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ABSTRACT

Design of Scalable On-Demand Video Streaming
Systems Leveraging Video Viewing Patterns

Kyung-Wook Hwang

The explosive growth in on-demand access of video across all forms of delivery (Internet,

traditional cable, IPTV, wireless) has renewed the interest in scalable delivery methods.

Approaches using Content Delivery Networks (CDNs), Peer-to-Peer (P2P) approaches, and

their combinations have been proposed as viable options to ease the load on servers and

network links. However, there has been little focus on how to take advantage of user viewing

patterns to understand their impact on existing mechanisms and to design new solutions

that improve the streaming service quality.

In this dissertation, we leverage on the observation that users watch only a small portion

of videos to understand the limits of existing designs and to optimize two scalable approaches

— the content placement and P2P Video-on-Demand (VoD) streaming. Then, we present

our novel scalable system called Joint-Family which enables adaptive bitrate streaming

(ABR) in P2P VoD, supporting user viewing patterns.

We first provide evidence of such user viewing behavior from data collected from a na-

tionally deployed VoD service. In contrast to using a simplistic popularity-based placement

and traditionally proposed caching strategies (such as CDNs), we use a Mixed Integer Pro-

gramming formulation to model the placement problem and employ an innovative approach

that scales well. We have performed detailed simulations using actual traces of user viewing

sessions (including stream control operations such as pause, fast-forward, and rewind). Our

results show that the use of segment-based placement strategy yields substantial savings

in both disk storage requirements at origin servers/VHOs as well as network bandwidth

use. For example, compared to a simple caching scheme using full videos, our MIP-based

placement using segments can achieve up to 71% reduction in peak link bandwidth usage.



Secondly, we note that the policies adopted in existing P2P VoD systems have not

taken user viewing behavior — that users abandon videos — into account. We show that

abandonment can result in increased interruptions and wasted resources. As a result, we

reconsider the set of policies to use in the presence of abandonment. Our goal is to balance

the conflicting needs of delivering videos without interruptions while minimizing wastage.

We find that an Earliest-First chunk selection policy in conjunction with the Earliest-

Deadline peer selection policy allows us to achieve high download rates. We take advantage

of abandonment by converting peers to “partial seeds”; this increases capacity. We minimize

wastage by using a playback lookahead window. We use analysis and simulation experiments

using real-world traces to show the effectiveness of our approach.

Finally, we propose Joint-Family, a protocol that combines P2P and adaptive bitrate

(ABR) streaming for VoD. While P2P for VoD and ABR have been proposed previously,

they have not been studied together because they attempt to tackle problems with seemingly

orthogonal goals. We motivate our approach through analysis that overcomes a misconcep-

tion resulting from prior analytical work, and show that the popularity of a P2P swarm

and seed staying time has a significant bearing on the achievable per-receiver download

rate. Specifically, our analysis shows that popularity affects swarm efficiency when seeds

stay “long enough”. We also show that ABR in a P2P setting helps viewers achieve higher

playback rates and/or fewer interruptions.

We develop the Joint-Family protocol based on the observations from our analysis.

Peers in Joint-Family simultaneously participate in multiple swarms to exchange chunks

of different bitrates. We adopt chunk, bitrate, and peer selection policies that minimize

occurrence of interruptions while delivering high quality video and improving the efficiency

of the system. Using traces from a large-scale commercial VoD service, we compare Joint-

Family with existing approaches for P2P VoD and show that viewers in Joint-Family enjoy

higher playback rates with minimal interruption, irrespective of video popularity.
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CHAPTER 1. INTRODUCTION 1

Chapter 1

Introduction

Video-on-Demand (VoD) has grown rapidly as the leading source of Internet traffic. Recent

estimates [san, 2013] show that it accounts for about 62.0% of peak aggregate traffic (up

from 29.5% in 2009) in North America. This increasing demand put significant pressure

on content delivery systems requiring more costs of sustainable infrastructure such as disk

storage and network bandwidth, in order to satisfy as many end users as possible. There

has been renewed interest in scalable approaches for delivering videos. However, there has

been little focus on how to take advantage of user viewing patterns to understand their

impact on existing mechanisms and to derive new solutions that improve the streaming

service quality.

In this dissertation, we leverage on the observation that users watch only a small portion

of videos (we call this behavior abandonment) to understand the limits of existing designs

and to optimize two scalable approaches — the content placement and Peer-to-Peer (P2P)

VoD streaming. Then, we present our novel scalable system called Joint-Family which

enables Adaptive Bitrate streaming (ABR) in P2P VoD, supporting user viewing patterns.

In the first part of the dissertation, we characterize user viewing behaviors using data

collected from a real-world commercial VoD service. We provide proof that users watch

only a small portion of videos (not just for short clips, but even with full-length movies).

Based on this information, we explore how to take advantage of user viewing patterns to

place content in provider networks to reduce their storage and network utilization. We use

a optimization.
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Moreover, we contend that the policies used in existing P2P VoD systems are not opti-

mized because they have not taken user viewing patterns and viewers abandon prematurely.

We show that the chunk selection and the peer selection policies are interdependent. They

need to be addressed holistically and improved upon.

In the second part of the dissertation, we propose Joint-Family, a P2P streaming

video delivery system that has peers participating in multiple swarms simultaneously, uses

Earliest-First as the chunk selection policy, and Earliest-Deadline as the peer selection pol-

icy. We show analytically why our policies are suited for P2P VoD. Joint-Family with its

seamless multiswarm approach enables P2P systems to support adaptive bitrate videos by

leveraging resources across multiple swarms.

1.1 Leveraging Video Viewing Patterns for Scalable Stream-

ing Systems

1.1.1 Optimal Video Segment Placement

To keep up with the explosively increasing demand on streaming videos, content providers

have adopted a range of approaches including Content Distribution Networks (e.g., Aka-

mai, Limelight), Peer-to-Peer based delivery (e.g., PPLive, PPStream, Zattoo) or hybrid

combinations of the two (e.g., LiveSky [Yin et al., 2009b]). Cable and Internet television

(IPTV) providers use networks similar to content distribution networks for distributing and

delivering on-demand content.

Despite the differences in the actual delivery mechanism, there is one common factor:

Most of these approaches focus on content delivery and ignore storage. Instead they assume

that a full copy of the content is stored in multiple, if not all, locations. These include the

origin servers in case of content distribution networks (CDNs) or Video Hub Offices (VHOs)

in the case of cable and IPTV providers.

Intelligent storage, however, can significantly reduce cost and improve delivery efficiency.

It has been known for a while that content popularity is significantly skewed [Guo et al.,

2007a; Yu et al., 2006; Yin et al., 2009a]; as a result not every video needs to have an equal

number of copies. More importantly, there is increasing evidence that users do not watch
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entire videos [Yu et al., 2006; Yin et al., 2009a; Li et al., 2011]. Whether it is short clips,

or full movies, users stop watching the video prematurely. Such behavior is consistent with

a well established finding in psychology that people often make judgments about a subject

without evaluating all aspects of the subject [Banaji and Hardin, 1996]. Further, with the

ability to skip or replay portions of the video, users tend to skip portions of the video they

watch [Gopalakrishnan et al., 2011]. This, we argue, is crucial evidence against storing full

videos in multiple locations.

Storage is cheap, so why bother? Despite the falling prices of storage, we believe that

it is worthwhile to consider storing portions of the video in most locations. First, although

the cost of consumer storage has fallen significantly, enterprise grade storage, as needed by

a high performance and highly available streaming solution is many orders more expensive.

Specifically, while it is possible to purchase a 2TB hard disk around 100 USD today, the cost

of carrier grade storage servers with the same disk capacity can be higher by two orders of

magnitude (e.g., 30K USD) [sun, 2010]. Most of the cost comes from the strict redundancy

requirements and the sustained streaming rate needed for video delivery. Second, to cater

to growing demand and to gain competitive advantage, providers have been growing their

library catalogues at a rapid rate [com, 2010]. Third, transferring this ever increasing

number of videos to all the locations and storing them there, especially when not all of the

data will be viewed, is not just inefficient but also strains the distribution system. Finally,

storing portions of the video opens up opportunities to scale the library significantly for the

same amount of disk space.

In this dissertation, we seek to leverage users’ viewing patterns to design a more efficient

video placement strategy. Ideally, we want to identify small portions for each video that

can satisfy a large number of requests. By replicating those portions in multiple places, we

can maximize the number of requests that are satisfied locally with minimum disk usage.

Various studies have looked at the problem of content placement. For example, many

approaches [Borst et al., 2010; Baev et al., 2008; Valancius et al., 2009] use optimization-

based techniques to guide placement. These, however, resort to heuristics to solve the

problem or ignore important constraints such as link bandwidth. As a result, simple

caches [Yin et al., 2009b; Allen et al., 2007] and cache replacement policies [Allen et al., 2007;
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Wu and Li, 2009] have been used within the CDN, cable network, or at the clients. Caching,

however, can only be successful if the available cache is large enough to store the “working

set”. This working set is the set of unique videos requested over a time window. As we show

in Section 3.2, the working set size at a location can be as large as 50% of the entire library.

In this setting, smaller caches result in significant churn, rendering the cache ineffective.

Our design and analysis of Joint-Family makes the following essential contributions to

the field of streamed VoD:

• We first analyze video access data from a nationally deployed VoD service and confirm

that many requests indeed consume small fractions of videos (Section 3.2). We provide

a detailed analysis of how viewers watch videos and describe how their usage changes

across different parameters such as video size and popularity. Based on this finding,

a natural approach is to break a video into multiple segments, which become units of

storing and fetching content in our system. In this we study the advantages gained

by two approaches: (a) splitting a video into a prefix and a suffix, and (b) splitting

the video into fine-grained segments (e.g., chunks as in P2P systems).

• Instead of heuristics [Borst et al., 2010; Baev et al., 2008; Valancius et al., 2009]

or caching [Allen et al., 2007; Wu and Li, 2009], we use a mixed integer program

(MIP) formulation, whose solution guides how to place each segment across different

locations (Section 4.1). The MIP formulation takes a projected demand for each

segment, a disk constraint at each location, and a bandwidth constraint for each link,

and computes a solution that minimizes the overall network utilization. While the

formulation and the solution technique draw from our previous work [Applegate et

al., 2010], the problem of placing segments adds new challenges. For example, with

chunks, the scale of the problem grows so large that even the approach in our earlier

work [Applegate et al., 2010] is not able to solve the MIP quickly. As a result, we try

to cluster different chunks into groups and place these groups.

• We use detailed simulation experiments and compare our optimal placement approach

against alternate schemes (Section 4.2). Our results show that, there is tremendous

benefit to storing just portions of a video. For example, chunk-based MIP placement
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can achieve 71% reduction in peak link bandwidth usage over LRU caching with full-

length videos and 52% reduction over MIP placement of full-length videos. Even

simply utilizing prefixes in the MIP-based placement results in up to 62% reduction

in peak link bandwidth usage.

1.1.2 User Abandonment and its Impact on P2P VoD

Peer-to-peer (P2P) systems have become part of the mainstream content distribution envi-

ronment, improving the viewing experience by utilizing the upload capacity of the download-

ing nodes, thereby increasing overall upload capacity. Even traditional Content Distribution

Network (CDN) providers such as Akamai [Maggs, 2012] are choosing to experiment with

and deploy P2P-based delivery of video content.

and is being considered for commercial deployment VoD services [Maggs, 2012]. Much

of this progress can be attributed to previous research identifying the set of policies that

enable robust and scalable P2P delivery systems. In this dissertation, we consider the

problem of viewers abandoning videos part way through the viewing of the video. While

mostly overlooked so far, we show that abandonment (also called viewer engagement in

other work [Dobrian et al., 2011]) is a critical factor to consider since it directly affects the

impact of various policies used for P2P VoD.

The two most important policies that determine P2P performance are the chunk- and

peer-selection policies. File sharing systems have traditionally used a combination of Tit-

for-Tat (TFT) as the peer selection and Rarest-first (RF) as the chunk selection as this

combination offers the best tradeoff in terms of performance and fairness. Unfortunately,

this combination does not work as well with streaming video, be it live or on-demand,

since a video is generally consumed sequentially. Instead, an Earliest-First (EF) policy is

a more natural chunk selection policy for video streaming. EF, however, is incompatible

with TFT as peers in different points of playback have very little content of mutual interest

to exchange with each other. As a result, there has been a lot of work to identify hybrid

chunk selections strategies (e.g., EF+RF) [Zhou et al., 2007; Fan et al., 2010; Borghol et

al., 2010; Carlsson and Eager, 2007; Vlavianos et al., 2006; Shah and Paris, 2007] that find

a compromise between the need of streaming to get sequential data and TFT’s need for
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diversity.

While the design of EF+RF implicitly assumes that viewers watch entire videos, recent

studies [Yin et al., 2009a; Li et al., 2011] show that viewers of both short clips and full-

length movies often watch only a small portion of a video and abandon the video part

way through. Such abandonment may be attributed to how users find movies of interest

(e.g., surfing for interesting content) or the possibility that a viewer loses interest in the

content. Such viewer abandonment of videos has significant implications on the design

of P2P policies. For example, peers using EF+RF may end up downloading rare chunks

that they do not actually watch later due to abandonment. In this case, it would be more

beneficial to use that upload capacity to deliver chunks that peer immediately need, to

improve video playback experience and reduce unnecessary bandwidth consumption.

In this dissertation, we reconsider the set of chunk and peer selection policies to use in

real-world P2P VoD systems with viewer abandonment (Section 5.1). We show that EF is

a more appropriate chunk selection strategy in the presence of abandonment. Instead of

using TFT, we introduce Earliest-Deadline (ED) as the peer selection strategy. In ED, a

node picks peers with the earliest deadline among chunks when deciding which request to

serve. Choosing ED not only gives us substantial performance improvement (as seen in our

experiment results), but also allows us to break the inter-dependence between chunk- and

peer selection that TFT introduces. While EF itself reduces wasted download compared to

EF+RF, we introduce the notion of a playback lookahead window (PLA) to further limit

the download rate, as is used in HTTP streaming [Akhshabi et al., 2011; Rao et al., 2011].

The window is sized such that when it is full, the user will not encounter interruptions.

At the same time, users do not request any more data than needed to avoid “wasting”

bandwidth in case they abandon the video.

Note that while the properties of churn and abandonment are similar in philosophy,

there are still subtle differences. In particular, with abandonment, users do not necessarily

leave the system. Instead they may stay connected and watch a different video after a

short period of time, or even stay idle in the system. Instead of treating abandonment as

a departure, we take advantage of the peer’s staying connected by getting it to continue

to participate in the swarm as a “partial seed” until the user watches the next video. We
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define a partial seed as a peer that does not have the entire video, but is not actively

watching (and downloading) the video. These partial seeds continue to serve requests for

the chunks they have downloaded already, and thus contribute to increasing the overall

system capacity. We show using an analytical model accounting for abandonment and

partial seeds (in Section 5.2) that the partial seed staying time significantly influences the

swarm’s performance. We evaluate our design using detailed simulations based on traces of

user requests collected from a nationally deployed VoD service (Section 5.3).

In this dissertation, we make the following important contributions:

• Through trace-driven simulations, we show that existing P2P VoD systems do not

perform well in presence of abandonment. They experience more interruptions com-

pared to when users watch videos entirely. More importantly, we show that viewers

that watch more of the video experience severe interruptions.

• In contrast to previous findings, our results show that with abandonment, a hybrid

policy of EF+RF performs worse and results in longer interruption periods than EF.

With EF, using ED instead of TFT brings significant performance enhancements.

• We develop a detailed analytical model that accounts for abandonment and partial

seeds and show that “useful” download rate of EF effectively improves as partial seeds

stay longer.

• We show that the combination of ED, EF, and partial seeds can significantly improve

overall video playback performance, while PLA further reduces wasted bandwidth

consumption.

1.2 Enabling Adaptive Bitrate Streaming in P2P VoD

The ever-increasing demand placed by streamed video traffic across both wired and wireless

networks has been managed by two seemingly complementary approaches: adaptive bitrate

(ABR) [ss, 2010; ado, 2010], and P2P delivery [joo, ; uus, ]. ABR encodes a video at

multiple bitrates, and maximizes the video bitrate within the available bandwidth, giving

a higher fidelity video when possible, and dropping to lower quality rather than forcing an
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interruption of playback. P2P-based systems are a popular alternative to deliver on-demand

videos as explained in the previous subsection. Intuitively, these two orthogonal approaches

are not well-suited to work together, because viewers watching the video at differing rates

are presumably unable to exchange video parts with one another. Hence, it appears that

enabling ABR interferes with the ability for peers to share video parts with one another.

In this dissertation, we show that, contrary to current intuition, ABR and P2P can

effectively be combined in a way that achieves the best of both worlds: P2P techniques im-

prove upload capacity, and ABR enables the highest quality viewing at that capacity. Using

a combination of analysis and simulations, we demonstrate the performance improvements

offered by our novel design, which we call Joint-Family, and compare it to existing P2P

video-on-demand (VoD) systems.

Our design and analysis of Joint-Family makes the following essential contributions to

the field of streamed VoD:

• We identify a misleading generalization of the conclusion of previous fluid modeling

efforts [Qiu and Srikant, 2004] that popularity of a stream does not have bearing

on its effective download capacity. We also identify the conditions that contradict

the conclusion of these models. We show that with ”sufficiently long” staying times,

content popularity in fact affects swarm efficiency, yielding that more popular swarms

have higher download rates than less popular swarms (Section 6.1.2).

• We analyze the effectiveness of caching previously watched videos and sharing them

as a mechanism to extend seed staying time (Section 6.1.3). With caching we can

also transfer underutilized capacity from one swarm to another and thereby improve

global performance.

• We show how ABR, when combined with P2P, enables a swarm to efficiently adapt to

the best encoding rate, without a priori knowledge of the video’s popularity. (Section

6.1.4) We use our Markov model to show that ABR allows P2P swarms to migrate to

the highest sustainable rate for that swarm: highly popular content will induce large

swarms and have a high sustainable download capacity, whereas less popular content

will have smaller swarms and a lower sustainable download capacity.
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• Based on our analytical observations, we design a novel protocol called Joint-Family

to deliver high-quality videos with minimal interruptions in a P2P system, using

multi-swarm participation and ABR (Section 6.2).

