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Abstract

Rescaling Capital:

The Potential of Small-Scale and Mass-Produced Physical Capital

in the Energy and Materials Processing Industries

Eric Dahlgren

Observing the evolution of size of physical capital in fundamental infrastructure and pro-

cessing industries such as energy, mining, and chemical processing, etc, over the last century

suggests the prevalence of an unambiguous mantra – “bigger-is-better.” This dissertation

questions some of the underlying arguments supporting this apparent orthodoxy. Moreover,

arguments are put forth highlighting the potential in substantially diverting from this mono-

lithic approach to productive capital and instead focus on a route marked by mass production

of small-scale units. Such a shift would most likely herald transformational technology solu-

tions to industries that have long been considered mature.

One of the underlying drivers for scaling up in unit size rests on the empirical obser-

vation that fixed costs of productive capital generally increase only sub-linearly with size.

Arguments suggesting that this trend, typically referred to as the “two-thirds-rule,” inher-

ently favors a large unit scale on the basis of material consumption are rejected on physical

grounds in this dissertation. With the number of units produced a different form of cost

reduction can be attained – through learning. Classifying technologies as either small or

large based on the number of end consumers, a meta-study concludes that small-scale tech-

nologies learn substantially faster. In fact, comparing the two empirical formulations of cost

reductions that typically accompany scaling up in size and scaling up in numbers reveals



almost identical levels of cost scaling with aggregate capacity.

To investigate the possible existence of operational returns to unit scale a case study in

four different electricity generating technologies in the U.S. (coal, combined cycle, gas turbine

and nuclear) is performed. With only one exception, these technologies exhibit a weak but

significant trend of decreasing operational costs with unit (generator) size. However, this

trend disappears, or is even reversed, once labor costs are subtracted from total cost. Thus,

the relatively recent advent of low-cost automation technologies removes the main impetus

to keep increasing unit scale from the perspective of operational cost. This conclusion from

a statistical analysis of internally very different technologies suggests wider applicability. At

least, it cannot be dismissed outright in other sectors.

Abandoning large-scale and custom-made capital in favor of a small-scale and mass-

produced variety will likely be accompanied by several heretofore new features. Two foreseen

such features are shorter lifetime and lead time of investments. These two features will bring

increased flexibilities of engagement and disengagement in a given market. The introduction

herein of a real options model aims to quantify this flexibility. Among other applications,

the introduced framework can be deployed to estimate the critical investment cost to render

a small-scale solution competitive with a large-scale counterpart of known cost.

A more detailed analysis of reverse osmosis desalination technology is performed from

the perspective of unit scale. Studying transfer phenomena in a thin rectangular channel

with semipermeable walls, simulating the conditions in commercial operation, reveals non-

intuitive conclusions regarding optimal operating conditions in this technology. Not only

would a shorter feed channel (small scale) result in reduced specific energy consumption in

the separation stage, it would also suggest operating at lower recovery rates. The findings

here suggest that operating at a smaller unit scale entails more than simply scaling down

existing process units, rather, all steps need to be reevaluated.
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Chapter 1

Introduction

Are the basic energy and materials processing industries bound to follow their historic general

path of scaling up the size of individual technologies? Based on physical arguments, general

economic arguments, financial arguments and with the help of individual technology case

studies, as the title implies, I posit that there are today no sound arguments why this

question should be answered in the affirmative. In fact, several benefits can be attained

through a paradigm shift towards radically smaller-scale units.

To reduce this question in tractable components it is necessary to first define the key

concept of unit scale. By unit scale, I refer to the capacity of an isolated unit of technology,

e.g. the nameplate rating of a single generator in a power plant, the payload capacity of an

individual mining haul truck etc. Importantly, the unit scale is the scale of the irreducible

functioning component in an industrial implementation. Generally, unit scale thusly defined

is positively correlated with the physical size of the equipment, which allows me to use unit

scale and unit size synonymously unless further specification is required.

Some technologies are associated with a natural scale, or at least bounds on the unit

scale. For instance, the transportation sector finds a natural minimum scale tied to the size

of a human being. The existence of such bounds introduces unavoidable indivisibilities in
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Figure 1.1: Evolution of unit size in chemical processing industry (left), data adapted from (Lieber-
man, 1987), and the size of mining trucks (right), data adapted from (Koellner et al., 2004).

the production of capital goods and a discussion on unit scale gets constrained. However,

the energy and materials processing industries are almost exclusively devoid of such inherent

indivisibilities. This observation makes the discussion of unit scale relevant. More precisely,

while these industries have opted to provide additional capacity by scaling up in unit size,

the underlying tenor in this thesis is the possibility of instead scaling up in unit numbers.

To exemplify the trend of “bigger-is-better”, consider the evolution of unit size in the

two industries/technologies depicted in Figure 1.1. For all practical purposes, the chemical

processing industry (which in the figure comprises the production of 22 different bulk chem-

icals (Lieberman, 1987)) is very different from mine-site ore transportation. Yet they both

have trended towards very large sizes. Similar trends are noticeable in other sectors as well,

suggesting the existence of general forces that favor large unit sizes.

The strategy of scaling up in unit size is often conflated with the strategy of gaining

economies of scale to the point that they are sometimes used synonymously. However, many

of the benefits that are attributed to economies of scale are, in fact, a function of firm-

wide, or even industry-wide activities and not the scale of individual units of production.

This realization calls for a reevaluation of the underlying causes. In this thesis, I will refer to
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Figure 1.2: Large-scale units are by necessity centralized. Small-scale modular units allows for
distributed operation but retains the option of centralization.

economies of unit scale, those benefits that are directly attributable to unit size. An example

of economies of unit scale is the empirical observation that the investment cost in capacity

tends to increase only sub-linearly with size. This observation has been elevated to the form

of a rule, variably called the “two-thirds rule,”“0.7 rule”, names referring to the value of the

exponent in the power law that is used to estimate how cost scale with size. Other benefits

that in the existing paradigm could be attributable to increasing unit scale is increased labor

productivity and increased conversion efficiency.

While the observed economies of unit scale and related cost reductions stemming from

scaling up in unit size certainly are real, other means of cost reductions are available in

industries that scale up in numbers instead. Similar in guise to the empirical rules stipulating

how cost scale with size, learning curves are often used in mass production-oriented industries

to estimate the cost as cumulative production grows. The most famous such example, albeit

formulated slightly differently, is Moore’s law, referring to the observation of a doubling

of component density in integrated electronics every 18 months. More generally, the mass

production process can exhibit exponentially decreasing cost as production increases.

Several benefits that are commonly lumped under the umbrella of economies of scale are
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not inherently dependent on unit scale. For instance, the operational benefits that accrue

with increased centralization come naturally when scaling up, e.g. transportation cost of

inputs and outputs, security, administration, etc. Nothing prevents those benefits to be

garnered by aggregating a large number of small unit in the same location. However, potential

benefits from decentralized operation are only possible if capacity comes in small-scale and

modular units. The computer industry serves as an illustrative example of such benefits.

Being on a trajectory towards increasing unit size, these super-machines suddenly found a

superior competitor in the mass-produced PC and the industry diverted to smaller unit sizes.

Improvements in usability meant that the user herself could tap the ever increasing utility of

electronic devices, making the notion of labor cost moot. Except for consumer products, any

strategy relying on scaling up in numbers is confronted by issues related to increased labor

cost and complexity. Only recently have automation technologies reached sufficient levels of

cost and ability to make this strategy viable.

Currently, custom-made capacity additions in the industries in question are usually pre-

ceded by several years in planning and construction. Once operational, these large-scale

projects require decades of profit generation to reach financial viability. This inertia presents

barriers to entry and consequently arguably also to innovation. In a paradigm marked by

modularity and mass-production, capacity can be dispatched continuously and silo-based,

cost reduction-driven innovation can more easily be replaced by collaborative innovation be-

tween different enterprises opening up new markets and uses. This concept, referred to as

“pull innovation” by Weaver (2008), is much facilitated by a small unit scale.

Technologies that simultaneously exist commercially on both a large scale and on a small

scale are rare. However, to illustrate the potential of mass-production and small scale, the

observation made originally Klaus Lackner in the comparison of the internal combustion car

engine and a single-cycle thermal power plant is thought provoking. Both technologies have
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existed since at least the early 20th century and both perform the same job of converting

chemical energy into mechanical work. Moreover, under ideal conditions they do so at com-

parable efficiencies. These two technologies have two main distinguishing although related

features. First, the car engine has a power rating on the order of 100 kW, whereas the indi-

vidual generator in the power plant has evolved to sizes on the order of 100 MW. Additionally

(and consequently), the small scale of the engine makes it amenable to mass-production and

the large scale of the power plant implies more customized production. Interestingly, the car

engine is about two orders of magnitude cheaper per unit capacity, $10/kW vs. $1000/kW,

(Larminie and Dick, 2003; EIA, 2010).

1.1 Background

While the scope and implications of this thesis extends beyond the traditional purview of

environmental engineering, the main motivation for investigating unit scale finds its roots in

issues closely related to affairs of the Department of Earth & Environmental Engineering.

Controlling mass and energy flows that are relatively dilute on a large scale forces the issue of

unit scale into consideration. For instance, air capture of CO2, likely a necessary technology

to mitigate climate change in the long term, finds no inherent justification for a large unit

scale. Such a technology ought instead be sized according the end use of the CO2, whether

it is sequestration or recycling. Resource extraction is another area which could benefit

from small, modular and distributed operation. Such a trend has recently become visible

with increased attention paid to hydrocarbons trapped in shale formations. However, the

notion extends further. Ore bodies that today are currently too small to develop could see

a resurgence with a paradigm shift to small-scale technologies.

Small-scale technologies have taken hold in the renewable energy sector. Indeed, the ben-

efits of distributed electricity systems powered by renewables have been getting substantial
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attention in recent years, see e.g. Williams et al. (2012); Martinot et al. (2007); Lovins et al.

(2002). By deviating from the old paradigm of large-scale centralized generating stations,

several possibilities arise that are not immediately linked to any one technology, e.g. com-

bined heat and power and smart grids. These kinds of synergistic technology solutions can

be seen as examples of the “pull innovation” mentioned earlier.

Acknowledged as the linchpin to even contemplate small-scale technologies in the en-

ergy and materials processing industries is automation. Moreover, it also recognized that

this term, as used in the context throughout this dissertation, encompasses many different

technologies, e.g. sensor technology, robotics, data communication and responsive networks

(Vrba, 2013; Luo and Chang, 2012; Luettel et al., 13; Petrina, 2011; Mohan and Ponnam-

balam, 2009). Studying these technologies more closely is outside the scope of this work.

Nonetheless, it is here generally assumed that automation, as a strategy to reduce or even

remove human labor, is technically feasible today or in the near future.

Part of this work relates to established neoclassical economic theory of economies of scale,

see (Solow et al., 1966; Panzar and Willig, 1977; Edwards and Starr, 1987). More recent

contributions, (Lipsey et al., 2005; Carlaw, 2004; Tone and Sahoo, 2003), suggesting com-

plementing the notion of economies of scale beyond the concept of the production function

are also reviewed. Engineering aspects of economies of scale, more appropriately referred

to as economies of unit scale, have been examined in part by Srikanth and Funk (2011);

Funk (2010); Jack (2009); Hisnanick and Kymn (1999); Humphreys and Katell (1981). The

concept of learning curves has been studied extensively, see e.g. (Ferioli and van der Zwaan,

2009; Argote and Epple, 1990; McDonald and Schrattenholzer, 2001). Ample data on learn-

ing available in the existing literature made possible a meta study of how learning relates to

unit scale.

The notion of adopting a financial asset pricing framework to value real investments have
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been established for quite some time, see e.g. (Dixit and Pindyck, 1994; Pindyck, 1986;

McDonald and Siegel, 1986). However, actual implementation of real options analysis as a

valuation tool in infrastructure industries, such as energy, is only recently gaining traction.

The framework herein is focused on features of small scale and is therefore a natural extension

to recent studies (Westner and Madlener, 2012; Herder et al., 2011; Frayer and Uludere, 2001;

Kaslow and Pindyck, 1994). Lastly, the contribution made in analyzing the mass transport

and energy consumption in reverse osmosis desalination firmly builds on recently published

work, e.g. (Song, 2010; Greenlee et al., 2009; Guillen and Hoek, 2009).

1.2 Overview

It is the general purpose of this thesis to highlight the possibilities that accompany a small

unit scale. These possibilities are often overlooked due an institutional bias toward large

scale. ‘Scale-up,’ referring to size, is an ingrained concept among engineers, which suggests

that technologies that do not exhibit a propensity for ballooning in size are overlooked.

Instead, any given technology should be investigated and researched without blinders to the

small side of the size spectrum.

This dissertation can considered to consist of two parts. In Chapters 2 through 4, general

economic and technology-agnostic engineering aspects are addressed as they relate to unit

scale. More precisely, the contribution made here is on account of the following questions:

1. Does the ‘two-thirds law’ find support in fundamental physics?

2. Is there a significant difference in learning rates between large and small scale tech-

nologies?

3. To what extent do increased labor productivity and conversion efficiency account for

operational economies of unit scale?
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The first question addresses claims made in the literature that would render a small scale

approach inferior due to increased resource consumption in the production of capital goods.

In Chapter 2, such claims are generally dismissed through a detailed analysis on the basis

of continuum mechanics. Later in the same chapter, the second question is resolved through

a meta analysis on published learning rates for a wide variety of different technologies. By

classifying technologies as either large or small based on the number of end users connected to

individual units, it is concluded that small technologies, on expectation, have a 10 percentage

points higher learning rate. Operational or variable cost are less tractable to address from a

general perspective due to the distinct nature of different technologies. However, a sweeping

discussion on operational cost as they relate to scale, including a simple model illustrating

the potential for distributed operation, is brought forward in Chapter 3. Connected to the

issues of scale-related labor intensity and conversion efficiency, a statistical analysis on the

operational cost in the four main electricity generating technologies is performed in Chapter

4. The main conclusion here is that there are indeed positive operational returns to unit scale

in these technologies. However, these are mainly explained by increasing labor productivity

alone. Once the labor cost is removed these scale economies vanish. The technologies in

this case study are relatively diverse, suggesting that this conclusion can not be immediately

dismissed in other industries.

The second part of this dissertation, Chapters 5 and 6, focuses on the following two

queries:

4. What financial flexibilities arise due to the perceived shorter lifetime and shorter lead

time of mass-produced physical capital?

5. What benefits arise when scaling down reverse osmosis desalination technologies?

A paradigm shift towards mass production of small-scale technologies is likely to entail

capacity with shorter lifetimes and more rapid deployment. This presents the firm with
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increased flexibility to engage a given market due to shorter lead times. It also allows the

firm to more easily disengage without stranding a significant investment meant to last for

decades. To capture these flexibilities a real options model is introduced. This model can

be employed to estimate the critical cost where capital marked by short lifetimes and lead

times (i.e. small-scale technologies) is competitive with its current paradigm counterpart.

To complement the technology-independent tenor in this dissertation, a detailed study of

a specific technology, reverse osmosis desalination, is performed in Chapter 6. The focus is

on the actual separation stage in the process, which is the main energy-consuming step. By

carefully investigating transport phenomena in the cross-flow filtration, it is concluded that

reducing size (shorter feed channels) presents the opportunity of reducing specific energy

consumption in this technology that is foreseen to increase in demand.

The greatest benefits of properly incorporating small-scale thinking will likely be captured

in novel technologies, rather than by scaling down replicas of existing implementations.

However, with no intention of being exhaustive, three specific technologies or technology

classes are briefly reviewed in Chapter 7 (ammonia synthesis, fuel synthesis and mining),

which would benefit from scaling down. The common theme among these technologies is

that they have today evolved into very large unit sizes even though the physics involved

would favor a smaller scale. Moreover, the geographically distributed nature of the inputs

and/or the demand for the outputs in these technologies suggests a propensity for distributed

operation.



Chapter 2

Fixed Costs and Unit Scale

The energy and materials processing industries share one crucial feature; trafficking in com-

modities, they all enjoy complete divisibility of material inputs and outputs. No physical

law outright prohibits natural gas to be extracted, processed and oxidized for electricity

generation one mol at a time. Furthermore, there is nothing that prevents aggregation and

disaggregation of the products at any step. Yet, notwithstanding this extreme example,

the individual process units in these industries have, with only a few and relatively recent

exceptions, evolved into larger and larger sizes. This suggest the existence of general size

economies at work with the consequence that scaling up garners competitive advantages and,

therefore, has dictated technological evolution.

Technical progress, as it relates to the scale of a unit technology, can be viewed as the

confluence of three different forms of innovations according to Sahal (1985). Scaling up (or

down) a process, or a single piece of equipment, consisting of different components requires

structural innovation to accommodate the different internal scaling behaviors. Additionally,

material innovation is typically required to facilitate the physics of the process over different

size ranges. For instance, as will be discussed further below, building larger wind turbines

requires lighter and stronger material in order for the larger structure not to succumb to the
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relentless pull of gravity and other inertial forces. The third form of innovation mentioned

is systems innovation, which is related to the integration of symbiotic technologies.

To this observer, it is very likely, if not even certain, that the relatively recent advent

of low-cost automation technologies has made possible a quantum leap in the last category.

Thirty years ago, the notion of simultaneous control and operation of thousands of parallel

processes was generally not practically conceivable. Today’s ability of distributed computing,

improved sensory technologies and wireless data transmission, to name a few of the many

features involved in automation and robotics, have dramatically altered that view. It is

therefore highly plausible that scaling up in numbers rather than size today offers economies

of scale different from those enjoyed with the scale-up strategy of the last century.

Neoclassical economic theory introduces the concept of economies of scale in terms of

the degree of homogeneity of the production function and the related cost function, see e.g.

(Panzar and Willig, 1977; Solow et al., 1966). This homogeneity measures the response in

output when all production inputs (labor, capital, land, fuel, etc.) are increased with the

same factor λ. Economies of scale, or increasing returns to scale, are said to occur if the

output increases more than the factor λ, and dis-economies of scale are exhibited if the output

scales less than λ. Such an approach overlooks the importance of potential indivisibilities of

the inputs, particularly labor. The economies of scale resulting from indivisibility of labor

was noted already by Adam Smith (Edwards and Starr, 1987) and have arguably been a key

driver of the trend of scaling up in size. At least, this indivisibility has conspired against

scaling up in numbers. This discrimination against large numbers is voided by automation

to a great extent.

Another shortcoming of classical theory is that it tends to conflate the notions of the

firm and the production unit. Indeed, more recent literature suggest expanding the view

on factors effected by scale in production (Lipsey et al., 2005; Carlaw, 2004; Tone and
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Sahoo, 2003). Crucially, the positive economies that can be attributed to the operation

and acquisition of the physical capital, here referred to as economies of unit scale, ought

to be distinguished from those stemming from firm-wide undertakings. Structuring such a

taxonomy on the basis of the physical scale of individual pieces of equipment is complicated

by non-exclusiveness. For instance, the reduced overhead and indivisibilities that accompany

centralization is attained automatically when scaling up in size. However, the same benefits

can be achieved by agglomerating many small units in one location. On the other hand, the

possibility of decentralized operation is only achievable by scaling up in numbers. It is the

goal here to investigate and catalog those attributes that are inherently scale dependent.

2.1 Cost Reductions by Scaling Up in Unit Size

Focusing first on the production cost of capital goods, it is a well-known observation that

many pieces of process equipment increase only sub-linearly in cost when scaling up in size.

A traditional method of estimating the cost k(c) of a piece of equipment with capacity c uses

a power law:

k(c) = kref

(
c

cref

)α
, (2.1)

where kref is the cost of a reference unit with capacity cref . Positive returns to scale in

construction are signified with values of α less than 1. The fact that the scale parameter

α for many different pieces of equipment, as well as aggregated pieces of machinery, has

been estimated in the range 0.6 − 0.8 has deputized the empirical relationship in (2.1) to

the form of a rule with names like “0.6 rule,” “0.7 rule” or sometimes “two-thirds rule,”

frequently occurring in the literature on engineering cost estimates (Humphreys and Katell,

1981; Jenkins, 1997; Euzen et al., 1993).

Several factors contribute to this trend of cost decreasing with size. These are primarily
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the overheads and indivisibilities that go into the production of custom-made capital goods.

Within a given size regime, the fixed cost of planning and design, as well as ancillary compo-

nents like control and monitoring equipment are insensitive to unit size. Spreading out these

costs over a large capacity naturally reduces their contributions on a per unit output basis.

One commonly encountered explanation to the observed scaling law in (2.1) rests on the

geometric relationship between surface area and enclosed volume at different sizes (Srikanth

and Funk, 2011; Funk, 2010; van Mieghem, 2008; Lipsey et al., 2005; Haldi and Whitcomb,

1967; Husan, 1997; Tribe and Alpine, 1986). With capacity typically being proportional to

the enclosed volume, this argument posits that the amount of material, and therefore cost,

necessary to construct the equipment scales with the surface area. Increasing the capacity

with a factor λ3 by uniformly scaling all linear dimensions with a factor λ would consequently

increase cost by λ2, offering a tidy explanation to the often observed values of α = 2/3 in

(2.1).

