasized subtitles, which would

help users to quickly scroll through the transcribed content of a video, with key words
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Figure 5.4: The user interface presented to subjects in our user study implementing the 1©

gesture attributes graph (Section 5.2.1.1) which indicates the velocity and direction change

gesture attributes for each frame, and the 2© emphasized subtitles (Section 5.2.1.2) which

highlights subtitles based on associated gestures. A time cursor (the red bar highlighted by

3© and blue box highlighted by 4©) marks the position in the video.
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enlarged.

We obtain transcripts of the political debates and apply the Sphinx Long Audio Aligner2

to temporally align individual words to their position in audio so that each word has a

starting frame ws and end frame we. Due to inaccuracies, many words are dropped, so the

ability to watch the video is still important to viewers, particularly during the user study.

Each word, minus stopwords, is then resized according based on the associated gesture

attributes. Since both velocity vf and direction change df are normalized, one simple way

to compute a “weight” ww for each word is to take the maximum attribute within the word

time frame, that is:

ww = maxws≤f<we
{max{vf ,df}}

Intuitively, this can be though of as the “most emphatic” gesture within the span of

each word. Different methods for combining weights remains for future work.

As a baseline in our user study (Section 5.2.3), we use named entity detection to de-

termine which words to highlight. The named entities are automatically identified using

a publicly available service3, with the weights determined by the relevance of the detected

named entities. Most of these are the names of people, places, events and government

programs.

5.2.2 User Study and Ground-Truth Data

For our user study, we used recorded video of the first and third 2012 US Presidential

debates, which are publicly available. The videos are very high quality with a resolution of

640× 360 pixels at 24.58 fps, a stationary camera, and tend to focus on the upper bodies of

the speakers, who gesticulate frequently while they speak. Their hands appear in and out

of view.

To select these shots, we automatically segmented the videos using HSV color histogram

comparison, with 3D histograms with 16 bins for each dimension, compared using the L2

distance and a threshold of 0.1 similar to [Smeaton et al., 2010]. This resulted in 322 shots.

From these, we randomly selected 36 shots with durations between 60 to 100 seconds,

2CMU Sphinx Long Audio Aligner, http://cmusphinx.sourceforge.net/wiki/longaudioalignment

3TextRazor, http://www.textrazor.com/
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totaling about 48 minutes. This duration was intentionally selected so that subjects in the

user study could complete the task in under one hour.

To compute gesture attributes, the hand tracking algorithm was applied to each video

clip at a frame rate of 12 Hz.

We presented each of these 36 videos to 3 different human raters via Amazon Mechanical

Turk4, who were asked to watch the complete video and each provided up to 10 keywords to

summarize the spoken content in the videos, without time limitations. A total of 7 different

raters contributed unevenly to the set of all keywords. The keywords were then corrected

for spelling, split into words (tokenized by whitespace or punctuation) and stemmed. For

each video, we retain only the keyword stems which were selected by at least 2 raters. From

792 unique stems, 415 were retained for evaluation.

5.2.3 User Study

We recruited 12 university students and observed their usage of different configurations of

our combined video browsing tool in an IRB-approved user study. These subjects were

observed in a proctored setting and are different from the raters that provided the ground-

truth keywords. The results of this user study are discussed here.

Each subject was given a brief training session and then asked to provide keywords for

the spoken content of the 36 videos, by typing the keywords into a textbox. The entire

session takes approximately 45 minutes. As a restriction, for each video, they were only

given half the time of the video duration to complete the task (i.e., to both skim the video

and input keywords). This is done to force subjects to skim through the video and make it

impossible to watch the entire video. Each video is presented to 3 different subjects in each

of the following configurations:

1. Subtitles emphasized according to named entity relevance without the gesture at-

tributes graph.

2. Subtitles emphasized according to gesture attributes without the gesture attributes

graph.

4Amazon Mechanical Turk, http://www.mturk.com
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Precision
P
P
P
P
P
P
P
P
P
P
P
PP

Graph

Emphasis
NE GA

No 0.52 0.52

Yes 0.50 0.55

Recall
P
P
P
P
P
P
P
P
P
P
P
PP

Graph

Emphasis
NE GA

No 0.33 0.33

Yes 0.33 0.34

Table 5.3: Precision and recall of subjects for the task of selecting keywords for videos.

The columns indicate which type of emphasis was used (NE: named entity, GA: gesture

attributes) and the rows indicate whether the gesture attributes graph was visible.

3. Subtitles emphasized according to named entity relevance with the gesture attributes

graph.

4. Subtitles emphasized according to gesture attributes with the gesture attributes graph.

No video was viewed twice by the same person and each person performed the task using a

variety of configurations.

Using the ground-truth keywords, we can evaluate how well subjects performed using

precision (P = TP
TP+FP

) and recall (R = TP
TP+FN

). The results of our user study are

shown in Table 5.3, where the scores are averaged across subjects. We note that the

highest performance was attained through the use of gestures alone, without reference to

any external sources of knowledge such as the catalog of named entities.

As a comparison, we find the average precision and recall of each ground-truth rater

(weighted by the number of videos labeled) to be 0.72 and 0.81, respectively. It is interesting

to note that even with half the time of the video, subjects using browsing aids achieved a

relatively high precision as compared to the ground-truth raters who had unlimited time

and no pressure.

5.2.4 Observations

We also asked subjects to complete a questionnaire upon completion of their task. From

this, we are able to make qualitative observations about our interface.