A peer in Joint-Family caches and shares multiple ABR videos using storage space at

the end system, and increases capacity of swarms (especially for unpopular videos) by sup-

plementing it with (unused) peer capacity. Hence, the peer participates in multiple swarms

concurrently, and shares different parts of the ABR video at multiple bitrates. To support

this, we identify the right combination of chunk selection, peer selection, and bitrate adap-

tation policies that minimize interruptions. Our design makes Joint-Family immediately

suitable for existing VoD infrastructures in which the provider owns the distribution in-

frastructure (e.g., CDNs [Maggs, 2012], IPTV [UVe, ]). We also describe how the protocol

can be applied in a decentralized setting by utilizing mechanisms that encourage sharing of

content [Piatek et al., 2010]. We conduct extensive performance evaluations of Joint-Family

using traces from a nationally deployed VoD service (in Section 6.3), and show that ABR

with P2P is indeed feasible. Compared to a generalized implementation of the state-of-

the-art in P2P VoD, our instantiation of Joint-Family delivers high quality VoD streaming,

even for unpopular videos, with minimal interruptions.

1.3 Overview of the Dissertation

This dissertation consists of two main parts. In Part I (Chapters 3, 4, and 5), we present user

viewing patterns and our new approaches to video placement and P2P VoD that account for

viewing patterns. Section 3.1 describes the real-world data set used in our study. We then

analyze the data and present how videos are watched in Section 3.2. Section 4.1 presents

the mixed integer program (MIP) that we use to determine the optimal content placement,

and in Section 4.2 we evaluate the performance of our segment-based video placement

through experiments. In Section 5.1, we re-evaluate key policies and design decisions for

P2P VoD by taking viewer abandonment into account. We then analyze in Section 5.2

how abandonment affects the performance in P2P VoD. Section 5.3 evaluates our P2P VoD

design that supports abandonment.
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Part II (Chapter 6) presents our novel scalable system Joint-Family. Section 6.1 analyti-

cally shows how video popularity, the staying time of peers, and caching help increase system

capacity. Also we analyze how adaptive bitrate can further improve the playback quality.

Section 6.2 describes Joint-Family protocols, and Section 6.3 evaluates the performance of

Joint-Family and compares it to state-of-the-art P2P approaches.
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Chapter 2

Related Work

We discuss previous works on the design and analysis of video streaming systems and

protocols. We first describe previous study related to user behavior or patterns in online

video viewing (Section 2.1) since we seek to leverage users’ viewing patterns to design more

efficient video-on-demand (VoD) systems. We then present previous works on video caching

and optimal video placement (Section 2.2) before we introduce our optimal video segment

placement strategy in Chapter 4. We then review existing P2P VoD systems focusing on

their main policies and design selections (Section 2.3), and we show in Chapter 5 that those

existing schemes for P2P VoD do not perform well when users abandon a video part-way.

Finally, we present the recent use of adaptive bitrate (ABR) video streaming which have

been frequently adopted in practice (Section 2.4), and we show in Chapter 6 that Joint-

Family’s multi-swarm solution is a perfect match for the needs of ABR video distribution

in P2P environment.

2.1 User Behavior in Online Video Watching

With more and more deployments of cable, IPTV, and P2P-based VoD systems cropping

up, there has been a large amount of data to study different aspects of how users watch

the videos. Yu et al. [Yu et al., 2006] study the user behavior in PowerLive, a VoD system

deployed in China. Huang et al. [Huang et al., 2008] study different aspects the PPLive [ppl,

] P2P VoD system. Yin et al [Yin et al., 2009a] study user behavior using the data collected



CHAPTER 2. RELATED WORK 12

from VoD access to the 2008 Beijing Olympics. Gopalakrishnan et al. [Gopalakrishnan et

al., 2010] study how users use the DVD-like operations (e.g., skip, fast-forward, rewind) in

a large-scale VoD system. Especially, Yin et al. [Yin et al., 2009a] and Li et al.[Li et al.,

2011] present a measurement study on viewer abandonment in a large scale landline-based

and mobile-based IPTV services provider, respectively. They both demonstrate that users

often watch only a small portion of a video. In Chapter 3 we provide concrete evidence

to viewer abandonment by measuring how often users abandon videos and how much of a

video they watch, and we also study how user behavior correlates to different aspects such

as video length and popularity.

Aalto et al. [Aalto et al., 2011] analyze viewer abandonment in P2P VoD with limited

simulation scenarios for model verification. Our work in Section 5.2 analyzes the contribu-

tion of ”partial seeds” and performs practical evaluation with real traces to measure impact

of abandonment in the real world.

2.2 Content Placement

Work related to our optimal video segment placement (Chapter 4) can be divided into

two broad categories: work on full video and prefix caching, and work on optimal content

placement. We describe each of these areas here.

Utilizing Video Prefixes Despite the lack of concrete evidence, the notion of taking

advantage of prefixes is not new. Previous studies typically have focused on caching prefixes

of videos, either for fast startup, or to reduce cache space. Sen et al. [Sen et al., 1999] and

Zhang et al. [Zhang et al., 2000] propose caching an initial prefix of video to provide fast

start-up, deal with jitter, and reduce server load. Park et al. [Park et al., 2001] propose

a caching scheme that stores a portion of the entire video, where the amount of video

cached is determined by its popularity. Wang et al. [Wang et al., 2002] attempt to minimize

aggregate network bandwidth by analytically determining the optimal proxy prefix cache.

Wu et al. [Wu et al., 2001] propose partitioning videos into exponentially increasing segments

and caching these segments. They also propose cache admission and replacement strategies

that determine which segments to cache and which ones to replace. More recently, Huang
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et al. [Huang et al., 2007] and Allen et al. [Allen et al., 2007] study the use of P2P nodes

for caching videos. The goal of both approaches is to reduce server load by using peers to

serve the content. All these approaches rely on servers when content delivery from caches

or peers is not possible. In contrast, our focus is on placing content among the backend

servers and to take advantage of client viewing patterns among these backend servers.

Optimal Placement Approach Content placement and replication has, in general, been

a topic of extensive research. Qiu et al. [Qiu et al., 2001] consider the problem of positioning

web server replicas to minimize the overall cost. Other work [Barbir et al., 2003; Alzoubi

et al., 2008] focuses on how to direct user requests to the “best” among replicated servers

(also known as request routing). Most existing work focuses on minimizing latency given

constraints (e.g., server capacity), but do not consider network link capacity constraint.

There have also been several efforts to address the problem of content placement using

analytical framework. Valancius et al. [Valancius et al., 2009] propose an LP-based heuristic

to identify which videos and how many replicas to be placed at customer home gateways.

Borst et al. [Borst et al., 2010] focus on minimizing link bandwidth utilization assuming

a tree structure with limited depth. Both proposals focus on a network structure that

connects consumers to the server. In contrast, we consider placing content in the backbone

networks with diverse disk and link bandwidth constraints. Baev et al. [Baev et al., 2008]

consider the data placement problem where the objective is to minimize the cost without

taking bandwidth into account. They prove that their problem is NP-hard via a reduction to

the uncapacitated facility location problem. Since the data placement problem is a special

case, our problem is also NP-hard. Baev et al. also show that when object length is not

the same, even deciding feasibility is NP-hard, and no approximation algorithm is possible

unless P=NP. Our problem is strictly more complex, since we also consider link constraints.

We also find provably-good solutions (e.g., within 1% of optimal) on instances arising from

real-world large-scale systems dealing with diverse objects. Zhou and Xu [Zhou and Xu,

2002] consider the problem of minimizing the load imbalance among servers subject to disk

space and server network bandwidth constraints. Their work only considers the egress link

capacity from servers.
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2.3 Abandonment and its Impact on P2P VoD

Our results in Chapter 5 show that viewer abandonment has a significant effect on the

performance of existing P2P VoD streaming systems and that existing schemes for P2P

VoD should be reconsidered to cope with more realistic demands. In this section, we study

some of the key policies and design decisions for previous P2P VoD works.

Chunk Selection: To adapt BitTorrent for streaming systems (either live or VoD), a

combination of the rarest first (RF) chunk selection policy and sequential chunk download

(EF) has been exploited [Zhou et al., 2007; Hwang et al., 2008; Borghol et al., 2010; Carlsson

and Eager, 2007; Vlavianos et al., 2006; Shah and Paris, 2007; Fan et al., 2010]. The

specific details of the proposed schemes vary from simple probabilistic hybrid models to

using sophisticated network coding techniques. Previous literature claims that achieving

balance between system utilization (by RF) and on-line playback (by EF) can substantially

improve playback quality. However, we show in Chapter 5 that with viewers’ abandonment,

such a hybrid policy greatly degrades the playback performance. We further show that

using EF only achieves better playback performance.

Peer Selection: BitTorrent’s TFT is effective for file sharing with its inherent incentive

mechanism to encourage a peer’s contribution. However, several prior works [Huguenin et

al., 2010; Zhang et al., 2011; Wen et al., 2011; D’Acunto et al., 2010; Shah and Paris, 2007;

Yang et al., 2010; Mol et al., 2008; Guo et al., 2007b] show that TFT is not suitable for

streaming applications. This is primarily because chunk selection using RF is not suitable for

streaming, and TFT without RF makes it difficult for new peers to contribute to older peers,

thus preventing them from fully helping each other. Various peer selection approaches have

been proposed for streaming. Shah et al. [Shah and Paris, 2007] modify TFT’s optimistic

unchoke, D’Acunto et al. [D’Acunto et al., 2010] make peers act more altruistically, and

Wen et al. [Wen et al., 2011] group peers with similar playback points to help each other.

To satisfy a viewer’s uninterrupted playback experience, in Section 5.1.3 we replace TFT

with the Earliest-Deadline (ED) policy, which ensures that each chunk is delivered to the

viewer prior to its deadline.

Limiting Rate to Avoid Wastage: Popular VoD services such as YouTube (using Pro-

gressive Download) and Netflix (using Adaptive Bit Rate) have adopted approaches that
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limit the amount of video bytes delivered beyond the current playback point so as to limit

wastage on network bandwidth and also reduce the load on the network for VoD stream-

ing. However, most of these approaches have been applied for server-based environments

such as HTTP streaming [Rao et al., 2011], progressive download [Ghobadi et al., 2012;

Alcock and Nelson, 2011], and adaptive bitrate streaming [Akhshabi et al., 2011]. A similar

capability is desired for P2P VoD streaming. We show in Section 5.3.3 that our approach

of having a limited ’look-ahead’ window can also reduce wastage caused by abandonment

in P2P systems, while not hurting the viewer’s playback experience.

2.4 Adaptive Streaming in Multi-swarm P2P VoD

In terms of swarm participation, a peer viewing a video typically participates in the swarm

only for as long as it is viewing that content. With abandonment, the work done in down-

loading the data is wasted if the peer does not view that portion or share it with others. A

natural mechanism to improve system capacity and efficiency in such scenarios is to allow

a peer to stay and also be in multiple swarms. Also, an important practical considera-

tion is that most VoD providers (e.g., Netflix, Hulu) move users between higher and lower

quality video chunks based on observed user download rate using Adaptive Bitrate (ABR)

streaming.

In this section, we describe related work on multi-swarm P2P and adaptive streaming

and show in Chapter 6 that our Joint-Family’s multi-swarm protocol is eminently suitable

for the distribution of ABR video.

Multiple Swarms in P2P: While most of the work has improved the performance in a

single swarm, little effort has been put on multiple swarms to utilize idle upload/download

bandwidth of peers by means of added capacity obtained between swarms. Wu et al. [Wu et

al., 2009] and Wang et al. [Wang et al., 2010a] investigate the peer’s bandwidth allocation

to contribute across multiple swarms in live streaming but not in VoD. Zhou et al. [Zhou et

al., 2011] model inter-swarm data exchange in VoD, however, their implementation requires

centralized schemes for estimating the demand and supply for each content piece. Wang et

al. [Wang et al., 2010b] focus on adjusting the peer’s inter-swarm contribution based on the
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demand, which corresponds to one of the many aspects considered in our work.

Adaptive Streaming: Adaptive bitrate (ABR) streaming has been gaining popularity

as a way to enable users to experience the highest quality of videos. ABR dynamically

adapts to the user’s network and playback condition. There are several flavors of ABR im-

plementations (e.g., MPEG-DASH, Adobe Dynamic Streaming, Microsoft Smooth Stream-

ing, Apple HTTP Streaming, Netflix [Stockhammer, 2011; ado, 2010; ss, 2010; app, 2011;

Akhshabi et al., 2011]). While ABR has been used for HTTP server based streaming, the

use of P2P systems for ABR are not yet common. Roverso et al. [Roverso et al., 2012]

implement ABR in P2P systems for live media only. To the best of our knowledge, we are

the first to investigate ABR for P2P VoD.

Scalable video coding (SVC) [Schwarz et al., 2007] is yet another approach that enables

end-systems to adapt network conditions. The SVC streams consist of a base layer and mul-

tiple enhancement layers where each enhancement layer improves the video quality. SVC

can also be supported in P2P systems for VoD. [Castro et al., 2003; Petrocco et al., 2011;

Rückert et al., 2012; Eberhard et al., 2012] take a multiple description or layered coding

approach which causes interdependency of layers per chunk distribution in P2P and which

is not directly applicable to ABR or our P2P work. Also, SVC has not been widely imple-

mented due to the complexity of decoding on the end-systems, and the additional bandwidth

requirements compared to ABR. ABR deployment has far outpaced other alternatives.
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Part I

Leveraging Video Viewing Patterns

for Scalable Streaming Systems
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Chapter 3

User Behavior in Online Video

Viewing

3.1 Description of Data Set

We first describe the data set used in our study. We then analyze the data and present how

videos are watched in the next section.

3.1.1 Trace Data

We obtained trace data collected for 16 days in January of 2010 from a nationally deployed

video-on-demand service. This trace includes over 13 million requests for both free and

paid videos belonging to various classes including music videos and trailers, TV shows, and

full length movies. A record in this anonymized trace data includes information such as

the requested video ID (typically a hash of the content), its length, its price, the time of

request, and the video server serving request (i.e., the Video Hub Office (VHO)). It also

contains information about the set of DVD-like operations that the user performed while

watching the video in a given session (i.e., timestamps when the user started watching the

video and when they stopped watching it).

Note that a session duration may be longer than the video length because the user may

have re-wound or paused the video. Further, the actual amount of video watched is quite
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Figure 3.1: Cumulative distribution of the NLVs with different session resumption thresh-

olds Tr.

different from the session duration or even the video length. To get an accurate estimate of

how much of the video was actually watched, we included the time spent in fast-forward,

rewind, pause, SKIP, and REPLAY. For example, suppose that a user spends the first

4 minutes fast-forwarding the video at 2x speed and then watches another minute before

stopping the session. While the session length is 5 minutes, the amount of video consumed

is 9 minutes. We measure the actual length of the video watched as a fraction of the video

length and call it the Normalized Length Viewed (NLV). In the above example, if the length

of the video is 30 minutes, then NLV is 9/30=0.3.

3.1.2 Limitations of our data

Our data has certain limitations. Here we describe relevant limitations and how we address

them.

3.1.2.1 Session Resumption

The VoD service allows users to watch a video partially and continue at a later time.

However, our data did not clearly identify if a particular session by a user was a new one or
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Figure 3.2: Typical signature of a video with free preview.

the resumption of a previous session. To overcome this, if a user requests the same video

in two consecutive sessions that are less than Tr apart in time, then we assume that the

later session resumes from where the previous session left off. Otherwise, we treat the later

session as a new session watching from the beginning.

In Figure 3.1, we compare the NLVs when we take into account the session resumption

with different thresholds Tr. Tr = 0 indicates that no session is resumed. First, we see that

the NLVs under the session resumption are longer than those without resumption regardless

of Tr. Next, we see that when we increase the threshold, we see that the change in NLVs

decreases (e.g., Tr =1hr and Tr =4hr are almost identical). In the rest of the chapter, we

use Tr = 4 since the number of consecutive sessions beyond this threshold was negligible in

our trace data. Note that using this value is conservative and overestimates the access to

latter part of videos.

3.1.2.2 Free Previews

The VoD service provides free short previews for some of the paid content. Users get to

watch these previews before they decide if they want to pay for the full video. Unfortunately,

our trace data does not have information that allows us to distinguish which videos have

previews and for how long. Since these preview sessions are short, not identifying access to
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Figure 3.3: Fraction of viewer requests for all videos in the library (Zipf distribution). Rank

100% corresponds to the least popular video.

these previews can significantly skew our results.

To overcome this, we analyzed our data and observed that most paid videos with pre-

views had a typical signature with a large proportion of the requests watching less than 5

minutes as shown in Figure 3.2. We use this signature to identify videos with free preview

and exclude all sessions for these videos whose length is shorter than 5 minutes. Again, we

believe this is a conservative threshold (most of the preview sessions are 1 ∼ 3 minutes)

and underestimates the access to earlier part of videos.

3.2 Motivation for Placing Video Segments

By analyzing our data described in the previous section, we provide the motivation for

placing segments (Chapter 4) rather than full videos. We study how much of a video users

watch, and then investigate how this correlates to video properties such as video length and

popularity.
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Figure 3.4: Cumulative distribution of requests to video of different sizes. The plot also

shows the cumulative distribution of requests with different lengths viewed.

3.2.1 Most Requests Are Concentrated on Popular Videos

In Figure 3.3, we plot how many requests each video has during the 16 day period. The

figure shows that most of viewer requests are concentrated on the limited number of very

popular videos. The top 10% popular videos of the entire library have more than 75% of

the entire requests. This viewing pattern strongly motivates our optimal video placement

in Chapter 4, rather than replicating the entire content library at every VHO.

3.2.2 Most Users Watch Fraction of a Video

We first study the relation between the length of requested videos and the NLV for these

viewing sessions. In Figure 3.4, we show the video length and the viewed length for all

requests and plot the cumulative distribution. We observe that 43% of the requests are to

videos that are 2000 secs (e.g., a 30 minute TV show) or less. By contrast, the amount of

video watched by users is much shorter. Specifically, about 73% of the cases watched 2000

seconds or less of the requested video. This result indicates that most users do not watch

videos fully.
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Figure 3.5: Scatterplot of averaged NLV

for each video of different lengths. One

point represents a single video.
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Figure 3.6: Cumulative distribution of

NLV for different classes of video lengths.

3.2.3 Correlation between NLV and Video Properties

3.2.3.1 Longer videos tend to have smaller NLVs

Having established that viewers watch only a portion of the video, we examine the corre-

lation between the length of a video and the normalized length viewed. In Figure 3.5, we

show a scatter plot of the average NLVs for all requests to each video of different lengths.

We also see some interesting trends here. First, we see that shorter videos tend to have

larger NLVs. We also see four clusters of video lengths. This is not surprising because of

the nature of the content in the video library: music videos and trailers, episodes of shows,

documentaries, and movies.

