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ABSTRACT

The weak temperature gradient (WTG) approximation is applied to simple shallow-water models of the Hadley
circulation. While it is difficult to formally justify the use of the WTG approximation for this problem, the
derived WTG solutions are shown to agree well with numerical solutions of the full equations and to converge
to the traditional angular momentum conserving (AMC) solutions in the inviscid limit. Heuristic arguments are
given to explain this. The WTG method also provides semianalytical solutions in the case of nonvanishing
viscosity, in contrast to the AMC solutions, which are strictly inviscid.

1. Introduction

Balance models, such as the quasigeostrophic, are at
the very foundation of much of our understanding of
extratropical atmospheric dynamics. The so-called weak
temperature gradient (WTG) approximation has been
proposed (Sobel and Bretherton 2000; Sobel et al. 2001;
Bretherton and Sobel 2002, manuscript submitted to J.
Atmos. Sci., hereafter BS02) as a balance model for the
Tropics. WTG is somewhat distinct from other balance
models in that it does not assume the vorticity to be
large compared to the divergence, nor does it assume
the motion to be adiabatic at leading order. In addition,
the fundamental WTG balance relation—that free tro-
pospheric temperature is horizontally uniform at leading
order—constrains not only the large-scale fluid dynam-
ics, per se, but also the diabatic processes.

The aim of the above-mentioned studies has been to
move toward a coherent theory for large-scale tropical
circulations in which the interaction of diabatic pro-
cesses and large-scale fluid dynamics is clarified and
made relatively tractable. As part of this effort, it is
necessary to show that the WTG does not contradict
aspects of our understanding of tropical atmospheric
dynamics which are already well-established. For pre-
sent purposes, such understanding may be defined by
the existence of a theoretical model which, however
idealized, is widely accepted as capturing some fun-
damental aspect of the tropical circulation. Hence, for
instance, it has been shown that the WTG approximation
to the Gill model (Gill 1980) retains the basic qualitative
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features of the original, and in the limit of weak thermal
damping is quite a good approximation to it (Neelin
1988; Bretherton and Sobel 2002).

In this paper, we examine the WTG approximation
in the simplest nonlinear models of the Hadley circu-
lation, namely those that can be expressed as axisym-
metric shallow-water models with the heating parame-
terized as a Newtonian relaxation on the layer thickness.
Such models have been studied by Schneider (1987),
Held and Phillips (1990), and Hsu and Plumb (2000),
and can be considered further idealizations of the two-
dimensional axisymmetric models that have been ap-
plied more extensively to the Hadley circulation
(Schneider 1977; Schneider and Lindzen 1977; Held and
Hou 1980; Lindzen and Hou 1988; Hack et al. 1989;
Plumb and Hou 1992; Satoh 1994; Fang and Tung 1996,
1997, 1999). The study of Fang and Tung (1996) is
particularly relevant to the present work, since those
authors exploit the fact that temperature is horizontally
uniform within the Hadley cell in order to obtain ana-
lytic solutions. Nonetheless, there are significant dif-
ferences between their approach and ours, which we
discuss at the end of section 5.

We first consider the problem on an f plane; while
somewhat unrealistic, this is adequate to demonstrate the
method and bring out its basic properties. We set up the
problem in the next section, find the traditional ‘‘angular
momentum conserving’’ (AMC) solution in section 3,
and the WTG solution in section 4. Although the WTG
solution is shown to converge to the AMC solution ex-
actly in the inviscid limit, the WTG approximation does
not appear to be formally justifiable for this problem.
Hence, in the following section, a heuristic discussion
lists some of the reasons for the apparent success of
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WTG. We present the equatorial b plane case in section
6, and summarize our conclusions in section 7.

2. Statement of the problem

We consider a rotating fluid on an f plane, obeying
the shallow water equations:

u 1 yu 2 y 5 2au, (1)t y

y 1 yy 1 u 5 2h 2 ay, and (2)t y y

h 1 (hy) 5 Q, (3)t y

where the y axis is aligned with the meridional direction,
u and y are the zonal and meridional velocities, and h
[ (1 1 h) is the fluid thickness (here referred to as the
‘‘temperature’’). All fields are assumed to be indepen-
dent of the zonal coordinate x. The system is here non-
dimensionalized with the Rossby deformation radius as
the length scale and f 21 as the timescale; a is the non-
dimensional Rayleigh friction coefficient. Since the
shallow water model is best viewed as representing the
upper branch of the Hadley circulation (Held and Phil-
lips 1990), the parameter a represents internal, as op-
posed to surface, friction. While this is likely too small
in the real atmosphere, retaining it breaks the constraint
of angular momentum conservation and serves to high-
light interesting aspects of the WTG approach, though
we will also consider the inviscid case a 5 0.