Were such an argument indeed valid, any strategy that seeks to scale up in numbers

would run afoul in terms of material consumption, a potentially insurmountable constraint.

However, scaling observed in nature indicates critical flaws with this logic, where the bones

of an elephant are disproportionately thicker than those in a mouse. A careful investigation

of the mechanics involved actually reveals that uniform scaling is generally not possible and

that scaling up in size, just like with the elephant, necessitates a dis-proportionate increase

in materials.

2.1.1 Scaling of Linear Elastic Structures

The implications of trying to uniformly scale a solid structure are here investigated from

first principles. The underlying theory can be found in any standard mechanics text book,

see e.g. (Lai et al., 1993). Without making any greater sacrifice to the generality of the
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conclusion, the discussion is here limited to statics. A more detailed presentation, including

the dynamics of the system, can be found in (Dahlgren and Lackner, 2012).

Problem definition

A continuum can be characterized by its material distribution, or density field, in three-

dimensional space. The equations of motion, which in the case of statics merely take the

form of a force balance, can be stated as

∂iσij + Fj = 0, (2.2)

where σ is the stress tensor and where F denotes the body forces, e.g. gravitational. Consid-

ering the continuum as a solid structure, the stresses throughout the solid depends on ma-

terial properties. More generally, when the structure is subjected to forces, internal and/or

external, strains will appear in the solid. The structures of interest here are engineered pieces

of equipment designed to operate within the elastic limit. That is, a structure operated in

the elastic regime will revert back to its original shape once the applied forces are removed.

If a particle of this distribution originally is located at x0, the position x(x0) of the same

particle after the structure is distorted can be described with the help of the displacement

field u = x(x0)−x0. Most materials encountered in practice exhibit a linear elastic behavior,

and the displacements under normal operation can be considered very small. Under those

conditions, the stresses and strains in the structure are given by

 σij = Cijklεkl,

εij = 1
2

(∂iuj + ∂jui) ,
(2.3)

where the strain, expressed through the tensor ε, is related to the stresses by the elasticity

tensor C. The partial differential equation in u given by (2.2)-(2.3) is defined on the do-
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main U , with boundary ∂U . To completely describe this problem, boundary conditions are

required. These conditions are typically of both Neumann and Dirichlet type

 σ(x)~n(x) = T (x), x ∈ ∂UT ,

u(x) = u(x), x ∈ ∂Uu,
(2.4)

where a traction, or normal contact force, T is specified on one part of the boundary UT

and where the displacement is given on the complementary part Uu. Equations (2.2)-(2.4)

completely determines the problem of static deformation of a body in the linear elastic

regime. Note that no conditions on isotropy of the material have been specified, i.e. both ρ

and C are both allowed to vary over U .

The scaled problem

Given a structure contained in U , subject to equations (2.2) - (2.4) and permitting a solu-

tion u, the goal is now to investigate the behavior of a similar structure where all spatial

dimensions are scaled by a factor λ. The scaled structure occupies the domain Uλ. The

definition of a scaled domain can be made precise by imposing that any function f̃ defined

on Uλ satisfies

f̃(ξ) = f̃(λx), (2.5)

where ξ ∈ Uλ and x ∈ U . The purpose is to study geometrically similar structures subjected

to identical operating conditions. These operating conditions are expressed primarily through

the traction on the boundary, but conceivably also through the body forces if the process

carries a significant electromagnetic signature. A poignant example is the chemical reactor in

which the pressure (and temperature) is a parameter that affects the reaction conditions and

therefore has to be kept constant. Since the discussion is predicated on uniform scaling using

the same material, the material properties embodied in the density field and the elasticity
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tensor should also be identical. Consequently, the scaling performed in (2.5) gives rise to a

physically different system.

As a matter of definition, a function f̃ on Uλ is said to be generated by a function f on

U if

f̃(ξ) = kf(x), (2.6)

where k is some constant. If k = 1, then f̃ is said to be unitarily generated by f . From

(2.5) and (2.6) it follows that the spatial derivatives of a generated function evaluate to

∂if̃ |(ξ) =
k

λ
∂if |(x), or simpler, ∂if̃ =

k

λ
∂if. (2.7)

With these definitions, a uniformly scaled structure, using the same material, is one where

both density ρ̃ and the elasticity C̃ on Uλ are unitarily generated by their respective coun-

terparts on U . Moreover, keeping the boundary conditions constant implies that also T̃ (ξ) =

T (x). With these restriction the scaled problem on Uλ can still be given in its general form:



∂iσ̃ij + F̃j = 0,

σ̃ij = C̃ijklε̃kl,

ε̃ij = 1
2

(∂iũj + ∂jũi) ,

σ̃~n = T̃ ,

(2.8)

where the Dirichlet boundary condition has been omitted.

Choosing a solution candidate ũ(ξ) = λu(x), where λ is the spatial scaling coefficient,

leads to the same strain as in the original problem. This can be seen using (2.7),

ε̃ij(ξ) =
1

2
(∂iũj(ξ) + ∂jũi(ξ)) =

1

2

(
λ

λ
∂iuj(x) +

λ

λ
∂jui(x)

)
= εij(x). (2.9)

That is, the strain ε̃ is unitarily generated by ε and if the original structure was operated
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within specified safeguards then the same would apply to the scaled structure. Consequently,

from (2.9) it follows that the stresses are unitarily generated as well:

σ̃ij(ξ) = C̃ijkl(ξ)ε̃kl(ξ) = Cijkl(x)εkl(x) = σij(x). (2.10)

This means that the pressure boundary condition in (2.8) is also satisfied, leaving only the

force balance of the scale system to be verified. Assuming that the body forces are generated

according to F̃ (ξ) = aF (x), the force balance can be stated as

∂iσ̃ij + F̃j =
1

λ
(∂iσij + λaFj) . (2.11)

Thus, the candidate ũ(ξ) = λu(x) is indeed a solution to the scaled problem provided that

a = 1/λ.

A physical interpretation of the result above is that as long as body forces decrease with

the same factor as the spatial dimensions increase, a body can be scaled up and subjected

to the same boundary conditions while exhibiting identical strains. Another case where the

solution ũ(ξ) = λu(x) still holds is in the limit where boundary forces are of such a magnitude

that body forces can be neglected. This would be the situation in some practical situations

as e.g. high-pressure vessels. However, in most engineering applications, body forces are

non-negligible. Moreover, since these are typically gravitational, scaling them down is not

possible when using the same material. Note that if either body forces can be scaled down

or ignored, the amount of material used is in the scaled structure is still

∫
ρ̃dUλ = λ3

∫
ρdU .

That is, the amount of material scales with the volume and not, as suggested in existing

orthodoxy, with surface area λ2. In fact, if body forces are gravitational it seems likely that
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a scaled-up structure need to be augmented in the structural elements to be able hold the

increased weight. Thus, whenever body forces like gravitational forces matter, scaling up

comes at a price and symmetric scaling is not possible. Wall thickness increases faster than

volume, and typically, there comes a point where the system cannot be made any larger.

Only by employing lighter and stronger materials has this “scale frontier” has been pushed

to larger sizes (Lieberman, 1987; Levin, 1977).

Expounding on the idea of structural innovation made by Sahal (1985) further questions

the validity of uniform scaling, and consequently also the veracity of the explanations to

the observed scaling behavior of cost as a function of surface area to volume ratios. Men-

tioned in his work is the observation that larger organisms need increased differentiation of

internal functionality. For instance, with the amount of respiratory tissue scaling with the

cube of the linear dimension, the capacity for gas transport is a surface phenomenon and

therefore scales only with the square of the linear dimension. This warranted the evolution

of respiratory organs in larger animals, a functionality that is not required in smaller organ-

isms. The same analogy can be extended to industrial equipment getting increasingly more

complicated when increasing the unit scale. Housing a strongly exothermic reaction, large

reactors generally require internal heat exchangers to maintain process conditions. Smaller

reactors can potentially shed the generated heat through the reactor walls.

In summary, while uniform scaling is shown to be infeasible, increasing equipment size in

many cases is accompanied not only by increased material consumption for the mechanical

members but also for increased complexity. It may be empirically true that more effort has

gone into improving large units and that they therefore operate closer to the mechanical

optimum compared to smaller pilot sized units. Also, indivisibilities in certain components

and labor during production could partly explain the observed relative reductions in material

consumption and labor required when scaling up. However, this is not an inherent physical
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phenomenon and could therefore be addressed if the focus is on scaling up in numbers rather

than unit size.

2.2 Cost Reduction Through Learning

The notion that production costs decline over time dates back almost a century to the

analysis by the aeronautical engineer Wright (1936). More specifically, in the production

of airplane frames, Wright predicted that the labor required to produce the Nth frame is

proportional to N−1/3, see (Arrow, 1962). Later studies isolated the effect of productivity

increases by studying processes were no new capital investments were made. The so called

‘Horndal effect’, coined by Lundberg (1961), describes a 2% annual productivity increase

over a period of 15 years at a Swedish steel mill despite being “neglected from a capital

investment perspective”during the same period. The offered explanation for such an increase

in productivity included training of work force, improved working conditions and improved

organization. Indeed, subsequent studies argue that this form of learning should be viewed

as a managerial possibility to increase productivity (Lazonick and Brush, 1985; Dutton and

Thomas, 1984). Conversely, as mentioned by McDonald and Schrattenholzer (2001), learning

might reverse itself if a process is stalled over longer periods of time. Rather than experiencing

a decrease in cost, such processes may exhibit increases in cost over time.

In addition to labor productivity gains and accumulation of experience, the incorporation

of exogenous technological improvements in new capital equipment also tend to result in cost

reductions over time. Such effects were investigated by Arrow (1962), who acknowledged the

Horndal effect but posited that capital goods had a fixed productivity once installed. In his

study, the cumulative gross investment, rather than time or output, served as an index of

experience and learning. Importantly, such an approach would include benefits of economies

of unit scale mentioned earlier. That is, cost reductions that ensue simply by increasing unit
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size would be attributed to learning as well.

Following more recently published work , see e.g. (Ferioli and van der Zwaan, 2009;

McDonald and Schrattenholzer, 2001; Argote and Epple, 1990), the effect of learning will

here be expressed as a cost decrease for every doubling of cumulative production. That

is, denoting the cost of the nth unit produced kn, the cost decrease through learning ε is

expressed as

k2n

kn
= ε. (2.12)

The learning parameter ε is sometimes called the progress ratio in the literature. Also,

references will be made to the learning rate (LR), defined by 1−ε. For example, a technology

with a learning rate of 15% experiences a cost reduction of the same fraction every time

cumulative production doubles. Given the cost of the first unit, kref , and the learning rate

1− ε, future costs can be forecast by

kn = krefε
log2 n = krefn

log2 ε. (2.13)

Such a semi-continuous approximation, akin to the one presented by Wright discussed above,

give rise to the so-called learning curve.

This use of learning curves and imputed learning rates is frequently employed when

trying to forecast future cost of various energy technologies, see e.g. (Kim and Chang, 2012;

Lindman and Söderholm, 2012; Neij, 2008). Based on past cost data, learning rates can be

found, and with them, the amount of time and investment necessary to reach a certain cost

target can be estimated. One of the most famous example of such an analysis regards the

production of PV modules, see Figure 2.1. With remarkable accuracy the production of PV

modules is seen to follow a 20% learning curve.

Using a relatively simple one-factor model of learning, like the one in (2.12), combines
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Figure 2.1: Observed price decline of PV modules during the period 1968-1998 as function of global
cumulative production Harmon (2000). Figure from Ferioli and van der Zwaan (2009), courtesy of
Elsevier.

the effect of a large number of factors. In addition to possible benefits of scaling up, these

factors include process innovations and the various types of learning effects mentioned. Some

models attempt to endogenize technological change by also including an index of R&D expen-

ditures by the firm or the industry as a whole, see e.g. (Castelnuovo et al., 2005). However,

the vast majority of published studies have converged on the use of the model in (2.12).

Lastly, it should be noted that such a model treats intergenerational products equally. For

instance, when studying the production of color television sets, the added utility of remote

control, larger screens etc, are not captured but are still included in the cost. Similarly,

larger scale energy technologies like coal-fired generation have over the past decades been

forced to include various environmental mitigation technologies. Compared to previous im-

plementations, these added features are typically not factored out when studying cost over

a longer timespan.
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2.2.1 Scale Dependence on Learning Rates

It has been noted in the literature that large-scale technologies generally exhibit lower learn-

ing rates than small-scale technologies (Neij, 1997; McDonald and Schrattenholzer, 2001).

However, this observation is made in passing without any clear distinction of the difference

between large and small technologies. Furthermore, as far as it is known to this observer,

no claims have been brought forward in the literature regarding the statistical significance

of such a difference, nor any quantification of the same.

In this section, a classification of large and small scale technologies is introduced. With

such a classification and with ample data on learning curves for many different technologies

available in the literature, a meta study on the influence of scale is possible. Specifically, with

meaningful sample sizes, a statistical hypothesis test can be performed whether the samples

of learning rates for small and large-scale technologies are drawn from the same distribution.

Rejection of such an hypothesis would statistically solidify the difference in learning between

large and small. Also, the difference between the respective sample mean can serve as an

indicator of the difference in learning rates between the two broad classes of technologies.

A major part of the methodology of this study is the classification between large-scale

and small-scale technologies. The classification made here is based on the number of end

consumers that reasonable can be assumed to utilize the service or output of a single unit of

the technology in question. Specifically, a unit designed to provide output or use for less than

100 consumers is labeled small. To make a clear distinction from small-scale technologies,

those technologies that are produced on a scale where more than 10,000 end consumers

can be tied to a single unit are labeled large. For instance, with a per capita electricity

consumption at a rate of 1kW (this figure is slightly higher in the U.S. but lower in the rest

of the world), those electricity generating technologies that are made with unit capacities

less than 100 kW (e.g. PV modules) are considered small scale. Conversely, power plants
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with generators of capacities above 10 MW are considered large. In this specific technology

class, it can be noted that wind-power technologies, which are extensively studied from a

learning-curve perspective, see e.g. (Lindman and Söderholm, 2012; Junginger et al., 2005),

and which typically have generator sizes on the scale of 1 MW are considered intermediary,

and hence are not included in this study.

Data in the literature generally include, in addition to an estimated learning rate, a

specification of the technology and a time period, as well as a geographical region, over which

data has been collected. For the large-scale technologies, learning is sometimes stated both

in terms of labor productivity (or variable cost decline) and investment cost. In those cases,

only the learning rate referring to the investment cost is used. Since most of the small-scale

technologies are consumer products, the notion of labor cost is moot. The learning rates for

small-scale technologies is therefore presented either in terms of unit price or unit production

cost. For a complete presentation of the small and large technologies, as well as their learning

rates, see Tables 2.1 and 2.2.

Since some technologies are studied more frequently than other, e.g. PV modules, there

is a tendency for over-representation of some technologies in the literature on learning. In

order to consider the rates included in the samples as distinct and independent, the following

methodology was implemented. Two technologies with the same specification studied in the

same, or overlapping, regions but over different time periods are considered distinct and both

rates are included. An example of such an instance is ‘Refrigerators’, which can be seen to

enter twice in Table 2.1. Similarly, two or more instances of the same technology studied

over similar time periods but separate geographic regions are also considered distinct, and

all of them are included, as is the case for ‘Ethanol’ in USA and Brazil, see Table 2.2. These

criteria are justifiable since production techniques generally vary over time and, albeit to a

lesser extent perhaps, between continents. When the time periods overlap partially, with
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similar specification and geographical origin, their average learning rate is used, see e.g.

‘Lignite conventional’ in Table 2.2. Lastly, if one time period includes the other, only the

reported learning rate studied over the longer time period is used. This choice is motivated

by the assumption of greater accuracy the more data were available for the study in question.

The sample population of small-scale technologies included 41 learning rates with a sam-

ple mean of 20.5% and a standard error of 9.5%. The population of large-scale technologies

included 26 different learning rates with a sample mean of 10.8% and a standard error of

8.1%. By employing a Kolmogorov-Smirnov test1, the hypothesis that the two samples are

drawn from the same distribution can be rejected with a significance level greater than 99%.

While this test is non-parametric, fitting the two samples to normal distributions with the

respective mean and variance parameters provides a good fit in both cases and also illustrates

the difference between the two samples, see Figure 2.2.

The above analysis suggests that the difference in learning of large and small technologies

is indeed statistically significant. Moreover, smaller technologies on average learn 10 per-

centage points faster when considered as cost decrease versus cumulative production. Note

that this difference includes any cost reductions that may be attributed to the scaling up of

individual units, a feature arguably present only for the large-scale technologies.

There are several reasons why one would expect higher learning rates for smaller scale

technologies. For instance, these technologies are generally mass produced in controlled envi-

ronments that allow for continuous improvements of the process. Moreover, the incorporation

of exogenous technological improvement, either in the materials used or in the production

method, is arguably easier to facilitate gradually over time. Conversely, units of large-scale

technologies generally come online at less frequent intervals. As mentioned, such a time lag

1Letting Fn(x) and Gm(x) denote the empirical cumulative distribution functions of the two samples,

the test statistic Dmn =
(
mn
m+n

)1/2
supx |Fn(x)−Gm(x)| can be checked against critical values of the

Kolmogorov-Smirnov distribution. This test was implemented using the Matlab routine kstest2, giving
a p-value of 5.6 · 10−4.
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Specification LR(%) Time Region Reference

AC 10 1972-1997 Japan Weiss et al. (2010a)
Room AC 23 1958-1993 USA Weiss et al. (2010a)
Central AC 24 1967-1988 USA Weiss et al. (2010a)
Dishwashers 10 1947-1968 USA Weiss et al. (2010a)
Freezers 13.3 1970-2003 Global Weiss et al. (2010a)
Laundry dryers (electric) 6 1950-1961 USA Weiss et al. (2010a)
Laundry dryers 27 1969-2003 Global Weiss et al. (2008)
Refrigerators 7 1922-1940 USA Weiss et al. (2010a)
Refrigerators 9.1 1964-2008 Global Weiss et al. (2010b)
TVs B&W 22 1948-1974 USA Weiss et al. (2010a)
TVs Color 7 1961-1974 USA Weiss et al. (2010a)
Washing machines 33 1965-2008 Global Weiss et al. (2010a)

Ford (model T) 14 1910-1926 USA Weiss et al. (2010a)

DRAM 20.3 1974-1992 Global Irwin and Klenow (1994)
4-Function calculators 30 1970s USA Weiss et al. (2010a)
Hand-held calculators 26 1975-1978 USA Weiss et al. (2010a)
Digital watches 26 1975-1978 USA Weiss et al. (2010a)
Sony laser diodes 23 1982-1994 Japan Weiss et al. (2010a)
Integrated circuits 26.3 1962-1972 USA Weiss et al. (2010a)
MOS/LSI 20 1970-1976 USA Cunningham (1980)
MOS dynamic RAM 32 1973-1978 USA Cunningham (1980)
Disk memory drives 32 1973-1978 USA Cunningham (1980)

Modular-electronic CFLs 20 1992-1998 Global Weiss et al. (2010a)
Integral-electronic CLFs 16 1992-1998 Global Weiss et al. (2010a)
Modular-magnetic CFLs 41 1992-1998 Global Weiss et al. (2010a)

PAFC 25 1993-1998 n/a Whitaker (1998)
PEMFC 30 2002-2005 n/a Schoots et al. (2010)
SOFC 33.7 n/a n/a Rivera-Tinoco et al. (2012)

Electrolysis (hydrogen) 18 1972-2004 n/a Schoots et al. (2008)

Magnetic ballasts CFLs 16 1981-1988 USA Weiss et al. (2010a)
Magnetic ballasts CFLs 41 1990-1993 USA Weiss et al. (2010a)
Magnetic ballasts FLs 3 1977-1993 USA Weiss et al. (2010a)
Electronic ballasts CFLs 13 1986-1998 USA Weiss et al. (2010a)
Electronic ballasts FLs 11 1986-2001 USA Weiss et al. (2010a)

PV panels 22 1959-1974 USA McDonald and Schrattenholzer (2001)
PV modules 21 1976-1992 Japan Neij (2008)
PV modules 20 1976-1992 USA Neij (2008)
PV BoS 20.5 1992-2001 EU Neij (2008)

Heat pumps 32.5 1980-2004 EU Weiss et al. (2010a)
Condensing gas boilers 4 1992-1999 Germany Weiss et al. (2010a)
Condensing combi boilers 14 1988-2006 Netherlands Weiss et al. (2008)

Table 2.1: Learning rates of small-scale technologies. Population size – 41, sample mean – 20.5%,
standard error – 9.5%. Over-lined entries denote average values and the years in these instances
signify the total time span of the studies.
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Specification LR(%) Time Region Reference

Electricity from biomass 28.25 1980-1998 Global Kahouli-Brahmi (2008)
CHP biomass 11 1990-2002 Sweden Junginger et al. (2006)
FB boilers 8.5 1975-2002 Global Junginger et al. (2006)

CFC subst. 7 1988-1999 n/a Laitner and Sanstad (2004)

Conventional coal 8.8 1975-1998 Global Kahouli-Brahmi (2008),
McDonald and Schrattenholzer (2001)

Lignite conventional 6.04 1975-2001 Global Kahouli-Brahmi (2008),
McDonald and Schrattenholzer (2001),
Jamasb (2006)

Pulverized subcrit. 6 1942-1999 Global Yeh and Rubin (2007)
Pulverized supercrit. 4.83 1942-2010 Global Yeh and Rubin (2007),

McDonald and Schrattenholzer (2001),
Jamasb (2006),
Winkler et al. (2009)

CCGT 11.02 1981-1998 Global McDonald and Schrattenholzer (2001),
Jamasb (2006)

CHP 0.23 1980-1998 Global Kahouli-Brahmi (2008)

Ethanol 20 1975-2004 Brazil Van Den Wall Bake et al. (2009),
Ethanol 13 1980-2005 USA Hettinga et al. (2009)

Gas pipelines (on-shore) 3.7 1984-1997 USA McDonald and Schrattenholzer (2001)
Gas pipelines (off-shore) 24 1984-1997 USA McDonald and Schrattenholzer (2001)

Gas turbines 13 1958-1980 Global McDonald and Schrattenholzer (2001)

Hydro power 1.68 1975-2001 Global Kahouli-Brahmi (2008),
Winkler et al. (2009)

Coal gasification -7 1942-2002 Global Schoots et al. (2008)
SMR 11 1960-2003 Global Schoots et al. (2008)

O2 production (cryogenic) 10 1980-2003 Global Rubin et al. (2007)

LNG cryogenic 20 1972-2003 Global Rubin et al. (2007)

Nuclear power 21.05 1975-1998 Global Kahouli-Brahmi (2008),
McDonald and Schrattenholzer (2001)

Oil extraction (off-shore) 25 n/a North Sea McDonald and Schrattenholzer (2001)
Oil extraction (at well) 5 1869-1971 n/a McDonald and Schrattenholzer (2001)

Scrubbers FGD 13 1976-1995 Global Riahi et al. (2004)
Scrubbers SCR 14 1983-2000 Global Yeh et al. (2005)

Solar Thermal 2.2 1985-2001 n/a Kahouli-Brahmi (2008)

Table 2.2: Learning rates of large-scale technologies. Population size – 26, sample mean – 10.8%,
standard error – 8.1%. Over-lined entries denote average values and the years in these instances
signify the total time span of the studies.
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Figure 2.2: Q-Q plot of normal distributions of the learning rates for small and large technologies.
A Kolmogorov-Smirnov test rejects the hypothesis that the two samples come from the same dis-
tribution. Importantly, the average learning rate of small-scale technologies is 10 percentage points
higher than for large-scale technologies.

can erode learning accumulated within a firm, e.g. through labor turnover, further suggesting

that larger scale technologies might exhibit lower learning rates.