In Figure 3.6, we plot the cumulative distributions of the four clusters of video lengths

as identified in the previous figure. We clearly see that longer videos tends to have smaller

NLV values. For the cluster of videos of the greatest length, around 55% of the requests

stopped before reaching 40% of the video length. By contrast, for the group of shortest

videos, only less than 20% of the requests stopped before viewing 40% of the video.
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Figure 3.7: Scatterplot of NLV for videos

of decreasing popularity. (Rank 100% cor-

responds to the least popular video.)
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Figure 3.8: Scatterplot of video length for

videos of decreasing popularity.

3.2.3.2 Weak correlation between popularity and NLV

We now study the relationship between the popularity of a video and how much of it is

viewed. Conventional wisdom says that popular videos tend to be viewed fully. This belief

also forms the basis for some of the prefix caching approaches [Park et al., 2001]. For each

video, we calculate the average NLV across all requests to the video and plot the result in

Figure 3.7. Surprisingly, the figure shows that there is little to no correlation between the

popularity of a video and how much of it is actually viewed.

We further investigate if there is any bias in popularity towards videos of a certain

size. Figure 3.8 shows the relation between the length of videos and their popularity. As

in Figure 3.5 we see four clusters of videos based on length. Also, within a given cluster,

there are some indications of bias in popularity. For example, it seems that short videos are

denser in the unpopular zone, while the density is higher for longer videos in the popular

zone. However, there appears no strong bias in popularity across these clusters. Although

not shown here, we also examined a subset of videos (e.g., longer than 4000 seconds), but

did not observe any strong correlation between popularity and NLV.

This result indicates that just taking the popularity of a video and deciding how to store

it may lead to an inefficient placement decision. We contend that there are benefits to be
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Figure 3.9: Cumulative distribution of the NLVs for free and priced videos.

gained by looking to store videos at a finer granularity.

3.2.3.3 Paid videos have longer NLV than free ones

We separately explore sessions for free and paid videos since it is generally assumed that

viewers are more likely to watch longer when they pay for viewing. Figure 3.9 confirms that

this assumption is indeed true, showing that paid sessions are significantly longer than free

sessions. For example, about 45% of the requests for free videos stopped watching before

40% of the video while only 25% for paid videos stopped at that point.

3.2.3.4 Small difference between weekdays and weekends

We investigated the NLVs of each day’s sessions from Monday to Sunday, and we observe

that the NLV is the largest on a Saturday and the smallest on a Monday. However, the

difference is modest. Specifically, in our results, about 51% of viewers on Monday watched

50% or less of the video, while 47% on Saturday watched the same amount.

3.2.3.5 NLV depending on genres

We also investigated the difference in NLV depending on the genres (e.g., kids, action) of

videos and found that most genres show a similar NLV distribution (the result not displayed

here). For example, in the case of paid videos, the majority of genres follow a curve similar
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to the one shown in Figure 3.9, although a few genres slightly deviate from the curve (e.g.,

adult genre with shorter viewing sessions even for paid videos).



CHAPTER 4. OPTIMAL VIDEO SEGMENT PLACEMENT 28

Chapter 4

Optimal Video Segment Placement

4.1 MIP Formulation

In this section we present the mixed integer program (MIP) that we use to determine

the optimal content placement. While we have presented this formulation in our earlier

work [Applegate et al., 2010], we describe it here for completeness. We also discuss new

aspects of the problem when we consider placing portions of a video.

4.1.1 Problem Formulation

Given a request pattern for each video at each VHO over a time period, our goal is to find

a video placement that minimizes the total network consumption while satisfying all user

requests within the link bandwidth and disk capacity constraints. We first describe our

input parameters and decision variables. Let V denote the set of VHO locations, L the

set of directed links between these locations, W the set of videos in our video library, and

M the set of distinct segments (e.g., chunks, or prefix and suffix) of video.1 The set of

time slices at which we enforce the link bandwidth constraints is T . We take the learning

from [Applegate et al., 2010] to identify the time slices to be 1-hour windows during the

peak busy period on weekend days. Each VHO i has disk capacity Di, and the size of

1 In case a video is not broken into multiple pieces, M = W .
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Parameters Meaning

V set of VHOs (vertices)

L set of directed links

W set of videos

M set of distinct segments of all videos in W

T set of time slices

Di disk capacity at i ∈ V (in GB) reserved for fixed storage

sm size of video segment m ∈ M (in GB)

Pij set of links on path used by i ∈ V to serve requests at j ∈ V

Bl capacity of link l ∈ L (in Mbps)

rm bitrate of video segment m ∈ M (in Mbps)

amj aggregate # of requests for video segment m ∈ M at VHO j ∈ V

fm
j (t) # of requests for segment m ∈ M at VHO j ∈ V

that are active at time t ∈ T

cij cost of transferring one GB from i ∈ V to j ∈ V

Decision

variables Meaning

ymi binary variable indicating whether to store segment m ∈ M

at VHO i ∈ V

xmij fraction of requests for segment m ∈ M at j ∈ V served by i ∈ V

Table 4.1: Input parameters and decision variables used in the MIP

m ∈ M is sm. Instead of just having a few distinct video sizes (e.g., 4 in [Applegate et al.,

2010]), we allow a video to be of arbitrary size. For each pair of VHOs i, j ∈ V , we assume

that there is a fixed directed path Pij from i to j. Serving a request locally requires no links,

so Pii = ∅. The capacity of link l ∈ L is Bl, while the bit rate of video segment m ∈ M

is rm (both in Mbps). For each segment m ∈ M , VHO j ∈ V receives amj requests during

the entire modeling period. Using the detailed DVD-like stream control traces (not just the

distinct video requests by the user), we identify the exact length of the video that the user

views, and thereby derive the counts for each portion of the video segment requested. At
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any given time slice t ∈ T , the number of concurrent streams is fm
j (t). We denote the cost

of serving one GB of video from i to j by cij . This cost for a remote service is proportional

to the number of hops between i and j (i.e., |Pij |).

Our MIP model has two types of decision variables. For each i ∈ V and each m ∈ M ,

ymi indicates whether we store m at i. ymi is a binary variable, because given m, i always

stores it in its entirety or not (i.e., yes, if ymi = 1; no, if ymi = 0). When a request for m

arrives at VHO j, it is served locally if the video is stored at j; otherwise, it must be fetched

from some other VHO storing m. If there are multiple such VHOs, the variable xmij tells

what fraction of requests should be served from VHO i. Table 4.1 summarizes the symbols

used and their meaning. The top section lists the input parameters, which our MIP treats

as fixed.

Our MIP formulation is:

min
∑
m∈M

∑
i,j∈V

smamj cijx
m
ij (4.1)

s.t.
∑
i∈V

xmij = 1, ∀m ∈ M, j ∈ V (4.2)

xmij ≤ ymi , ∀i, j ∈ V,m ∈ M (4.3)∑
m∈M

smymi ≤ Di, ∀i ∈ V (4.4)∑
m∈M

∑
i,j∈V :

l∈Pij

rmfm
j (t)xmij ≤ Bl, ∀l ∈ L, t ∈ T (4.5)

xmij ≥ 0, ∀i, j ∈ V,m ∈ M (4.6)

ymi ∈ {0, 1}, ∀i ∈ V,m ∈ M (4.7)

The objective expressed by (4.1) is to minimize the overall cost of byte transfer while

serving all the requests for the entire period (Constraint (4.2)) without violating the disk

capacity and link bandwidth capacity constraints (Constraints (4.4) and (4.5)). Con-

straint (4.3) captures the fact that location i can serve m only when it has a local copy.2

2 Constraints (4.2) and (4.3) combine to ensure that every m ∈ M is available in the system. That is,

they imply
∑

i∈V ym
i ≥ 1, ∀m ∈ M .
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4.1.2 Managing the Scale of the MIP

It is hard to find an optimal solution (due to NP-hardness) to the above MIP. We have

presented a practical approach in our earlier work [Applegate et al., 2010] that allows us

to solve the MIP quickly. However, despite the advances presented in that work, the scale

of the problem grows significantly when we attempt to place chunks. For instance, when

an average video size is an hour, breaking each video into 10-second chunks increases the

number of variables in the MIP formulation by a factor of 360. However, to take advantage

of operations like ‘skip’ or ‘replay’ and eliminate the delivery of some chunks, we need to

use small chunks.

To make the problem size tractable even with small chunks, we cluster chunks into

groups. We then solve the MIP instance based on these groups and place the groups as

dictated by the output of the MIP. As a result, all the chunks within a cluster are placed

together. One approach we attempted is to retain the difference in popularity by clustering

chunks of the same access frequency. This approach, however, has an important drawback in

that it results in unbalanced cluster sizes — some clusters being very big (e.g., clusters with

chunks having very few accesses) and some other clusters being very small. For example,

with our data, we noticed that the size of the largest cluster was ∼130000 times that of the

smallest cluster. The size of these large clusters makes it very hard to place them in any

VHO, thereby defeating the very purpose of MIP-based placement.

We break this using a simple heuristic. We first sort all chunks based on the number

of accesses during the training period in decreasing order. Then, we cluster groups of n

chunks, so that the first cluster has the n most popular chunks, and the second cluster

has the next n popular chunks, and so on. The downside of this approach is that it is

an approximation and can potentially result in more copies of certain chunks than needed

(because of the additive effect of the demand of each chunk). However, by limiting the size

of a cluster to a small number, we can minimize this effect, while we still can solve the MIP

quickly.
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4.2 Experimental Evaluation

We evaluate the performance of chunk and prefix-based placement through simulation ex-

periments using data from a nationally deployed VoD service. We make the following high

level observations from our results:

• Both chunk- and prefix-based placement significantly reduce the amount of data trans-

ferred.

• We get most of our reduction from user abandoning videos.

• Despite the availability of stream control operations like skip, most of today’s viewing

is predominantly sequential.

In the rest of this section, we describe our experiment setup and provide details on each of

these results.

4.2.1 Experiment Setup

We use a custom event-driven simulator that implements the network between the VHOs

and performs trace-driven simulations. We assume that each VHO has a certain amount

of disk, which is partitioned into two parts. One part stores the videos assigned to the

VHO (i.e., not eligible for replacement), and the other part is used as a dynamic cache

(i.e., LRU). To protect proprietary information, we use normalized disk sizes relative to the

space needed to store the entire video library. For instance, when the total disk space across

all VHOs is 2x the space needed to store the library, each VHO has disk space equaling

∼3% (2/59) of the total library space. This 3% includes the fixed portion of the disk as

well as the dynamic cache. We use a small cache of 5% of the space at each VHO with

our MIP-based placement schemes to accommodate for errors in demand estimation and to

handle flash crowds.

Upon a user request, if the video segment is available locally (either in the pre-assigned

portion or dynamic cache portion), the VHO simply handles the transfer locally without

consuming network bandwidth. If the video segment is not available locally, the VHO

fetches the segment from a remote VHO that stores this segment in its cache. We assume
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the existence of a directory that keeps track of what is stored in each VHO. With a dynamic

cache, the set of video segments stored at a VHO constantly changes over time. For this,

we assume a perfect directory that always finds the closest VHO with a local copy. Note

that this is the best case scenario for those dynamic cache strategies (i.e., LRU). For our

MIP-based strategy, the MIP solution guides from which VHO to fetch the video (i.e., x

variables in the formulation in Section 4.1).

We use a network modeled from a deployed IPTV network for our experiments. This

network has 59 nodes (i.e., VHOs) with 70+ bi-directional links of equal bandwidth con-

necting the different VHOs. We vary the bandwidth to understand the trade-offs between

disk capacity and bandwidth. In a given experiment, we assume that all the VHOs have the

same disk size. However, we vary the disk size value in different experiments to understand

the performance tradeoff between disk and link bandwidth capacity. We set the streaming

rate of all videos to 2 Mbps (Thus, one second of video needs about 256 KB of disk).

We use the data trace described in Section 3.2 to simulate video requests by users.

The trace data has information about the stream control operations like skip, fast-forward,

replay, etc. that are performed by users. In our experiments, we translate these stream

control operations to accesses to specific segments of the video: In the case of chunk, it is

the specific chunk requested, while with prefixes it is either the prefix or the suffix. When

a user performs a skip, we treat the corresponding portion of the video as not accessed.

However, we consider that all the segments are accessed during a fast-forward operation

because the video is played out during the fast-forward operation albeit at a faster rate.

Note that if a request from a user results in transferring data from a remote location, we

do not stop the transfer prematurely even if the user does so. This allows us to cache the

entire video segment and serve it locally when it is requested again.

Stream control operations like skip typically move the user about 30 seconds into the

stream. To take advantage of these operations and not deliver chunks that are skipped,

we need to make use of small chunks. However, as mentioned in Section 4.1, using small

chunks significantly increases the time to solve the MIP instance. We addressed this by

clustering a number of chunks. In our experiments, we use 10-second chunks and a cluster

size of 100; we observed that this size gave us a good balance between the time taken to
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solve the MIP and the approximation introduced in the placement solution. Similarly for

prefixes, we experimented with various prefix sizes and determined that a prefix size of 30%

gave the best results, which is the prefix size used in our experiments.

In all our experiments, we are primarily interested in the amount of data stored and

transferred among the VHOs; we do not focus on the transfer from a VHO to the end user.

That said, we want to ensure that user experience is not affected in that our approach.

Conceptually our approach is similar to what P2P systems do; however, their performance

is affected because of lack of capacity at the serving peer. By taking available capacity into

account as part of the MIP, we ensure that the solution guarantees sufficient capacity to

serve each user request in time.

Comparison with LRU-based Caching: Previous work showed that LRU-based

caching outperforms popularity based placement [Applegate et al., 2010; Wu and Li, 2009].

As a result, we compare the performance of our placement scheme with LRU-based caches.

To have an apples-apples comparison with the MIP-based placement, we assume that each

VHO has a disk space equal to 3% of the library size. For LRU-cache based approach, we

place one copy of every video at a random location and allow the dynamics of the requests

to cache copies at the other VHOs. On average, a VHO uses around 50% of disk space for

the dynamic cache. We also use 10-second chunks and 30% prefixes when experimenting

with chunks and prefixes respectively. With the LRU-cache, we assume an idealized setting

where each VHO knows the nearest location with a copy of the requested object.

4.2.2 Working Set Size

The working set at a VHO is defined as the number of unique videos that are requested

within a time window. The significance of the working set is that it determines how effective

caching is going to be. There will be a large number of cache evictions if the working set

size is larger than the cache size. In Figure 4.1, we plot the working set size (in terms of

bytes compared to the library) at each of the 59 VHOs during the peak hour on a Saturday.

We consider three cases where we deal with (1) full videos, (2) prefixes and suffixes, and

(3) 10-second chunks. For the prefix/suffix case, we set the prefix to the initial 30% of a

video. (We elaborate further on determining prefix length in Section 4.2.7.)
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Figure 4.1: Fraction of working set size to the entire library size at each VHO.

We observe that the working set size at a VHO can be as high as about 48% of the

library size. The top 20 VHOs have a working set of around 20% or more. With prefixes,

the relative working set size can be as large as 39%, and the top 20 VHOs have a working set

size of around 15% or larger. Although using chunks further reduces the relative working

set size, but is still quite large (as high as 30%). This result shows that for caching to be

successful, the cache space at each VHO has to be quite large.

4.2.3 Maximum and Aggregate Link Bandwidth

We quantify the benefit of placing segments of the video instead of the full video by com-

paring the peak and aggregate bandwidth needed for each of the approaches. Recall that

our data was spread over 16 days. We use the first 9 days of data to predict the demand for

videos (or segments) with the MIP-based placement, and to warm up the caches with LRU.

At the end of 9 days, we solve the MIP formulation and place content accordingly. We

then simulate for the last 7 days and measure the performance of both LRU and MIP-based

placement. In [Applegate et al., 2010] we addressed in detail the practical considerations for

the algorithm design and parameter selection in demand estimation, time-varying demand,

and placement update frequency.

Figure 4.2(a) shows the maximum link bandwidth used across all links in the network
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(b) Aggregate link bandwidth

Figure 4.2: Link bandwidth utilized across all links, computed every 5 minutes (the ordering

of the curves is the same as in the legend).

measured in 5-minute windows over the last 7 days for full videos (mip-f, lru-f), 30%

prefixes (mip-p, lru-p), and 10-second chunks (mip-c, lru-c). For the MIP-based schemes

the peak bandwidth needed goes down from about 4.2 Gbps with mip-f to 2.6 Gbps with

mip-p (a 38% reduction). mip-c performs the best with a peak of only 2.0 Gbps. In

Figure 4.2(b), we plot the total bytes transferred across all links in the network, averaged

over 5-minute windows. mip-f results in a maximum of 130 Gbps of aggregate traffic in

the network while mip-p has a maximum of 83 Gbps (36% reduction). At 61 Gbps, mip-c

again results in the least amount of data transferred.

Furthermore, we see that the MIP-based placement outperforms LRU-based caches.

For example, mip-f requires a maximum of 4.2 Gbps bandwidth, while LRU caching of full

videos (lru-f) requires 6.9 Gbps. We observe similar trends when we compare mip-p and

mip-c with corresponding segment-based caching schemes lru-p and lru-c, respectively

(e.g., 33% reduction from lru-p to mip-p). More interestingly, we see that lru-c requires

more bandwidth than even mip-p. Between the worst case (lru-f) and the best case (mip-

c), we achieve over a factor of 3 improvement in max. and aggregate network bandwidth.

These two results confirm our hypothesis: Taking advantage of user behavior and placing
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Figure 4.3: Cumulative distribution of the number of replicas created by the MIP based

approach when the available disk is 2x and 6x library sizes.

segments provides significant benefit. First, by using prefixes and suffixes, we take advantage

of the fact that people do not watch full videos. We get further benefits when using chunks

because of two factors: (a) using chunks, we need not transfer unwatched portions of even

prefixes or suffixes when users abandon a video, and (b) we can take advantage of fine-

grained stream control such as SKIP operations to eliminate transfer of data within a prefix

and a suffix.

4.2.4 Number of Replicas

In this subsection, we examine the number of copies for each object across all the VHOs,

where an object is a full video in mip-f or a video segment in mip-p and mip-c. In Figure 4.3,

we show the cumulative distribution when the aggregate disk space in the system space in

the system is 2x and 6x the library size. We observe that prefixes tend to be copied in more

VHOs than suffixes or full videos. For instance, with the disk space of 2x, there is only one

copy for 63% of prefixes, 71% of full videos, and 78% of suffixes. On average, there are 2.2
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Figure 4.4: Cumulative distribution of the number of hops traversed when transferring

content (segments) remotely.

copies for a prefix, 1.7 for a suffix, and 1.8 for a full video. We also observe that by flexibly

placing fine-grained chunks, mip-c replicates medium-popularity videos in more locations.

In general, when videos are split into multiple segments, we can potentially “pack” the

segments better into the available space. This result demonstrates that the MIP-based

solution leverages the opportunity and intelligently replicates popular video segments in

more locations.