The ‘‘thermal’’ forcing Q is parameterized, in the
customary manner, with

h 2 hEQ [ , (4)
t

where hE is a specified ‘‘equilibrium temperature’’ pro-
file, and t some thermal relaxation timescale. For sim-
plicity, we here take hE to be a top-hat function that is,

H for |y | , YE Eh (y) 5 (5)E 50 for |y | . Y .E

Hence HE is a measure of the strength of the forcing,
and YE a measure of the size of the forcing region. As
in other similar studies using the shallow water system
cited above, we neglect the vertical advection of mo-
mentum associated with the mass source Q. Also, note
that because our choice of hE has infinite slope at y 5
YE, it will always be supercritical in the sense of Plumb
and Hou (1992); that is, a circulation will exist for ar-
bitrarily small HE. Our aim is to construct time-inde-
pendent solutions to (1)–(3), representing the steady-
state atmospheric response to a localized forcing, but
we avoid addressing the threshold behavior that would
be associated with a more general, smooth choice of
hE.

3. The angular momentum conserving solution

For clarity, we start by deriving the traditional angular
momentum conserving solution (denoted by the sub-

script a). Hsu and Plumb (2000) present a solution of
this kind for a shallow water system on an f plane with
an axisymmetric forcing. While the problem here is rec-
tilinear, the solution method is essentially identical to
that of Hsu and Plumb.

Taking a 5 0, one assumes the existence of a latitude
YH . YE—defining the ‘‘Hadley cell’’ width—outside
which the flow is nondivergent, y a 5 0, and in thermal
equilibrium, ha 5 hE. In general, this implies that ua is
in geostrophic balance with ha. For the simple choice
of hE in (5), this implies ua 5 0, so that all fields vanish
outside the Hadley cell.

Inside the cell, the flow is assumed to be inviscid (a
5 0) and divergent; that is, y ± 0. For a stationary
solution, it then follows from (1) that

u (y) 5 y,a (6)

for | y | , YH. Notice that the zonal velocity of the AMC
solution is discontinuous at y 5 YH. Next, the temper-
ature is obtained by dropping the term yy y in (2), so the
zonal flow is assumed to be geostrophic. This assump-
tion, a common one in models of the sort discussed
here, is not made in the full numerical solutions to which
we compare the WTG solutions in section 5. Integrating
u 5 2hy one obtains

1
2 2h (y) 5 (Y 2 y ), (7)a H2

where the integration constant is chosen so that ha is
continuous at y 5 YH. The meridional velocity is then
integrated using (3):

y1 h (y9) 2 h (y9)E ay (y) 5 dy9. (8)a E(1 1 h ) ta 0

Finally, the width YH of the cell is obtained by enforcing
zero net mass across y 5 YH, which is equivalent to
setting

YH h (y) 2 h (y)E a dy 5 0. (9)E t0

Substituting hE from (5) and ha from (7), one easily
obtains

1/3Y 5 (3H Y ) .H E E (10)

The u, y, and h fields of the AMC solution are illustrated
by the heavy solid lines in Fig. 2, later.

4. The weak temperature gradient (WTG) solution

The crux of the WTG approximation is that the di-
vergence d of the flow is directly obtained from the
heating Q since temperature gradients may be neglected
in solving (3). Letting

h(y) 5 h 1 h (y)0 1 (11)

inside the cell, and neglecting all terms involving h1,
the continuity Eq. (3) is approximated under WTG by
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h 2 hE 0(1 1 h )d 5 . (12)0 t

The neglect of h1 in (12) is not formally justifiable
using the scaling arguments presented by Sobel et al.
(2001). Those require a flow whose length scale is small
compared to the Rossby radius, and our solution for the
Hadley cell width will be of the order of the Rossby
radius (as it should be). In addition, as we will show,
h1 is not very small compared to h0 (which is retained)
for all y , YH. Hence the validity of (12) is not so easily
established. We ask the reader simply to accept it for
the sake of argument at this point. Some degree of jus-
tification will be provided a posteriori by the solutions
obtained, and a heuristic argument will be given in the
following section.

