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Abstract

The Study of Transition Metal Oxides using Dynamical

Mean Field Theory

Hung The Dang

In this thesis, we study strong electron correlation in transition metal oxides. In

the systems with large Coulomb interaction, especially the on-site interaction, elec-

trons are much more correlated and cannot be described using traditional one-electron

picture, thus the name “strongly correlated systems”. With strong correlation, there

exists a variety of interesting phenomena in these systems that attract long-standing

interests from both theorists and experimentalists. Transition metal oxides (TMOs)

play a central role in strongly correlated systems, exhibiting many exotic phenomena.

The fabrication of heterostructures of transition metal oxides opens many possible

directions to control bulk properties of TMOs as well as revealing physical phases not

observed in bulk systems.

Dynamical mean-field theory (DMFT) emerges as a successful numerical method

to treat the strong correlation. The combination of density functional and dynamical

mean-field theory (DFT+DMFT) is a prospective ab initio approach for studying re-

alistic strongly correlated materials. We use DMFT as well as DFT+DMFT methods

as main approaches to study the strong correlation in these materials.

We focus on some aspects and properties of TMOs in this work. We study the

magnetic properties in bulk TMOs and the possibility of enhancing the magnetic order

in TMO heterostructures. We work on the metallic/insulating behaviors of these



systems to understand how the metal-insulator transition depends on the intrinsic

parameters of materials. We also investigate the effect of a charged impurity to the

neighborhood of a correlated material, which can be applied, for example, to the

study of muon spin relaxation measurements in high-Tc superconductors.
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1. Introduction 1

Chapter 1

Introduction

1.1 Transition metal oxides

Transition metal oxides (TMOs) are materials composed by at least a transition

metal atom M and oxygen. They can be mono-oxide, an important class containing

only transition metal and oxygen atoms such as MnO, NiO, or dioxides such as VO2,

or more complicated structures. This thesis will mainly focus on the most widely

studied case, the perovskite structure RMO3 with R an alkaline or rare earth atom,

M a transition metal and O the oxygen. Examples include LaMnO3, SrVO3, etc.

In free space, the outermost shells of a transition metal element contain a partially

filled d shell together with filled s shell. Electron configurations of other transition

metal elements can be found in the upper panel of Figure 1.1. In oxide compounds,

transition metal can easily combine with oxygen to form covalent bond, it gives all s

electrons and some d electrons to oxygen, there are only d electrons remaining in its

outer shell. The alkaline or rare earth, if included, is a source to provide additional

electrons to oxygen and, depending on its atomic radius, can distort the lattice struc-

ture. For example, Ti has the electron configuration [Ar]3d24s2; in LaTiO3, each La

or Ti gives 3 electrons to oxygen to become La+3 or Ti+3 so that each oxygen atom

receive 2 electrons and becomes O−2, Ti+3 has configuration [Ar]3d1, thus there is

only 1 d electron near the Fermi level (see the lower panel of Figure 1.1). Therefore,

the basic electronic structure of TMOs has transition metal d bands as frontier bands,
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Atomic Number †
Atomic Weight

Symbol †
Ground-State Level

*Electronegativity (Pauling)

Name

*Density 
[Note] †

Ionization Energy (eV)

*Melting Point (°C) *Boiling Point (°C)

Atomic radius (pm)
[Note]

Crystal Structure 
[Note]

†
Electron Configuration

Possible Oxidation States 
[Note]

Phase at STP †Common Constants Source: physics.nist.gov

Absolute Zero -273.15 °C Gravitation Constant 6.67428x10-11 m3 kg-1 s-2

Atomic Mass Unit 1.660539x10-27 kg Molar Gas Constant 8.314472 J mol-1 K-1

Categories Avogadro Constant 6.022142x1023 mol-1 Molar Volume (Ideal Gas) 0.02241410 m3/mol
Base of Natural Logarithms 2.718281828 PI 3.14159265358979
Boltzmann constant 1.380650x10-23 J/K Planck Constant 6.626069x10-34 J s
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fine-structure constant 0.0072973525 Speed of sound in air at STP 343.2 m/s

[42] First Radiation Constant 3.7417749x10-16 W m2
Standard Pressure 101 325 Pa {42}

References:
†Nist.gov, *Wolfram.com (Mathematic),

CRC Handbook of Chemistry and Physics
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Figure 1.1: Upper panel: The part of transition metal elements in the
periodic table. The electron configuration is at the bottom of each element
block. From www.vertex42.com. Lower panel: Electron configuration of Ti
element in the free space and in the perovskite LaTiO3.

staying at the Fermi level, the second most energetic bands are oxygen p bands, other

bands have less significant impact to the electronic properties of these materials.

Keeping the partially filled d bands as the frontier bands and varying the filling of

the d bands, many physics may occur. By changing the transition metal from light to

heavy elements or manipulating RkMmOn compound by adjusting k,m, n or choosing

the appropriate rare earth R, the number of d electrons can be nominally varied from

0 to 10. For example, TMOs in perovskite forms RMO3 can have d electron varying

by replacing M by transition metals in the 4th row of the periodic table, e.g. in the

series LaTiO3, LaVO3, ..., LaNiO3, the nominal number of electrons in the d shell

changes from d1 to d7. Depending on n, the corresponding dn systems may exhibit

http://www.vertex42.com/Files/pdfs/2/periodic-table_color.pdf
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different physics. To list a few, one can find Mott insulator in d1, d2 or d3 systems

such as LaTiO3, YTiO3, LaVO3 or LaCrO3 accompany with ferromagnetic or antifer-

romagnetic order [Imada et al. (1998)], the colossal magnetoresistance in manganites

R1−xAxMnO3 (R is a trivalent and A is a divalent atom) [Jonker and Van Santen

(1950); Jin et al. (1994)], or the d9 systems, cuprates, the parent compound for high

temperature superconductors [Bednorz and Müller (1986)].

Figure 1.2: Phase diagrams of several strongly correlated materials: (A)
Bilayer manganites La2−2xSr1+2xMn2O7, (B) Schematic phase diagram for
high Tc superconductors, (C) Single-layer ruthenates Ca2−xSrxRuO4, (D)
Layered cobaltate NaxCoO2. From Dagotto (2005).

The interesting physics mentioned above is because of the frontier d electrons.

The d electrons are localized, their wavefunctions are restricted in a small space

around the atom. The d electrons are distributed inside a sphere with radius of
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about 0.5Å around the atom, while the typical lattice constant for e.g. perovskite

is 4Å, there is almost no overlap between d orbitals. As a result, the chance that d

electrons at the transition metal site meet each other are higher than other bands, the

onsite Coulomb interaction is thus larger. These electrons become highly correlated

and cannot be described using one-electron picture, it requires more modern methods

to treat this correlation. However, the strong correlation is the reason for very rich

physics in TMOs, represented by complicated phase diagrams. Figure 1.2 are the

phase diagrams of some representative TMOs. As illustrated in Fig. 1.2, with a vast

number of materials and various behaviors on its phase diagram, TMO is considered

as the central topic of strongly correlated systems.

Figure 1.3: Zaanen-Sawatzky-Allen diagram: (A) charge-transfer insula-
tor, (B) Mott-Hubbard insulator, (C) intermediate regime. From Zaanen
et al. (1985).

The most famous classification for TMOs is given by Zaanen, Sawatzky and Allen

[Zaanen et al. (1985)]. In this picture, the magnitude of the onsite interaction and

the relative position between oxygen p bands and transition metal d bands can give

different behaviors for a TMO. Figure 1.3 shows their diagram for the classification.
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Figure 1.4: Schematic energy levels for (a) Mott-Hubbard insulator and
(b) charge-transfer insulator.

The onsite interaction is dominated by the Hubbard value U , the energy cost for

increasing occupancy in a d site, it thus contributes a charging energy UNd(Nd − 1).

The distance between d and p bands is characterized by the charge transfer energy

∆, the energy needed to excite an electron from a p band to a d band and create

a hole in that p band. When the charge transfer energy is larger than the onsite

interaction (∆ > U), the low energy physics is dominated by the onsite interaction,

the Hubbard value U , if U is large enough, the material becomes a Mott insulator, thus

the name Mott-Hubbard regime (Fig. 1.4a). In contrast, when the onsite interaction

is larger U > ∆, the physics is controlled by the charge transfer energy, depending

on how close the oxygen bands to the Fermi level, the system can be a metal or a

charge-transfer insulator (Fig. 1.4b). It is so-called charge transfer regime. There is

also an intermediate region where two types of excitations are of similar magnitude.

Therefore in their work, Zaanen, Sawatzky and Allen point out that oxygen bands

can play an important role in controlling the physics of these materials.

According Zaanen et al. (1985), going along the series of transition metals, TMOs

in which the filling of d bands is low (“early transition metal oxides” with transition
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metal elements on the left of Figure 1.1 such as Ti, V, Cr) have oxygen p bands

far from the Fermi level, the low energy excitations between frontier d bands are

more important, they are assumed as belonging to the Mott-Hubbard regime. On

the other hand, materials with large filling of the d bands (“late transition metal

oxides” with transition metal elements on the right of Figure 1.1 such as Ni, Cu)

have large positive ion charge at transition metal ion, it attracts electrons at oxygen

bands more strongly. As a result, the oxygen p bands rise to higher energies, closer

to the Fermi level. These materials are identified as belonging to the charge transfer

regime. TMOs with nearly half-filled d bands (nominally around d5 with elements

in the middle of Figure 1.1) are in the crossover between the Mott-Hubbard and the

charge-transfer regimes.

In this thesis, we will consider the oxygen bands and the charge transfer physics

together with the correlated d bands and study the assumption given by the work

of Zaanen, Sawatzky and Allen. We will show that the oxygen bands, via the p-d

covalency, are also important even for the early TMOs.

1.2 Heterostructures of transition metal oxides

Pioneering by the experimental work of Ohtomo and Hwang (2004) and theoret-

ical study of Okamoto and Millis (2004), the topic of heterostructures of transition

metal oxides has gained more attention recently. By fabricating a heterostructure

(superlattices, quantum well structures, etc.) composed of two TMOs or a TMO

with a band insulator, one can obtain a new artificial material with significant charge

density of high mobility confined at the interface. Heterostructure is promising to

have a wide range of applications, it is thus a potential structure for new electronic

devices [Mannhart et al. (2008)].
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For example, the pioneering work from Ohtomo and Hwang (2004) considered

the interface of SrTiO3 and LaAlO3. In bulk form, both materials are insulators

with large band gaps: 3.2eV for SrTiO3 and 5.6eV for LaAlO3 [Ohtomo and Hwang

(2004)]. By stacking two band insulators, SrTiO3 on LaAlO3, depending on the

termination, they obtained the interface which is metallic with half an electron per

site and high mobility (LaO/TiO2 interface) or insulating with half a hole per site

(AlO2/SrO interface).

More interestingly, with the very rich physics already in the bulk TMOs, the

fabrication for heterostructures and heterointerfaces allows to enter new phases not

observed in the corresponding bulk systems [Millis (2011)]. Heterostructure there-

fore can give possibilities to obtain and control properties of TMOs, it becomes a

research interest for many scientists. Starting from the study of SrTiO3/LaAlO3

interface by Ohtomo and Hwang, many exotic phenomena have been found. They

are ferromagnetism [Ariando et al. (2011)], superconductivity [Reyren et al. (2007)],

the coexistence of ferromagnetism and superconductivity is observed experimentally

[Bert et al. (2011); Li et al. (2011)] at this interface. The fabrication of thin films

of TMOs can also drive material through metal-insulator transition, e.g. SrVO3, a

well-known moderately correlated metal, becomes insulating when the thickness of

its thin film is within a few layers [Yoshimatsu et al. (2010, 2011)].

An important example for phases found in heterostructure but not in bulk system

is the ferromagnetism observed in vanadium-based oxide superlattices [Lüders et al.

(2009)]. When there arem layers of LaVO3 sandwiched by one layer of SrVO3 in a unit

cell to form the superlattice (LaVO3)m(SrVO3)1, the ferromagnetism is found in the

structure (see Figure 1.5) while there is no ferromagnetic order for the corresponding

bulk solid solution La1−xSrxVO3 for any value of x. The ferromagnetism is stable in

a wide range of temperature, up to room temperature (the inset of Fig. 1.5). It is

also found to be strongly dependent on the number of LaVO3 layers m.
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Figure 1.5: The measurement of magnetization under small ex-
ternal magnetic field for bulk La1−xSrxVO3 and superlattice structure
(LaVO3)m(SrVO3)1 with m = 6 at T = 10 and 300K. Inset: temperature-
dependence of the saturated magnetization of the superlattice. From Lüders
et al. (2009).

These vast number of interesting but also challenging phenomena in bulk and

heterostructures make TMOs the main topic in condensed matter physics. Moreover,

with the wide range of potential applications in bulk and heterostructures of TMOs,

understanding the physics behind these materials becomes essential in order to con-

trol their properties. In this thesis, we choose to study the ferromagnetism in the

superlattices of vanadates to understand the possibilities that allow the heterostruc-

ture to enter the regime of ferromagnetic order. We also suggest design that can

optimize this ferromagnetism.
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1.3 Metal-insulator transition

Metallic/insulating state is one of the first properties to consider when studying

a material. Based on the electric conductivity, one can simply defines an insulator as

a material that forbids electric charge to move inside the medium freely, an insulator

thus does not allow charge current to flow if there is a voltage bias applied to the

material. A metal, in contrast, has high electric conductivity that charge current can

flow through it easily. The conductivity or resistivity, measurements to determine

metallic or insulating state, can vary in a wide range, e.g. the resistivity can be from

10−8Ωm for metals to 1013Ωm for insulator, and also depend on temperature. By

changing parameters such as pressure, temperature or the doping level, some materials

can exhibit the metal-insulator transition (MIT), the transition from a metallic phase

to an insulating phase and vice versa. Studying the metallic or insulating states of a

material and how the MIT occurs is essential in understanding electronic properties

of that material.

Band structure theory[Martin (2004)] is the traditional theory to study the elec-

tronic properties of materials. The idea of band theory is that when all atoms forming

a material are separate apart, each of them has a distinguished discrete set of energy

levels. Putting atoms together, this set of energy levels becomes denser, and eventu-

ally a continuum in solids is formed, which is called an energy band. The range of

energy which is not covered by any band forms the energy gap. Electrons are filled in

energy bands from the bottom of the bands to the level when all electrons are settled

(the Fermi level). From this band theory picture, insulators are defined as systems

having the Fermi level lying on an energy gap, while metals are materials with the

Fermi level overlapping with an energy band.

Band theory has been developed for a long time, since the beginning of quan-

tum physics era, achieving successes in describing electronic structure of materials.

The methods to construct the band structure are well-described in the textbooks
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[Martin04, Marder00]. Among these methods, density functional theory (DFT) [Ho-

henberg and Kohn (1964); Kohn and Sham (1965)] has achieved many successes in

investigating materials. It can predict the band gap and band structure comparable

with experiments, hence the metallic/insulating state of many materials are well-

determined using DFT calculations. Nowadays, DFT is the workhorse for studying

materials, the standard choice for material science and engineering.

?

?

(a) (b)

(c) (d)

Figure 1.6: “Mott behavior”: the energy cost for double occupation is
equivalent to the unhappiness for students living in a shared bedroom. (a,
b) If the number of rooms is equal to the number of students (half-filling
case), students will move in/out until every student occupied a single room,
the happiness is maximized (Mott insulating state). (c,d) If the number of
rooms is larger or smaller than the number of students (doped case), moving
from one room to another does not change the total happiness, the moving
in/out process will never stop (metallic state).

From band theory point of view, each energy band can accommodate at most

2 electrons per band per unit cell, because electrons with spin up and down can
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stay together in the same energy state. If, for example, there is an odd number of

electrons, an electron in a singly occupied state can itinerate from site to site without

much cost of energy, the system is obviously metallic. However, some materials with

partially filled band are found to be insulating. The first observation is from de Boer

and Verwey (1937) who found that mono-oxides such as NiO, MnO or CoO are all

insulators although they have partially filled 3d bands. Mott and Peierls (1937)

argued that these are insulators because of the strong electron-electron repulsion

that prohibits double occupancy in each energy state, the result is that each site

is singly occupied, any electron hopping, if occurring, would cost a large amount

of energy of the order of the onsite Coulomb interaction. Figure 1.6ab shows an

analogy to this type of insulators (Mott insulators). Mott (1949) generalized his

argument for transition metal oxides, showing that electrons of the d bands experience

strong electron-electron interaction, thus explaining phenomenologically why many

transition metal oxides are indeed insulators despite having partially filled d bands.

The band theory, the one-electron picture, fails to describe materials with strong

electron-electron interaction. It requires an appropriate model and approach to treat

the correlation beyond the one-electron picture, so as at first to understand the Mott

insulator. In 1963, Hubbard, Gutzwiller, Kanamori proposed a single-band model

including only the nearest neighbor hopping t with onsite interaction U , the “sim-

plest nontrivial model” for strongly correlated systems, which may contain the Mott

insulating phase [Hubbard (1963); Gutzwiller (1963); Kanamori (1963)]. In second

quantization, the Hamiltonian for this model (the Hubbard model) is

H = −t
∑
〈i,j〉

c†iσcjσ + U
∑
i

ni↑nj↓, (1.1)

where i, j are site indices and σ is the spin index, 〈i, j〉 denotes nearest neighbor sites.

This model is solved exactly in one-dimensional system using Bethe ansatz [Lieb
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and Wu (1968)], showing that at half-filling case (1 electron per site) the system is

insulating for ∀U > 0, being metallic only at U = 0. For larger dimension, the model

cannot be solved exactly. Even though in the special case in (1.1) where there is

only nearest neighbor hopping t at half-filling, the occurrence of magnetic order can

drive the system to insulator for U > 0. In a general case with a different type of

dispersion, there can be non-magnetic insulating state and there is metal-insulator

transition as U > Uc. Starting in 1990s, dynamical mean-field theory [Georges et al.

(1996)] (described in the next chapter) emerges as a prominent method to study

this model, giving more information of the solution. Figure 1.7 demonstrates the

MIT driven by the strong onsite interaction U . As U increases, the bands are split

into two bands below and above the Fermi level (lower and upper Hubbard bands),

other aspects such as the divergence of the mass enhancement at the transition point

[Brinkman and Rice (1970)] are also obtained.

Nevertheless, the Hubbard model is a simple model which neglects important fea-

tures of a realistic correlated system. First, the correlated bands are not quite separate

from other bands, it may be mixed with other less correlated bands, especially when

the interaction is stronger, the correlated bands are split more (to lower and upper

Hubbard bands), this mixing becomes more significant. It is therefore necessary to

consider the effect of other bands in addition to the correlated ones. Second, there

are usually more than one correlated bands (e.g. d or f bands) staying nearly at the

same energy level, i.e nearly degenerate, the Hubbard model has to be generalized to

take into account more than one correlated band.

Figure 1.8 summarizes the metals/insulators for various TMOs in perovskite struc-

tures. Under the crystal field splitting due to the octahedron MO6, the d bands are

split into 3 t2g bands and 2 eg bands staying at higher energy level. Early TMOs,

which consist of light transition metal elements, have partially filled t2g bands at the

Fermi level, the low positive charge of the transition metal ion allows the d bands
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Figure 1.7: The evolution of spectral functions for the metal-insulator tran-
sition as onsite interaction U increases (from top to bottom panel). From
Georges et al. (1996).

to rise to higher energy levels than the p bands, they are in Mott-Hubbard regime.

Whereas late TMOs, which has heavier transition metal elements, have filled t2g shell

but partially filled eg shell, the large positive charge of the late transition metal ion

pushes the d bands to lower energy comparable with the p bands, the systems are

usually in the charge transfer regime. The magnitude of p-d admixture increases as

going from light to heavy transition metal. Understanding how the p-d covalency (the

admixture between p and d bands) affects the electron correlation is an important

aspect.

The splitting of the d bands into the 3 t2g and 2 eg nearly degenerate bands

also implies that a multiorbital interaction is required to replace the Hubbard terms

Uni↑ni↓ in the Hamiltonian. In a multiorbital system, beside the Hubbard U value,
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Figure 1.8: The schematic diagram for the metal-insulator transition in
TMO perovskite structure ReMO3. The number of d electrons increases
from 0 to 8, while the U/W or ∆/W ratio increases by replacing the rare
earth Re by elements of smaller atomic radii. From Imada et al. (1998).

the charging energy or the energy cost to add more d electrons, the Hund’s rules are

applied such that the electron spin of different orbitals are aligned first followed by

the condition of maximal angular momentum. For example, the onsite interaction

can have the form

Honsite =
U − 3J

2
N̂(N̂ − 1)− 2JŜ2 − J

2
L̂2. (1.2)

where J is the Hund’s coupling representing the Hund’s rules. In multiorbital system,

the correlation is not only represented by U but also by J value [Georges et al. (2013)].

The MIT becomes more complicated with the appearance of the Hund’s coupling, and

can occur not only at half-filling but also, for example, at quarter filling (eg systems)

or one-third or two-third filling (t2g systems).

Until recently, there are many advances in understanding the MIT in the Hubbard

model. However, there are still many unsolved problems such as how the MIT occurs
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in the multiorbital systems or the effect of oxygen bands to this transition. In this

thesis, we study the metal-insulator transition in TMOs using dynamical mean-field

theory in combination with density functional theory, which have a more complicated

multiorbital interaction such as in (1.2), and consider the effect of p-d covalency. The

study has contribution to the understanding of the MIT and may suggests direction

towards more realistic calculations of TMOs.

1.4 Magnetism

Magnetism was discovered a long time ago. The first written evidence comes

from the ancient Greece, where Aristotle “reported that Thales of Miletus (625 BC -

547 BC) knew lodestone” [du Trémolet de Lacheisserie et al. (2005)]. However, until

now, it is still a problem of interest in condensed matter physics. Magnetism behaves

differently in materials, especially when there is electron correlations, a material may

have several types of magnetic phases in its phase diagram. Geometrical frustration

can also give complicated magnetic structure, the so-called “frustrated magnetism”

may give quantum spin liquid phase or other exotic excitations [Balents (2010)].

There are several basic types of magnetism: ferromagnetism, antiferromagnetism

or ferrimagnetism (see Figure 1.9). In many TMOs, there are magnetic order patterns

different from the usual diamagnetism or paramagnetism. These types of magnetism

are very often related to the electron correlation. The rich physics of correlated

materials is expressed in their complex phase diagrams such that when a parameter

such as the doping level or pressure is changed, the material can change from one

type of magnetic order to a different type or to a disordered phase (see Fig. 1.2 for

some representative phase diagrams).

Antiferromagnetic order is usually observed in TMOs at low temperature in dif-

ferent patterns accompany by a specific orbital order. The pattern of staggered spin
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Figure 1.9: Types of magnetic order phases: (A) disordered phase, (B) fer-
romagnetism, (C) antiferromagnetism, (D) ferrimagnetism, (E) long periodic
magnetic pattern. From Sigma-Aldrich.

and orbital orders is described phenomenologically using Goodenough-Kanamori rules

[Goodenough (1958); Kanamori (1959)]. More fruitful discussions about antiferro-

magnetism in TMOs can be found in Imada et al. (1998) and the references therein.

In our study, we focus more on the ferromagnetic order. Ferromagnetism is a

straightforward magnetic phase, there is no translation or gauge invariant symmetry

breaking, only the spin symmetry is broken. It allows to use the smallest possible

unit cell for investigating ferromagnetic order, which simplifies the calculation and

separates ferromagnetism from other phases. Ferromagnetism is important in tech-

nology such as in spintronics or building memory devices. Ferromagnetism in strongly

correlated systems has been studied since the 1930s, however, the correlation effect

makes it difficult to solve the problem completely. Therefore, many aspects of ferro-

magnetism are not well understood until now.

http://www.sigmaaldrich.com/materials-science/alternative-energy-materials/magnetic-materials/tutorial/properties.html
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Ferromagnetism in correlated materials can be divided into two classes. The

first class includes materials with localized magnetic moments, usually the rare earth

compound with partially filled f shell, which are aligned to form the ferromagnetic

order. Because of their localized characteristic, these materials can be mapped to

spin systems, in which the most famous one is the Heisenberg model

H = −
∑
〈ij〉

JijSiSj. (1.3)

In the other class of materials, which includes transition metal compounds and TMOs,

the charge motion is also important, the electrons of conduction bands can carry

magnetic moment, it is called “itinerant ferromagnetism”.

The first attempt to study itinerant ferromagnetism in the theoretical side is

from Stoner (1938). By considering the exchange interaction J between two nearest

neighbor sites and the electrons near the Fermi level, he found that when there is

δε difference in energy between spin up and down bands (see Figure 1.10), there is

a competition in energy between the cost in kinetic energy and the energy saved

from the spin aligned. The increase in kinetic energy is δK ∼ νF δε
2 where νF is

the density of states at the Fermi level while the decrease because of spin aligned

is ∼ JM2 ∼ Jν2
F δε

2 (M is the magnetization). The ferromagnetism is stable if the

change in energy between ferromagnetic and paramagnetic order is negative

δK − JM2 = νF δε
2 − Jν2

F δε
2 < 0, (1.4)

or

JνF > 1 (1.5)

Eq. (1.5) is the Stoner’s criteria needed to stabilize ferromagnetism.

Because magnetism in TMOs is closely related to the electron correlation, it is
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Spin up

Spin down

Stoner model

Density of States
Figure 1.10: Stoner model for itinerant ferromagnetism: spin up and down
electrons have different occupancy.

reasonable to use a model with correlation to study the magnetic order. Hubbard

model (Eq. (1.1)) has been also used for the study of magnetism to understand how

correlation drives the magnetic order. A few years after Hubbard proposed his model,

Nagaoka proved that if the onsite interaction U is infinitely large, the system with a

single hole away from half filling is ferromagnetic with fully spin polarized [Nagaoka

(1966)]. However, the conditions for Nagaoka ferromagnetism are extreme, in ther-

modynamic limit where the hole density and the U value are finite, it is still unclear

about the ferromagnetism [Park et al. (2008)]. At least there exists ferromagnetic

order in the Hubbard model if certain conditions are satisfied. Mean field study for

the Hubbard model supports Nagaoka’s statement about the ferromagnetism, for ex-

ample, Figure 1.11 shows the phase diagram for a two-dimensional Hubbard model

in which the ferromagnetic order favors large U values and being doped away from

half-filling [Hirsch (1985)].

However, the Hubbard model is a non-trivial model, mean field theory cannot

capture the fluctuation around its solution, while perturbation approach may face

divergence in the solution with respect to the non-interacting result, especially when
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Figure 1.11: The magnetic phase diagram for the Hubbard model from
mean field calculation with only nearest neighbor hopping t for the two-
dimensional square lattice. The notations are: ρ is the filling, P is paramag-
netic order, A is antiferromagnetic order, and F is ferromagnetic order. From
Hirsch (1985).

U gets larger. It requires non-perturbative methods to treat the Hubbard model.

Until recently, non-perturbative approaches with advances in computational power

allow more accurate calculations for the Hubbard model. For one-dimensional Hub-

bard model, ferromagnetic order is excluded if there is only nearest neighbor hopping

[Lieb and Mattis (1962)], only when extending to longer range electron hopping, fer-

romagnetism is allowed under certain circumstances [Müller-Hartmann (1995); Daul

and Noack (1997)]. In two-dimensional case, it is more difficult with complicated

phase diagram. Dynamical mean-field theory (DMFT), the state-of-the-art method

for strongly correlated systems, becomes important and gain more insights into the 2D

model. DMFT has shown to be able to treat the Hubbard model, capturing the Mott

insulating physics [Georges et al. (1996)]. In the topic of magnetism, DMFT shows

clearly the antiferromagnetic order exists at half-filling for two-dimensional Hubbard
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model [Jarrell et al. (2001); Wang et al. (2009)]. For ferromagnetism, by applying

single-site DMFT, Ulmke, Vollhardt et al. showed that the itinerant ferromagnetism

in the Hubbard model, beside the U value, depends strongly on the kinetic energy

and the lattice structure [Ulmke (1998); Vollhardt et al. (1999)]. It goes far beyond

Stoner’s criteria and mean field calculations for the Hubbard model and supports

the idea that a density of states peak near the band edge may allow ferromagnetism

[Kanamori (1963)].

The Hubbard model, despite being non-trivial, is simple model, far from the re-

alistic correlated systems. As mentioned in Section 1.3, extensions for the Hubbard

model are the multiorbital models, in which there are more than one degenerate cor-

related bands and the interaction is more general with the Hund’s coupling J . The

wide range of carrier density (or the filling) and the involvement of the Hund’s cou-

pling lead to various behaviors of magnetism. The works on these models, however,

are limited, mostly at the extent of model calculations, for example, the theoretical

Bethe lattice [Chan et al. (2009); Peters and Pruschke (2010); Peters et al. (2011)].

Similar to the Hubbard model, the magnetism may depend strongly on the lattice

structure and the electron hopping in a more general multiorbital model. Therefore,

in TMOs, rigorous calculations considering realistic structures are important and can

reveal the physics of different lattice structures affect magnetism.

In this thesis, we study the ferromagnetism in early TMOs including the general

multiorbital onsite interaction and the realistic lattice structure of materials by using

density function theory plus dynamical mean-field theory. We find several conditions

under which ferromagnetism may occur and explain why ferromagnetic order occurs

in some materials of TMOs but no in others. Our study also considers the ferromag-

netism in heterostructures of TMOs and suggests potential designs which can enhance

the ferromagnetic order.
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1.5 Charged impurity

There is no perfect single crystal for realistic materials. Defects in materials

such as dislocation, vacancies or impurities can be found frequently when fabricating

a material. There are also impurities staying temporarily inside materials which

come from flux of particles used to measure physical properties of materials. These

defects and impurities perturb the lattice, modify the lattice constant and change the

electronic properties of materials significantly.

Impurity in strongly correlated systems is also an interesting problem [Millis

(2003); Alloul et al. (2009)]. A prominent example is the Kondo problem [Hew-

son (1997)], where diluted magnetic impurities put into a metallic system and causes

a minimum in resistivity as a small value of temperature. It is a “classic” problem

of strongly correlated systems and has attracted researchers’ interest for many years.

Other impurity problems such as nonmagnetic or charged impurity, lattice defects in

correlated systems are also interesting for investigation.

The motivation of our study of charged impurity is to understand how it perturbs

the correlated system. When a charge impurity stays on the lattice, it will be screened

by electrons (or holes). In a correlated material, the density fluctuation is suppressed,

it is interesting to investigate how the screening works. Moreover, charge impurity

induces more carrier density in the vicinity, as the density is crucial in strongly corre-

lated systems which can increase the charge energy significantly (see (1.2)), it is also

important to study how the impurity changes the physics of the neighborhood.

Our work has application in cuprates. Cuprates are TMO compounds which can

be high-Tc superconductors. Fig. 1.2B is a schematic phase diagram for cuprates

where superconducting phase can be obtained at low enough temperature and inter-

mediate doping. The pseudogap phase exists in the phase diagram of cuprates as

a phase where the excitation gap is not well-formed [Damascelli et al. (2003)]. Its

physics is believed to give insights to the formation of the Cooper’s pairs is, however,
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Figure 1.12: Some patterns of orbital current in the pseudogap phase of
cuprates. From Varma (2006).

not fully understood. Varma stated that the pseudogap phase is a time reversal sym-

metry breaking phase, in which there is orbital current forming a closed loop that

induces local magnetic moment [Varma (1997, 2006)] (see Figure 1.12 for possible

patterns of the orbital currents).

There are many attempts from experimentalists to search for this local moment.