It should be acknowledged that there possibly is an inherent bias towards higher learning

rates overall when performing a meta study of this kind. Studies of technologies where

little or no learning occurs are likely to attract less attention, with some exceptions, see

e.g. (Schoots et al., 2008). However, since such a bias is likely to affect both large and

small technologies, it should not substantially affect the conclusion of this study that smaller

technologies learn at a higher rate.

2.3 Economies of Unit Scale vs. Numbers

In the previous sections, two distinctly different strategies of reducing fixed cost were investi-

gated: scaling up in size and scaling up in numbers. Using the expressions in (2.1) and (2.13),

the total cost of providing the same nominal capacity can be estimated in both scenarios.
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That is, given a reference unit of capacity cref and cost kref , this unit can either be scaled to a

capacity Ncref or reproduced N times with the same resulting aggregate capacity. The cost

k(Ncref) of the scaled up version is straightforward to retrieve from (2.1). By integrating the

learning curve in (2.13), the total cost K(N) of the modular system can be found. These

two estimates can be stated as

k(Ncref) = krefN
α, (2.14)

K(N) =
kref

1 + log2 ε
N log2 ε+1. (2.15)

Mentioned in Section 2.1 were the empirically observed values of the scale parameter α in

the range of 0.6 to 0.8. In Section 2.2, it was concluded that small-scale technologies, which

this reference unit is supposed to be, on average learn at a rate of ε = 80%. At such a

learning rate, the exponent in (2.15) evaluates to log2 ε + 1 = 0.7. The conclusion is that

log2 ε+ 1 ≈ α, and hence the reduction in fixed cost stemming from scaling up in size is on

par with the cost reduction of scaling up in numbers.

The premise that scaling up in size inherently reduces material consumption over scaling

up in numbers was rejected in the previous section. Observing similar scaling laws for the

two strategies then invites the question whether the cost savings have the same underlying

causes. Indeed, exploiting indivisibilities in production has been suggested to account for

economies of scale both when scaling up in size and in numbers. However, the investiga-

tion of learning suggests another difference. Smaller scale technologies are produced in a

more continuous fashion which more easily allows for gradual incorporation of exogenous

technology improvement.

The capital allocation in the two strategies exhibit a crucial difference as well. In a

large-scale scenario, the investment is typically considered sunk since alternative uses for

this capital is scarce. For small-scale technologies, the main investment is upstream of the
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end product, generally in mass production facilities. These facilities can to a greater extent

be retooled, thereby allowing for re-purposing of the capital. As mentioned in (Bernard

et al., 2006), by an overwhelming majority, U.S. manufacturing firms that have switched

products have done so using existing facilities rather than constructing new plants. The

possibility of such flexible manufacturing allows for exploitation of possible indivisibility of

upstream capital itself. The financial flexibility that arise for the section downstream of this

mass-production step are further addressed in Chapter 5.

Another scale-dependent feature that enters into the fixed cost discussion is redundancy.

That is, failure of a single component in a large-scale technology risks total loss of output. In

a modular setting, a similar failure would only translate into a partial outage. As exemplified

by Göçmen in (Dahlgren et al., 2013), if the possibility of critical failure are independent

among similar process units, scaling up in size entails carrying more excess capacity to ensure

the same level of overall availability. Conversely, the level of reliability of individual units in a

modular setting can be reduced without sacrificing aggregated availability. Diversifying risk

of critical failure among many parallel systems allows for further cost reductions, through

less strict quality control, of small-scale technologies.



Chapter 3

Variable Costs and Unit Scale

Viewing process capacity as a black box, empirical observations discussed previously suggest

that the strategies of scaling up in size and scaling up in numbers require comparable levels

of up-front investments. Variable costs, on the other hand, are not as easily extrapolated into

general trends across different technologies. Instead, this chapter strives to point to general

features of labor productivity, conversion efficiency, and their scale dependence, which is

further explored in the case study on U.S. electricity generating technologies in the following

chapter. Moreover, based on the demonstrated equivalence in capital cost reductions when

scaling up in size and scaling up in numbers, a simple model is introduced that demonstrates

how the inclusion of transportation costs can impact the optimal size of a given technology.

3.1 Labor efficiency

Adam Smith notes in his discussion on the application of labor, “... everybody must be

sensible how much labour is facilitated and abridged by the application of proper machinery.

It is unnecessary to give any example” Smith (2000). Despite this comment, it should be

mentioned that unit scale, as it influences labor productivity, has been studied in relevant
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industries (Garcia et al., 2001; Baily et al., 1985; Levin, 1977). The rather natural conclusion

is that increasing the size (capacity) of a piece of machinery entails approximately zero

marginal operating labor. One component of the overall economies of scale witnessed in

commodity-based industries is therefore increased labor productivity. However, increased

productivity offers diminishing returns with ever increasing sizes, as illustrated in the case

of electricity production in the next chapter.

Scaling up in numbers rather than unit size would historically not be accompanied by

similar increases in labor productivity. Rather the opposite, without automated control and

operation, achieving stable output would have been a daunting task in a highly modular

setting. Historically, labor can be posited as a discriminant against small-scale technologies,

with one exception. Virtually all the small-scale technologies surveyed in the previous section

on learning rates are consumer goods, or parts thereof. The notion of labor cost attached

to the operation of these technologies, e.g. integrated circuits in personal computers, is

subsumed in the utility of the user.

An alternative to reducing labor by either scaling up or shifting this factor input to the

user is to employ automation. Undeniably, every technology faces different circumstances,

and in some instances complete automation might not be feasible with today’s technology.

However, the progress made in sensor technology, robotics, data communication and network

capabilities of automated agents, to name a few of the many facets that go into the umbrella

concept of automation technologies, have made automation a viable strategy (Vrba, 2013;

Luo and Chang, 2012; Luettel et al., 13; Petrina, 2011; Mohan and Ponnambalam, 2009).

As discussed by Göçmen and van Ryzin in (Dahlgren et al., 2013), automation has already

today changed various industry dynamics and increased service that would have been too

costly with manual labor, e.g. ATMs, electronic check-ins for flights and car-sharing services

such as Zipcar. Moreover, the previously mentioned individual technologies have also made
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it possible to operate in inhospitable environments through remote control. Monitoring

conditions in leaking oil wells and failing nuclear plants are two unfortunate yet notable

examples. In summary, automation technologies can now, with little or no imagination, be

deployed to partially or completely remove the need for human labor in continuous operation.

Rather than an insurmountable technology barrier, automation can therefore be considered

as an added fixed cost in the production of the technology component.

3.2 Conversion efficiency

The underlying physics of a process sometimes strongly favors a certain size in terms of

conversion efficiency, defined as a ratio of inputs to desired output. The charge transfer in

electronic components in computers is a process that clearly favors a small scale. Since the

desired output here can be thought of as a binary change in electrostatic potentials across

a circuitry, smaller components can achieve this with reduced ohmic heat and consequently

reduced need for constant cooling. On the other hand, hot and cold storage favor large unit

scales since heat losses scale with the surface area of the containment.

In general, when the capacity of a process can be related to the magnitude of convective

transport or inertial motion, efficiency is typically benefited by a large unit scale. This can

be related to a decreasing surface area to volume ratio. Consider, for instance, the convective

transport of a fluid, perhaps with a valuable enthalpic content. Losses through friction and

conductive heat transfer are surface area phenomena which decrease disproportionately to

capacity when scaling up a unit in size. Likewise, the resistive losses in a conductor decreases

with cross-sectional area. Similarly, when capacity is related to the inertial motion, e.g. a

spinning shaft or the linear motion of a ship, the dissipative frictional losses scale with the

surface area.

An entire process unit is however seldom composed of merely one process of the type men-
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tioned above. While size may serve as a qualitative indicator of efficiency, the magnitude of

efficiency gains (or losses) by scaling have to be evaluated case by case. The comparison of

efficiencies in a large-scale single cycle power plant and in a small-scale internal combustion

engine serves as a case in point. The car engine can under optimal conditiona attain effi-

ciencies in the range of 30-35%, which is comparable to the efficiency of most steam plants

(White et al., 2006).

This example also serves to highlight a crucial distinction between optimal conditions

and practical conditions. Most pieces of industrial equipment exhibit variable efficiency with

output. The time spent outside the designed operating parameters, such as transitioning from

cold start to optimal conditions in power generation, acts to decrease the overall efficiency.

The same inertial forces that favor large scale in terms of efficiency also tend to make the

technology less able to respond to variations in demand. If the output of a process can be

easily stored, then the process unit can be shielded from outside demand fluctuations. If not,

as is currently the case with electric power, varying output of a single unit can decrease the

average efficiency substantially from the efficiency in optimal conditions. A modular facility

comprised of many small units that each have a lower efficiency under optimal conditions

compared to a large unit may yet provide higher average efficiencies since demand variability

can be met with individual units ramping up or down in sequence.

Lastly, the importance of physical efficiency depends strongly on the cost of inputs. If

these costs are negligible, as is typically the case with renewable power generation, then the

notion of efficiency is almost moot.

3.3 Locational flexibility

Small unit scale offers the possibility of distributing operation compared to the large-scale

technologies. In the case of electricity generation, the potential benefits are well-documented,
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see e.g. (Pepermans et al., 2005; Lovins et al., 2002). In addition to increased reliability

that comes from ability to detach from the grid, the main benefit comes in the form of

reduced transportation cost, both of electric power and possibly also of heat. The reduced

transportation cost is a feature that can be extended to a wider class of technologies. More

specifically, the following rather simple cost model illustrates how decentralization interplays

with unit scale.

The agent in this model is a firm that produces a good and services a large area Atot

with uniformly distributed and constant demand. With a uniform demand density, the area

A serviced by a single production facility is proportional to its capacity, suggesting that the

capital cost is a function of A. The other area-dependent cost is the transportation cost of

the output from the plant to the consumer. All other costs are assumed to be negligible

or independent of the area1. Based only on capital and transportation costs, the firm is to

determine how large an area, A, each individual facility should serve.

With capacity being proportional to the area A, the cost k(A) of a facility can be esti-

mated using the power law in (2.1):

k(A) = kref

(
A

A0

)α
,

where kref is the cost of a reference facility servicing an area A0. Rather than scaling up a

single facility in size to serve a large area, the firm can opt to mass produce capacity and

distribute it over N = Atot/A locations. Assuming this can be done at a learning rate 1− ε

(see section 2.2) the total capital expenditure to provide capacity for all of Atot can be stated

as

k(Atot) = k(A)N1+log2 ε = k′ref

(
A

A0

)−γ
,

1This would be the case if the inputs can be sourced locally, e.g. from the ambient environment or if the
transport of the inputs occurs infrequently enough to render their shipping cost much smaller than that of
the output
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where the notation γ = −(α − (1 + log2 ε)) is introduced for brevity. The total capital

expenditure can be distributed over the total output, giving a capital cost contribution per

unit output of

KC(A) = ηk(Atot) = KC(A0)

(
A

A0

)−γ
. (3.1)

With this cost, the conversion from capital cost to the contribution per unit output is included

in η. Such a conversion includes several parameters, including the lifetime of the plant. As

mentioned in Section 2.3 typical values for the scaling parameter α ranges between 0.6 and

0.8, and the learning parameter ε around 0.8. Combined, this suggests that γ is close to

zero.

Turning to the transportation cost per unit output, KT (A), it is reasonable to assume that

this cost is increasing in A. This assumption stems from the expectation that transportation

cost do not decrease with the shipping distance. On the other hand, when shipping over

longer distances, the firm is likely able to take advantage of economies of scale by aggregation

and using more efficient modes of transportation, suggesting that this cost rises no more than

linearly in the distance. Assuming a power law as well for the transportation costs:

KT (A) = KT (A0)

(
A

A0

)β
, (3.2)

these arguments about scaling with distance imply 0 ≤ β ≤ 1/2, where the multiplier KT (A0)

represents the unit shipping cost for a service area A0. The model in (3.2) conforms with

shipping cost models in the literature, see e.g. (Langevin et al., 1996).

With the expressions in (3.1) and (3.2) the relevant total area-dependent cost per unit

output can be formulated as

K(A) = KT (A) +KC(A) = KT (A0)

(
A

A0

)β
+KC(A0)

(
A

A0

)−γ
. (3.3)
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If γ < 0, i.e. when the reductions from learning exceeds those from scaling up, then both

capital and transportation costs are increasing functions of the area. In this case, the optimal

area is A = 0, and the system is driven to the smallest possible size. On the other hand, if

γ > 0, then the total cost K(A) is convex with a finite optimum at Aopt. Furthermore, there

is an area where the transportation cost KT equals the capital cost contribution KC per

unit output. Choosing the reference area A0 as this area, i.e. where KC(A0) = KT (A0) =

K0, delineates the total cost in a region where it is capital-cost dominated, A < A0, and

transportation-cost dominated, A > A0. The optimal area Aopt is found from the first order

condition on (3.3):

dK

dA
(Aopt) = 0 ⇒ Aopt

A0

=

(
γ

β

) 1
β+γ

.

Introducing the parameter λ = γ/β, it can be seen that

(
Aopt

A0

)β
=

(
γ

β

) β
β+γ

= λ
1

1+λ . (3.4)

Furthermore, the total cost in (3.3), with KC(A0) = KT (A0) = K0, at the optimal area can

also be expressed through λ:

K(Aopt) = K0

(
λ

1
1+λ + λ−

λ
1+λ

)
. (3.5)

In summary, the simple model above takes only two cost items into account; capital cost

and transportation cost of the output. As suggested in Section 2.3 and made explicit here, if

the economies of learning overtake the economies of unit scale, manifested by α−(1+log2 ε) >

0, then the system is driven to small unit scale. Furthermore, if demand is distributed over a

large area and if indeed all costs other than the two mentioned can be neglected or considered

independent of the service area, then the presence of a nondecreasing transportation cost of

the output presents a clear impetus for distributed operation.
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Figure 3.1: Assuming the total cost K(A) is convex, the optimal total cost is seen to be at best
half the total cost when the facilities are sized using the heuristic that capital cost should equal
transportation cost per unit output.

On the other hand, if capital costs indeed favor larger sizes, i.e. if α − (1 + log2 ε) < 0,

this model brings a non-intuitive conclusion. With the exact values of the parameters β and

γ (i.e. α and ε) being obscured, no definitive optimization can be performed. However, as

seen in Figure 3.1, abiding by the heuristic to size the individual facility such that the capital

cost contribution per unit output is equal to the output transportation cost will lead to costs

that are at worst twice the optimal cost.

The assumption in the model that the transportation cost of inputs can be ignored is likely

not true in some instances. Violating this assumption could lead to total transportation costs

(inputs and outputs) being increasing with a higher degree of decentralization. If capital cost

still favor smaller unit sizes, that is if α − (1 + log2 ε) > 0, the optimal strategy would still

be small-scale technologies, but now these should be aggregated at a few locations.



Chapter 4

Case Study: U.S. Electricity Sector

The U.S. electric power generation sector presents an interesting area for a case study in

unit scales for several reasons. With access to the national grid, the total market far exceeds

the largest possible scale in any technology. Transmission constraints certainly do exist but

they result in increased cost, rather than insurmountable barriers for delivery in most cases.

Hence, the scales of existing installations arguably represent an optimal size choice with no

substantial demand constraints. Moreover, acting in a partially regulated industry, owners

of generating capacity have over the last century been required to provide state and federal

institutions with information regarding both operational details and the status on all installed

capacity. Thus, data is readily available. Lastly, even though the purpose of providing electric

power to the grid is the same for all technologies, these are internally very different. For

instance, handling a gaseous fuel in natural gas-fired power plants differs significantly from

the solids handling in coal-fired plants, which in turn is distinctly different from processing the

radioactive waste in a nuclear power plant. Such significant differences within one industry

would suggest that any conclusions regarding scale have a broader applicability. At the very

least, these conclusions should not immediately be dismissed in other process industries.

This chapter begins with a review of the observed size choices in the main generating
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technologies in the U.S, thus confirming the trend of“bigger–is–better”. In order to determine

if, or to what extent, operating cost motivates this trend, operating data from power plants

around the country is studied. By regressing operational costs on unit scale, while controlling

for other pertinent variables as well, it is determined that decreased operational cost only

weakly supports the observed trend. Furthermore, it is also determined that the decrease in

operational cost with scale is chiefly explained by decreased labor cost. Operating costs net

of labor costs show no significant correlation with unit size. Thus, in a paradigm of low-cost

automation, the only impetus for increasing unit scale is likely to be found in traditional

economies of unit scale.

4.1 Historical Trends of Generator Sizes

In order to observe the evolution of unit size in the electricity generating sector six distinct

technologies are investigated. For each technology, a time series of the average generator size

(nameplate capacity) installed per year is constructed from generator-level data compiled by

the Energy Information Administration, c.f. (EIA, 2004, 2011). (This data includes retired

capacity, meaning that the presentation is not merely a summation of capacity that has

survived in operation till this day.) The samples of the technologies labeled ‘Combined cycle’

and ‘Gas turbine’ are limited to those powered by natural gas, which constitute significant

majorities of the generators in use in both cases. Moreover, the selection of generators in

all technology classes is limited to those that deliver power trans-grid, which suggest that

they are sized without any immediate demand constraints. This selection excludes certain

dedicated industry power sources. Still, combined these technologies account for more than

90% of the currently installed total capacity of almost 1.1 TW. The time series of average

generator size installed are presented in Figure 4.1 alongside the total installed capacity of

the same technology, including those facilities that are on stand-by.
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Figure 4.1: Historically, the average generator sizes have increased with the cumulative growth of
the specific technology. The technology labeled ‘Gas turbine’ comprises only those turbines powered
by natural gas. Also, the average generator size in ‘Combined cycle’ is the average size of the both
the gas turbines and the steam turbines in the same cluster. The year assigned to this class is the
year the latest generator in a cluster was added.