The constant h0 is chosen so that the flow has zero
net divergence over the cell, which is required to obtain
a vanishing velocity at the edge of the cell. Hence given
(12), we require that

YH h 2 hE 0 dy 5 0, (13)E 1 2t0

which yields

YEh 5 H . (14)0 E YH

The Hadley cell width YH is as yet unspecified. It should
be clear that, as in the AMC case, all fields vanish for
| y | . YH.

Solving (12), the divergence takes the simple form,

q for |y | , Y0 Ed(y) 5 (15)5q for Y , |y | , Y ,k E H

where q0 5 (HE 2 h0)/[t(1 1 h0)], qk 5 kq0, and k
5 (1 2 YH/YE)21 is a small negative number chosen so
that the integral of d over the cell vanishes. Integrating
this divergence yields the meridional velocity,

q y for |y | , Y0 Ey (y) 5 (16)5q (y 2 Y ) for Y , |y | , Y .k H E H

Note that y vanishes at the edge of the cell (y 5 YH),
and is continuous at the edge of the heating region y 5
YE.

The second step in the WTG solution consists of find-
ing a time-independent solution to the vorticity equation

z 1 [y(z 1 1)] 5 2az.t y (17)

With the divergent velocity y from (16), the vorticity z
is easily obtained:

z for |y | , Y0 E
(1/z )kz(y) 5 y 2 YHz 1 (z 2 z ) for Y , |y | , Y , k 0 k E H1 2Y 2 YE H

(18)

where z0 5 2(1 1 a/q0)21, and zk 5 2(1 1 a/qk)21.
In the WTG approximation, we construct the vorticity
z so that it is continuous at y 5 YE. This yields z 5 zk

at y 5 YH, implying a kink in the associated rotational
zonal velocity u at the edge of the Hadley cell (recall
that in AMC solution u is actually discontinuous there).
The zonal velocity u is obtained by integrating z 5 2uy,
which yields,

2z y for |y | , Y0 E
2(a /q ) (19)ku(y) 5 q Y y 2 Y0 E Hz (Y 2 y) 1 (z 2 z ) for Y , |y | , Y . k H 0 k E H1 21 2a Y 2 YE H

It is worth noting that both u and its first derivative are
continuous at the edge of the forcing region, unlike y,
which is not differentiable at y 5 YE.

Having obtained both u and y, we can now compute
spatial variations of temperature—that is, h1(y)—by in-
tegrating (2). Neglecting the small term yy y, as in the
AMC solution, this yields

YH

h (y) 5 2h 1 [u(y9) 1 ay (y9)] dy9, (20)1 0 E
y

where the integration constant has been chosen to ensure
continuity of temperature at the edge of the Hadley cell;
that is, h(YH) 5 h0 1 h1(YH) 5 0.

Finally, as in the AMC solution, the width of the

Hadley cell is obtained by requiring that the net forcing
over the cell vanish; that is,

YH

Q(y) dy 5 0. (21)E
0

From the definition (4), and the fact that h0 was chosen
to satisfy (13), it follows that we must require that

YH

h (y) dy 5 0. (22)E 1

0

This equation can be thought of as our implicit definition
of YH. Unfortunately, the high nonlinearity of the ex-
pressions—notice that YH appears even in the exponent
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FIG. 1. The Hadley cell width YH (solid line) as a function of the
dissipation a for the case HE 5 1, YE 5 0.1, t 5 1; in the limit a
→ 0, the curve asymptotes to the AMC value (3HEYE)(1/3) ø 0.6694.
The dashed line shows the width YH for the case with an equatorial
b plane.

FIG. 2. The WTG solutions for a 5 0.01, 0.05, 0.1, 0.2, and 0.5.
Longer dashes correspond to smaller values of a. The thick solid line
is the AMC solution. For all curves, HE 5 1, YE 5 0.1, t 5 1.

in (19)—makes it rather difficult to extract from (22)
even an approximate formula for YH. It is, however, a
simple matter to compute YH numerically.