People mainly use neutron scattering or muon spin relaxation (µSR) to detect this

tiny local magnetic field. The results from neutron scattering indeed show that there

exists nonzero local moment in the pseudogap phase which vanishes if the material

is out of that phase, and thus support Varma’s argument about the orbital current

in the pseudogap phase [Fauqué et al. (2006); Li et al. (2008); Mook et al. (2008)].

In contrast, it is hardly seen clear evidence for that magnetic moment from µSR

measurements [Sonier et al. (2001); MacDougall et al. (2008)], contradicts the results

obtained from neutron scattering. Consider the difference between the two methods,

µSR implants a usually positive muon µ+, a charged particle into the lattice, while

neutron scattering only uses neutral particles (neutrons) to measure local moment, it

is essential to understand how charged particles perturb the lattice in order to explain



1. Introduction 23

the measurements.

Inspired by these experimental work, we study the problem of a charged impurity

in strongly correlated systems. Our work using dynamical mean-field theory method

gives some insights to this interesting controversy and also to the understanding of the

feedback from the lattice to the µSR measurements. Our study shows that dynamical

mean-field theory can be a useful method to study impurities and defects in correlated

materials.
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Chapter 2

Formalism

2.1 General description

In most of the cases that we study, materials are in perovskite form RMO3, where

each transition metal M is surrounded by 6 oxygens. The octahedron MO6 decides

the electronic structure of the system. The physics is controlled by the charge transfer

between the oxygen and transition metal ions and by the strong electronic correlation

on the transition metal sites. On the other hand, lattice structure is different for

different materials. The octahedra MO6 are not usually aligned, they can be tilted

or rotated depending on specific material. The rotations and tilts can act to lift

the degeneracy of the transition metal d levels and to change the bandwidth. It is

important to understand the connection between lattice structure and the correlation

and how they affect the physics.

In this section, we will give an overview of the electronic structure of TMOs, which

range of energy to be considered and how it might be changed when there is strong

electron correlation. We also introduce possible realistic structure of TMOs in the

perovskite form and a general way to describe the structure in the calculations.
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2.1.1 Lattice structure

TMOs are crystallized into various forms. The most common one is the per-

ovskite structure RMO3 (Fig. 2.1a). However, they can be found in the form of

layered structure such as the Ruddlesden-Popper series Am+2Bm+1O3m+4 (notice that

the perovskite structure is the special case of the series with m→∞) where the lan-

thanum cuprate La2CuO4 or the spin-triplet superconductor Sr2RuO4 are members

(Fig. 2.1b). There are mono-oxide NiO, MnO or CoO which are rock salt structure

(Fig. 2.1c). In all of these forms, the octahedral structure MO6 is often observed, it

is thus the basic structure to consider when studying TMOs.

Figure 2.1: (a,b,c) Some example of lattice structures of transition metal
oxides. (d) Octahedron MO6, the common structure found in these TMOs.
From various sources on Internet.

We focus on the perovskite structure because it is a typical structure of TMOs and

is the structure for almost all materials we consider in this thesis. The simplest real-
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ization of perovskite, the so-called cubic structure, is in the left panel of Fig. 2.1a. In

this cubic form, all octahedra are aligned, the bond angle M -O-M = 180◦. However,

the realistic structures of perovskites are various, distorted away from the cubic one.

There are a few TMO perovskites in cubic structure (e.g. SrVO3, SrTiO3) where

the rare earth Re has a large atomic radius that prevents octahedra from tilting.

When replacing the rare earth Re by a smaller element, octahedral rotation appears

to reduce the total energy (right panel of Fig. 2.1a).

Figure 2.2: Perovskite Pnma structure (a−b+c−) projected along x̂ (panel
(a)) and ŷ (panel (b)) directions. LaVO3, CaRuO3 or SrRuO3, for example,
belong to this class.

Based on the space group and the octahedral rotation, Glazer classified perovskites

into 23 groups [Glazer (1972)]. In his notations, an octahedral rotation α along the

n̂ direction is accompanied by one of +,− or 0 where

• (+) means “in-phase rotation”: octahedra along n̂ direction rotate in the same

way, either clockwise or counter-clockwise.

• (−) means “anti-phase rotation”: octahedra along n̂ direction rotate alterna-

tively.
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• (0) means there is no rotation along that direction.

A perovskite structure can be described as aibjck where a, b, c are rotation angles

along octahedral axes and i, j, k are one of +,− or 0. For example, the structure

with Pnma space group, in Glazer’s notations, is a−b+a−, i.e. there are anti-phase

rotations along x̂ and ẑ directions with angle a (Fig. 2.2a) and an in-phase rotation

along ŷ direction with angle b (Fig. 2.2b). The classification is useful in understanding

and constructing the lattice structure for perovskites in a systematic way. Moreover,

Glazer’s notations are more intuitive, easier to remember than the more general space

group notations.

We focus on the a−b+c− (Pnma) structure because it is the most common per-

ovskite, occurring very often in our study (although we also consider the cubic a0a0a0

(Pm3̄m) and a−a+b− (P21/m) structures). The Pnma structure, as in Fig. 2.2, re-

quires two angles a and b for the octahedral rotation. Its unit cell contains 4 ReMO3

cells, thus there are 4 octahedra rotating in alternative directions. Equivalently,

Pavarini et al. (2005) uses rotation angles along different directions, θ along [010] and

φ along [101] directions (these direction indices are in the axes of the cubic lattice).

In our study, we use both Glazer’s notations (for general perovskites) and Pavarini’s

notations (specifically for Pnma structure) in constructing the lattice and varying

the degree of distortion in the structures.

2.1.2 General band structure for TMOs

TMO is the topic of ongoing research, there is no precise band structure for this

class of materials, the difficulties mostly come from the strong electron correlation.

We present here a qualitative picture for the electronic structure of TMOs. It is

however not complete, more study in future may reveal more interesting features of

the band structure.
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For simplicity, we first ignore the electron-electron interaction. The energy levels of

each band in TMO (RMO3) can be determined, to an approximation, by diagonalizing

the one-electron Hamiltonian

H = − 1

2m
∇2 + V (r). (2.1)

V (r) is the Coulomb interaction between the electron and ions on the lattice, if

assuming ions are point charges and the electron is not close to any ion, V (r) is

V (r) = −
∑
R

e2|qR|
|r−RR|

−
∑
M

e2|qM |
|r−RM |

+
∑
O

e2|qO|
|r−RO|

, (2.2)

where each pair (qR,RR), (qM ,RM), (qO = −2,RO) are ion charge and lattice position

for each R, M or O sites.

If a is the lattice constant, the atomic positions of ions with respect to a are R =

(1/2, 1/2, 1/2), M = (0, 0, 0) and O1 = (1/2, 0, 0), O2 = (0, 1/2, 0), O3 = (0, 0, 1/2). If

the electron orbits around M atom at R0
M = (0, 0, 0) with ion charge qM > 0, there

is an attractive ionization potential −V0 < 0 in addition to the potential from other

ions acting on that electron

V (r) = −
∑
R

e2|qR|
|r−RR|

−
∑

RM 6=R0
M

e2|qM |
|r−RM |

+
∑
O

e2|qO|
|r−RO|

− V0. (2.3)

Using the multipole expansion with R� r

1

|R− r| = 4π
∞∑
l=0

l∑
m=−l

Ylm(θ, φ)Y ∗lm(θR, φR)

2l + 1

rl

Rl+1

=
1

R
+ 4π

∞∑
l=1

l∑
m=−l

Ylm(θ, φ)Y ∗lm(θR, φR)

2l + 1

rl

Rl+1
,

(2.4)
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V (r) becomes

V (r) = VM − V0 + Vmp, (2.5)

where VM is the Madelung potential coming from the zeroth order term of (2.4)

VM = −
∑
R

e2|qR|
RR

−
∑
RM 6=0

e2|qM |
RM

+
∑
O

e2|qO|
RO

, (2.6)

and Vmp is the higher order terms of (2.4), in which contributions from nearby oxygen

ions are significant because oxygen ions are the nearest sites, while contributions from

other sites can be neglected

Vmp(r) = 4πe2|qO|
∑
O

∞∑
l=1

l∑
m=−l

Ylm(θ, φ)Y ∗lm(θO, φO)

2l + 1

rl

(a/2)l+1
. (2.7)

free atoms ion potential cubic orthorhombic

M

O

M

O

Figure 2.3: The energy levels of oxygen p orbitals and transition metal
M d orbitals when going from free atoms to lower symmetries in atomic
limit. Notice that in orthorhombic systems, the energy levels of, for example,
xy, yz, zx are split depending on the actual system.

Similar analysis is done for oxygen atoms. There is one main difference: the



2. Formalism 30

oxygen ion O−2 repels electrons. The ionization potential for transition metal M

should be replaced by the electron affinity for oxygen.

VO(r) = VM + Vaffin + Vmp, (2.8)

O

M

(a) (c)

O

M

(b)

Figure 2.4: Illustration of crystal field splitting for each different transition
metal d oribtals and oxygen p orbitals. (a) The x2 − y2 orbital on xy plane
spreads towards oxygen ions, the Coulomb repulsion from ion O−2 acting on
the x2−y2 orbital is large, it is at high energy, the hopping pdσ from the x2−y2

orbital to the p orbitals is also large due to large overlap of wavefunctions.
(b) Similar situation for the 3z2 − r2 orbital, it spreads towards oxygen ions
in the z direction, thus it is at high energy level. (c) The xy orbital spread
differently, the repulsion from oxygen ions is less than the case of eg orbitals,
it is at lower energy level, the hopping pdπ from xy to p orbitals is smaller
than that of eg orbitals due to small wavefunction overlap.

Figure 2.3 shows the energy levels of the most relevant orbitals (oxygen p and

transition metal d orbitals) when going from free atoms to low symmetry structure.
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The relative positions of p and d orbitals can be understood from the potentials

above. First, consider only the Madelung potential and the ionization potential (or

electron affinity), d electrons around M experience strong repulsion from 6 oxygen

ion O−2 nearby, the Madelung potential VM is large, their ionization potential cannot

completely compensate, VM − V0 > 0 is large, therefore d electrons of M is at higher

energy level. The p electrons around O−2, on the other hand, experience attraction

from only 2 M ions nearby, p electrons are at lower energy (even though this attraction

is reduced by the electron affinity). The first part of Fig. 2.3 demonstrates the energy

levels of p and d orbitals due to the ion potential (Madelung potential, ionization

potential and electron affinity).

The term Vmp(r) is in charge of energy splitting for each p and d orbitals. This

splitting represents the breaking of the rotation symmetry into finite symmetry when

going from free atoms to cubic structure (because of the octahedra). While there are

3 degenerate p bands orbiting around oxygen, the d orbitals of transition metal is split

into two subgroups, eg and t2g (see the middle part of Fig. 2.3). By diagonalizing the

matrix Hmm′ = 〈2m|Vmp|2m′〉, one can find that the eg orbitals are at higher energy.

Intuitive explanation is that the t2g orbitals (xy, yz, zx) overlap with O−2 ion less

than the eg orbitals (x2−y2, 3z2−r2) (see Fig. 2.4), the Coulomb repulsion from O−2

acting on these t2g orbitals is less than that of eg orbitals. The eg orbitals should be

at higher energy.

One can further split the eg, t2g or p orbitals by going to lower symmetry, for

example, as in the right part of Fig. 2.3, if the lattice constants along x̂, ŷ and ẑ

directions are different (orthorhombic structure), the orbital degeneracy are lifted.

More details for this so-called crystal field splitting can be found, for example, in

Wolfram and Ellialtioglu (2006); Pavarini et al. (2012).

In solids, these orbitals form electronic bands and do not stay separately. There

is admixture between p and d bands (p-d covalency) such that certain d character is
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in the p bands and vice versa. The p-d covalency generates 3 bands: the antibonding

band (mostly d character) near the Fermi level, the bonding band (mostly p character)

at lower energy, and the nonbonding band (p character). Fig. 2.5 shows the density

of states for SrVO3 using ab initio calculation, this is the typical density of states for

cubic perovskites where all these bands can be observed.
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Figure 2.5: Density of states for SrVO3 obtained from density functional
theory calculation. The p-d admixture leads to the antibonding part at the
Fermi level (composed mainly of t2g and eg bands with small p admixture),
the bonding part at lower energy (mostly p character with some d admixture)
and the nonbonding part (purely p character), which is the δ peak because of
the weakly dispersion of the nonbonding band. The amount of p-d admixture
depends on specific transition metal oxides.

When the electron-electron interaction is taken into account, the scenario becomes

more complicated. In the correlated d bands, and assume single band Hubbard model

(1.1) at half-filling, a hopping of electron from one transition metal site to another

may cost an energy U , the Hubbard value, because of the forming of the double
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occupancy. The d band splits into lower and upper Hubbard bands with the gap ∼ U

(see Fig. 1.7). As we already mentioned in Section 1.3, depending on the magnitude

of U , the system can be in Mott-Hubbard or charge transfer regime. The schematic

density of states for materials in Mott-Hubbard regime can be seen in Fig. 1.4a. In

the latter case, the density of states may be slightly different from Fig. 1.4b, oxygen

bands are close to the upper Hubbard bands, they can donate electron to the d bands

to form a hole, the electron on the d bands and hole on the p bands may form a singlet,

the Zhang-Rice singlet [Zhang and Rice (1988)], the corresponding Zhang-Rice band

stays in front of the p bands but below the antibonding d bands, as depicted in

Fig. 2.6.

Fermi level

Hubbard bands

p band

Zhang-Rice band

Figure 2.6: Schematic density of states for charge-transfer insulator with
Zhang-Rice band included because of the formation of the Zhang-Rice singlet
formed by a hole in the oxygen p band and an electron in the transition metal
d band.
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2.2 Models

The general Hamiltonian for our problem is

H = Hkin +Honsite +Hcoulomb −HDC . (2.9)

Below is the brief description of each term in (2.9) while the details are given later

in this section.

• Hkin is the kinetic Hamiltonian containing all possible electron hoppings be-

tween sites and between different orbitals.

• Honsite is the onsite Coulomb interaction, acting on the correlated d bands only.

• Hcoulomb is the intersite Coulomb interaction, which is important in the case of

heterostructures where the ion charges of different sites are not the same. It is

neglected in bulk systems.

• HDC is the double counting corrections, which is nonzero when the oxygen p

bands are considered.

In our works, we consider two main models

1. The downfolded d-only model: we project the Kohn-Sham wavefunctions ob-

tained from ab initio calculation into the subspace of antibonding d bands near

the Fermi level and treat these bands as correlated bands.

2. The model with both p and d bands: we project the Kohn-Sham wavefunctions

into the subspace of oxygen p and transition metal d orbitals, the p bands are

uncorrelated while the d bands are correlated.

The details of the Hamiltonian (2.9) depend on specific model.
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2.2.1 The kinetic Hamiltonian Hkin

Hkin contains all possible electron hoppings between sites and orbitals, but hop-

ping between different spins (spin-orbit coupling) is excluded. In second quantization,

it has a quadratic formalism

Hkin =
∑
kαβσ

hαβband(k)c†kασckβσ, (2.10)

where α, β are orbital indices, σ is the spin index and k is the vector in reciprocal

space (the sum of k is over the Brillouin zone BZ1), ĥband(k) is the tight binding

matrix restricted to the subspace under consideration.

For the sake of simplicity and demonstration, we assume that the lattice structure

is a simple cubic perovskite RMO3. The unit cell contains only one cell of RMO3 with

three primitive vectors a = (a0, 0, 0), b = (0, a0, 0) and c = (0, 0, a0), where a0 is the

lattice constant, typically around 4Å. The atomic positions are R = (1/2, 1/2, 1/2),

M = (0, 0, 0),O1 = (1/2, 0, 0), O2 = (0, 1/2, 0 and O3 = (0, 0, 1/2). In this unit cell,

there are 5 d bands of transition metal (xy, yz, zx for t2g bands and 3z2− r2, x2− y2

for eg bands) and 9 p bands of oxygen (there are 3 oxygen atoms, each has 3 bands

px, py and pz). The tight binding matrix ĥband(k) is a 14 × 14 matrix and is well-

approximated by using Slater-Koster method [Slater and Koster (1954)], where all

kinds of orbital overlap are represented by a few number of Slater-Koster parameters.

The ĥband(k) for 5 d bands and 9 p bands is divided into two blocks, the t2g block

including t2g orbitals and related oxygen p orbitals (ĥt2g(k)) and the eg block including

eg orbitals and related oxygen p orbitals (ĥeg(k)), the off-diagonal matrix ĥt2g−eg(k)

is a sparse matrix
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ĥt2g−eg (k) =



3z2 − r2 pxO(1/2, 0, 0) pyO(0, 1/2, 0) pzO(0, 0, 1/2) x2 − y2

xy 0 0 0 0 0

pxO(0, 1/2, 0) 0 2CxCyb
+ 0 0 0

pyO(1/2, 0, 0) 0 0 2CxCyb
+ 0 0

yz 0 0 0 0 0

pyO(0, 0, 1/2) 0 0 2CyCzb
+ 0 0

pzO(0, 1/2, 0) 0 0 0 2CyCzb
+ 0

zx 0 0 0 0 0

pxO(0, 0, 1/2) 0 2CxCzb
+ 0 0 0

pzO(1/2, 0, 0) 0 0 0 2CxCzb
+ 0



, (2.11)

ĥt2g (k) =



xy εt2g 2ipdπSy 2ipdπSx 0 0 0 0 0 0

pxO(0, 1/2, 0) −2ipdπSy εp1 2SxSyb
− 0 0 0 0 4ppπCyCz 0

pyO(1/2, 0, 0) −2ipdπSx 2SxSyb
− εp1 0 4ppπCxCz 0 0 0 0

yz 0 0 0 εt2g 2ipdπSz 2ipdπSy 0 0 0

pyO(0, 0, 1/2) 0 0 4ppπCxCz −2ipdπSz εp1 2SySzb
− 0 0 0

pzO(0, 1/2, 0) 0 0 0 −2ipdπSy 2SySzb
− εp1 0 0 4ppπCxCy

zx 0 0 0 0 0 0 εt2g 2ipdπSz 2ipdπSx

pxO(0, 0, 1/2) 0 4ppπCyCz 0 0 0 0 −2ipdπSz εp1 2SxSzb
−

pzO(1/2, 0, 0) 0 0 0 0 0 4ppπCxCy −2ipdπSx 2SxSzb
− εp1



,

(2.12)
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ĥeg(k) =



3z2 − r2 pxO(1/2, 0, 0) pyO(0, 1/2, 0) pzO(0, 0, 1/2) x2 − y2

εeg −ipdσSx −ipdσSy 2ipdσSz 0

ipdσSx εp2 2SxSyb
− 2SxSzb

− −i
√

3pdσSx

ipdσSy 2SxSyb
− εp2 2SySzb

− i
√

3pdσSy

−2ipdσSz 2SxSzb
− 2SySzb

− εp2 0

0 i
√

3pdσSx −i
√

3pdσSy 0 εeg


,

(2.13)

ĥband(k) =



ĥt2g(k) ĥt2g−eg(k)

ĥt2g−eg(k) ĥeg(k)


, (2.14)

where Si = sin
ki
2

, Ci = cos
ki
2

, b± = ppπ ± ppσ. The Slater-Koster parameters

pdπ and pdσ are hoppings between oxygen p to t2g or eg orbitals, respectively (see

Fig. 2.4); while ppσ and ppπ are hoppings between oxygen p orbitals.

The Slater-Koster parameters can be obtained by fitting the band structure from

ab initio calculation, for example, Table 2.1 shows the parameters extracted from

the band structure calculation for various early TMOs in cubic perovskite form. The

hopping pdπ between the t2g orbitals and oxygen p orbitals is a factor of two smaller

than that of the eg orbitals (pdσ) because the wavefunction overlap between the

t2g orbitals and oxygen p orbitals is smaller than for the eg orbitals, as depicted in

Fig. 2.4. Therefore the t2g bands have smaller bandwidth than the eg bands, i.e. t2g

orbitals are more localized.

The division into two blocks in the tight binding matrix (2.14) is the direct result
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from the octahedral crystal field splitting which splits the t2g and eg energy levels,

as in Table 2.1, the eg level is 1 → 2eV in higher energy than the t2g level. The

oxygen p orbitals are divided into two groups, either strongly overlap with t2g or eg

orbitals. From Fig. 2.4, one easily finds that three orbitals px of O1 = (1/2, 0, 0), py of

O2 = (0, 1/2, 0 and pz of O3 = (0, 0, 1/2) overlap more strongly with the eg orbitals,

while py, pz of O1 = (1/2, 0, 0), px, pz of O2 = (0, 1/2, 0 and px, py of O3 = (0, 0, 1/2)

overlap more with the t2g orbitals, thus the two blocks (2.13) and (2.12). In an

approximation, the off-diagonal part (2.11) can be ignored, the tight binding matrix

is block diagonalized as

ĥband(k) =



ĥt2g(k) 0

0 ĥeg(k)


, (2.15)

Depending on the filling of the d bands, the Fermi level lies on the t2g bands (for

early TMOs) or the eg bands (for late TMOs), the high energy bands above the Fermi

level or the inert bands below it can be safely neglected. However, for many materials

in the crossover between early and late TMOs, the full 5 d bands have to be taken into

account. We will discuss in details the case of early TMOs when the model without

the eg bands is applicable in Chapter 4.

When the energy splitting between oxygen p bands and transition metal d bands

is large compared with the p-d hybridization, it is common in literature to focus on

the frontier d bands near the Fermi level. Thus the model with only d orbitals (so-

called “d-only” model) is used. It is a more simplified model where all effects from

the p-d admixture are removed and consider only the electron-electron correlation.



2. Formalism 39

εeg εt2g εp1 εp2 pdσ pdπ ppπ1 ppσ1 b−2
SrVO3 12.14 10.68 7.47 7.22 2.31 -1.13 -0.060 0.64 -0.45
SrCrO3 12.88 11.40 8.94 8.31 2.12 -1.05 -0.060 0.67 -0.44
LaTiO3 17.15 15.29 10.11 9.84 2.28 -1.17 -0.011 0.57 -0.39
LaVO3 14.80 13.32 8.83 8.77 2.18 -1.08 -0.012 0.59 -0.43
LaCrO3 15.73 14.21 10.39 10.14 2.03 -1.02 -0.006 0.64 -0.43

Table 2.1: The Slater-Koster parameters extracted from band structure
calculation for several TMOs in (hypothetical) cubic perovskite structure.
The index 1 is for parameters belonging to the t2g block (2.12) while the index
2 is for parameters belonging to the eg block (2.13) and b−2 = ppπ2 − ppσ2.

The projection from a large wavefunction space into a smaller subspace, e.g the d

manifold, is carried out using the Löwdin downfolding technique [Löwdin (1951);

Andersen et al. (1995)]

Hij(ε) = Hij −Hik

[
(ĤP − ε1)−1

]
kl
Hkj. (2.16)

In this formula, the full Hamiltonian is downfolded into the Hamiltonian Hij(ε)

of smaller subspace for orbitals near the Fermi level with ε is approximately set equal

to the Fermi energy. The matrix ĤP contains the part far away from the Fermi level.

The indices i and j are for the downfolded part, the indices k, l are for the ĤP part. In

the scenario of oxygen p and transition metal d orbitals, ĤP is for the p orbitals, and

Hij has indices i, j running on the d orbitals. This downfolding procedure is actually

a second-order perturbation, the effective hoppings between sites and orbitals in the

d-only model mostly come from the virtual hoppings between transition metal d and

oxygen p orbitals, it depends strongly on the overlap of the p and d orbitals and the

difference of the two energy levels, t ∼
2t2pd
|εd − εp|

(tpd is the hopping integral between

p and d bands, either pdσ or pdπ). In a realistic situation, there exist nonzero direct

hopping between d orbitals, the effective hopping is thus t ∼
2t2pd
|εd − εp|

+ tdirectdd . The

next-nearest neighbor hopping t′ may also appear in the calculation and can play
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certain important role. The tight binding Hamiltonian of the d-only model for cubic

structure is thus usually condensed into a two-dimensional energy dispersion

ε(k) = −2t(cos kx + cos ky)− 4t′ cos kx cos ky. (2.17)

However, realistic structures are usually not ideally cubic but have certain lattice

distortion, as introduced in Section 2.1. Constructing an analytic form for the tight

binding matrix becomes a difficult task. Instead, maximally-localized Wannier func-

tions (MLWF) together with ab initio method is used to obtain this tight binding

matrix numerically. The advantage of this method is that all types of lattice dis-

tortion such as octahedral rotations or any octahedral tensile or compressive strains

are embedded into the numerical tight binding matrix. By adjusting the energy

window in the band structure calculation, one can easily focus on the downfolded

d-only model or a model of wider energy including both p and d orbitals. The kinetic

energy is written as in (2.10) where ĥband is determined numerically. The method

(Maximally-localized Wannier functions) is presented below in this Subsection.

Another difficulty coming from the lattice distortion is that all the familiar orbitals

defined based on atomic orbitals (spherical harmonics) are distorted. In principle, the

final results are independent of the chosen basis. However, choosing the basis to have

orbitals similar to spherical harmonics is important for approximation to focus on the

bands near the Fermi level and neglect those of high energy. For example, in early

TMOs, if the chosen basis has orbitals similar to the atomic ones, the eg and t2g bands

are separate, thus allowing to neglect the eg bands in the calculation. For technical

reason, distorted structure causes nonzero off-diagonal hoppings between different d

orbitals which in turns causes exponential barrier in the simulations, the infamous

“sign problem” in the Quantum Monte Carlo simulation [Gull et al. (2011)]. Choosing

the appropriate basis to reduce the off-diagonal terms is thus essential. More details

of finding a good basis in distorted structure are discussed in Appendix C.
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Maximally-localized Wannier functions

Our approach to obtain the numerical ĥband(k) is using maximally-localized Wannier

functions (MLWF) in combination with density function calculation. MLWF is de-

scribed in details in Marzari and Vanderbilt (1997); Souza et al. (2001); Marzari et al.

(2012) with its popular implementation wannier90 fully documented [Mostofi et al.

(2008)]. The transformation from the Bloch ψnk to the Wannier wavefunctions ωnR

is

ωnR =
1

N

∑
k

Uk
nme

−ikRψmk. (2.18)

Because there are many choices of the unitary matrix Uk
nm, this transformation is

not unique. Marzari and Vanderbilt (1997) suggested a condition to obtain appropri-

ate values of Uk
nm and the Wannier functions by minimizing the spreading Ω of the

wavefunction

Ω =
∑
n

[
〈ωnR|r2|ωnR〉 − 〈ωnR|r|ωnR〉2

]
. (2.19)

(In Ω, the translation invariant is assumed, R can be fixed to R = 0.)

The Wannier functions obtained by minimizing Ω are the maximally localized

ones, thus the name MLWF. There are many applications of MLWF in physics and

chemistry [Marzari et al. (2012)]. Especially in the topic of strongly correlated sys-

tems, MLWF method allows to construct basis set with very localized correlated

orbitals, it is thus easy to put the interaction terms (with the Hubbard U and the

Hund’s coupling J) on the correlated orbitals while leaving other bands uncorrelated.

MLWF method also has an advantage that the produced Wannier functions make a

complete basis set in the projected subspace, there is no issue about unrenormalized

bands, i.e.
∫
A(ω)dω = 1 where A(ω) is a spectral function of a band in this subspace.

Our procedure to obtain MLWF and the corresponding tight binding matrix

ĥband(k) is as follows. Given the lattice structure of a material, we use density func-

tional theory (Quantum Espresso code [Giannozzi et al. (2009)]) to obtain the elec-

http://www.wannier.org/
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Figure 2.7: Band structure of SrVO3 obtained from DFT calculation corre-
sponding to the density of states in Figure 2.5. Oxygen p bands are between
−7 → −1.5eV , t2g bands are between −1.5 → 1.8eV and eg bands are be-
tween 0.8→ 6eV .

tronic band structure and the corresponding Bloch wavefunctions in a large space

with many bands. wannier90 is then used to minimize the spreading Ω and obtain

the MLWF. The important point in carrying out MLWF method is to choose an ap-

propriate energy window containing bands to be projected. For example, Figure 2.7

shows the band structure of SrVO3, if only considering the t2g bands, the energy

window should be −1.5 → 1.8eV , if considering both t2g bands and oxygen bands,

the energy window must be enlarged −7→ 1.8eV .

In more complicated cases, the optimization for Ω becomes difficult, it is necessary

to put in more constrains to reduce the number of variables for the minimization,

the popular choice is to fix the positions of the centers of the wavefunctions, which

usually are the atomic positions related to those wavefunctions. When there are band

entanglements, i.e. band crossings, the MLWF fitting is not perfect as it is difficult to

http://www.wannier.org/


2. Formalism 43

disentangle those bands, one may accept the result when it reasonably approximates

the DFT band structure.

The resulted MLWF should be checked by comparing the band structure and the

density of states with the DFT results. For some delicate cases, other quantities

such as the shape of MLWF orbitals or the center of wavefunctions should also be

considered.

2.2.2 Onsite Coulomb interaction Honsite

As mentioned previously, the d bands are narrow and thus exhibit strong onsite

Coulomb interaction, the p bands, if included, are more extended and usually consid-

ered as uncorrelated. As a result, in this thesis, we only consider the onsite interaction

term acting on the transition metal d bands.

Let V̂ (r1, r2) be the Coulomb operator, a two-body operator. In the basis of

Wannier orbitals {ψR
ασ}(r), where α and σ are orbital and spin indices, R is the

wavefunction center, the field operator is

Ψσ(r) =
∑
Rα

ψR
ασ(r)cRασ. (2.20)

In second quantization representation, the Coulomb interaction is

H =
1

2

∑
σσ′

∫
d3r

∫
d3r′Ψ†σ(r)Ψ†σ′(r

′)V (r, r′)Ψσ′(r
′)Ψσ(r)

=
1

2

∑
αβ,γδ

V R1R2,R3R4

αβ,γδ c†R1ασ
c†R2βσ′

cR3γσ′cR4δσ,
(2.21)

where the Coulomb matrix is

V R1R2,R3R4

αβ,γδ =

∫
d3r

∫
d3r′ψ∗R1

ασ (r)ψ∗R2

βσ′ (r′)V (r, r′)ψR3

γσ′(r
′)ΨR4

δσ (r). (2.22)
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In solids, electron cloud act to suppress the long-range Coulomb interaction. The

screening is so strong that the off-site Coulomb interaction becomes small. In practice,

only the onsite Coulomb interaction is considered. The Coulomb matrix becomes

Uαβ,γδ = V RR,RR
αβ,γδ , independent of the lattice vector.

There are many attempts to obtain the Coulomb matrix elements so that it is rea-

sonable and tractable for numerical simulation. In numerical approach, the Coulomb

matrix elements are obtained directly from the band structure calculation. The

two major methods are the constrained density function method [Cococcioni and

de Gironcoli (2005)] and the constrained random phase approximation [Aryasetiawan

et al. (2004)]. The interaction can be determined and have an analytic form, which

can not only well approximate the numerical form but also useful for analyzing and

understanding the correlation effect phenomenologically. By assuming that the inter-

action operator is spherical symmetric V (r, r′) = V (|r − r′|) and using the basis of

atomic orbitals, Slater (1960) derived a general Coulomb matrix that only depends

on a few parameters called Slater’s integrals Fn. From Slater’s work, the onsite in-

teraction is simplified, containing only density-density interaction (diagonal terms)

and exchange and pair hopping terms (off-diagonal terms). Appendix A presents the

summary of this derivation.