More interestingly, these two results illustrate how the MIP solution adjusts to the

available space by placing the objects better. When the total disk space is only 2x the

library size, even the most popular object is not replicated in all 59 VHOs, and more than

60% of all objects have only one replica. When the disk space increases to 6x the library

size, we see that the placement solution takes advantage of this extra space and places a

copy of the popular objects in every location. We also see a greater spread in the number

of copies of each object with 50% of the objects having anywhere from 2 to 15 replicas.

This result shows an important aspect of VoD service and the need for more intelligent

placement strategies such as our MIP based scheme: with videos, despite the skew in

popularity, there is a large set that are requested enough number of times and cannot be
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ignored, and naive schemes (e.g., replicating top K videos in all locations) are unlikely to

result in good performance [Applegate et al., 2010].

4.2.5 Hops Traversed

In this subsection, we study the effectiveness of the placement in terms of the number of

hops traversed to fetch video segments from remote VHOs, whenever a remote transfer is

required. The disk space allocated to all the scenarios is 2x the library size. We plot the

results in Figure 4.4. The figure shows that the MIP-based schemes show a similar hop

count distribution and consistently result in smaller number of hops than the caching based

approaches.

Specifically, the average of mip-p is about 2.1 hops, where less than 10% of remote

transfers take more than 4 hops. In contrast, the caching based approach (lru-p) uses

remote transfers longer than 4 hops in about 20% of the cases, and hence its average hop

count is larger (2.8 hops). Recall that for the caching solutions we assume an idealized

scenario where a perfect directory server can tell us the nearest location storing the object.

Thus, the caching approaches have the most up-to-date view of which location is storing

what content. This, along with the result in Figure 4.3, shows that the MIP-based solution

does an effective job of placing objects close to where they are needed.

4.2.6 Disk and Bandwidth Tradeoff

We study the tradeoff between disk and link bandwidth capacity. Specifically, we vary the

aggregate VHO disk size in the network between 2x the library size and 20x and measure the

minimum amount of bandwidth required for each of those disk size. We present the result

in Figure 4.5. We observe that in all cases, the amount of bandwidth required decreases

as the total disk space in the system increases. However, by taking user behavior into

account, segment-based approaches (mip-p, mip-c, lru-p, and lru-c) consistently require

less bandwidth than storing full videos (mip-f and lru-f). This is true even when the

disk space in the system is 20x the library size, where each VHO has enough space to

store around one third of the entire library. We also observe that the MIP-based solutions

outperform caching-based solutions, especially when the disk space is scarce. This shows
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Figure 4.5: Feasibility region of Placement-based and Caching-based solutions (the ordering

of the curves is the same as in the legend).

the importance of having storage space having at least the “working set size” with caching

schemes.

4.2.7 Effect of Segment Size

We compare the effects of different chunk sizes in Table 4.2 by comparing the total bytes

transferred from remote locations for mip-p and lru-p. As the table shows, the total bytes

transferred initially decreases with increasing prefix size, but eventually starts increasing.

The least amount of data is transferred when the prefix size is 30%. We also experimented

with per-video prefix values. However, our results showed very modest improvements com-

pared to a fixed prefix size.

Prefix Size 10% 20% 30% 40% 50% 100%

LRU 1689 1497 1451 1496 1565 2203

MIP 1425 1274 1220 1254 1284 1832

Table 4.2: Total bytes transferred from remote locations for different prefix sizes (in TB)
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We understand the effect of chunk size by calculating the total bytes the system serves

(both locally and remotely) for different segment sizes (that is,
∑

j,m amj sm using the no-

tation in Section 4.1.) We report the values in Table 4.3. We observe that with 10-second

chunks, the system needs to serve only 48% of total bytes served when using full videos

(3563 vs. 7483TB). We also find that the amount of saving due to SKIP operations is 101TB

for the 10-second chunks (about 3% of the total reduction of 3920TB). We observe that the

difference between 1-minute chunks and 10-second chunks is modest. This result indicates

that the majority of gain with the chunk-based placement comes from being able to stop

video transfer shortly after a user aborts a session. We postulate that this is because of

limitations of existing VoD interfaces and that this may change when DVD-like navigation

becomes possible.

full prefix chunk

video 30% 10sec 1min

total 7483 4875 3563 3664

Table 4.3: Total served bytes for different segment sizes (in TB)

4.2.8 Cache Dynamics

Since in all approaches, VHOs make use of caches (small for MIP and large for the LRU

caching scheme), we looked at how placement affects the performance of these caches. We

study the number of remote transfers (which are equivalent of cache misses), the number

of cache evictions (replacements), and the number of failed cache insertions. Instead of

counting the number of occurrences, we study these factors in terms of TB of data to

account for the heterogeneity in object sizes. Table 4.4 shows the results of this study.

lru-f lru-p lru-c mip-f mip-p mip-c

Remote Transfer 2115 1451 1147 1839 1220 921

Cache Replacement 177 365 1104 34 109 918

Failed Insertions 1841 1081 0 1805 1107 0

Table 4.4: Cache dynamics for the different schemes over the last 7 days (in TB).
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As expected, we see in Table 4.4 that the MIP-based, segment placement schemes re-

sult in the least amount of data transferred. More interesting are the results of cache

replacements and failed insertions. A failed insertion occurs when there is insufficient space

in the cache and none of the existing objects can be replaced because they are all being

used. It is of particular significance with videos because it means that all the work done in

transferring this large object will have to be repeated again. Table 4.4 shows that despite

having 1/10th the cache size, mip-p experiences 70% less replacements and approximately

the same amount of failed insertions compared to lru-p. This shows that the cache in

mip-p is being used effectively; objects in the cache are used and hence cannot be replaced.

mip-c and lru-c do not have failed insertions because all objects are small and of the same

size. However, this also results in a lot of cache churn.
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Chapter 5

User Abandonment and its Impact

on P2P VoD

5.1 Abandonment and P2P VoD

Recent studies [Li et al., 2011; Yin et al., 2009a] have shown that users abandon videos

before viewing them in their entirety. Our results (in Section 5.3) will show that this

abandonment has a significant effect on the performance of P2P VoD streaming systems.

In this section, we re-evaluate some of the key policies and design decisions for P2P VoD by

taking abandonment into account. Using the right chunk selection policy and peer selection

policy, we balance the need to download the video fast enough to minimize interruptions

and startup delay while also minimizing wastage of network resources.

5.1.1 Abandonment in Trace Data

Using traces from a large scale VoD service provider, we demonstrate that user abandonment

indeed occurs in Chapter 3. We show that the video watching duration distribution depends

on various aspects such as video length and popularity. In this chapter, we also use trace

data from the same commercial VoD service, but the data covers a different period (fifteen

day period in 2010) and has millions of requests. The trace includes information about
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Figure 5.1: Cumulative distribution of normalized length viewed of all requests in trace

data

users’ interactive operations (e.g, FastForward, Skip, Rewind, etc.), and we calculate the

viewed length of each user taking into account of these specific operations (more details

described in Section 5.3.1).

In Figure 5.1, we show the extent of user abandonment by plotting the cumulative

distribution (CDF) of normalized length viewed (NLV). To compare abandonment for videos

of different lengths we divide each viewed length by the original duration of the video. The

figure indicates that only 26% of the sessions consumed the corresponding videos fully. Thus,

the assumption that each user views the entire video and therefore downloads the entire

video file (as assumed by many existing P2P works), is not appropriate when considering

real-world user behaviors.

5.1.2 Chunk Selection Policy

The chunk selection policy determines the order in which a peer downloads chunks. File

sharing systems have traditionally used Rarest-First (RF) as the chunk selection policy [Co-

hen, 2003; Legout et al., 2006; Bharambe et al., 2006b]. RF has several desirable properties

including distributing rare chunks among peers and allowing the seed to quickly offload

chunks. RF however is inherently unsuitable for streaming systems which require chunks

to arrive in order. Instead, a chunk selection policy that attempts to get chunks close to

playback is a more natural fit for video streaming. In fact, a significant amount of previous
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work [Zhou et al., 2007; Fan et al., 2010; Borghol et al., 2010; Carlsson and Eager, 2007;

Vlavianos et al., 2006; Shah and Paris, 2007] has shown that the combination of EF and

RF (EF+RF) incorporates the strengths of each policy and results in the best playback

continuity with P2P VoD.

However, none of these consider the effect of abandonment by users. We observe that

propagating rare chunks, usually from the latter half of a video, is counter-productive

and wasteful when abandonment is taken into consideration. Instead, we could use that

bandwidth to transfer chunks that are needed immediately. As a result, we adopt EF as

our chunk selection strategy. This allows us to download chunks in order and minimize

the possibility of interruption. It also allows us to control the rate at which chunks are

downloaded to minimize wastage. Our experimental results in Section 5.3.5 confirm that

EF outperforms EF+RF in the presence of abandonment.

Note that we use EF despite previous work reports that the use of EF can lead to

“throughput collapse” when peers possess a similar collection of chunks [Fan et al., 2010].

We argue that this throughput collapse is a side-effect of using EF with Tit-for-Tat as the

peer selection policy.

5.1.3 Peer Selection Policy

The peer selection policy determines the subset of requests that are served by a peer upon

receiving requests. Unlike chunk selection where multiple options are used in practice,

most systems use TFT as the peer selection policy. TFT works by forcing peers to upload

data in order to download content [Cohen, 2003; Bharambe et al., 2006b]. This allows

peers to disseminate content quickly to high bandwidth peers and eliminates free-riding.

However, it requires that peers have content to exchange with each other. This, however,

has the unfortunate side effect of introducing interdependency between chunk- and peer

selection policies. Since peers have to upload some data in order to be able to download

(setting aside considerations of optimistic unchoking used by TFT), peers need to have a

diverse set of chunks. This is not an issue with RF as it is designed to create such diversity.

With EF, however, peers at different points of their playback will not have content of mutual

interest to exchange with each other. In addition, there is growing realization that there are
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inefficiencies due to TFT [Piatek et al., 2010; Huguenin et al., 2010; D’Acunto et al., 2010;

Yang et al., 2010; Wen et al., 2011] in streaming systems, particularly with regard to

playback interruptions.

For this reason, we complement EF by choosing the peer with the “Earliest-deadline”.

To satisfy a viewer’s uninterrupted playback experience, each chunk must be delivered to

the viewer prior to its deadline. In our Earliest-Deadline (ED) peer selection scheme, a

requesting peer specifies a chunk and its deadline with each request. Then, a potential

provider (seed or peer) receiving chunk requests from multiple connected peers during a

certain interval chooses to serve the peer with the earliest deadline (with ties broken at

random).

Unlike TFT, a peer does not choke another in ED. This brings up new protocol aspects

that we need to address. First, as a provider, a peer may receive upload requests from all

of its connected peers. In order to ensure that the per-chunk upload speed does not become

too small, we limit the number of concurrent uploads from a peer to other peers. Second, as

it is not choked, a downloading peer can have a large number of parallel downloads. Since

all the downloads may share a single downstream link to the peer, that link may become

the bottleneck. If the number of parallel downloads becomes large, the per-chunk download

rate decreases. This results in longer start-up delays and frequent interruptions. To address

this, each peer adjusts its maximum number of parallel downloads dynamically, based on the

availability of its download bandwidth. Peers can increase the number of parallel downloads

until they use up their download capacity. They stop adding streams when any additional

download has the potential to decrease the speed of the ongoing downloads.

By serving peers with the most urgent need, ED focuses on ‘fairness’ of each peer’s

streaming performance. While this notion of fairness is certainly a ‘qualitative’ one, we

show in Section 5.3.3 that ED performs substantially better than TFT with respect to

quantitative metrics such as interruption time.

5.1.4 Handling Free Riding

Free riders in P2P systems can significantly impact the overall system performance and

introduce unfairness. TFT was designed specifically to prevent such free riding. However,
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as stated earlier, TFT introduces dependency on chunk selection that is incompatible with

P2P streaming. Hybrid chunk selection policies seek a middle ground. There have even been

efforts to change seed policies [Carlsson et al., 2009] or to cluster peers at similar playback

points and introduce diversity within these clusters [Huguenin et al., 2010]. Unfortunately,

abandonment significantly diminishes the effectiveness of such approaches, as we will see in

Section 5.3.

Our approach in this chapter is to deviate from TFT and instead use ED. While ED does

not guarantee against free riders, ED offers better performance in terms of streaming and

quality-of-experience (QoE) compared to TFT. The decoupling of peer selection from the

chunk selection policy allows us to overcome inefficiencies due to TFT [Piatek et al., 2010;

Huguenin et al., 2010] in deployments that do not worry about free riding (e.g., managed

content delivery [Maggs, 2012]). In scenarios where eliminating free-riding is still important,

we can adopt approaches like Contracts [Piatek et al., 2010] or iPASS [Liang et al., 2010],

appropriately modified, for P2P VoD, to incentivize peers to share content. We are exploring

these strategies as part of our ongoing work.

5.1.5 Using “Partial” Seeds

Using ED as the peer selection policy allows us to eliminate the artificial bottlenecks that

arise from using TFT. It also allows peers to make progress by favoring chunks with the

smallest deadline. However, it does not eliminate the fact that seeds can still be overloaded,

and thus become the bottleneck for some peers. We overcome this by taking advantage of

the content that peers have already downloaded. We take advantage of the fact that with

abandonment, there is a period between consecutive videos (or when the user is performing

other activities) that the node remains connected to the system even though it is not actively

viewing a video.

Consequently, we assume that the abandoning peer becomes a partial seed and continues

to stay in the system and shares the portion it has already downloaded. This is akin to

a seed with the entire video, except that this node only has the partial video. Partial

seeds can offload serving the initial parts of the video (that are presumably requested more

frequently), allowing the seed to serve the later but rare portions to the few users that
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remain to watch the video fully. Our analysis in Section 5.2 shows that by having partial

seeds stay longer in the system, we can improve performance significantly.

5.1.6 Reducing Wastage by Limiting Playback Lookahead

The primary objective of the chunk selection policies is to sustain a sufficient rate so that a

viewer does not experience interruptions. Our combination of EF and ED with partial seeds

allows us to achieve a rate comparable, if not better, than TFT (Figure 5.16). However,

unlike the ED+EF policy, TFT with RF-based chunk selection (e.g., the hybrid policy

EF+RF) generates wastage by unnecessarily propagating later chunks that are not likely

to be watched when a viewer abandons the video (Section 5.3.5). We investigate which

combination of chunk selection and peer selection policies generates the smallest amount of

the wastage of network bandwidth.

In order to further limit the wastage with ED+EF, we adopt a playback lookahead win-

dow (PLA) that is measured in number of chunks. The PLA restricts excessive downloads

of chunks beyond the current playback point. Specifically, when a peer has downloaded a

predefined number (equal to the PLA window) of consecutive chunks ahead of its current

playback point, it stops requesting further downloads until the playback progresses and

the window ‘opens’ up. The window also moves forward as the playback progresses. By

adjusting the PLA window size, ED+EF greatly reduces the bandwidth wastage without

hurting playback continuity.

We note that this method of limiting the delivered rate has been widely used for server-

based video streaming protocols such as HTTP streaming [Rao et al., 2011], progressive

download [Ghobadi et al., 2012], and adaptive bitrate streaming [Akhshabi et al., 2011].

Our results show that P2P systems can also achieve substantial reduction in wastage by

implementing a rate limiting capability in the form of a playback lookahead.

5.2 Abandonment Analysis

In this section we analyze how abandonment affects swarm population and useful download

rates for EF and RF schemes. Aalto et al. [Aalto et al., 2011] analyze a viewer’s aban-
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Parameter Definition

B File byte size

M Number of chunks of file

U Max. upload connections

D Max. download connections

C Throughput per connection

λ Leecher arrival rate

1/µ1 Normal seed staying time

1/µ2 Partial seed staying time

x(t) Number of leechers at time t

y(t) Number of normal seeds at time t

z(t) Number of partial seeds at time t

β Fraction of leechers converted to normal seeds

ρ Fraction of the file a partial seed has on average

δ Prob. that a partial seed has chunks available for a leecher

γ Leecher download rate

γ̄ Leecher useful download rate

Table 5.1: Parameters and Definition for Analysis

donment in P2P VoD as a stochastic queueing model, where leechers abort and leave the

swarm instantly. Thus, they ignore the concept of partial seeds. Our analysis builds on the

work by Qiu et al. [Qiu and Srikant, 2004] and Parvez et al. [Parvez et al., 2008] but also

takes abandonment into account.

We consider a single swarm with leechers, normal seeds, and partial seeds, where we

denote their count at time t by x(t), y(t), z(t) respectively (or x, y, z for simplicity). A leecher

can have D concurrent download connections and U simultaneous upload connections, and

each connection has a throughput of C. Leechers enter the system at rate λ and attempt to

play back a video of B byte size that has M chunks. The leecher views the video fully and

becomes a normal seed with probability β, while with probability 1−β, it abandons its video

and becomes a partial seed. We consider a demand-driven system where xD > (x+y+z)U
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(upload capacity constrained). We summarize the notations in Table 5.1.

5.2.1 Swarm Population

RF swarm size: The total system upload capacity that is useful to a random leecher (i.e.,

system goodput) is (x+ y + δz)UC where δ indicates the fraction of partial seeds that can

upload a desired chunk for a leecher. With RF, we assume partial seeds can always upload

to leechers (i.e., δ = 1), whereas for EF, δ depends on the distribution of chunks at a partial

seed.

For the system to become the steady state, the rate of data loss due to the departures

of normal seeds and partial seeds should be equal to the system goodput [Benbadis et al.,

2008] as follows,

{β + (1− β)ρ}Bλ = (x̄+ ȳ + δz̄)UC (5.1)

where βBλ is the loss rate due to normal seed departures and (1 − β)ρBλ is the one due

to partial seed departures. From Equation (5.1) with δ = 1, the total swarm population of

RF is

x̄+ ȳ + z̄ =
{β + (1− β)ρ}Bλ

UC
(5.2)

which is independent of the normal or partial seed staying time.

Since our model assumes that the system is upload capacity constrained, for the model

validity we need to compute a condition on the staying times of partial seeds and normal

seeds. Using Little’s law, ȳ and z̄ in the steady state are

ȳ = β
λ

µ1
(5.3)

z̄ = (1− β)
λ

µ2
(5.4)

From Equations (5.2), (5.3), and (5.4), x̄ is

x̄ = λ{{β + (1− β)ρ}B
UC

− β

µ1
− 1− β

µ2
} (5.5)

Therefore, to satisfy x̄ > 0, the model requires the following condition on µ1 and µ2:

β

µ1
+

1− β

µ2
<

{β + (1− β)ρ}B
UC

(5.6)
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which indicates very large partial or normal seed staying time can violate our assumption

of the upload capacity constraint.