Applied to the electricity generating sector, Figure 4.1 confirms the general assumption

in this dissertation of a “bigger–is–better”–trend. The impact of economies of unit scale
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were first realized for hydroelectric generation in the early part of the twentieth century,

which was made possible by the emergence of high-voltage transmission lines capable of

delivering the output over long distances. The same strategy of scaling up was then carried

over to the thermal technologies, initially coal but later also nuclear and natural gas-fired

generation. Until the relatively resent restructuring of certain power markets in the U.S., the

ownership of these large-scale, and by necessity, centralized power stations were limited to few

large investor-owned utilities with access to the capital necessary for these huge investments

(Carley and Andrews, 2012; Carley, 2011).

From Figure 4.1, it can be deduced that during growth phases of a certain technology,

the average size of the generators installed generally increases as well. For instance, between

1970 and 1990, the average nameplate capacity of nuclear reactors increased three-fold and

the average coal-fired generator increased almost ten-fold during the 30 years following 1950.

The apparent decrease in average sizes in some of the technologies, e.g coal after mid 1980s, is

explained by a stagnation in the demand of that technology in general. The impact of smaller,

niche applications (still with the capability of delivering power trans-grid) is marginalized

by large installations during periods of growth but dominate the mean in times of demand

stagnation. That is, the validity of the average as an appropriate indicator of optimal size

at the specific time increases with the slope of the cumulative capacity at the same year.

The history of natural gas-fired generation is interrupted by the “The Power Plant and

Industrial Fuel Use Act” enacted by the U.S. Congress in 1978 and later repealed in 1987.

Driven by concerns over what was believed to be very limited supplies, the “Fuel Use Act”

limited industrial use of natural gas and banned completely the construction of new natural

gas-fired power plants. This ban severely hampered R&D effort on gas turbine technologies

in the U.S.(Norberg-Bohm, 2000), explaining the slump in average sizes in natural-gas fired

technologies, ‘Combined cycle’ and ‘Gas turbine’ in Figure 4.1, over the same period. The
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Technology α
Gas turbine + HRSG1 0.7 (Hamelinck and Faaij, 2002)
Steam turbine + steam system 0.7 (Hamelinck and Faaij, 2002)
Nuclear power plant 0.619 (Locatelli and Mancini, 2010)
Hydroelectric plant 0.82 (Hreinsson, 1987)

Table 4.1: Scale parameters for various electricity generating technologies.

one possible exception to the apparent trend of a positive correlation between average name-

plate capacity and demand growth within the same technology can be found in gas turbine

technology since the year 2000. This technology is generally intended for peaking plants,

where the ability to respond to rapid demand fluctuations is crucial. The increased inertia of

larger turbines impairs this ability, offering a possible explanation to a stagnation in average

sizes despite continued growth during the last decade.

Wind energy, alongside most other renewable technologies, is generally considered small-

scale. However, while the average size of wind-powered generators is orders of magnitude

smaller than those found in thermal generation the same trend emerges. In the past two

decades, wind turbines have increased five-fold in nameplate capacity. Building higher towers

not only make larger turbines possible but also gives access to higher wind speeds, thereby

increasing the power output per swept area. As to hydroelectric generation, most of the

waterways suitable for development have already been exploited today, effectively capping

growth (EIA, 1998). Still, before 1980 generator sizes followed the same trend as the other

technologies and grew alongside the total installed capacity.

The trend of increasing sizes is at least partially explained by well-documented economies

of unit scale in the electricity generating industry in general (Locatelli and Mancini, 2010;

Hamelinck and Faaij, 2002; Hreinsson, 1987; Christensen and Greene, 1976). Numerical

values of the power, or scale parameter α, introduced in equation (2.1), used for capital cost

estimates in various technologies are presented in Table 4.1. Clearly, reducing cost by scaling

up in unit size has been a strategy available to the industry as a whole.
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The trend of building ever larger units has had some interesting consequences on the

U.S. electricity market. With electricity generally being a non-storable commodity, over-

building capacity translates into under-utilized capital, which highlights the need for accurate

forecasting of future market conditions. The cost reductions stemming from economies of

unit scale by increasing the unit size risk being off-set by unforeseen revenue shortfall. For

instance, in the early 1970s it was generally believed that electricity demand would keep

growing at an exponential pace well into the 21st century (Anderson, 1973). With hindsight,

it can be concluded that such growth patterns failed to materialize, see Figure 4.2. Elusive

demand growth and concurrent energy crises caused financial setbacks for the electric utilities

with capital intensive large-scale assets on their balance sheets (Carley, 2011; EIA, 2000).

Furthermore, the generating technologies of choice at the time, coal and nuclear (see Figure

4.1), were, and still are today, endowed with long lead times in construction and planning of

7-10 years, or even more (Keeney and Sicherman, 1983; Joskow and Baughman, 1976). Thus,

the over-building was compounded by projects that were under construction and too costly

to abandon, which came online once the decline in demand had already been experienced,

see Figure 4.3. The second and more pronounced peak in capacity added occurred in the

early 2000s. This spurt of capacity expansion was preceded by a period of tightening power

supply and substantial statewide and federal deregulation of power markets (Joskow, 2005;

EIA, 2003).

The lumpy investment behavior observed in electric power generation is amplified by the

large scales involved. The time for demand to ‘grow into capacity’ naturally increases with

scale, and any idle capacity translates into higher capital cost per unit output produced

(Lovins et al., 2002; Manne, 1961). Moreover, the long lead times and long amortization

times involved raise the difficulty to plan future investments. As observed in the electricity

generating industry, erroneous demand forecasts have substantial economic impact.

1Heat recovery steam generator
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Figure 4.2: The observed exponential growth
in demand at 7% per year lasted until the early
1970s. With recent exceptions, the growth has
been linear with about 70TWh/y.
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Figure 4.3: The two periods of major capac-
ity expansion in the U.S. electric power sector
(1970s and the early 2000s) resulted in signifi-
cant decrease in utilization.

4.2 Operational Costs

As exhibited in the previous section, the U.S. electric power industry has followed a general

trend of increasing unit scale. To what extent this trend is motivated by decreasing opera-

tional costs, in addition to the economies of unit scale realized in construction (Carley and

Andrews, 2012; Carley, 2011), is the focus of this section. To address this question, oper-

ational data on a generator level is studied from power plants distributed over the United

States. This data allows for a regression of operational cost on unit size while controlling

for other pertinent variables influencing cost. The analysis is limited to the non-renewable

technology classes described in the previous section, in part due to lack of sufficient data, but

also because the renewable technologies do not incur fuel cost, and thereby require different

cost models.

The data is collected from those utilities and power producers that were required to

file operational information to the Federal Energy Regulatory Commission (FERC) in Form

No. 1 (FERC, 2010) in 2010. Upon retrieval, a single data point, in addition to generator

nameplate capacity, contains information on total production cost (capital charges excluded),
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fuel cost, annual generation volume, average heat rate (efficiency), age and employee head

count. Since the labor head count occasionally is presented on a plant level in the source

material, averaging over the number of generators in the plant is required. This averaging is

complicated by the fact that a single plant may comprise generators of different technologies.

Additionally, even if the same technology is used in a multi-generator plant, these generators

can differ substantially in both size and age. To obtain reasonably accurate generator-level

data points (without sacrificing sample size), the following criteria were imposed on plant-

level data before averaging and inclusion in the sample:

1. The plant comprises generators of only one technology.

2. The difference in age between the oldest and the newest generator is at most 10 years.

3. The difference in nameplate capacity of the largest and smallest generator is less than

a factor 2.

With these restrictions the total sample encompasses 25% of total installed capacity in the

U.S in the year 2010. The operational data contains employee head count but not salary

levels. Instead, industry average salary levels are used as reported in (U.S. Census Bureau,

2007). The variables included in the regression analysis are detailed in Table 4.2.

A multiplicative model2 is stipulated for the dependent variable Ytot cost (total operational

cost) and the independent variables denoted Xi. This allows for a log-linear regression:

log Ytot cost = log β0 +
∑
i

βi logXi. (4.1)

The null hypothesis in this multiple regression is that βi = 0, i.e. the independent variable Xi

does not influence total operational cost. Rejection of this hypothesis permits a qualitative

2Anticipated non-linear behavior in some or all of the dependent variables make a multiplicative model
better suited than a linear model. Moreover, the scope of this study is limited to investigate causality of
observed factors. No claims are made as to the predictive power of this model outside given statistics.
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Variable Comment

Ytot cost Operational cost ($/kWh) Total operational cost divided by total generation (kWh)
Ylabor Labor cost ($/kWh) Reported employee head count multiplied by industry salary

levels ($/y) and divided by total generation (kWh)

Xi Nameplate capacity (MW) Reported value
Capacity factor (%) Total generation divided by nameplate capacity (kW)

and by 8760 (h/y)
Efficiency (%) 3412 BTU/kWh divided by the reported heat rate (BTU/kWh)
Fuel cost ($/MMBTU) Total fuel cost divided by total generation adjusted for efficiency
Age (y) Defined by the year the generator became operational

Table 4.2: Variables included in the regression analysis of operational cost for non-renewable tech-
nologies in the U.S. electricity generating sector. The two dependent variables, Ytot cost and Ylabor,
are regressed separately on the set of independent variables Xi. Moreover, to cancel the effect of
labor, e.g. by assuming complete automation, the difference Ytot cost−Ylabor is also regressed on Xi.

influence (increasing/decreasing) of the independent variable at given level of significance.

A graphical display of the operational cost versus generator size can be found in Figure 4.4

and the results from the multiple regression analysis is found in Table 4.3.

The analysis shows that in three of the four technologies surveyed, increasing unit size

significantly decreases operational cost. However, this trend is generally weak. For instance,

all else being constant, a doubling of the generator size in a coal-fired power plant is expected

to yield a decrease in cost of only 4%, see Table 4.3.

Thermal generation technologies, like the ones studied, require time to ramp up from cold

start to optimal operating conditions, during which time efficiencies are lower. Moreover,

since labor cost typically is not considered a short-run variable cost, operating at a lower

capacity factor would still incur the same labor expenditures. Combined, this explains why

operating cost declines with the capacity factor3.

With the cost of fuel being the main variable cost item for all technologies, it is not

surprising that efficiency and fuel cost both significantly affect total operational cost. Lastly,

technological improvement would suggest that costs are lower for newer plants. However,

the analysis shows a weak decrease in cost with age for only two of the four technologies.

3It should be noted that the capacity factor used in this analysis is the annual average, which may obscure
seasonal or even diurnal trends.
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Figure 4.4: Total operation cost per kWh produced for the for main, non-renewable, electric gener-
ating technologies. With the exception of nuclear, all technologies show a weak but significant trend
of decreasing operational cost with increasing generator size.

Combined cycle Coal Gas Turbine Nuclear

log(Nameplate capacity) −0.09∗ −0.06∗∗∗ −0.20∗∗∗ −0.28
(0.04) (0.02) (0.07) (0.2)

log(Capacity factor) −0.15∗∗∗ −0.19∗∗∗ −0.30∗∗∗ −1.50∗∗∗

(0.02) (0.03) (0.03) (0.31)
log(Efficiency) −0.42∗ −1.01∗∗∗ −0.73∗∗∗ 0.07

(0.21) (0.21) (0.10) (0.98)
log(Fuel cost) 0.82∗∗∗ 0.78∗∗∗ 0.54∗∗∗ 0.61∗∗∗

(0.06) (0.03) (0.09) (0.18)
log(Age) −0.00 −0.06∗∗∗ −0.10∗ −0.15

(0.02) (0.02) (0.06) (0.27)

Adj. R2 0.85 0.90 0.78 0.55
Num. obs. 63 149 140 30

***p < 0.01, **p < 0.05, *p < 0.1, (standard error)

Table 4.3: Regression of total operational costs on select independent parameters. With the excep-
tion of nuclear power, all technologies show a significant, albeit weak, decreasing trend in operational
cost with increasing generator nameplate capacity. Moreover, again with the exception of nuclear,
efficiency, fuel cost and capacity factor are all significant predictors of operational cost.



CHAPTER 4. CASE STUDY: U.S. ELECTRICITY SECTOR 48

This trend could be explained by more stringent environmental controls for newer plants,

e.g. sulfur scrubbing of the flue gas in coal plants, which increase operational cost and from

which some of the older plants are exempted through grandfathering (Ackerman et al., 1999).

4.3 Labor and Efficiency as Functions of Unit Scale

It was suggested in Chapter 3 that decreasing labor cost has been one of the main historical

drivers for increasing unit scale. In a paradigm without automation, at first approximation,

the amount of labor scales primarily with the number of units in operation. On the other

hand, increasing unit size requires approximately zero marginal labor. To test this theory,

labor cost per unit output is regressed on the same independent variables as in the previous

analysis,

log Ylabor = log β0 +
∑
i

βi logXi.

As can be seen in Table 4.4, the assumption of decreasing labor cost with size is verified

for coal, combined cycle and nuclear technologies. Moreover, since labor typically is not

considered a short-run production factor within the time scale of one year, operating at a

higher capacity factor naturally decreases labor cost per unit output, which is evidenced in

the result for these two technologies. Interestingly, combined cycle also exhibits significantly

decreasing labor cost with efficiency. One explanation to this trend could be the decreased

mass flows (fuel but also possibly coolant) that accompany a higher efficiency, which lessens

the need for maintenance and consequently also labor.

The overall strength of the test is much lower for nuclear compared to the other tech-

nologies. This suggests that the independent variables only account for a small portion of

the total variance of the labor cost per unit output. Compared to fossil fuel-powered gener-

ation, security and the handling of radioactive material at nuclear power facilities requires
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Figure 4.5: With the exception of gas turbine technology, all technologies exhibit a significant
strong decreasing trend of labor cost with unit size.

Combined Cycle Coal Gas Turbine Nuclear

log(Nameplate capacity) −0.79∗∗∗ −0.44∗∗∗ 0.24 −1.03∗

(0.12) (0.05) (0.59) (0.51)
log(Capacity factor) −0.93∗∗∗ −0.71∗∗∗ 0.40 −1.14

(0.07) (0.08) (0.25) (0.78)
log(Efficiency) −0.45∗∗ 0.27 −0.78 0.26

(0.60) (0.57) (0.86) (2.47)
log(Fuel cost) 0.05 0.13 0.72 −0.30∗∗∗

(0.17) (0.10) (0.79) (0.45)
log(Age) −0.01 0.01 0.04 −0.30

(0.07) (0.06) (0.52) (0.68)

Adj. R2 0.89 0.74 −0.01 0.14
Num. obs. 63 149 140 30

***p < 0.01, **p < 0.05, *p < 0.1, (standard error)

Table 4.4: Results of a log-linear regression of labor cost per unit output on select independent
parameters. With the exception of gas turbines, all other technologies exhibit both significant and
strongly decreasing labor cost with unit size. The marked weakness of the regression for gas turbines
is likely explained by the peaking nature of this technology, which causes reported employee count to
be zero in many instances.
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additional labor, the cost of which is not adequately captured by the available independent

variables. The significant trend of decreasing labor cost with fuel cost for nuclear power may

find its explanation in the different assemblies of the fuel that command different prices and

also different levels of handling in the plant.

Considering the R2 values for the regression for gas turbine technology, these are very

low. The most likely explanation to this bad fit is the peaking nature of this technology

and consequently, the low average capacity factors encountered compared to the other tech-

nologies. At low capacity factors the reported whole number of employees attributable to

each generator, were generally either zero or one, which arguably overshadows significant

arbitrariness, causing a low accuracy of the regression.

The labor cost per unit output of the four technologies are displayed in Figure 4.5 as

function of generator size. As part of overall operational expenditures presented in Figure

4.4, labor accounts for roughly 10% and even less for the very largest installations. Continuing

the trend of increasing unit scale will therefore yield diminishing returns to scale. On the

other hand, operating very small generators (on the order of kW) would, by extrapolating

the data, suggest incurring prohibitively high labor cost.

To test if factors other than labor would strongly discriminate against smaller sizes an

additional regression analysis is performed. In this analysis, the total operating cost net of

the labor component is regressed on the same independent variables as before:

log (Ytot cost − Ylabor) = log β0 +
∑
i

βi logXi. (4.2)

The regression result of this model is displayed in Table 4.5. With the labor component

taken out, the unit size either fails to be a significant predictor of cost, or it even suggests

a increasing trend, as in the case of coal. Based on this analysis, the possibility of fully

automating processes and thereby eliminating, or at least drastically reducing the need for
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Combined Cycle Coal Gas Turbine Nuclear

log(Nameplate capacity) −0.06 0.00∗ −0.11 0.03
(0.05) (0.02) (0.11) (0.30)

log(Efficiency) −0.34 −1.28∗∗∗ −0.78∗∗∗ −0.25
(0.22) (0.25) (0.16) (1.45)

log(Capacity factor) −0.12∗∗∗ −0.09∗∗ −0.22∗∗∗ −1.71∗∗∗

(0.03) (0.04) (0.05) (0.46)
log(Fuel cost) 0.84∗∗∗ 0.89∗∗∗ 0.65∗∗∗ 0.77∗∗∗

(0.06) (0.04) (0.14) (0.26)
log(Age) 0.01 −0.04 −0.01 0.02

(0.03) (0.02) (0.1) (0.40)

Adj. R2 0.883 0.86 0.56 0.40
Num. obs. 63 149 140 30

***p < 0.01, **p < 0.05, *p < 0.1, (standard error)

Table 4.5: Results of a log-linear regression of operating cost net of labor cost per unit output on
select dependent parameters. Without the labor component, unit scale is not a significant predictor
of variable cost among the technologies studied.

labor, would open up the possibility of operating smaller units without significant operational

cost increases.

In addition to labor, it was suggested in 3.2 that efficiency gains is another driver for

increasing unit size. For these thermal technologies, larger units likely suffer reduced heat

losses as well a lower relative frictional losses in the spinning components. Observing the

visual display of efficiency versus size, see Figure 4.6, seems to support that argument.

However, regressing efficiency on the other independent variables and total operating cost,

logXeff = log β0 +
∑
i

βi logXi + β′ log Ytot cost, (4.3)

reveals that this trend is weaker than appearances suggest. Importantly, all else being

constant, efficiency is strongly correlated with fuel cost. While there is a quality difference

among different types of coal, which could explain some of the variability in efficiency, this

suggests that operational factors to a high degree can influence the observed efficiency. It

should be reminded that the efficiency is computed from annual averages which may obscure

the impact of short-term output fluctuation, which presumably lowers efficiency.
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Figure 4.6: The seemingly strong trend of increasing efficiency with size obscures the impact of
other factors, primarily fuel cost.

Combined Cycle Coal Gas Turbine Nuclear

log(Nameplate capacity) 0.09∗∗∗ 0.05∗∗∗ 0.00 0.02
(0.02) (0.01) (0.05) (0.04)

log(Capacity factor) 0.02 −0.09∗∗ 0.03∗∗ 0.13
(0.02) (0.01) (0.03) (0.09)

log(Fuel cost) 0.10∗∗∗ 0.89∗∗∗ 0.17∗∗∗ 0.05
(0.07) (0.02) (0.07) (0.04)

log(Age) −0.02 −0.03∗∗∗ −0.13∗∗∗ −0.01
(0.01) (0.01) (0.04) (0.05)

log(Operational cost) −0.15∗ −0.14∗∗∗ −0.40∗∗∗ 0.00
(0.08) (0.03) (0.05) (0.05)

Adj. R2 0.58 0.72 0.59 0.09
Num. obs. 63 149 140 30

***p < 0.01, **p < 0.05, *p < 0.1, (standard error)

Table 4.6: Regressing efficiency on the other independent variables and total operational cost reveals
a positive correlation on size, all else being constant. Not surprisingly, increasing fuel cost puts an
impetus on more efficient operation. Also, the negative correlation between efficiency and cost is
preserved from Table 4.3
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4.4 Summary

In this chapter, the suggested trend of “bigger is better” is established for six of the largest

generating technologies (by installed capacity). Almost without exception, the strategy

across all technologies in the U.S. electricity generating industry has been to scale up the

sizes of the individual generating units. This strategy has led to substantial increases in

nameplate capacity, up to orders of magnitude in some instances. While a larger unit scale

reduces fixed cost, the large scales involved together with the long lead times in construction

of new capacity, have arguably made it more difficult to plan capacity additions in accordance

with demand growth.

With well-documented economies of unit scale for all technologies surveyed, the strategy

of scaling up in size has reduced the investment costs of generating capacity. Moreover, for

all technologies, except nuclear, a statistically significant albeit weak trend of decreasing

operational cost with increasing size is observed. Thus, general operational economies of

unit scale have been present in the industry as well, further motivating the drift to larger

sizes.

Analyzing labor cost as function of unit scale confirms the rather natural assumption of

lower labor cost with increasing size. The extent to which this increase in productivity drives

the operational economies of unit scale is determined through another analysis. Specifically,

taking as dependent variable the difference between total cost and labor cost allows for a

regression where labor has been removed. Interestingly, the trend of decreasing operational

cost with size that was visible previously is now absent. This suggests that labor is indeed

the main driver of operational economies of unit scale. The emerging availability of low-

cost automation technologies can therefore actively remove one of the main motives to build

larger units.