Subjects were asked to rate the “helpfulness” of each interface configuration from 1 (very

unhelpful) to 5 (very helpful). Their average responses are shown in Table 5.4. Interestingly,
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Helpfulness
P
P
P
P
P
P
P
P
P
P
P
PP

Graph

Emphasis
NE GA

No 3.6 3.3

Yes 4.2 3.6

Table 5.4: Average of user study subjects’ “helpfulness” ratings for each configuration which

range from 1 (very unhelpful) to 5 (very helpful). The column and row headings are the

same as Table 5.3.

the most popular configuration (subtitles emphasized according to named entities with the

gesture attributes graph visible) also corresponds to the lowest precision in Table 5.3. A

larger user study would be needed to verify significance, although comments seem to indicate

that the gesture attributes graph itself was popular whereas the named entities emphasis

allowed users to see more subtitles at a given time.

First, we observed that named entities emphasis was preferred, but mostly because it

means more words were visible in the subtitles box. Subjects commented that having the

subtitles with certain words enlarged were extremely helpful in identifying keywords but,

as emphasis by gesture led to more words being enlarged, fewer words were visible at any

given time. Future iterations would quantize the gesture attributes (e.g., make it binary

so users can be more decisive) or explore different methods of indicating emphasis while

controlling for the number of words visible.

Second, sudden gestures seemed to indicate greater semantic value. When asked if they

noticed any particular types of gestures that seemed to correlate with semantic importance,

subjects noted that pointing and “sudden” gestures were more likely to catch their attention.

Further work on gesture attributes could capture these better than the velocity attribute

does.

Finally, velocity and direction change were of similar value. When asked if they tended

to favor one attribute over the other when presented with gesture information, subjects

did not consciously have a preference. From a user’s perspective, a unified feature would

probably be less confusing.
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The studies in this chapter were done to help us gain more insight into what attributes

of gestures may pique audiences’ attention. For instance, the development of the extremal

poses gesture attribute (Section 3.3.3) was inspired by user feedback from the study. The

use of indirect measures such as accompanying speech and user studies allowed us to do

so inexpensively. In Chapter 6, we will study how gestures correlate to engagement with

greater rigor using EEG—a more expensive but direct method of measuring engagement

which functions by recording and interpreting neural activity.
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Chapter 6

Correlating Gestures with EEG

In Chapter 5 we examined how gestures affect audience engagement, measured indirectly

through parts of speech or user studies. Based on the results and feedback from users in

those studies, we now seek to more rigorously measure audience engagement and demon-

strate its correlation against gestures quantitatively, as well as to identify specific attributes—

both neural and gesture—which drive correlation and show statistical significance.

Unlike the transcripts or software user studies used in Chapter 5, recruiting subjects

and performing EEG experiments is considerably more expensive (in terms of compensating

participants financially) and time consuming (the wet-gel setup we use takes approximately

an hour to set up and needs to be washed out of hair). Given this, we focus on a single

domain for simplicity: the 2012 U.S. presidential debates. This simplifies the parameters

of our experiment as the American political landscape is dominated by two parties: the

Democratic Party and the Republican Party. Although voters who identify as Independent

have seen a resurgence in popularity in recent times according to Gallup’s [Jones, 2012] from

33% in 1988 to 40% in 2011, the vast majority of voters voted for one of these two parties

while only 1.6% voted for others in the 2012 election. Each party was also represented

by a single leader: U.S. President Barack Obama for the Democratic Party and former

Massachusetts Governor Mitt Romney for the Republican Party.

Despite restricting the experiment to such a narrow domain, the results of the study

could nonetheless have significant impact due to the importance of the domain. Political

consulting is big business in America, where even the slightest edge in capturing audiences’
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attention could command lucrative fees, and ultimately change the outcome of an election.

6.1 Experiment

We showed 6 videos, each approximately 10 minutes long totaling 61 minutes, to each of

20 subjects in an electrostatically shielded room1. Due to artifacts and noise during data

collection, approximately 14 minutes of data was ultimately discarded, leaving us with 47

minutes worth of EEG data for analysis. This experiment was approved by the Institutional

Review Board of Columbia University and all subjects gave written informed consent prior

to the experiment. Subjects were instructed to sit comfortably and watch attentively to

the debates and refrain from overt movements. The order of the video clips were kept the

same across subjects. In between each of the 6 videos, subjects were given a break and the

experiment did not resume until the subject indicated they were comfortable.

Subjects were fitted with a standard 64-electrode cap following the international 10/10

system, as shown in Figure 6.1. EEG data was recorded using a BioSemi Active Two AD

Box ADC-122 system at 2048 Hz which was downsampled to 512 Hz for processing.

The details of how the videos were created from clips of the presidential debates are

described in Section 6.1.1, and details of the subjects we selected are given in Section 6.1.2.

6.1.1 Video Stimuli

We use clips of the 2012 U.S. Presidential Debates as video stimuli to present to the subjects.

We use only the first and third debates where the speakers stand at a podium or sit at a

table, and discard the second presidential debate (a town-hall style debate where speakers

are allowed to move around freely and thus making automatic recognition and analysis of

gestures extremely difficult) and the vice-presidential debate. This allows us to focus on

two people: Obama and Romney. Similar to Section 5.2.2, the videos have a resolution of

640 × 360 pixels recorded at 24.58 fps using a stationary camera, and tend to focus on the

upper bodies of the speakers, who gesticulate frequently while they speak.

1ETS-Lindgren, Glendale Heights, IL, USA.

2BioSemi, The Netherlands.
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Figure 6.1: Approximate positioning of the electrodes on our EEG skull cap.

