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ABSTRACT

The practical question of whether the classical spectral transform method, widely used in atmospheric modeling,
can be efficiently implemented on inexpensive commodity clusters is addressed. Typically, such clusters have
limited cache and memory sizes. To demonstrate that these limitations can be overcome, the authors have built
a spherical general circulation model dynamical core, called BOB (‘‘Built on Beowulf’’), which can solve either
the shallow water equations or the atmospheric primitive equations in pressure coordinates.

That BOB is targeted for computing at high resolution on modestly sized and priced commodity clusters is
reflected in four areas of its design. First, the associated Legendre polynomials (ALPs) are computed ‘‘on the
fly’’ using a stable and accurate recursion relation. Second, an identity is employed that eliminates the storage
of the derivatives of the ALPs. Both of these algorithmic choices reduce the memory footprint and memory
bandwidth requirements of the spectral transform. Third, a cache-blocked and unrolled Legendre transform
achieves a high performance level that resists deterioration as resolution is increased. Finally, the parallel
implementation of BOB is transposition-based, employing load-balanced, one-dimensional decompositions in
both latitude and wavenumber.

A number of standard tests is used to compare BOB’s performance to two well-known codes—the Parallel
Spectral Transform Shallow Water Model (PSTSWM) and the dynamical core of NCAR’s Community Climate
Model CCM3. Compared to PSTSWM, BOB shows better timing results, particularly at the higher resolutions
where cache effects become important. BOB also shows better performance in its comparison with CCM3’s
dynamical core. With 16 processors, at a triangular spectral truncation of T85, it is roughly five times faster
when computing the solution to the standard Held–Suarez test case, which involves 18 levels in the vertical.
BOB also shows a significantly smaller memory footprint in these comparison tests.

1. Introduction

With the surge in interest in commodity computing
clusters, it is natural to examine the utility of these
clusters as computing engines for atmospheric general
circulation models. Local methods, such as finite dif-
ference and spectral elements, have been proposed as
alternatives to more traditional spherical harmonic
transform–based methods for multiple parallel proces-
sors (MPPs). These methods appear attractive because
they have regular memory access patterns and nearest
neighbor communication requirements perhaps better
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suited to low-cost cluster computing. In practice, how-
ever, one finds that these advantages hold true only for
explicit time integration, which must take a restrictively
small time step because of gravity waves. Semi-implicit
time integration can relax this constraint, but requires
the introduction of iterative elliptic solvers. In turn,
these solvers are communication-intensive and typically
do not scale very well. In contrast, although spherical
harmonic–based dynamics have undesirable nonlocal
transform properties, the semi-implicit formulation in-
volves only trivial local operations on the spectral co-
efficients.

Because of these ambiguities, it is important to un-
derstand the limits of performance of the spherical har-
monic transform method on clusters. Further, this meth-
od remains widely used in the dynamics of important
climate models (Acker et al. 1996) and global fore-
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casting systems (Barros et al. 1995). Previous investi-
gations of these methods have focused on the parallel
aspects of either shared memory vector implementations
(Gärtel et al. 1995), or on the details of distributed mem-
ory implementations on MPPs (Foster and Worley 1994;
Dent et al. 1995; Hammond et al. 1995). Perhaps be-
cause of the communications requirements of transpo-
sition-based message passing implementations, and the
poor capabilities of commodity interconnect fabrics un-
til quite recently, little attention has been paid to study-
ing the spherical harmonic transform method on com-
modity clusters.

In this paper we present the new implementation of
a general circulation model dynamical core, called BOB
(standing for ‘‘Built on Beowulf’’), based on the spher-
ical harmonic transform method, and designed specifi-
cally for use on inexpensive commodity clusters, such
as the one described later, which might be readily ac-
quired by a university department or small research
group. BOB comes in two versions: one solving the
shallow water equations, the other solving the atmo-
spheric primitive equations in pressure coordinates. Our
objective is to demonstrate that it is possible to imple-
ment the spectral transform technique effectively on
commodity clusters, and thus create a useful and in-
expensive research tool for scientists in the atmospheric
and related sciences.

Specifically, the commodity cluster used in this study
is located at the National Center for Atmospheric Re-
search (NCAR). It consists of eight dual-processor
nodes, each node with 512 Mbytes of onboard dynamic
random access memory (DRAM). The processors are
450-MHz Intel Pentium IIs, each with a 512-kbyte level
2 (L2) cache and mounted in a BX motherboard capable
of achieving local memory (STREAMS) bandwidths
ranging from 537 Mbytes s21 for L2 resident (64 kbytes)
copies to 295 Mbytes s21 for large copies asymptoti-
cally. The nodes are interconnected by a Myrinet net-
work employing an eight-port switch. This network has
a measured, software level point-to-point message pass-
ing interface (MPI) latency of 24 microseconds and an
overall bisection bandwidth of 184 Mbytes s21. The OS
is a Linux kernel, version 2.2.12, and MPICH version
1.1.2.13, a portable MPI standard, is used. The codes
are compiled under version 3.1-2 of the Portland Group
FORTRAN 77 (F77) compiler (using the compilation
flags -O2 -Munroll 5 c:8, n:8 -Mdalign -r8, unless stated
otherwise in the text).

This NCAR cluster was purchased in 1999 from a
system integrator for approximately $55,000. Although
far cheaper than comparably sized custom ‘‘supercom-
puter’’ solutions, such Pentium-based clusters have rel-
atively small L2 caches, small amounts of onboard
memory, and relatively low local memory and inter-
connect bandwidths. To efficiently exploit such systems,
spectral general circulation models must be carefully
designed to minimize local memory accesses and remote
network traffic.