As an illustration, we show in Fig. 1 the values of
YH as a function of the dissipation a, for a representative
set of values HE 5 1, YE 5 0.1, t 5 1. Note how the
Hadley cell width reaches a maximum for a ø O(1).
We interpret this as follows. The extent of the Hadley
cell is ultimately set by the requirement that Q integrate
to zero over the cell. Simultaneously, continuity of h
requires h1 5 2h0 at YH, and for given YH, h0 is fixed
by (14), hence h1(YH) is also fixed. In this situation,
anything that reduces the magnitude of the (negative)
slope hy will increase the width of the cell. Dissipation
clearly decreases u relative to the inviscid case, thus
reducing the (nearly) geostrophically balanced slope.
Hence, a small amount of dissipation increases the cell
width compared to the inviscid case. This behavior is
also seen in the numerical solutions on the sphere pre-
sented by Held and Phillips (1990).

On the other hand, when too much dissipation is pre-
sent, the circulation generated by the forcing becomes
very weak, requiring the Hadley cell width to shrink for
a k 1. Hence the occurrence of a maximum, which
happens around a ø 1.033 . . . , for this choice of pa-
rameters. A maximum cell size near a 5 1 is also ev-
ident in the full numerical solutions, presented in the
next section, though we do not show solutions for a .
1. In any case, large values of a are not particularly
relevant, since our simple shallow water model should
really be thought of as a representation of the upper
tropospheric branch of the circulation, which is presum-
ably at most weakly viscous. Further, the WTG ap-
proximation is not expected to be valid for large friction

because the effect of friction on the divergent flow is
entirely neglected under WTG (Sobel et al. 2001).

As can be seen in Fig. 1, in the limit a → 0 the
Hadley cell width obtained in the WTG approximation
asymptotes to a constant value: this is precisely the in-
viscid AMC value given by (10). In fact, both the zonal
velocity u and the perturbation temperature h converge
to the AMC solution in the limit a → 0, as shown in
Fig. 2. This is not surprising since, in that limit, the
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FIG. 3. The WTG solutions (solid curves) and the full solutions (dashed curves) for a 5 0.01,
0.1, and 1. For all curves, HE 5 1, YE 5 0.1, t 5 1.

WTG solution (18) for the vorticity tends1 to z(y) 5
21, the zero absolute vorticity AMC solution. Hence u
→ ua and, since h comes from the linear geostrophic
balance (2), h → ha as a → 0.

The meridional velocity y, in contrast, does not con-
verge to the AMC limit as a → 0. This is because in
the WTG solution, y is computed from the divergence
d, which is obtained directly from the forcing Q using
the constant value h0 [cf. Eq. (12)]. This latter value
can be thought of as the ‘‘mean’’ perturbation temper-
ature, and is clearly smaller than the actual perturbation
temperature in the forcing region | y | , YE. This un-
derestimate of h as it enters Q results in the WTG so-
lution having a stronger forcing than it should, and
yields larger values of y even for a 5 0. However, the
WTG solution can be used to compute the exact AMC
divergent flow as a higher-order correction. Since the
total WTG h 5 h0 1 h1 is identical to the AMC h in
the inviscid limit, if that h is used in (8), the AMC
solution for y a will also be reproduced exactly.

Finally, we remark that the approach to the AMC
solution as a → 0 is somewhat richer that might be
naively expected. Close inspection of (18) reveals that
the WTG solution for the vorticity z becomes singular
at y 5 YH when a is smaller than the critical value ac

5 2qk (at which value zk 5 0). Expression (18) is in
fact valid for all a ± ac; at the critical value z has a
logarithmic term. What happens as the critical dissi-
pation value ac is crossed can be seen in the top panel

1 With a very steep boundary layer at the edge of the cell, y 5 YH.

of Fig. 2: the vorticity, which is the slope of u, becomes
infinite at the edge of the cell for a # ac. For the
parameters of Fig. 2, we find ac ø 0.1006 . . . Mathe-
matically, a singularity as a → 0 is expected, since the
WTG solution needs to approach the discontinuous
AMC solution in that limit. However, we do not at pre-
sent have an intuitive understanding for the occurrence
of the singularity at a finite value of a.