EF swarm size: Following [Parvez et al., 2008], from the viewpoint of any given peer A,

there are younger peers who arrived after A and older peers who arrived before A. With

EF A can only download from its older peers (with more chunks) and can only provide

content to younger peers. An uploader that receives more than U requests chooses to serve

U requests at random and rejects the rest.

Consider a peer that has been in the system for time tm. The probability that the peer

is successful in obtaining a download connection for its next desired chunk is defined as:

p(tm) = Ũ(tm)

D̃(tm)
, where Ũ(tm) and D̃(tm) are the connection supply and demand at time tm.

A peer of age tm requests a download connection from older peers (t > tm).The total number

of possible upload connections available for this peer is Ũ(tm) = (x+ y + δz − λtm)U . For

computing D̃(tm), we first note that the total number of download requests in the system

is xD and that peers with more chunks (including seeds and partial seeds) receive higher

demand. In [Parvez et al., 2008] D̃(tm) is indirectly calculated by finding the total number

of download requests handled by peers younger than tm and subtracting it from xD, and

is approximated as D̃(tm) = xD
α where α depends on the system parameters. However, we

approximate α as a constant, and its range is [1.09, 1.25] for typical scenarios in [Parvez

et al., 2008] (we will provide the upper bound on α to achieve the steady state system in

Inequality (5.11)).

Using Little’s law, we can derive the average downloading rate: γEF = 1
T

∫ T
0 Dp(t)Cdt =

αUC(y/x + δz/x + 1/2), where T is session duration. Similar to Equation (5.1), the rate

of data loss due to leaving seeds should equal the system’s goodput in the steady state as

follows,

{β + (1− β)ρ}Bλ = (
x̄

2
+ ȳ + δz̄)αUC (5.7)

where the right hand side comes from γEFx. ȳ and z̄ are independent of chunk selection

schemes (i.e., the same as Equation (5.3) and (5.4), respectively). From Equations (5.3),

(5.4), and (5.7) we obtain x̄:

x̄ = 2λ{{β + (1− β)ρ}B
αUC

− β

µ1
− (1− β)δ

µ2
} (5.8)
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Since we assume x̄ > 0, similar to Inequality (5.6) we have the following condition on µ1

and µ2 for the EF scheme:

β

µ1
+

(1− β)δ

µ2
<

{β + (1− β)ρ}B
αUC

(5.9)

The total EF swarm population is

x̄+ ȳ + z̄ = λ{2{β + (1− β)ρ}B
αUC

− β

µ1
− (2δ − 1)(1− β)

µ2
} (5.10)

Unlike with RF policy, the swarm size can increase depending on how long the partial seeds

and the normal seeds reside in the system.

Note that we should limit α such that (x̄+ ȳ+ z̄)UC ≥ {β + (1− β)ρ}Bλ since the left

hand side indicates the aggregate upload bandwidth of all peers in the system and should be

equal to or larger than the system’s goodput ( x̄2 + ȳ+δz̄)αUC in Equation (5.7). Therefore,

using Equations (5.10), α has the following upper bound:

α <
2{β + (1− β)ρ}Bµ1µ2

{β + (1− β)ρ}Bµ1µ2 + {(2δ − 1)(1− β)µ1 + βµ2}UC
(5.11)

5.2.2 Useful Download Rates

We define that a chunk download is useful only if the downloader has already downloaded

all other sequentially earlier chunks. We now compare the useful download rates to show

that EF with abandonment provides quicker download compared to the RF policy with

abandonment.

RF without abandonment: We can get p(t) = Ũ(t)

D̃(t)
= (x+y)U

xD with RF without aban-

donment. The download rate is

γRF =
1

T

∫ T

0
Dp(t)Cdt = UC(1 +

y

x
)

RF with abandonment: Similarly, p(t) = (x+y+z)U
xD (assuming δ = 1 for RF), and

γRF =
1

T

∫ T

0
Dp(t)Cdt = UC(1 +

y

x
+

z

x
)

The useful download rate for RF with abandonment is obtained by scaling γRF with the

probability of useful chunks that have been downloaded up to time t. This scaling factor is

shown to be 1
M−k+1

[Fan et al., 2010]. Therefore:

γ̄RF = γRF
1

M − k + 1
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Figure 5.2: Useful download rate of EF vs β (µ1 = 0.01)

where k is the number of chunks that have been downloaded so far for a file with a total

number of M chunks.

EF without abandonment: In EF, since the chunks are sequentially downloaded, all

chunks downloaded are useful.

γ̄EF = γEF = αUC(
y

x
+

1

2
) (5.12)

EF with abandonment: Similarly,

γ̄EF = γEF = αUC(
y

x
+

δz

x
+

1

2
) (5.13)

Figure 5.2 shows the impact of partial seeds on the useful download rate for EF. Using

Equations (5.12) and (5.13), we apply α = 1.2, ρ = 0.5, 1/µ1 = 100,M = 100, U = 4, and

C = 0.001 assuming the unit file size B = 1. We also set δ = 0.5 assuming the distribution

of the number of downloaded chunks at each partial seed is uniformly distributed, and thus

on average only half of the partial seeds have chunks at or beyond the point defined by the

desired chunk. Note that by Equation (5.9) µ2 > 0.0048 should be satisfied for the system

to remain under the assumption of upload capacity constraint. When partial seeds stay

for a short period of time (e.g., µ2 ≥ 0.02), the useful download rate with abandonment is

smaller than the case without. As partial seeds continue to reside for extended periods of

time (potentially longer than the normal seeds), the useful download rate with abandonment
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is seen to be significantly higher than without. Thus, in a system with abandonment, a

partial seed’s staying time significantly influences the useful download rate. In case of

µ2 = 0.0055 or 0.007, the useful download rate decreases with increasing β since normal

seed staying time is relatively shorter than partial seed staying time (note µ1 = 0.01).

Comparing EF and RF, as M becomes larger, EF’s useful download rate is much higher

than for RF (not shown) confirming earlier results.

5.3 Experimental Evaluation

5.3.1 Data Set

To reflect realistic viewing patterns of a large population of users, we collected trace data

from a nationally deployed Video-on-Demand service serving millions of customers. While

the data collected is available for a period of several years (during which the service has

grown to serve several million customers), we examine a “heavy-viewing” period of 15

consecutive days in 2010. We focus on the trace from a single large metropolitan area,

totalling approximately 1 million requests. The trace data contains information for each

viewing session: an anonymized user ID, user request time, video ID, video length, and the

duration viewed. To ensure user privacy, all user data is kept anonymous and was analyzed

in aggregate, without the ability to identify each user. The trace also has information about

the set of DVD-like operations that the user performed while watching the video in a given

session.

We use the duration viewed in the trace as session duration (time elapsed since the user

request time) in the simulation, at which point the peer abandons the video. Note that the

final playback point of the video in the simulation may be shorter than the session duration

(due to startup delay, interruptions, etc.). We view this difference as an indicator of the

performance of the system (smaller the better).

To obtain representative results, we repeat the experiment independently with 8 different

popular videos that have different lengths across a wide range, from 30 to 150 minutes. They

show different abandonment patterns as in Figure 5.3. They also show a clear daily pattern

in their request volume. For example, Figure 5.4 shows the number of concurrent sessions
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Figure 5.3: CDF of viewed length for 8

videos
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Figure 5.4: Number of concurrent sessions

for a random video in the real trace.

(i.e., swarm size) of one of the 8 videos. Note that to protect proprietary information,

the Y-axis is normalized by the peak value. Although the absolute request volume varies,

the other 7 videos also follow very similar daily patterns. We report the average results

obtained from these 8 videos in this section.

5.3.2 Experiment Setup and Assumptions

To evaluate our approach, we use a discrete event-driven BitTorrent simulator [Bharambe

et al., 2006a]. It implements peer activity (e.g., joins, leaves, setting up connections with

other peers, chunk exchange, etc.) as well as many of the policy mechanisms associated

with BitTorrent (RF, TFT, and so on). However, the original simulator was developed to

simulate P2P file sharing. Therefore, we enhance the original P2P file sharing simulator

for video streaming, so that each peer waits till a playback buffer fills up and then starts

playing back as the download progresses. In addition to original TFT, we also experiment

with ED, EF, and EF+RF to compare the following set of schemes:

• TFT+EF: using EF chunk selection with original TFT

• TFT+[EF+RF]: using hybrid of EF and RF with TFT

• ED+EF: using EF with ED peer selection



CHAPTER 5. USER ABANDONMENT AND ITS IMPACT ON P2P VOD 56

Parameter Default

Number of initial seeds 1

Upload bandwidth of an initial seed 3 Mbps

Peer download/upload bandwidth 5 Mbps/ 1 Mbps

Max. concurrent initial seed uploads 15

Max. concurrent peer uploads 5

Video bitrate 1 Mbps

Chunk size 10 seconds

Peer arrival rate (synthetic trace only) λ = 0.05 (Poisson arrival)

Startup buffer (synthetic trace only) 10 second video

Video length (synthetic trace only) 30 minutes (180 chunks)

Number of sample peers (synthetic trace only) 2000 peers

Table 5.2: Simulation parameters and their default values.

We further enhance EF+RF to reduce the startup delay as follows. Instead of simply

selecting EF or RF based on a probability [Vlavianos et al., 2006; Zhou et al., 2007; Fan

et al., 2010; Carlsson and Eager, 2007], a peer in the enhanced scheme initially uses EF

only, but switches to EF+RF only if it has enough chunks in the playback sequence. In our

experiments, if there are 5 or more chunks, a peer uses EF with probability of 0.7 and RF

with probability of 0.3.

We use one initial seed that has the complete video to serve to other requesting peers

and stays in the swarm throughout the simulation. In our streaming model, we assume that

a peer can play back a chunk while it is being downloaded (subject to the startup delay and

the appropriate portion being available). However, the peer cannot share the chunk with

other peers until it is completely downloaded. We assume that a peer downloads only one

chunk at a time from a given uploader. All peers follow the same chunk- and peer-selection

policies. The tracker behavior remains unchanged from current BitTorrent systems.

For the trace driven simulation, peers make requests for a video at the time instants

specified in the trace. Peers that download the entire video convert to normal seeds while

those that abandon the video part-way become partial seeds. Since the trace does not tell
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Figure 5.5: Comparing NITs of different combination of chunk- and peer- selection policies

when user abandonment exists and when it does not (with 95% confidence interval).

us when nodes depart, we model the staying time of normal seeds and partial seeds as an

exponential distribution with the average of 1/µ1 and 1/µ2 seconds, respectively. After this

time, normal or partial seeds also permanently leave the system.

In all our experiments, each chunk is equal to 10 seconds of playback. Also, we allow

a startup buffer b for each peer, and define startup delay as the time taken for a peer to

download the first b seconds of the video. We use b = 10 (i.e., 1 chunk) as the default. We

assume that the video playout rate is 1Mbps for all videos. We summarize the different

parameters used in the simulations and their default values in Table 5.2.

We use playback interruption time as our main metric. However, since the viewed length

by a user varies widely, instead of just measuring total interruption time of each view, we

normalize it by the viewed length, which we call the normalized interruption time (NIT). In

addition to interruption time, we also measure the wastage of system-wise bandwidth due

to abandonment. We define wastage as the fraction of bytes downloaded in the swarm, but

not viewed. That is, wastage = 1−
∑

i∈P Vi∑
i∈P Di

, where P is the set of all peers, and Di and Vi

are the total bytes that peer i downloaded and viewed, respectively. Note that there is no

wastage when every viewer watches the video fully. We will show that a hybrid of EF+RF

causes substantial wastage compared to the EF-only case, in Section 5.3.5.
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Figure 5.6: Average NITs of each peer group divided based on viewed length. The initial

seed capacity is 3Mbps.

5.3.3 Impact of Abandonment

We first investigate how user abandonment affects the performance of different combinations

of chunk selection and peer selection policies. We vary the initial seed capacity in Figure 5.5

and record the resulting NIT. Note that when we vary the capacity of the initial seed,

we accordingly adjust the maximum number of its concurrent uploads allowed (e.g., 10

concurrent uploads with 2Mbps upload capacity, 20 with 4Mbps, etc.). Figure 5.5 shows

that all three schemes (TFT+EF, TFT+[EF+RF], ED+EF) have larger NITs in presence

of abandonment than without abandonment. This indicates that while the absolute time of

interruption might be smaller with abandonment, the proportional impact of interruption is

larger with abandonment. Proportion is more important because if a viewer is interrupted

for longer, there is the further likelihood that he/she may abandon the video earlier [Li et

al., 2011; Dobrian et al., 2011]. Clearly, a higher seed capacity benefits all the schemes.

Also importantly, many existing works have suggested the desirability of using a EF+RF

hybrid scheme for P2P VoD. However, we observe that with TFT, EF+RF hybrid actually

causes larger NITs compared to EF when user abandonment exists. This is because with

abandonment, chunks closer to the end of a video are viewed rarely. Exchanging rare
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Figure 5.7: Cumulative distribution of NITs when user abandonment exists and when it

does not, respectively.

chunks (typically later parts of the video) which are not watched results in inefficient use

of resources. In Figure 5.5, we observe that our proposed ED+EF combination has the

smallest NITs.

This shows the importance of accounting for abandonment; something that earlier works

have overlooked. This also shows that serving peers with most urgent chunks helps improve

overall user experience. We also measured the startup delay for each approach. We do not

observe a significant difference between different approaches whether there is abandonment

or not; this is not surprising as they all use EF at startup.

In Figure 5.6, we use one of the longer videos (105 minutes), group peers based on how

much they watched, and plot the average NIT for each group. Specifically, we divide the

video into 100 second bins, and group the viewers into these bins based on how much they

watch (i.e., the first group includes peers who watched 0–100 seconds of the video, the

next group watched 101–200 seconds of the video, etc.). The initial seed upload capacity

is 3Mbps. We observe that peers who watch for a long period have larger NITs than peers

who watch for a shorter interval. We also note that TFT+[EF+RF] reduces NITs compared

to TFT+EF for peers who watch the video longer than 4800 seconds. However, for most

of peers who watch less than 4800 seconds, TFT+[EF+RF] causes more interruption. As
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Figure 5.8: The fraction of demand (in terms of bytes) satisfied by the initial seed over

time.

a result, TFT+[EF+RF] results in larger overall NITs than TFT+EF in the presence of

abandonment, just as we saw in Figure 5.5. As before, the use of ED+EF results in

consistently lower interruption than the other two policies.

To understand the cause for these results and their relationship to abandonment, we

first compare NITs of each view as CDFs in Figure 5.7 between the case when abandonment

exists and when abandonment does not exist. The initial seed capacity is 3Mbps, and all

peers use ED+EF. We observe that with abandonment some views have very long NITs,

such as NIT ≥ 1. Therefore, we now focus on the peers who have NITs larger than 1 to

understand how abandonment makes their playback performance worse.

Specifically, we conduct an in-depth study step by step using a simple synthetic trace

for a better understanding. While in the real trace peer arrival patterns are fixed, with

the synthetic trace we have full control over peer arrivals. By adjusting arrival rates and

patterns, we are able to more clearly explain the impact of abandonment by presenting

distinct trends on the results with less variance. Based on the findings from the synthetic

trace, we will also compare and validate our observations with the real trace results.

For the synthetic trace experiments, we model the peer arrival and abandonment pat-

terns as random processes. We assume that peer arrival follows a Poisson process with rate
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Figure 5.9: Number of concurrent downloads of a peer over time. The solid curve ends at

1610 seconds.

λ = 0.05. We use a 30 minute video, and each arriving peer watches uniformly between

3 and 30 minutes and then abandons. We measure NITs of 2000 consecutive peers who

arrive in the system after the system reached a steady state (where the swarm size becomes

stable). Also, to compare NITs more precisely, we remove startup buffer at each peer so

that startup delay is also considered as an interruption and all contributions of delay are

now included in the NIT. Unless otherwise stated, the synthetic trace experiments use the

same experiment parameters as the real trace experiments in Table 5.2.

First from the synthetic trace results, we compare the load on the initial seed between

with and without abandonment in Figure 5.8. With abandonment, the load as a byte

fraction of requests served by the initial seed is larger than without abandonment. This is

because peers leave early with abandonment causing loss of upload capacity available. This

result indicates that abandonment imposes more critical role on the initial seed. Note that

the initial large drops till the first 104 seconds for the both curves indicate that the swarm

size is initially not yet stable but is growing till it becomes stable.

Then, we monitor the number of concurrent chunk downloads at each peer over time

who has NIT ≥ 1 and observe that those peers have a similar trend to that presented in

Figure 5.9. We see that when the peer joins the swarm, it initially has many providers, 22–23
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(a) NITs of ED+EF with no abandonment
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(b) NITs of ED+EF with abandonment

Figure 5.10: NITs of 1000 peers sorted in their arriving order

at max. However, with abandonment the number of concurrent downloads goes down, and

after about 1100 seconds, the number becomes only 1 which is the initial seed and never

increases until the peer abandons the video. On the other hand, without abandonment,

although the peer loses lots of download connections in a similar manner, it manages to

maintain about 4–6 parallel downloads. Also, the downloads end at 1610 second without

abandonment, which means that the download finishes earlier than the actual playback.

This trend indicates that with abandonment older peers (i.e., those who arrived earlier

than this peer) have all left at about the 1100 second mark, and therefore this peer loses

all its possible uploaders other than the initial seed. We note that this trend is strongly

related to our EF chunk selection policy since younger peers cannot help older peers with

EF. However, we will show that although using EF+RF may alleviate this issue, EF+RF

results in more peers having interruptions than EF only, with abandonment.

More importantly, losing older peers seen in Figure 5.9 occurs more severely with aban-

donment because viewers watch different length of the video. If a peer watches for a longer

period than its older peers, that peer would be more likely to lose its potential uploaders

early. In Figure 5.10(a) and 5.10(b) we show NITs of each peer in an arriving order, when

abandonment does and does not exist, respectively. While a similar set of peers experience

larger NITs in both cases, we observe that the magnitude is much larger in the case of
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Figure 5.11: Average NITs of each peer group divided based on viewed length. The synthetic

trace used.

abandonment.

In Figure 5.11, we divide peers into different groups based on their viewed length, and

plot the average NITs of each group for the synthetic trace, similarly to Figure 5.6 with

the real trace. Each group has a 40 second range of viewed length. We now clearly observe

that NITs grow superlinearly as a peer watches the video for a longer time. We also note

that TFT+[EF+RF] reduces NITs compared to TFT+EF for peers who watch for a very

long time (more than 1640 seconds). This is because, by using RF, older peers have a

chance to download from younger peers as well. However, for most of peers who watch for

short durations, RF causes more interruption by exchanging chunks closer to the end of

the video; but those chunks are rarely viewed. Peers who watch for a very short time, even

smaller than 500 seconds, have slightly larger NITs than peers who watch around 500–1200

seconds. This is because, as stated earlier in this section, we do not consider startup delay

for synthetic trace experiments. To confirm this, we also plot the results when peers have a

startup buffer of 10 seconds of video just like the experiment with the real trace, and we see

that NITs for peers who watched less than about 1300 seconds of the video with ED+EF

is almost 0.