The implementation specifics of BOB include a one-
dimensional decomposition and transposition method
insuring load balancing among processes, a cache-
blocked implementation of the Legendre transform, as
well as standard microprocessor optimization tech-
niques such as loop unrolling and registerization. In
addition, the coefficients for the Legendre transforms
are computed ‘‘on the fly;’’ this reduces memory traffic
and produces low memory footprints and thus enables
high-resolution calculations on relatively inexpensive
small memory machines.

The paper is organized as follows. In section 2 we
present the shallow water model version of BOB,
which we refer to as SWBOB. We first review the
vorticity/divergence formulation proposed by Jakob
(1993) and then describe the details of the numerical
implementation of the Fourier–Legendre transforms,
as well as the single processor optimizations and the
parallel load balancing strategy that enables BOB to
run effectively. We then compare SWBOB with the
Parallel Spectral Transform Shallow Water Model
(PSTSWM; Worley and Toonen 1995), a message-
passing benchmark code for the shallow water equa-
tions. In section 3, the primitive-equation version of
BOB, designated as PEBOB, is presented and, after
delineating the treatment of the vertical coupling
terms, we compare PEBOB with the dynamical core
of the NCAR Community Climate Model (CCM3;
Kiehl et al. 1996).

We show that BOB is faster than the comparison
codes for both the shallow water and primitive equa-
tions, for tests up to a resolution of T341. We also show
that SWBOB has a smaller memory footprint than
PSTSWM at high resolution (no easy way to compare
the memory footprints of PEBOB and CCM3 was avail-
able to us). Hence, we effectively demonstrate that, at
least within the context of global atmospheric dynamics,
one can efficiently implement the spherical harmonic
transform technique on inexpensive commodity parallel
computers.

2. The shallow water model

a. The algorithm

The spherical shallow water equations, formulated in
terms of the absolute vorticity h, the divergence d, and
the geopotential F [ 1 F9 (where is the constantF F
global average of F), are given by

]h 1 ]A 1 ]B
5 2 2 ,

2]t a(1 2 m ) ]l a ]m

]d 1 ]B 1 ]A
2 25 2 2 ¹ F9 2 ¹ E, and

2]t a(1 2 m ) ]l a ]m

]F9 1 ]C 1 ]D
5 2 2 2 Fd, (1)

2]t a(1 2 m ) ]l a ]m



1386 VOLUME 130M O N T H L Y W E A T H E R R E V I E W

where m 5 sinu and u is the latitude, l the longitude,
and a the planetary radius. The non-linear terms on the
right-hand side are given by

A 5 Uh, B 5 Vh, C 5 UF9,
2 2U 1 V

D 5 VF9, and E 5 ,
22(1 2 m )

with U [ u cosu and V [ y cosu, u and y being the
zonal and meridional velocity components, respectively.
The system is closed by using Helmoltz’s theorem

V 5 k 3 =c 1 =x, (2)

in which the velocity vector V [ (u, y) is decomposed
in terms of the streamfunction c and the velocity po-
tential x. These are related to the prognostic variables
h and d by h 5 ¹2c 1 f and d 5 ¹2x, where f 5
2V sinu is the Coriolis parameter, and V the planetary
rotation rate.

The set (1) is transformed into ODEs for the spherical
harmonic coefficients of h, d, and F9, by first Fourier
transforming in longitude. This discrete Fourier trans-
form is defined, for an arbitrary field j, by

I1
m 2imlij (m) 5 j(l , m)e , (3)O iI i51

where I is the number of grid points in the zonal di-
rection, located at longitudes l i, and m is the Fourier
wavenumber. The zonal derivatives in (1) are evaluated
using integration by parts and using longitudinal peri-
odic boundary conditions to eliminate the surface term.

The Legendre transformation proceeds in a similar
fashion. Again, for an arbitrary field j, the Fourier–
Legendre spectral coefficients are given by

1

m m mj 5 j (m)P (m) dm, (4)n E n

21

where (m) are the associated Legendre functions. ThismPn

expression is numerically evaluated using Gaussian
quadratures

J

m m mj 5 j (m )P (m )w , (5)On j n j j
j51

where wj are the Gaussian weights at the latitudes m j,
and are given by

22(1 2 m )j
w 5 , (6)j 2[JP (m )]J21 j

where Pn is the Legendre polynomial of degree n, and
J is the number of pole-to-pole Gaussian latitudes.

Assuming that j m(m) vanishes at the poles, the me-
ridional derivatives on the right-hand side of (1) can be
integrated by parts to yield

m 1 m]j ]j (m)
m5 P (m) dm (7)E n1 2]m ]m

21n

1 dm
m m5 2 j (m)H (m) , (8)E n 21 2 m

21

where (m) is defined asmH n

m]Pnm 2H (m) 5 (1 2 m ) (m).n ]m

Combining the discrete Fourier and Legendre trans-
forms, the original shallow water equations (1) be-
come

Jmdhn m m m m5 [2imA (m )P (m ) 1 B (m )H (m )]O j n j j n jdt j51

wj
3

2a(1 2 m )j

Jm wdd jn m m m m5 [imB (m )P (m ) 1 A (m )H (m )]O j n j j n j 2dt a(1 2 m )j51 j

Jn(n 1 1)
m m m1 E (m )P (m )w 1 F9O j n j j n2 [ ]a j51

JmdF9n m m m m5 [2imC (m )P (m ) 1 D (m )H (m )]O j n j j n jdt j51

wj m3 2 Fd .n2a(1 2 m )j

(9)

Before numerically evaluating the right-hand side of (9),
three further manipulations can be performed in order
to substantially reduce the number of operations and
storage costs.