5. Discussion

a. Comparison with the full solutions

To demonstrate that the WTG solution is a good ap-
proximation to the full solution of the Hadley cell prob-
lem, we have solved (1)–(3) numerically using a shoot-
ing method. These full solutions are presented in Fig.
3, together with the WTG solutions, for three represen-
tative values of the dissipation a (0.01, 0.1, and 1.0).
Surprisingly, even for a 5 1 the WTG solution agrees
well, both quantitatively and qualitatively, with the nu-
merical solution. The most significant difference is per-
haps the lack of a precisely defined cell size in the
numerical solutions, as all fields approach zero in a
smooth manner.

b. Reasons for the validity of the WTG approximation

As noted in the derivation of the WTG solution, the
key approximation, the neglect of h1 in the computation
of the divergence, does not appear formally justifiable,
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yet we see good agreement of the WTG and numerical
solutions. This requires some discussion.

We first note that there is an important difference
between the present nonlinear Hadley circulation prob-
lem and linear WTG problems solved in earlier studies
(Neelin 1988; Sobel et al. 2001; BS02). In those prob-
lems, while the thickness perturbation (here h) could
be computed as a small correction to the constant mean
h, doing so was unnecessary in order to compute the
flow. We might think of those problems as yielding to
a ‘‘strict’’ WTG approximation in which the temperature
is of entirely secondary importance. Here, while h is
still computed as a correction to an h field that is (piece-
wise) constant to leading order, the problem cannot in
fact be closed without computing that correction.

It is fairly straightforward to explain why, in the in-
viscid limit, the WTG solution must converge to the
AMC solution. In both solutions, as a → 0, u and h,
and hence also YH, can be thought of as being directly
implied by a state of zero absolute vorticity in the Had-
ley cell, which, in an axisymmetric framework, corre-
sponds to constant angular momentum. In that limit, the
details of the divergence—which is where the error first
appears in the WTG solution—become unimportant,
since the vortex-stretching effect vanishes. Once a zero
absolute vorticity solution has been assumed, the rest
of the WTG solution procedure is in fact formally iden-
tical to the AMC procedure.

The case of small but nonzero a can be addressed by
a generalization of the above argument. The neglect of
h1 (until the end of the WTG calculation) has an impact
through the resultant error in the heating and divergence.
Near y 5 0, this is not particularly problematic. Since
our length scale is (locally) roughly equal to | y | , which
is much smaller than the Rossby radius, and since the
heating is large here, WTG is formally valid. It is still
inconsistent to keep h0 while neglecting h1, but since
both are small compared to hE, the error is nonetheless
similarly small. For | y | . YE, we appear at first to have
a more serious problem. Because the heating is small
in this region, and | y | approaches the Rossby radius,
WTG is not formally valid. Furthermore, in this region
the heating is of order h. Since h0 and h1 are of the
same order, keeping one while neglecting the other re-
sults in an error in the heating that is of the order as
the local heating itself. The reason this does not have
catastrophic consequences is that in this region the heat-
ing is small and thus, for small viscosity, the vorticity
dynamics is nearly conservative and the solution is con-
trolled predominantly by vorticity advection (which
drives this region to zero absolute vorticity in the in-
viscid case). The WTG vorticity equation reduces to the
barotropic nondivergent vorticity equation in the limit
of vanishing heating, and while this distorts the true
adiabatic dynamics somewhat (because the primitive
shallow water system does allow divergence even for
zero mass source), even at latitudes as high as the sub-
tropics this error is not extremely large because height

gradients are still modest. Hence not only the inviscid
but also the nearly inviscid solution turn out to be fairly
accurate under WTG.

c. Comparison with Satoh (1994) and Fang and Tung
(1996)

As mentioned in the introduction, Satoh (1994) and
Fang and Tung (1996) computed solutions to a two-
dimensional (latitude–height) axisymmetric Hadley cir-
culation problem in which they explicitly used the con-
straint of horizontally uniform temperature within the
Hadley cell, allowing them to diagnose the heating and
divergent flow within the cell without any explicit de-
pendence on the rest of the solution (see their section
4c). Because of this fundamental similarity, it is instruc-
tive to compare this procedure with ours in order to see
how these complementary studies illuminate different
aspects of the Hadley problem.

The most obvious difference between these two ear-
lier studies and ours is of course our reduced dimen-
sionality due to use of the shallow water system, and
the consequent greater sophistication and realism of
their solutions. Our shallow water formulation and very
idealized choice for hE render the present study much
cruder than Satoh’s or Fang and Tung’s as a represen-
tation of the Hadley circulation. However, in other re-
spects our approach is more general and places the Had-
ley circulation in the context of a broader theory for
tropical atmospheric dynamics.