Comparing Figures 5.11 and 5.6, although NITs in the real world do not consistently and
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Figure 5.12: Seed staying time from trace
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Figure 5.13: NITs of three different schemes

in presence of abandonment as a function of

partial seed staying time.

smoothly grow with viewed length, but rather fluctuate, peers with longer views generally

suffer more interruptions than peers with shorter views. Furthermore, we observe exactly

the same performance relationship among the three different policy combinations.

5.3.4 Utilizing Partial Seeds

We also investigate the effect of utilizing partial seeds. To understand the potential of

seeds staying on in practice, we present results from our request traces collected at the

set-top boxes of viewers. Specifically, for each customer, we calculate the distribution of the

time between the completion of one video and the start of the next video request. Based

on this, we determine how long each video would be available in a customer’s set-top box

(Figure 5.12). We observe that in over 45% of the occurrences, there is at least 1000 seconds

of time the seed (whether it is a partial or normal seed) can continue to stay and serve an

existing swarm before the user starts viewing another video.

In Figure 5.13, we plot NITs of different chunk- and peer- selection strategies as a

function of the average staying time of partial seeds (1/µ2 in Section 5.2) when the initial

seed capacity is 3Mbps with a maximum of 15 concurrent uploads. Note that we also make

normal seeds who have downloaded the entire video stay on as long as the partial seeds,
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Figure 5.14: Average NITs of each peer

group divided based on viewed length (µ1 =

µ2). ED+EF used. Real trace used.

0 500 1000 1500
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

viewed amount (seconds)

no
rm

al
iz

ed
 in

te
rr

up
tio

n 
tim

e

 

 

partial seed staying time=0
200 seconds
600 seconds
1000 seconds

Figure 5.15: Average NITs of each peer

group divided based on viewed length (µ1 =

µ2). ED+EF used. Synthetic trace.

i.e., µ1 = µ2. In the presence of peer abandonment, having peers staying on as partial seeds

benefits all of the strategies. Not surprisingly, the benefit increases as the staying time of

partial seeds increases.

As shown in Figure 5.14, as the staying time increases, NIT decreases significantly,

especially for the viewers with larger viewed lengths. For verification, we also repeat the

partial seed experiments with the synthetic trace used in Section 5.3.3, and NITs of peers

with long views gradually decrease as the partial seeds stay longer, as shown in Figure 5.15.

5.3.5 Minimizing Wastage

We measure the bandwidth wastage caused by abandonment for the three different pol-

icy combinations, and also investigate how utilizing partial seeds impacts wastage. First,

we investigate how the peer selection policies, TFT and ED impact bandwidth wastage.

When comparing the download rates of TFT+EF and ED+EF, we see that the average

download rates of TFT+EF are higher than ED+EF (e.g., 1.57 Mbps vs. 1.20 Mbps) with

abandonment but with no partial seed staying (1/µ2 = 0). However, the distribution of

download rates is quite revealing. Figure 5.16 shows that more than 80% of peers achieve

download rates higher than the video streaming rate (1Mbps) with ED+EF. On the other
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Figure 5.16: CDFs of leecher download rate (µ1 = µ2). 1/µ2 = 0 indicates partial seeds

leave immediately after abandoning.

hand, TFT+EF has higher variability; some peers get high rates, while many fall below

1Mbps because they struggle to get unchoked, which is a key deficiency of such a policy for

streaming video.

Consequently, we have more wastage with TFT schemes as seen in Figure 5.17(a).

TFT+[EF+RF] causes more wastage than TFT+EF due to exchanging rare chunks by RF.

ED+EF results in the least amount of wastage. Also, we see that as partial seeds stay

longer in the swarm, wastage grows for all the schemes, since download rates of both TFT

and ED schemes increase by having partial seeds contribute, as shown in Figure 5.16 (with

1/µ2 = 600 secs).

We performed experiments by varying the size of the playback look-ahead (PLA) win-

dow (described in Section 5.1.6) to achieve a balance between bandwidth wastage (Figure

5.17(b)) and playback quality (Figure 5.17(c)). We observe that with a modest PLA window

size (e.g., 5 chunks), ED+EF can achieve almost the same level of playback performance

but achieve much lower wastage – by almost 85% (reducing from wastage 26% to 4%). In

contrast, a smaller PLA values cause more playback interruptions.
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Figure 5.17: Wastage of different approaches, varying partial seed staying time and PLA

window size, with 95% confidence interval.
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Chapter 6

JOINT-FAMILY: Adaptive

Streaming in Multi-swarm P2P

VoD

6.1 Analysis of P2P Systems for VoD and Adaptive Stream-

ing

We analytically show how video popularity, the staying time of a peer in a swarm, and

caching help increase system capacity. Further, we show how adaptive bitrate techniques

can significantly improve the playback experience even for unpopular content.

6.1.1 Assumptions

The notations used in our model are summarized in Table 6.1. We use the leecher arrival

rate λ for a video as its popularity (i.e., if arrival rate of video i is larger than that of video

j, then i is more popular than j). A leecher’s download (streaming) rate can be faster than

the video playback rate for potentially fewer playback interruptions. We assume that each

leecher watches a video till the end, and thus seeds have the entire video. However, all our
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Parameter Definition

B Bit size of streaming video

u Upload capacity of each peer (leecher or seed)

λ Leecher arrival rate (Poisson arrival)

1/γ Average seed staying time of exponential distribution

x Number of leechers

y Number of seeds

r Playback rate of video

c Number of videos each peer can locally cache

Table 6.1: Parameters and Definition

experiments in Section 6.3 also account for viewers’ premature abandonment based on real

traces. Similar to other P2P studies [Parvez et al., 2008; Fan et al., 2010] and based on the

wireline subscriber statistics [poi, 2013], we assume that upload capacity u is the limiting

factor (the download capacity per peer is much larger). u is identical for every peer. We

investigate the impact of heterogeneous peers in Section 6.3.7.

6.1.2 Popularity, Download Rate, and Seed Staying Time

The fluid model based analysis by Qui and Srikant [Qiu and Srikant, 2004] suggested the

download performance of files is relatively independent of their popularity. They explain

that the supply and the demand placed by leechers are always offset regardless of video

popularity. There has been subsequent work [Parvez et al., 2008; Lehrieder et al., 2012]

based on their model to explain performance on live or on-demand streaming. In contrast

to these models, we first show that more popular a video, the higher the download rate as

long as the following conditions hold:

• request arrivals are stochastic, and

• after completing the download, each peer stays on to serve the video (as a seed)

sufficiently long compared to the average download time.
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The main reason for the difference between the results is that fluid models assume de-

terministic arrivals of requests, which likely holds when a video is highly popular (i.e., when

the request arrival rate goes to infinity). However, when the request arrivals are stochastic

— as seen in practice — a version of Feller’s paradox takes place and Palm calculus [pal, ]

can explain what the fluid model misses. Intuitively, if we plot the intervals between request

arrivals and observe the download rate at any random instant, our observation is likely to

fall into a “larger” interval. In these large intervals, the download rates of leechers mono-

tonically increases, since we assume the seeds stay for a sufficiently long time and many

active leechers transition to being seeds. This simultaneously increases the supply as well

as reduces the demand for download capacity. Feller’s paradox explains why these longer

intervals have a greater effect on the time averaged download times, and in our case the

effect is beneficial.

Our analysis uses a continuous time Markov chain, where we define x, y ≥ 0 to be the

respective numbers of leechers and seeds in a swarm. Our model is motivated by a two-

dimensional (2D) model by Veciana and Yang [Veciana and Yang, 2003] (which only presents

recursive relationship). In our analysis, we first fix y and derive a conditional expectation

using a variant of M/M/∞ queue. We then derive simple formulas for the expected number

of leechers and download time. While our analysis could be equally applicable for file sharing

scenarios, we focus on video streaming only.

Given y seeds, consider a Markov chain, where each state corresponds to the number of

leechers (x). Then, the transition rate from state i to i + 1 is: qi,i+1 = λ for i ≥ 0, where

λ is the request arrival rate. For the transition down from i to i− 1, we assume a “perfect

cascade” as used in Fan et al. [Fan et al., 2010], where all leechers except the latest arrival

can always upload to other leechers. Then, qi,i−1 = (η(i − 1) + y)u/B for i ≥ 1, where η

corresponds to the efficiency parameter for data transfer from leechers [Veciana and Yang,

2003]. This parameter is experimentally shown to be close to 1 for most practical cases [Qiu

and Srikant, 2004; Parvez et al., 2008], and we also use η = 1 in the rest of the chapter.

Then we obtain the following recursive equation for the steady-state probability of state

i ≥ 1:

πi =
ρi∏i

k=1 (k + y − 1)
π0 (6.1)
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where ρ = λB/u. From
∑∞

i=0 πi = 1, we derive π0 as follows:

π0 =
1

1 +
∑∞

i=1
ρi∏i

k=1 (k+θ)

(6.2)

=
1

1 +
∑∞

i=1
ρiθ!

(k+θ)!

(6.3)

=
1

1 +
∑∞

i=1
ρi+θρ−θθ!
(k+θ)!

(6.4)

=
1

1 + θ!
ρθ
(eρ −

∑θ
i=0

ρi

i! )
(6.5)

=
1

θ!
ρθ
(eρ −

∑θ−1
i=0

ρi

i! )
(6.6)

where θ = y − 1. Note that we assume that θ is integer.

Recall that the steady state probability is under the condition for a particular y. Using

Equations (6.1) and (6.6) we can obtain the conditional expectation as follows:

E[X|Y = y] =

∞∑
i=1

iπi (6.7)

= π0

∞∑
i=1

iρiθ!

(i+ θ)!
(6.8)

= π0θ!
∞∑
i=1

(
(i+ θ)ρi

(i+ θ)!
− θρi

(i+ θ)!
) (6.9)

= π0θ!(

∞∑
i=1

ρi+θ−1ρ1−θ

(i+ θ − 1)!
− θ

∞∑
i=1

ρi+θρ−θ

(i+ θ)!
) (6.10)

= π0θ!(
1

ρθ−1
(eρ −

θ−1∑
i=0

ρi

i!
)− θ

ρθ
(eρ −

θ∑
i=0

ρi

i!
)) (6.11)

where θ = y − 1. By substituting π0 (Equation (6.6)),

E[X|Y = y] = ρ− θ
eρ −

∑θ
i=0

ρi

i!

eρ −
∑θ−1

i=0
ρi

i!

(6.12)

= ρ− θ −
ρθ

(θ−1)!∑∞
i=θ

ρi

i!

(6.13)

= ρ− θ +
ρθ

eρ(Γ(θ)− Γ(θ, ρ))
(6.14)

where Γ(θ) is the gamma function (Γ(θ) = (θ − 1)!) and Γ(θ, ρ) is the upper incomplete

gamma function (Γ(θ, ρ) = (θ − 1)!e−ρ
∑θ−1

i=0
ρi

i! ).
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Now, let us consider the distribution for the number of seeds (y). A seed arrival is

equivalent to a leecher completing download of the video. As a result, at steady-state, the

leecher arrival rate λ is the same as the seed arrival rate. On the other hand, a seed leaves

the swarm at the rate of γ (i.e., determined by the staying time). This forms the standard

M/M/∞ queueing system, where the up-transition rate is λ and the down-transition rate

is γy. Thus, P [Y = y] = e−σ σy

y! , where σ = λ/γ. By combining this with (6.14), we get:

E[X] =
∞∑
y=0

(
ρ− y + 1 +

e−ρρ(y−1)

Γ(y − 1)− Γ(y − 1, ρ)

)
e−σσy

y!
(6.15)

From Little’s Law, the average download time is E[T ] = E[X]
λ .

Evaluation: We numerically evaluate (6.15) and demonstrate the relationship between

video popularity and download performance. We also validate our model with experiments

using a discrete event-driven P2P VoD simulator (see Section 6.3.1 for detail). In our

experiments, we consider a 1800-second video of r=625Kbps, resulting in B=1125Mbits. We

use u=312.5Kbps. We also simulate state transitions using the 2D Markov model [Veciana

and Yang, 2003] for comparing results with our analysis. Specifically, we start at state

(x = 0, y = 0) and simulate transitions according to the transition rates until we reach a

steady state (where the change on both x and y becomes very small). After reaching a

steady state, we record the time between arrival and conversion to a seed for each of next

3000 leechers and compute the downloading rate. We use a similar warm-up strategy for

our event-driven experiments.

In Figure 6.1, we investigate the average download rate of leechers for different λ with

1
γ =1 hour. We compare four cases: simulated transition on the 2D Markov model [Veciana

and Yang, 2003] (2D-MC), numerical results from our analysis model (MOD), and two

simulation results with one using stochastic arrivals (SIM-Stochastic) and the other using

periodic arrivals (SIM-Periodic). Note that SIM-Periodic is to understand the impact of the

assumption used in previous fluid models [Qiu and Srikant, 2004; Parvez et al., 2008]. First,

the figure shows that our model closely matches 2D-MC and SIM-Stochastic. We observe

a clear trend in which the average download rate increases as λ (i.e., popularity) increases.

In contrast, we see that the trend with SIM-Periodic is distinct from the other cases, where

the increase in download rate seems slowing down with increasing λ. This result indicates
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Figure 6.1: Download rate as a function of

λ with 1/γ = 3600 secs. (X axis in log scale)
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Figure 6.2: Download rate as a function of

seed staying time 1/γ. (Y axis in log scale)

that the leecher arrival pattern also plays a critical role in the download performance, and

the assumption of periodic arrivals in the fluid models [Qiu and Srikant, 2004; Parvez et

al., 2008] can lead to incorrect conclusions in practical scenarios.

We next investigate the effect of seed staying time on download performance. In Figure

6.2, we plot the average download rate from our analytical model when we vary the seed

staying time (X axis) and arrival rate (different lines). When the seed staying time is smaller

than 2000 seconds, the download rate changes little with different popularity (λ), just like in

[Qiu and Srikant, 2004; Parvez et al., 2008]. However, as the seed staying time is sufficiently

large, the download rate varies significantly as λ varies, showing video popularity affects

download performance only under a long seed staying. When the video size is larger and the

corresponding download time increases, the seed staying time is also required to be longer

accordingly for the same observation (figures not shown here).

6.1.3 Caching to Increase Staying Time and Download Rate

As seen in Section 6.1.2, a necessary condition where popularity and download rate are

correlated is for peers to stay as seeds for a sufficiently long period, compared to their

download time. One way to increase seed staying time of a video is for a peer to cache
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the video and act as a seed serving other viewers of the same video even after the peer

has moved on to viewing another video. However, with multiple videos in cache, a peer

would need to split its upload capacity between those multiple videos, and thus it is not

immediately clear whether caching multiple videos would improve the performance.

To analyze the benefit of caching, we first assume that each video is the same size of B

bytes, and a peer can store a maximum of c videos. Note that our analysis in Section 6.1.2

corresponds to c = 1. One can envisage a variety of policies on how to split the upload

capacity between multiple videos, depending on whether a peer is actively watching a video

or not. To make the analysis tractable, we use a simple policy where a leecher watching a

video serves only the video that it is watching. When not actively watching, a peer equally

splits its upload capacity between c videos in its cache. We remove this assumption in our

protocol design and experiments.

Using our Markov chain based analysis, but also considering a cache of size c, the down-

transition rate from state i to i− 1 would be:

qci,i−1 = (i+ y/c− 1)u/B (6.16)

for i ≥ 1. Note that the benefit of caching from this analysis actually serves as a lower

bound, as the transition rate qci,i−1 assumes that all c videos are always requested. In

particular, if a cached video is not requested, in practice a peer would allocate its upload

capacity to the other videos being requested, resulting in a higher transition (service) rate

than modeled here.

While a peer’s upload capacity is split into c videos, a video stays longer in its cache for

larger c. The cache replacement policy plays a role in determining how long a video would

stay in the cache. In our analysis, we make a simplifying assumption that a peer uses FIFO

(First-In First-Out) replacement. However, in our experiments, we also compare FIFO with

LFU (Least Frequently Used). With FIFO, the time a peer stays as a seed, S, for each

video is hypoexponentially distributed with the average E[S] = c/γ. The distribution for

the number of seeds in the system still holds for c > 1 as:

P [Y = y] = e−σcσy
c /y! (6.17)

where σc = cλ/γ. From (6.16) and (6.17), we can obtain the average download time T by
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Figure 6.3: Caching multiple videos: each download rate is divided by the download rate

when c = 1. (1/γ = 3600 secs)

following similar derivation as in Section 6.1.2. In our numerical evaluation of E[X] with

c > 1, we substitute y in Equation (6.14) with an integer value ⌊y/c⌋ instead of y/c for

simplicity. Note that this simplification underestimates the download rate in the presence

of caching and thus provides a lower bound of the benefit from caching.

Evaluation: We validate our caching analysis using the simulator as in Section 6.1.2 with

a synthetic trace. Figure 6.3 plots the normalized average download rate from our analysis

and from the simulation for different cache size c. For SIM1, we simulate exactly the policy

described for deriving Equation (6.16) for validation. Also, SIM2 shows the results without

our assumption so that a leecher actively watching a video also uploads all other videos

in its cache. We first observe that the analysis (MOD) and simulation results match well.

Also, caching is more beneficial with small λ (i.e., less popular videos). Secondly, we see the

diminishing returns as c grows since our small u which is the bottleneck quickly becomes

more utilized (thus, we omit the results with c > 5). Finally, we show that the download

rate in SIM2 only improves as we remove our assumption. In Section 6.3.5 we also explore

different cache replacement schemes such as LFU using real-world traces.
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Figure 6.4: Download/playback rate vs. arrival rate with different chunk bitrates

6.1.4 Adaptive Bitrate Analysis

We showed in Section 6.1.2 that more popular videos result in higher download rates only

with seeds staying long enough. When the download rate is (unnecessarily) much higher

than the video playback rate, we now leverage the abundant capacity to improve the video

quality through ABR. Using the example of a single video at different bitrates via our model,

we show in Figure 6.4 that as the video popularity varies, the achievable average download

rate varies quite significantly. We choose 3 different bitrates (312.5 – 937.5 Kbps) with

the corresponding horizontal lines. When the video is unpopular, the peer download rate

can be smaller than the playback rate, especially for the higher bitrates, likely resulting in

playback interruptions. When the video is more popular (λ = 0.01 or higher), the download

rate is higher than the playback rate, especially for the lower bitrates (e.g., 312.5Kbps).,

We make the following observations: First, using a single bitrate for all videos is subopti-

mal. If the bitrate is set too high, streaming an unpopular video would result in significant

amount of playback interruption. If the bitrate is too low (with the goal of minimizing

interruptions), viewers of popular videos would be unnecessarily restricted to low bitrates

– i.e., poor streaming quality. To overcome this, one might consider predicting the video

popularity and using the highest bitrate sustainable for that popularity. However, that
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is challenging, since we have to deal with prediction error and popularity changes. With

ABR, the system can potentially adapt to the currently available bandwidth of a video,

which does not require the popularity information, and thus the bitrate adaptively becomes

large for popular videos and small for unpopular videos.