First, we select clips that have a greater likelihood of resulting in reliable gesture at-

tribute extraction. To achieve this, we automatically segmented the videos using HSV color

histogram comparison with 3D histograms with 16 bins for each dimension and compared

using the L2 distance and a threshold of 0.1 similar to [Smeaton et al., 2010]. We then man-

ually discard all clips that do not contain a continuous frontal shot of a single speaker. Given

the high quality and structured nature of the recording, most clips satisfy this constraint.

We also manually identify the speaker in each clip.

Next, to keep this experiment as fair as possible, we manually select clips such that

Obama and Romney are given equal “airtime”. The debates also cover a range of topics,

as defined by the moderators of the respective debates and listed in Figure 6.2, sorted by

increasing level of subjects’ interest. We also attempt to balance the time each speaker

spends discussing each of these topics, i.e., each speaker spends approximately the same

amount of time discussing each topic, but the time discussing each topic may differ.

Ultimately, 28 clips were selected (8 from the first debate and 6 from the third de-

bate featuring Obama, and 8 from the first debate and 6 from the third debate featuring

Romney). The total duration of the clips is approximately 30.5 minutes, so each clip is 65

seconds on average.

Finally, to produce the video stimuli to present to subjects, we randomly shuffled the 28
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Figure 6.2: List of topics covered in the video stimuli as defined by the debate moderators,

along with subjects’ level of interest. Topics are listed in order of increasing weighted subject

interest.

clips, and then made silent versions of each by removing the audio track. In total, we show

61 minutes of video to each subject in total. In order to allow for a break approximately

every 10 minutes, we separate this into 6 videos. We create each of these 6 “long videos”

by concatenating the smaller clips (both audible and silent versions) together, as shown in

Figure 6.3. In each case, the audible clip is always played after its silent version, so that

subjects do not associate visual scenes with the spoken content on a second viewing of each

clip. Each of the long videos begins with a 5-second video of a countdown, followed by

the clips, each separated with a 3-second blank (i.e., black screen). The silent and audible

versions of each clip are always placed in the same long video. The final durations of the

6 videos are 9.32 minutes, 10.39 minutes, 10.72 minutes, 11.93 minutes, 9.82 minutes and

8.94 minutes.

However, noise and artifacts such as interruptions to the electrodes (non-injurious to

the subjects) which occurred during the EEG data collection process led us to discard data

recorded during both the audible and silent versions of 7 video clips for all subjects. The
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Figure 6.3: Each of the 6 videos shown to each subject begins with a 5-second countdown,

followed by silent then audible versions of clips of the debates, each separated with a 3-

second blank screen.

audible and silent versions of these 7 clips totaled 14 minutes in duration, therefore leaving

us with 47 minutes of EEG data for analysis.

6.1.2 Subjects

For this study, we recruited 20 college students and young professionals of various ethnic

backgrounds and nationalities. In addition to their age and gender, they were also asked

to identify their political leanings on a scale from 1 to 5, where 1 is Strongly Democrat

and 5 is Strongly Republican. Only those who were not neutral (i.e., 3) were considered for

this experiment. Those who were not American and therefore did not vote but nonetheless

followed American politics and thus identified with a political party were included in this

experiment.

We stratify subjects according to their political affiliation (Democrat or Republican)

and their gender (male or female). The 20 subjects are divided into 10 Republicans and 10

Democrats, or 10 females and 10 males. The breakdown of the subjects by political and

gender groups is shown in Table 6.1. The subjects’ ages range from 18 to 31 with a median

age of 21. A breakdown of ages by group is available in Table 6.2.

To account for possible topic bias (i.e., what if one group was overwhelmingly interested

in candidates’ opinions on healthcare while another was only interested in their thoughts

on the Middle East), subjects were also asked to indicate their level of interest in each of

the topics from Figure 6.2 as one of: indifferent, somewhat interested, or very interested.

Subjects were selected randomly restricted only by age, gender and political affiliation
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Female Male Total

Democrats 5 5 10

Republicans 5 5 10

Total 10 10 20

Table 6.1: Number of subjects in each political and gender group.

Group No. Subjects Min. Age Med. Age Max. Age

All 20 18 21 31

Democrats 10 18 21 29

Republicans 10 18 22 31

Females 10 18 21 29

Males 10 18 21.5 31

Table 6.2: Range and medians of ages of subjects divided by group.

independent of their interests in the topics. Their responses are aggregated by group and

shown in Figure 6.4. It can be seen that Democrats and Republicans have roughly equal

numbers of subjects that are at least somewhat interested in each of the topics. However,

more males expressed indifference in each topic than females, therefore we do not believe

personal interest in topics is a confounding factor in our correlation analysis of Democrats

versus Republicans, but may be one when comparing females versus males. One possible

confounding factor when comparing Democrats versus Republicans is the fact that this

experiment took place beginning roughly 6 months after the 2012 U.S. presidential election,

so the outcome was already known. Nevertheless, we believe this should not significantly

affect our main hypothesis, that is, how audiences react to speakers’ gestures, but it is

something to keep in mind when making observations across party lines.
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Figure 6.4: Subjects’ interests in each topic, separated by group. Topics correspond to

Figure 6.2. Democrats and Republicans have roughly equal numbers of subjects that are at

least somewhat interested in each of the topics. However, more males expressed indifference

in each topic than females.