Another effort for constructing a simple onsite interaction is from Kanamori

(1963). In his work, Kanamori considered directly the overlap between d orbitals

and found that only a few terms are important and proposed an onsite interaction

with U,U ′ and J , Kanamori’s notations

Honsite = U
∑
α

nα↑nα↓ + U ′
∑
α 6=β

nα↑nβ↓ + (U ′ − J)
∑
α>β,σ

nασnβσ+

+ J
∑
α 6=β

(c†α↑c
†
β↓cα↓cβ↑ + c†α↑c

†
α↓cβ↓cβ↑).

(2.23)

As discussed in details in Appendix A, Kanamori’s form of onsite interaction
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(2.23) is an approximation for the Slater’s form. Especially, when projecting onto

the subspace of eg or t2g orbitals, Slater’s form of interaction becomes Kanamori’s

form if U ′ = U − 2J . The two forms are compatible. Therefore, for simplicity, in

our calculation, we mostly use Kanamori’s notations for the onsite interaction Honsite

(2.23), the other form, if in use, is stated otherwise. Using Kanamori’s interaction has

several advantages. First, the form is simpler and easier to remember than the other

form, thus it is useful for qualitatively analyzing the correlation effect while being a

close approximation to the more accurate Slater’s form. Second, with U ′ = U−2J and

focusing on the eg or t2g manifold, the form is rotationally invariant (see Appendix A).

Any orbital or spin rotation does not change Honsite, i.e. it is independent of the choice

of basis.

However, in practice, the exchange and pair hopping terms in (2.23) causes ex-

tra cost of computation in Quantum Monte Carlo simulation. The eliminations of

the terms leave Honsite with only density-density interaction (Ising interaction), the

density operators all commute with the Hamiltonian, which means there are more

conserved numbers allowing block-diagonalizing the Hamiltonian. The simulation is

thus can be run much faster. The Ising interaction and the more accurate rota-

tionally invariant interaction affect differently on different model and also depend

on phenomenon under consideration. More discusses about Ising vs. rotationally

invariant interaction will be presented in the next chapters.

2.2.3 Double counting correction HDC

As discussed previously in this section, the parameters for the tight binding ma-

trix of the kinetic Hamiltonian (2.10) are usually obtained from the band structure

calculations, either by fitting the band structure or projecting directly to localized

Wannier orbital basis. The solution from ab initio calculation already contains cor-
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relation effect, which is nearly the mean field contribution of the interaction. This

contribution is important in determining the energy difference between correlated

and uncorrelated bands, e.g. the p-d energy splitting. The origin of this contribu-

tion is from constructing the correlation functional, for example, the local density

approximation has coefficients determined numerically by the Quantum Monte Carlo

simulation for the interacting homogeneous electron gas [Ceperley and Alder (1980)],

and in the DFT self consistent calculation, the Coulomb interaction is added into the

result. The correlation effect exists in the result of band structure calculations but

the exact amount is unknown.

Because the correlation effect in the band structure calculation is more or less mean

field calculation, to treat the correlation effect more appropriately, one has to use a

more state-of-the-art method to solve the problem by taking into account the Honsite

part, given the background electron calculated by ab initio calculation embedded in

Hkin. With the correlation already in the Hamiltonian, treating Honsite again means

adding another correlation effect into the calculation, it is doubly counted. There is

no such a problem in the model with only correlated bands, because double counting

effect only shifts all the bands by a constant, adjusting the Fermi energy will fix

the problem. However, for the model including both correlated (transition metal d)

and uncorrelated (oxygen p) bands, the relative band positions will be misplaced.

Hence it is necessary to subtract the amount of correlation contributed by the ab

initio calculations by adjusting the bare energy level of the correlated bands by ∆,

the “double counting correction”. Therefore the double counting term HDC of the

Hamiltonian (2.9) (notice the minus sign of HDC in (2.9)) has the form

HDC =
∑
ασ

∆ασn̂ασ, (2.24)

where α and σ are orbital and spin indices, n̂ασ is the α-orbital occupancy. The sum-

mation is only on α correlated orbitals. For simplicity, the double counting correction
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is set to be the same for all correlated orbitals and spins ∆ασ = ∆.

(a) "exact"

(b) ab initio

(c) correlation double counted

p bands d LHB d UHB

Figure 2.8: A cartoon for the double counting correction: consider oxygen
p bands (yellow) and transition metal d bands (green and blue) for insulator.
The Fermi level is marked by the vertical dashed line. (a) The exact solution
give the correct p and d positions as well as the splitting of d bands into lower
(LHB) and upper Hubbard bands (UHB). (b) Band structure calculation
estimates the p and d positions near the exact results. (c) Going beyond
band structure calculation, the correlation is counted twice, leading to the
large shift in the d level with respect to the p level. The d level needs to be
shifted to lower energy by an amount ∆ (or the p level needs to be lifted up
by the same amount) to obtain the correct solution.

The common treatment of the double counting issue in literature is to use one of

several analytic forms of ∆. The two most common form of double counting correction

are the around-the-mean-field (AMF) [Anisimov et al. (1991)] and the fully-localized

limit (FLL) [Czyżyk and Sawatzky (1994)] forms. Assume the interaction has a

general density-density form without exchange or pair hopping terms (these two terms

do not affect either the AMF or FLL form)

Honsite = Uαβnασnβσ̄ + (Uαβ − Jαβ)nασnβσ, (2.25)
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where the sums for α and β are implied. If double counting energy EDC = 〈HDC〉
can be calculated, the double counting correction is obtained easily ∆ασ =

∂EDC
∂nασ

In AMF form, the correlation effect from band structure calculation is claimed

to be the mean field contribution of the interaction, thus EDC = 〈Honsite〉, detailed

calculation [Czyżyk and Sawatzky (1994)] gives

Edc = ŪN↑N↓ +
1

2
(N2
↑ +N2

↓ )
2l

2l + 1
(Ū − J̄), (2.26)

where Nσ =
∑

α nασ, the total number of correlated orbitals is 2l + 1 and

Ū =
1

(2l + 1)2

∑
αβ

Uαβ, (2.27)

J̄ = Ū − 1

2l(2l + 1)

∑
αβ

(Uαβ − Jαβ). (2.28)

The AMF double counting correction is thus

∆AMF =
∂EDC
∂nασ

= ŪN − J̄Nσ −
Nσ

2l + 1
(Ū − J̄). (2.29)

The FLL form is, on the other hand, from a different perspective. If the sites

of the solid are so separate that there is no hybridization between sites, the system

can be solved completely by exactly diagonalizing the Hamiltonian (2.25) of a site

(in atomic limit). Given Nat and Nat
σ the total number of particle and the number of

particle per spin per site, respectively, the ground state energy is

Eat =
1

2
ŪNat(Nat − 1)− 1

2
J
∑
σ

Nat
σ (Nat

σ − 1). (2.30)

The FLL double counting correction is claimed to have a form similar to the ground

state energy in atomic limit with Nat and Nat
σ replaced by the actual average value

of the number of electron per spin Nσ and the total number of particle N = N↑+N↓.
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From that, the FLL double counting correction is

∆FLL = Ū(N − 1

2
)− J̄(Nσ −

1

2
). (2.31)

Beside the AMF and FLL double counting corrections, there are other forms of

double counting correction such as from Lichtenstein et al. (2001); Held (2007); Kunes

et al. (2007). The various forms of double counting correction implies that analytic

formula for ∆ is not well established and unstable. In our work, we approach the

problem in a different way, we adjust the double counting correction (by adjusting

the energy levels of the d bands) numerically and use other physical criteria to fix

the double counting correction and locate the material, i.e. HDC = ∆
∑

ασ nασ with

∆ adjusted manually. This ∆ is then mapped into a more physical quantity, the d

occupancy Nd. It will be discussed in details in Subsection 4.2.3.

2.2.4 Intersite Coulomb interaction Hcoulomb

In bulk systems, the ion charge is the same in every unit cell of the lattice, it is

a common approximation to ignore the intersite Coulomb interaction. However, in

heterostructures, e.g. superlattice or quantum well structures, the ion charge can be

different when going from one layer to another, the electron density distribution is

therefore varied from layers to layers. The intersite Coulomb interaction is necessary

to define a heterostructure in numerical simulation.

The intersite Coulomb interaction always has two parts

Hcoulomb = He−e +He−ion. (2.32)
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The intersite electron-electron interaction He−e is

He−e =
1

2

∑
i 6=j

e2n̂inj
ε|Ri −Rj|

. (2.33)

where ε is the dielectric constant and Ri is the lattice unit cell position. In this

formula, the interaction is treated within mean field approximation such that n̂i is

the occupancy operator and nj = 〈n̂j〉.
The part He−ion has a general form

He−ion = −
∑ e2qjn̂i

ε|Ri −Rj|
. (2.34)

The unit cell at position Rj has total positive charge +qj so that
∑

j qj =
∑

i〈n̂i〉 the

charge neutrality is preserved.

It is obvious that in bulk system where there is only uniform electron charge

distribution, 〈n̂i〉 is the same in every unit cell, hence qi = 〈n̂i〉. The two parts He−e

and He−ion are canceled, (2.32) vanishes. Only in heterostructure, where the charge

distribution is not uniform, (2.32) is required.

2.3 Dynamical mean-field theory (DMFT)

2.3.1 Introduction

When the onsite interaction Honsite (2.21) is taken into account, the problem

becomes highly nontrivial. The tradition approach is to use mean field theory where

the quartic terms of the Hamiltonian are approximated as quadratic terms together

with the mean field. For example, consider d occupancy as the mean field 〈nασ〉, the
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Hubbard term Un↑n↓ is treated as having no charge fluctuation

(n↑ − 〈n↑〉)(n↓ − 〈n↓〉) = 0 (2.35)

or

n↑n↓ = n↑〈n↓〉+ 〈n↑〉n↓ − 〈n↑〉〈n↓〉 (2.36)

The right hand side of (2.36) is quadratic and can be solved easily with the mean

field 〈nσ〉 determined self consistently.

However, for intermediate and large U , the quantum fluctuate of the occupancy

nσ around the mean field 〈nσ〉 becomes large, mean field theory is unable to describe

correctly the electron correlation. For example, it overestimates the ordered phases

or unable to capture the Mott insulating phase, which exists in the Hubbard model.

It is therefore necessary for a beyond-the-mean-field approach for strongly correlated

systems.

Since 1990s, dynamical mean-field theory (DMFT) emerges as the state-of-the-art

method to go beyond the mean field calculation. The method is also a mean-field

based approach but the mean field is dynamical, i.e. depending on time or frequency

and therefore can include certain quantum fluctuation in the solution. The details of

the approach is described in details in Georges et al. (1996) for the original single-site

DMFT, the extended versions of the method can be found in Maier et al. (2005) or

Kotliar et al. (2001).

The basic idea of DMFT is to map the lattice model into a simpler model with an

impurity embedded in a fermion bath (Figure 2.9). The hybridization between the

impurity and the bath is represented by the hybridization V̂k. The dynamical mean

field is generated using this hybridization and is determined self consistently.

A general description1 for DMFT starts from the thermodynamic potential (in

1 This description is based on the Summer Lecture of DMFT by Prof. A. J. Millis, Columbia
University, 2012
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Fermion bath

Figure 2.9: DMFT method: the lattice is mapped into an impurity model
where there is an impurity site embedded in a fermion bath. Electrons can
hop between impurity and the bath with an amplitude Vkα.

this case, the Helmholtz free energy Ω) expressed in terms of the single particle

Green’s function G and the self energy Σ. For simplicity, we assume there is no spin

polarization and only a single-band model, but it is easily written generally with

spin dependence and for multiorbital case. Consider a general Hamiltonian H, the

Helmholtz free energy is defined as

Ω = −T logZ, (2.37)

where Z is the partition function in grand canonical ensemble

Z = Tr exp
[
−β(Ĥ − µN̂)

]
. (2.38)

From Abrikosov et al. (1975), the free energy Ω can be written in terms of the Green’s

functions and the self energy

Ω = Ω0 −
2

β

∑
iωn

∫
d3k

(2π)3
[log(1−G0Σ) + ΣG] + Ω′, (2.39)

where β =
1

T
, the self energy and the Green’s function are in Matsubara form G =
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G(k, iωn) and Σ = Σ(k, iωn), Ω0 and G0 is the free energy and Green’s function of the

noninteracting system, Ω′ is the Luttinger-Ward functional containing all irreducible

Feynmann’s diagrams of exact Green’s function. This potential has the following

properties [Abrikosov et al. (1975)]

δΩ′ =
2

β

∑
iωn

∫
d3k

(2π)3
Σ(k, iωn)δG(k, iωn) (2.40)

or

Σ =
δΩ′

δG
. (2.41)

The system is stable in equilibrium if
δΩ

δΣ
= 0. From (2.39), the following Dyson’s

equation is obtained to satisfy that stationary condition

Σ = G−1
0 −G−1. (2.42)

With these equations, we start to derive the DMFT method by consider the basis

transformation from the lattice Green’s function Gab to a particular Green’s function

GI
αβ (which will then be approximated as impurity Green’s function).

GI
αβ = fabαβGab. (2.43)

(the sum over repeated indices is implied)

If this basis transformation is exact, GI
αβ can be used in place of the lattice Green’s

function Gab in the free energy Ω and the Luttinger-Ward functional Ω′. Therefore,

the transformation for the self energy is

Σab =
δΩ′

δGab

=
δΩ′

δGI
αβ

δGI
αβ

δGab

= fαβab Σαβ. (2.44)

where
∑

αβ f
αβ
a′b′f

ab
αβ = δaa′δbb′ .
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The DMFT is derived by truncating the {α} basis such that the space spanned by

the truncated {α} basis is much smaller than the original {a} basis. The self energy

transformation (2.44) becomes an approximation where the approximated self energy

has a much smaller number of indices Σαβ.

Because of the small number of indices, one can think of constructing an impurity

model that can produce Σαβ. Suppose the Hamiltonian of the original lattice has a

general form

H =
∑
ab

habc
†
acb +

∑
abcd

Iabcdc
†
acbc

†
ccd. (2.45)

If the basis transformation (2.43) is exact, the Hamiltonian becomes

H =
∑
αβ

h̄αβc
†
αcβ +

∑
αβγδ

Īαβγδc
†
αcβc

†
γcδ, (2.46)

where h̄αβ = fabαβhab and Īαβγδ = fabαβf
cd
γδIabcd.

As the transformation is not exact, a fermion bath is introduced that accounts for

all the difference as the basis is truncated. The transformed Hamiltonian thus has

the form of an impurity model where α, β, γ, δ are impurity indices

Himp =
∑
k

εka
†
kak +

∑
kα

(
V α
k a
†
kcα + h.c.

)
+
∑
αβ

h̄αβc
†
αcβ +

∑
αβγδ

Īαβγδc
†
αcβc

†
γcδ, (2.47)

where a†k and ak are creation and annihilation operators for bath fermions and c†α, cα

are that for impurity fermions, V α
k is the hybridization between the bath and the

impurity, as introduced in Fig. 2.9.

The impurity Green’s function derived from solving (2.47) is

ĜI(iωn) =
[
(iωn + µ)1− ˆ̄h− ∆̂− Σ̂

]−1

, (2.48)
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where the hybridization is obtained by integrating the bath fermions directly

∆σ
αβ(iωn) =

∑
k

V ασ
k V ∗βσk

iωn − εk
. (2.49)

The noninteracting Green’s function (when Iαβγδ = 0) is

ĜI
0(iωn) =

[
(iωn + µ)1− ˆ̄h− ∆̂

]−1

. (2.50)

This is the dynamical mean field (the Weiss field) which can be used as an input for

the impurity solver and will be determined self consistently from the self consistent

equation GI
αβ = fabαβGab.

Impurity Solver ĜI
αβ(iωn)∆αβ(iωn) = (iωn + µ)δαβ − h̄αβ − (Ĝ−1

0 )αβ

Σαβ = (Ĝ−1
0 )αβ − (Ĝ−1

I )αβ

Gab(ω) = (iωn + µ)1− ĥ− f̂ · Σ̂I)−1
ab

(Ĝ−1
0 )αβ = Σαβ + (Ĝ−1

I )αβ

GI
αβ =

∑
ab f

ab
αβGab

update new ĜI

Figure 2.10: General diagram for the DMFT self consistent loop.

With this knowledge, the DMFT procedure is constructed in following steps (with

Figure 2.10 for the diagram of the self consistent loop)

1. Construct the impurity Hamiltonian Himp given the hybridization V α
k and the

energy dispersion of the bath εk, the impurity energy level h̄αβ and the interac-

tion Īαβγδ are determined from the equations above.

2. Solve the impurity model (2.47) to obtain the impurity Green’s function GI
αβ,

the impurity self energy is thus obtained using the Dyson’s equation (2.42)
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3. With Σab = fαβab Σαβ, the lattice Green’s function is

Ĝ(iωn) =
[
(iωn + µ)1− ĥ− Σ̂

]−1

, (2.51)

with ĥ is the hopping matrix which, in the simple form, is the tight binding

matrix in (2.10).

4. The impurity Green’s function is updated using the relation between impurity

and lattice Green’s functions GI
αβ = fabαβGab.

5. Dyson’s equation (2.42) is used again to obtain the updated noninteracting

Green’s function Ĝ0 (the dynamical mean field).

6. Ĝ0 provides the bath fermion dispersion εk and V ασ
k for the next iteration. The

self consistent calculation runs until ĜI converges.

Depending on how fαβab is constructed, there are several types of DMFT calculation

• Single-site DMFT: the self energy is approximated to be independent of k-vector

fαβab = f 0
k = δk,0.

• Cellular DMFT [Kotliar et al. (2001)] is a cluster version of DMFT focusing on

the real space Green’s function, the cluster impurity is denoted by I

fαβab = f Iij =

 0 if |i− j| /∈ I
1 if |i− j| ∈ I

(2.52)

• Dynamical cluster approximation (DCA) [Maier et al. (2005)] is another cluster

extension of DMFT focusing on the reciprocal space, in which the Brillouin zone

BZ1 is divided into several sectors K, Σ(k) ≈ ΣK if k ∈ K, therefore

fαβab = fK
k =

 0 if k /∈ K

1 if k ∈ K
(2.53)
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2.3.2 Impurity solver

By mapping the lattice to the impurity model, the problem becomes much more

simpler, however, the impurity model is still nontrivial to solve. Solving the impurity

is thus the bottleneck of the DMFT self consistent loop (see Fig. 2.10).

There is a wide variety of impurity solvers having been developed. They can be

impurity solvers based on infinite sum of certain classes of the Feynmann’s diagrams

such as the non-crossing and one-crossing approximations [Bickers (1987); Pruschke

and Grewe (1989)]. The model can also be approximated as belonging to a Hilbert

space with finite dimensions which can be solved exactly for the eigenstates and

eigenvectors, this is the class of exact diagonalization (ED) solver [Caffarel and Krauth

(1994)] and its extension [Zgid et al. (2012)]. Another popular class of solvers based

on stochastic approach (Quantum Monte Carlo method) can also provide numerically

exact solution of the impurity problem, they can range from the traditional solver

based on the Hirsch-Fye algorithm [Hirsch and Fye (1986)] or the modern continuous

time QMC (CTQMC) method [Gull et al. (2011)].

In this thesis, we use only the hybridization expansion version of the CTQMC

(CT-HYB)2 as the main solver for the DMFT. The details of this solver can be found

in Gull et al. (2011). It starts from the partition function Z = Tr exp [−β(H − µN)]

with H the impurity Hamiltonian as in (2.47). Rewrite H = Hbath + Hhyb + Hlocal,

so that Hbath contains only the fermion bath kinetic energy, Hhyb has the V ασ
k part,

while Hlocal has the onsite interaction and the bare energy of the impurity electron. In

this CTQMC solver, the partition function Z is expanded in Hhyb and is transformed

into the sum over all possible configuration with corresponding probability, the form

which is ready for the Monte Carlo simulation. More technical details for this solver

is presented in Appendix F.

2 We used the code for CT-HYB solver from the TRIQS project [Ferrero and Parcollet (2011)]
and the one written by P. Werner and E. Gull based on the ALPS library [Albuquerque et al. (2007)].
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As the interaction is untouched, the solver is suitable for strong and arbitrary

interaction and can also go to rather low temperature. Therefore, it is an appropriate

solver to study multiorbital systems, as in the TMOs. Moreover, when off-diagonal

interaction such as the exchange and pair hopping terms in (2.23) are removed, the

density-density interaction allows the use of “segment” algorithm which can speed up

the calculation by 4-5 times. Using conserved quantum numbers for block diagonal-

izing Hlocal also decrease the running time significantly [Haule (2007); Parragh et al.

(2012)].

The disadvantage of the CT-HYB solver is that the cost of computation increases

exponentially as the size of the impurity cluster increases. Therefore, for multiorbital

systems, only single-site DMFT is available at the current stage. Moreover, with this

solver, the Green’s function has to be in imaginary time (or Matsubara frequency)

representation. Analytic continuation (see Appendix B) is required to obtain the real

time/frequency form so as the spectra can be derived A(ω) = − 1

π
ImG(ω). This

continuation procedure however is unstable and contains uncertainties.

2.3.3 Applications of DMFT in TMOs

Density functional theory plus dynamical mean-field theory (DFT+DMFT) is the

common numerical approach towards realistic structure calculation [Kotliar et al.

(2006)]. DFT is responsible for the background electronic properties of the systems,

for example, together with the projector method [Amadon et al. (2008); Haule et al.

(2010)] or with the maximally localized Wannier function (MLWF) method [Marzari

and Vanderbilt (1997); Souza et al. (2001)] DFT can generate the tight binding matrix

as in (2.10), DFT data is also required for the cRPA [Aryasetiawan et al. (2004)] or

cLDA [Cococcioni and de Gironcoli (2005)] calculations to obtain the Coulomb matrix

elements. DMFT uses DFT results as the input parameters to treat the electron
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correlation. The result from the DMFT calculation may be put into the DFT again

to maintain the charge self consistency between the two methods, however, as will be

seen in the next chapters, this step is not important and is ignored in most of our

calculations.

DMFT is also applied to the study of heterostructures made of TMOs, as found

in Chapter 3. The procedure is similar to the standard DMFT as described in Sub-

section 2.3.1, however the impurity must be large enough to contain all inequivalent

layers of the heterostructure. Nonvanishing intersite Coulomb interaction (2.32) is

also required for a proper density distribution in the structure. Solving such a large

impurity is impossible, instead one has to divide the impurity into smaller parts that

are weakly correlated (e.g. into many layers) and run the impurity solver once for

each part. The output Green’s function or self energy has the block-diagonal matrix

with each block corresponding to each part of the heterostructure. The update for

the next iteration is the same as in the standard DMFT calculation.

Another application of DMFT that is employed in this thesis is for solving the

problem of an impurity perturbing the local physics of a correlated system. When a

charge impurity stays in a correlated material, its Coulomb potential can perturb the

neighbor sites, however the electron nearby will strongly screen the potential so that

it only affects the area with radius of a few lattice constants. DMFT can be used

in combination with solving the Poisson’s equation to obtain the correlation effect

as well as the charge profile induced by the impurity. DMFT is used to treat the

correlation and yield the local charge distribution given the local potential induced

by the impurity, the charge profile is the input for the Poisson’s equation to calculate

the local potential, which is then used for the DMFT calculation in the next itera-

tion. This self consistent calculation continues until a well-converged charge profile

is obtained. The details of the method are discussed in Chapter 5.
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Chapter 3

Ferromagnetism in early TMOs

In this chapter, we present our study of ferromagnetism in early transition metal

oxides, focusing on the vanadate systems SrVO3 and LaVO3 (the formal valences

are d1 and d2, respectively) and the ruthenates systems CaRuO3 and SrRuO3 (the

formal valences are d4). We pointed out the conditions for ferromagnetism to oc-

cur and thus explained why ferromagnetic order appears in some materials under

consideration but not in others and suggested design of heterostructures to enhance

ferromagnetism. The chapter is organized as follows. Section 3.1 introduces the ma-

terials under consideration. Section 3.2 gives more details about the lattice structure,

model and methods. Section 3.3 presents results for bulk and superlattice structure

of vanadium-based oxides. Section 3.4 are results for Ca/Sr ruthenates systems. We

conclude the chapter by Section 3.5. Parts of the chapter are published in Dang and

Millis (2013b,a).

3.1 Introduction

Transition metal oxides [Imada et al. (1998)] are of great interest in condensed

matter physics because they exhibit a rich variety of exotic phenomena which remain

incompletely understood. While “late” transition metal oxides (involving Cu or Ni)

have been very extensively studied due to their connection to high-Tc superconductiv-

ity and Mn-based compounds have attracted attention for their colossal magnetoresis-
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tance, the “early” transition metal oxides such as vanadium oxides, have, despite some

important studies [Pavarini et al. (2004); De Raychaudhury et al. (2007)], received

less attention in recent years. However, following the pioneering work of Ohtomo and

Hwang [Ohtomo and Hwang (2004)], early transition metal oxides are increasingly

used as components of atomic-scale oxide-based heterostructures [Kourkoutis et al.

(2010); Lüders et al. (2009)]. One goal of heterostructure research is to design ma-

terials exhibiting phases not observed in bulk [Millis (2011); Hwang et al. (2012)].

An essential step towards realizing this goal is obtaining a clear understanding of the

relationship between physical structure and observed electronic phenomena.

In this work, we investigate the relationship between lattice structure, correla-

tion strength and electronic properties in the context of ferromagnetism in early

transition metal oxides. Ferromagnetism is a correlated electronic property which is

both technologically important and (because only a spin symmetry and not trans-

lation or gauge symmetry is broken) more straightforward from the theoretical and

computational points of view than other phases such as antiferromagnetism or su-

perconductivity. We choose the early transition metal oxides in part because of the

intriguing recent report [Lüders et al. (2009)] of ferromagnetism in superlattice sys-

tems involving LaVO3 and SrVO3. The report is of interest because ferromagnetism

is reported for the superlattice even though no ferromagnetism is observed in bulk

solid solutions of the form La1−xSrxVO3. Another motivation is from the ruthenate

systems CaRuO3 and SrRuO3 in which there exists ferromagnetism in SrRuO3 while

CaRuO3 is paramagnetic down to the lowest temperature [Longo et al. (1968)] even

though both materials are similar in structure except the stronger GdFeO3 distortion

in CaRuO3. The explanation is that the superlattice enables a different structure

(for vanadate superlattice) and the smaller lattice distortion (for SrRuO3) prefer fer-

romagnetism. Understanding whether this explanation is viable, and more generally

being able to design superlattices with desired magnetic properties, requires deeper
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insight into the conditions

The conditions under which ferromagnetism may occur is a question of long-

standing theoretical interest [Stoner (1938); Nagaoka (1966); Shastry et al. (1990);

Müller-Hartmann (1995)]. The development of dynamical mean field theory [Georges

et al. (1996)] has opened a new avenue of research, but apart from some pioneer-

ing investigations of the Curie temperatures of Fe and Ni [Lichtenstein et al. (2001)]

the studies have mainly been based on model systems. Vollhardt, Ulmke and col-

laborators have studied the single-band Hubbard model, finding that in this model

ferromagnetism occurs at generic carrier concentrations only when there is a large

density of states peak at or near the lower band edge [Vollhardt et al. (1997); Ulmke

(1998)]. For a fixed value of the Hubbard U , the Curie temperature Tc was found to

depend sensitively on the peak position, becoming unmeasurably small as the density

of states peak was moved a small distance away from the lower band edge [Wahle et al.

(1998)]. However, many materials of physical and technological interest involve tran-

sition metals with partially filled degenerate (or nearly degenerate) d-levels, where the

Hund’s interaction may play an important role. While the importance of the Hund’s

interaction in partially filled d-levels has been appreciated for decades, the issue has

been systematically studied only in the case of the Bethe lattice [Held and Vollhardt

(1998); Peters et al. (2011); Chan et al. (2009)] in which the density of states has a

simple semi-circular structure. In this situation large values of the Hund’s coupling

and correlation strength (the Hubbard U) are required for ferromagnetism.

In this chapter, we study the conditions for ferromagnetism to occur in these mate-

rials (vanadate bulk and superlattice structures and ruthenate systems). In structures

composed of LaVO3 and SrVO3, the d level is partly filled, ranging from 1 to 2 elec-

trons per vanadium atom, the d electron is subject to strong correlation and large

Hund’s coupling. LaVO3 is classified as a Mott insulator with rather large GdFeO3

distortion [Imada et al. (1998)]. It has structural and antiferromagnetic transitions at
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around 140K but is insulating to high temperatures [Bordet et al. (1993); Miyasaka

et al. (2000)]. SrVO3 in contrast is an intermediate correlated metal and only has

paramagnetic order. The ruthenate family exhibits ferromagnetism in opposite way.

SrRuO3 is ferromagnetic with a Curie temperature of ∼ 160K despite having small

GdFeO3 distortion, CaRuO3 with a larger distortion amplitude is simply a paramag-

netic Fermi liquid metal at the lowest temperatures studied [Longo et al. (1968)]. Our

investigations are based on density functional theory (DFT) calculations and include

in particular the effects of GdFeO3-type rotations of the MO6 structural motif of

the ideal perovskite structure. We treat the many body physics using the single-site

dynamical mean field approximation [Georges et al. (1996)], which is widely used in

real-material many-body physics calculations [Kotliar et al. (2006); Held (2007)] and

in particular in studies of ferromagnetism [Vollhardt et al. (2001, 1997)].

Our main result is an understanding of the dependence of ferromagnetism on car-

rier concentration, octahedral rotation and correlation strength. We find that for d1

and d2 systems (vanadate systems), for small and intermediate correlation, increas-

ing the octahedral rotation amplitude increases the tendency to ferromagnetism. The

physics underlying this result is a density of states effect related to that previously

noted in the one-band Hubbard model [Vollhardt et al. (2001, 1997)]. For strong

correlation, the Mott insulator for integer filling (such as LaVO3) suppresses ferro-

magnetic order, thus doping away from integer filling enhances ferromagnetism. For

d4 systems (Ca and Sr ruthenates), they have two holes in the t2g shell, thus they are

particle-hole transform of the La vanadate. It leads to an opposite effect of GdFeO3

rotation on the ferromagnetism in the ruthenate materials. However, Mott insulating

state is still an important factor to suppress the ferromagnetic order.

We remark that in the literature, the many-body physics properties of transi-

tion metal oxides have been modeled in two ways. One, which we refer to as the

“d-only model”, treats the frontier orbitals (in the case of the vanadium-based ma-
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terials, antibonding bands derived mainly from V t2g-symmetry d-orbitals admixed

with oxygen pπ states) as a multi-orbital Hubbard model. This approach is gener-

ally accepted [Imada et al. (1998)] as the relevant description of the early transition

metal perovskites such as the systems we study here. A second approach is based

on atomic-like d-orbitals which are subject to on-site correlations and are hybridized

with the full p-manifold. This approach is used in the DFT+U and DFT+DMFT

[Kotliar et al. (2006); Held (2007)] approaches. It is generally believed to be essential

to a correct description of the late (e.g. Cu-based or Ni-based) transition metal oxides

[Zaanen et al. (1985)] but has been less widely used in the study of early transition

metal oxides. We consider both approaches, finding similar qualitative conclusions

but significant quantitative differences which arise from the richer physics of the “pd

model” situation. Thorough study of this model will be presented in Chapter 4.