We now show that by using ABR with P2P VoD, we can deliver higher video quality

to a viewer of more popular videos which can sustain higher bitrate. Suppose we have m

playback bitrates: R = {r1, r2, . . . , rm}, where ri < ri+1. In our analysis, we assume an

idealized rate adapting scheme, where a leecher only increases the video bitrate to reach

the highest bitrate it can sustain. Specifically, each leecher starts with r1 and increases the

bitrate from ri to ri+1 if it has at least su seconds of video chunks at rate ri buffered ahead

of its playback point (also explained in Section 6.2.3). If a leecher is not able to go to a

higher bitrate, then it stays at the current bitrate until the streaming finishes. Also, we

assume that all leechers for a given video go through the same set of “transition points” in

a steady state. In other words, all leechers download B1 bytes at r1 before switching up to

r2 and receive B2 bytes at r2 before transitioning to r3, and so on.

Our goal is to find an equilibrium point (B1, B2, . . . , Bm), and then calculate the corre-

sponding download rate:
∑m

i=1 Bi∑m
i=1 Bi/ri

. To determine an equilibrium point, we use the following

steps. Suppose we have an estimate of B̃ = (B̃1, B̃2, . . . , B̃m). We consider m independent

Markov chains, one for each bitrate as described in Section 6.1.2. Each state is the number

of leechers downloading at the corresponding bitrate. We assume that a seed for a video

splits its capacity across multiple bitrates, such that it serves chunks of rk in proportion to

B̃k. That is, the down-transition rate for the Markov chain corresponding to chunks of rk

is:

qki,i−1 = (i+ fky − 1)u/B̃k, (6.18)

where fk = B̃k∑
j B̃j

. Then, following the analysis for each Markov chain in Section 6.1.2

(Equation (6.15)), we can derive the average download time (T̃k) and the corresponding

download rate (d̃k). However, since the bitrate switch happens only after su seconds of

chunks at rk are buffered, we can calculate the corresponding time as T ′
k = surk/(d̃k − rk),

which we expect to match T̃k in an equilibrium point. In our evaluation, we calculate

B′
k = T ′

kd̃k and numerically find an estimate B̃ that minimizes the Euclidean distance from
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Figure 6.5: Validation of ABR analysis using simulation

B′ = (B′
1, . . . , B

′
m).

Evaluation: We can employ a variety of methods to find the equilibrium point minimizing

the Euclidean distance (e.g., gradient descent) between B̃ and B′. However, to minimize

the error arising from the particular method we use, we evaluate an entire space (using

small fixed increment on B̃ values) and report the point with the minimum distance. We

use a 1800 second video with 4 bitrates {250, 500, 750, 1000} Kbps, and set su = 50. In

the simulation, peers have to switch down to lower bitrates if the size of buffered chunks

becomes smaller than sd, and we use sd = 10 (see Section 6.2.3 for detail). Figure 6.5

shows the average playback rates obtained from both our model and simulator as video

popularity varies. Considering that, unlike the model, peers in simulation may go down to

lower bitrates and peers transfer data chunk-by-chunk (each 10 second chunk) instead of

bit-by-bit, the two results match reasonably (especially in the variation with popularity),

and demonstrate that with ABR in a P2P system, we can achieve a higher playback rate

for a more popular video.

6.2 JOINT-FAMILY Design

We take the learnings from our analytical results in Section 6.1 to design a P2P protocol

that supports the delivery of high quality video using ABR. To the best of our knowledge,
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Figure 6.6: A peer in Joint-Family participates in multiple swarms.

Joint-Family is the first practical P2P VoD system that incorporates ABR. Joint-Family

enables peers to enjoy the highest possible playback rate based on the available system

capacity.

6.2.1 Overview

Most P2P systems maintain a notion of a “swarm” per video. Peers watching this video

participate in the swarm and exchange chunks with other peers. With ABR, this delineation

of a swarm per video becomes unclear since the same video has different set of files, one at

each rate. A natural extension, and one that we use, is to assign a different swarm for each

rate of the video. This change alone, however, is not sufficient. Peers today participate in

one swarm only. Each time they attempt to change rates due to the ABR rate adaption,

they would have to leave one swarm and join the swarm of the next rate. Leaving one

swarm and joining another is inefficient as it is heavyweight process and also introduces a

lot of churn in the system. Instead, a peer in Joint-Family joins the different swarms of each

video concurrently and maintains active connections. The peer then sends out requests to

the appropriate swarm as it downloads and uploads chunks of different bitrates as a result
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of bitrate adjustment.

Once we have the support for multiple swarms of a given video, the same primitive can

be extended to support participation in multiple swarms of different videos. This allows a

peer to serve cached chunks of videos it has already viewed, which as shown in Section 6.1.3

and 6.1.4 has a beneficial effect on the overall download performance and playback rate

for ABR videos. Figure 6.6 illustrates the typical multi-swarm participation of peer A. A

has 4 videos in its cache. The figure focuses on Video3 and shows that, as a result of rate

adaptation, A has chunks in each of the 3 rates of Video3. A simultaneously participates

in the swarms associated with each of these rates (solid dot in each swarm). The figure

also shows A concurrently uploading chunks at different rates to peers (unfilled dots) in

the corresponding swarms. These peers will also be participating in multiple swarms, but

may not necessarily be connected to A in all of these other swarms. The same process is

repeated for the other videos in A’s cache (e.g., Video1).

6.2.2 Protocol Mechanisms for Multi-Swarm P2P

While multi-swarm participation is conceptually straightforward, realizing it in P2P systems

requires a detailed understanding of inter-dependencies between protocol components and

careful protocol re-design.

Connection management: We term all connections that node A has to peers in swarms

of the video it is currently watching as selfish. Connections to swarms of cached videos

are termed altruistic. The peer on the other end of a selfish connection, B, can be either

a leecher or a seed. In the latter case, this is an altruistic connection for B. However, a

connection cannot be altruistic for both endpoints. In typical P2P systems, a node can have

connections to a maximum of n peers to avoid depleting local resources (e.g., by having too

many TCP connections). For example, a typical BitTorrent peer can have as many as 80

connections. It contacts a tracker for more peers if the number of connections goes below

40. When a peer participates in multiple swarms for multiple videos, there is an inherent

tension between the number of selfish connections and altruistic ones.1 Specifically, if the

1We do not differentiate swarms for a single video since a peer can always switch between different

bitrates.
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peer uses its entire quota for selfish connections, caching is rendered useless. Conversely,

even with sufficient connections, a leeching peer can suffer from starvation if the majority

of its connections are altruistic.

Our solution with multiple swarms is to partition the number of connections for different

swarms. We define a parameter αl, such that the number of altruistic connections for a

leecher is at most nαl. In Joint-Family, a leecher needs to re-classify the connections

regularly and ensure that the number of altruistic connections is below the threshold. In

the experiments, we use αl=0.5. However, by definition, a peer who does not actively

watch any video cannot have a selfish connection. For those peers, αl=1 is used, allowing

all connections to be altruistic.

Another aspect in a multi-swarm P2P system is to choose which peers to serve. In

BitTorrent-like P2P VoD systems, the peer selection behavior changes depending on whether

a peer is leeching or not. Specifically, a leecher unchokes those peers that sent the leecher

the most chunks, while a seed unchokes those peers that can download the fastest. In

Joint-Family, a peer can simultaneously be a leecher (for the video it is currently watching)

and a seed (for other videos in its cache). As a result, if the BitTorrent policy is strictly

followed, a leecher has no incentive to use upload capacity for altruistic connections. This

is because the leecher is more likely to be unchoked when it uses all its upload bandwidth

for bilaterally selfish connections. We present more detailed protocol mechanisms related

to peer selection in Section 6.2.4.

Caching and sharing multiple videos: We have shown in Section 6.1.2 that increasing

seed staying time in a swarm increases the capacity of the swarm. Our approach to increase

staying time is, as modeled in Section 6.1.3, to cache videos previously watched and share

them with other peers. Sharing multiple videos simultaneously is currently not possible in

VoD systems as peers move from one swarm to another as they change videos. However,

our primitive of participating in multiple swarms allows a peer in Joint-Family to cache and

share multiple videos in parallel. We assume that each peer can store at most c different

videos in its local cache regardless of the length of the video (we recognize videos can be of

different lengths, and ABR or premature abandonment can also cause a difference in size).

When the cache is full, a peer can choose the video to be deleted based on well-known cache
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replacement policies. In Section 6.3.5, experimental results on the benefits of caching are

presented.

6.2.3 Chunk Selection and Rate Adaptation

Chunk selection: In Joint-Family, we use the Earliest-First (EF) chunk selection policy.

There are a number of advantages we get from using EF. As shown in Section 5.3, EF

allows for a fast startup, potentially fewer and shorter interruptions, and smaller wastage

of downloaded chunks when users abandon viewing a video. Also, with buffer-based bitrate

adaption schemes for ABR, having more sequential chunks in the playback buffer is more

likely to help the peer move up to a higher playback rate quickly. Moreover, ABR compli-

cates using Rarest-First (RF), as the rarest chunk at the time of download may not match

the right bitrate at the time of playback. While we do not address it in this paper, EF is

also amenable to DVD-like operations. Further, the performance degradation by using EF

is highly dependent on the number of seeds in the swarm as shown in Section 5.3.4, and

our caching mechanism increases the number of seeds and helps avoid the “missing piece

syndrome” [Zhou et al., 2011].

Rate selection: Having identified the chunk to download, the peer needs to decide which

of the video rates to download. As is frequently adopted in practice [Akhshabi et al., 2011],

we have designed Joint-Family to use hysteresis when making a change in the bitrate for

a video, so that the quality does not change too frequently, thereby providing the user a

better quality-of-experience (QoE). However, our algorithm is parameterized and can easily

get rid of the hysteresis if needed. Note that unlike several rate adaptation schemes used

in server-client based ABR [De Cicco et al., 2011; Liu et al., 2011; Tian and Liu, 2012], we

do not estimate the bandwidth between an uploader and a downloader. Unlike server-client

schemes, in P2P a peer generally downloads chunks simultaneously from multiple different

uploaders, and also peers who can upload to that downloader keep changing frequently

depending on their chunk availability.

Instead of checking the bandwidth for each connection, a leecher uses a simple bitrate

adaptation scheme based on its buffer status. Once the peer’s buffer goes above (below) a

certain threshold, it triggers the peer to adopt a bitrate increase (decrease). We supplement
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Figure 6.7: Flow chart for bitrate adaptation

this with hold-down timers to avoid rapid bitrate fluctuations. Specifically, a peer increases

the bitrate if the following two conditions hold: its buffer has more than su seconds of

chunks to play back (i.e., sequential chunks), and the last bitrate change was more than hu

seconds ago. Contrarily, a peer decreases the bitrate if its buffer has less than sd seconds

of chunks, and the last downward rate change was more than hd seconds ago.

The specific adaptation logic used is shown in a flow chart in Figure 6.7, where a viewer’s

buffer size (in seconds) at time t is w(t), the number of the video chunks is n, andm different

bitrates {r1, ..., rm} are provided. Note that hd is applied only when a viewer has to switch

down to lower bitrates sequentially.
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A possible improvement in bitrate selection could be to also consider chunk availability

at a rate. For example, for a particular portion of a video, if more peers have the chunk

at bitrate ri than at rj , a leecher might prefer the chunk at ri. We briefly explored this

direction, but found that without careful design, peers can end up being stuck at lower

bitrates even when there is capacity. This is because other peers may have downloaded lower

bitrate chunks at a time when the swarm could only support that low rate. A sophisticated

bitrate selection scheme that takes both chunk availability and video playback quality into

account is still an open area of research.

6.2.4 Earliest-Deadline (ED) Peer Selection

We complement the Earliest-First (EF) chunk selection policy in Joint-Family with an

enhanced peer selection strategy of choosing the peer with the “earliest-deadline”, as we

introduced in Section 5.1.3. This replaces BitTorrent’s Tit-for-Tat (TFT) peer selection

policy which favors clients with higher upload bandwidth and more chunks, but leads to

frequent playback interruptions in streaming applications. To satisfy a viewer’s uninter-

rupted playback experience, Joint-Family ensures each chunk to be delivered to the viewer

prior to its deadline using the ED policy (more details in Section 5.1.3).

6.3 Performance Evaluation

We evaluate the performance of Joint-Family and compare it to a generalized version of

state-of-the-art P2P approaches, using trace-driven simulations. We first show that the

changes proposed in Joint-Family result in significant improvements in terms of the video

playback rate and the number of interruptions and thereby improve a viewer’s quality-of-

experience (QoE). We then show how each of the design policies in Joint-Family contributes

to improving system performance.

6.3.1 Experiment Setup

To evaluate Joint-Family, the BitTorrent simulator [Bharambe et al., 2006b] is used with

the following major modifications: (1) video streaming support (e.g., playback buffer), (2)
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Parameter Default value

Number of initial servers 5

Upload bandwidth of each server 25 Mbps

Peer upload/download bandwidth 625 Kbps/2 Mbps

Non-ABR video bitrate 625 Kbps

ABR video bitrates 250,500,750,1000 Kbps

Max. concurrent uploads per server 30

Max. concurrent uploads per peer 5

Chunk size 10 secs

Startup buffer size per peer 10 secs

Table 6.2: Simulation parameters

bitrate adaption (Section 6.2.3), (3) multi-swarm participation (Sec. 6.2.2), (4) different

chunk (Sec. 6.2.3) and peer selection policies (Sec. 6.2.4). Note that for the hybrid chunk

selection (EF+RF), a peer initially uses EF, but switches to EF+RF once enough chunks

are in its playback buffer. This helps achieve lower startup delay and playback continuity

by providing the slack needed to deal with possible future reductions in the download rate.

In our experiments, a peer uses EF with probability 0.7 and RF with 0.3, once there are 5

or more chunks in its buffer.

To reflect realistic viewing patterns of a large population of users, trace data from a

nationally deployed VoD service is used. The data covers a two week period with millions

of requests. The trace contains information including the anonymized user ID, request time,

video ID, video length, and the duration viewed for each session. For the experiments, our

14-day trace is split into seven 2-day trace segments. We use these trace segments to get 7

different simulation runs and report the average results and 95% confidence intervals.

We summarize the different parameters used in the simulations in Table 6.2. We use 5

servers, each with 25Mbps uplink capacity to host all the videos and behave like seeds. We

assume continuous network connectivity of each joining peer until the end of an experiment

so that the peer helps other peers as a seed for previously viewed videos. While the playback

rate for non-ABR videos is set to 625Kbps, we use 4 quality levels for ABR videos: 250,
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500, 750 and 1000Kbps (the average being 625Kbps). Like most P2P systems, each video is

broken into chunks of 10 seconds of playback, and a peer can play back a chunk while it is

being downloaded (subject to the startup delay and the appropriate portion being available).

For ABR, hold-down time for bitrate switch-up (hu) and switch-down (hd) are set to 30

and 10 seconds, respectively. Also, for the buffer size parameters of switch-up and switch-

down, we use su = 50 and sd = 20 seconds. We chose these bitrate switch parameters

based on our experiments (not shown here) where the parameters achieved the largest

average playback rate with fairly small playback interruptions. We use playback rate

and interruption time as the metrics to evaluate video playback performance. While the

former gives information about the quality of video viewed by the user, the latter captures

the aggregate disruptions experienced by the viewer.

6.3.2 Joint-Family vs. Server-based ABR

To first understand the benefit of using P2P for ABR video delivery, we compare Joint-

Family with the traditional server-based ABR scheme. Viewers in the server-based ABR

do not share their downloaded content. Joint-Family uses a cache size of c = 5. The same

buffer-based rate adaptation is applied in both schemes. We look at the average viewers’

playback bitrate and interruption time in Table 6.3 as the server bandwidth increases.

We assume a single server, with the maximum number of concurrent uploads allowed for

each 25 Mbps of server upload bandwidth being 30, as in Table 6.2 (e.g., 125 Mbps server

bandwidth allows 30 ∗ 5 = 150 concurrent uploads). Joint-Family requires only 125 Mbps

server bandwidth to achieve about the same performance as a server-based ABR with 2

Gbps server bandwidth. Note that the improvement in the playback rate of Joint-Family

with larger server bandwidths reaches a point of diminishing returns because the highest

ABR video bitrate is limited to 1000 Kbps.

6.3.3 Joint-Family vs. State-of-the-art P2P

For the performance comparison of Joint-Family, instead of comparing with specific existing

implementations, we use a generalized implementation that incorporates the state-of-the-art

in P2P VoD. The generalized implementation (henceforth BT VoD) uses the hybrid policy
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Server bandwidth 125 Mbps 500 Mbps 1 Gbps 2 Gbps

Server-based 261 Kbps 334 Kbps 501 Kbps 723 Kbps

ABR 195 seconds 67 secs 16 secs 2 secs

Joint-Family 748 Kbps 881 Kbps 940 Kbps 975 Kbps

(c=5) 4 seconds 0 sec 0 sec 0 sec

Table 6.3: Playback rates and interruption time with server-based ABR scheme and Joint-

Family

(EF+RF) for chunk selection and TFT for peer selection. Since existing P2P systems

only support a single rate, we experiment with two fixed rates: 1000Kbps and 250Kbps to

represent the two extremes (high quality and no interruption). Note that 250Kbps is the

maximum bitrate for BT VoD that achieved no interruption for all viewers. Further, these

systems only allow participation in one swarm (equivalent to c = 1 in Joint-Family). We use

two scenarios for Joint-Family: c = 1 and c = 5. Joint-Family uses ABR with {250, 500, 750,

1000}Kbps bitrates and all the improvements suggested in this chapter. The goal here is to

show the total benefits from using Joint-Family. To understand the dependency between

popularity and playback performance, results are presented for 5 different groups, where

each group has 100 videos for corresponding popularity. For example, Group 1 consists of

the 100 most popular videos, while Group 5 has the 100 least popular videos.