6.2 Correlations

6.2.1 Deriving Engagement from EEG

Once EEG data was collected from all subjects for each clip, we apply standard post-

processing. A software-based 0.5 Hz high pass filter was used to remove DC drifts, and 60 Hz

and 120 Hz notch filters were used to minimize line noise. Eye blink artifacts were removed

by independent component analysis (ICA) through EEGLAB [Delorme and Makeig, 2004].

EEG samples whose squared magnitude falls above four standard deviations of the mean

power of their respective channels were replaced with zero.

To identify moments of engagement, we apply the method of [Dmochowski et al., 2012]

on EEG data across all subjects for each clip. Intuitively, this method works on the hy-
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pothesis that only moments of stimulus which engage audiences will elicit a common neural

response from most audience members, and therefore seeks to find maximal correlations

between subjects’ EEG data.

In this method, for a given clip, let X(i) ∈ R
D×T be the EEG data of subject i where

D is the number of channels (electrodes, so D = 64) and T is the number of time samples

(on average for each clip, T = 33280). To derive engagement from a group of N subjects,

form aggregated matrices X1,X2 as follows:

X1 =
[

X(1) X(1) · · · X(1) X(2) X(2) · · · X(N−2) X(N−2) X(N−1)
]

(6.1)

X2 =
[

X(2) X(3) · · · X(N) X(3) X(4) · · · X(N−1) X(N) X(N)
]

(6.2)

That is, columns of X1,X2 correspond to
(

N
2

)

combinations of pairs of subjects. There-

fore, X1,X2 ∈ R
D×(N

2
)T . We wish to find a weight vector w ∈ R

D such that the Pearson

product-moment correlation coefficient between Y1 = XT
1 w and Y2 = XT

2 w is highest,

that is:

w = argmax
w

YT
1 Y2

‖Y1‖‖Y2‖
(6.3)

After differentiating, w can be found by solving a generalized eigenvalue problem, fol-

lowing the full derivation in [Dmochowski et al., 2012]. As such, there are multiple solutions.

The weight vector w that maximizes the correlation coefficient between Y1 and Y2 corre-

sponds to the largest eigenvalue, and similarly for the second, third, etc. We take the three

weight vectors corresponding to the three largest eigenvalues (i.e., the three strongest cor-

relations) and compute correlations between EEG data after applying these weight vectors.

We refer to the results (i.e., correlations) computed from the weight vectors as components

1, 2, 3 (corresponding to the largest eigenvalues and descending).

We can compute correlation at a finer time granularity and determine significance by

computing Pearson correlation between corresponding 5-second EEG segments (across sub-

jects for a given clip) at 1-second intervals. To determine significance, a permutation test

[Fisher, 1935] is applied by splitting the EEG data into 5-second non-overlapping windows,

randomly shuffling and taking the correlation at p = 0.05 (Bonferroni corrected). An ex-

ample of inter-subject correlations for a video clip for 3 components and its significance

threshold is shown in Figure 6.5.
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Figure 6.5: Inter-subject correlation for a video clip for three components (blue line), as

computed according to [Dmochowski et al., 2012]. The red line is the significance threshold.

To summarize, for each clip, the method of [Dmochowski et al., 2012] gives us a correla-

tion coefficient rt,c ∈ [−1, 1] at time sample t and the corresponding correlation coefficient

Rt,c from a permutation test at p = 0.05 (a threshold of significance) for each of the top

three components c. Time samples which have significant correlations are taken as those

times where audiences’ attention is engaged. We transform the coefficients rt,c into a feature

vector of engagement as follows:

et,c = max(rt,c −Rt,c, 0) (6.4)

Because insignificant correlations all equate to inattentiveness (as far as we are con-

cerned), we set all values below the significance threshold to zero. Also, as a result of this
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transformation et,c ∈ [0, 1], much like our visual features described in Section 3.3. An ex-

ample of engagement features derived from the corresponding EEG components shown in

Figure 6.5 is shown in Figure 6.6.
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Figure 6.6: Corresponding engagement feature values for each component in Figure 6.5

derived from EEG.

From the weight vector w, we can also compute the scalp projections of the synchro-

nized activity since each weight corresponds to an electrode. This is computed on a per-clip

basis across all subjects. We show representative scalp projections for EEG data collected

during both audible and silent playbacks of three clips in Figure 6.7. In the audible group,

recordings near the visual cortex are given more weight in the first component. This sim-

ply implies that subjects are attentively watching the videos. In the second component,

it appears that more weight is given in regions near the prefrontal cortex. As this region

of the brain is normally associated with executive function and decision making, one pos-

sible implication is that subjects are judging the speakers. The scalp projections for the

corresponding clips during silent playback are more difficult to interpret as they are more
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varied. One possible explanation for this is that in the absence of audio, subjects did not

pay attention. This is consistent with feedback from subjects after the experiment, who

stated that they were “confused” about what to do during the silent videos clips. After all,

the main appeal of a political debate are the words of the candidates. Interpretations for

the third component are unclear at this time and we leave that for future work.

Audible, Components 1 to 3 Silent, Components 1 to 3

Clip 1

C1 C2 C3 C1 C2 C3

Clip 2

C1 C2 C3 C1 C2 C3

Clip 3

C1 C2 C3 C1 C2 C3

Figure 6.7: Scalp projections showing weights given to EEG channels (electrodes) in order

to produce the maximally correlated components. The weights are for all subjects for each

of three video clips—one on each row—for each audio mode.