3.2 Model and Methods

3.2.1 Geometrical structure

In bulk systems, only bulk SrVO3 crystallizes in the ideal cubic RMO3 perovskite

structure [Rey et al. (1990)], other materials (LaVO3, CaRuO3 and SrRuO3) may be

thought of as a cubic perovskite with an additional GdFeO3-type rotational distor-

tion leading to a tilted structure with symmetry group Pnma [Bordet et al. (1993);

Jones et al. (1989); Bensch et al. (1990)]. Fig. 3.1 shows the lattice structure of a

GdFeO3-distorted perovskite. The basic structural motif of the perovskite structure

is the oxygen octahedron. In the GdFeO3 rotated structure there are four inquiva-

lent octahedra characterized by different directions of the principal axes and by slight

(∼ 5%) distortions of the M -O bond length. We have found (not shown) that varying

the relative magnitudes of the M -O bond lengths over the physical range causes only
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Figure 3.1: (Color online) Representation of ABO3 perovskite struc-
ture with GdFeO3-type (octahedral rotation) distortion generated using the
VESTA program [Momma and Izumi (2011)]. Large spheres (green online):
A atoms (here La or Sr), small spheres (red online): O atoms, intermediate
size spheres at the centers of the octahedra (blue online) : B-site atoms (here,
V).

small changes to the non-interacting DOS or to the DMFT solution. Therefore, for

the vanadates, we set all V-O distances to d = 1.95Å and focus on the effect of ro-

tation by studying a range of θ and φ, while for ruthenates we only use the structure

from experimental measurements.

The octahedral rotations in the GdFeO3-distorted Pnma systems can be charac-

terized by two angles, θ and φ [Pavarini et al. (2005)] with corresponding rotation

axes n̂θ, n̂φ and wavevectors ~Qθ, ~Qφ characterizing the changes in rotation axis from

cell to cell. We choose coordinates such that the rotation axis n̂θ is [110] while n̂φ

is [001]. The corresponding wavevectors are ~Qθ = (π, π, π) and ~Qφ = (π, π, 0). For

vanadates, bulk LaVO3 has θ = 11.5◦ and φ = 8.8◦ [Bordet et al. (1993)]. As La

is progressively replaced by Sr in bulk solid solution La1−xSrxVO3, θ and φ go to 0.

For ruthenates SrRuO3 with a Ru-O-Ru bond angle of about 163◦ (θ = 8.5◦) is less
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distorted than CaRuO3 with a Ru-O-Ru bond angle of 150◦ (θ = 15◦ [Jones et al.

(1989); Bensch et al. (1990)].

In the superlattices composed of layers of SrVO3 alternating with layers of LaVO3,

if we idealize the structures as cubic perovskites, then the layers alternate along the

[001] direction. The presence of a substrate and the breaking of translation symme-

try can lead to different rotational distortions of the basic perovskite structure as

compared with the corresponding bulk solid solution and also to a difference between

lattice constants parallel and perpendicular to the growth direction.

For superlattices, substrate-induced strain may change the situation in a way

which depends on the growth direction. Boullay et al. (2011); Rotella et al. (2012)

confirm that the growth direction for the experimentally relevant superlattices is

[001] (in the ideal cubic perovskite notation) and we focus on this case here. Recent

experimental studies of superlattices [Rotella et al. (2012)] and of LaVO3 thin films,

which apparently have the same growth direction [Boullay et al. (2011)] suggest that

the rotations are of the type a−a+c− [Glazer (1972)] and indicate that the dominant

rotation is around the axis defined by the growth direction: α = β ≈ 3◦ and γ ≈ 11.5◦.

This distortion pattern is different from that occurring in bulk. To explore its effects

we set α = β = 3◦ and consider the consequences of varying γ.

In bulk La1−xSrxVO3, while the 4-sublattice Pnma structure implies a difference

in lattice constants, all V-O bond lengths are the same [Bordet et al. (1993)]. The

difference in lattice constants arises from a difference in tilting pattern. Superlattices

are typically grown on a substrate, and in epitaxial growth conditions the lattice

constants perpendicular to the growth direction (which we denote here by a) are

fixed by the substrate, while the lattice parameter along the growth direction (c)

is free to relax. The result is a c/a ratio typically 6= 1 contributed by both tilting

and anisotropy in V-O bond lengths and possibly varying from layer to layer of the

superlattice. For the experimentally studied superlattices, c/a ∼ 1.02 [Boullay et al.
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(2011); Rotella et al. (2012)]. The V-O bond lengths have not been determined but

our studies indicate that all V-O bonds have essentially the same length, moreover

a few percent differences have no significant effect on our study of ferromagnetism

[Dang and Millis (2013a)]. Similar to the bulk case, we set all V-O bond lengths to

be equal.

3.2.2 Electronic structure

The large energy splitting between the transition metal d-bands and oxygen p-

bands characteristic of early transition metal oxides is generally believed [Imada et al.

(1998)] to justify a downfolding to a model containing only the frontier bands, which

in the present case are composed mainly of t2g symmetry d-states from transition

metal atom with only a small admixture of oxygen p-states. We refer to this as the d-

only model. In Subsection 3.3.2 we present an examination of a more general “charge

transfer” model in which the full p-d complex is considered.

The Hamiltonian of the d-only model, as a short form of (2.9), is

H = Hkin +Honsite +Hcoulomb. (3.1)

where Hcoulomb is only nonzero for the case of superlattice structures.

The kinetic Hamiltonian has the form (2.10). While for the cubic structure, the

Ĥband(k) describing the t2g-derived antibonding bands is easily constructed using

phenomenological tight binding methods described in Section 2.2, in tilted struc-

ture, the form of ĥband(k) is more difficult to express in the simple tight binding

language. Therefore, we construct ĥband(k) numerically from density functional the-

ory (DFT) band structure calculations using maximally-localized Wannier function

(MLWF) techniques [Marzari and Vanderbilt (1997)].

The on-site interaction term in the Hamiltonian, Honsite, is assumed to take the
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Figure 3.2: (Color online) (a) Schematic of superlattice lattice structure
(LaVO3)m(SrVO3)1 with m = 3. Vanadium sites indicated as circles with
charge density indicated by shading: heavy shading (black online) indicat-
ing higher charge density and light shading (yellow online) indicating lower
charge density. LaO and SrO planes are shown as solid and dashed lines
respectively. Nearest neighbor (t) and next-nearest neighbor (t′) hoppings
between vanadium sites indicated by arrows. The numbers on the right are
VO2 layer indices. (b) Inset: pdπ hopping between t2g orbital and p-orbital.
Main panel: two-dimensional nearest neighbor hopping t made of two pdπ
hoppings from xy orbital of one vanadium site to oxygen px or py orbital,
then to xy orbital of another vanadium site.

Kanamori’s form [Kanamori (1963)] as in (2.23) with U ′ = U − 2J for rotationally

invariant interaction. For vanadate systems, we consider several values of U and J

but focus most attention on the values U = 6eV ∼ 22t and J = 1eV. These values of

U and J are similar to but slightly larger than those used in recent papers [Sekiyama

et al. (2004); Nekrasov et al. (2006); De Raychaudhury et al. (2007)] and are chosen

to reproduce the crucial feature of the phase diagram, which is that LaVO3 is a Mott

insulator while SrVO3 is a metal. However, for CaRuO3 and SrRuO3, we study in a

wide range of U and J .

In superlattice structure, we study superlattices designed to be similar to the

system studied in [Lüders et al. (2009)]. In these superlattices, units of m layers of

LaVO3 are separated by one layer of SrVO3. To define the superlattice, we begin from
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LVO in the appropriate bulk structure, then break translation invariance along the

[001] (z-direction) by replacing every (m+1)st LaO plane with an SrO plane. Fig. 3.2a

shows such a superlattice with m = 3.

We assume that the superlattice is grown epitaxially so that in-plane bond lengths

and other aspects of the local structure including rotations are the same for all layers.

We therefore take the electron transfer integrals which define the band structure to

the be same for all layers. In this case the electronic structure of a superlattice

is defined by adding the electrostatic potentials of the Sr and La ions to the basic

translationally invariant hopping Hamiltonian describing the bulk materials.

In the approximation employed here, the superlattice is defined by the Coulomb

interaction between the La/Sr ions and electrons. This, and the off-site part of the

electron-electron interaction [Okamoto and Millis (2004)] is contained in

Hcoulomb = Hel−ion +Hel−el. (3.2)

To construct Hel−ion, we assume that the whole ion charge of SVO or LVO unit cell

comes into the Sr or La site. Consider SrVO3, the valence of V is +4 (d1). If this one

d-electron is removed, the SVO unit cell will have charge +1, hence, in our model, Sr

site has charge +1. Similarly, LaVO3 has V+3 (d2), thus La site has charge +2. As a

result, Hel−ion has the form

Hel−ion =
∑
i,RSr

−e2n̂i
4πεε0|Ri −RSr|

+
∑
i,RLa

−2e2n̂i
4πεε0|Ri −RLa|

. (3.3)

where ni is electron-occupation operator at V-site i, ε is the relative dielectric con-

stant. The part Hel−el is the inter-site Coulomb interaction of vanadium d-electrons

Hel−el =
1

2

∑
i,j
i 6=j

e2n̂inj
4πεε0|Ri −Rj|

. (3.4)
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Hel−el is treated in the Hartree approximation. Note that in Eq. (3.4), n̂i is the

operator giving the total d-electron occupation of site i, while nj = 〈n̂j〉 is the expec-

tation value of d-electron occupancy at site j, which is determined self consistently.

From Hcoulomb, the Coulomb potential Vi for site i is calculated using Ewald summa-

tion [Ewald (1921)].

The dielectric constant ε is an important parameter in Eqs. (3.3, 3.4). It accounts

for screening on the scale of a lattice constant so bulk measurements are not directly

relevant and an appropriate value has not been determined. Values ranging from 4

to 15 have been reported in the literature for similar systems [Okamoto et al. (2006);

Shekhter et al. (2008)]. Because the appropriate value of ε has not been determined,

we have studied several cases and present results mainly for ε = 8, 15.

We treat the onsite Coulomb interaction using DMFT method (the details of the

method is in Section 2.3). There is a slight difference in the DMFT implementation

for vanadate and ruthenate systems with GdFeO3 distortion. In vanadate systems,

the full 5 d bands are considered. As mentioned in Chapter 2, it is necessary to

rotate to local basis of each octahedron when formulating the impurity problem (see

Appendix C). However, in ruthenate systems, we improve the method by focusing

only on the t2g manifold as the eg bands are higher energy, seperated by energy

gap of 0.5 → 1eV . The MLWF basis of t2g subspace is almost rotated, the DMFT

calculation is thus straightforward without further basis rotation.

3.2.3 The magnetic phase boundary

In order to detect magnetic order, one can allow for broken symmetry states in

the DMFT procedure and lower the temperature until an ordered state is reached.

However, ordering temperatures are typically so low relative to the basic energy scales

in the problem that our simulations become prohibitively expensive. We therefore
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Figure 3.3: (Color online) Inverse magnetic susceptibility χ−1 =
H

m(H)
plotted vs. temperature T obtained from single-site DMFT solution to
(3.1),(2.17) with Hkin taken to have the form appropriate to a simple cu-
bic lattice with nearest neighbor hopping t and second neighbor hopping
t′ = −0.3t. Carrier density is fixed to n = 1.5 and applied magnetic field
H = 0.005 (circles) and H = 0.01 (diamonds). The Curie temperature
Tc = 0.234t is estimated by linear extrapolation of χ−1 in the region where m
is linear in H. Inset: expanded view of the near Tc region, together with the
magnetization squared (m2) (left y-axis) calculated by allowing for broken
symmetry DMFT solution at H = 0 which also shows that Tc ≈ 0.234t. The

parameters are t = 0.5, t′ = −0.3t, U = 16 = 32t and J =
U

6
.

compute the susceptibility which is found to have a Curie-Weiss form χ−1 ∼ T − Tc.
Extrapolation of χ−1 to 0 yields an estimate of the Curie temperature Tc. We interpret

positive Tc as evidence of magnetism. To compute χ−1, we add a uniform field ~H · ~σ
to our Hamiltonian, compute the magnetization m(H), verify that m is linear in H
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and then define χ−1 =
H

m
.

Fig. 3.3 demonstrates the method on a model with a high Curie temperature,

where the magnetic state can easily be constructed. This model is defined by (3.1),(2.17)

with Hkin taking the same form as in the simple cubic lattice but with t′ chosen as
t′

t
= −0.3, so that the sign of t

′
/t is opposite to the sign implied by band structure

calculations on the actual materials. For this unphysical sign of t
′
/t the model has

a ferromagnetic ground state with a high Curie temperature. We set carrier density

n = 1.5 and calculate Tc in two ways: by lowering the temperature until ferromag-

netic order is observed, which is at Tc =
2t

9
≈ 0.222t; or by measuring χ−1(T ) for

several values of T above Tc and linearly extrapolating to χ−1 = 0. The extrapolation

shows Tc = 0.234t. The two values are very close. We conclude that extrapolating Tc

from χ−1(T ) is a reliable way to determine whether the model exhibits ferromagnetic

order.

3.3 Vanadate bulk and superlattices

3.3.1 Magnetic phase diagram

In this subsection, we study the magnetic phase diagram of model systems derived

from the calculated band structure of LaVO3 but with variable amplitude for the

GdFeO3 distortion and different values for the carrier concentration.

Fig. 3.4 shows the evolution of the non-interacting density of states with increasing

amplitude of the GdFeO3 distortion. If the structure is cubic, the energy dispersion

in the t2g manifold is almost two dimensional. The sign and magnitude of t′ place

the van Hove peaks of the non-interacting DOS are at high energy (see top panel

(θ = φ = 0) of Fig. 3.4). As the distortion amplitude is increased the lowest DOS

peak shifts to lower energy and the bandwidth decreases. Previous literature suggests
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Figure 3.4: Density of states for bulk LaVO3 (d-carrier density n = 2)
calculated from DFT with different values of tilt angle θ and rotation angle
φ in which θ = φ together with the DOS of realistic LVO structure (θ =
11.5◦, φ = 8.8◦). A van Hove peak at the Fermi level develops as θ and φ
increase, and is well-formed at θ = φ = 14◦ and above. The bandwidth W
decreases as the θ and φ increases. The Fermi energy is at 0.

a connection between peak position and ferromagnetism [Vollhardt et al. (1997, 2001)]

while standard Stoner theory [Stoner (1938)] suggests that bandwidth may also be

important.

We begin our study of the connection by examining the cubic structure. The

solid curve with filled circles (black online) in Fig. 3.5 is the inverse susceptibility

calculated for temperatures down to T = 0.03eV for the case U = 6eV, J = 1eV and

carrier density n = 1.5 using the DOS shown in top panel of Fig. 3.4, which has the

bandwidth W ≈ 2.4eV. The inverse susceptibility curve is seen to deviate from the

Curie form at low temperature. The extrapolation to zero of the high temperature

linear regime implies a Tc < 0.

We attribute the flattening out of the susceptibility curve to the onset of Fermi-

liquid coherence. To verify this, and to gain additional insight into the nature of
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Figure 3.5: (Color online) Inverse magnetic susceptibility χ−1 (closed sym-
bols, black on-line; right axis) and Wilson ratio RW (open symbols, red
on-line, left axis) calculated for La1−xSrxVO3 cubic structure as functions of
temperature at carrier density n = 1.5 and on-site interactions U = 6eV,
J = 1eV using two bandwidths, W = 2.4eV (circles and solid lines) and
W = 1.6eV (triangles and dashed lines).

spin correlations in this model, we computed the Wilson ratio RW =
π2

3

χ

γ
[Wilson

(1975)] (in our conventions the dimensional factors
kB
µB

= 1). Here γ is the coefficient

of the linear specific heat γ =
dCV
dT

∣∣∣∣
T=0

=
π2

3
Tr[νFZ

−1] [Pourovskii et al. (2007)].

We estimated the linear coefficient of the specific heat from the density of states νF

at the Fermi level and calculated renormalization factor Z, which are obtained from

the measured imaginary time Green function via νF ≈ −
β

π
G(τ = β/2) and from the

Matsubara frequency self energy via Z−1 ≈ 1 − ImΣ(ω1 = 3π/β)− ImΣ(ω0 = π/β)

ω1 − ω0
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(not shown).

The solid curve with open circles (red online) in Fig. 3.5 shows that, for the DOS

in the top panel of Fig. 3.4 with U = 6eV and J = 1eV, the Wilson ratio extrapolates

to the value RW = 2 as temperature T → 0. The value RW = 2 is expected for a

Kondo lattice with a low quasiparticle coherence scale but no intersite correlations,

while a system with strong ferromagnetic correlation would be characterized by an

RW � 2. We therefore conclude that there is no evidence for ferromagnetism in the

cubic structure at U = 6, J = 1eV and W = 2.4eV and that the flattening of the

χ−1(T ) curve indicates the onset of the Fermi liquid coherence.

We now turn to the effects of the GdFeO3 distortion. For simplicity of presenta-

tion, we focus mainly on the case θ = φ. Fig. 3.4 shows the evolution of DOS with

tilting angle. We see that, as the tilt angle is increased, the position in energy of the

lowest density of states peak shifts down in energy.

Fig. 3.6 shows the evolution of the inverse susceptibility with increasing amplitude

of GdFeO3 distortion at U = 6eV and J = 1eV for two carrier density values n = 1.55

and n = 1.95. For n = 1.55, ferromagnetic order can be observed starting at θ = φ =

14◦. In contrast, for n = 1.95, the Curie temperature is nonzero within errors only

for θ = φ > 16◦.

The shaded areas (color online) in Fig. 3.7 show the phase diagram resulting from

a detailed study of the dependence of Curie temperature on carrier density and tilt

(rotation) angle at U = 6eV and J = 1eV obtained from curves such as those shown

in Fig. 3.6. The expense of the computation and the uncertainties inherent in our

extrapolation means that the phase boundary is not precisely determined. We regard

Tc < 0.004eV as consistent with Tc = 0 within uncertainties. The width of the strip

separating Tc = 0.004 and 0.008 gives a measure of the error bars on the locations of

the phase boundary. The divergence in tilt angle required to obtain a nonzero transi-

tion temperature as n→ 2 may be understood from the fact that for the interaction
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Figure 3.6: (Color online) Temperature dependence of inverse susceptibility
computed for model La1−xSrxVO3 computed for tilt angles θ = φ from 8◦

to 18◦ computed at densities n = 1.55 (black circle lines) and n = 1.95
(diamond dashed lines) and interaction parameters U = 6eV, J = 1eV from
Eq. (3.1) withHkin derived from MLWF fits to band structure. The diamonds
and circles are data points measured by DMFT. The lines are fitted from
data points. Left column: plot over wide temperature range; right column:
expanded view of small χ−1 region. The vertical dashed line marks zero
temperature.

strength considered here the n = 2 compound is a Mott insulator. Ferromagnetism

is favored by metallic motion of the carriers and is suppressed in proximity to the

Mott insulating phase which for the parameters we consider is antiferromagnetically

ordered. To summarize, we see that for these values of U and J obtaining a ferro-
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Figure 3.7: (Color online) The magnetic phase diagram in the space of
carrier density n (x-axis) and tilt and rotation angles θ = φ ( y-axis) for
the solid solution La1−xSrxVO3 with on-site interactions U = 6eV, J = 1eV.
The white region indicates paramagnetic order (Tc < 0.004eV), the colored
regions denote ferromagnetic order with the transition temperature Tc given
by the scale bar (color on-line). The solid curve is the θ = θ(n) curve
estimated for La1−xSrxVO3. The estimated phase boundaries for U = 4
(circle and dashed line, blue on-line) and 5eV (squares and solid line, green
on-line) with J = 1eV are also plotted.

magnetic state requires two conditions: (1) large hole doping away from LaVO3 and

(2) large GeFeO3-type distortion.

We now consider the physics behind the dependence of transition temperature

on tilt angle. Inspection of Fig. 3.4 shows that increasing the magnitude of the

GdFeO3 both reduces the bandwidth (from 2.4eV at θ = φ = 0 to 1.8eV at the

critical angle) and moves the position of the lowest density of states peak to lower

energy. To investigate the relative importance of the two effects we have performed
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computations for the cubic structure using U = 6eV, J = 1eV but with reduced

bandwidth W = 1.6 eV. The dashed curves in Fig. 3.5 show the Wilson ratio RW

(open triangles, red on-line) and the inverse susceptibility χ−1 (filled triangles, black

on-line) for the smaller bandwidth W = 1.6eV. The susceptibility curve indicates that

the intercept is increased relative to the larger bandwidth case, but remains negative.

The sharp downturn in the Wilson ratio at the lowest temperatures suggests that the

decrease in intercept is a consequence of a lowered Fermi liquid coherence scale and

does not indicate stronger ferromagnetic correlations. We therefore conclude that

for reasonable values of the bandwidth and interaction strength the crucial factor for

ferromagnetism is the position of the density of states peak. For very large values

of the Hund’s coupling J(& 3eV), ferromagnetism may occur over a much wider

parameter range, as seen in previous Bethe lattice studies [Held and Vollhardt (1998);

Peters et al. (2011); Chan et al. (2009)].

The importance of the position of the density of states peak was previously no-

ticed in the context of the one-band Hubbard model [Vollhardt et al. (1997); Ulmke

(1998); Wahle et al. (1998)]. However, in that case ferromagnetism was only found if

the density of states peak is far below the Fermi level of the paramagnetic state. In

the present case inspection of Fig. 3.4 shows that it is only necessary for the density

of states peak to be not too far above the Fermi level. We believe that the differ-

ence arises from the “double exchange” physics of Hund’s coupling in partially filled

d-shells. The Hund’s coupling favors high spin states, which means that hopping

between two sites is optimal if the spins are parallel and is suppressed if they are not

parallel. This strongly favors ferromagnetism. A natural question is how far above

the Fermi level can the density of states peak be and still support ferromagnetism.

For a reasonable range of J (∼ 1eV, see Fig. 3.8) we find that a good rule of thumb

is that ferromagnetism occurs if the density of states peak lies at or below the Fermi

level of the fully polarized ferromagnetic state. This answer is clearly not universal
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Figure 3.8: (Color online) The dependence of Curie temperature Tc on van
Hove peak position with respect to the Fermi level of fully spin-polarized state
calculated from Eqn. (2.17) with t = 0.264eV, t′/t changes from −0.3→ 0.3.
On-site interactions U = 6eV and J = 1eV. The dashed line marks the zero
temperature.

since model system studies [Held and Vollhardt (1998); Peters et al. (2011); Chan

et al. (2009)] indicate that increasing J to very large values favor ferromagnetism

even if the density of states peak lies very high in energy.

We have also studied selected densities at the smaller interaction strengths U =

4eV and U = 5eV. Estimates of the resulting phase boundaries are shown as dashed

and solid lines in Fig. 3.7. We see that for intermediate n the phase boundary is only

weakly dependent on U and n. For carrier concentrations near n = 2 weakening the

correlations to move the system out of the Mott phase greatly increases the range in

which ferromagnetism is observed.
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3.3.2 The effect of oxygen bands

In early transition metal oxides, the bands that cross the Fermi level are well

separated from other bands and are of mainly transition metal d-character, arising

from t2g symmetry orbitals. In many body calculations, it is common to focus only on

these bands, which are treated as a multiband Hubbard model, while all other bands

are neglected [Imada et al. (1998); Pavarini et al. (2004)]. However, it is generally

believed that the fundamentally correct model of the transition metal oxides should be

based on atomic-like d-orbitals coupled to weakly correlated oxygen p-states [Zaanen

et al. (1985)]. In this section we examine the magnetic phase diagram of the vanadate

system by applying the methods described in previous sections to the model including

transition metal d bands and oxygen p bands (“pd” model) and comparing the results

to those from the “d-only” model.

The pd model has two important energy scales: the on-site interaction U which as

before is the energy cost for changing d-occupancy and the charge transfer energy, in

other words, the energy cost for an electron to hop from a ligand to a transition metal

atom. The charge transfer energy may be defined in different ways but the correct

value is not well established, either from ab initio considerations or from experiment.

The important points for our subsequent discussion are the physics depends sensitively

on the charge transfer energy as well as on U and that for reasonable U a metal-

insulator transition may be driven at integer band filling by varying the charge-

transfer energy [Zaanen et al. (1985)]. We will see that, as was found in the d-only

model, the doping and tilt angle dependence of the ferromagnetic phase boundary

depends on whether the parameters are such as to place LaVO3 on the metallic or

insulating sides of the metal-insulator phase diagram.

As mentioned in Chapter 2, the kinetic Hamiltonian Hkin has to be enlarged to

contain both both vanadium d and oxygen p-orbitals. The corresponding hαβband(k) is

a larger tight-binding matrix with α and β are indices for both p and d oribtals and
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Figure 3.9: (Color online) Inverse susceptibility vs. temperature for three
different filling values 1.55, 1.90 and 2.00 for cubic (left column) and GdFeO3-
distorted LaVO3 with tilt angle θ = φ = 16◦ (right column). (a,b) pd model
with large ∆ (approximately that predicted by standard double counting
correction [Lichtenstein and Katsnelson (1998)]); (c,d) pd model with small
∆; (e,f) d-only model. On-site interactions U = 6eV, J = 1eV. For cubic case,
∆large = 10.97eV,∆small = 2eV. For tilted case, ∆large = 10eV,∆small = 0eV.
The vertical dashed lines mark zero temperature.

is generated using MLWF methods with a wide energy window including both bands.

However, as only d orbitals are correlated, there must be double counting correc-

tion ∆, i.e., the d level is renormalized as εd = ε0d−∆. We consider two values for ∆:

one, which we refer to as ∆large ∼ 10eV, is essentially the value obtained by applying

the standard double counting correction [Lichtenstein and Katsnelson (1998)] to basic

band theory and is such that LaVO3 is predicted to be metallic, in contradiction to

experiment. The other value, which we refer to as ∆small ∼ 0− 2eV, is such that the
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material is insulating at n = 2 in agreement with experiment.

The resulting model is solved using single-site DMFT as described in Chapter 2,

but with one important addition. The full p-d manifold includes V eg orbitals. While

the eg energy lies above the Fermi level, so that the eg-derived antibonding bands are

empty, some of the filled bands are eg-oxygen bonding states which have a small but

non-zero eg content. One must therefore solve a 5-orbital impurity model. Performing

this calculation in full generality would be prohibitively expensive. We therefore follow

standard procedure and treat the eg orbital contribution to the impurity model in a

Hartree approximation.

Fig. 3.9 shows representative computations of the inverse susceptibility for cubic

and tilted systems at several carrier concentrations. The top row (panels a and b)

displays pd model results obtained for the standard double counting correction (so

that LaVO3 is wrongly predicted to be a metal) while the middle rows (panels c and d)

show results obtained if the double counting correction is tuned so that the calculation

places LaVO3 in the Mott/charge-transfer insulating regime of the phase diagram.

The bottom two panels (e and f) present d-only model results for comparison. In

the d-only model the U value is such as to place the n = 2 (LaVO3) material in the

Mott insulating region of the phase diagram). The transition temperature estimates

obtained by linearly extrapolating the χ−1 curves to 0 are given in Table 3.1.

Examination of the results in Table. 3.1 shows that the qualitative trends are the

same in the pd and d-only model calculations. In particular, in both models increasing

the tilt angle increases the tendency towards ferromagnetism. However, significant

differences are visible; in particular the pd model has a significantly greater tendency

to ferromagnetism than does the d-only model and (especially in the small-∆ case)

the differences are more pronounced for the cubic than for the tilted structure.

We believe that there are two main origins for the differences. First, in the small

∆ cubic system case, the change in the charge transfer energy relative to band theory



3. Ferromagnetism in early TMOs 83

n = 1.55 n = 1.90 n = 2.00
cubic, ∆large = 10.97eV -0.1230 -0.0139 -0.0040
tilted, ∆large = 10eV 0.0963 0.1127 0.1167
cubic, ∆small = 2eV -0.0161 0.0025 0.0007
tilted, ∆small = 0eV 0.0452 0.0303 0.0178
cubic, d-only model -0.0602 -0.0200 -0.0349
tilted, d-only model 0.0185 0.0042 -0.0025
cubic, d-only model, U = 4eV -0.2347 -0.1368 -0.1250
tilted, d-only model, U = 4eV 0.0267 0.0345 0.0366

Table 3.1: Values for Curie temperature Tc (in eV) for each case consid-
ered in Fig. 3.9 together with results for U = 4eV for three different fillings
n = 1.55, 1.90 and 2.00. All computations are for J = 1eV; except where
indicated, U = 6eV is used.

affects the density of states, moving the peaks closer to the Fermi level while for the

tilted structure the shift in charge transfer energy does not change the peak positions

as much (see Dang and Millis (2013b)). Second, and perhaps more important, the eg

state occupancy arising from the p− d bonding bands (omitted in the d-only model)

increases the effective moment on the d-site, thereby enhancing the tendency towards

magnetism. This effect is more pronounced in the larger ∆ (smaller charge transfer

energy) case, because the p-d mixing is larger.

To demonstrate this point we present in Fig. 3.10a,b calculations of the inverse

susceptibility under different conditions. The curves in the left panel compare cal-

culations in which the eg occupancy is frozen at the spin unpolarized values (dashed

lines) and calculations in which the eg orbitals are treated within the Hartree-Fock

approximation as described above. We see that the feedback from the polarization of

the eg orbitals makes a significant contribution to the transition temperature. The

right panels show that calculations performed in the “frozen eg” model agree reason-

ably well with the corresponding calculations in the d-only model for U = 4eV < Uc

[Dang and Millis (2013b)].
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Figure 3.10: (Color online) Inverse susceptibility vs. temperature for cubic
(blue color) and 16◦-tilted (red color) structures at filling n = 2.0. (a) Com-
parison for pd model with (solid lines) and without (dashed lines) eg band
spin polarization. (b) Comparison between d-only model (solid lines) and
pd model without eg band spin polarization (dashed lines). Parameters for
calculations with pd model are the same as in Fig. 3.9a,b. Calculations with
d-only model use U = 4eV < Uc, J = 1eV for both structures.

3.3.3 Relation between superlattice and bulk system calcu-

lations

In this section, we demonstrate that the magnetic phase diagrams of superlattice

systems may be inferred, to reasonable accuracy, from the study of appropriately cho-

sen bulk systems. This enables a considerable reduction in the computation resources

required.

We begin with a study of “untilted” or “cubic” superlattices: those in which all

V-O-V bond angles are 180◦. We focus specifically on [001] superlattices in which

the unit cell contains m layers LVO and one layer SVO, where m = 3, 4, 5. For

orientation, we present the density of states (DOS) of the non-interacting system in

Fig. 3.11. In obtaining these densities of states we used the simple tight binding
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Figure 3.11: (Color online) Panel (a): Non-interacting density of states for
bulk system at carrier density n = 1. Panels (b): Non-interacting density
of states for different layers of (LVO)3(SVO)1 superlattice for two different
values of dielectric constant ε = 5 (solid) and ε = 15 (dashed) with hopping
parameters t = 0.264eV and t′ = 0.084eV. SrO plane is between layers 0 and
1 (the index is defined in Fig. 3.2). The Fermi energy is at 0.

parametrization. The DOS for the bulk system is shown in panel (a). One sees the

typical three-fold degenerate DOS for t2g band, the Van Hove singularity is visible

as a peak near the upper band edge. It is at high energy because the next-nearest

neighbor hopping t′ > 0. The remaining panels show the layer-resolved densities of

states for the m = 3 superlattice. The upper two panels show layers sandwiched by

La on both sides; the lower two panels show the layers adjacent to the SrO plane. The

superlattice-induced changes in the density of states are seen to be relatively minor:

the main effects are a weak splitting of the van Hove peaks reflecting the breaking

of translational invariance in the z-direction, and a relative shift in the positions of

the van Hove peaks arising from band bending associated with the different charges
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of the Sr and La ions.