The general assumption of increasing conversion efficiency with size finds some support
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in the analysis. However, even though fuel cost is the largest single variable cost item in

all technologies, this trends does not drive total cost as evidenced in the previous analysis.

The price of fuel is found to correlate with the observed efficiency. This trend is strongest

for coal, which may be explained by the different quality of fuels available. That the trend

is visible for natural gas-fired capacity, where the fuel is more standardized, reveals that

operating conditions affect efficiency more than inherent size effects.



Chapter 5

Real Options of Small-Scale

Investments

The application of theory, as well as tools and nomenclature, developed in the financial

industry to problems regarding both operation and investment in real assets has grown more

ubiquitous over the past decades. A correct implementation of these real options has the

potential to increase the value of a firm (Sick and Gamba, 2010). Furthermore, making

investment decisions based on a real options analysis can increase value above and beyond

those based merely on classical net present value considerations.

In the simplest case, the value of a project is influenced by only one stochastic variable

that changes over time. Equipped with an estimate of the first moment (the mean) of this

stochastic process, a manager can determine if the sum of the discounted cash flow from the

project supersedes the cost of making the investments, i.e. if the net present value is positive.

In this case, the manager should recommend proceeding with the investment according to

classical net present value analysis. As explained succinctly in (McDonald and Siegel, 1986),

in contrast to this binary outcome of ‘invest now or don’t invest now’, a real options analysis

evaluates the expected value of an investment over all future times. This results in an optimal
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timing rule when to invest. In order to undertake such an analysis, information about both

the first and the second moment (variance) of the process is required. A further introduction

to real options can be found in (Dixit and Pindyck, 1994).

The notion of investment timing is particularly prescient in the commodity-based in-

dustries due to their sheer size in the current paradigm of “bigger-is-better”. If market or

regulatory conditions change adversely, then there is generally little or no secondary use for

the physical capital. Terminating operation, or perhaps even construction, therefore entails

stranding most or all of the invested capital. An example that vividly illustrates the irre-

versibility of investments in these industries, magnified by the large scales involved, is the

Shoreham Nuclear Power station on Long Island. After 12 years of construction the plant’s

operating license was revoked in the mid 1980s and a $5.6 billion dollar investment wiped

out before a single kWh of power was sold (Levendis et al., 2006).

By employing a real option analysis Pindyck (1986) showed that the existence of un-

certainty regarding future profits makes the optimal capacity much smaller than if the in-

vestment were reversible. More recent real option analyses regarding infrastructure invest-

ments can be found in (Westner and Madlener, 2012; Frayer and Uludere, 2001; Kaslow and

Pindyck, 1994). For large scale projects, the possibility of sequencing investment decisions

in a single project to get additional information further enhances to option value of these

kinds of investments (Carelli et al., 2010; Lumley and Zervos, 2001).

In addition to the high degree of irreversibility that the large individual investments in

productive capital have in the industries in question, they also have very long pay-back times.

Of the ‘large projects’, defined by a capital cost of over $1 billion, that were funded through

project finance1 during the years 1997-2001, more than half had a concession agreement

1This structure lets the sponsoring companies raise the necessary funds ‘off-balance sheet’ by creating a
separate entity associated with the project alone. Typically, these projects have a high degree of leverage
(up to 80%), made possible by long-term offtake agreements of necessary inputs, as well as the produced
output (Fight, 2005; Brealey et al., 2008).
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lasting more than 25 years (Finnerty, 2007). Thermal power plants are typically planned to

have even longer economic life, of up to 40 years (Deutch et al., 2003). Moreover, in addition

to the long lifetimes that are required to yield financial viability, the lead times in planning

and construction of these large projects are also long, up to 10 years.

Whether it be by design in construction or in operation with a limited maintenance sched-

ule, small and mass-produced equipment might be endowed with a much shorter physical

lifespan than these large-scale investment. Moreover, with mass-production of small-scale

units comes the ability to build to stock and drastically shorten lead times between the in-

vestment and start of operation. Deploying small-scale capital therefore provides additional

flexibility to engage and disengage a given activity. This increased flexibility with shorter

lifetimes and lead times is the focus of this chapter.

To capture this increased flexibility, a framework that incorporates operational flexibil-

ity, lead time, capital lifespan, and multiple (finite/infinite) future investment opportunities

is introduced below. The investment problem is formulated as an optimal multiple stop-

ping problem, where the firm maximizes the expected discounted reward from sequential

investments. In particular, embedded in the formulation is the operational flexibility of

temporarily suspending production to avoid negative cash flows. Importantly, the problem

depends explicitly on lifetime and lead time. Under a capacity constraint, the firm’s con-

secutive investments are separated (or refracted) by the lifetime of the capital. Hence, the

firm’s investment decision bears similarity to the valuation of a forward-starting swing call

option written on the expected reward.

Swing options have frequently been used to price energy delivery contracts where the

holder has the right to alter, or ‘swing,’ volumes up or down at the start of each time period

(Jaillet et al., 2004; Deng and Oren, 2006). Instead of fixed-period contracts, the only con-

straint in the model below is a minimum separation time between consecutive investments.
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This allows for the valuation of the swing contract as a refracted optimal multiple stop-

ping problem (see e.g. Carmona and Touzi (2008); Carmona and Dayanik (2008)). Other

financial applications involving multiple exercises include employee stock option valuation

(Leung and Sircar, 2009; Grasselli and Henderson, 2009), and the operation of a physical

asset (Ludkovski, 2008). In contrast to the simulation approaches commonly found in exist-

ing literature for swing-type options (Meinshausen and Hambly, 2004; Chiara et al., 2007;

Bender, 2011) the problem formulation here lends itself to an iterative algorithm that can

be solved numerically.

Resulting from the model below is both the firm’s value function and its optimal stopping

rule, which is described by a sequence of critical price thresholds. This sequence is shown

to be decreasing and converging to the threshold corresponding to the case with infinite

investment opportunities. Moreover, this framework is also useful for analyzing the critical

investment cost that makes small-scale (short lead time, short lifetime) alternatives compet-

itive with traditional large-scale investments of the same or similar technology. Returning to

the comparison between the car engine and the power plant, the former is mass-produced in

days and likely to last on the order of years, whereas the power plant follows conventional

time pattern described above. With the investment cost known for the large-scale power

plant this model can be used to estimate the maximal investment cost for a car engine,

retrofitted to run on the same fuel and equipped with a generator to produce electricity, to

be competitive with the conventional power plant.

Proofs of propositions, lemmas, and theorems below can be found in Appendix A.

5.1 Problem Formulation

The agent in this formulation is a firm that has the ability to invest in capital equipment that

produces a single good in a given market. Furthermore, this firm is assumed to be acting as a
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price taker in this market with a finite capacity constraint. These assumptions void the need

for incorporating demand elasticities and instead implies that the investment decision will

be of ‘bang-bang’ type. That is, if an investment is made, it will be up to the given capacity

constraint. Moreover, the operational cost is assumed to be independent of individual unit

size. Under such circumstances, the investment can be analyzed on a per-unit-capacity basis.

The investment cost, I(T, ν), is considered exogeneous and deterministic and depends on

lifetime, T , and lead time, ν, among other factors. These two parameters, both considered

deterministic, also affect directly the net present value, ψ, of a single investment. Moreover,

the discount rate, r, used by the firm is also considered to be exogenous and constant. In the

background, a complete probability space (Ω,F ,P), equipped with a filtration F = (Ft)t≥0

is fixed. Let (Xt)t≥0 be an Ft-adapted output price process. An investment generates a

random cash flow-process of the form (f (Xt))t≥0, where f is a function known to the firm.

The expected discounted stream of future cash flows, minus the initial investment cost,

yields the net present value

ψ(x;T, ν) = −I(T, ν) +

∫ ν+T

ν

e−rt E
{
f
(
X0,x
t

)}
dt, 0 < x <∞, (5.1)

where the conditional notation X0,x
t ≡ {Xt|X0 = x} is introduced. The expression in (5.1)

helps clarify the role of the lead time ν as the time between the expenditure I and start of

operation and access to the cash flow f (Xt).

The limitation on the amount of capacity that can be active at any given point in time,

as implied by the assumption of the role as a price taker, naturally introduces the notion of

a refraction time. That is, two consecutive investments have to be separated with at least a

time T , the lifetime of the capital. With this being the only restriction on the investment

strategy of the firm, the value v(k)(x;T, ν) of k consecutive investments can be formulated
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as an optimal multiple stopping problem

v(k)(x;T, ν) = sup
~τ∈Sk

E

{
k∑
i=1

e−rτiψ(X0,x
τi
, T, ν)

}
, 0 < x <∞. (5.2)

The set Sk is the set of all refracted stopping times ~τ = (τ1, τ2, . . . , τk), i.e. τi− τi−1 ≥ T for

i = 2, 3 . . . , k. Under this requirement, nothing prevents the firm from having two consecutive

investments operating with a seamless transition. This is because the decision to invest in

future capital can be made before the current investment expires. Provided that a least

upper bound in (5.2) actually exists, the stopping vector τp = τp+1 = · · · = τk = ∞, p ≤ k

can be included in Sk. For such a stopping rule, v(k) can be interpreted as the value of the

contract when not every exercise is being called.

The tacit assumption that the supremum in (5.2) exists implies that e−rtψ(Xt;T, ν) is

integrable and limt→∞ E {e−rtψ(Xt;T, ν)} = 0 for every choice of T and ν. For brevity, the

dependence on the parameters T and ν in ψ, v(k) and I is suppressed unless such a dependence

is specifically required. Since the firm is free to choose the timing of every investment, up

to the condition of a refraction time T , the following proposition highlights the optionality

embedded in the investment decision.

Proposition 1. The value function v(k)(x), k ≥ 1, satisfies,

v(k)(x) = sup
~τ∈Sk

E

{
k∑
i=1

e−rτiψ+(X0,x
τi

)

}
, (5.3)

with ψ+(x) = max[0, ψ(x)].

This proposition reveals that it is never optimal to make the investment in the negative

region of ψ(x). The firm has the ability to delay investment, and therefore, can always avoid

value destruction.

The above problem formulation, as well as Proposition 1, holds for any underlying
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stochastic process. Proceeding, the formulation in (5.1) and (5.2) are considered under the

geometric Brownian motion (GBM) model. Specifically, the output price process is modeled

by the stochastic differential equation (SDE):

dXt = αXt dt+ σXt dBt, X0 ∈ (0,∞), (5.4)

where (Bt)t≥0 is a standard Brownian motion. The drift rate α and the variance parameter

σ are both assumed constant. The filtration generated by B is denoted F = (Ft)t≥0.

From the firm’s perspective, the investment cash flow is assumed to be the difference

between an uncertain output price Xt, modeled by (5.4), and a constant operational cost c.

Moreover, the firm has the operational flexibility to temporarily suspend production if cost

exceeds output price. Hence, the effective investment cash flow f(X0,x
t ) at any future time t

is given by

f(X0,x
t ) =

(
X0,x
t − c

)+
, (5.5)

where (Xt − c)+ = max[0, Xt − c]. That is, at time t the firm has the right, but not the

obligation, to claim a revenue Xt at a cost c. This type of option is called a European call

option on Xt with a strike price c and maturity t. The expectation of f(X0,x
t ) in (5.5) can be

seen as the undiscounted price of such a European call option (McDonald and Siegel, 1985),

namely,

E
{(
X0,x
t − c

)+
}

= xΦ(d+(t))eαt − cΦ(d−(t)), (5.6)

where Φ is the standard normal cumulative distribution function, and where

d±(t) =

[
ln
(x
c

)
+

(
α± 1

2
σ2

)
t

]
/σ
√
t .
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With the above expressions the reward function ψ(x) becomes

ψ(x) = −I +

∫ ν+T

ν

(
xΦ(d+(t))eαt − cΦ(d−(t))

)
e−rtdt .

Under this setting, the optimal multiple stopping problem in (5.2) is recasted as a se-

quence of optimal single stopping problems. More precisely, the value v(k)(x) is expressed

as

v(k)(x) = sup
τk∈S

E
{
e−rτkψ(k)(X0,x

τk
)
}
. (5.7)

The set S is the set of all F-stopping times and

ψ(k)(x) = ψ(x) + e−rTE
{
v(k−1)(X0,x

T )
}
, v(0) ≡ 0 .

The entity ψ(k)(x) can be interpreted as the value of a single investment plus the value of k−1

future investment opportunities. By construction, the admissible stopping times (τ1, . . . , τk)

are again refracted by at least T (years). By standard optimal stopping theory, the process(
e−rtv(k)(Xt)

)
t≥0

, called the Snell envelope of the process
(
e−rtψ(k)(Xt)

)
t≥0

, is constructed to

be the smallest supermartingale dominating the
(
e−rtψ(k)(Xt)

)
t≥0

, for every k. For further

details regarding this approach under a more general framework, see Carmona and Touzi

(2008).

5.2 Analytical Results

This section presents an analytical study of the optimal stopping problem in (5.2.1). The

main result, given in Theorem 1, is the characterization of the value function and the optimal

stopping rule, for every k ≥ 1 opportunities to invest. With these results an iterative

approach to finding the value functions v(k)(x) and the optimal exercise boundaries x∗k is
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developed in Corollary 1.

In the context of real investments, some general conditions are imposed on the reward

function ψ. First, ψ is assumed to be continuous, increasing and sufficiently smooth. Ad-

ditionally, it is assumed that there is a unique break-even point, x0 > 0, where ψ(x0) = 0,

and ψ(x) < 0 for x < x0 and ψ(x) > 0 for x > x0. Finally, the function ψ(x) is assumed

to be bounded by some affine function of x. Such a bound, together with an assumption

that the discount rate r exceeds the drift rate α of the underlying process, ensures that

perpetual waiting will lead to zero expected reward, i.e. limt→∞ E {e−rtψ(Xt)} = 0. Under

these conditions, the real option problem with a single investment opportunity is analyzed,

which subsequently is the building block for solving the optimal multiple stopping problem.

5.2.1 Optimal Single Stopping Problem

With only one investment opportunity, i.e. k = 1, the stopping problem in () is given by

v(1)(x) = sup
τ1∈S

E
{
e−rτ1ψ(X0,x

τ1
)
}
. (5.8)

As opposed to the previously introduced European option (possible exercise at maturity

only), the formulation in (5.8) considers the optimal present value of an investment over all

future times. An option with the right to exercise at any future time to recieve the payoff ψ

is called a perpetual American option on ψ, the price of which is given by v(1)(x).

Let the first passage time τx∗1 be a candidate stopping time for the problem in (5.8):

τx∗1 = inf{t ≥ 0 |X0,x
t ≥ x∗1 , x > 0 },

with threshold x∗1 > 0. Taking the Laplace transform of the first passage time of X (see e.g.
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(Shreve, 2004, p.346)), for x ≤ x∗1, gives

E
{
e
−rτx∗1ψ(X0,x

τx∗1
)
}

= ψ(x∗1)

(
x

x∗1

)γ
. (5.9)

The power γ in (5.9) is the positive solution to the second order equation

1

2
σ2γ(γ − 1) + αγ − r = 0, (5.10)

which arises from the time-independent Black-Scholes differential equation (see Appendix

A). It can be seen from (5.10) that the condition r > α implies that γ > 1. If x ≥ x∗1, then

τx∗1 = 0 and v(1)(x) = ψ(x). From (5.9) it can be seen that a necessary condition for x∗1 to

be an optimal stopping boundary is that x∗1 maximizes ψ(x)/xγ. The assumption of a linear

bound on ψ(x) ensures the existence of such a maximum.

The first order condition for a maximum at x = x∗1 is given by

d

dx

ψ(x)

xγ

∣∣∣∣
x=x∗1

=
x∗1ψ

′(x∗1)− γψ(x∗1)

(x∗1)γ+1
≡ −Λψ(x∗1)

(x∗1)γ+1
= 0 ⇔ Λψ(x∗1) = 0, (5.11)

where the operator notation Λ =
(
γ − x d

dx

)
is introduced. The second order condition,

sufficient to prove a maximum together with the first order condition above, can then be

stated as

d2

dx2

ψ(x)

xγ

∣∣∣∣
x=x∗1

= −
d
dx

Λψ(x∗1)

(x∗1)γ+1
< 0 ⇔ d

dx
Λψ(x∗1) > 0.

Note that a maximum of ψ(x)/xγ at x∗1 is not a sufficient condition for an optimal stopping

rule τx∗1 for a general reward function ψ. One would also have to prove that
(
e−rtv(1)(Xt)

)
t≥0

satisfies the supermartingale property for this choice of τx∗1 . The following lemma gives the

sufficient conditions for τx∗1 to be an optimal stopping rule for problem (5.8).

Lemma 1. Let ψ : R+ → R be a reward function in the single stopping problem (5.8). If x∗1
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is a global maximum for ψ(x)/xγ on R+ and if

d

dx
Λψ(x) ≡ (γ − 1)ψ′(x)− xψ′′(x) ≥ 0, x ≥ x∗1, (5.12)

then

v(1)(x) = ψ(x ∨ x∗1)

[
1 ∧

(
x

x∗1

)γ]
, x ∈ R+,

where v(1)(x) is continuous on R+.

Remark 1. The first order condition Λψ(x∗1) = 0 in (5.11), together with the condition that

(d/dx)Λψ(x) ≥ 0, x ≥ x∗1, bounds the second derivative (convexity) of the reward function

ψ(x) for large x. Up to the condition of a maximum of ψ(x)/xγ at x = x∗1, the behavior of

the function ψ(x) to the left of x = x∗1 is irrelevant. The conditions in Lemma 1 are therefore

less restrictive than requiring that the drift term of e−rtψ(Xt) be monotonic for all Xt, as

presented in (Dixit and Pindyck, 1994, pp.128-130) as a part of the sufficient conditions for

a connected stopping boundary at x = x∗1 for a perpetual American call on ψ(x).

5.2.2 Optimal Multiple Stopping Problem

With Lemma 1 and Proposition 1, the main result can be stated and proved.

Theorem 1. Let ψ : R+ → R be a reward function with a break-even point x0. If Λψ(x) is

convex for x ∈ (x0,∞), with Λψ(x) increasing for large x, then, for every k ≥ 1, there exists

an x∗k > x0 such that

v(k)(x) = ψ(k)(x ∨ x∗k)
[
1 ∧

(
x

x∗k

)γ]
, k ≥ 1, (5.13)

where

ψ(k)(x) = ψ(x) + e−rTE
{
v(k−1)(X0,x

T )
}
. (5.14)
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Moreover, the sequence (x∗k)k≥1 is strictly decreasing, and
(
v(k)
)
k≥1

is a strictly increasing

sequence of continuous functions on R+. Also, for any bounded subset D ∈ R+ there exists

a constant KD, such that v(k)(x) ≤ KD, for x ∈ D and k ≥ 1.

From a computational perspective it is convenient to introduce the auxiliary function u(k)

through

u(k)(x) = Λv(k)(x) = Λψ(k)(x)11{x≥x∗k}. (5.15)

With the conditions imposed on ψ(x) (bounded by a linear function, convexity of Λψ(x) on

(x0,∞) and Λψ(x) being increasing for large x), one can show that
(
u(k)
)
k≥1

is an increasing

sequence of continuous functions bounded on every compact subset D ⊂ R+. Given the

function u(k)(x) the value function v(k)(x) can be reconstructed through

v(k)(x) = xγ
(
ψ(k)(x∗k)

(x∗k)
γ
−
∫ x

0

y−γ−1u(k)(y)dy

)
. (5.16)

Since u(k)(x) = 0 for x < x∗k there are no convergence issues in (5.16). The following corollary

follows from Theorem 1.

Corollary 1. The functions u(k)(x), for k = 1, 2, . . . , satisfy

u(k)(x) =
(
Λψ(x) + e−rTE

{
u(k−1)(X0,x

T )
})

11{x≥x∗k}, u(0)(x) ≡ 0, (5.17)

The boundary point x∗k is the unique solution to


Λψ(x∗k) + e−rTE

{
u(k−1)(X

0,x∗k
T )

}
= 0,

d
dx

(
Λψ(x) + e−rTE

{
u(k−1)(X0,x

T )
})∣∣

x=x∗1
> 0.

� (5.18)

Corollary 1, together with equation (5.16), outlines the inductive algorithm used to find

the solution to (5.2.1). Proof of uniform convergence v(k) → v(∞) and details of the numerical
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implementation can be found in Appendix A.

5.3 Application to Infrastructure Investments

The above framework is here applied to a general infrastructure investment. Importantly,

the result allows for a sensitivity study of both the value function v(∞) and the stopping

boundary x∞ with respect to the key parameters of lifetime T and lead time ν, as well as the

process parameters. Moreover, the framework is employed to compare investment scenarios

with relatively short lifetimes and lead times to a scenario with both a long lifetime and lead

time. Such a comparison will reveal a critical investment cost of the short-lived scenario

below which it will be competitive with the long-lived counterpart.