6.2.2 Correlating Gestures Against Engagement

For both of the silent and audible versions of each clip and each one of the five subject groups,

we now have three components of engagement features derived from EEG data. We can also

compute three types of gesture attributes for the clip: velocity, direction change, extremal

pose, each computed according to Section 3.3. All of these features are time-synced. The

visual features are computed at 12 Hz, so the engagement features (EEG) which were

originally derived at 1 Hz must also be upsampled to 12 Hz by linear interpolation. To

summarize, for each of the 28 video clips originally selected, we have the following feature

vectors:

• 3 gesture attributes: velocity, direction change, extremal pose.



CHAPTER 6. CORRELATING GESTURES WITH EEG 91

• 30 engagement features: 5 subject groups (all, Democrats, Republicans, females,

males) × 2 audio modes (silent, audible) × 3 components of EEG-derived engagement

features.

We now wish to find the correlations between the gesture attributes and the engagement

features. These are usually computed on a per-clip basis, but to compute the correlations,

we concatenate the vectors for all clips.

Because we do not hypothesize that there is a direct correlation between the exact

magnitude of the gesture attributes and the “level” of engagement (i.e., magnitude of the

engagement feature)—that is, there is no reason a slightly more emphatic gesture should

result in slightly more engagement—we choose a correlation measure that is less dependent

on magnitude. Therefore, instead of Pearson product-moment correlation, we use Spearman

rank correlation.

Suppose have two sets of values which we wish to correlate: xi ∈ X, yi ∈ Y with

means x̄, ȳ, and ri, si are the ranks of xi, yi in X,Y respectively. We give the formulas for

Pearson correlation r and Spearman correlation ρ in Equations 6.5 and 6.6 respectively.

Since Spearman uses ranks and not the exact values, the effects of extremely large or small

values on the final correlation is mitigated.

r =

∑n
i=1 (xi − x̄) (yi − ȳ)

√

∑n
i=1 (xi − x̄)2

√

∑n
i=1 (yi − ȳ)2

(6.5)

ρ =

∑n
i=1 (ri − r̄) (si − s̄)

√

∑n
i=1 (ri − r̄)2

√

∑n
i=1 (si − s̄)2

(6.6)

In addition to stratifying subjects according to political and gender groups, and audio

mode (i.e., whether or not the video clip was audible or silent), we can also stratify the

videos according to speaker (Obama or Romney), and debate (first or third).

Tables 6.3 to 6.11 show all cases where a statistically significant correlation was found

between a visual feature and an EEG component for the various stratifications by speaker,

debate and subject group. The corresponding correlation coefficient at p = 0.05 (Bonferroni

corrected, assuming 30 hypotheses) is also shown in each table. Observations gained from

these results are discussed in Section 6.3.
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Subjects Audio Mode ρ Gesture EEG Comp ρ at p = 0.05

All
Audible 0.098 Dir Change 1 0.095

Silent 0.083 Velocity 2 0.073

Democrats Audible 0.135 Extremal 1 0.129

Table 6.3: Statistically significant Spearman rank correlations ρ between gesture attributes

and components of engagement features with p < 0.05 (Bonferroni corrected) for all videos

showing Romney or Obama from both the first and third debate. The threshold for statis-

tical significance, i.e., the correlation coefficient ρ at p = 0.05, is given in the last column

for the gesture/engagement pairing.

Subjects Audio Mode ρ Gesture EEG Comp ρ at p = 0.05

Democrats
Audible 0.077 Velocity 1 0.075

Silent 0.167 Extremal 1 0.129

Table 6.4: Statistically significant Spearman rank correlations ρ between gesture attributes

and components of engagement features with p < 0.05 (Bonferroni corrected) for all videos

showing Romney or Obama from only the first debate. The threshold for statistical sig-

nificance, i.e., the correlation coefficient ρ at p = 0.05, is given in the last column for the

gesture/engagement pairing.
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Subjects Audio Mode ρ Gesture EEG Comp ρ at p = 0.05

All

Audible 0.111 Dir Change 1 0.095

Silent

0.105 Velocity 2 0.073

0.103 Dir Change 2 0.09

0.186 Extremal 1 0.123

Republicans
Audible 0.12 Dir Change 1 0.095

Silent 0.229 Extremal 2 0.129

Democrats
Audible 0.172 Extremal 2 0.129

Silent 0.159 Extremal 3 0.129

Females

Audible
0.097 Dir Change 1 0.095

0.144 Dir Change 2 0.09

Silent
0.108 Dir Change 2 0.09

0.165 Extremal 2 0.129

Males

Audible 0.177 Extremal 1 0.134

Silent

0.189 Extremal 1 0.129

0.277 Extremal 2 0.129

0.147 Extremal 3 0.13

Table 6.5: Statistically significant Spearman rank correlations ρ between gesture attributes

and components of engagement features with p < 0.05 (Bonferroni corrected) for all videos

showing Romney or Obama from only the third debate. The threshold for statistical sig-

nificance, i.e., the correlation coefficient ρ at p = 0.05, is given in the last column for the

gesture/engagement pairing.
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Subjects Audio Mode ρ Gesture EEG Comp ρ at p = 0.05

All
Audible 0.112 Dir Change 1 0.095

Silent 0.105 Velocity 2 0.073

Democrats Silent 0.131 Extremal 2 0.129

Males Silent 0.08 Velocity 3 0.071

Table 6.6: Statistically significant Spearman rank correlations ρ between gesture attributes

and components of engagement features with p < 0.05 (Bonferroni corrected) for only

videos showing Obama from both debates. The threshold for statistical significance, i.e., the

correlation coefficient ρ at p = 0.05, is given in the last column for the gesture/engagement

pairing.