The first is widely used, and exploits the inherent
hemispherical symmetry of the associated Legendre
polynomials

m n m m1P (2m) 5 (21) P (m).n n

This means that the spectral coefficients can be eval-mjn

uated by summing over only half the J range
J

m m mj 5 j (m )P (m )wOn j n j j
J51

J /2

m m m m5 [j (m ) 1 sgn j (m )]P (m )w , (10)O j n J112j n j j
J51

where

1 for n 2 |m | even
msgn [ (11)n 521 for n 2 |m | odd.

This manipulation results in saving a factor of 2 in both
storage and floating point operations.

The second manipulation of (9), originally proposed
by Temperton (1991) and implemented in the vorticity/
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divergence formulation by Jakob (1993), involves re-
placing the scalar derivative of the associated Legendre

polynomials (m) with terms involving (m) andm mH Pn n11

(m), using the relationshipmPn21

m m m m2ne P (m) 1 (n 1 1)e P (m) for n . m,n11 n11 n n21mH (m) 5 (12)n m m52ne P (m) for n 5 m,n11 n11

where is given bymen

2 2n 2 m
me 5 . (13)n 2!4n 2 1

Defining the spectral coefficients of the nonlinear
terms as

J wjm m mA [ A (m ) P (m ),On j n j2[ ]a(1 2 m )j51 j

J wjm m mB [ B (m ) P (m ),On j n j2[ ]a(1 2 m )j51 j

J wjm m mC [ C (m ) P (m ),On j n j2[ ]a(1 2 m )j51 j

J wjm m mD [ D (m ) P (m ), andOn j n j2[ ]a(1 2 m )j51 j

J

m m mE [ [E (m )w ]P (m ), (14)On j j n j
j51

[which are in practice evaluated using the symmetry
property formulation described in (10) above], and using
the relation (12) to eliminate (m), the system (9) formH n

the spectral coefficients becomes

mdh n m m m m m5 2imA 2 ne B 1 (n 1 1)e Bn n11 n11 n n21dt
m dd n(n 1 1)n m m m m m m m5 imB 2 ne A 1 (n 1 1)e A 1 F9 1 E for n . m, andn n11 n11 n n21 n n2dt a
mdF9n m m m m m m 5 2imC 2 ne D 1 (n 1 1)e D 2 Fdn n11 n11 n n21 ndt 

mdh n m m m5 2imA 2 ne Bn n11 n11dt
m dd n(n 1 1)n m m m m m5 imB 2 ne A 1 F9 1 E for n 5 m.n n11 n11 n n2dt a
mdF9n m m m m 5 2imC 2 ne D 2 Fdn n11 n11 ndt 

The elimination of (mj) further reduces by a factormH n

of 2 the storage requirements of the associated Legendre
polynomials. In addition, a more subtle advantage of
using (12) is the opportunity for good cache reuse of

(m j) that the simplified Gaussian quadratures refor-mPn

mulation (14) provides. If the evaluation of these quad-
ratures is done in a single loop, the values of (m j)mPn

need only to be loaded into memory once to perform
five transforms.

It should be noted that elimination of (mj) onlymH n

increases the computational complexity of a transform
by O(N 2), N being the wavenumber truncation value.

This is because the derivative calculation is performed
as a simple finite difference operation on spectral co-
efficients, and because one additional spectral coeffi-
cient must be computed for each wavenumber value.
Since the complexity of the overall algorithm is O(N 3),
the effect of this added complexity is negligible, es-
pecially at high resolution.

The third manipulation is related to the storage re-
quired for the associated Legendre functions (m j),mPn

which grow like N 3. This implies that, at a truncation
of about N . 100, the associated Legendre polynomial
coefficient array will exceed the size of a typical present-
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day cache, and at about N . 1000, the array storage
requirements will exceed 1 Gbyte. Storing and using
such large arrays not only consumes memory, but is
also highly inefficient when computing with a scarce
memory bandwidth. Ideally, one would like to find a
way to control this N 3 growth.

One solution is to avoid storing the (m j) and simplymPn

recompute them on the fly, as needed. While this might
seem, prima facie, prohibitively time consuming, it turns
out to be remarkably efficient, provided one uses the
simple recurrence relation

m11 m21P (m) 5 (n 1 m)(n 1 m 2 1)P (m)n11 n21

m212 (n 2 m 1 1)(n 2 m 1 2)P (m)n11

m111 P (m) (15)n21

to compute the associated Legendre functions, as dis-
cussed by Swarztrauber (1993).

There are several important observations regarding
this recurrence relation that are key to its utility. First,
it exhibits extraordinary numerical stability. For ex-
ample, with a triangular spectral truncation with N 5
1023 (commonly referred to as T1023), the orthonor-
mality of the associated Legendre polynomials is still
satisfied to 1 part in 1012. Second, the coefficients of
the recurrence relation are independent of m and can
easily be computed in advance, requiring only order N 2

storage. Likewise, the storage requirement of the pre-
computed values of (mj) needed to start the recurrencemPn

is also of order N 2 (the recurrence requires all n and all
mj and just two rows of m). Finally, although the re-
currence requires four floating point operations and
three loads per coefficient for each (m j), these valuesmPn

can be reused five times for the shallow water equations
to perform 24 floating point operations. Thus, remark-
ably, this on the fly method adds a mere 16% overhead
to the cost of computing the quadratures. More impor-
tantly for reduced instruction set computing (RISC) sys-
tems, the three values of (mj) required in (15) aremPn

likely to be cache resident because of the very small
size of the Legendre polynomial working set.