A common feature of many projects is that the cash flow is determined, to a great

extent, by the price of one or more commodities. For instance, the the ‘spark spread’, i.e.

the difference between the price of electricity and the price of natural gas, dominates the

cash flow for natural gas-fired power plants. For desalination, the difference in the price of

fresh water and electricity gives rise to a similar spread, etc. It is therefore reasonable to

assume that the observable cash flow, Zt, can be written as the difference between two price

processes, denoted Ut and Yt, i.e. Zt = Ut − Yt. It will here be demonstrated that if by U

and Y are correlated GBMs, the process Z can still be represented by a single GBM.

Suppose that U and Y evolve according to

dUt = αUUt dt+ σUUt dB
(1)
t ,

dYt = αY Yt dt+ σY Yt dB
(2)
t ,

where B(1) and B(2) are two standard Brownian motions with E{dB(1)
t dB

(2)
t } = ρdt, with

correlation coefficient ρ ∈ [−1, 1]. Let Xt be the quotient between output and input price,
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Xt = Ut/Yt. With the Itô-Doeblin formula one obtains

dXt =
1

Yt
dUt −

Ut
Y 2
t

dYt −
1

Y 2
t

dUtdYt +
Ut
Y 3
t

dY 2
t

=
(
αU − αY + σ2

Y − ρσUσY
)
Xtdt+Xt

(
σUdB

(1)
t − σY dB(2)

t

)
= αXtdt+ σXtdBt. (5.19)

As a result, the ratio Xt = Ut/Yt is also a GBM with

α = αU − αY + σ2
Y − ρσUσY , σ =

√
σ2
U + σ2

Y − 2ρσUσY , (5.20)

and with the standard Brownian motion

Bt =
σUB

(1)
t − σYB(2)

t

σ
, t ≥ 0.

From (5.20) it is noted that a negative (resp. positive) correlation of B
(1)
t and B

(2)
t can

increase (resp. decrease) the volatility and drift of X. The cash flow is given by

Zt = Ut − Yt = Yt (Xt − 1) , t ≥ 0,

where

Yt = Y0e
αY te−

1
2
σ2
Y t+σY B

(2)
t .

This motivates the definition of the new probability measure P̃ ∼ P according to

dP̃
dP

∣∣∣∣∣
Ft

= e−
1
2
σ2
Y t+σY B

(2)
t . (5.21)
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Applying a change of measure, the expected future discounted cash flows can be written as

E
{
e−rt (Ut − Yt)

}
= Ẽ

{
e−(r−αY )t (Y0Xt − Y0)

}
,

where Ẽ indicates the expectation under the measure P̃.

To summarize, the change of measure turns the observable cash flow of two uncertain

parameters back to the original form for X, whose drift α and σ are given in (5.20) under

the measure P̃, along with c = Y0. The requirement that the effective discount rate r − αY
must exceed the drift α of X amounts to

r > αU + σ2
Y − ρσUσY . (5.22)

Interestingly, the drift of Y is irrelevant in regards to condition (5.22) and the integrability

of e−rtZt under P̃.

Recapitulating the choice of cash flow f(Xt), introduced in Section 5.1, where the flex-

ibility to temporarily suspend production to avoid a negative cash flow was incorporated,

namely,

f(Xt) = (Xt − c)+ .

The reward function associated with this cash flow is

ψ(x) = −I +

∫ ν+T

ν

(
xΦ(d+(t))eαt − cΦ(d−(t))

)
e−rtdt, (5.23)

where

d±(t) =

[
ln
(x
c

)
+

(
α± 1

2
σ2

)
t

]
/σ
√
t. (5.24)

Since f(Xt) is bounded by Xt, one realizes that there is a linear function bounding ψ(x).
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Investigating the derivatives of ψ(x) yields2

ψ′(x) =

∫ ν+T

ν

d

dx

(
xΦ(d+(t))eαt − cΦ(d−(t))

)
e−rtdt =

∫ ν+T

ν

Φ(d+(t))e−(r−α)tdt > 0.

(5.25)

From (5.23)-(5.25) it is seen that ψ(x) is continuous and increasing in x. Furthermore, since

limx→0 ψ(x) = −I < 0 there exists a unique break-even point x0. Thus, ψ(x) satisfies all the

conditions in the definition of a reward function presented in Section 5.2.1. By differentiation,

one obtains

d2

dx2
[Λψ(x)] =

∫ ν+T

ν

φ(d+(t))

xσ2t

(
(γ − 1)σ

√
t+ d+(t)

)
e−(r−α)tdt,

where φ(x) is the density function of the normal distribution. It can be seen that Λψ(x) is

convex for all x ≥ x′, where x′ = c exp
[
−
(
α + γσ2 − 1

2
σ2
)
ν
]
. In turn, if x0 ≥ x′, which is

ensured by imposing a lower bound on I, then Λψ(x) is convex on (x0,∞), and consequently,

all the conditions for Theorem 1 are satisfied and the algorithm outlined in Corollary 1 can

be applied.

5.3.1 Sensitivity Analysis

This analysis starts with an investigation of the sensitivity of x∗∞ with respect to the process

parameters α and σ. Subsequently, the sensitivities of both x∗∞ and the value function v(∞)(x)

with respect to the main model parameters of lifetime T and lead time ν are analyzed. Default

parameter values can be found in Table 5.1.

Low values of the drift rate α corresponds to a higher ‘effective’ discount rate r − α,

sometimes called the convenience yield. This decreases the present value of future invest-

2It was previously noted that the integrand in the expression of ψ(x) is the price of a European call
option. The derivative of such an option with respect to current price x is a well known entity in stochastic
calculus called the ‘Delta’ and is equal to Φ(d+(t))e−(r−α)t.
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Figure 5.1: Sensitivity of the optimal stopping boundaries x∗k w.r.t the drift rate α (Left), and w.r.t
the volatility σ (Right).

ment, which explains the minor difference between x∗1 and x∗∞ for small α, see Figure 5.1

(left). Conversely, a higher drift rate of the underlying process enhances the value of future

investments. This drives a greater wedge between the stopping boundary x∗1 of a single

investment compared to the stopping boundary x∗∞ of multiple consecutive investments for

large α. Consequently, this emphasizes the importance of including future investments in

current decisions in environments with a high drift rate. Note that the same result is to

be expected if decreasing the discount rate r, still with the condition that r − α > 0. In

Figure 5.1 (left), it can be observed that as α approaches r (10%) the exercise boundaries

x∗k, k = 1, 2, 3, increases rapidly. This is intuitive because theoretically the optimal exercise

boundary would be infinite for α ≥ r. The same phenomenon also occurs for x∗∞ when α is

very close to r.

Description Parameter Value
Lifetime T 5
lead time ν 1
Investment cost I 1
Operational cost c 0.1
Discount rate r 10%
Drift rate α 5%
Volatility σ 20%

Table 5.1: Default parameter values used in the calculations.
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Figure 5.2: (Left) Optimal stopping boundaries x∗k decrease as lifetime T increases. (Right) The
value v(∞)(x, T ) is increasing with respect to the underlying price levels x and lifetimes T .

In Figure 5.1 (right), it can be seen that the optimal exercise boundary x∗∞ increases

with volatility σ. This suggests that in a more volatile environment the firm will demand a

higher output price level in order to enter the market, hence delaying the investment decision.

Observe that the increasing pattern holds for finite k, k = 1, 2, 3, as well as for the infinite

case.

Turning now to the the impact of lifetime T , the parameter of main interest, on the

stopping boundaries x∗k and value v(k)(x). First, in Figure 5.2 (left), a minor difference

between x∗1 and x∗∞ is observed for long lifetimes (for T ≥ 20). Intuitively, the incremental

value of an additional investment 20 years or more from the present is minimal due to

the discount factor e−rT in (5.17) and (5.18). Therefore, for very long lifetimes, future

investments decisions will not significantly influence the current decision to invest. However,

for very short lifetimes, e.g. T < 2, there is a substantial difference between the optimal

exercise levels with one and infinite investment opportunities (i.e. x∗1 vs. x∗∞ for small T ).

In an intermediate regime, with lifetimes of 5 to 15 years, it can be observed that including

only one or two future investment decisions will significantly affect the decision regarding

the first investment. In both finite and infinite cases, the optimal exercise boundary decays
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Figure 5.3: (Left) Optimal stopping boundaries x∗k for different lead times ν. (Right) The value
v(∞)(x0, Ti, ν) evaluated for different lead times ν at x0 = 0.5, and for Ti = 5, 10, 15, 20.

rapidly with respect to lifetime. For instance, x∗∞ is almost flat for lifetimes of 10 years or

longer.

Considering the value v(∞)(x) of the multiple investment scenario for different lifetimes a

trend similar to the one regarding the stopping boundary is observed. The marginal impact

of adding one year of life to short-lived capital is significant. However, this impact drastically

decreases for longer-lived capital. For instance, as seen in Figure 5.2 (right), the value of

multiple investments in capital with a 25 year lifespan is virtually the same as capital with

a life of 5 years, at the same investment cost I and the same lead time ν. Even though

the investment cost is the same, the increased flexibility in timing future investments in the

scenario with the shorter lifetime makes them almost equally attractive.

As seen in Figure 5.3 (left), the lead time does not substantially influence x∗∞ nor the

difference between x∗1 and x∗∞ at fixed ν. In other words, varying lead times (within the

given range) will barely affect the firm’s decision to invest. This is expected since seamless

consecutive investments are possible regardless of the length of lead time. On the other hand,

a longer lead time delays revenue generation relative to the outlay of the investment cost

I. Increasing lead time therefore decreases the net present value of every future investment.
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This explains the decreasing trend of the value function v(k) with respect to lead time in

Figure 5.3 (right). In summary, the firm will realize a lower value with longer lead times of

the investments, even though the corresponding exercise boundary changes only marginally.

Displaying the value v(∞) at different lead times ν and at a fixed price level but for several

values of the lifetime T again shows the diminishing returns of adding lifetime to capital.

From Section 5.1, the reward function ψ can be interpreted as the sum (integral) of

European call options on the uncertain output price X with strike c and maturities ranging

over the lifetime. Since increasing the strike price of a European call decreases its value,

the cost parameter c has the same effect on the value v(k), which in turn raises the stopping

boundary x∗k. By similar reasoning, the same holds for I.

5.3.2 Critical Investment Cost

Experience from a given industry gives the investment cost (per unit of capacity) Ilarge, as

well as the lifetime Tlarge and lead time νlarge of large-scale capital in the current paradigm.

Transitioning to a paradigm of small-scale, mass-produced, and modular equipment will give

rise to a new parameter ensemble, {Ismall, Tsmall, νsmall}, where one, a priori, only can infer

shorter lifetimes and lead times. By considering an infinite time horizon, the framework

above can be used to find the critical investment cost Icrit that would render a small-scale

approach competitive. That is, for a given reference ensemble {Ilarge, Tlarge, νlarge} an Icrit

can be found, such that v
(∞)
small ≥ v

(∞)
large, provided that Ismall ≤ Icrit, for every choice of Tsmall

and νsmall.

The observed historical trend of increasing unit sizes seemingly suggests that total cost

decreases with size. Nevertheless, as shown in Chapter 4 this trend need not apply for

operational costs, especially not if sufficient levels of automation can be employed. This

justifies the assumption of letting the operational cost c be independent of the parameters
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I, T and ν. As an illustration, compare a single-cycle thermal power plant to an internal

combustion engine, both performing fundamentally the same task of converting chemical

energy into mechanical work. Under reasonable circumstances, they can do so at comparable

efficiencies. The car engine is mass-produced on the order of days. The power plant, on the

other hand, is typically not ready for operation for several years. Moreover, the power plant

is designed to last for decades while the car engine presumably will have a lifetime on the

order of years under constant operation. How much would one be willing to pay for an

engine that is fully automated, retrofitted to run on the same fuel and equipped with a

generator to produce electricity? Such a mini-power plant can reasonably be assumed to

incur similar levels of operational costs per kWh produced as its large-scale counterpart.

This leaves investment cost, lifetime and lead time as the main distinguishing features from

the large-scale power plant.

Analyzing the reward function in (5.23) for large x, it can be seen that Φ(d±) ≈ 1 for

x� c, and therefore, ψ(x) is asymptotically affine with

ψ(x) ≈ −I +

∫ ν+T

ν

(
xeαt − c

)
e−rtdt

=
e−(r−α)ν

r − α (1− e−(r−α)T )x−
(
I +

e−rν

r
(1− e−rT )c

)
= ax− b. (5.26)

For large enough values of x the function u(k) is affine as well and

u(k)(x) = Λψ(x) + e−rTE
{
u(k−1)(X0,x

T )
}
≈ Λψ(x) + e−rTu(k−1)

(
E
{
X0,x
T

})
=

k∑
i=0

(
e−(r−α)iT (γ − 1)ax− e−riTγb

)
,
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where E
{
X0,x
T

}
= xeαT . Using (5.26) to substitute for a, one obtains for large x:

u(∞)(x) =
e−(r−α)ν

r − α x− γb

1− e−rT ,

where the slope is independent of the lifetime T and decreasing in the lead time ν. From

the definition of u(k) in (5.15), it follows that the same properties can be attributed to the

value function v(k)(x;T, ν) for large x� c. Consequently, comparing different scenarios, i.e.

different T , ν and I, the scenario with the shortest lead time will always have the higher

value for large enough values of x.

Next, the value of small-scale capital, here characterized by Tsmall ≤ 5 years, νsmall ≤ 3

years, is compared against a benchmark of Tlarge = 25 years, νlarge = 5 years, representing

traditional large-scale capital. Furthermore, as a point of reference, the investment cost for

large-scale capital is Ilarge = 1, which together with the constant operational cost c = 0.1

(assumed the same for every choice of I, T and ν) provides a relative monetary scale.

In Figure 5.4, the value v
(∞)
large(x) of the large-scale parameter ensemble is displayed

alongside v
(∞)
small,j(x) with Tsmall = 3, νsmall = 0.25 for three different investment costs,

Ismall,j = 0.5, 1, 1.5. With their shorter lead time, the values v
(∞)
small,j(x) is seen to exceed

v
(∞)
large(x) for large values of x, verifying the analysis above.

From Theorem 1, it is known that v(∞)(x) is proportional to xγ for small enough values

of x. This explains the constant appearance of the ratio v
(∞)
small,j(x)/v

(∞)
large(x) in Figure 5.4 for

small x. The value of the scenario with the lowest investment cost v
(∞)
small,1 clearly exceeds

the value of the ‘large’ scenario for all prices x. Indeed, given Tlarge, νlarge and Ilarge one can

find a critical value Icrit(Tsmall, νsmall), such that the value of the ‘small’ scenario is greater

at any price level, as long as Ismall < Icrit. This leads to the contour plot in Figure 5.5, which

displays the critical values for different lifetimes, Tsmall and lead times, νsmall. In Section

5.3.1, it has been observed that the value v(∞) increases with lifetime (see Figure 5.2) and
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Figure 5.4: (Left) The value of a large-scale investment scenario (Tlarge = 25 and νsmall = 5)
together with small-scale analogues (Tsmall = 3 and νsmall = 0.25) at different investment costs.
The figure verifies the result that the scenario with the shorter lead time has the higher value for

large prices, x. (Right) Displaying the ratio of the previous value functions v
(∞)
small,j(x)/v

(∞)
large(x)

more clearly reveals that v
(∞)
small,1(x) > v

(∞)
large(x) for every x. This suggests the existence of a critical

investment cost Icrit such that the value of a small-scale investment scenario exceeds the traditional
large-scale counterpart for any price x, as long as Ismall ≤ Icrit.

decreases with lead time (see Figure 5.3). This helps explain the trend of Icrit with respect

to T and ν in Figure 5.5. Precisely, in this domain of short lifetimes, a reduction in lead

time yields a higher critical investment cost, which in turn increases the competitiveness of

the small-scale approach.

As an example, with Tsmall = 2.5 years and νsmall = 0.3 years, one can observe from

Figure 5.5 that Icrit = 0.5. That is, despite a difference of a factor 10 in lifetime (Tlarge = 25

years), the investment cost is required to differ only by a factor of 2 between the short and

long lifetime scenarios in order for the short-lived one to be preferable.

The closest resemblance of an estimation of Icrit using traditional NPV arguments without

any optionality would be to compare the discounted investment costs over an infinite horizon.

That is, assuming that capital is replaced every Tlarge (resp. Tsmall) years under the long

(resp. short) lifetime scenarios. For simplicity, disregarding lead times, the discounted costs
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Figure 5.5: Critical investment cost Icrit(T, ν) of a single small-scale investment, with the given T
and ν, in order for the value of multiple consecutive such investments to exceed the value of multiple
consecutive large-scale investments at any price level. Since the value function, for any choice of
T and ν, is decreasing in the investment cost, we have v(∞)(I, T, ν) ≥ v(∞)(Ilarge, Tlarge, νlarge),
provided that I < Icrit(T, ν). The large-scale investment was characterized by the parameter values:
Ilarge = 1, Tlarge = 25 years and νlarge = 5 years.

over an infinite horizon can be equated, yielding

∞∑
k=0

e−rTlargeIlarge =
∞∑
k=0

e−rTsmallI ′crit ⇔ I ′crit
Ilarge

=
1− e−rTsmall
1− e−rTlarge ,

where I ′crit denotes the critical investment cost of the short-lived scenario under the NPV

argument. Using the same example as above, with Tsmall = 2.5 years, Tlarge = 25 years, and

Ilarge = 1, we find that I ′crit = 0.24. Comparing to the critical investment cost Icrit = 0.50

above, the value of the optionality embedded in the framework permits twice the investment

cost that would be suggested by standard net present cost arguments.

Lastly, note that, in the example with the car engine and the power plant, the cost per

kW of capacity of the car engine is almost two orders of magnitude less than that of the

power plant (Larminie and Dick, 2003). Clearly, the critical costs suggested in Figure 5.5
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are not nearly as dramatic. This suggests great potential in abandoning the customized,

large-scale investments in favor of mass-produced and modular capital.

5.4 Summary

In order to capture the distinct features of lifetime and lead time of an investment, a frame-

work was introduced that valued consecutive investments over a possibly infinite time hori-

zon. Naturally, including future investments significantly affects the exercise boundary, es-

pecially when the individual investment is short-lived. Moreover, the marginal benefit of

increasing lifetime drastically diminishes when considering multiple investment opportuni-

ties. With such a valuation framework in place, critical investment costs of capital with

lifetimes and lead times that deviate from industry standards can be estimated. For in-

stance, such an estimation reveals that reducing lifetime of capital from a typical 25 years to

2.5 years need only be accompanied by a decrease of a factor 2 in investment cost in order

to be superior, in overall value terms.

The analysis has assumed a log-normal stochastic cash flow. More realistic representations

of commodity price dynamics would include other processes, e.g. with mean reversion and

jumps. While the model formulation can handle any such processes, the analysis would

likely have to resort to simulation rather than iterative solution procedures. However, some

qualitative conclusions will likely still hold. For instance, under mean reversion, the value of

an investment with considerable lead time and lifetime is expected to generate a cash flow

close to the finite long-run mean. Shorter lived, and more quickly deployed capital would,

on the other hand, be more suited to both exploit positive deviations from the mean, and

also avoid periods of low prices. In a framework where the process returns to a mean in

a timespan comparable to the lifetime of small-scale capital, the critical investment cost to

achieve parity with large-scale scenarios would therefore be expected to be even higher than
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those found in Figure 5.5.

There are a number of ways this framework can be extended. First, one can incorporate

the firm’s aversion to risk and ambiguity associated with the stochastic investment returns,

as discussed in (Henderson, 2007) and (Jaimungal, 2011) in the case of single investment.

Moreover, additional information on the technological change, industry outlook, and future

investment cost will enhance the decision analysis. For instance, intuition suggests that

frequent technological advancement is more easily harnessed with a higher turnover rate

since outdated technology can be abandoned without sacrificing investments with a long

remaining horizon. Similarly, regulatory risk is less of an issue with shorter investment

windows.

5.5 A comment on Discount Rates

How to properly place a current value on future events through discounting is a contested

issue. The proposition of valuating the effects of climate change by using very low or even

negative discount rates, as suggested in the ‘Stern Report’, met firm opposition among

economists (Stern et al., 2007; Nordhaus, 2007). Even within the financial community,

there are different opinions on how to properly account for the opportunity cost of capital

in the discount rate in various situations. For instance, debt to equity ratios may change

during the lifetime of a project (Esty, 1999) or the risk profile changes after the completion

of construction and commencement of operation (Garvin and Cheah, 2004; Brealey et al.,

2008).