Subjects Audio Mode ρ Gesture EEG Comp ρ at p = 0.05

Democrats Silent 0.136 Extremal 1 0.129

Table 6.7: Statistically significant Spearman rank correlations ρ between gesture attributes

and components of engagement features with p < 0.05 (Bonferroni corrected) for only videos

showing Obama from only the first debate. The threshold for statistical significance, i.e., the

correlation coefficient ρ at p = 0.05, is given in the last column for the gesture/engagement

pairing.
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Subjects Audio Mode ρ Gesture EEG Comp ρ at p = 0.05

All

Audible 0.183 Dir Change 1 0.095

Silent

0.101 Velocity 2 0.073

0.131 Dir Change 2 0.09

0.213 Extremal 1 0.129

0.139 Extremal 3 0.13

Republicans
Audible

0.153 Dir Change 1 0.095

0.11 Dir Change 2 0.09

0.098 Dir Change 3 0.088

Silent 0.296 Extremal 2 0.129

Democrats

Audible 0.188 Extremal 3 0.129

Silent

0.112 Dir Change 1 0.095

0.232 Extremal 1 0.129

0.295 Extremal 2 0.129

Females

Audible

0.137 Dir Change 1 0.095

0.186 Dir Change 2 0.09

0.095 Dir Change 3 0.088

Silent
0.31 Extremal 2 0.129

0.164 Extremal 3 0.13

Males Silent

0.267 Extremal 1 0.129

0.241 Extremal 2 0.129

0.21 Extremal 3 0.13

Table 6.8: Statistically significant Spearman rank correlations ρ between gesture attributes

and components of engagement features with p < 0.05 (Bonferroni corrected) for only

videos showing Obama from only the third debate. The threshold for statistical signifi-

cance, i.e., the correlation coefficient ρ at p = 0.05, is given in the last column for the

gesture/engagement pairing.
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Subjects Audio Mode ρ Gesture EEG Comp ρ at p = 0.05

All

Audible 0.149 Extremal 1 0.134

Silent

0.081 Velocity 1 0.075

0.159 Dir Change 1 0.095

0.144 Extremal 1 0.129

0.159 Extremal 2 0.129

Republicans

Audible 0.097 Dir Change 2 0.09

Silent
0.078 Velocity 1 0.075

0.104 Dir Change 1 0.095

Democrats Silent

0.089 Velocity 1 0.075

0.185 Dir Change 1 0.095

0.161 Extremal 1 0.129

Females Silent 0.137 Extremal 2 0.129

Males
Audible 0.136 Extremal 1 0.134

Silent 0.163 Extremal 2 0.129

Table 6.9: Statistically significant Spearman rank correlations ρ between gesture attributes

and components of engagement features with p < 0.05 (Bonferroni corrected) for only videos

showing Romney from both debates. The threshold for statistical significance, i.e., the

correlation coefficient ρ at p = 0.05, is given in the last column for the gesture/engagement

pairing.
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Subjects Audio Mode ρ Gesture EEG Comp ρ at p = 0.05

All Silent

0.086 Velocity 1 0.075

0.18 Dir Change 1 0.095

0.152 Extremal 1 0.129

0.137 Extremal 2 0.129

Republicans
Audible

0.116 Dir Change 2 0.09

0.147 Extremal 1 0.134

Silent 0.125 Dir Change 1 0.095

Democrats Silent

0.094 Velocity 1 0.075

0.218 Dir Change 1 0.095

0.222 Extremal 1 0.129

Females Silent
0.145 Extremal 2 0.129

0.16 Extremal 3 0.13

Males

Audible
0.109 Dir Change 1 0.095

0.222 Extremal 2 0.129

Silent

0.075 Velocity 2 0.073

0.119 Dir Change 2 0.09

0.193 Extremal 1 0.129

Table 6.10: Statistically significant Spearman rank correlations ρ between gesture attributes

and components of engagement features with p < 0.05 (Bonferroni corrected) for only

videos showing Romney from only the first debate. The threshold for statistical signifi-

cance, i.e., the correlation coefficient ρ at p = 0.05, is given in the last column for the

gesture/engagement pairing.
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Subjects Audio Mode ρ Gesture EEG Comp ρ at p = 0.05

All

Audible

0.118 Velocity 3 0.077

0.228 Dir Change 3 0.088

0.19 Extremal 1 0.134

Silent
0.107 Velocity 2 0.073

0.098 Dir Change 1 0.095

Republicans Silent 0.242 Extremal 2 0.129

Democrats

Audible
0.094 Dir Change 3 0.088

0.139 Extremal 2 0.129

Silent
0.128 Dir Change 1 0.095

0.218 Extremal 3 0.13

Females Silent
0.085 Velocity 3 0.071

0.174 Dir Change 2 0.09

Males
Audible

0.178 Velocity 2 0.076

0.208 Extremal 1 0.134

Silent 0.297 Extremal 2 0.129

Table 6.11: Statistically significant Spearman rank correlations ρ between gesture attributes

and components of engagement features with p < 0.05 (Bonferroni corrected) for only

videos showing Romney from only the third debate. The threshold for statistical signif-

icance, i.e., the correlation coefficient ρ at p = 0.05, is given in the last column for the

gesture/engagement pairing.
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To determine statistical significance, we take an approach similar to [Dmochowski et al.,

2012]. We perform a permutation test whereby random samples are created by shuffling non-

overlapping 5-second windows of the EEG data and correlating against the visual features

to form the null distribution. An example of the null distribution when the extremal pose

gesture attribute is correlated against randomly shuffled samples of the first component of

engagement features is shown in Figure 6.8.
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Figure 6.8: Distribution of Spearman correlations of the extremal pose gesture attribute

and randomly shuffled engagement features derived from the first component of EEG data

from all subjects from permutation test (i.e., the null distribution). The red arrow points

to the correlation coefficient where p = 0.05, Bonferroni corrected.