Our method is completed by the quadratures that con-
vert the spectral coefficients back into Fourier ones via

N(m)

m m mh (m ) 5 h P (m ),Oj n n j
n5m

N(m)

m m md (m ) 5 d P (m ),Oj n n j
n5m

N(m)

m m mF9 (m ) 5 F9 P (m ),Oj n n j
n5m

N(m)11

m m mU (m ) 5 a P (m ), andOj n n j
n5m

N(m)11

m m mV (m ) 5 b P (m ), (16)Oj n n j
n5m

which are again evaluated taking advantage of the hemi-
spherical symmetry of (m) (Jakob 1993). In the lastmPn

two equations in (16), and are computed fromm ma bn n

the spectral coefficients of the streamfunction and of the
velocity potential, and respectively, usingm mc xn n

mimx m # n # N(m)n
m m ma 5 2(n 1 2)e c n # N(m) 2 1n n11 n11

m m1(n 2 1)e c n $ m 1 1, and n n21

mimc m # n # N(m)n
m m mb 5 1(n 1 2)e x n # N(m) 2 1n n11 n11

m m2(n 2 1)e x n $ m 11. n n21

And, lastly, the spectral coefficients of the streamfunc-
tion and the velocity potential themselves are obtained
from the spectral coefficients of the vorticity and the
divergence,

2 2a a
m m m mc 5 2 z , and x 5 2 d .n n n nn(n 1 1) n(n 1 1)

This set of equations allows one to go from the physical
Gaussian grid (where nonlinear terms are computed) to
spectral space (where derivatives are computed and time
steps are taken) and back.

Time stepping is done semi-implicitly using a classic
leapfrog scheme with a Robert–Asselin filter.

b. The implementation

Having detailed the algorithm, we now describe the
single processor optimization and parallel implemen-
tation of the SWBOB model. For simplicity we have
coded SWBOB using the FORTRAN 77 subset of FOR-
TRAN 90 together with MPI for interprocessor com-
munications. We have avoided FORTRAN 90 features
such as dynamic memory allocation and array syntax
notation because these features have introduced perfor-
mance problems in the past.

Our parallel implementation of the spherical har-
monic transform algorithm is very similar to those of
Worley and Toonen (1995) and Dent (1993). It consists
of five basic ‘‘phases’’:

1) local calculations on the Gaussian grid (i.e., con-
struction of the nonlinear terms),

2) local fast Fourier transform,
3) global transposition from latitude to wavenumber de-

compositions,
4) local Legendre transform, and
5) local calculations on the spectral coefficients (e.g.,

the time stepping).

The process is reversed to return to the Gaussian
grid. The distributed memory design of SWBOB is a
standard one-dimensional ‘‘transposition’’ method
(Dent 1993; Loft and Sato 1993; Worley and Toonen
1995), in which a latitude decomposition in physical
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FIG. 1. MFLOPS as a function of resolution on a single PE (all
truncations are triangular). (a) FFT and (b) Legendre transforms.

and Fourier space is followed by transposition of the
fields into a paired longitudinal wavenumber decom-
position, where the Legendre transforms are applied.
Since we use a triangular spectral truncation, the tri-
angular work load of the Legendre transforms must be
load balanced across processors. This is done by pairing
wavenumbers from opposite ends of the spectrum, that
is, if M is the highest wavenumber retained in the trun-
cation, then the pairing (M, 0), (M 2 1, 1), . . . (M/2,
M/2 1 1) is decomposed for M odd, and (M, 0), (M 2
1, 1), . . . (M/2) is decomposed for M even. Odd and
even longitudinal wavenumbers are grouped together in
order to take advantage of the symmetry of the Fourier
basis functions. In order to compute the Legendre poly-
nomials coefficients on the fly using the recurrence re-
lation (15), the paired longitudinal wavenumbers are
then distributed across the processing elements (PEs) in
contiguous blocks of wavenumbers.

We emphasize that, while most previous work has
focused on more highly parallel 2D decompositions
(Foster and Worley 1994), such fine-grain decomposi-
tions require expensive low-latency–high-bandwidth
networks, like the Cray T3E. Our strategy here is dif-
ferent. We are conceding this highly parallel domain,
but wish to focus instead on load-balanced moderately
parallel implementations that have highly optimized sin-
gle processor components.

The two dominant single processor components in
the SWBOB model are the FFTs and the Legendre trans-
forms. We have used the real-to-complex and complex-
to-real discrete Fourier transforms (DFTs) from
FFTPACK1 4.0 (Swarztrauber 1982). Although not
cache optimized, these DFTs are performed on data that
are stored sequentially in memory. Work is in progress
at NCAR on a new DFT library that is expected to
perform at least a factor of 2 better on microprocessors.
Our cache-optimized Legendre transforms have been
written by fusing the loops in equations (14) and (16)
respectively, blocking with respect to latitude index, and
unrolling with respect to complex arithmetic.

The performance of both transforms as a function of
resolution is reported in Fig. 1. The data were obtained
by timing the analysis version of the transforms from
within SWBOB during execution of the shallow water
equations. The results for the FFT correspond to phase
2 in the previous list, and those for the Legendre trans-
forms to phase 4. The million floating point operations
per second (MFLOPS) numbers of Fig. 1 were com-
puted from the ratio of the number of operations used
in each phase to the time spent in the associated sub-
routine. In the case of the FFT, the curve remains very
flat as resolution is increased, although no RISC-specific
cache blocking was implemented. This simply reflects
the fact that the FFTs in SWBOB are one-dimensional

1 FFTPACK is a free, portable library of FORTRAN routines de-
veloped at NCAR and available at http://www.scd.ucar.edu/softlib/
FFTPACK.html

and, at the resolutions tested here, fit easily into the
cache.

In contrast, the nearly flat performance of the Le-
gendre transform is a direct result of our cache-blocked
implementation, since the Legendre transform working
set easily exceeds the cache size at the resolutions we
have tested. The cache-blocking strategy follows stan-
dard RISC optimization techniques (e.g., Anderson et
al. 1998). Specifically, the cache blocking is accom-
plished by restricting the latitude index of the fused
transform loops [Eqs. (14) and (16)], so that each PE
is guaranteed to compute on a working set that fits into
the cache. We have found the optimal blocking size to
be four latitudes; this result was obtained by trial and
error and is, of course, entirely specific to the NCAR
cluster used for this study. The blocking size is in fact
an adjustable parameter, for easy performance tuning
and portability.