Regardless of underlying factors, the discount rate used when evaluating the economic

viability of a project ex ante is intrinsically linked to the expected economic life of the

investment. As illustrated in Figure 5.6, assuming a constant cash flow (in real terms) over a

40 year investment, a discount rate of 15% means that half the present value of the project is
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Figure 5.6: This simple graph of the discount factor with a continuously compounded rate, e−rt,
illustrates the impact of the rate r used in valuations of long-lived investments. Discounting at 15%
p.a. requires a 40-year investment to generate half its value in the first 4 years.

generated during the first 4 years. Using a lower discount rate in the valuation of long-lived

projects puts a higher value on revenues generated further out in the future. Consequently,

a perceived low risk of future revenue shortfall is manifested by using a low discount rate. In

the context of energy investments, which almost exclusively rely on long pay-back periods

(or equivalently, uses a low discount rate), an uncertain regulatory environment is suggested

to impede investments. These uncertainties could take the form of an anticipated price on

carbon (Fan et al., 2010), or uncertain continuance of policy support for renewables (Lüthi

and Prässler, 2011), or of course, a combination of the two. Regardless, the resolution of

such uncertainties would not result in rampant investments if these cannot be assumed viable

over a long period.

The use of a low discount rate, e.g. 5-6% in the valuation of nuclear and other thermal

power generation investments (OECD/IEA, 2010; Deutch et al., 2003) reveals the perception

of another risk. Capital intensive projects that rely on a long economic life for financial

viability would not be initiated if the emergence of competing technologies were likely. Albeit

without further substantiation, this observation does suggest that industries accustomed to

large-unit scale, and consequently long lifetimes, are less amenable or prone to innovation.



Chapter 6

Small-Scale Reverse Osmosis

Desalination

Providing large, stable and affordable supplies of fresh water from the oceans has been sug-

gested as one of the main engineering challenges for the coming century (National Academy

of Engineering, 2012). Among the various desalination technologies available for this pur-

pose, RO has seen the largest growth in recent years and represents almost half of world

desalination capacity today (Greenlee et al., 2009). Improvements in membrane materials

and process designs over the past decades have substantially lowered the energy consump-

tion in seawater reverse osmosis (SWRO) desalination. Depending on salinity and overall

feed water quality, current state-of-the art SWRO facilities require between 3-4 kWh per

cubic meter of produced water, down from around 20 kWh per cubic meter 30 years ago

(Elimelech and Phillip, 2011; Fritzmann et al., 2007). However, energy still accounts for the

largest fraction (typically almost half) of the total cost of desalinated seawater through RO

today (Wittholz et al., 2008). With the thermodynamic limit around one fifth of the energy

requirement in current processes, there is room for further improvement.

The expected increase in demand for desalinated water together with the nature of reverse
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osmosis, being a membrane-based process, makes this technology an appropriate candidate

to study more closely. The focus of the investigation here is on the actual reverse osmosis

(RO) stage, the main part of this desalination technology. More specifically, investigating

the feed flow reveals two main hydrodynamic effects that impacts energy consumption in

the separation stage: pressure drop of the feed and concentration polarization above the

membrane surface.

The RO stage typically comprises three components: energy delivery (pumps), active

membrane surface area and some form of an energy recovery device. The membrane area

is manufactured in modules, which are then assembled in series in a single pressure vessel.

Deviating from the industry norm of large-scale implementations would entail smaller pres-

sure vessels, and consequently shorter feed channels. It will be shown below that scaling

down accordingly mitigates the two hydrodynamic effects mentioned above and results in

slight energy savings while keeping the same level of productivity, i.e. flux rate through the

membranes.

Moving into a paradigm of mass-production of small-scale and standalone RO units will

presumably lower the fixed cost of desalination hardware. With more expensive energy

supplies (e.g. renewable power) this will emphasize the role of specific energy consumption

as an overall cost driver. Therefore, further reductions of specific energy consumption by

decreasing permeate flux through the membrane is also demonstrated.

The transport mechanisms in this study are modeled in a thin rectangular feed chan-

nel with two permeable walls under both laminar and turbulent conditions. These models

allow for a calculation of the specific energy consumption in RO. Moreover, they also per-

mit investigation of different geometries and flow conditions, including those observed in

commercial operation. Compared to models in the literature, the laminar model developed

here is applicable to a wider range of conditions, which allows for study of different feed
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Figure 6.1: Schematic overview of a typical SWRO plant (Fritzmann et al., 2007; Cerci, 2002)

flow rates, permeation flux rates and different channel geometries. In order to reduce the

dimensionality of the optimization problem, this study limits the channel length to 1 and 8

meters. The former represents the length of a single membrane module as they are currently

manufactured and the latter number corresponds to the length of the feed channel typically

observed in commercial RO implementations.

6.1 SWRO – An overview

The different processes in a typical SWRO plant can be categorized in six stages – in-

take, pretreatment, RO-separation, brine post-treatment, brine discharge and permeate post-

treatment, see Figure 6.1. While the RO-stage is the main focus here, the other steps are

briefly reviewed.

Water can be extracted from the ocean in one of two ways: through open seawater intakes

or through wells drilled on the coast or beneath the ocean floor. While open intakes usually

represent a lower investment cost, these expose the plant to a higher variability of intake water

quality, caused by algae bloom or stormy weather, for example. This requires adaptability

of the subsequent pretreatment stage in order to secure continuous operation, which in

turn translates into tighter operational control and higher capital costs. Additionally, for

larger desalination plants, the high feed water flow rate disturbs the local aquatic biota, and
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impingement of marine organisms on the intake screens, as well as entrainment further into

the system, become serious concerns. Both these issues can be mitigated by situating the

intake deeper, at the expense of higher capital costs (Gille, 2003). Subsurface intakes have

the advantage of the intake water being naturally filtered through the permeable stratum,

decreasing the need for a flexible pretreatment system. The limits imposed by local soil

permeability of conventional vertical beach wells have typically disqualified these for large-

scale operation. However, new techniques in horizontal drilling may prove to provide high

capacity intake systems of constant water quality without disturbing the marine life and

at reasonable costs (Peters et al., 2007). Ultimately, site-specific characteristics, such as

meteorological, oceanographic and geological features and marine life determine the optimal

intake system.

The purpose of pretreatment is to supply the RO-stage with feed water of even quality

for continuous operation. The main mechanisms causing flux decline in SWRO, which need

to be avoided or mitigated through pretreatment, can be summarized as fouling and scaling.

Fouling includes the accumulation of particulates as well as growth of biological matter in

the feed channel. Scaling, on the other hand, is the precipitation of super-saturated inorganic

compounds on the membrane surface.

Protecting pipes and pumps in the intake system, coarse screens in the extraction stage

serve as the first step in the physical pretreatment of the feed water. To further separate

suspended solids and colloids from the feed, flocculation agents, e.g. iron or aluminum salts,

are added to agglomerate suspended matter. These compounds are then removed through

e.g. sedimentation or multimedia filtration followed by micro filtration to reach acceptable

levels of clarity (Fritzmann et al., 2007; Bonnelye et al., 2004). Protecting the membranes

from biofouling, oxidants such as chlorine or ozone are sometimes added to the feed water

(Lee et al., 2009). These oxidative compounds need to be carefully removed before the
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RO-stage to prevent membrane degradation.

With an overall increase in feed salinity along the RO-membrane channel as fresh water

gets diverted, precipitation of inorganic compounds becomes more likely. These crystals are

sometimes hard to remove and besides severely inhibiting flux they may also permanently

damage the membranes. The more notable foulants in this case are calcium carbonate

CaCO3, calcium sulfate CaSO4 and silica SiO2 (Oh et al., 2009). Precipitation of these and

other salts can be limited or prevented through a combination of adding chemical agents as

antiscalants and controlling the pH.

Post-treatment of the brine is focused on the removal of chemicals, introduced either as

antiscalants or for plant cleaning, before discharge. Also, depending on operational conditions

and the sensitivity of the discharge site, pH adjustment in the form of raised alkalinity may

be needed. With desalination plants typically operating at 40-50% recovery (Greenlee et al.,

2009; Reddy and Ghaffour, 2007), one of the main environmental issues with SWRO is

however the discharge of the high saline concentrate. The salinity of the brine dramatically

differs from that of the natural water causing severe osmotic stresses to the marine life

(Fritzmann et al., 2007; Dupavillon and Gillanders, 2009).

One of the most important operating parameters in SWRO desalination is the recovery

rate, i.e. the fraction of fresh water produced from a given amount of intake water. From

the outside, this parameter determines, for a given production capacity, the overall water

circulation through the plant as well as the salinity of the effluent brine. Seen from the

inside, altering the recovery rate potentially affects every process step, most importantly

the RO-separation stage. According to many observers, achieving continued reductions in

energy consumption and overall cost in SWRO hinges on the ability to operate at even higher

recovery rates than today’s, i.e. at 50% and above (Busch and Mickols, 2004; Kim et al.,

2007, 2009; Semiat, 2000, 2008; Stover, 2007; Wilf and Klinko, 2001; Liang et al., 2009).
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While increasing the recovery means processing a smaller volume of feed water, this feed

water has to be pretreated more carefully to avoid scaling. Moreover, a higher recovery also

requires increased operating pressures to overcome the raised osmotic pressures caused by

the higher average salinities in the brine stream. Consequently, this route entails higher

capital costs for stricter pretreatment stages of the feed water, tighter operational control

and more sturdy equipment capable of withstanding the higher pressures and more corrosive

environment.

Next to the recovery rate, the permeation rate, or the flux of produced water, also

significantly impacts the energy required to desalinate seawater. Akin to Ohm’s law, the

permeation rate through a membrane is proportional to the pressure drop (hydrostatic minus

osmotic) across the membrane. The specific energy consumption is therefore, to a first

approximation, linear in the flux rate. In environments with low-cost power and high capital

costs, the incentives are lined up to operate at the highest possible flux. However, if this cost

structure is reversed, then the incentives would pull in the opposite direction. Two settings

in which such a reversal could be a reality for seawater desalination are envisaged. First,

renewable power today typically commands a premium over its fossil-derived counterpart.

Desalinating water using electricity from e.g. solar and wind energy would therefore fall into

this category. Second, along the theme of this thesis, transitioning to a paradigm of mass

production of small-scale and modular units could offer additional benefits. Small-scale

desalination systems exist today in niche markets, see e.g. (Spectra Watermakers, 2012),

proving the fundamental validity of this approach. Mass-producing similar units could bring

down investment cost to levels at, or below the cost of today’s large-scale and centralized

plants.
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6.2 Transport and Energy Consumption in the RO-

stage

The amount of energy required to produce one unit of potable water from a saline solution

via reverse osmosis depends on several factors. Perhaps the most prominent locational factor

is the salinity of the feed. Even when limiting the discussion to seawater RO, the salinities of

different bodies of water typically range from 30,000 to 45,000 mg/L (Greenlee et al., 2009),

which complicates comparisons of energy consumption of RO plants around the world. Other

locational factors that influence energy consumption are general feed water quality and in-

take structures. For instance, open surface intakes require more pretreatment of the feed

in the plant compared to beach wells or other subsurface intakes where the permeable stra-

tum provides a natural filtration. In addition to these locational factors, two operational

parameters substantially affect the specific energy consumption of any membrane-based de-

salination process: the recovery rate and permeate flux rate. These two parameters are

controlled through the hydrostatic pressure and the volumetric flow rate of the feed entering

the main separation stage. In order to find the specific energy consumption in the RO-stage,

the local pressure of the feed and the permeation rates are modeled along the feed channel

in the separation stage.

Before introducing the transport models the minimum necessary work required in de-

salination is briefly reviewed from a thermodynamic perspective. Given a volume of saline

solution with known concentration c, the osmotic pressure π can be formulated as a function

of the fraction χ of water that has been withdrawn. Considering the solution to be ideal, the

osmotic pressure π is approximately linear in the concentration: π = fosc, where fos depends
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on the chemical properties of the solute. Then

π(χ) = fosρ
ms

ms + (1− χ)mw

= fosρ
r

r + (1− χ)
, (6.1)

where the density ρ is assumed constant. The ratio, r = ms/mw, is the mass ratio of dissolved

salts and water respectively per unit volume of initial solution. The ideal work required to

separate 1 cubic meter of fresh water from 1/α cubic meter of salty solution, i.e. the ideal

specific work at a recovery rate α, is

Wideal =
1

α

∫ α

0

π(χ)dχ =
fosρ

α
r ln

(
r + 1

r + (1− α)

)
. (6.2)

In the limit α → 0, the work Wideal is the same as the osmotic pressure of the initial

solution. This limit is sometimes stated as the minimum theoretical amount of work needed

to produce one cubic meter of freshwater from seawater. Novel approaches to desalination

call for submarine operations at working depths such that the hydrostatic pressure overcomes

the osmotic pressure (Charcosset et al., 2009; Pacenti et al., 1999). The only work required

is that of pumping the permeate to the surface, which roughly corresponds the limit α→ 0

in (6.2). For regular land-based desalination, this limit is not practically attainable due to

a finite volumetric feed flow rate to the plant. Hence, the minimal work required in real RO

operation is higher, depending, among other things, on the recovery rate α.

According to solution-diffusion theory, the permeation velocity, or flux, vp is proportional

to the difference between the fluid pressure difference and the osmotic pressure difference

across the membrane (Baker, 2004; Mulder, 1991):

vp = A [∆p−∆π] = A [(p− p0)− fos (cm − cp)] . (6.3)

The coefficient A is the membrane water permeability. Crucially, the osmotic pressure dif-
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ference across the membrane depends on the feed side concentration cm immediately above

the membrane surface. The concentration polarization that occurs when selectively extract-

ing water from the feed will elevate the concentration close to the membrane compared to

the rest of the feed. The permeate concentration cp to cm are related through a rejection

coefficient R, typically used to characterize membrane performance:

cm − cp = Rcm. (6.4)

Additionally, the pressure on the permeate side, p0 in (6.3), is assumed constant and equal

to ambient pressure.

The most common assembly of membrane surface area in RO-desalination is the spiral-

wound module. In such a module, the feed channel is a thin leaf, multiples of which are

wound around a permeate collector tube. Because the thickness of each leaf (channel height)

is much smaller than the radius of the assembly, each leaf can be approximated with a

rectangular channel, (Schwinge et al., 2004; Geraldes et al., 2002). Below, the pressure and

concentration profile for both a laminar flow and for a disturbed flow are modeled in such a

channel, see Figures 6.2 and 6.3.

6.2.1 Laminar Flow

If either the feed channel is unobstructed or if the feed flow rates are sufficiently low, the

flow can be considered laminar. Moreover, since the width of the channel is much greater

than the channel height, the problem can be limited to two dimensions and a Poiseuille flow

can be stipulated in the feed channel. With such a flow field, the continuity equation at

steady state for the salt in the feed channel can be solved in conjunction with the expression

for the local permeation rate in (6.3). Similar laminar models, which make some simplifying

assumptions that circumvent solving the partial differential equation that is the continuity
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Figure 6.2: An unobstructed feed channel with
the same height as those found in the spiral-wound
module would allow for a laminar feed flow. The
longitudinal feed velocity component, u, is ap-
proximated with a parabolic Poiseuille profile onto
which a vertical velocity component, v, obeying the
continuity equation, is superimposed.
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Figure 6.3: The feed flow in a typical spiral-
wound membrane module is disturbed by spacers
to enhance mixing. At sufficient flow rates the
flow can be considered turbulent. Concentration
is assumed uniform across the height of the chan-
nel except in the laminar boundary layers. The
superficial feed velocity is denoted u.

equation, can be found in the literature, see e.g. (Elimelech and Phillip, 2011; Song and

Elimelech, 1995; Song, 2010; Bouchard et al., 1994; Brian, 1965).

Consider a flow field ~w in the feed channel, where

~w(x, y) = (u(x, y), v(x, y)) , (6.5)

which is approximated by a parabolic longitudinal component u(x, y) and a superimposed

transverse velocity component v(x, y) satisfying the continuity equation. The transgression

made by simply superimposing a transverse velocity and thus violating the laws of momentum

transport in the fluid is negligible since |v| is typically four to five orders of magnitude smaller

than the longitudinal velocity |u| in reverse osmosis applications (Song, 2010; Bouchard et al.,

1994). A parabolic profile in a channel of height h with vanishing velocities at the channel

walls (both semi-permeable) yields

u(x, y) = 6u(x)
y

h

(
1− y

h

)
, (6.6)

where u(x) is the average longitudinal velocity at x. Integrating the continuity equation at



CHAPTER 6. SMALL-SCALE REVERSE OSMOSIS DESALINATION 92

steady state, ∇ · ~w = 0, together with the symmetry condition v(x, h/2) = 0 results in

v(x, y) =
du

dx

h

2

[
1− 6

(y
h

)2

+ 4
(y
h

)3
]
, (6.7)

where the boundary condition is expressed with the use of the permeation rate in (6.3):

v(x, 0) =
h

2

du

dx
= vp(x). (6.8)

For a laminar flow between two planes, the pressure loss along the channel is given by

dp

dx
= −12ηu

h2
, (6.9)

where η is the dynamic viscosity of the solution. The assumption of a laminar flow in a clear

channel holds for Reynolds numbers Re = ρuh/η < 2100 (Kim and Hoek, 2005).

In order to find the local permeation rates vp(x) from (6.3), which varies along the channel,

the concentration cm(x) at the membrane wall is required. This is achieved by solving the

general continuity equation at steady state for the salt in the channel:

∂tc = −∇ · (c~w)−∇ · (−D∇c)

0 = −u∂xc+D∂xxc− v∂yc+D∂yyc. (6.10)

Both the density ρ of the total fluid and the diffusion constant D for the salt in the fluid

are assumed to be spatially uniform in (6.10). Details regarding the implementation of a

discretization of (6.10) and (6.9), as well as the longitudinally varying (6.3) can be found in

Appendix B.
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6.2.2 Turbulent Flow

The hydrodynamics of the feed flow in a commercial RO-separation stage is an area under

significant current investigation, see (Guillen and Hoek, 2009; Kim and Hoek, 2005; Lyster

and Cohen, 2007; Song et al., 2002; Lu et al., 2007; Kaghazchi et al., 2010). Short of CFD

analyses of the flow with detailed information on the geometry of the feed channel, most

turbulent models rely on thin-film theory to link concentration profiles and permeation rates.

This theory suggests that outside a laminar boundary layer of thickness δ, the fluid is well

mixed with a concentration cb (bulk concentration). Furthermore, this theory presumes that

inside this boundary layer, there is negligible longitudinal solute transport and the vertical

velocity component is constant, v = vp. Under these assumptions the continuity equation

(6.10) in the boundary layer can be expressed as

0 = ∂y (vpc−D∂yc) , 0 ≤ y ≤ δ. (6.11)

Taking vp to be a positive quantity (directed toward the membrane at y = 0) and integrating

over the height δ of the boundary layer yields

vpc+D∂yc = vp(1−R)cm, (6.12)

where cm = c(0) is the concentration next to the membrane and where (1 − R)cm is the

permeate concentration. Solving this differential equation, with the boundary condition

c(δ) = cb, which can be extended to the center of the channel, yields

c(y) =


(cb − (1−R)cm) e(δ−y)vp/D + (1−R)cm, 0 ≤ y ≤ δ,

cb, δ ≤ y ≤ h/2.

(6.13)
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Particularly, for y = 0, the commonly encountered expression for the concentration polar-

ization in obstructed channels is retrieved,

Rcm
cb − (1−R)cm

= evpδ/D = evp/k. (6.14)

Note the introduction of the mass-transfer coefficient k = D/δ.

Applying (6.14) requires an approximation of the mass-transfer coefficient, or equivalently

the boundary layer thickness. This is typically achieved with a Sherwood-number correlation:

k = Sh
D

dh
= g(Ret, Sc)

D

dh
, (6.15)

where dh denotes the hydraulic diameter (dh ∼ h), and where Ret = ρdhu/η and Sc = η/(ρD)

are the dimensionless Reynolds and Schmidt numbers respectively. Affixing the subscript to

the notation of the turbulent Reynolds number highlights the dependence on the hydraulic

diameter rather than channel height. The hydraulic diameter is a parameter that depends on

the channel geometry, including the shape of the spacers. In addition to the approximation

of the Sherwood number, a pressure drop,

dp

dx
= − f

dh

ρu2

2
, (6.16)

is also inferred by an approximation of the friction factor f as a function of the Reynolds

number. The multitude of different channel geometries available in RO applications, together

with various flow regimes possible, has spawned a plethora of correlations g in (6.15) and of

the friction factor f in (6.16), see e.g. (Guillen and Hoek, 2009; Lyster and Cohen, 2007;

Gekas and Hallstrom, 1987; Schock and Miquel, 1987). The model used here is adopted from

(Guillen and Hoek, 2009), which studies similar applications (SWRO at typical permeation

rates in spiral-wound modules). In that work, the Sherwood number correlation and the
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Description Value
dh (mm) 0.81
κ 0.46
λ 0.34
β 0.69
γ 244.17
ε 1.00

Table 6.1: Parameter values used in the Sherwood number correlation and pressure drop approxi-
mation of the turbulent flow.

friction factor approximation are given by:

Sh = κ (RetSc)
λ , (6.17)

f = β +
γ

Reεt
,

where the numerical values can be found in Table 6.1. The numerical solution scheme can

be found in Appendix B.