Fig. 3.12 shows the layer-resolved charge density and inverse susceptibility
H

m(H)
plotted against temperature for three different superlattice structures corresponding

to m = 3, 4, 5. As expected from electrostatic considerations, the charge is lower

for the VO2 planes nearer the SrO layer and the charge variation between layers is

controlled by the dielectric constant.

The magnetization m the V sites on each layer was computed at field H =

0.01eV/µB and the inverse susceptibility was obtained as H/m. Linearity was ver-

ified by repeating the computation using H = 0.02eV/µB (not shown). For the

m = 3, ε = 15 case (Fig. 3.12a), we extended the computation to the lower temper-

ature T = 0.03eV; for the other two cases T = 0.06eV was the lowest temperature

studied. The inverse susceptibilities are approximately linear in temperature at higher

temperatures and in all cases, extrapolation to χ−1 = 0 reveals Tc < 0, implying ab-

sence of ferromagnetism.

Especially for the layer nearest the SrO plane the χ−1 curves exhibit weak upward

curvature at the lowest temperatures studied. As discussed in Subsection 3.3.1, the

curvature is a signature that the system is entering a Fermi-liquid coherence regime.

The Fermi liquid coherence temperature is highest for the layers nearest the SrO

because the charge in these planes is farther from the n = 2 Mott insulating state. To

verify this we repeated the calculation in Subsection 3.3.1 and computed the Wilson

ratio RW for each layer of the superlattice for the case m = 3, ε = 15, finding (not

shown) that for each layer the RW extrapolates to 2 at low temperature. The approach

to the low temperature value is faster for layers with low density (near SrO planes)

than for layers with high density (far from SrO planes). RW = 2 is the value for a

Kondo lattice, while ferromagnetism is characterized by an RW > 2. We therefore

believe that for “untilted” superlattices, the differences in χ−1 among layers arise from

differences in quasiparticle coherence scale, there is no evidence for ferromagnetism
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Figure 3.12: (Color online) Temperature-dependent layer-resolved in-
verse magnetic susceptibilities for symmetry-inequivalent layers of untilted
(LVO)m(SVO)1 superlattice structures with different numbers of LVO layers
m = 3, 4 and 5. Layer 0 is adjacent to SrO and layers 2 and 3 are between
two LaO layers. The relative dielectric constant is ε = 15, magnetic field
H = 0.01eV/µB. The χ−1(T ) obtained from solution of bulk cubic systems
with charge density set to the density on the given layer are also shown.
“Bulk L0” (“BulkL2”) denotes a calculation performed for a bulk system
with density the same as for L = 0 (L = 2) layer density. Inset: the electron
layer density distribution corresponding to the susceptibility plot, x-axis is
the layer index, y-axis is the layer density. On-site interactions U = 6eV,
J = 1eV.

in this system, consistent with the solution of the corresponding bulk problem.

To gain insight into the physics underlying the layer dependence of χ−1 we have

computed χ−1(T ) for the cubic bulk system (Hcoulomb = 0, Hkin is constructed from

the two-dimensional dispersion ε(k) = −2t(cos kx+cos ky)−4t′ cos kx cos ky) for carrier

densities equal to those on the different VO2 layers. In Fig. 3.12, we present bulk

calculations for n = 1.62 and n = 1.88 corresponding to the densities calculated
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for layer 0 and 2 of the superlattice for all cases m = 3, 4, 5. For n = 1.88, bulk

χ−1 at T = 0.06, 0.10 and 0.14eV are very close to those of L = 2 layer of m = 3

superlattice, which has the same density. For m = 4, 5 superlattices, bulk n = 1.88,

χ−1(T ) (not shown) almost coincides with those of L = 2 layer. For bulk n = 1.62,

the difference between bulk and superlattice L = 0 layer is small. These calculations

demonstrate a general rule: within the single-site DMFT approximation, the layer-

resolved properties of a superlattice correspond closely to those of the corresponding

bulk system at a density equal to that of the superlattice.
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Figure 3.13: (Color online) Comparison between bulk LVO partial DOS
(positive curves) and (LaVO3)3(SrVO3)1 superlattice layer DOS of lay-
ers near SrO (negative curves) derived from band structure calculations
(DFT+MLWF). Both systems have the same lattice structure for each case:
untilted structure for the top panel and P21/m structure (Glazer’s notation
a−a+c−) with α = β = a = 3◦ and γ = c = 11.5◦ and 16◦ for other panels.
The DOS of bulk system is shifted towards higher energy so that bulk carrier
density is the same as layer density of superlattices for the layers near SrO
(n ≈ 1.55). The vertical dashed line marks the Fermi level.

The superlattices of experimental relevance have crystal structures which are dis-

tortions of the “untilted” one, involving in particular a P21/m structure characterized

by a rotational distortion of the a−a+c− type [Glazer (1972)] involving a large rota-
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tion about an axis approximately parallel to the growth direction and much smaller

rotations about the two perpendicular axes. Fig. 3.13 compares the non-interacting

DOS of bulk and (LVO)3(SVO)1 superlattice systems (both with the same P21/m

structure) calculated using DFT and a MLWF parametrization of the frontier bands.

The DOS of bulk system is shifted so that it has the same carrier density as layers

of the superlattices near SrO plane. For three different structures (untilted structure

and P21/m structure with γ = 11.5◦ and 16◦), the basic features of the partial DOS

are similar between bulk and superlattice. The translation symmetry breaking in

z-direction leads to small extra peaks in the superlattice DOS. These differences are

smoothed out by the large imaginary part of the DMFT self energy. Because the

DMFT equations depend only on the density of states it is reasonable to expect that,

as in the untilted case, they will therefore give the same results in the superlattice as

in the bulk material with corresponding density of states.

To verify that this is the case we have also compared bulk and superlattice sus-

ceptibilities for tilted structures. The four VO6 octahedra in a unit cell are related by

rotation, so an appropriate choice of local basis means that only one calculation needs

to be carried out for a given layer. Fig. 3.14 compares the inverse susceptibilities for

an m = 3 superlattice to calculations performed on a bulk system with the same

P21/m structure. In these calculations, we choose γ = 11.5◦, 16◦, 18◦ and dielectric

constant ε = 8. We see that in this case, as in the “untilted” case, the superlattice

inverse susceptibilities χ−1(T ) are almost the same as those for bulk system calcu-

lated at the same density, with differences only resolvable in the expanded view for

the largest tilt angles.
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Figure 3.14: (Color online) Comparison in temperature dependent inverse
susceptibility between bulk LVO (solid lines) and (LaVO3)3(SrVO3)1 super-
lattice (dashed lines). Both have the same lattice structure P21/m with tilt
angle γ = 11.5, 16 and 18◦. Bulk system has the same densities as those of
layers of superlattice near and far from SrO planes (n = 1.55, 1.95). Left
column: the plots in wide temperature range. Right column: the expanded
views near zero temperature.

3.3.4 Superlattices with GdFeO3-type rotation

In this section we present and explain our results for the magnetic phase diagram

of (LVO)m(SVO)1 superlattices with the P21/m structure (Glazer’s notation a−a+c−)

reported for the experimental systems [Boullay et al. (2011); Rotella et al. (2012)].

In these structures in-plane rotation along the growth direction ẑ = [001] is large

γ = c = 11.5◦ (presumably because of the strain imposed by the substrate), while the

out-of-plane rotation is small (α = β = a = 3◦) perhaps because the system is free to

relax along the growth direction. We concentrate on the effect of the large rotation

by fixing the in-plane angles to 3◦ while varying the out-of-plane angles over a wide
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range from 10◦ → 18◦.
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Figure 3.15: (Color online) Partial DOS derived from DFT+MLWF for
“bulk” P21/m structure (Glazer’s notation a−a+c−) with α = β = a = 3◦

and γ = c changing from 10◦ to 16◦. Only t2g bands are plotted because eg
bands are negligible in this range of energy.

Based on the results of Section 3.3.3 we generate a phase diagram for the super-

lattice from calculations for a bulk system which is a P21/m distortion of the ideal

cubic perovskite structure of chemical composition LaVO3. The bulk system results

are presented as a phase diagram in the plane of carrier concentration and γ-rotation.

Specific layers of the superlattice will correspond to particular points on the phase

diagram, with the layer dependent density fixed by number of LVO layers m and the

dielectric constant ε and the rotation fixed by the substrate lattice parameter.

We use DFT+MLWF methods to obtain the frontier orbital band structure for

the t2g-derived antibonding bands. Fig. 3.15 presents representative results for the

orbitally resolved local density of states. In this figure the orbitals are defined with

respect to the local basis defined by the 3 V-O bonds of a given VO6 octahedron. We

define ẑ = [001] as the axis (approximately parallel to the growth direction) about

which the large rotation occurs. Fig. 3.15 shows that yz and zx orbitals are almost
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degenerate, while xy orbital is strikingly different. The DOS of xy orbital maintains

the shape of a two-dimensional energy dispersion with a van Hove peak well above

the chemical potential, similar to the bulk cubic structure (see e.g. Fig. 3.11a). There

are noticeable differences only at very high rotation angles. On the other hand, yz

and zx orbitals are spread out with two small peaks, because hoppings along x or y

directions (more distorted) are different from those along z-direction (less distorted).

When the distortion gets larger, the d-bandwidth becomes smaller, the xy peak gets

larger and slightly closer to the Fermi level, and yz and zx peaks near the Fermi level

also develop.

In the same approach as for the bulk calculation in Subsection 3.3.1, based on

ĥband(k) generated by DFT+MLWF, we carry out DMFT calculations for in-plane

rotation angle γ to get χ−1 curves whose extrapolations define the Curie tempera-

tures Tc. By varying the doping and tilt angle, we have constructed the superlattice

magnetic phase diagram shown in Fig. 3.16. We consider 0.004eV as the error bar

for positions on the phase diagram, the same as in calculations of bulk vanadates.

We see that ferromagnetism is favored only for very large rotations, much larger than

the 11◦ determined experimentally, and only for carrier concentrations far removed

from n = 2. We may locate the experimentally studied superlattices on this phase

diagram. For an m = 3 superlattice, band structure calculations indicate layer densi-

ties 1.55 for layers near SrO plane and 1.95 for the other layers. The experimentally

determined rotation angle is ∼ 11.5◦. These two points are indicated by squares in

Fig. 3.16.

It is interesting to compare our results to those previously obtained in Subsec-

tion 3.3.1 for the bulk solid solution La1−xSrxVO3 (Pnma structure). The dashed

line in Fig. 3.16 shows the theoretically estimated phase diagram for the bulk solid

solution. We see that the bulk structure is more favorable for ferromagnetism than

the superlattice structure. An important difference between the Pnma structure and
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Figure 3.16: (Color online) The magnetic phase diagram with x-axis car-
rier density n and y-axis tilt and rotation angle along ẑ = [001] direction γ
for bulk system LVO with the same type of distortion as for (LVO)m(SVO)1

superlattices (P21/m structure), in-plane tilt angles α, β ≈ 3◦. On-site inter-
actions U = 6eV, J = 1eV. The white regime indicates absence of ferromag-
netism (Tc < 0.004eV ), the colored regime indicates ferromagnetism with Tc
indicated by the color bar. Also indicated are results for bulk La1−xSrxVO3

in the Pnma structure, from Fig. 3.7. Note that in the calculations for the
Pnma structure all three tilt angles are almost the same.

the P21/m of the superlattice is that in the former case all three tilt angles are of

comparable magnitude whereas in the P21/m structure only one rotation is large.

We believe that this difference is responsible for the difference in phase boundary.

3.4 Ruthenate systems CaRuO3 and SrRuO3

In this section, we focus on the family of ruthenium-based oxides, CaRuO3 and

SrRuO3. As mentioned in Section 3.1, these two materials are in similar structures,

both have Ru+4, i.e. 4 nominal d valence electrons. However, while CaRuO3 is
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a paramagnetic metal, SrRuO3 becomes ferromagnetic at T < 160K [Longo et al.

(1968)]. Because CaRuO3 is slightly more GdFeO3 distorted, we consider the realistic

structure of the two materials, studying how ferromagnetism depends on the lattice

structure and the electron correlation in these materials. From these results, we show

possible reasons that can explain why ferromagnetism only occurs in SrRuO3.

For the ruthenate materials, as there is no doping, the filling is fixed as 4 d electron

per Ru atom. We also fix the lattice structures with data from experiments [Jones

et al. (1989); Bensch et al. (1990)], in which the GdFeO3 distortion in CaRuO3 is

stronger than in SrRuO3. We study the ferromagnetism in different aspects, the

dependence on the onsite interaction U and the Hund’s coupling J .

The noninteracting density of states for these two materials are easily obtained

band structure calculations, in which we use MLWF to project onto the subspace of

t2g orbitals. Figure 3.17 shows the comparison of density of states between the two

materials. As known from vanadate systems, CaRuO3, which is more distorted, has

DOS peaks below the Fermi level. In SrRuO3, the peaks are concentrated near the

Fermi level. The distortion also reduces the bandwidth CaRuO3 more than SrRuO3.

By extrapolating the Curie temperature using inverse susceptibility, we present

the paramagnetic/ferromagnetic phase diagram in Figure 3.18. The upper two panels

of Figure 3.18 show the phase diagrams computed for SrRuO3 (upper left panel)

and CaRuO3 (upper right panel). The symbols indicate (U, J) pairs at which the

properties were computed. Black circles denote paramagnetic regions of the phase

diagram and red squares denote ferromagnetic regions. The line U = 3J separating

the physical regime from the regime of unphysically large J is also indicated. We

observe that, for U & 4eV in both materials, the metal-insulator and ferromagnetic-

paramagnetic phase boundaries nearly coincide and are, to a good approximation,

parallel to the U = 3J line. Thus at larger U , magnetism is controlled by proximity

to the metal-insulator phase boundary. However at smaller U , below the critical value
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Figure 3.17: (Color online) Comparison between density of states generated
from DFT calculation (dashed curves, red online) and from MLWF fitting
(solid curves, blue online) DOS for CaRuO3 (SrRuO3) is on the positive
(negative) half plane. The vertical dashed line mark the Fermi level.

needed to drive a Mott transition, the ferromagnetic-paramagnetic phase boundary

curves sharply, indicating that different physics becomes important.

To understand this behavior more clearly, we present in the lower two panels of

Fig. 3.18 a comparison of the phase diagrams for the two materials. The lower left

panel presents the two phase diagrams in the same plot. At larger U the phase bound-

aries are parallel; at smaller U a clear deviation occurs, with the CaRuO3 calculation

exhibiting a significantly smaller region of ferromagnetism than the SrRuO3 calcu-

lation. Further insight is obtained from the lower right hand panel, in which the U

and J values of SrRuO3 have been rescaled by the ratio of the CaRuO3 bandwidth

to the SrRuO3 bandwidth. At larger U the phase diagrams coincide. This indicates

that the ferromagnetic/paramagnetic as well as the metal-insulator phase boundary

is controlled by the ratio of the interaction strengths to the bandwidths, independent

of other details such as structures of the density of states. On the other hand, the
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Figure 3.18: (Color online) (a) FM/PM phase diagram for SrRuO3. (b)
FM/PM phase diagram for CaRuO3. In (a) and (b), the squares (red online)
are in ferromagnetic order, the black circles are in paramagnetic order; closed
symbols are insulating, and open symbols are metallic. (c) The FM/PM
phase diagrams for SrRuO3 and CaRuO3 plotted together, the dashed vertical
line at J = 0.3eV marks the J value for the onset of frozen moment at
U = 2.5eV and U = 3eV , the open diamonds are out of the spin-freezing
phase. The closed diamonds (red online) are in the spin-freezing phase. (d)
Panel (c), but with the phase boundaries of SrRuO3 is rescaled by the ratio of
the SrRuO3 bandwidth to the CaRuO3 bandwidth. In (c) and (d), the metal-
insulator phase boundary for CaRuO3 (dotted thin curve) is also plotted.
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difference in phase boundary observed at smaller U indicates that other physics is

important in this regime.

Insight into the physics of the smaller U regime comes from previous work on

systems with arbitrary incommensurate band filling. Work on the one-orbital FCC

lattice Hubbard model Vollhardt et al. (1997); Ulmke (1998) identified structure in the

density of states (specifically a large peak far below the Fermi level) as an important

determinant of magnetism. Our work on the vanadate solid solution La1−xSrxVO3 (d

valence d2−x) showed that in orbitally degenerate systems with non-negligible Hund’s

interactions the conditions on the density of states peak could be significantly relaxed,

but it remained the case that ferromagnetism is favored by density of states peaks

at or near the Fermi level and disfavored by density of states peaks above the Fermi

level. We further showed that the position of density of states peaks was controlled

by the amplitude of the octahedral rotations and this effect was more important than

the change of bandwidth in determining the magnetic phase boundary of the doped

vanadates.

The d4 ruthenate system studied here has two holes in the t2g shell and thus may

be thought of as a particle-hole transformation of the d2 vanadate system. Based on

the previous vanadate work we would conclude that in the ruthenate case a density

of states peak below the Fermi level disfavored magnetism, and indeed we see from

Fig. 3.17 that the larger rotations characteristic of CaRuO3 produce such a below-

Fermi-level density of states peak.

The results of this section may be summarized as follows. At larger U where Mott

physics is important the presence of ferromagnetism is controlled by proximity to the

correlation-driven (‘Mott’) metal-insulator transition, which in turn is controlled by

the ratio of the interaction strength to the bandwidth, independent of the details of

the single particle density of state. However in the smaller U regime, away from the

Mott state, the location of the magnetic phase boundary is controlled by the structure
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of the single particle density of states, which is in turn controlled by the octahedral

rotations.

Because Ru is a 4d transition metal, the d electron is not as localized as the one

in 3d materials, ruthenates are less correlated. Thus for the positions of materials,

the region close to the Mott insulator, U > 3eV , should be excluded. As CaRuO3

and SrRuO3 are known as non-Fermi liquid with ω−1/2 behavior at high frequency

[Kostic et al. (1998); Lee et al. (2002)], which is related to the spin-freezing phase

in the t2g model [Werner et al. (2008)], the spin-freezing phase boundary can also be

used to limit the region of possible positions of these materials. From our calculation

for U = 2.5eV and U = 3eV (not shown), CaRuO3 is in the spin-freezing phase if

J > 0.3eV (see Fig. 3.18c). Because the spin-freezing phase depends more on the

bandwidth, SrRuO3 should share the same condition J > 0.3eV to be in that phase.

However, it is not clear of the precise positions of materials on the phase diagrams. To

explain why ferromagnetism is observed in SrRuO3 but not in CaRuO3: if U = 2.3eV ,

J = 0.4eV as suggested from Georges et al. (2013), the DOS peaks controlled by

the distortion is the reason, but if U ≈ 3eV , Mott insulating phase becomes more

important which suppresses ferromagnetism in CaRuO3.

3.5 Conclusions

We have investigated the conditions under which ferromagnetism might be ob-

served in bulk solid solutions derived from LaVO3, in superlattice structure composed

of SrVO3 and LaVO3 and in ruthenium-based oxides CaRuO3 and SrRuO3. Our main

finding is that ferromagnetism in a multiorbital correlated system depends on two fac-

tors: (1) the proximity to the Mott insulator and (2) the position of the density of

states peak. For strong correlation, the formal is important as the Mott insulating

phase can suppress the ferromagnetism, thus being away from that phase (e.g. by
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doping or applying pressure to decrease U/W ) is necessary to obtain ferromagnetic

order. When it is far from Mott insulating phase, the latter factor is more dominant,

which is controlled by the amplitude of the GdFeO3 distortion away from the ideal

cubic perovskite structure, however, the effect is different depending on the filling of

the d bands.

Based on this finding, we explain the reason for no ferromagnetic order in bulk

solid solutions La1−xSrxVO3. The parent compound LaVO3 is a Mott insulator

which suppresses ferromagnetism. When being doped away from the integer filling,

La1−xSrxVO3 however is less distorted than the parent compound, thus disfavoring

ferromagnetism. The material therefore stays out of the ferromagnetic region for all

value of x (Fig. 3.7).

In superlattices derived from LaVO3, the general idea is that the superlattice

structure can decouple the lattice distortion and the doping, thus having the potential

of accessing the ferromagnetic region by having large hole doping while keeping the

level of distortion unchanged. However, the superlattices with P21/m octahedral

rotation is much less favorable to ferromagnetism than the Pnma structure of the

bulk system. Our finding is inconsistent with experiment [Lüders et al. (2009)] which

reports ferromagnetic order at room temperature for (LaVO3)m(SrVO3)1.

In CaRuO3 and SrRuO3, as there are two holes in the t2g bands, they are particle-

hole transform of the d2 systems (such as vanadates) and behave in opposite way for

ferromagnetism. The less distorted structure (SrRuO3) in contrast favors ferromag-

netism. Even though it is unclear of the precise positions for the two materials, as

CaRuO3 is reported as more correlated [Georges et al. (2013)] and more distorted,

the combination of the two factors, the proximity to Mott insulating phase and the

density of states peak effect, can be used as a reasonable explanation for the ferro-

magnetic order observed only in SrRuO3.

Our study has certain limitations. The calculations employ a frontier orbital model
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which includes only the t2g-derived antibonding bands. DFT+DMFT calculations

based on correlated atomic-like d-states embedded in the manifold of non-correlated

oxygen states provide a more fundamental description. We indicates that the two

models give very similar results if both calculations are tuned so that bulk LaVO3

is a Mott insulator, however the renormalization of the d-level energy εd and the

contribution of the eg bands in the pd model is still an open problem for future

research. Further, our calculations are based on the single-site DMFT approximation,

which includes all local effects but misses inter-site correlations. While it is generally

accepted that these calculations give the correct trends and qualitative behavior, the

quantitative accuracy of the methods is not known. Unfortunately, as yet cluster

extensions of DMFT are prohibitively expensive for the multiband models considered

here.

Our results indicate that designing ferromagnetism into a superlattice depending

on materials. Vanadate superlattices will require both large amplitude rotations about

the growth axis and also substantial rotations about the other two axes. Thus choos-

ing substrates with smaller lattice parameter and replacing La by small atom such

as Y to increase octahedral rotation would be desirable. The fabrication in CaRuO3

should be in opposite direction so as to keep the material far from the Mott insulating

phase and use the substrate to decrease the distortion to achieve ferromagnetic order.
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Chapter 4

Covalency and the metal-insulator
transition

In strongly correlated systems, metal-insulator transition is one of the fundamental

phenomena for investigation. While the correlation-driven metal-insulator transition

has been extensively studied, almost all of the existing literature has adopted a “Hub-

bard model” approach in which the correlated bands are taken to be the d-like near

Fermi surface states. In these models the hybridization to other degrees of freedom,

in particular to electrons in oxygen 2p orbitals, is not considered. In transition metal

oxides, the oxygen bands well below the Fermi level have significant hybridization

with the correlated d bands of transition metal. The charge transfer physics and p-d

covalency can play important role but are not well understood. In this chapter, we

take into account the oxygen p bands together with the correlated d bands and study

the metal-insulator transition with the effect of p-d covalency. Part of the results in

this chapter can be found in Dang et al. (2013).

The rest of this chapter is organized as follows. In Section 4.2 we present the

theoretical model and the methodology. Section 4.3 is the overview of our results. In

Section 4.4 we present a simplistic but revealing Hartree-Fock theory for the cubic

materials. Sections 4.5 and 4.6 present our DFT+DMFT results (the metal-insulator

transition phase diagrams) for the Sr and La series of materials considering both

hypothetical cubic and realistic structures. In Section 4.7, we use several criteria to

locate the materials in the phase diagrams. Section 4.8 is a summary and conclusion.
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4.1 Introduction

The Mott insulator [Mott and Peierls (1937); Mott (1949); Imada et al. (1998)] –

a correlation-driven insulating state with an odd number of electrons per unit cell so

that one-electron physics would predict metallic behavior – is one of the fundamental

paradigm systems of modern condensed matter physics. Many transition metal oxides

are believed to be Mott insulators or to undergo “Mott” metal-insulator transitions

as chemical composition, crystal structure, temperature or pressure are varied [Imada

et al. (1998)]. A detailed understanding of the properties of these and related systems

is an important goal of condensed matter theory.

A complete solution of the all-electron many-body problem for real materials is

not available. Present-day theories [Georges (2004); Held et al. (2006); Kotliar et al.

(2006)] take a multi-step approach. The electronic degrees of freedom are partitioned

into two groups: a background group consisting of the majority of the electrons in

the system and a correlated subspace, which is treated by more sophisticated meth-

ods which capture important aspects of beyond-mean-field correlations. A mean-field

like treatment (typically density functional theory) is used to treat the background

electrons and to define the basic parameters of the correlated subspace, which is then

solved by a more sophisticated method (for example, dynamical mean field theory)

which captures at least some of the beyond-mean-field aspects of the electronic cor-

relations. Finally, the solution for the correlated subspace must be self-consistently

embedded into the background electronic structure. Conceptual and practical uncer-

tainties attend each of these steps, but the approach has produced significant insights

into the physics of correlated materials.

In the context of transition metal oxides, it has been accepted since the time of

Peierls’ and Mott’s original work [Mott and Peierls (1937); Mott (1949)] that the

appropriate correlated subspace should be the electrons in the partly-filled transition

metal d shell, and that the important interactions to include are the on-site, intra-d
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Figure 4.1: (Color online) Band structures obtained by DFT calculations
for (a) SrVO3 (early TMO) and (b) LaNiO3 (late TMO). The energy windows
for MLWF projections for selected bands are shown.

interactions. In the early stages of theoretical development the correlated subspace

was defined phenomenologically [Hubbard (1963)], typically as a tight binding model

of electrons hopping among sites of a lattice and coupled by an on-site repulsion

U and (if each site contained more than one orbital) a Hund’s coupling J . The

present state of the art involves obtaining the one-electron part of the Hamiltonian

from a density functional band calculation by downfolding [Andersen et al. (1995)]

or Wannier function [Marzari and Vanderbilt (1997)] procedures and computing the

interactions via constrained density functional [Hybertsen et al. (1989)] or constrained

random phase [Miyake and Aryasetiawan (2008)] approximations.

In many transition metal oxides, the calculated density functional band structure

features a broad complex of bands derived from entangled oxygen p and transition

metal d states and reasonably (although not always completely) separated from other

bands in the solids (see Figure 4.1 for two examples of SrVO3 and LaNiO3). In this

circumstance it is natural to define atomic-like d orbitals via a Wannier function or

a projector construction based on an energy range spanning the p-d band complex.

The correlated orbitals defined by this procedure are found to correspond reasonably

closely to the intuitive picture of atomic d orbitals (for example the interaction ma-
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trix elements computed from constrained random phase calculations have, to a good

approximation, the symmetry structure expected for the d shell in free space) [Aich-

horn et al. (2009)] and the correlated electron physics of this situation may readily be

treated by dynamical mean field theory methods [Georges (2004); Held et al. (2006);

Kotliar et al. (2006)]. The resulting density functional plus dynamical mean field

theory (DFT+DMFT) has gained considerable acceptance as a method of addressing

the real-material physics of correlated electron compounds.

The atomic-like d orbital construction allows investigation of the “charge transfer

insulator” physics emphasized by Zaanen, Sawatzky and Allen who noted in 1985

[Zaanen et al. (1985)] that if the energy ∆ to transfer a charge from a ligand p state

to a transition metal d state was less than the d level charging energy U , then the

physics was controlled by ∆ and not U . As one moves across the 3d transition metal

row of the periodic table, the transition metal d shell decreases in energy relative

to the p levels and it is generally accepted that in “late” transition metal oxides

(those involving elements Cu, Ni and perhaps Co drawn from the right-hand side

of the 3d transition metal row) the d levels lie low enough that the late transition

metal oxides are “charge transfer” materials with low energy physics dominated by

∆ (see Fig. 4.1b). On the other hand, in the “early” transition metal oxides (those

involving elements Ti, V, Cr and perhaps Mn drawn from the left hand side of the

3d transition metal row) the d level energies are often supposed to be high enough,

relative to the p levels (see Fig. 4.1a), that the early transition metal oxides are in

the “Mott-Hubbard” class of materials with physics dominated by U and with charge

transfer effects of less importance.

This line of argument, however, glosses over the crucial issue of the embedding of

the correlated states in the background electron gas. The correlations on the d level

contribute to a Hartree shift of the d level which has the potential to substantially

change the charge transfer energy ∆ away from the value predicted by band theory.
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A large change in ∆ will lead to a large change in the d occupancy (relative to

the predictions of band theory); the resulting charge imbalance may be expected to

change the energetics.

The purpose of this work is to challenge the conventional view. We present density

functional plus U (DFT+U) and density functional plus dynamical mean field theory

(DFT+DMFT) calculations which show that the metal-insulator physics of the early

transition metal oxides is crucially affected by the p-d charge transfer energetics. In

the DFT+U and DFT+DMFT approaches the charge transfer physics is controlled by

the double-counting correction, and we show that within the standard double counting

correction all of the titanate and vanadate peroskites are predicted to be metallic in

contradiction to experiment which shows that the lanthanum titanate and vanadate

materials are insulators. A comparison of calculation to photoemission data indicates

that the difficulty arises in large part because the existing local density approximation

(LDA) and generalized gradient approximation (GGA) implementations of density

functional theory underestimate the p-d energy difference by about 1→ 1.5eV .

4.2 Model and methods

4.2.1 Overview

We focus on transition metal oxides crystallizing in RMO3 perovskite structure.

We study materials in which the R-site ion is Sr, La and (in one case) Y and the M

site ion is one of Ti, V, Cr and Mn. For reference we also present results for rocksalt

structure NiO. The Sr series of materials are cubic perovskites; the La-series crystallize

in GdFeO3-distorted variants of the cubic perovskite structure characterized by a

four-sublattice pattern of tilts and rotations. We use the Quantum Espresso code
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[Giannozzi et al. (2009)]1 to obtain energy bands and maximally localized Wannier

function methods [Marzari and Vanderbilt (1997); Souza et al. (2001)] as implemented

in Wannier90 [Mostofi et al. (2008)] to define the orbitals in the correlated subspace.

(The use of Quantum Espresso is because at the starting time of the project, it was

almost the only one package that had the fully fledged interface with the Wannier90

code.) As demonstrated in Wang et al. (2012), alternative “projector” methods [Haule

(2007); Amadon et al. (2008)] of defining the d orbitals give essentially the same results

if consistent and appropriate energy windows (comprising the full width of the d-p

manifold) are adopted.

The extra interactions which define the correlation problem are taken to be site

local, to act on the d orbitals on a given site and to have the standard rotationally

invariant interaction in Kanamori form (2.23) acting on the d manifold. We fix J ,

which is only very weakly screened by solid state effects, to be J = 0.65eV unless

stated otherwise, but consider a range of U .

4.2.2 Solution of correlation problem

We solve the correlation problem using the single-site dynamical mean field ap-

proximation [Georges et al. (1996)] and compare the results to a Hartree-Fock so-

lution which enables an examination of the effects of intersite correlations. Within

the Hartree-Fock approximation, the quartic terms of the Hamiltonian are approx-

imated by density mean fields 〈ni〉 determined self consistently such that ninj ≈
ni〈nj〉+ 〈ni〉nj − 〈ni〉〈nj〉.

The dynamical mean field method is described in details in Section 2.3 with the

impurity solver using continuous time quantum Monte Carlo methods [Werner et al.

1 We used the pseudopotentials Sr.pbe-nsp-van.UPF, La.pbe-nsp-van.UPF, V.pbe-n-van.UPF,
Ti.pbe-sp-van ak.UPF, Cr.pbe-sp-van.UPF and O.pbe-rrkjus.UPF from www.quantum-espresso.

org.

www.quantum-espresso.org
www.quantum-espresso.org
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Figure 4.2: (Color online) Self energies in Matsubara frequency of Ising
interaction (pair hopping and exchange terms excluded) and rotationally in-
variant interaction. Three systems d1, d2 and d3 are tested with U = 5eV
and J = 0.65eV . The double counting corrections are chosen so that they
are near the phase boundaries for the MIT (see Fig. 4.7).