We close the discussion of Legendre transform per-
formance with a brief comment on their efficiency on
the Pentium II. The asymptotic data in Fig. 1 represent
a sustained rate of about one-third of peak (roughly 150
out of 450), since the Pentium II cannot perform fused
multiply–adds. These data also include, approximately,
a 16% overhead due to the time spent computing the
associated Legendre polynomials on the fly using (15).
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TABLE 1. Percentage of the time step spent in each of the most
important ‘‘phases.’’

T42 T85 T170 T341

FFT (phase 2)
Transposition (phase 3)
Legendre transform (phase 4)

53%
9%

38%

47%
7%

46%

38%
5%

57%

25%
3%

72%

FIG. 2. The L1 error in the height field for test case 2 of
Williamson et al. (1992).

Thus the performance achieved is actually about 50%
of peak: this is rather good for a processor and memory
system with relatively low SPECfp numbers.2

Finally we note that, in spite of our careful optimi-
zation, the Legendre transforms still comprise the larg-
est portion of the computational task. In order to illus-
trate this, we show in Table 1 the percentage of time
spent in each of the three most important phases as a
function of the spatial resolution. Recall that the Le-
gendre transform is of order N 3 FLOPS, while the FFT
is of order N 2 log(N) FLOPS. As a result, we expect to
see it dominate the transform times at high resolutions,
as Table 1 clearly shows. This is why optimization ef-
forts must be concentrated on the Legendre transform,
and not the FFT, especially at high resolutions.

c. Validation of the implementation

In this section, we present numerical tests that eval-
uate the performance of SWBOB. We use one of the
simplest in the series of test cases proposed by Wil-
liamson et al. (1992), the global steady-state nonlinear
geostrophic flow (test case 2). Physically, this consists
of a steady zonal flow in solid-body rotation, with a
corresponding balanced geopotential field. We use the
exact formulas and parameter values in Williamson et
al. (1992), with a 5 0.

As an illustration, we present the normalized global L1

error in the height field h [ F/g. This error is defined by

I(|h 2 h |)tL 5 ,1 I(|h |)t

where
2p p /21

I(x) 5 x cos(u) du dl,E E4p 0 2p /2

ht is the exact analytic known solution, and h the one
numerically computed. Thus defined, this L1 error is
expected to remain very small during the computation.

Fig. 2 shows this error for a 5-day integration of
SWBOB and STSWM (Hack and Jakob 1992). The
STSWM is the vector code which was used by Jakob
et al. (1993) to compute the reference results for the
shallow water test cases proposed by Williamson et al.

2 The Standard Performance Evaluation Corporation (SPEC) gives
a SPECfp number of 12.7 for the 450-MHz Intel SE440 processor
on BX motherboard (http://www.specbench.org/osg/cpu95/results/
cfp95.html).

(1992). Both codes were run on the NCAR Pentium II
cluster at a spectral triangular resolution of T42 with
64-bit precision. The growth in L1 reflects the accu-
mulation of rounding errors. Note that the recurrence
relation [Eq. (15)] for the associated Legendre functions
used in SWBOB proves to be very precise, yielding a
global error that stays at O(10214) over the first 5 days
of computation. In comparison the curve for STSWM
quickly reaches an O(10212) value and increases by
roughly a factor of 5 over the last 4 days of the com-
putation. For SWBOB, one must integrate for another
100 days to see a doubling of the error. Because the L1

error in SWBOB is approaching machine precision, a
high-frequency jitter can be observed that is likely at-
tributable to the accumulation of random single-bit
roundoff errors in the quadrature sums.

d. Performance results

In order to quantitatively evaluate SWBOB’s parallel
performance, we have carried out a direct comparison,
again using the global steady-state nonlinear geostroph-
ic flow test of Williamson et al. (1992), of SWBOB with
PSTSWM (Worley and Toonen 1995). PSTSWM is a
well-known shallow water benchmark code, and was
developed specifically to evaluate parallel algorithms
for the spectral transform method. It should be noted
that PSTSWM is simply a parallel implementation of
STSWM (Hack and Jakob 1992), with identical nu-
merics. Certain data structures, loop orders, and loop
indices in individual routines have been changed over
time to be more efficient on cache-based machines (or
to enable the 2D domain decomposition), but the overall
structure is still true to that of STSWM.

Multiple parallel algorithms are embedded in
PSTSWM, and they can be selected at run time. After
experimenting with a variety of combinations, we have
found that, for our particular case, the best algorithmic
choice within PSTSWM appears to be one where a
transpose algorithm is used for the FFT and a distributed
algorithm is used for the Legendre transform. For the
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FIG. 3. Timing comparison between SWBOB (solid squares) and PSTSWM (crosses), at four different resolutions. The speed of each code is
plotted vs the number of processing elements (NPEs). In each panel, the solid line with no symbols is the perfect-scaling curve for SWBOB.

sake of reproducibility, the exact algorithm input file
we have used is given in the appendix.

The results of the comparison of SWBOB and
PSTSWM are presented in Fig. 3. These results were
obtained at four different resolutions, with semi-implicit
time steps of 60 min at T42, 30 min at T85, 15 min at
T170 and 7.5 min at T341. The quantity plotted in Fig.
3 is the ratio of model time to wall-clock time, as a
function of the number of PEs. This quantity is partic-
ularly useful because it allows one to readily obtain the
computational time needed to integrate a given model
time. The perfect-scaling curve for SWBOB (solid line
with no symbols) is also plotted in each panel; this gives
an immediate visual estimate of the scalability of
SWBOB.