6.3 Observations

From these results, we can make the following observations. Despite our best efforts, we

could not account for many of the nuances in political science (e.g., some Republicans may

actually be Libertarian and thus not extremely supportive of Romney), or the inherent

biases in the population from which we selected our subjects, therefore we refrain from

making observations regarding differences between groups of subjects.
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Gestures are significant and may augment speech. Consistent with the main

hypothesis of this thesis, when we examine the data for all subjects and all videos, there

exists a statistically significant correlation between gesture attributes (specifically, direction

change) (from Table 6.3) and audience engagement at ρ = 0.098. Statistically significant

correlations occur between gesture attributes and engagement in other stratifications during

audible playback as well. This demonstrates that gestures may be used to pique audiences’

attention during speech.

Extremal poses and direction change are the most significant gesture at-

tributes we can find. In the majority of the stratifications we examined, the extremal

pose gesture attribute resulted in the highest correlations with engagement followed by di-

rection change, as seen in Table 6.12. In general, one result we can gain from this is advice

to public speakers: it doesn’t matter what kind of gesture you do, but one way to recapture

your audience’s attention is to “break a pattern”, that is, gesture in a way that is different

than your norm.

P
P
P
P
P
P
P
P
P
P
P
PP

Gesture

EEG Comp
1 2 3 Total

Velocity 6 7 3 16

Dir Change 18 10 4 32

Extremal 19 18 8 45

Total 43 35 15

Table 6.12: Frequency at which a gesture/engagement correlation was statistically signifi-

cant across all stratifications.

The first and second components of the engagement features drives corre-

lation. In the majority of the stratifications we examined, engagement features derived

from the first component of EEG data resulted in the strongest correlations, followed by

the second component, as seen in Table 6.12. Since the first and second components should

correspond to highest and second-highest amounts of variance in the EEG data respectively,

this result is consistent. This is also consistent with the results of [Dmochowski et al., 2012].
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People don’t pay attention to political debates when there is no sound. The

original goal of having subjects watch clips without sound was to use those results as a

control. However, it appears that without sound, subjects simply stopped paying attention.

As previously mentioned in Section 6.2.1 and Figure 6.7, the first component of the scalp

projections for subjects watching audible clips shows higher weights around the visual cor-

tex, while the scalp projections for the silent clips appear to be less focused. It is certainly

encouraging to see that, for the most part, people watch debates to listen to what the

candidates have to say.

Obama did not engage the audience through gesture in the first debate,

whereas Romney did so in both debates. This is consistent with bipartisan reports

that Obama “lost” the first debate and lacked energy [Landler and Baker, 2012]. As can

be seen in Table 6.7, only a single stratification showed statistically significant correlations

between gesture and audience engagement. However, Obama recovered in his third debate,

with many significant correlations, as seen in Table 6.8. Romney, on the other hand, hand

many significant correlations in both the first and third debates (Tables 6.10 and 6.11,

respectively).
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Chapter 7

Conclusion

Psychologists and linguists have long observed the importance of gestures in communication.

We studied this relationship by taking a more quantitative approach and sought to find

an application by building tools for automatically extracting gesture attributes and using

them as an index for video browsing to aid users in finding interesting segments faster.

We examined the relationship between speaker gestures and audience in greater detail by

examining specific gesture attributes and correlating against several different measures of

audience engagement.

7.1 Contributions

In this thesis we have built an argument for using speaker gestures as an index for semantic

video browsers to help audiences locate points of interest in video. We have explored the

feasibility of this in the domains of educational lectures and political debates, and introduced

computer vision methods and user interface elements for integrating gesture features into

semantic video browsers.

We have introduced a number of novel methods for recognizing and extracting poses of

interest and gesture attributes from video. We presented a joint-angle descriptor derived

from an automatic upper body pose estimation framework to train an SVM in order to

classify extracted video frames in the educational lectures domain. Cross validation on the

ground-truth data showed classifier F-scores of 0.54 and 0.39 for point and spread poses.
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We also extended this work into a gesture attribute with measured arm gesture variance.

We have also presented a method for tracking hands which can distinguish when left and

right hands are clasping, and tracks their positions by propagating tracking information from

anchor frames in video. The method performs better than baseline on recall (0.66 vs. 0.53)

without sacrificing precision (0.65 for both) when recognizing clasping hands. Its tracking

efficacy also shows an improvement over baseline (F-score of 0.59 vs. 0.48 baseline). We

applied this method toward the extraction of gesture attributes such as velocity, direction

change and extremal pose.

We have developed a tool for the manual annotation of gestures, a taxonomy of gestures

in lecture videos which introduces a new class of pedagogic gestures which appear to corre-

spond to semantically significant segments of a lecture, and presented a manual analysis of

gestures in lecture videos. These inspired later work such as focusing on gesture attributes

(e.g., how unusual a gesture is) instead of specific gestures (e.g., is it wave).

Toward the goal of correlating gestures with engagement, we began by attempting to

find correlations between gesture attributes and indirect measures of engagement as derived

from parts of speech. We demonstrated this by building an AdaBoost-based binary classifier

which uses decision trees as weak learners. It classifies videos according to whether its speech

content contains conjunctions of interest using the angular variance of arm movements as

a feature. We show that training on the set of all conjunctions produces a classifier that

performs no better than chance, but that training on sets of conjunctions indicating contrast

are capable of achieving 55% accuracy on a balanced test set.