(2006); Gull et al. (2011)]. We typically neglect the exchange and pair-hopping terms

of the onsite interaction Hamiltonian (2.23) (Ising approximation) in order to be able

to use the “segment” algorithm, which is 4 to 5 times faster, the speed needed for the

phase diagram surveys. To test the quality of the interaction we present in Figure 4.2

a comparison in self energy between rotationally invariant and Ising interactions for

the same U = 5eV and d1, d2 and d3 systems near the metal-insulator transition. The

imaginary parts of the self energy, which is more related to the correlation strength,

are similar for the two cases, except at the lowest frequency. The differences in

self energy are found to be small so that the metal-insulator phase diagram is well

approximated by the Ising interaction calculations.
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As discussed in more detail below, we have found that for V and Ti based com-

pounds, a truncation to the t2g subspace provides an accurate representation of the

physics; however for the LaCrO3 material we find that inclusion of the eg levels is

important.

We determine the metal-insulator transition directly from the spectra obtained

from analytical continuation. The details are discussed in Appendix E.

4.2.3 The double-counting correction and the d-level occu-

pancy

We obtain the single-particle part of the Hamiltonian for the correlation problem

by writing the Kohn-Sham Hamiltonian in the Wannier basis, but shifting the on-site

d level energy term by a “double counting correction” [Anisimov et al. (1991); Amadon

et al. (2008); Karolak et al. (2010)]. The double counting correction is an essential

part of the embedding of the correlation problem in the wider band structure; it acts

in effect to compensate for some or all of the Hartree shift of the d levels arising

from the Slater-Kanamori interactions. We follow Wang et al. (2012) and consider a

range of double counting corrections, which we parametrize by Nd, the expectation

value of the operator giving the d-level occupancy. The parametrization is possible

because Nd is a monotonic function of the d-level energy and is useful because (as

was demonstrated for late transition metal oxides in Wang et al. (2012) and will be

seen in detail below) many of the details of the materials properties affect the metal-

insulator line only via their effect on the value of Nd, so the resulting phase diagrams

are relatively simple when expressed in terms of Nd. Of course the precise values

found for Nd depends on the precise definition of the d orbital which in turn depends

on the scheme (Wannier vs projector) and the energy window chosen. However the

trends are robust and different situations can be meaningfully compared if consistent
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definitions of d-orbital are adopted. Further details are given in Wang et al. (2012).

Different forms of the double counting correction have been given in the literature

[Anisimov et al. (1991); Amadon et al. (2008); Karolak et al. (2010)] but the correct

form is not known. We believe that reasonable values of the double counting correction

correspond to Nd values not too far from those predicted by the density functional

calculation. For example, for the case of SrVO3, both DFT+U calculations and

DFT+DMFT calculations using full charge self-consistency in the implementations

of Pourovskii et al. (2007) and Haule et al. (2010) lead to Nd values close to those

obtained from the bare DFT calculations (see Wang et al. (2012), Fig. 4.4a and

Appendix D).

However, because there is no agreement on the correct form of the double counting

correction, and because the quantitative accuracy of the DFT implementations is not

known, we consider a range of Nd which we vary by changing the d-level energy,

while keeping the other band parameters fixed. We have not found it necessary to

re-self-consist the DFT calculation, indeed (see Appendix D).

In the cases that have been studied the spectra and other physical properties ob-

tained by varying Nd with the Wannier fits fixed are indistinguishable from the spectra

obtained from the fully charged self-consistent procedure as long as the Nd value is

adjusted to be the same the one from the fully-charged self consistent calculation.

4.3 Overview of results

The key result of this work is that the covalency between oxygen p bands and

transition metal d bands, which is controlled by the p-d energy level difference, plays

a crucial role in the physics of the transition metal oxides. Thus even for the early

transition metal oxides, it is necessary to go beyond the widely accepted paradigm,

which focuses on the frontier bands and treat them as a generalized Hubbard model.
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Figure 4.3: (Color online) The density of states for SrVO3, LaTiO3 and
YTiO3 derived from DFT+MLWF tight binding Hamiltonian. The lattice
structure for each material is from experimental data [Rey et al. (1990); Cwik
et al. (2003)]. The vertical thin solid line marks the Fermi level. The solid
curve (red online) is the transition metal d band, the dashed curve (black
online) is the oxygen p band.

In the Hubbard model, increasing the on-site interaction drives the metal-insulator

transition. In the more realistic p-d situation, increasing the U also changes the p-d

level splitting and thus need not drive the metal-insulator transition.

Figure 4.3 shows how the covalency between p and d bands is important. It

presents the density of states of SrVO3, LaTiO3 and YTiO3 derived from band struc-

ture calculations. SrVO3 is a moderately correlated metal, LaTiO3 is a small-gap

correlated insulator and YTiO3 is a wider-gap correlated insulator. From Fig. 4.3 we

see that the gap between oxygen p bands and transition metal d bands of SrVO3 is

about 1eV , so the oxygen bands are strongly hybridized with the d bands. On the

other hand, in LaTiO3 and YTiO3, the gaps are larger (& 3.5eV ), thus the p and d

bands are much less hybridized. It is this difference in hybridization that accounts

for the different behavior in these materials.

We have computed the density of states using three methods: density func-
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tional plus U (DFT+U, VASP implementation [Kresse and Hafner (1993); Kresse

and Furthmüller (1996a,b); Kresse and Joubert (1999)], Hartree and DMFT approxi-

mations based on maximally localized Wannier fits to the band structure as described

above. The DFT+U calculation treats the U -correlations in a Hartree approximation

but involves a full-charge self consistency; in the DMFT and Hartree calculations, we

have adjusted the d energy so that the d occupancy is close to the DFT+U value but

have not performed a full-charge self consistency. The DFT+U and Hartree calcula-

tions treat the full d manifold (t2g and eg); in the DMFT calculations, only the t2g

states are treated. In the Hartree and DFT+U calculations, we allowed for magnetic

order but not for orbital polarization. The DMFT calculation are in paramagnetic

and para-orbital order.

Figure 4.4 shows the three calculations for SrVO3. The fully charge self consis-

tent DFT+U calculations in the left panel (within the widely used fully-localized

limit (FLL) double counting correction) show that, as the interaction strength is in-

creased, the electronic structure rearranges itself to keep the d occupancy and the p-d

energy level differences approximately constant. The increase in energy of the “upper

Hubbard band” (minority spin unoccupied states) is compensated by a decrease in

the energy of the “lower Hubbard band” (majority spin partly occupied states) which

come closer to the oxygen levels. This arrangement of electronic structure reveals

an essential role of p-d covalency in compensating for the effects of the Hubbard U ,

pointing to an aspect of the physics of the materials not contained in the frontier

orbital Hubbard model. The middle and right panels show that the DFT+Hartree

and DFT+DMFT calculations exhibit the same physics if the double counting cor-

rection is adjusted to keep the Nd constant. The similarities of the density of states

shows that full-charge self consistency is not necessary and indicates that the t2g plus

oxygen p band approximation is reasonable.
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Figure 4.4: (Color online) The density of states for SrVO3 obtained from
DFT+U (column (a)), Hartree (column (b)) and DMFT calculations (column
(c)) for U = 0, 3, 5 and 7eV . The dashed lines mark the Fermi level. The
red curves are the transition metal d bands, the black curves are the oxygen
p bands. The Hund’s coupling is J = 0.65eV .

4.4 Hartree calculations for cubic structures

The similarity of the DFT+Hartree and DFT+U spectra at the band theory Nd

motivates us to use the flexible and computationally inexpensive Hartree approxima-

tion to investigate the metal insulator phase diagram for transition metal oxide series

of interest here. In these calculations, we performed a MLWF fit to the calculated

band structure, projected the Kohn-Sham Hamiltonian onto the Wannier states and

then to map out the phase diagram, we adjusted the on-site d energy level. We present
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Figure 4.5: (Color online) Hartree calculation: Spin-resolved t2g occupancy
vs. the onsite interaction U for SrVO3 with the double counting ∆ adjusted
to be at the MIT phase boundary.

the results in terms of the occupancy Nd of the t2g-symmetry Wannier functions in

Figure 4.6 for cubic structure. In the Hartree theory, insulating behavior is associated

with spin and orbital order (in the d1 and d2 materials) and with spin order only in

the d3 systems. In the d1 and d2 materials, the charge excitation is to an unoccupied

state in the t2g manifold and the eg manifold is irrelevant, as can be seen from the

identical phase diagrams obtained in the t2g-only and full d computations. However,

in the d3 situation, the relevant excitations are from the t2g to the eg manifold and a

full five orbital treatment is essential.

We remark that the phase boundaries bend slightly back to smaller Nd at large

U . This reflects the decrease of d occupancy of minority spin d states as they are

pushed to very high energies by the large U . Calculations of the spin-resolved d

occupancy show that, in the d1 and d2 cases (e.g. Figure 4.5 for the d1 case SrVO3),

the majority spin d occupancy tends to a U -independent asymptote as U is increased

while the minority spin occupancy decreases. We expect that, when U is unphysically
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very large, the minority spin d occupancy goes to zero, the critical Nd approaches a

constant value.
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Figure 4.6: (Color online) Calculations for cubic structure: (a) Hartree
phase boundaries for Sr series. (b) Hartree results for La series. (c) Com-
parison between Sr series and La series. For each material, the left region of
the phase boundary is insulating while the right region is metallic. Vertical
lines are t2g Nd from DFT+MLWF calculations (Nd positions of materials).
In (a) and (b), the dashed curves are for 3-t2g-orbital model, the solid curves
are for full 5-d-orbital model. In (c), full 5-d-orbital model is used. Hund’s
coupling is J = 0.65eV.

For d1, d2 or d3, cubic lattice structure gives universal phase boundaries, increasing

monotonically when U value is small (the Mott-Hubbard regime), and going vertically

with Nd slightly changed at larger U (the charge transfer regime). The importance of

the covalency is obvious in these phase diagrams: by increasing Nd, the p-d covalency

increases to a limit that the correlation (embedded in U value) is suppressed. Thus,

when Nd is large enough, there is only metallic solution despite how large the value

of U is.

Fig. 4.6c compares the phase boundaries of the two La and Sr series. The difference

in the two series comes from differences in tight binding parameters of the two series.

The large U parts of the phase diagrams are similar for all cases. At smaller U ,

the difference is largest for d1, smaller for d2 and there is almost no difference in d3
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systems. From the tight binding Hamiltonian from MLWF fit, the hoppings between

p and d bands, tpd, are similar, however, there exists direct d-d hoppings which is

the most different in d1 systems (between LaTiO3 and SrVO3). At small U , when

indirect d-d hoppings via virtual hopping with oxygen p bands (2t2pd/(εd − εp)) are

small due to the adjustment of the d energy level, the direct d-d hoppings account for

the difference in the phase boundary. We have checked that (not shown), if this direct

d-d hoppings are adjusted to be the same in two materials (LaTiO3 and SrVO3), the

difference in phase boundaries largely decreases.

If using Nd from band structure calculation (the vertical dashed lines in Fig. 4.6)

to locate materials, there are SrVO3, SrCrO3, and LaTiO3 having the phase diagrams

compatible with the Nd positions, i.e. for metals, the Nd position stays completely

in the metallic regime, for insulators, the Nd position crosses the phase boundary,

the material can be insulating with a proper choice of U value. The exception are

SrMnO3, LaVO3 and LaCrO3 (if consider the 5 d band model for LaCrO3), where

DFT+Hartree only gives metallic solutions while from experiments, they are insu-

lators [Miyasaka et al. (2000); Sakai et al. (2010); Arima et al. (1993)]. Within the

Hartree approximation, there is inconsistency between DFT+Hartree and experi-

mental results if the d occupancy from DFT is used to locate materials in the phase

diagrams.

4.5 DFT+DMFT calculations for cubic structures

The Hartree approximation does not include quantum fluctuations due to the

electron correlation. It cannot capture the Mott insulating phase, which is observed

experimentally in many early transition metal oxides such as LaTiO3 or LaVO3.
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To treat the correlation more properly, it is necessary to go beyond the mean field

approximation. In this section, we use dynamical mean-field method to study the

metal-insulator transition.

LaTiO3 DMFT
LaVO3 DMFT
LaCrO3 DMFT

LaTiO3 Hartree
LaVO3 Hartree
LaCrO3 Hartree
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Figure 4.7: (Color online) The MIT U -Nd phase diagrams for materials
in La series (LaTiO3, LaVO3, LaCrO3) calculated within model including
oxygen p bands and only 3 t2g bands using DMFT and Hartree approxima-
tion. In DMFT results, the close (open) symbols are for insulating (metallic)
results. The Hartree results have ferromagnetic and/or ferro-orbital orders.
The vertical dashed lines are d occupancies derived from DFT+MLWF.

The procedure is similar to the calculations with Hartree approximation. We use

the tight binding Hamiltonian generated by DFT+MLWF as input parameters. The

Hartree approximation is replaced by the DMFT self consistency for treating the

correlation. Because solving the problem with 5 correlated bands is more expensive

and unstable with the solver we have, we only use the model with t2g bands (and

oxygen p bands) in these calculations.

Assuming cubic structure, we show the results from both DMFT and Hartree
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calculations for La series in Figure 4.7. The difference between DMFT and Hartree

phase diagrams decreases when going from d1 to d3. We explain this based on the

antiferromagnetic (AFM) correlation included in the DMFT solutions (although the

results are in paramagnetic order). In d3 systems (LaCrO3) and with nonzero Hund’s

coupling J , the AFM fluctuation is large due to the superexchange interaction, the

nesting effect together with the Mott mechanism [Mott (1949)] make it easy to open

the gap, which is observed in the studies for the 3-orbital model in the Bethe lattice

[Werner et al. (2009)]. In this case, DMFT phase diagram is more insulating than the

Hartree one because translation symmetry breaking is not allowed in the latter. We

have tested that (not shown) if the AFM Hartree solution is allowed, the Hartree phase

boundary is shifted much further to be more insulating. For d2 systems (LaVO3), the

AFM fluctuation becomes weaker, the DMFT phase boundary is more metallic than

the Hartree one. For d1 systems (LaTiO3), transition to insulating state is only due

to Mott mechanism, the insulating region is confined in a small area of large U and

small Nd.

We consider the one-electron spectral functions (interacting DOS) of the three

systems near their phase boundaries in Figure 4.8. We choose U = 5eV , which is

around the typical U value for La series, and Nd is adjusted so that they are close to

their phase boundaries. At this value of U , three systems are Mott insulator with the

d band split into lower Hubbard and upper Hubbard bands around the Fermi level

even though LaCrO3 (Fig. 4.8c) is close to the crossover to charge-transfer insulator

with the formation of the Zhang-Rice singlet band just below the Fermi level.

The p-d covalency can suppress the correlation effect, but the strength of the

suppression depends on the nominal number of electrons in the d shell. In d1 systems

(Fig. 4.8a), a small p-d admixture can drive the system into metallic state, thus for

cubic LaTiO3 to be insulator, there is almost no admixture, the p bands must stay

at very low energy (∼ −10eV far from the Fermi level). In contrast, the correlation
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Figure 4.8: (Color online) Spectral functions A(ω) for cubic LaTiO3, LaVO3

and LaCrO3 at U = 5eV , J = 0.65eV and Nd chosen to be close to the MIT
phase boundaries. The dashed curves (black online) are oxygen p bands, the
solid curves (red online) are correlated d bands. The vertical line marks the
Fermi level.

is strong in d3 systems in the sense that it allows much more p-d admixture while

still maintaining insulating state (Fig. 4.8c), the p bands stay near the Fermi level.

Another way to quantify the effect of covalency is to measure Nd − n where n is the

nominal number of d electrons. Near the phase boundaries, the Nd − n values 0.11,

0.21 and 0.73 for LaTiO3, LaVO3 and LaCrO3 respectively show that the effect of

covalency to the correlation strength reduces when the filling of the d shell increases.

4.6 GdFeO3-distorted structures

In Section 4.5, we assume that all materials have cubic lattice structure. However,

it only works for materials in Sr series. In most of the transition metal oxides in

perovskite structure ABO3, the small radius of the rare earth A causes significant

distortion of the BO6 octahedra, the GdFeO3 distortion. This structural effect is
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in turn affect the metal-insulator transition. In this section, we take into account

realistic structures of materials and discuss the effect of distortion in the MIT. We

consider two materials of the La series (LaTiO3 and LaVO3), YTiO3, which has larger

distortion, and SrVO3, a cubic perovskite, to have a complete study of materials with

distortion changing in a wide range.

As we mention in Chapter 2, classification of perovskite structure was done a

long time ago by Glazer (1972), in which Pnma structure, or in Glazer’s notation

a−b+c− [Glazer (1972)], is the most common type of perovskites. The materials that

we study in this section belong to this type, they are only different by the magnitude

of the tilt angles, which is zero for SrVO3 and increases from LaTiO3, LaVO3 to

YTiO3. Therefore, it guarantees that the effect of distortion only comes from the

magnitude of the tilt angles, not because of different types (i.e. different space groups)

of perovskites.

The procedures for calculation are the same for all of these materials. We obtain

the atomic positions of materials from experiments [Rey et al. (1990); Cwik et al.

(2003); Bordet et al. (1993)], pass them to DFT+MLWF calculations. The tight

binding matrix of 3 t2g orbitals of transition metal and 9 oxygen p bands is generated

from this DFT+MLWF process. Depending on how large the off-diagonal terms (the

onsite d-d hoppings) are, we rotate the t2g orbitals to eliminate these terms in order

to avoid the sign problem in the CTQMC solver of DMFT process. The results from

the DMFT calculation are processed in the same ways as in Section 4.5 to construct

the MIT phase diagrams.

Figure 4.9 presents the MIT phase diagrams for LaTiO3 and LaVO3 using their

realistic structures (GdFeO3 distortion) in comparison with those using theoretical

cubic structure. With lattice distortion, there are two changes compared with cubic

structure: (1) the band structure Nd slightly decreases from the cubic values, and (2)

the insulating regime is enlarged, both in U and d occupancy, but wider in LaTiO3
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Figure 4.9: (Color online) The MIT phase diagrams for LaTiO3 and LaVO3.
The solid (dashed) lines are phase boundary and DFT Nd for tilted (cubic)
structure. Open symbols represent metallic solutions, closed symbols are
insulating solutions.

than in LaVO3.

The value of d occupancy Nd obtained from DFT calculation depends strongly on

the relative positions of bonding bands (p bands) and antibonding bands (d bands).

From the DOS of the DFT results for LaTiO3 and LaVO3 (not shown), the p-d

distance of the distorted structure is slightly larger than that of the cubic one (mostly

because the bandwidth of the antibonding d bands decreases), reflecting by a small

decrease in Nd when going from cubic to tilted structure. From ab initio calculations,

the Nd value appears to be stable under lattice distortion.

The shifting in the phase boundary towards metallic regime describes the physics

that distorted structure can enhance the insulating state. The lattice distortion causes

two main effect that can be the reasons for enhancement of the insulating region:

(1) the reduction of the bandwidth W (especially the bandwidth for the frontier
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antibonding d bands), and (2) the orbital polarization which affects differently for

different materials. In distorted structure, the B-O-B bond (B is the transition metal

atom) is buckled that makes the electron hopping from one B site to the nearest

neighbor one more difficult than in cubic structure, the bandwidth W is therefore

reduced. In our DFT results (not shown), W is reduced by 25% compared with the

cubic case (note that the distance between p and d bands is almost unchanged). In

Mott-insulating regime, the critical Uc for Mott transition is proportional to W , with

smaller bandwidth in distorted structure, it only requires a smaller U to be insulating.

At larger U , smaller bandwidth W means oxygen p bands must go to higher energy

to close the gap at the Fermi level and drive the system to metallic state. The p-d

admixture and the Nd value need to be larger for the MIT to occur. However, the

enhancement of the insulating regime is different for LaTiO3 and LaVO3. Orbital

ordering plays an important role here. With the lattice distortion from experiments,

LaTiO3 exhibits larger crystal field splitting than LaVO3. Band structure calculations

realize that splitting by an “1 up, 2 down” orbital order (one orbital is occupied

more than the other two) which is stronger in LaTiO3 than LaVO3. Treating the

correlation within DMFT framework, orbital ordering is enhanced significantly in

LaTiO3 (Fig. 4.10a), even though it depends on the value of Nd. In LaVO3, with

larger d occupancy, the Hund’s coupling J couples the onsite electrons of the same

spin more strongly, the orbital order in this system is decreased. This work confirms

the results found in Pavarini et al. (2004); De Raychaudhury et al. (2007) about the

enhancement of insulating state due to orbital order. However, in our study with

oxygen p bands, the p-d covalency slightly decreases the orbital polarization. For

example, at U = 5, J = 0.65eV and T = 0.1eV , d-only model gives the percentage of

occupancies of 3 t2g orbitals 71.4%, 13.3%, 15.3% for LaTiO3 and 30.7%, 33.9%, 35.4%

for LaVO3 , while for the model with p and d orbitals the corresponding percentages

are 61%, 19%, 20% and 32%, 33%, 35% for a range of ∆ chosen so as the system is
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Figure 4.10: (Color online) Spectral functions A(ω) for cubic (negative
value) and tilted (positive value) structure of LaTiO3 and LaVO3 at U = 5eV ,
J = 0.65eV and Nd chosen to be close to the MIT phase boundaries. The
dashed curves (black online) are the average spectra per band for oxygen p
bands, the solid curves (color online) are correlated d bands. The vertical
dashed line marks the Fermi level.

insulating.

Figure 4.10 shows the spectral functions of LaTiO3 and LaVO3 for U = 5eV

and J = 0.65eV at the transition point in comparison with the results of theoretical

cubic structures. There is clear orbital ordering in tilted LaTiO3 while almost no

orbital splitting in LaVO3. Compared with cubic structure, the change is substantial

in LaTiO3, the p bands are shifted by about 6eV closer to the Fermi level, while

they are shifted by less than 2eV in LaVO3. This figure illustrates more the large

enhancement of the insulating regime in LaTiO3.

We also consider the series SrVO3-LaTiO3-YTiO3. These are d1 systems with

tilt angle increasing: SrVO3 is a cubic structure [Rey et al. (1990)], LaTiO3 has

bond angle Ti-O-Ti = 167.12◦, while YTiO3 is the most distorted with the bond

angle 159.1◦ [Cwik et al. (2003)]. The noninteracting density of states for the three

materials are shown in Fig. 4.3, in which SrVO3 has the largest covalency as well as
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Figure 4.11: (Color online) The MIT for SrVO3 (black), LaTiO3 (red) and
YTiO3 (blue) using paramagnetic DMFT calculation. The closed symbols
are for insulating state, the open symbols are for metallic state. The vertical
lines are Nd positions for the materials obtained from DFT+MLWF.

the largest antibonding d bandwidth, while the most distorted structure YTiO3 has

the smallest d bandwidth. But the covalency of LaTiO3 and YTiO3 are almost the

same, demonstrated by similar p and d band positions and the same Nd = 1.57.

We choose two sets of (U, J) for the series: (U = 3.6eV, J = 0.4eV ) and (U =

5eV, J = 0.65eV ), which are close to values chosen in Aryasetiawan et al. (2004)

and Pavarini et al. (2004) respectively. The resulted phase transitions are shown in

Fig. 4.11. SrVO3, as expected, is the most metallic because of the large antibonding d

bandwidth and no orbital splitting. The insulating regime for LaTiO3 is 0.15 smaller

in Nd than YTiO3. However, the orbital ordering of the two materials are similar, an

“1 up,2 down” pattern with the majority orbital occupying 60% in LaTiO3 and 62% in

YTiO3. We believe that orbital ordering has the same contribution to both LaTiO3

and YTiO3. The enhancement of insulating regime in YTiO3 can be understood
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because the antibonding d bandwidth W of YTiO3 is 17% smaller than LaTiO3 (see

Fig. 4.3 and notice both materials have nearly the same p and d band positions).

4.7 Locating materials on the phase diagrams

In previous sections, we have constructed the U -Nd phase diagrams for the MIT

for various materials of interest, considering many possible cases: cubic structures

with Hartree approximation (Fig. 4.6), cubic La series with DMFT (Fig. 4.7) and

calculations with realistic structures using DMFT (Fig. 4.9 and Fig. 4.11). The next

important question is: Where is the position of a material on the phase diagram?

First, we specify the correct values of the Hubbard value U and the Hund’s cou-

pling J (in Kanamori’s notations, Eq. 2.23) for materials. The Hund’s coupling is

nearly unscreened [Vaugier et al. (2012)], its value is not far from the bare value,

which is around 1eV . In contrast, the U value is screened strongly [Aryasetiawan

et al. (2006); Vaugier et al. (2012)], 5 or 6 times smaller than the bare one, and de-

pends on materials. Vaugier et al. (2012) shows that J is around 0.65eV , which is the

value we use, for SrVO3, SrCrO3 or SrMnO3 (using the energy window including p

and d bands and symmetrizing over the interactions of the t2g bands). The U values

for SrVO3 is 4.1eV as indicated from Vaugier et al. (2012), while La series are in Mott

insulating phase and thus should have larger U . Other works [Pavarini et al. (2004);

De Raychaudhury et al. (2007)] converges to the value U ∼ 5eV for La series. To

reduce complication in using different values of U and J , we assume U = 5eV and

J = 0.65eV for the positions of materials in the U direction.

Second, we need to fix positions of materials in the Nd direction. In Fig. 4.4, Wang

et al. (2012) and Appendix D, the full-charge self consistency for SrVO3 with standard

double counting correction (fully-localized limit - FLL - formula) suggests Nd near

the noninteracting band structure value be the position for materials. However, the
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Figure 4.12: (Color online) Spectral functions A(ω) for SrVO3, LaTiO3,
YTiO3 and LaVO3 using realistic lattice structure at U = 5eV , J = 0.65eV
and Nd chosen to be close to the value from ab initio calculations. The
dashed curves (black online) are the average spectra per band for oxygen p
bands, the solid curves (color online) are correlated d bands. The vertical
dashed line marks the Fermi level.

phase diagrams in previous sections (Figs. 4.6,4.7,4.9,4.11) show that this Nd value

predicts the wrong state (metallic state) for the insulators (e.g. LaTiO3, LaVO3 or

YTiO3). Fig. 4.12 are the spectral functions of SrVO3, LaTiO3, YTiO3 and LaVO3

at the Nd from noninteracting band structure calculation. It is clear that at this

Nd position all materials are metals. The oxygen p bands are about 1eV closer to

the Fermi level compared with the DFT density of states (Fig. 4.3), increasing the

p-d covalency significantly. The covalency is even so strong in SrVO3 that the upper

Hubbard band is flattened. Moreover, the p positions are 1→ 2eV closer to the Fermi

level than the experimental values (see Table 4.2).

If considering the standard double counting correction instead of the d occupancy

from DFT calculation, the Nd value can be smaller even though full-charge self con-

sistency tends to keep this value closer to the DFT one (see Appendix D). With

one-shot DMFT (without self consistency), at U = 5eV , the Nd values are shown in
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Nt2g SrVO3 LaTiO3 YTiO3 LaVO3

FLL 1.90 1.46 1.42 2.37
AMF 2.03 1.57 1.55 2.43
exp. 1.73 1.28 1.31 2.24

Table 4.1: Estimation of t2g occupancy using DFT+DMFT (without
full-charge self consistency) using fully-localized limit (FLL),Czyżyk and
Sawatzky (1994) around-the-mean-field (AMF)Anisimov et al. (1991) dou-
ble counting corrections, and the cases that fit best with experiments (the
third row). The calculations use realistic lattice structures at U = 5eV and
J = 0.65eV .

Table 4.1 using both fully-localized limit (FLL) [Czyżyk and Sawatzky (1994)] and

around-the-mean-field (AMF) [Anisimov et al. (1991)] double counting corrections.

AMF double counting correction gives Nd close to the noninteracting DFT values, it

is thus unable to describe the materials correctly. FLL double counting correction

drives the materials closer to the MIT phase boundaries. However, the Nd positions

given by FLL double counting still describe LaTiO3 and LaVO3 as metals, and put

YTiO3 on the phase boundary even though YTiO3 is an insulator with a large gap

∼ 1eV . The two standard double counting corrections fail to describe materials in

the DFT+DMFT framework which include both p and d bands.

We also compare directly our results with the photoemission spectra, the energy

gaps and the oxygen p band positions from experiments. Table 4.2 summarizes the

experimental data for energy gaps and the positions of oxygen bands for several

materials that we study. For materials in Table 4.2, we adjust the double counting

correction manually (by changing the d-level energy) so that the energy gap obtained

from DMFT spectral function matches the experimental value (except for SrVO3

where the spectrum is compared directly), the oxygen p bands are then automatically

placed in the correct positions, which is the experiment value in Table 4.2. Figure 4.13

is the comparison between experimental and calculated spectral functions showing

good agreement with experiments. The match of DMFT with experiments and that

the Nd values for these agreements are smaller than the DFT ones (Table 4.1) confirm
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Figure 4.13: (Color online) Spectral functions A(ω) for SrVO3, LaTiO3,
YTiO3 and LaVO3 using realistic lattice structure at U = 5eV , J = 0.65eV
and ∆ is adjusted to match experimental photoemission spectra (PES). The
PES are from Yoshimatsu et al. (2010); Maiti and Sarma (2000); Morikawa
et al. (1996); Imada et al. (1998). The vertical dashed line marks the Fermi
level.

SrVO3 LaTiO3 YTiO3 LaVO3

Energy gap NA 0.3eV 1eV 1eV
Position of oxygen bands 2.5eV 4.5eV 4.5eV 4eV

Table 4.2: Experimental data for the energy gaps and the oxygen p band
positions from Fujimori et al. (1992) for SrVO3 and Arima et al. (1993) for
other materials.

both standard double counting corrections fail to locate the positions of materials in

the phase diagrams.

We also emphasize the importance of the tilting in describing the materials prop-

erly. Figure 4.10 compares the spectral functions for cubic and tilted structures of
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LaTiO3, LaVO3 for the same energy gap at the Fermi level at the same U = 5eV .

While tilted structures give the oxygen bands at the correct positions, cubic struc-

tures put them 2eV (for LaVO3) and 5eV (for LaVO3) below the correct ones. The

lattice distortion is required to obtain reasonable results.

Figure 4.13 reveals another important feature of the spectra, the position of the

oxygen p bands. For all the insulators, the DFT p bands are 1→ 1.5eV misplaced with

respect to experimental spectra. From ab initio perspective, given an appropriate U

value (such as U = 5→ 6eV for these materials) and if the oxygen p bands is placed

in a correct position, one can adjust the double counting correction to place the

calculated oxygen bands at that position, thus can solve the double counting issue.

It therefore becomes the problem of calculating the correct p band positions from ab

initio approach.

4.8 Conclusions

In this study, we have investigated materials of early transition metal oxides in-

cluding the effect of p-d covalency. We used the Hartree approximation and DMFT

in combination with DFT method in MLWF basis to study a wide range of early

transition metal oxides. We constructed a general method to investigate materials

that considers uncorrelated p and correlated d bands in the lowest energy range and

can work with both cubic and GdFeO3-distorted structure. By adjusting the d-level

energy and the onsite interaction, we built the MIT phase diagrams for materials of

interest, mapping to the space of interaction U and d occupancy. We examined pos-

sible methods for locating materials in the phase diagrams and found that standard

double counting corrections, which gives d occupancy close to the noninteracting DFT

values, fail to predict the correct phase of materials. However, with an appropriate
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double counting correction and the U value is in a reasonable range, the spectral

functions match perfectly the experimental photoemission spectra.