At T42 resolution, the computational speed is similar
for the two codes. However, as the resolution is in-
creased, the ‘‘cache blocked’’ nature of BOB becomes
apparent, as its performance improves over that of
PSTSWM. On a single PE, BOB is 25% faster than
PSTSWM at T42, 50% faster at T85, 100% faster at
T170 and 132% faster at T341.

Note that at T42 the timing result for 16 PEs is not
plotted. This is due to the cache blocking implemented

in SWBOB, described previously in section 2b. At this
low resolution with 16 PEs, the optimal blocking size
(which we have used uniformly for all these runs) is
actually greater than the number of latitudes distributed
over each processor, and thus the computation becomes
impossible.

Beyond speed, the question of memory consumption
needs to be addressed, especially for spectral models at
high resolution. If the Legendre coefficients are stored
in their entirety, the order N 3 storage requirements be-
come an important issue. In SWBOB, this has been dealt
with by computing the Legendre coefficients on the fly,
as described earlier. In PSTSWM, it is appropriately
allocated at run time, after the user specifies the max-
imum size of the work array at compile time.

The direct memory usage comparison is illustrated in
Fig. 4, where the number of megabytes per PE is plotted
versus the number of PEs for the same test case as the
one in Fig. 3. The memory numbers shown here are
obtained from the job accounting report of the actual
runs. At T341 resolution, the memory footprint scales
roughly as the inverse of the number of PEs, as ex-
pected, for both codes. With 16 PEs, where the relative
numbers between the two codes are the closest, the
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FIG. 4. Memory footprint at T341 for a one-layer shallow water
computation as a function of the number of PEs, for both SWBOB
and PSTSWM.

TABLE 2. Wall-clock time per time step of SWBOB on machines
with larger L2 cache, normalized by the wall-clock time per time
step on the NCAR Beowulf cluster. At T85 SWBOB on the IBM SP
is almost three times faster than on the Beowulf cluster.

Machine T42 T85 T170 T341

IBM SP
Sun 6500

3.46
1.71

2.89
1.49

2.31
1.05

2.46
1.05

memory footprint of SWBOB is approximately 40% less
than that of PSTSWM.

e. Portability

In this section we report on tests we have performed
to evaluate SWBOB using different compilers, different
machine architectures, and different floating-point pre-
cisions. The point of this exercise is to give the reader
a sense of the spread in performance that one may expect
from SWBOB on systems other than the NCAR Beo-
wulf cluster.

First, BOB does not require a commercial compiler
to run on a Beowulf. We have compiled and run the
model using the GNU Fortran (g77) version 0.5.24, with
the following optimization flags: -O2 -ffast-math -fun-
roll-all-loops -malign-double -fforce-mem -fstrength-re-
duce. For the same test case from Williamson et al.
(1992) discussed above, on a single PE, the g77 com-
piler was found to be 14% slower at T42, 26% at T85,
35% at T170 and 45% at T341. Thus, we conclude that
the performance advantage of the Portland Group com-
piler relative to g77 outweighs the additional software
cost.

Second, we have ported SWBOB to two other com-
puter architectures. We have measured the single pro-
cessor performance of our code on a 375-MHz IBM
Power-3 with a 4-way symmetric multi-processing
(SMP) configuration, and on a 400-MHz Sun Ultra II
in a 16-way Enterprise 6500 server, both with 8 Mby-
tes L2 caches. Standard optimizations were used in
each case: the IBM FORTRAN 90 compiler version
7.1.0.2 flags were set to ‘-O3 -qarch 5 pwr3 -qtune
5 pwr3 -qcache 5 auto’, whereas the optimization
flag ‘-fast’ was set for the Sun FORTRAN 90 com-
piler, version 6.2. The results, normalized by the 450-
MHz Pentium II performance, are displayed in Table
2. They show that SWBOB also performs well on
these machines with larger cache size.

Third, and finally, we have investigated the question
of 32-bit versus 64-bit floating-point precision. Again
using Williamson’s test case 2, we have found that the
performance gain arising from using 32-bit floating-
point arithmetic is relatively small: it varies from 26%
to 33% over the resolution range T42 to T341.

3. The primitive equation model

While the spherical shallow water equations provide
a most useful tool for testing novel algorithms of po-
tential interest to atmospheric modelers, their simplicity
is often found to be too limiting. If one wishes to eval-
uate the performance of a new algorithm that could
eventually become incorporated in realistic atmospheric
general circulation models, a set of equations is needed
whose computational complexity is one step closer to
those typically used in such models. The so-called dry
primitive equations provide an excellent candidate.

In particular, when written with pressure as the ver-
tical coordinate, the primitive equations assume a form
that is quite close to that of the simpler shallow water
equations. It is then relatively easy to write a primitive
equation model using similar algorithms, data struc-
tures, and parallel implementations. This is what we
have done in constructing PEBOB, the primitive equa-
tion version of BOB, that is discussed in this section.
We first describe the key differences between PEBOB
and SWBOB, and then compare the performances of
PEBOB to the dynamical core of CCM3 (Kiehl et al.
1996).

a. The algorithm

The primitive equations in pressure coordinates can
be written as

]h 1 ]A 1 ]B
5 2 2 ,

2]t a(1 2 m ) ]l a ]m

]d 1 ]B 1 ]A
2 25 2 2 ¹ F 2 ¹ E, and

2]t a(1 2 m ) ]l a ]m

]u 1 ]C 1 ]D
5 2 2 2 F, (17)

2]t a(1 2 m ) ]l a ]m

where h, d, and the potential temperature u are the prog-
nostic variables, and the nonlinear terms on the right-
hand side are this time defined by
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FIG. 5. The time and zonally averaged (left) zonal wind and (right) temperature for a 1000-day integration of PEBOB as in Held and
Suarez (1994).