First, Figure 6.8(a) shows the average playback rate experienced by peers. With BT

VoD, the playback rate is constant across all videos, since just a single rate is used. Joint-

Family, on the other hand, has the ability to adapt the playback rate to the available

capacity for that video. Consequently, popular videos experience a high playback rate (as

shown in Section 6.1.4). Interestingly, the average playback rate of the least popular videos is

also much higher with Joint-Family (by ∼100Kbps) than the lowest possible rate. Similar to

our analysis in Section 6.1.3, we also consistently see the benefit of caching and participating

in multiple video swarms (e.g., c = 5 vs. c = 1). To understand whether the playback rate is

sustained with minimal interruptions, we plot the average interruption time in Figure 6.8(b).

Although the playback rate of BT VoD with 1000Kbps is always higher than Joint-Family,

it causes significant interruption times. It is particularly bad for less popular videos where
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(b) Interruption time
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(c) Download rate

Figure 6.8: Comparison between Joint-Family and the state-of-the-art P2P system (group 1:

the set of most popular videos).

the interruption can range from 100 to almost 400 seconds. In contrast, BT VoD with

250Kbps and Joint-Family result in comparably negligible interruptions; Joint-Family with

c = 5 essentially performs as well as BT VoD at 250Kbps while still achieving significantly

higher playback rates. To understand the reason for Joint-Family’s improvement, we plot

the average download rate achieved by each alternative in Figure 6.8(c). The different

approaches achieve mostly similar download rate (although Joint-Family with c = 5 achieves

higher throughput for unpopular videos) that decreases with decreasing popularity.
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Figure 6.9: Effect of seed staying time (1/γ) for JF, c = 5

The combination of these results illustrates why it is important to adapt: If we pick

too high a quality (e.g., 1000Kbps bitrate), users of less popular videos experience frequent

interruption since the achievable download rate may be lower than the playback rate. Con-

trarily, if we pick a very low playback rate (250Kbps), interruptions may be minimized, but

quality of popular videos is unnecessarily sacrificed. By dynamically adapting to the avail-

able capacity (as seen by the achieved playback rate for the different popularity groups),

Joint-Family is able to achieve a nice balance between quality and interruptions. Moreover,

we see that by caching more videos (c = 5), Joint-Family exploits the increased capacity

and is hence able to deliver higher quality video at almost no interruptions across all types

of videos.

We now study the effect of seed staying time in Joint-Family with c = 5. For viewers

who are not currently watching any video, we vary their average staying time 1/γ. In

Figure 6.9, the ‘leave promptly’ curve indicates that all viewers leave the VoD network

right after they finish watching, while the ‘stay connected’ curve (identical to ‘JF, c=5’

in Figure 6.8(a)) indicates that they stay connected till the end of each simulation. We

first see that the playback results have a similar trend in that more popular swarms still

achieve higher bitrates. Secondly, the improvement in playback rates with longer staying

times reduces (e.g., ‘1/γ = 5 hours’ and ‘stay connected’ are almost identical). This is

because, unlike our analysis, viewers’ arrivals do not strictly follow a Poisson process but
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Figure 6.10: Rate adaptation with ABR

instead show significant diurnal patterns with busy periods (e.g., 8∼12 PM in Figure 6.12)

and other periods that are less busy. Further, even after viewers leave, they can still come

back to the network (e.g., to watch other videos) and have their previously viewed videos

available for sharing. The interruption time (not shown here) is negligibly small for all

cases.

6.3.4 Performance Improvement with ABR

We take a closer look at how a peer’s playback experience evolves over a video streaming

session. As Joint-Family adapts using ABR according to the available capacity for that

video based on its popularity, we select a sample user from each popularity group and plot

the playback rate over time as well as its overall average when c = 5. For the clarity of

presentation, in Figure 6.10, we only show 3 groups. For the popular videos (Group 1), the

video quickly ramps up to 1000 Kbps and stays at the rate to achieve an average playback

rate of 923 Kbps, which is similar to the total average for Group 1 (as seen in Figure 6.8(a)).

The Group 3 user also briefly goes up to 1000 Kbps before settling back down to 750 Kbps

for the most part. In both these cases, the average playback is higher than the bitrate of

non-ABR case (625 Kbps). Finally, since there is no sufficient capacity for the unpopular

videos to support a high rate, the Group 5 user oscillates between 500 and 250 Kbps to

achieve an average of 414 Kbps (while the group average is 410 Kbps). While this average
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Figure 6.11: Rate adaptation when the link bandwidth available at a sample peer changes

over time

is lower than 625 Kbps, the total interruption time for Group 5 with ABR was only 4.7

seconds compared to 20.6 seconds for the group without ABR.

We thus see that Joint-Family works harmoniously with ABR, enabling peers to dynam-

ically adapt to the available system capacity among the servers and peers in the system for

a particular quality/rate for the video. As seen in our ABR model in Section 6.1.4, by al-

lowing peers to participate in multiple swarms, peers viewing a popular video are naturally

able to take advantage of the higher bitrate chunks that become available because of the

increased system capacity for such popular content.

Impact of Changes in Link Bandwidth Available: We also observe how the playback

rate adapts as the link bandwidth available at a peer changes over its streaming session. We

pick a sample peer from Group 1 who views a 30 minute video entirely, and we change the

down-link bandwidth of the peer between 500 Kbps and 2 Mbps. In Figure 6.11 although

we see a little delay between the link bandwidth change and the peer’s bitrate adaptation,

our simple buffer-based rate adaptation scheme results in the very similar transition to

the bandwidth change. We also observe a few playback interruptions of the peer, about 8

seconds in total, during 1000∼1250 second period. The peer almost entirely relied on the

server for 250 Kbps bitrate chunks during this period since most of the other peers in the
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Figure 6.13: Video popularity and the effect

of cache size (c)

same video swarm did not have 250 Kbps chunks available for this sample peer.

6.3.5 Effect of Multiple Swarms

To understand the underlying reason for the improved performance of Joint-Family, we

examine the overall system utilization. We periodically sample the upload bandwidth ag-

gregated across all peers (excluding servers) and report the time series for Joint-Family

(with c = 5) and BT VoD. In this experiment we do not use ABR to remove the perfor-

mance impact by rate adaption. Figure 6.12 shows Joint-Family effectively increases the

system utilization compared to BT VoD. Specifically, at the peak viewing period, the ag-

gregate upload bandwidth by BT VoD is 1.8 Gbps while 2.3Gbps with Joint-Family (an

increase of 27%). By being in multiple swarms, peers in Joint-Family can use their upload

capacity as long as they receive a chunk request from any of the swarms, thus improving

overall upload capacity and playback experience.

Caching and video popularity: We turn our attention to increasing system capacity so

that we can increase the video download rate through caching. We run Joint-Family with

a constant bitrate of 625 Kbps and experiment with both LFU cache replacement (popular

in the literature as a replacement policy for video caches) and FIFO (used in our analysis).

Figure 6.13 shows the variation of the download rate as the cache size increases from 1 to 5
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videos. We again pick 3 groups of videos with different popularity: Group 1, 3, and 5. The

Y-axis shows the average download rate of each group normalized by the rate achieved when

c = 1. Very similar to our analytical model in Section 6.1.3, we observe that: (a) caching

consistently improves the download rate of peers across videos of all popularity levels, (b)

the benefit from caching reduces as we increase the amount of caching, (c) unpopular videos

see more benefit with caching than popular videos (>25% improvement compared to about

8%), and (d) the specific cache replacement mechanism does not play a significant role (in

this limited size of the number of cache entries). Note that while the normalized download

rates for popular videos improve less than unpopular videos, the absolute value for the

download rate is much higher (1049 vs. 597 Kbps).

6.3.6 Impact of Chunk and Peer Selection Policies

We evaluate the contribution of the chunk selection and peer selection policies in Joint-

Family. To perform this experiment, we started with BT VoD and first replaced the hybrid

chunk selection policy with EF (TFT+EF, using the terminology of peer selection + chunk

selection policies). We then replaced TFT peer selection with ED (ED+EF). A single

bitrate, 625Kbps is used. Similar to Figure 6.8(c), the download rates for different policies

are comparable and thus omitted here. Figure 6.14 shows that BT VoD experiences much

longer interruptions compared to TFT+EF. Specifically, for the least popular group, the

interruption time reduces by 33% when TFT+EF is used instead of BT VoD. This is because

EF prioritizes chunks closest to the current playback point. In contrast, even though the

download rate of BT VoD is similar to that of TFT+EF (not shown here), the partial use

of RF in BT VoD results in many downloaded chunks that are not immediately useful.

Next, when replacing TFT by ED (i.e., ED+EF), we consistently get further reductions

in interruption times. In particular, the interruption time of ED+EF goes down by an

additional 44% compared to TFT+EF. This can be attributed to the “fairness” aspect of

ED, where we prioritize peers that really need the chunk soon, as opposed to TFT where

peers unchoke other peers based on their upload rates.

To show this property, in Figure 6.15, we plot the cumulative distribution of the inter-

ruption time for each interruption the user experiences. We see that with ED, more than
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Figure 6.15: CDF of interruption time for

each interruption

Policy # of interruptions Std. Dev

TFT 82.8 250.1

ED 112.1 220.5

Table 6.4: Interruptions count with ED and TFT

98% of interruptions last for less than 3 seconds, while 60% last even shorter (1 sec or less).

The maximum interruption time is less than 10 seconds. On the other hand, with TFT there

are much fewer short interruptions, while the majority of interruptions are long (40% last

for > 120 seconds). This result demonstrates inherent unsuitability of TFT with streaming

video. We also examine the number of interruptions in Table 6.4. ED experiences more

interruptions than TFT. However, since the duration of each interruption is significantly

shorter, the overall total interruption time due to ED is very small. Additionally, the fact

that 60% of interruptions last for 1 second or less suggests that the deadline we are using

is extremely aggressive.

6.3.7 Effect of Heterogeneous Peers

In practice, the upload and download bandwidth of peers can vary, depending on network

technology and pricing plans chosen by users. We examine the impact of varying the up-



CHAPTER 6. JOINT-FAMILY: ADAPTIVE STREAMING IN MULTI-SWARM P2P
VOD 97

group1 group2 group3 group4 group5

400

500

600

700

800

900

1000

popularity group

pl
ay

ba
ck

 r
at

e 
(k

bp
s)

 

 

312.5Kbps/2Mbps peers
625Kbps/2Mbps peers
312.5Kbps/4Mbps peers
625Kbps/4Mbps peers

Figure 6.16: Playback rate of Joint-Family for heterogeneous peers

link and downlink bandwidth of peers. Instead of using homogeneous 625Kbps/2Mbps

(up/down) bandwidth peers, we also consider the heterogeneous environment where peers

have different link bandwidth. We choose 4 bandwidth combinations: 312.5K/2Mbps,

625K/2Mbps, 312.5K/4Mbps, and 625K/4Mbps, and each arriving peer has one of those

bandwidth chosen uniformly at random. Figure 6.16 shows the playback rate for the cor-

responding peers. The benefit is predominantly seen for popular videos. Peers with higher

downlink bandwidth see a greater improvement in the playback rate for their popular videos

than when their uplink bandwidth changes. The higher downlink bandwidth allows the sys-

tem (initially by the servers) to populate the environment (peers) with higher quality chunks

(even if the uplink bandwidth is halved from 625 to 312.5 Kbps) which is then effectively

shared among the peers viewing the popular video over time due to the increased system

capacity for the popular video.
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Chapter 7

Conclusions

In order to overcome explosively increasing demands on online video streaming and to im-

prove the streaming quality and performance, in this dissertation we investigated users’

viewing patterns and developed novel scalable schemes based on the patterns that take into

account a variety of practical considerations such as viewer abandonment, peers participat-

ing in multiple swarms, and adaptive bitrate streaming.

We first considered the problem of content placement in a backbone network. We took

advantage of the belief that (a) users do not watch videos fully, but rather stop after

skimming through the initial portion, and (b) users skip over portions of data. Using data

from a nationally deployed VoD service, we showed that the belief is indeed true. We then

developed a placement approach based on a Mixed Integer Program (MIP) that places

segments of each video (chunks, or prefixes and suffixes) across locations in the backbone.

Our MIP formulation requires the projected demand for each segment in order to compute

the placement. We showed that we can use the popularity of TV shows and TV series to

predict the demand for videos.

Using detailed simulations we showed that placing segments significantly outperforms

alternate schemes while chunk-based placement yields best results. Importantly, MIP-based

placement consistently resulted in lower bandwidth usage than LRU caching, even in an

idealized setting for LRU caching. This is despite the fact that caching strategies can

adapt quickly to changes in viewer request dynamics. We also showed that by just using

prefixes we can obtain system performance close to what can be achieved by splitting the
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video into finer grained chunks. Therefore, our results demonstrate that our MIP-based

placement approach is able to successfully take advantage of user behavior for placing

content optimally.

Second, we demonstrated that user abandonment of videos can impact P2P VoD stream-

ing performance significantly, by revisiting peer and chunk selection policies used in P2P

VoD. Prior designs for P2P systems have been driven, to a great extent, by concerns over free

riding (peer selection using Tit-for-Tat (TFT)) and downloading entire contents (chunk se-

lection using Rarest-First (RF)). These concerns are overly constraining for a video stream-

ing system with abandonment.

In all the schemes we considered in this dissertation, abandonment caused larger inter-

ruptions (NITs), particularly with peers watching longer as they are isolated with no other

peers to upload from. With abandonment, distributing rare chunks (by RF or EF+RF

hybrid) becomes wasteful and performs worse than Earliest-First (EF), as peers are likely

to abandon before consuming the downloaded rare chunks. Through analysis and trace-

driven simulations we showed that our scheme that combines Earliest-Deadline (ED) for

peer selection, EF for chunk selection, and the use of partial seeds outperformed existing

well-known schemes by significantly improving overall video playback performance and re-

ducing wasted bandwidth consumption. Additionally, we further reduced wastage by peers

having a playback lookahead window.

Finally, we presented a holistic redesign of P2P VoD called Joint-Family that for the

first time supports the delivery of adaptive bitrate videos. We showed through analysis

that only with sufficiently long staying times, the available download capacity in P2P VoD

depends on the popularity of the content, and used this to guide our protocol design. Joint-

Family achieved much better performance than other strategies as demonstrated by our

simulations that used traces from a commercially deployed VoD service. By choosing ED

as peer selection and EF as chunk selection policy, we dramatically improved the viewer’s

quality-of-experience (QoE) by minimizing interruptions. Joint-Family allowed peers to

smoothly adapt their quality and achieve a high playback rate for popular content. Not

only that, even for unpopular content, Joint-Family achieved almost 40% higher playback

rate (350 Kbps) than an existing P2P VoD system with a fixed bitrate (250 Kbps). And
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it did this while reducing the total interruption time by a factor of 4 compared to the

fixed bitrate P2P VoD approach. Joint-Family achieved this by leveraging resources across

swarms that are potentially wasted by other schemes, and increased system utilization by

30% at peak viewing periods.

7.1 Future Work

There are several challenges and open questions for the directions of future research arising

from our work in this dissertation which need to be pursued.

The results from our optimal video segment placement show that, while taking advantage

of stream control functions like SKIP helps reduce the data transfers, the bulk of our

reduction comes from users abandoning videos. This indicates that despite the availability

of stream control operations, large parts of a video are watched sequentially. We postulate

that when existing VoD interfaces start providing a more DVD-like navigational capability,

we are likely to see skips playing an even bigger role. Similarly, although we observed that

the performance difference between 1-minute chunks and 10-second chunks is modest, this

may change with DVD-like navigation, and we may need to carefully choose the chunk size.

Also, future work includes building a large-scale VoD system that takes advantage of our

placement design.

Secondly, while TFT for P2P VoD systems introduces dependencies on chunk selection

policies that are incompatible with P2P streaming, we showed that our approach in Joint-

Family of using ED instead of TFT helped decouple the strict dependencies and offered

better performance in terms of streaming and QoE compared to TFT. However, unlike

TFT, ED does not guarantee against free riding which can significantly affect the overall

P2P system performance and introduce unfairness. Although there are several deployments

that do not worry about free riding such as managed content delivery [Maggs, 2012], for

scenarios where eliminating free-riding is still important, we plan to investigate strategies

to eliminate free-riding. We can adopt approaches like Contracts [Piatek et al., 2010] or

iPASS [Liang et al., 2010], appropriately modified, for P2P VoD.

Contracts was designed for live streaming and hence relies on promoting users close to
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the source as the main incentive. While this incentive is not very useful for P2P VoD, we

can leverage the other aspects of Contracts, i.e., exchanging receipts, using the tracker for

verification and preventing collusion. Peers in Joint-Family can exchange similar receipts

for contributing upload capacity. When requesting content, peers have to show proof that

they have shared data with other peers in the form of receipts. Note that using receipts

not only allows us to move from pair-wise exchange mechanisms towards one that allows a

peer to carry credit for work done in sharing one video to fetching a different video. We are

exploring these strategies as part of our future work.

Third, it would be possible to improve the bitrate adaptation policy of Joint-Family, by

also considering chunk availability at each rate in addition to each peer’s playback buffer

status. For instance, for a particular portion of a video, if more peers have the chunk

at bitrate ri than at rj , a leecher might prefer the chunk at ri. We briefly explored this

direction, but found that without careful design, peers can end up being stuck at lower

bitrates even when there is capacity. This is because other peers may have downloaded lower

bitrate chunks at a time when the swarm could only support that low rate. A sophisticated

bitrate selection scheme that takes both chunk availability and video playback quality into

account is an open area of research.

Another potential topic is unfairness between unpopular and popular videos in P2P [Hei

et al., 2007; Liu et al., 2009]. Although Joint-Family greatly improved the streaming per-

formance for unpopular videos offering almost no playback interruption, the average bitrate

played back was still smaller compared to the one with popular videos. One possible ap-

proach to abate the unfairness is to be more in favor of viewers of less popular videos, and

it could be divided into server-side and peer-side approaches. Both the server and peers

should be able to keep tracking of video popularity, e.g., by simply recording the number

of requests per video. Then, based on video popularity, the server can preferably upload to

peers who request less popular videos. Similarly, a peer who has multiple videos in its local

cache can also preferably upload less popular videos in its cache. Another simple peer-side

strategy would be to ensure that peers keep less popular videos longer in their cache than

more popular videos when their cached videos have to be evicted.

Finally, it would be beneficial to implement and deploy a functional prototype for Joint-
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Family (i.e., one that goes beyond simulator-based experiments). Such prototype would

enable us to refine our design. We can leverage existing open-source BitTorrent-like P2P

VoD clients [BTC, 2013] to manage the low-level P2P operations, and focus on developing

Joint-Family specific mechanisms.
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