One difference, perhaps minor, between Fang and
Tung’s study and ours is that their simulation assumed
the existence of an infinitely narrow (in latitude) inter-
tropical convergence zone, in which the atmospheric
temperature was locked to that of the surface by a hard
convective adjustment or ‘‘strict quasi-equilibrium’’
(Emanuel et al. 1994) assumption. This is equivalent to
taking the relaxation timescale t 5 0 [in Eq. (4)] at a
single latitude, but a constant finite value elsewhere.
This fixes the temperature profile at one latitude, and
by horizontal uniformity immediately determines the
temperature throughout the Hadley cell, independent of
the cell width or any other aspect of the rest of the
solution. In the present study, by contrast, t is finite
everywhere and even the leading order temperature h0

must be determined as part of the full solution. This
approach generalizes to arbitrary convective closures in
which the adjustment will not be exactly instantaneous
and radiative cooling, in particular, will be able to mod-
ify the temperature. In practice this is probably a small
effect since we generally expect the convective time-
scale, however defined, to be short relative to the ra-
diative timescale.

A more significant difference lies in the determination
of the zonal wind. Satoh (1994) and Fang and Tung
(1996) used the principle of homogenization of angular
momentum in the Hadley cell, which is valid only for
inviscid, steady, axisymmetric flow. We instead solve a
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vorticity equation in order to obtain the zonal wind,
which requires none of these assumptions.

Related to this, Satoh and Fang and Tung obtained
their constraints of horizontally uniform temperature in
the Hadley cell as a consequence of the homogenization
of angular momentum. A uniform value of angular mo-
mentum means that the zonal flow is a function only of
latitude, not height, in the Hadley cell, and thus, by a
thermal wind relationship, there is no horizontal tem-
perature gradient. The geopotential gradient required to
sustain the zonal wind is not at any stage neglected in
Satoh’s or Fang and Tung’s solution. This gradient ex-
ists, despite latitudinal temperature homogenization in
the Hadley cell, because of the slope of the cell bound-
ary with height (something which cannot be captured
by our shallow water model). Air parcels in the Hadley
cell, where temperature is horizontally uniform, overlie
parcels at the same latitude which are outside the cell.
Since the region outside the cell has a latitudinal tem-
perature gradient, there can be a geopotential gradient
within the cell. In contrast, in our approach the hori-
zontal temperature gradient is neglected as an a priori
approximation, based on the fact that Coriolis effects
are weak in the Tropics. This implies that balanced hor-
izontal geopotential gradients are weak, and assuming
small surface pressure gradients, horizontal temperature
gradients must also be weak, as is observed to be the
case. This WTG approach is approximate rather than
exact, but generalizes to viscous, unsteady, and non-
axisymmetric flow. Thus, while the temperature ho-
mogenization in Satoh (1994) and Fang and Tung (1996)
is a special result applicable to certain idealizations of
the Hadley circulation, ours is just an instance of a much
more general approximate constraint on a wide range
of large-scale tropical flows.

6. The b-plane case

The WTG solution discussed above can be extended
from an f plane to an equatorial b plane with only minor
modifications. In the presence of b, the momentum Eqs.
(1) and (2) become

u 1 yu 2 yy 5 2au, and (23)t y

y 1 yy 1 yu 5 2h 2 ay, (24)t y y

(our nondimensionalization implies b 5 1). Note that
the continuity Eq. (3) is unaffected by b and thus, in
the WTG approximation, the divergent component of
the solution is still given by (15) and (16).

The effect of b is felt in the vorticity equation, which
becomes

z 1 [y(z 1 y)] 5 2az.t y (25)

Again this is easily solved and yields

Z y for |y | , Y0 E

(1/z )k y 2 YHz(y) 5 Z y 1 Z 1 (Z Y 2 Z Y 2 Z )k 1 0 E k E 1 1 2Y 2 YE H
for Y , |y | , Y , E H

(26)

where Z0 5 2[1 1 a/(2q0)]21, Zk 5 2[1 1 a/(2qk)]21,
and Z1 5 qkYH(1 1 Zk)(qk 1 a)21. As for the f -plane
case, z is continuous at y 5 YE, but has a discontinuity
at y 5 YH, implying a small kink in the zonal velocity
u at the edge of the Hadley cell.