]Vv ]Uv
A 5 Uh 1 Vd 1 , B 5 Vh 2 Ud 2 ,

]p ]p
2 2U 1 V

C 5 Uu, D 5 Vu, E 5 , and
22(1 2 m )

]vu9
F 5 ,

]p

and v [ dp/dt is the vertical pressure velocity.
Although the set of Eqs. (17) is extremely close to the

set (1), we note three main differences. First, terms in-
volving divergence field d are now present in the non-
linear terms A and B. This means that d needs to be
transformed back to physical space to compute A and B.

Second, and more importantly, each field now has an
extra (vertical) dimension. In PEBOB, the vertical di-
mension is discretized with a simple finite-difference
scheme. Specifically, the terms involving pressure de-
rivatives in A, B, and F, which are all of the form ](vg)/
]p (where g 5 U, V, or u), are evaluated using the
expression

]vg v g 2 v gl11/2 l11/2 l21/2 l21/25 , (18)
]p Dpl

where l is the index of the vertical level, Dpl is the
pressure difference between level l 1 1/2 and l 2 1/2,
and l11/2 [ (g l11 1 g l)/2. As for vertical boundaryg
conditions, we choose to set the pressure velocity v to
zero at the upper and lower boundaries, that is, we set
v1/2 5 vL11/2 5 0, where L is the total number of levels.

Third, in order to evaluate the right-hand sides of (17),
it is necessary to relate the geopotential F and the ver-
tical pressure velocity v to the prognostic variables h,
d, and u. For F this is done through the hydrostatic
equation

1 ]F
2 5 u, (19)

C ]jp

where j 5 (p/ps)k, k 5 (R/Cp), R is the gas constant,

Cp the specific heat at constant pressure, and ps is a
reference surface pressure. For the pressure velocity v,
we use the continuity equation

]v
5 2d. (20)

]p

Equations (19) and (20) are not integrated numerically
at each time step to solve for F and v. Rather, following
Saravanan (1992), we replace F and v on the right-
hand side of (17) with corresponding expressions that
involve the prognostic variables together with several,
small, constant-in-time, order L 3 L matrices, resulting
from the discretization of (19) and (20). These small
matrices are computed only once and thereafter stored
in a common block. Full details of this scheme can be
found in Saravanan (1992).

The time stepping is a leapfrog scheme, with a Rob-
ert–Asselin filter. For the semi-implicit time stepping
scheme, the potential temperature u is decomposed in
terms of deviations from some reference vertical profile
uR(p)

u 5 u (p) 1 u9.R (21)

In PEBOB, uR(p) is chosen to correspond to that of an
isothermal atmosphere, with uniform temperature TR.
Then uR(p) 5 TR(ps/p)k. For a complete discussion of
the semi-implicit implementation, see Saravanan
(1992).

Finally, the parallel implementation of PEBOB is
identical to SWBOB in every respect, with the vertical
dimension being local to each processor.

b. Performance results

We use the standard primitive equation test case of
Held and Suarez (1994) to evaluate the correctness and
performance of PEBOB. The Held–Suarez test (Held
and Suarez 1994; hereafter HS) focuses on the long-
term statistical properties of an idealized earthlike global
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FIG. 6. As in Fig. 5 but for the dynamical core of CCM3.

circulation. This test case adds simple forcing terms
consisting of Newtonian relaxation to a prescribed ‘‘so-
lar radiation’’ temperature profile and Rayleigh damping
of winds near the surface to represent boundary layer
friction. These forcing terms are fully described in the
HS reference, to which the reader is referred for details.
All the tests reported in this section were performed
using 18 vertical levels.

We show in Fig. 5 the zonally averaged zonal velocity
and temperature resulting from a 1000-day integration
of PEBOB at a T42 horizontal resolution. All forcing
and physical parameters are as specified in HS. The
reference potential temperature in (21) is computed us-
ing TR 5 300 K. In addition to the forcing terms spec-
ified is HS, ¹8 hyperdiffusion terms are added to the
right-hand side of (17), with a coefficient equivalent to
an e-folding timescale of 0.1 day on the highest resolved
wavenumber. The time averaging is done by sampling
once a day, after a 200 day spinup period.

As Fig. 5 attests, the circulation computed with PE-
BOB compares very favorably with the one in HS. A
single jet is generated in each hemisphere, with a wind
maximum around 30 m s21 near 458 latitude in the upper
troposphere. The surface westerlies also peak near 458
latitude, with a wind maximum of 8 m s21. Similarly,
the zonally averaged temperature field is very close to
the one in HS.

In order to have a point of comparison for the per-
formance of PEBOB, a recent version of CCM3 was
chosen. This model is widely used by the atmospheric/
climate modeling community and thus makes a good
candidate for evaluating PEBOB. Since CCM3, how-
ever, is a state-of-the-art general circulation model, the
dynamical core needs to be extracted in order to make
the comparison meaningful. Using CCM3 version 3.6.6,
we have exploited flags to skip over computations other
than the dry primitive equations plus the simple forcings
prescribed in HS. Hereafter, we refer to this extracted
dynamical core as CCM3DC. In establishing the

CCM3DC timings, special care3 was taken to ensure
that only the time spent in the dynamics part of the
model be taken into account. Finally, for both PEBOB
and CCM3DC, we used a time step of 20 min at T42,
10 min at T85, 5 min at T170, and 2.5 min at T340.