We also performed user studies in order to experiment with interface elements for pre-

senting gesture attribute information, as well as to gather feedback on what types of ges-

tures pique subjects’ interest. Subjects indicated that the interface elements we proposed—

gesture attribute graph and emphasized subtitles—were helpful for the task of providing

keyword summaries under time constraints. Subjects’ summary keywords are also compared

to an independent ground-truth, resulting in precisions from 0.50–0.55 even when given less

than half real time to view the video.

Finally, we built on the results and feedback of earlier work and conclude our argument

by correlating gesture attributes extracted from speakers in the domain of political debates
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against engagement features derived from EEG recorded from 20 subjects watching clips

of the 2012 U.S. Presidential Debates. We identified a gesture attribute, namely extremal

pose, which seems to drive correlation against engagement in a majority of cases. We also

identified statistically significant correlations between gesture attributes and engagement for

all subjects watching all videos with sound (Spearman correlation ρ = 0.098 with p < 0.05

with Bonferroni correction) and significant correlations for some subgroups both with and

without sound, with correlations going as high as 0.297 (p < 0.05, Bonferroni corrected).

From these results, we conclude the importance of gesture in engaging audiences, and its

feasibility as an index for video browsing.

7.2 Future Work

We identify a number of areas for future work, which include the development of better vi-

sual features and the identification of other multimedia features which correlate to moments

of engagement (such as those determined through EEG). Some specific ideas for possible

future work as listed as follows.

1. Alternate user interface elements. In Chapter 5, we explored two methods for

presenting gesture information in video to viewers. The first, a gesture attribute

graph, is fairly straightforward. The second, emphasized subtitles, augments subtitles

with gesture attribute information. A plethora of other options exist which remain to

be explored. In the most basic sense, a quantized form of the gesture attribute graph

(i.e., instead of showing a graph of all values, we first quantize, perhaps binarize,

the value) may reveal itself to be more helpful to users by reducing opportunities for

confusion. More complex interface options include letting users search for poses or

gestures (e.g., search for where an instructor is pointing to the board).

2. Better gesture representation. In this thesis, we assumed the multi-phasic gesture

model of [Kendon, 1980] which allowed us to represent a gesture by its stroke pose.

A more complex representation could capture motions and other temporal motion

and lead to other gesture attributes. However, the challenge of segmenting gestures

temporally still remains an unsolved problem, due to its open-ended nature. That
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is, even human experts cannot agree when a gesture begins and ends. Furthermore,

most of our representations here are in 2D (e.g., the poses estimated using [Ferrari et

al., 2008]). Being able to represent poses in 3D could also lead to more descriptive

attributes. To accomplish this, a 3D dataset collected through tools such as the

Microsoft Kinect1 or the Thalmic Labs Myo2 would be most helpful.

3. More gesture attributes. In this thesis, we closely examined three automatically

extracted gesture attributes against audience engagement. Specifically: velocity, di-

rection change and extremal pose. While we found interesting results, particularly

with regard to extremal pose, we do not claim that these span the breadth of human

gesture. Indeed our attributes were limited to those which could be derived solely

from hand positions. Other possible attributes include: hand poses (e.g., the shape

of the hand—is it pointing, in a fist, an open palm, etc.), body orientation, and head

movements (e.g., head shaking, nodding, etc.).

4. Study how words co-occur with gesture and engagement. Some words may

naturally co-occur with gesture and catch audiences’ attention. We attempted a

preliminary study of this but we were limited by the dearth of data, and therefore

observations are far from conclusive. We examined temporally-aligned words in the

presidential debates and their corresponding segments (within a 5-second window)

of Spearman correlations between extremal pose and engagement, and we plotted

these values in histograms for words with at least 15 occurrences. The results are

shown in Figure 7.1. Clearly the amount of data is insufficient for any conclusions,

but do suggest potentially interesting results. Particularly, the words business and

(interest) rate, which are very politically charged, appear to have a skewed distribution

of correlation coefficients—and interestingly, both are negative. An interpretation

remains for future work.

5. How other modalities correlate with engagement. We have collected an in-

teresting dataset of audience engagement as measured through neural activity. Nat-

1Microsoft Kinect, http://www.xbox.com/KINECT.

2Thalmic Labs Myo, https://www.thalmic.com/myo/.
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Figure 7.1: Co-occurrences of specific words and speaker gestures and audience engagement.

The histograms show the correlation coefficients between extremal pose and engagement

features which co-occurred within a 5-second window of a specific word (the word stem is

shown).

urally, it would be interesting to see what other features beyond gesture may elicit

audiences’ attention. Our related work chapter discussed previous work which demon-

strated the multi-modal nature of gestures and how speech may affect engagement

(e.g., [Eisenstein and Davis, 2006; Kettebekov et al., 2003; Grosz and Sidner, 1986;

Watanabe et al., 2007]). Our dataset offers an opportunity to study other features

against engagement in a quantitative way. Examining how low-level audio features

may correlate with engagement is one obvious direction for future work.

6. Application to other domains. For simplicity, we restricted our work to two

domains: educational lectures and political debates. It would be interesting to expand

this work to other domains, or even the general case. Most of the challenges in doing

so lie in computer vision: i.e., how to recognize 3D poses and gestures in people under

difficult conditions such as heavy occlusion, poor lighting, high movement, and large

variation in appearance.
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