Integration of (26) yields the rotational velocity u:


1

22 Z y for |y | , Y0 E1 2 2
u(y) 5  (27)

2(a /q )k1 q Y y 2 Y0 E H2 2Z (Y 2 y ) 1 Z (Y 2 y) 1 (Z Y 2 Z Y 2 Z ) for Y , |y | , Y . k H 1 H 0 E k E 1 E H1 2 1 21 22 a Y 2 YE H

Note that, both u and its first derivative are continuous
at the edge of the forcing region.

As for the f -plane case, the spatial variations of the
temperature field are obtained from y-momentum equa-
tion, here (24), which yields

YH

h (y) 5 2h 1 [y9u(y9) 1 ay (y9)] dy9. (28)1 0 E
y

Finally, the radius of the Hadley cell is determined from
the constraint (21), which we solve numerically as in
the f -plane case.

The dashed line in Fig. 1 shows that, in general, the
Hadley cell width is greater on the equatorial b plane
than on the f plane. This is not surprising since it is
the Coriolis force that limits the cell width, and the
Coriolis parameter is weaker on the equatorial b plane
than on the f plane.

In Fig. 4, the b-plane solutions are plotted, for the
representative case a 5 0.1; the f -plane solutions are
superimposed in dashed lines, for easy comparison.
Note that the zonal velocity is quadratic at the origin,
as per Eq. (27). This implies, via (28), that h is quartic
in the forcing region, as is clearly reflected in the very
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FIG. 4. The WTG solution on an equatorial b plane (solid lines)
for the case a 5 0.1. The dashed lines show the corresponding f -
plane solutions. The meridional velocity y is identical (and thus not
plotted). For all curves, HE 5 1, YE 5 0.1, t 5 1.

flat h curve. Hence, the WTG approximation (i.e., the
fact that temperature is constant at lowest order) seems
even better satisfied on the equatorial b plane than on
the f plane.

In the inviscid limit, the WTG solution again con-
verges to the AMC solution in the same sense as on the
f plane. It is straightforward to show that in the limit
a → 0 the Hadley cell width is given by

1/5Y 5 (10H Y ) ,H E E (29)

which can be compared to (10), showing that on the
equatorial b plane the cell is not only wider, but also
less sensitive to the forcing parameter than on the f
plane. For our choice of parameters, this yields YH 5
1 in the inviscid limit, as seen in Fig. 1.

7. Conclusions

We have used a method based on the WTG approx-
imation to obtain nonlinear, axisymmetric solutions to
the shallow water equations under a thermal relaxation
and Rayleigh friction, representing perhaps the simplest
model of the Hadley circulation. We have obtained so-

lutions on both the f plane and the equatorial b plane.
In the inviscid limit, the solution for the rotational flow
u, perturbation thickness h, and cell width YH are iden-
tical to those of the standard AMC solution. The di-
vergent flow differs between the two cases, but the AMC
divergent flow can be obtained as a next-order correc-
tion to the WTG solution. The WTG procedure has the
advantage that it offers a conceptually straightforward,
semianalytical recipe for directly obtaining a steady so-
lution under finite (but small) viscosity, while the AMC
method is applicable only in the strictly inviscid case.
The WTG procedure thus allows us, semianalytically,
to take the inviscid limit of the solution itself (as op-
posed the equations, prior to solving them), something
that could otherwise be done to our knowledge only by
direct numerical integration of the primitive shallow wa-
ter system.

This perhaps represents only a minor advance in our
understanding of the Hadley circulation, per se. As
found by BS02 in the context of the Gill problem, it
seems, also, that no dramatic procedural simplification
results from the use of WTG. However, we have been
successful in showing that no harm is done either, since
in the inviscid limit, the WTG solutions reduce to the
‘‘exact’’ solutions of these classic problems. This may
be of some conceptual value.

However, it is when (in contrast to the present work)
moisture is explicitly modeled, and allowed to affect
the heating, that use of the WTG approximation appears
to be most advantageous, as shown to some degree by
Sobel and Bretherton (2000) and Sobel et al. (2001). In
those problems, great simplification arises because
WTG explicitly removes diabatic modes which involve
heating variations arising from tropospheric temperature
variations. For consistency, however, if WTG is used in
the moist, thermodynamical aspects of the problem, it
should also be used in the ‘‘dry’’ part of the dynamics.
Hence it is necessary to show, as we have done here in
the context of a simple model of the Hadley circulation,
that the dry dynamics is not seriously compromised by
WTG.
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