The results of integrating the HS test case using the
CCM3DC are shown in Fig. 6. CCM3DC faithfully re-
produces the HS test case. The main differences between
Fig. 5 and Fig. 6 appear in the uppermost levels. This
is not surprising, given that in CCM3DC a ¹2 horizontal
hyperdiffusion diffusion is applied in the top 3 levels,
while PEBOB uses ¹8 throughout. The ¹2 operator be-
ing less scale selective will tend to reduce the gradients
at the top of the domain, as can be seen in the figures.

Figure 7 shows that PEBOB is significantly faster
than CCM3DC: at T42 resolution and on 8 processors
PEBOB is about 4 times faster, at T85 and on 16 pro-
cessors PEBOB is 5 times faster. At T170, the memory
requirements become severe. On the NCAR Beowulf
cluster, CCM3DC could not be run on fewer than 16
processors due to memory requirements. As shown in
Table 3, PEBOB was found to be six times faster at this
resolution. Note that PEBOB successfully ran on as few
as four processors under the same conditions. At T341,
PEBOB itself could only be run with 16 PEs, while we
were unable to fit CCM3DC on the NCAR cluster.

Unfortunately, the memory footprints of PEBOB and
CCM3DC cannot be meaningfully compared. This is
because we have been unable to find a simple way to
limit the memory allocation in CCM3DC to the re-
quirements of the dynamical core alone. We recognize
that CCM3 was not developed to be run as a pure dy-
namical core.

3 Only the following subroutines of CCM3 were included to obtain
the timing results presented in this paper: dyn, realloc3, fft991, real-
loc4, fft99a, realloc5, fft99b, realloc6, grcalc, resetr, grmult, scan1ac,
linemsac, spegrd, linemsbc, tphysidl, quad, vpassm. These were cho-
sen after profiling and, on average, account for 90% of the total wall-
clock time.
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FIG. 7. Timing comparison between PEBOB (solid squares) and CCMDC (crosses), at T42 and T85 with 18 levels. The speed of each
code is plotted vs the number of PEs. In each panel, the solid line with no symbols is the perfect-scaling curve for PEBOB.

TABLE 3. Model time per wall-clock time at high resolution. Stars
indicate that we were not able to fit the model on our NCAR cluster.

NPEs

T170

PEBOB CCM3DC

T341

PEBOB CCM3DC

16
8
4

128
72
37.5

20
*
*

10
*
*

*
*
*

It should be noted that the parallel spectral transform
strategy of CCM3 is inherently less efficient than BOB
in certain important respects. CCM3 employs a one-
dimensional latitude decomposition of physical space
and Fourier transforms are performed locally, as in
BOB. However, rather than transposing the Fourier co-
efficient arrays, CCM3 assembles the global Fourier co-
efficient arrays within each process via an all-to-all com-
munication. A subset of contiguous wavenumbers are
then transformed into spectral space without load bal-
ancing with respect to wavenumber. Finally, the global
arrays of spectral coefficients are assembled within each
process to begin the reverse process.

Unlike array transposition, neither of these global ar-
ray assembly procedures scale, since the same amount
of data must be imported and exported from each pro-
cess regardless of the total number of processes. Inter-
estingly, we find that both CCM3 and BOB spend about
the same fraction of time in communications (approx-
imately 42%) on 16 processors at T85. This suggests
that the inefficiencies in CCM3 extend to the compu-
tational phases of CCM3 spectral dynamics as well. One
culprit is certainly the absence of load balancing with
respect to wave number: this results in a loss of a factor
of 2 in the performance of the Legendre transform.

4. Conclusions

We have demonstrated that the spherical harmonic
transform method can be implemented efficiently on
inexpensive commodity parallel computers. We have
done this by constructing a semi-implicit spectral model,

called BOB, that is optimized for distributed systems
composed of microprocessors with caches. BOB’s dis-
tributed memory implementation relies on the standard
transposition method with wavenumber load balancing.
We have employed microprocessor optimization tech-
niques such as cache blocking, loop unrolling, loop fu-
sion, and registerization that minimize the penalties of
accessing each level of the memory hierarchy, between
register, cache, and DRAM. Algorithmically, we have
used the associated Legendre polynomial recursion re-
lation to replace expensive memory references with
floating operations. We have compared BOB’s perfor-
mance to other existing spectral dynamical cores on
standard test cases. Specifically, we have shown that
BOB outperforms two other spherical harmonic trans-
form dynamical cores, PSTSWM and CCM3 dynamical
core, particularly at increasing resolutions where cache
effects become important. For example, BOB achieves
simulation rates 5 times higher than CCM3 dynamical
core on a T85L18 Held–Suarez test, both running on a
16-processor Linux cluster. We find that BOB also uses
a substantially smaller memory footprint than the other
cores.

Further refinements to BOB are planned. We are in-
stalling a library of faster real FFTs that will improve
low-resolution performance, and are developing a hy-
brid message passing/thread parallel implementation
suitable for clusters of multiprocessors.

The success encountered so far in the implementation
of BOB has lead us to conclude that it is quite feasible
to extend these techniques to full atmospheric models.
This would involve reformulating the equations using
sigma (or a hybrid) as the vertical coordinate, intro-
ducing semi-Lagrangian advection schemes on reduced
grids and the systematic integration of RISC-friendly
physics packages, both formidable challenges. We hope
to share this useful tool with researchers in the climate
and geophysical turbulence community who wish to par-
ticipate in the development of extensions of BOB’s ca-
pabilities or who wish to use it for their own scientific
studies.
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APPENDIX
Input Parameters for the PSTSWM Algorithm (from Worley and

Toonen 1995)

Parameter Value Parameter Value

nplon
nplat
meshopt
ringopt
ftopt
ltopt
commfft
commift
commflt
commilt

1
16

1
1
1
0
0
0
2
2

bufsfft
bufsift
bufsflt
bufsilt
protfft
protift
protflt
protilt
sumopt
exchsize

0
0

16
17

6
6
5
5
0
0
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