We have found important results in this work. First, the p-d covalency is not

only important in late transition metal oxides, as predicted by Zaanen, Sawatzky and

Allen [Zaanen et al. (1985)], but also crucial in the early transition metal oxides where

Mott-Hubbard physics is dominant. We have shown in our study that even though in

these materials the p bands are further away from the Fermi level than the d bands,

there is still significant p-d admixture that contributes important physics. When the

covalency is large enough, it even suppresses the electron correlation. Second, the

DFT+DMFT framework, with an appropriate choice of double counting correction

and within a reasonable range of U , gives results (photoemission spectra, energy gaps,

oxygen p positions) largely agreed with experimental data while the standard double

counting corrections fail to put materials in the correct phase. Instead of finding an

appropriate form of double counting correction, one could simply adjust the d-level

energy to place the oxygen p bands to the correct position. The realistic structure

of materials is also essential to obtain results comparable with experimental spectra.

Finally, by comparing the Hartree calculations with DMFT, we found that Hartree

method can well approximate but is computationally less inexpensive than DMFT

calculation. Given a Hartree phase diagram, depending on the nominal number of

d electrons, one can extrapolate the DMFT phase diagram by shifting the phase

boundary by an appropriate amount (see Fig. 4.7). To an approximation, the DMFT

paramagnetic spectra can be obtained by averaging the spin up and down spectra

generated by Hartree calculation.

However, there are several limitations in our calculations. First, with systems of

3 d electrons and above, a 5-d-band description is necessary, but our current DMFT

code is unstable for such a calculation. Improving its performance is our next task to

study materials in the intermediate regime between early and late transition metal
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oxides. On the other hand, this DFT+DMFT employs single-site DMFT, cluster

DMFT calculation that includes nonlocal effect of the correlation is available for

single-orbital Hubbard model but for multiorbital system such as the t2g ones, it is

still beyond current computer capability.

Nevertheless, our work has proposed an appropriate approach to work on tran-

sition metal oxides by including oxygen p bands and adjusting the double counting

correction in order to obtain the experimental energy gap and place the p bands at

the correct positions. It suggests many prospective directions for future works. First,

to solve the issue of double counting correction, at the current stage, one can use

semi-empirical approach by matching the experimental position of oxygen p bands.

In future, it requires improvement from band structure calculation to estimate the

oxygen p band position more correctly, which will be used as a basic reference for

adjusting the d-level energy, the problem then will be solved in an “ab initio” per-

spective. Second, it is important to understand the evolution of the p-d covalency

and how the MIT behaves as going along the transition metal oxides series as the

d shell is gradually filled, in particular the materials in the crossover between early

and late transition metal oxides, in which the full 5 d bands have to be taken into

account. Other aspects of the metal-insulator transition such as the temperature de-

pendence or the metal-insulator coexistent region are also interesting topics. On the

other hand, it is essential to apply this model with transition metal d and oxygen

p bands to study other properties such as spin/orbital ordering or reexamine plenty

of works done with d only model to understand how the p-d covalency affects the

systems.



5. Charged impurities in correlated electron materials 131

Chapter 5

Charged impurities in correlated
electron materials

We use single site and CDMFT cluster dynamical mean field methods to study the

response of a doped Mott insulator to a charged impurity. The theory is used to

address the question of the effect of the density perturbation induced by the muon

charge on the local response functions of a high temperature superconductor. The

study gives some understanding of the muon spin rotation measurements in high

temperature superconductor. The results in this chapter have been published in

Dang et al. (2010).

5.1 Introduction

Mobile electrons act to screen a charged impurity. Screening may be understood

in terms of two equations: the Poisson equation which relates the electric potential

V (r) to the combination of the impurity charge density ρimp(r) and the change δn(r)

in free charge density, and a constitutive equation which relates δn to V . For weakly

correlated metals it suffices to linearize the constitutive relation so the screening

properties are determined by the density-density correlation function χ. A locality

approximation is typically appropriate, so that δn(r) = χ(r = 0, ω = 0)V (r) and

it is also reasonable to write the Poisson equation in its continuum form. These
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approximations imply that screening in weakly correlated metals is described by the

familiar Thomas-Fermi equations, which lead to an exponential decay of the charge

density characterized by the Thomas Fermi length λTF = 1/
√

4πe2χ(r = 0, ω)/ε.

Remarkably, while the ubiquity of impurity effects in correlated electron materials

has prompted extensive theoretical studies of the consequences of local disorder for

magnetic and superconducting properties [Alloul et al. (2009)], few results seem to

be available for the problem of screening of a charge center in a material with strong

electronic correlations. Several effects appear to be important. First, and most

trivially, lattice effects are strong so a discrete version of the Poisson equation must

be used. Second, most correlated materials of interest are oxides or organics with

high background polarizability. Third, the constitutive relation between potential and

density is likely to be strongly affected by correlation phenomena, which in particular

will act to reduce the charge response. Fourth, in correlated materials, properties are

typically sensitive functions of density, so that linearization in the magnitude of the

density change may not be appropriate, while charge accumulation or depletion near

an impurity may change the physics locally, for example nucleating or suppressing

local order or fluctuations.

The possibility of local changes in the physics is of particular importance in the

context of muon spin rotation spectroscopy. In this class of experiments, a positively

charged muon with a known initial spin direction is injected into a solid. Coupling to

magnetic order or fluctuations causes the spin of the muon to precess before it decays

and the amount of precession (and hence some information about the spin fluctua-

tions) can be inferred from the angular distribution of the muon decay products. If

the charge of the muon causes a significant perturbation of the electronic properties

near the muon site, then the muon does not necessarily measure the intrinsic magnetic

dynamics of the material.

The question of the perturbation imposed by an injected muon has recently arisen
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in the context of the possible observation of an “orbital current” phase in high tem-

perature superconductors. Following a prediction of Varma (1997, 2006), neutron

scattering experiments [Fauqué et al. (2006); Li et al. (2008); Mook et al. (2008)]

reported evidence of a time reversal symmetry breaking phase characterized by local

magnetic fields which are non-vanishing but average to zero over a unit cell; however,

muon spin rotation experiments [Sonier et al. (2001); MacDougall et al. (2008); Sonier

et al. (2009)] failed to detect the magnetic fields implied by the neutron experiments.

One possible resolution of the discrepancy is that the neutron measurements detect

properties of a minority phase. Another possible resolution, proposed by Shekhter,

Varma and collaborators [Shekhter et al. (2008)] is that the muon, which carries unit

charge, perturbs the local physics strongly enough to destroy the local order detected

by neutrons. Shekhter et al. (2008) presented a Thomas-Fermi calculation which

used a continuum version of the Poisson equation, a value ε ∼ 4 of the dielectric

constant rather smaller than the value ε ∼ 10− 15 generally accepted for oxides and

a compressibility which was assumed to be linearizable and unrenormalized by many-

body effects (although some consequences of the correlations were mentioned). The

calculation of Shekhter et. al. implies that the muon would constitute a strong per-

turbation, dramatically changing the doping and the magnetic dynamics. However,

the discussion given above implies that the assumptions on which the calculation is

based may be questioned.

In this chapter we reexamine the issue. We use a tight-binding model description

which captures the physics associated with the discreteness of the lattice, we exam-

ine the dependence on background dielectric constant, and most importantly we use

single-site [Georges et al. (1996)] and cluster [Maier et al. (2005)] dynamical-mean-

field-based methods to provide an estimate of the correlation effects on screening and

on near-impurity electronic properties. We determine when linearization is appro-

priate and, where needed, use the full nonlinear (but local) charge response. We
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compute locally defined quantities which give some insight into changes in spin cor-

relation properties. While our specific results are obtained for a lattice, doping and

interaction strength appropriate to high-Tc cuprates, we expect that our methods are

more broadly applicable and our qualitative results are relevant to a wider range of

systems.

We find that if dielectric constants in the physically reasonable range are used,

the presence of a unit charge induces density changes which are a non-negligible

fraction of the doping; however, the resulting changes in local magnetic properties

are found to be modest, although observable. Further theoretical attention, perhaps

using “LDA+DMFT” methods [Kotliar et al. (2006)], should be given to modeling

the effects of charge centers in general and muons in particular.

5.2 Model and method

5.2.1 Model

We approximate the conduction band degrees of freedom as a one-band Hubbard

model

H = −
∑
ijσ

tijc
†
iσcjσ +

∑
i

(µ̄+ Vi) c
†
iσciσ + U

∑
i

ni↑ni↓, (5.1)

with hopping tij, on-site repulsion U and a spatially varying electrochemical potential

µi = µ̄ + Vi determined self-consistently (see below) from the impurity charge and

any induced electronic charge. For the explicit calculations presented in this work, we

take a set of planes which are electronically decoupled (no interplane hopping) but

coupled via the Coulomb interaction. Each plane is taken to be a two-dimensional

square lattice with nearest neighbor hopping. We consider interactions of the order

of the critical value Uc2 needed to drive a metal insulator transition in a homogeneous
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Figure 5.1: (Color online) Sketch of two cases under consideration: Left
panel: charged impurity (muon) placed at center of cube of transition metal
(Cu) sites. Right panel: impurity placed in plane.

bulk system with one electron per site. µ̄, the chemical potential far from the impurity

site, is chosen to produce a carrier density n̄ corresponding to a hole doping of δ =

1− n̄ = 0.1 corresponding approximately to the doping level at which pseudogap and

magnetic effects occur in the high-Tc cuprates.

We suppose that the impurity is located at a position Rµ and has a charge e. We

consider in detail two cases, shown in Fig. 5.1. In one we take the impurity to be

located in the center of a plaquette in a CuO2 plane (i.e. the (1/2,1/2,0) position). In

the other we place the impurity symmetrically between planes at the (1/2, 1/2, 1/2)

position. Placing the impurity at these high symmetry points allows us to use existing

codes, but as will be seen the physics we find is generic.

We treat the screening using the self-consistent Hartree approximation. The pres-

ence of the impurity potential changes the electronic density on site i (coordinate

~Ri) from the average value n̄ to a new value ni = n̄ + δni so the total electrostatic

potential is
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Vi = − e2

ε| ~Ri − ~Rµ|
+
e2

ε

∑
j 6=i

δnj

| ~Ri − ~Rj|
, (5.2)

with ε the background dielectric constant. The appropriate value of ε is not well

established. Optical conductivity measurements [Orenstein et al. (1990)] suggest that

ε(ω → 0, q = 0) ≈ 4, a value used in Shekhter et al. (2008), however what is needed is

ε(ω = 0, q) for a range of q of the order of the shortest distance from a lattice site to

the impurity position. Reasonable values of this quantity have not been determined.

Calculations of the “screened U” for the related oxide material SrV O3 yield a high

frequency unscreened U ∼ 14eV and a low frequency screened quantity W ≈ 2eV

suggesting an electronic contribution to ε of ε ≈ 7. Lattice relaxation effects may

increase the short scale ε to a number of order 15 (see e.g. Okamoto et al. (2006)),

but of course lattice relaxations may induce other changes in the model. Resolving

these uncertainties is beyond the scope of this work; we have therefore performed our

explicit calculations for the two values ε = 4 and 15.

The remaining issue is the computation of δni for a given distribution of Vi; this

is discussed in the next section. Here we note that the scale of the screening effects

is set by the dimensionless parameter

γ =
e2

εa

dn

dµ
, (5.3)

with a the in-plane lattice parameter. We use the value a ≈ 3.8Å appropriate for

cuprates. The band theory estimate for the compressibility dn/dµ of weakly correlated

electrons in the cuprate band structure is dn/dµ ≈ 1.4/eV so that γnonint ≈ 5/ε. As

we shall see, for correlation strengths of the order of those believed to be relevant

for high temperature superconductors, the actual compressibility, and therefore the

actual γ are likely to be about an order of magnitude smaller.
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Poisson
(Eq. 2)

ni Vi

DMFT
ni[Vi]

{∆i(ω), Vi}{ni,∆i(ω)}

Figure 5.2: (Color online) Sketch of the self consistency procedure used
to calculate the charge density and hybridization functions in the vicinity
of a charged impurity. Starting from an initial guess for the potential Vi
and the hybridization function ∆i(ω) the dynamical mean field procedure is
used to obtain a new density and hybridization function; the new density is
used in Eq. (5.2) to obtain new potentials, and the process is iterated to self
consistency. Changes in the hybridization function are found to be sufficiently
small that the DMFT loop may be solved once for the bulk material and
∂n/∂µ obtained from this solution may then be used to update the density.

5.2.2 Method

We require the solution of a correlated electron problem in a spatially inhomoge-

neous, self-consistently determined potential. There is no general and exact method

for obtaining this information. We adopt here the single site [Georges et al. (1996)]

and CDMFT cluster [Kotliar et al. (2001)] dynamical mean field approximations.

These methods capture important aspects of the strong correlation problem and in

particular produce a Mott transition. The single-site method is more computationally

tractable; however the cluster method includes intersite correlations and may provide

a more reasonable picture of the spin dynamics.
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In the single-site DMFT method, the electron self energy Σ (in general a function

of two coordinates and a frequency) is taken to be site-local but may be different from

site to site: Σ(i, j;ω) → Σi(ω). The self energy on each site i is determined from

the solution of a quantum impurity model (also different on each site). The impurity

model is specified by the interaction Un↑n↓ and a hybridization function ∆i(ω). The

impurity model Green function on site i is thus

Gimp
i (ω) = [ω + µ̄+ Vi −∆i(ω)− Σi(ω)]−1 . (5.4)

The hybridization function is fixed by a self-consistency condition linking the

Green function Gimp
i (ω) of the impurity model on site i to the ii component of the

lattice Green function:

Gimp
i (ω) = Glat

i (ω)

≡
{

[(ω + µ̄+ Vi − Σi(ω)) δij − tij]−1}
ii
.

(5.5)

There are now two issues of self-consistency: ∆i must be made self-consistent

using Eq. (5.4,5.5) and the potentials Vi on all sites i must be made self consistent

with the computed densities (which are obtained from the Gimp
i (ω)) using Eq. (5.2).

To reach self-consistency one begins with an initial guess for the site densities. From

this one computes the Vi via Eq. (5.2). Using these Vi and an initial guess for the

hybridization function one solves the DMFT equations, obtaining converged solutions

for Gimp
i and ∆i. From these we recompute ni and hence V and continue the cycle

until convergence is reached.

Observe that the result of this procedure is that each site has a hybridization

function determined by neighboring sites, which have different densities. Thus a

given site “knows” that it is in a spatially inhomogeneous environment, and therefore

has properties which are different from those of a hypothetical bulk system in which



5. Charged impurities in correlated electron materials 139

 0

 0.05

 0.1

 0.15

 0.2

 0  1  2  3  4  5  6  7  8

In
du

ce
d 

de
ns

ity
 δ

 n
 =

 n
 -

 n
0

δµ/t = (µ - µ0)/t

Non-interacting case
U=13t, 1-site DMFT
U=9t, 4-site CDMFT

Figure 5.3: (Color online) Local density change induced by locally potential
δµi. In all cases bulk density is n = 0.9. Solid line: density change on
site i, δni, induced by potential δµi applied on same site, computed for
non-interacting electrons using tight-binding band parameters appropriate
to high temperature superconductors. Dotted line: same computation, but
using single-site dynamical mean field theory with U = 13t and hybridization
parameters taken from calculation for U = 13t and δ = 0.1. Dashed line:
change in density on one site of a 4-site plaquette induced by potential δµ
applied to all four sites of plaquette, computed using CDMFT dynamical
mean field theory with U = 9t with hybridization function corresponding to
U = 9t and δ = 0.1.

all sites have a density equal to the density of the designated site. At various points in

the ensuing discussion we will compare properties of a given lattice site i with density

ni to those that would be obtained in a bulk solid in which all sites had density ni.

In practice the laborious procedure described above may be simplified. We have

verified (for an example, see Fig 5.4) that to within an accuracy of ∼ 10% the change

in the hybridization function is negligible and the potential may be computed from the

pure-system n(µ) curve. Thus we use the homogeneous bulk hybridization function
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to compute the variation of local n with local µ and use this to define the den-

sity/potential self-consistency, with the result that it is necessary to solve the DMFT

loop only once. The self consistency procedure is sketched in Fig. 5.2.

Fig. 5.3 shows the change in on-site density caused by a change in local chemical

potential computed for noninteracting electrons with bulk density corresponding to

0.1 hole doping, and for two dynamical mean field cases: single-site DMFT at U = 13t

(slightly larger than the single-site DMFT critical U which is 12t for this problem)

and cluster DMFT at U = 9t which is rather larger than the 6t needed to open a

gap in this approximation but is in the range believed to be reasonable for cuprates

[Comanac et al. (2008)]. In the DMFT calculations the hybridization function was

fixed at the form appropriate to a bulk material with density n = 0.9. As expected,

the correlation effects substantially reduce the local charge susceptibility: the initial

slope is decreased by a factor of about 5 relative to the noninteracting value and there

is a substantial curvature. We also observe that even for δn = 0.1, corresponding to

a local density of 1 electron per site, the charge susceptibility remains non-vanishing

(as expected because the local site is embedded in a metallic bath), whereas the

corresponding bulk system with density n = 1 per site would be in a gapped phase

with vanishing compressibility.

The single-site method is reasonably computationally tractable, enabling the ex-

ploration of a wider parameter space and a relatively detailed computation of phys-

ical quantities. However, this approximation overestimates the critical interaction

required to drive the Mott transition, does not describe the “pseudogap” physics as-

sociated with underdoped cuprates and more generally does not capture the physics

associated with short-ranged intersite correlations. Cluster dynamical mean field

methods capture more aspects of cuprate physics, including a lower critical value for

the Mott transition and some aspects of intersite spin correlations. They also exhibit

a pseudogap. However, the cluster methods are much more computationally expen-
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sive. Further, the widely used “DCA” approximation [Maier et al. (2005)] is unsuited

to impurity problems because it requires translation invariance. We therefore adopt

the CDMFT method [Kotliar et al. (2001)] in which one tiles the lattice into real-

space clusters; each cluster is regarded as a site of a new lattice of supercells. The

hopping terms connecting sites in the same supercell are part of the cluster Hamilto-

nian while the hopping terms connecting sites on different clusters define the supercell

band structure. The new lattice is treated via single-site dynamical mean field the-

ory (albeit with a more complicated impurity), thus the self-consistency loop is the

same as in the single-site case. We use 4-site clusters. We solve the impurity model

using the continuous-time quantum Monte-Carlo method introduced in Werner et al.

(2006); for the 4-site cluster we use the general (“matrix”) representation of Werner

and Millis (2006). The method gives access both to the physical (lattice) electron

Green functions and to correlation functions defined on the cluster model. While the

cluster correlation functions are not identical to the corresponding lattice quantities,

they are reasonable estimators of the physical correlators.

One restriction should be noted: the impurity solver algorithm we use [Werner

and Millis (2006)] makes heavy use of symmetries and therefore requires that the

four sites in the cluster have the same potential. Thus for cluster calculations we are

limited to the case in which the impurity potential is the same for all 4 sites in the

cluster. The geometry we use guarantees that this is the case for the 4 sites closest

to the impurity on each plane. However, for the farther plaquettes, a problem arises,

because one side of a plaquette is necessarily closer to the impurity than the other, so

the local symmetry is broken. We treat this situation by solving the Poisson equation

and then on each cluster replacing the potential by the average of the calculated

potential over the cluster sites. The long range of the Coulomb interaction and the

relatively small changes induced on farther neighbor clusters make this a reasonable

approximation.
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Figure 5.4: (Color online) (a,b,c,d) Variation of conduction band den-
sity per lattice site along line (x, 0, 0) induced by impurities positioned at
(1/2, 1/2, 1/2) ((a) and (c)) and (1/2, 1/2, 0) ((b) and (d)) calculated as de-
scribed in the text using single site DMFT with U = 13t and and 4 site
DMFT with U = 9t. (e,f) Variation of conduction band density per lattice
site along line (x, 0, 1) induced by impurity positioned at (1/2, 1/2, 0) for
ε = 4 (e) and ε = 15 (f) calculated as described in the text using single site
DMFT with U = 13t and and 4 site DMFT with U = 9t.

5.3 Results: density distribution

An electrical conductor responds to a charged impurity by producing an electron

density modulation (“screening cloud”) which screens the impurity charge. The pan-

els of Fig. 5.4 present the spatial distribution of the screening cloud induced by an

impurity of charge +1 in a hole-doped superconductor. Shown is the charge den-

sity per lattice site along a line passing near to the impurity site for two choices of



5. Charged impurities in correlated electron materials 143

background dielectric constant, ε = 4 and ε = 15, for two choices of impurity posi-

tion (between planes or in the center of a plaquette in one plane) and for the two

approximations we have used. We see that in all cases the density change is only

appreciable on the sites adjacent to the impurity. For ε = 4 the density change on the

sites nearest the impurity is large enough to move the local density very close to the

half filled value. For ε = 15 the density change is about a factor of two smaller than

for ε = 4. The density profiles calculated for single-site and 4-site DMFT are very

similar, because the density profile is controlled by the local compressibility which

is similar for the two cases we have considered. The density profiles calculated for

the two impurity locations and for the farther plane are also similar because the 1/r

variation of the unscreened Coulomb interaction is relatively slow. These calculations

are performed using the simplified self consistency loop described above; also shown

are results obtained using the full DMFT procedure for the ε = 15, single-site DMFT

case.

The density changes induced by the impurity potential are seen to be generically

of the order of 0.05 electrons per site or less, which is less than but of the order of

the doping for underdoped high temperature superconductors.

5.4 Results: spin correlations

In this section we study how the screening cloud affects the local spin dynamics.

This is not straightforward because the spin dynamics are expected to be strongly

doping dependent in a homogeneous bulk system, while here we must treat a spatially

inhomogeneous system. We study impurity-model correlation functions, which can be

directly measured in our simulations. These are not identical to the spin correlations

of the actual lattice problem, but are expected to have similar magnitude and similar

doping and temperature dependence to those of the full lattice problem. Further,
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the simulation gives results for Matsubara frequencies ωn = 2πnT . The n = 0 term

is in essence the classical (thermal) part of the spin-spin correlation function while

the n 6= 0 terms give some information on the quantum fluctuations in the system.

We present results for the spin correlations on the site nearest the charge center and

for the second neighbor, and compare the results to those found far from the charge

center and also to those computed for a hypothetical bulk system with average density

equal to that on the site nearest the charge center.
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Figure 5.5: (Color online) Impurity model spin-spin correlation along line
(x, 0, 0) computed from single site dynamical mean field theory as function of
Matsubara frequency at inverse temperature β = 20 and dielectric constants
indicated for charged impurity at position (1/2, 1/2, 0). Upper panels are
onsite correlators for sites nearest to muon (x = 1), lower panels are onsite
correlators for second neighbors to muon (x = 2), correlator for site far from
muon is also included.

Fig. 5.5 shows the impurity model spin correlation functions computed using

single-site dynamical mean field theory. We see that the ‘classical’ (zero Matsub-

ara frequency) spin correlations of sites near the muon are enhanced relative to the
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value far from the muon site, but are not as large as those of a hypothetical system

with average density equal to the density on the near-muon sites. This shows that

the spin correlations on a given site are controlled not only by the density on the site

but also by the properties of the neighboring sites. For the case ε = 4 we see that the

changes are substantial (increasing the value at the lowest Matsubara frequency by a

factor of about 1.5, which in turn is about half of the increase that would occur in a

sample whose average density was set equal to the density on the impurity site). On

the other hand for ε = 15 the changes, although visible, are much smaller.
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Figure 5.6: (Color online) On site (upper panels) and first neighbor (lower
panels) impurity model spin-spin correlation computed from 4-site CDMFT
cluster dynamical mean field theory as function of Matsubara frequency at
inverse temperature β = 20 and dielectric constants indicated, for charged
impurity at position (1/2, 1/2, 0). Solid line with solid squares (blue on-
line) shows correlator computed for sites far from impurity site. Dotted line
with solid circles (red on-line) shows correlator computed on designated site.
Dashed line with open squares (blue on line) shows correlated computed for
bulk system with mean density equal to density on impurity site.

The single-site dynamical mean field theory is known to provide a poor approx-
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imation to the spin correlations of a doped Mott insulator, at least in two spatial

dimensions, because it neglects antiferromagnetic correlations. We have therefore

also considered the spin correlations in the 4-site CDMFT cluster dynamical mean

field theory calculations. Here the difference between on-site and first neighbor impu-

rity model spin correlations reveals the importance of antiferromagnetic fluctuations.

Fig. 5.6 shows results for the same parameters as in Fig 5.5. We see that the first

neighbor correlations increase by about 40% for ε = 4 and about 25% for ε = 15.

We have also examined other correlation functions, in particular the equal-time sin-

glet pair correlations which are the dominant fluctuations on the four-site plaquette,

finding that these are enhanced by similar amounts.

5.5 Conclusion

In this work, we have shown how “strong correlation” effects alter the response of

a material to a local charge inhomogeneity. We introduced a general method, based

on dynamical mean field theory, for calculating these effects and applied it to the

question of the changes produced by the presence of a muon in a high temperature

superconductor. We found, in qualitative agreement with previous work [Shekhter

et al. (2008)], that the muon is not a “soft probe”: although the main correlation

effect is a suppression of the charge susceptibility by a factor of 3-4 relative to band

theory, the charge field associated with the muon may produce a significant change in

the charge density on nearby sites, of order 0.05 electrons per site. In a less strongly

correlated material, the change in charge density on the near-muon sites would be

larger. A crucial issue in determining the scale of the effects was found to be the

value of the static, short wavelength, dielectric constant. The effect on the local spin

correlations is smaller than the effect on the charge density, but is not negligible.
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Our calculation involves several approximations. The most important is the value

of the dielectric constant, which is not known a priori. Varying the dielectric con-

stant over the range of values which have been proposed for cuprates or other oxides

leads to factor-of-two changes in our results. A closely related issue concerns the

local lattice distortions which would normally be induced near a charged impurity

(see Okamoto et al. (2006) for an example in a different context). These have the

potential to change local hopping amplitudes and perhaps correlation strengths, al-

though correlation strengths, being an atomic property, will be less strongly affected.

In view of the importance of muon spin rotation as a probe of correlated materials,

these issues deserve further investigation, perhaps via a band theory calculations. A

second approximation is the use of the dynamical mean field method. The consistency

of our single-site and four-site results for the charge compressibility suggest that our

basic findings for the density correlations are a reasonable estimate of the correct

behavior. However, the calculated spin correlations are probably subject to larger

uncertainties, which are at this point not easily quantified. We know that the charge

perturbation is important only on sites immediately adjacent to the charge center.

The spin correlations on these sites, which are the ones which would be probed by

a muon, are affected both by the on-site property (the change in local density) and

by the properties of the nearby sites, and the nearby sites in turn both affect and

are affected by the near-impurity sites. If the intersite spin coupling is strong it is

possible that the magnetic properties are controlled by the sites farther away from the

muon. It is very likely that the dynamical mean field methods we use underestimate

these spin-correlation effects. Their investigation is an important open problem.

While our specific numerical results were obtained for model parameters appropri-

ate to high temperature superconductors, they have implications for the more general

issue of the response of a correlated electron material to a charged impurity. To il-

lustrate this point we consider a generic correlated material, which we assume to be
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a more or less cubic lattice. For simplicity place the charged impurity at the center

of a cube of sites. The charged impurity will induce a screening cloud containing

one electron. The length scale over which this charge is distributed is set by the

density-density correlation function of the charged material and the background di-

electric function. If values typical of a weakly correlated material are used and the

dielectric function is of the order of 10 or less, a simple extension of the estimates

we have presented indicates that almost the entire screening charge sits as close to

the impurity as it can get. The density change on the near-impurity sites would then

(for the simple cubic situation we have considered) be approximately 1/6 electron

per site, a change large enough to affect the local physics. On the other hand, if

strong correlation effects are important (as in the case of high-Tc materials where

they reduce the charge response by a factor of 5 or more), the total charge would be

spread over a wider range and the concentration on the near impurity sites would be

substantially smaller. However, the relative effect on the local physics would still not

be small, as the greatest suppression of charge response occurs for a lightly doped

Mott insulator, where the important scale is the doping, which would itself be small.

Thus even in this case we would expect that a charged impurity would change the lo-

cal physics noticeably. A quantitative test of our theory would involve measurements

of the near-impurity charge density profile and a comparative measurement of spin

dynamics near to and far from the impurity site.

Our results have implications for muon spin resonance experiments on transition

metal oxides. Muons are an important probe of the spin dynamical of condensed

matter physics, but a muon has a charge +1, and the results presented here indicate

that in transition metal oxides a muon is unlikely to be a “soft” probe; rather, it

significantly perturbs the medium in which it is embedded. Feyerherm et al. (1995)

reached a similar conclusion in a study of PrNi5, a rare earth system with more com-

plicated physics, showing that muons significantly perturb the crystal field structure
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on the near muon Pr sites. In the case studied here we showed that the perturbation

due to the muon affects local properties such as the near muon spin dynamics and

presumably (although we have not investigated this) the size of the ordered moment.

It is important to note that a dilute concentration of muons should have only neg-

ligible effects on “global” or long range properties such as magnetic phase boundaries

or superconducting penetration depth.
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Appendix A

Derivation of the onsite Coulomb

interaction

In this appendix, we present in details the derivation of the onsite interaction Honsite

(2.21) by using Slater’s integrals and the connection to the form with Kanamori’s

notations.

As in Section 2.2, the general Coulomb interaction in the second quantization

representation is

H =
1

2

∑
σσ′

∫
d3r

∫
d3r′Ψ†σ(r)Ψ†σ′(r

′)V (r, r′)Ψσ′(r
′)Ψσ(r)

=
1

2

∑
αβ,γδ

Vαβ,γδc
†
ασc
†
βσ′cγσ′cδσ,

(A.1)

where the Coulomb matrix is

Vαβ,γδ =

∫
d3r

∫
d3r′ψ†ασ(r)ψ†βσ′(r

′)V (r, r′)ψγσ′(r
′)Ψδσ(r). (A.2)

The notation here is slightly different from Section 2.2 where α, β, γ, δ are indices for

both site and orbital to simplify the formulas. From Slater (1960), V (r, r′) is assumed

to be spherically symmetric, i.e. V (r, r′) = V (|r − r′|), one can expand it in terms

of spherical harmonics Ylm(θ, φ). For simplicity, assume that V (r, r′) has the form in
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free space V (r, r′) =
1

|r − r′|

1

|r − r′| =
∞∑
k=0

k∑
m=−k

4π

(2k + 1)

rk<
rk+1
>

Y ∗km(θ′, φ′)Ykm(θ, φ). (A.3)

where the notation r< (r>) is the smaller (larger) of r and r′.

With α = (n, l,m), single-particle wavefunctions (without spin part) can be writ-

ten as

ψα(r) = Rinl(r)Ylm(θ, φ). (A.4)

here the index α = (i, n, l,m) contains the site index i and the three indices similar

to the one used in eigenstates of electron in hydrogen atom.

Combined (A.3) and (A.4), the Coulomb matrix becomes

Vαβ,γδ =
∞∑
k=0

k∑
m=−k

R
(k)
αβ,γδY

(k,m)
αβ,γδ , (A.5)

where r̂ = (θ, φ)

R
(k)
αβ,γδ =

∫
drr2

∫
dr′r′2R∗iαnαlα(r)R∗iβnβ lβ(r′)Riγnγ lγ (r

′)Riδnδlδ(r)
rk<
rk+1
>

, (A.6)

and

Y
(k,m)
αβ,γδ =

4π

(2k + 1)

∫
dr̂dr̂′Y ∗lαmα(r̂)Y ∗lβmβ(r̂′)Y ∗km(r̂′)Ykm(r̂)Ylγmγ (r̂

′)Ylδmδ(r̂)

=

√
4π

(2k + 1)

∫
dr̂Y ∗lαmα(r̂)Ykm(r̂)Ylδmδ(r̂)×

×
√

4π

(2k + 1)

∫
dr̂′Y ∗lβmβ(r̂′)Y ∗km(r̂′)Ylγmγ (r̂

′)

= δm,mα−mδδm,mγ−mβc
(k)
lαmα,lδmδ

c
(k)∗
lγmγ ,lβmβ

.

(A.7)
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The Kronecker δ occurs after integrating the azimuth angle φ. c
(k)
lm,l′m′ is the Gaunt’s

number, defined as

c
(k)
lm,l′m′ =

√
4π

(2k + 1)

∫
dr̂Y ∗lm(r̂)Ykm(r̂)Yl′m′(r̂). (A.8)

In solids, the Coulomb interaction is strongly screened by nearby electrons, the

on-site interaction is the most important while off-site interaction is ignored, thus all

site index can be neglected for simplicity. On the other hand, Coulomb interaction

between orbitals with different shell n or angular momentum l is small, we focus on

the interaction acting on orbitals of the same angular momentum, thus lα = l and

nα = n and are neglected in the next formulas. Therefore, we rewrite (A.6) as

R
(k)
αβ,γδ = Fk. (A.9)

Fk are Slater integrals, which are usually real numbers because the radial parts of the

wavefunctions are real.

The expression for the Coulomb matrix elements for given l thus becomes Vαβ,γδ →
Vm1m2;m3m4

Vm1m2;m3m4 =
∞∑
k=0

k∑
m=−k

δm,m1−m4δm,m3−m2Fkc
(k)
lm1,lm4

c
(k)∗
lm3,lm2

. (A.10)

H =
1

2

∑
Vm1m2;m3m4c

†
m1σ

c†m2σ′
cm3σ′cm4σ. (A.11)

Eq. (A.10) is still complicated even though only one value of l is considered. To be

more simplified, one can consider diagonal terms of the matrix (density-density inter-

actions) and some important off-diagonal terms (exchange and pair-hopping terms),
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other terms are neglected. The Hamiltonian thus becomes

H =
1

2

∑
mm′,σσ′

Vmm′,m′mc
†
mσc

†
m′σ′cm′σ′cmσ

+
1

2

∑
m 6=m′,σσ′

Vmm′,mm′c
†
mσc

†
m′σ′cmσ′cm′σ

+
1

2

∑
m 6=m′,σσ′

Vmm,m′m′c
†
mσc

†
mσ′cm′σ′cm′σ.

(A.12)

The second and third terms of (A.12) havem 6= m′, if not then the terms Vmm,mmc
†
mσc

†
mσ′cmσ′cmσ

would be counted three times.

Detailed calculations (using Mathematica program) give

Umm′ = Vmm′,m′m

=



xy yz 3z2 − r2 xz x2 − y2

xy U U − 2J1 U − 2J2 U − 2J1 U − 2J3

yz U − 2J1 U U − 2J4 U − 2J1 U − 2J1

3z2 − r2 U − 2J2 U − 2J4 U U − 2J4 U − 2J2

xz U − 2J1 U − 2J1 U − 2J4 U U − 2J1

x2 − y2 U − 2J3 U − 2J1 U − 2J2 U − 2J1 U


,

(A.13)

and

Jmm′ = Vmm′,mm′ = Vmm,m′m′

=



xy yz 3z2 − r2 xz x2 − y2

xy U J1 J2 J1 J3

yz J1 U J4 J1 J1

3z2 − r2 J2 J4 U J4 J2

xz J1 J1 J4 U J1

x2 − y2 J3 J1 J2 J1 U


,

(A.14)
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where, using notations from Pavarini et al. (2012)

U = Uavg +
8

7
Javg,

J1 =
3

49
F2 +

20

441
F4, J2 = −10

7
Javg + 3J1,

J3 =
30

7
Javg − 5J1, J4 =

20

7
Javg − 3J1,

(A.15)

and Uavg and Javg are average values for the Hubbard coefficient and Hund’s coupling

Uavg =
1

(2l + 1)2

∑
m,m′

Umm′ ,

Uavg − Javg =
1

2l(2l + 1)

∑
m,m′

(Umm′ − Jmm′).
(A.16)

Eq. (A.12) thus becomes

H =
1

2

∑
mm′,σσ′

Umm′c
†
mσc

†
m′σ′cm′σ′cmσ

+
1

2

∑
m 6=m′,σσ′

Jmm′c
†
mσc

†
m′σ′cmσ′cm′σ

+
1

2

∑
m 6=m′,σσ′

Jmm′c
†
mσc

†
mσ′cm′σ′cm′σ.

(A.17)

The final form of the onsite interaction is

H = U
∑
m

nm↑nm↓ +
∑
m 6=m′

Umm′nm↑nm′↓+

+
∑

m>m′σ

(Umm′ − Jmm′)nmσnm′σ+

+
∑
m 6=m′

Jmm′c
†
m↑c

†
m′↓cm↓cm′↑ +

∑
m 6=m′

Jmm′c
†
m↑c

†
m↓cm′↓cm′↑,

(A.18)

where Umm′ and Jmm′ matrices are in (A.13) and (A.14), U = Uavg +
8

7
Javg as shown
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in (A.15).

In the case of d system, for the Jmm′ matrix, the off-diagonal elements J1, J2, J3, J4

are close to each other and Ji ≈ 0.7Javg. If, by approximation, setting Ji = J ≈
0.7Javg, (A.18) becomes the familiar Kanamori interaction with exchange and pair

hopping terms

H = U
∑
m

nm↑nm↓ + (U − 2J)
∑
m 6=m′

nm↑nm′↓+

+ (U − 3J)
∑

m>m′σ

nmσnm′σ+

+ J
∑
m 6=m′

c†m↑c
†
m′↓cm↓cm′↑ + J

∑
m6=m′

c†m↑c
†
m↓cm′↓cm′↑.

(A.19)

Moreover, if downfolding into the model containing only two eg bands (eg systems)

or three t2g bands (t2g systems), (A.18) becomes the Slater-Kanamori interaction

(A.19) exactly.

Rotationally invariant property of the interacting Hamiltonian is important so that

the form of the interaction is unchanged under arbitrary unitary transformation of

the basis, there is no ambiguity of putting U and J into d orbitals. The approximated

Kanamori Hamiltonian is not but nearly rotationally invariant. However, when going

to 3 t2g model or 2 eg model, the rotational invariant retained [Georges et al. (2013)].

For example, for t2g bands, one can transform the Hamiltonian into

H = −U − 8J

2
N̂ +

U − 3J

2
N̂2 − J

2
L̂2 − 2JŜ2. (A.20)

where N̂ , L̂ and Ŝ are total particle number, angular momentum and total spin oper-

ators, respectively. From (A.20), it is easy to see that t2g Hamiltonian is rotationally

invariant. When eliminating exchange and pair hopping terms, the Hamiltonian has

the form of density-density interaction and is no longer rotationally invariant.
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Appendix B

Analytic continuation with

MaxEnt method

In mathematics, analytic continuation is “a technique to extend the domain of a

given analytic function” [Wikipedia (2013)]. In physics, the term is also used for

a technique to extend a function F from a discrete sequence into a domain U in

which F is analytic. The typical example is the continuation of the imaginary time

(or Matsubara frequency) Green’s functions to obtain the retard one analytic in the

upper-half plane

GR(ω) = G(iωn → ω + iδ). (B.1)

The analytic continuation works based on a theorem in complex analysis: if two func-

tions f and g are analytic in a domain U and there exists a sequence {zn} converging

to z0 ∈ U such that f(zn) = g(zn), then f ≡ g [Abrikosov et al. (1975)]. Thus for

the case of the Matsubara Green’s function G(iωn), if one finds F (z) analytic in the

upper-half plane such that F (iωn) = G(iωn) for ∀ωn then F (z) is the retarded Green’s

function GR(z).

In a simple explanation, as

G(iωn) =

∫
A(ω)dω

iωn − ω
= K ·A, (B.2)
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Figure B.1: An example of probability distribution P (α|G) of the scaling
parameter α given G(iωn). The x axis is in logα.

where the spectral function A(ω) = − 1

π
ImGR(ω), if A(ω) is known, the retarded

Green’s function in the real axis GR(ω) is easily obtained thanks to the Kramers-

Kronig relation

ReGR(ω) =
1

π
P

∫
ImGR(x)

x− ω dx. (B.3)

Therefore, analytic continuation in this case is to solve the inverse problem (B.2) for

A(ω).

However, this inverse problem is difficult to solve because the matrix K in (B.2)

is very ill-conditioned. For example, singular value decomposition of K gives results

from ∼ 10 to 10−16 (the machine epsilon) after 20 singular values (consider β = 10,

50 Matsubara frequencies ωn and 300 real frequencies ω). Brute-force inversion is

thus very unstable. Maximum entropy (MaxEnt) is a popular method to obtain the

spectral function A(ω). The idea of MaxEnt is to obtain A(ω) so that the probability

P (A|G) for A(ω) given G(iωn) is largest, which leads to the maximum of the probabil-

ity entropy. The details of the method can be found in Jarrell and Gubernatis (1996);
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Comanac (2007). In this appendix, we only present how to use MaxEnt efficiently to

achieve the spectral function.

find

yes

no yes

no

Figure B.2: Flow diagram for an efficient MaxEnt process to generate
A(ω) from all A(α, ω) with significant probability P (α) = P (α|G). Notice
that (αi, A(αi) must be stored in an order set of α, i.e. αi < αi+1.

The probability P (A|G) for A(ω) given G(iωn) is

P (A|G) =
1

Zα
exp

[
αS(A)− 1

2
χ2

]
, (B.4)

where S(A) is the entropy and χ2 = (K · A −G)T · Ĉ−1 · (K · A −G) with Ĉ the

covariance matrix generated from the Monte Carlo sampling error of the simulation

[Comanac (2007)].
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For the covariance matrix Ĉ, in the case where there is no Monte Carlo error

stored after the simulation, the error can be estimated from the difference of the two

Green’s functions of two consecutive iteration δG = |Gi − Gi+1|. As the Green’s

function is nearly independent of time 〈δG(τi)δG(τj)〉 = g2δij [Wang et al. (2009)],

it is easy to estimate the value of g. The constant g is then used in generating the

covariance matrix for G(iωn) or Σ(iωn).

A(ω) is obtained by maximizing (B.4). The quality of A(ω) depends on the

scaling parameter α. Usually A(ω) is obtained with the value of α chosen such that

the probability P (α|G) is maximized. The proper spectral function should be

Ā(ω) =

∫
A(α, ω)P (α)dα (B.5)

where P (α) = P (α|G) has the distribution as in Fig. B.1.

Based on the robust shape of P (α|G) (Fig. B.1), we propose an approach to

analytically continue G(iωn) or Σ(iωn) which is α worry-free while the result is stable

because of using (B.5). Given α0 as the initial value (α0 can be of the order of 1),

the flow diagram in Fig. B.2 describes our algorithm. The final A(ω) contains all

important spectra A(α, ω), the result is expected to be the most probable spectral

function for the given Green’s function G(iωn). Moreover, there is no need to search

for an appropriate scaling parameter α as this algorithm will search and focus on the

range of important α.

After the analytic continuation is set up, within DMFT framework (QMC solver),

one can have two ways for continuation and obtaining A(ω)

1. A(ω) is obtained directly from the Matsubara Green’s function given by the

impurity solver or when updating the lattice Green’s function.

2. A(ω) is obtained indirectly by first continuing the self energy ΣR(ω) = Σ(iωn →
ω+iδ) and then use this Σ(ω) to construct the retarded Green’s function [Wang
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et al. (2009)].
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Appendix C

Lattice distortion

In perovskite with GdFeO3 distoriton, the concept of eg and t2g bands become am-

biguous because of the octahedral rotation if using a global axis for all octahedra in

the unit cell. Choosing an appropriate local basis can regain the well-defined t2g and

eg bands. It also reduces the off-diagonal elements of the Green’s function, which is

the source of severe sign problem in the QMC impurity solver.

Figure C.1: The original hopping matrix ĥ(R = (0, 0, 0)) for the case
of GdFeO3-distorted perovskite with the wavefunction projected onto the
subspace of 5 d orbitals. The hopping matrix is 20 × 20 representing 4
octahedra, each of them has 5 d orbitals.
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Finding a local basis means for each octahedron in the unit cell, one needs to find a

local coordinates x′y′z′ so that the off-diagonal terms in that coordinates is minimized.

It thus becomes an optimization problem, given three Euler angles θ, φ, γ, one has to

find the optimized values of these angles to minimize the off-diagonal elements of the

noninteracting density matrix elements or the Green’s function.

However, there exists a simpler approximation for this procedure. Consider the

tight binding matrix ĥband(k) in (2.10), in real space it is ĥ(R) =
1

N

∑
k e

ikRĥ(k),

the onsite hopping ĥ(R = (0, 0, 0)) contributes the most to the off-diagonal terms

(see Fig. C.1). Eliminating the off-diagonal elements of ĥ(R = (0, 0, 0)) is already

good enough to reduce significantly the off-diagonal elements of the Green’s function.

Therefore, we can simply rotate the basis such that each octahedral block of ĥ(R =

(0, 0, 0)) is diagonalized.

Figure C.2: Apply 4 different transformation matrices to diagonalize 4
diagonal blocks corresponding to 4 different octahedra in the unit cell. These
tranformation matrices are rotation matrices needed to minimize the off-
diagonal elements of the Green’s function.

We demonstrate the procedure in Fig. C.2. Consider the tilted structure in the

d-only model with 5 d bands, there are 4 5 × 5 blocks along the diagonal line which

needs to be diagonalized, other blocks are left untouched. Finding transformation

matrix to diagonalize a 5 × 5 matrix is trivial. We thus have 4 5 × 5 transforma-

tion matrices to diagonalize these blocks. These transformation matrices represents

rotation matrices needed to rotate the basis and minimize the off-diagonal elements

of the Green’s function. With these transformation matrices, the DMFT procedure
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becomes straightforward. Our procedure to treat the GdFeO3 distortion for DMFT

is similar to the approach in Pavarini et al. (2005).

In the case where the distortion is purely because of octahedral rotation, this pro-

cedure of minimizing the off-diagonal terms is equivalent to rotating the coordinates

to the local coordinates where each axis is along each direction of the octahedron.
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Appendix D

Full charge self consistency effect

Throughout the thesis, we run DMFT calculations directly with the fixed tight bind-

ing Hamiltonian obtained from the DFT+MLWF method (“one-shot” DMFT). The

self consistency procedure [Kotliar et al. (2006); Aichhorn et al. (2009); Haule et al.

(2010)], in which the density matrix from DMFT calculation is used as an input in

another DFT calculation to adjust the tight binding Hamiltonian so that the charge

self consistency is maintained, is neglected. The common belief is that the self con-

sistency does not affect much the final result [Aichhorn et al. (2011); Wang et al.

(2012)]. Fig. 4.4 also shares the same thought, in which the DFT+U results (with

self consistency effect) are not much different from the Hartree approximation. How-

ever, it might be that the self consistency can affect the standard double counting

corrections in a different way compared with the one-shot calculation [Aichhorn et al.

(2011)]. In this appendix, we study rigorously one case SrVO3 with fully-charged self

consistent DMFT calculation to understand how it affects the result.

We use the Wien2K+TRIQS code [Aichhorn et al. (2011); Ferrero and Parcollet

(2011)] for the calculation. In this code, the full-potential (linearized) augmented

plane-wave (FLAPW) [Blaha et al. (2011)] is used for the DFT calculation, which

allows to project the wavefunction into the subspace of localized d and oxygen p

orbitals for the DMFT calculation. This projector method works with high reliability

and is computationally inexpensive, thus enabling the full-charge self consistency to
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U (eV) full-charge FLL one-shot FLL one-shot fixed ∆
5 ∆ 7.41 7.17 7.41

Nd 2.55 2.48 2.52
9 ∆ 15.37 14.24 15.37

Nd 2.51 2.36 2.48
12 ∆ 21.20 19.44 21.20

Nd 2.50 2.30 2.45

Table D.1: Summary of d occupancy and ∆ for SrVO3 using FLL double
counting corrections, considering the effect from full-charge self consistency
(full-charge FLL) or neglecting it (one-shot FLL or one-shot fixed). These
calculations use the Wien2k+TRIQS code with projector method for obtain-
ing the localized orbitals, the noninteracting d occupancy obtained from this
method is 2.60.

run automatically. To avoid the problem of comparison using different basis sets

between MLWF (which is used in most of the calculations) and projector methods,

in this appendix, we use only the basis set of p-d subspace is from projector method

(provided by Wien2K+TRIQS) for both fully-charged self consistent and one-shot

DMFT calculations for comparing the results consistently. The FLL double counting

correction is used, as it has been shown to give results closer to experimental data

(see Table 4.1 or Karolak et al. (2010)). The onsite interaction is in the form of Slater

integrals F0, F2, F4 [Czyżyk and Sawatzky (1994)] related to the Kanamori’s notations

by

U = Ū +
8

7
J̄ , (D.1)

J =
5

7
J̄ , (D.2)

where Ū = F0 and J̄ =
F2 + F4

14
are the average values of interaction strength.

Table D.1 summarizes the d occupancy and ∆ from full charge and one-shot

DMFT calculations. The effect of full charge self consistency is to maintain the

d occupancy closer to the noninteracting DFT value Nd = 2.60, this is similar to
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Figure D.1: (Color online) Spectral functions for the eg, t2g and oxygen
p bands of SrVO3 from band structure calculation (a) and full-charge self
consistent (positive curves) and “one-shot” (negative curves) DMFT calcu-
lations for U = 5, 9, 12eV and J = 0.65eV (b,c,d). The double counting
correction and the d occupancy values are shown in the first and the third
columns of Table D.1 respectively.

the DFT+U calculation shown in Fig. 4.4, the d occupancy decreases slightly as U

increases. If keeping ∆ the same as the value in full charge calculation, the one-shot

DMFT calculation gives the d occupancy about 0.3 to 0.5 different from the full-

charge calculations. The decrease is larger if using the same FLL double counting

correction for the one-shot calculation.

Figure D.1 shows the comparison at several U values between full-charge self con-

sistent and one-shot DMFT calculations together with the DFT density of states for

reference. There are some important results from this figure. First, full-charge self

consistent calculation is almost the same as the one-shot DMFT as long as the d

occupancies of the two calculations are adjusted to be the same. Second, for different

U values within the standard DFT+DMFT, the d occupancy close to the DFT val-

ues, the covalency is so strong that metal-insulator transition cannot occur. Third,
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oxygen p bands are slightly shifted closer to the Fermi level with respect to the DFT

calculation but stay almost at the same position for different U values.

Therefore, it is reasonable that in our calculation, we neglect the full charge self

consistency, which is more computationally expensive and do not allow to adjust the

double counting correction arbitrarily. As the full charge self consistent calculation

maintains the d occupancy and the oxygen p band position almost unchanged for

different U values, these two values can be used as criteria to determine the double

counting correction, i.e. to locate a material in the phase diagram.
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Appendix E

Determine the metal-insulator

transition

Specifying if a state is metal or insulator and studying the metal-insulator transition

(MIT) is a fundamental question in strongly correlated systems. Chapter 4 is devoted

for the MIT. In this appendix, we presents some methods to determine the state of a

system and the critical value for the MIT. Metallic and insulating states are defined

based on the spectral function (or density of states) at the Fermi level νF . If νF 6= 0,

it is a metal, otherwise there exists an energy gap at the Fermi level and the system

is an insulator.

While this is not a problem in Hartree approximation as the spectra are ob-

tained easily, it is different for DMFT calculation. As described in Section 2.3,the

solution after solving the Hamiltonian is the Green’s functions represented in imagi-

nary time G(τ) or Matsubara frequency G(iωn) because of using CT-HYB impurity

solver, which causes difficulties in determining metallic/insulating state of a system.

Depending on specific situation, we can determine these states in two different ways.

In a direct approach, one checks directly the spectral function for the spectral

weight at the Fermi level. It is however difficult because of the analytical continuation

to obtain the spectra from G(τ) or G(iωn). However, as only the low energy range

near the Fermi level is important, it is sufficient to analytically continue with low
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Figure E.1: A demonstration: the metal-insulator transition for NiO at
U = 8eV, J = 1eV and inverse temperature β = 10eV −1. The bare energy
d level is adjusted by the double counting correction ∆ so that the MIT
occurs. The vertical dashed line marks the Fermi level. The thick black
dashed lines are fitting lines for determining the energy gap. The MIT occurs
as 47eV < ∆ < 49eV . It is insulating for ∆ < 48eV and metallic for ∆ = 48
and 49eV .

QMC statistics data. For an insulating state, the energy gap is interpolated from

fitting the lower and upper band edge near the Fermi level and the MIT point can

be extrapolated from a set of band gaps. Figure E.1 is an example for determining

the MIT directly from the spectral function. In this figure, the MIT occurs when

47eV < ∆ < 48eV . By extrapolating the gap (as a function of ∆) to zero, the critical

value ∆ = 47.4eV for the MIT.

While direct approach is more complicated because of the analytical continuation,

indirect approaches based on results in Matsubara frequency or imaginary time are

simpler. The first method is based on the self energy: ImΣR(ω → 0) = 0 and
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ReΣR(ω → 0) = ReΣ(iωn → 0). The spectral weight at the Fermi level νF is

νF = − 1

π
ImGR(ω → 0)

=
1

N

∑
k

δ (ω + µ− εk −ReΣ(ω))|ω→0

=
1

N

∑
k

δ(µ− εk −ReΣ(ω → 0)).

(E.1)

The system is metallic or νF 6= 0 if ∃k ∈ BZ1 so that

µ− εk −ReΣ(ω → 0) = 0. (E.2)

Otherwise, it is an insulator. As ReΣR(ω → 0) = ReΣ(iωn → 0) ≈ ReΣ(iωn =
iπ

β
),

it is easy to check if ReΣ(iωn =
iπ

β
) belongs to the bands given by εk − µ. This

method however has certain limitations: ĥband(k) should be diagonal which is not the

case in general, and the approximation ReΣR(ω → 0) ≈ ReΣ(iωn =
iπ

β
) may not

work well at high temperature.

The second method is to determine A(ω = 0) from the directly measured imagi-

nary time Green function G(τ) via

β

π
G(τ = β/2) =

β

π

∫
dω

A(ω)

2 cosh(βω/2)
→ A(ω = 0) as T → 0 (E.3)

We identify the material as insulating if βG(τ = β/2) decreases as T is decreased

and as metallic if βG(τ = β/2) increases as T is decreased. The metal insulator

transition point can be estimated from the crossing point in a plot of βG(τ = β/2)

against a parameter such as J at several different temperatures as in Figure E.2.

The direct approach despite is useful as physical quantities such as the energy gap

or the spectral function are obtained, however the analytical continuation requires

time for running if large number of data points is considered. This approach is
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Figure E.2: (Color online) The plot J vs. βG(τ = β/2) at fixed U = 6eV
for CaRuO3 with three different inverse temperature β = 1/T = 3, 5, 7eV −1.
The intersection of the three β-curves gives the critical J = Jc ≈ 1.29eV
for the metal-insulator transition. The vertical dashed line marks the critical
value J = Jc = 1.29eV , separating two regions, insulating and metallic states.

proved to be more powerful and is intensively used in Chapter 4.

For indirect approaches, while we do not use the ReΣ(ω → 0) method because of

difficulties for our study with tilted structure, βG(τ = β/2) can be used but may be

unstable because of the temperature dependence. As in single-site dynamical mean

field theory, the metal-insulator phase boundary has a complicated structure at low

T , with a line of first order transitions emerging T = 0 second order transition at

interaction values Uc2, Jc2 and terminating at a critical endpoint Uc1, Jc1, Tc1, with Uc1

typically 0.8 − 0.9Uc2 and Tc1 very low [Georges et al. (1996)]. With βG(τ = β/2)

method at the temperatures we employ, the metal insulator transition point found

is closer to Uc1 than Uc2. The method also costs more computational time because

it requires calculations for different temperature, it is applied in Chapter 3 because

data for different temperature is already obtained.
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Appendix F

CTQMC impurity solver

The continuous time Quantum Monte Carlo impurity solver (CTQMC) in the hy-

bridization expansion version (CT-HYB) is the main solver that we use for every

work in this thesis. The details of the solver can be found in Werner et al. (2006);

Werner and Millis (2006); Haule (2007); Gull et al. (2011). In this appendix, we only

present some technical notes to run the impurity solver efficiently and obtain reliable

results.

Following Werner and Millis (2006), the impurity Hamiltonian (2.47) is rewritten

as

Himp = Hloc +Hbath +Hhyb +H†hyb, (F.1)

where the “local” Hamiltonian Hloc contains the interaction and the bare energy levels

of the impurity

Hloc =
∑
αβ

h̄αβc
†
αcβ − µ

∑
α

nα +
∑
αβγδ

Iαβγδc
†
αcβc

†
γcδ, (F.2)

Hbath =
∑

k εka
†
kak and Hhyb =

∑
kα V

α
k a
†
kcα; α, β, γ, δ are indices of the impurity

sites (see Section 2.3).

To formulate the formula for Monte Carlo method, one has to write the partition

function Z = Tr[exp(−βHimp] as a sum of all possible configurations. In the hy-
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bridization expansion approach, it can be done by expanding the term Hhyb [Werner

and Millis (2006)]

Z = Tr[exp(−β(Hloc +Hbath +Hhyb)]

=
∑
n

(
1

n!

)2 ∫
dτ1 . . . dτndτ

′
1 . . . dτ

′
n×

× Tr
[
Tτe

−
∫

(H
(τ)
loc+H

(τ)
bath)dτH

(τ1)
hyb . . . H

(τn)
hyb H

(τ ′1)†
hyb . . . H

(τ ′n)†
hyb

] (F.3)

Z ∼
∑
n

∫
dτ1 . . . dτ2n det ∆×

× Tr
[
e−(β−τ2n)HlocO2ne

−(τ2n−τ2n−1)Hloc · · · e−(τ2−τ1)HlocO1e
−τ1Hloc

]
.

(F.4)

The bath fermions a†k and ak can be integrated out exactly as they are only in the

quadratic form, resulting in the determinant of the hybridization function det ∆ in

(F.4). The operators Oi are either c† or c, impurity creation and annihilation oper-

ators. The trace of {Oi} operators is the result of the expansion in Hhyb. The final

form (F.4) is ready for Monte Carlo simulation.

From (F.4), the basic input for the CT-HYB solver contains the hybridization

function ∆(τ), the parameters to control the QMC simulation and the “local” Hamil-

tonian matrix Hloc.

The hybridization ∆ (2.49) is directly obtained from the Weiss field G0. As ∆(τ)

(in imaginary time) is required for the CT-HYB impurity solver while the Matsubara

frequency form ∆(iωn) is necessary for the DMFT self consistent loop. The inverse

Fourier transformation ∆(iωn)→ ∆(τ) needs to be conducted carefully by including

the asymptotes of ∆(iωn) up to
1

ω2
n

in order to obtain a smooth ∆(τ). The number

of time slices τi should be large, e.g. our number of time slices is 10000, which allows

the Fourier transformation of the output impurity Green’s function G(τ), which also

has the same number of time slices, to the Matsubara Green’s function G(iωn) easily

by using simple trapezoidal or Simpson’s rule for integration.
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There are several important parameters to control the QMC process. The first two

parameters are the number of Monte Carlo (MC) measurements N and the number

of MC updates between two consecutive measurements Nm. Because in the MC

process, each random walk of the Markov chain in the configuration space should be

independent to each other. In practice, that correlation exists which is represented

by autocorrelation time measurement. Nm is introduced to reduce the correlation

between two consecutive configurations. The total updates is Nm × N . Depending

on specific situation, N and Nm are adjusted correspondingly. At the beginning,

Nm = 100 and N = 50 × 106 may be chosen and will be adjusted after some test

calculations for an optimized values.

Another QMC parameter is the number of MC measurement for thermalization

NT . QMC solver needs to “warm up” for NT measurements, after that it can produce

relatively independent random walk for the Markov chain independent of the initial

conditions. For most of the cases (intermediate and high temperature calculations),

this parameter is unimportant as the process is thermalized quickly. Only for very low

temperature cases (such as in Figure F.1), the system becomes thermalized slower, NT

should be set more carefully. The inset of Figure F.1 shows the signal for simulation

with not enough thermalization time, the imaginary part of the self energy for the

first Matsubara point deviate away from the thermalized calculation. We think the

value NT ∼ 105 can be a reasonable range of values as it is applicable for a wide range

of temperature and also does not require much computational time.

Depending on the form of Hloc (especially Iαβγδc
†
αcβc

†
γcδ), there are different ways

to speed up the process, mostly based on the conserved quantity (or the operator L̂

which commutes with Hloc). It is because in the simulation, the most time-consuming

step is the calculation of the trace in (F.4). Knowing conserved quantities allows to

block diagonalize Ôn, thus speed up the matrix multiplication and the trace calcula-

tion. In the interaction form that we use in the thesis (2.23) (see also Appendix A
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Figure F.1: An example of the self energy Σ(iωn) from a converged QMC
simulation: a 3-orbital model calculation with rotationally invariant inter-
action at very low temperature T = 0.0025eV for U = 2.3eV, J = 0.4eV
and bandwidth W = 2.5eV . QMC parameters are N = 100× 106, Nm = 50
and NT = 106. The part with ωn > 13 is replaced by the asymptotic curve.
Inset: thermalized calculation (NT = 106) vs. unthermalized calculation
(NT = 300) for the same model and parameters.

for details), assume that h̄αβ is diagonal, there are two cases

1. Rotationally invariant interaction (2.23): first, the total occupancies with spin

up and down N̂↑ and N̂↓ are commonly used as conserved quantities. Recently,

Parragh et al. (2012) found that (n̂α↑ − n̂α↓)
2 for all orbital α are also good

conserved quantities, the use of these numbers can also speed up the calculation

to 2-3 times more for the 3-orbital interaction.

2. Ising interaction (when there are no exchange and pair hopping terms in (2.23)),

[nα, Hloc] = 0 for all α allows very effective block diagonalization. In this special

case, “segment” algorithm [Werner et al. (2006)] is applied which can speed up
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the simulation to more than 5 times (compared with the rotationally invariant

interaction with Nσ conserved number). However, this form of interaction may

give deep landscape in the QMC, especially at low temperature, that traps the

Markov chain in one place in the configuration space, which may require certain

global update to avoid that issue. In the physical sense, it is not rotationally

invariant thus is an approximation to the interaction used in multiorbital sys-

tems.

It is not easy to find a criterion for the convergence of a QMC simulation. In

principle one has to check the QMC error to see if it is smaller than some ε which

is not known, it is also inconvenient as there are 10→ 20 QMC simulations running

automatically for a DMFT calculation. In practice, one can check the output self

energy which has increasingly large QMC error as the frequency increases. Figure F.1

is an example of a QMC simulation which is well-converged. Our rule of thumb is

that the simulation converges when the output self energy for ωn < ωc (we choose

the cutoff ωc = 6 → 7U) has the real part approaches a constant (the Hartree shift)

as
1

ω2
n

and the imaginary part tends to approach 0 as
1

ωn
. The number of QMC

measurements N is adjusted until these behaviors are observed, it will then be used

for the DMFT calculations.
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