The numerical values for the parameters used are only valid for a fixed channel geometry

and a for limited range of Reynolds numbers. Particularly, for low Reynolds numbers the

notion of turbulent flow is questionable. Use of this turbulent model is therefore limited to

the conditions specified in (Guillen and Hoek, 2009), which corresponds well to the conditions

in commercial SWRO operation.

6.3 Results and Discussion

The two main factors that impede flux, beyond thermodynamic limitations, are concentration

polarization and longitudinal pressure drop in the feed channel. These factors both affect the

permeation rate directly since this rate is proportional to the difference ∆p−∆π, see (6.3).

A more pronounced polarization raises the concentration next to the membrane, thereby

also the osmotic pressure gradient ∆π across the membrane. On the other hand, pressure

losses in the feed channel diminish the driving force that is the hydrostatic pressure p causing
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flux decline along the longitudinal direction of the channel. With limited mass transport in

the transversal direction, the laminar flow is expected to yield greater levels of polarization.

However, since this transport is correlated with transport of x-momentum in the y-direction,

lower pressure drops for laminar flows are also expected. For a turbulent flow, the situation is

reversed. With turbulent mixing across the major part of the channel height, concentration

polarization is expected to decrease at the expense of a higher pressure drop.

These arguments are verified in Figure 6.4, where flow conditions of commercial SWRO

operations are simulated, L = 8m, ∆p0 = 65 bar, u0 = 0.25m/s (Re = 113.) As can be

seen in Figure 6.5, the greater polarization of the laminar flow causes lower flux early in the

channel compared to the turbulent flow. However, permeation rates decrease more quickly

along the channel due to a greater pressure drop. Comparing the two flows, the turbulent

channel yields slightly higher average permeation rates under these conditions (vp = 3.7µm/s

versus vp = 3.3µm/s.)

Figures 6.4 and 6.5 detail the polarization, permeation velocity and pressure drop in

a long channel. Given the feed flow rate and the operating pressure the flow early in the

channel is unaffected by conditions downstream. Thus, these figures also reveal conditions in

channels shorter than L = 8m. Importantly, the laminar model shows the intrinsic benefits

of using a shorter channel. As seen in Figure 6.5 the permeation velocity, in contrast to

the pressure, drops rapidly early in the channel. Using a massively parallel configuration of

shorter channels rather than one long channel would therefore yield more permeate at the

same pressure, which consequently results in lower energy consumption per unit fresh water

produced.

The transversal transport in the feed channel can be described by the average Peclet

number, Pe = vph/D, which expresses the ratio between the rates of convective and diffusive

transport. With a Peclet number less than unity diffusion is expected to dominate convection
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Figure 6.5: Permeation rate vp(x) and trans-
membrane pressure gradient ∆p(x) for laminar
and turbulent flows. A higher polarization for the
laminar flow causes lower fluxes early in the chan-
nel. However, a higher pressure drop for the tur-
bulent flow depresses flux rates more quickly than
for the laminar flow.

and thereby prohibit the build-up of any significant polarization in the channel. Conversely,

if Pe > 1 then the convective transport is presumed to dominate diffusion and therefore

yield a significant transversal gradient in concentration. This effect is verified in Figure 6.6,

where the concentration profiles of two flows, with the same average permeation rate and

the same Reynolds number, are given in two channels of height 2.5 · 10−3m and 1 · 10−4m

respectively1. With vp = 4µm/s in both cases, the Peclet numbers are 6 and 0.2 respectively.

While a smaller channel height reduces polarization, the flow suffers a greater pressure drop

because of the inverse dependence on h2 in (6.9). In order for this drop not to obscure

the reduced polarization, a relatively short length of the channel, L = 0.1m, was used for

illustration purposes. The two flows result in the same amount of permeate but, because

of the substantial difference in concentration levels near the membrane, the difference in

required pressure is equally substantial, ∆p0 = 68 bar and ∆p0 = 51 bar respectively. Since

these flows have the same Reynolds numbers, they also have the same volumetric feed flow

1These values where chosen since they can be considered extremes compared to the height of the channel
in typical spiral-wound modules (0.5− 0.7mm).
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Figure 6.6: Concetration profiles in channels of height 2.5 · 10−3m (right) and 1 · 10−4m (left)
respectively. The average permeation rate is the same in both cases, as where the channel length
L = 0.1m and the Reynolds number Re = 25. In the channel with the smaller height, diffusion
away from the membrane overcomes the convective transport of solute towards the membrane. The
reduced polarization causes lower osmotic pressure at the membrane boundary and therefore requires
a lower pressure gradient for the same flux.

rate. The lower operating pressure would therefore directly correspond to a lower specific

energy consumption in the thinner channel.

The concentration polarization is however not merely a function of the transversal Peclet

number. From (6.10), it is expected that the longitudinal velocity u in the feed channel also

influences the polarization. With a higher velocity u, retained particles are swept away in

the longitudinal direction to a greater extent. Indeed, two flows with different flow speeds u0,

expressed through the Reynolds number Re = ρhu0/η, but with the same average permeation

rate in the same channel are displayed in Figure 6.7. The difference, evidenced in Figure

6.7, suggests that treating the concentration polarization as a boundary layer phenomenon

in laminar flows and neglecting the transversal terms in (6.10), as done in Song (2010); Song

and Yu (1999); Song and Elimelech (1995), has doubtful validity.
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Figure 6.7: Two flows in the same channel with the same transversal Peclet number Pe = vph/D
but with different Reynolds numbers Re = ρu0h/η. Increasing the transversal velocity u also in-
creases the importance of the transversal transport terms in (6.10), which depresses polarization
and also decreases the necessary pressure to produce the flux.

6.3.1 Specific Work

In a typical RO-plant up to 8 spiral-wound modules are placed in series in a single pressure

vessel. These modules are typically manufactured with a length of 1 meter, making L = 8 m

an appropriate length simulating the conditions in stadard practice RO. Morevover, standard

modules, such as e.g. the SW30XLE-400 produced by FilmTec, has a feed channel height

of approximately 0.7mm. However, to be consistent with the parameter values adopted

from (Guillen and Hoek, 2009), a channel height h = 0.5mm is used. As to the energy

recovery, there are several different implementations of such devises. The first generation

let the pressurized brine drive a turbine, thereby generating electricity to power the main

pumps. Later generations typically let the brine impart the pressure directly on a part of the

feed in so-called pressure exchangers. This design has two pump systems, one main pump

elevating one part of the feed to operating pressure, whereas the other part flows through

the pressure exchanger followed by a booster pump to make up the difference. However,

smaller and more compact RO-systems integrate the recovery directly, e.g. with a Clark

pump (Spectra Watermakers, 2012). These newer recovery devices can achieve very high

efficiencies, especially the small and integrated ones, of up to 98% (Thomson et al., 2003;
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RO-module

Brine: (1-α)Q , p-ploss

Feed: Q , p Permeate: αQ , p0 = 0

Figure 6.8: Schematic view of volumetric flow rates and pressures in the different streams in the
RO-separation stage. All pressures are gauge pressures and a zero back-pressure is assumed on the
permeate stream.

Sun et al., 2009; Sanz et al., 2007). The subsequent analysis will adopt the integrated

approach to energy recovery and use a recovery efficiency of ζ = 95%. Lastly, modern RO-

desalination plants, such as those in Perth, Australia and Ashkelon, Israel, both operate their

first pass membranes at an average permeate flux rate of around 4µm/s (Sanz et al., 2007;

Sauvet-Goichon, 2007). This value will serve as a benchmark in this study. All membrane

and fluid specific parameter values used can be found in Table 6.2.

The specific energy consumption in standard practice RO-desalination (turbulent flow

model, L = 8m) is compared to the energy required in a smaller channel with a length of one

meter, representing a small-scale and modular design. While theory, and simulation results,

implies increasing specific energy consumption with channel length (due to greater pressure

drop) the choice of one meter and not shorter for the small-scale design is motivated by the

scale of currently manufactured spiral-wound modules. The laminar model is used for the

flow in the shorter channel.

From a practical perspective, the specific energy consumption WRO in the RO-stage,

operating at a recovery rate α, is determined by the flow rates and pressures of the different

streams, see Figure 6.8. With the given recovery efficiency, the specific energy consumption

is given by

WRO =
Q∆p1 − ζ(1− α)Q∆p2

αQ
=

∆p1 − ζ∆p2

α
+ ζ∆p2. (6.18)
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Notation Description Value
A Membrane permeability 1.8 · 10−12 (m s−1Pa−1)
R Membrane salt rejection 99%
h Channel height 5.0 · 10−4 (m)
L Channel length 1, 8 (m)
c0 Feed salinity 35 (kg m−3)
η Feed dynamic viscosity 1.1 · 10−3 (kg m−1s−1)
ρ Feed density 1.0 · 103 (kg m−3)

fos Osmotic pressure coefficient 78 (Pa m−3 kg−1)
D Diffusivity 1.6 · 10−9 m2/s
ζ Recovery efficiency 95%

Table 6.2: Default parameter values characterizing membrane and feed properties. These values
were, where appropriate, sourced in (Guillen and Hoek, 2009).

The volumetric feed flow rate is denoted Q and ∆pi = pi − p0, i = 1, 2 are the hydrostatic

heads of the feed and brine streams respectively relative the permeate stream. In the ideal

limit, where p2 = p1 = p and ζ = 1, the limit in (6.2) is recovered with p being the osmotic

pressure of the solution.

When operating the separation stage at a recovery α the volumetric flow rate of the

permeate stream is given by αQ, where Q is the flow rate of the incoming feed. For a

channel of length L, height h and width w this relation can be written as

αu0hw = 2vpwL ⇔ u0 =
2

α

L

h
vp, (6.19)

and the Reynolds number can be expressed as

Re =
ρu0h

η
=

2ρLvp
αη

. (6.20)

Given the recovery rate and the average permeate flux, the average feed flow speed is set

by (6.19) and the required pressure is subsequently found using either of the two models

introduced before. From (6.20) it can be seen that the Reynolds number of the flow, given α

and vp, is proportional to the length of the channel. This suggests that the turbulent model

is less appropriate for a shorter channel.
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Figure 6.9: At a fixed permeate flux rate the competing forces of high pressure drops (at lower
recoveries) and increased polarization (at higher recoveries) give rise to an intermediate optimum
in both the laminar and the turbulent channels. For the two permeation rates used, the shorter
channel exhibits more than 25% lower energy consumption at respective optimal recoveries. The
‘+’-markers indicate the specific energy consumption at the optimal recovery rate for different flux
rates (1− 5µm/s) in the shorter, laminar channel.

The specific energy consumption in the RO-separation stage is displayed in Figure 6.9

for several different flows. At lower recoveries the feed flow rates are higher causing greater

pressure losses in the channel at fixed vp. On the other hand, lower flow rates (higher recov-

eries) results in higher concentration polarization. Additionally, the theoretical minimum,

also shown in the same figure, increases with recovery. These competing forces explain the

existence of an intermediate optimum recovery rate. The specific energy consumption in the

longer and turbulent channel, at the standard permeate flux rate of vp = 4µm/s, exhibit a

more pronounced optimum. While it is the same competing forces as in the laminar case,

the penalty incurred by the pressure drop is much greater for turbulent flows at lower re-

coveries. This increases the optimal recovery rate compared to the shorter channel with a

laminar flow. Moreover, the result of an optimal recovery around 50% supports the current

trend in the industry of pursuing high recovery rates. Examining the laminar flows in the

shorter channel it is noticed that the optimal recovery is much lower, less than 30%. At the

same permeate flux rate, vp = 4µm/s, the shorter channel shows slightly improved energy
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Figure 6.10: Decreasing the height of the feed
channel reduces polarization for laminar flows.
For very thin channels the increased pressure loss
overshadows this benefit. Decreasing the channel
height in standard modules by half results in a 10%
reduction in energy consumption at optimal recov-
ery.
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Figure 6.11: The specific energy consumption is
more sensitive to changes in recovery efficiency at
lower recovery rates. At lower recovery rates the
feed flow rates are higher, which in turn causes a
greater pressure drop for a given average permeate
flux rate. Consequently, we notice from (6.18) the
increased energy consumption.

consumption compared to the standard long channel. This suggests that the lower pressure

drop and greater polarization in the laminar flow is balanced by the higher pressure drop

but lower polarization in the turbulent channel.

Decreasing the permeate flux rate results in a significant reduction in specific energy

consumption, as is expected. For instance, reducing the flux by half in the shorter channel,

results in a 25% reduction in energy consumption. Furthermore, the results indicate that

the optimal recovery increases slightly with the flux rate. This trend can be attributed to

the influence of feed flow speeds on concentration polarization. Increasing the recovery rate

at a fixed flux rate implies decreased longitudinal velocities in the feed channel. As seen in

Figure 6.7, decreasing the longitudinal velocities at fixed average Peclet number enhances

polarization. To achieve the same permeate flux, the operating pressure needs to be raised,

which results in higher specific energy consumption.

In the previous section, it was shown that the height of the channel can significantly affect

the concentration polarization for laminar flows. A thinner channel reduces polarization and
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consequently also reduces the required operating pressure to achieve the same flux. However,

since a thinner channel implies higher volumetric flow rates at a given recovery and permeate

flux rate, the pressure losses scale with 1/h3, see (6.9) and (6.19). This suggests the existence

of an optimal channel height for laminar flows, see Figure 6.10. The results displayed in this

figure indicate a 10% decrease in specific energy consumption by reducing the channel height

in standard modules (0.7mm) with almost 50%.

The sensitivity of the energy consumption with respect to changes in the recovery effi-

ciency is exhibited in Figure 6.11 for the laminar flow. Increasing the efficiency to 97% would

decrease the optimal recovery rate for the laminar flow even further, down to almost 20%.

The optimum of the turbulent flow is less sensitive (not shown here) to this efficiency. This

difference in sensitivity is explained by the difference in pressure losses at different recoveries,

see (6.18). Decreasing the membrane permeability (also not shown) shifts both curves down

a similar amount.

The required operating pressures for the shorter channel and the longer channel are

shown in Figure 6.12. At the same flux rate vp = 4µm/s, we observe that the laminar flow

requires a greater pressure than the turbulent flow at higher recovery rates. This is again

explained by the relatively greater concentration polarization in the laminar channel. For

lower recovery rates (higher feed flow speeds) the pressure drop is significantly higher in the

turbulent channel, which therefore requires a higher pressure to achieve the same average

flux. Moreover, lowering the flux rate corresponds to significantly reduced pressures in the

system. The difference in pressures, at respective optimal recovery (see Figure 6.9), is almost

20 bars.
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Figure 6.12: Due to concentration polarization and increased average salinities in the feed channel,
the required pressure increases with the recovery rate. For the turbulent channel, operating at lower
recoveries incurs significant pressure losses along the channel, explaining the increased operating
pressure to achieve the same flux.

6.4 Summary

This analysis is focused on the RO-separation stage and the energy expenditures in the intake

and pretreatment stages have not been included. Since these penalties scale with the overall

volume circulated in the plant, the optimal recovery rate, viewed from an energy consumption

perspective, would increase when including these steps in an overarching analysis. However,

the magnitude of this increase is uncertain for several reasons. Locational factors influence

the quality of the feed water and therefore also the level of pretreatment needed. Surface

intakes require substantially more pretreatment compared to beach wells or deep sub-surface

intakes. One case study on conventional pretreatment, a sand filter and a cartridge filter,

measured a head loss of 1-2 bar in the pretreatment stage (Djebedjian et al., 2007). Another

source cites head differences of 3.5 bar including seawater intake, while a yet another source

indicates very minor head losses in a direct filtration pretreatment of around 0.25 bar (Semiat,

2008; Bonnelye et al., 2004). To put these numbers into a perspective of energy consumption,

a plant operating at 25% recovery would incur an energy penalty, upstream of the separation

stage, of less than 0.1 kWh/m3 relative to a plant operating at 50% recovery, assuming the
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same level of treatment is required.

This study reveals that small-scale desalination system require slightly less specific energy

in the separation stage. Moreover, optimality occur under much different conditions than

those observed in the industry and suggested in the literature. A shorter channel results

in optimal energy consumption at lower operating pressure and lower recovery rate. The

former gives rise to the possibility of using less sturdy materials and thereby reducing cost.

Operating at a lower recovery will require a reevaluation of all steps in the process. For

instance, a lower recovery rate translates into lower salinities in the membrane modules,

which reduces the risk of scaling. In current SWRO operation scaling is mitigated through

pH-control and by adding chemical agents as antiscalants to the feed, a regiment which

typically requires post-treatment of the brine before it can be discharged back into the

ocean. Lower recovery will decrease the need for such treatment, perhaps alleviating the

need for it altogether. Thus, in addition to slight reductions in energy consumption, scaling

down RO desalination units has the potential to reduce costs of ancillary processes as well.

Also highlighted in this study is the effect of membrane productivity on energy consump-

tion. While it makes sense under conditions of high capital costs and relatively low energy

costs to maximize the permeation rates through the membranes, this strategy changes if these

conditions are reversed. For instance, relying on more expensive renewable power, combined

with cheaper mass-produced, small-scale units could render such a scenario possible.



Chapter 7

Future Work

The main benefits of a small-scale approach to physical capital in commodity-based industries

will likely be realized in novel technology solutions. Nonetheless, there are some technologies

that appear to be ‘low-hanging fruit’ in that they would benefit from being scaled down from

both a physical and economic perspective. The technologies suggested below for further study

from a scale perspective share two features. They are central to a modern economy and they

have followed the traditional orthodoxy of upscaling.

7.1 Ammonia synthesis

Since its inception almost a century ago, the synthesis of ammonia through the Haber-

Bosch process has provided the world with synthetic fertilizers, thereby dramatically altering

Malthusian projections of population levels constrained by food supply. Except for minor

alterations to the catalyst, the process has only changed appreciably in one regard – unit

size. The first commercial plant, built by BASF in 1913, had a capacity of 30 metric tons

per day (MTPD) (Jennings, 1991). This should be contrasted to the nominal capacity of

3,500 MTPD of the planned facility in Collie, Australia (Haldor Topsoe, 2009).
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The synthesis of ammonia, as with most other catalytic processes, requires careful control

of temperatures throughout the reactor in order to maintain favorable kinetics, thermody-

namic equilibrium conditions and stability of the catalyst. The reduced surface area to

volume ratio makes it harder to shed the heat generated by the exothermic process when

scaling up in unit size. Indeed, modern ammonia synthesis reactors require internal heat

exchangers to effectively manage process parameters. Moreover, operated at extremely high

pressures, the handling of explosive gases also pose a substantial safety concern, in the event

of critical failure, when scaling up in size.

Considering the synthesis reaction

N2 + 3 H2 = 2 NH3 ∆H = −50kJ/mol, (7.1)

from a heat management perspective reveals factors that benefit a small scale. Assuming

a regular iron-based catalyst under typical operating conditions (T = 700K), an activity of

a = 10µmol/g·s is reasonable (Jennings, 1991). Assuming further that this iron catalyst

is assembled at an effective density of ρ = 3g/cm3 in a cylindrical reactor with a volume

V = πr2h and surface area A = 2πrh. For the purposes here, the reactor is assumed to

have an infinite internal heat conductivity. Lastly, the transfer of heat to the ambient (T

= 300K) through free convection can be achieved with a heat transfer of k = 10 W/m2K.

Auto-thermal conditions arise when the generated hear Qgen = V ρa∆H is balanced by the

heat Qcon = kA∆T conducted to the ambient air. This is achieved at a scale of

V

A
=

k∆T

ρa∆H
⇔ r ≈ 0.5cm. (7.2)

From the crude heat balance above, it can be concluded that a test tube-sized reactor

can be operated auto-thermally, with little to no need for active removal of the process
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heat. Moreover, as shown in Chapter 2, scaling down a structure subjected to the same

boundary conditions (pressure) typically require disproportionately less material. Thus, from

a construction cost perspective, the ammonia synthesis reactor itself would benefit from a

smaller scale.

The main use of ammonia is in fertilizers in the agricultural sector. Depending on crop

type and climate, typical fertilizer use is on the order of (100kg N/ha y) (Metwally et al.,

2011). A test tube-sized reactor (h = 10cm), with the same activity as discussed above,

produces an output commensurate with the demand for one hectare of farmland. Moreover,

the material inputs of nitrogen and hydrogen can be sourced directly from the ambient, e.g.

through membrane air separation technologies and water electrolysis. These factors all point

to the possibility of distributed operation.

Synthesizing ammonia from ambient nitrogen and water requires energy, and with the

sub-processes mentioned in a distributed setting this energy would likely be in the form of

electric power, perhaps from renewable sources. Compared to standard processes, which

typically uses natural gas both as a hydrogen feedstock but also as an energy carrier, it is

unlikely that distributed ammonia synthesis from renewable power can be cost competitive

with today’s prices. However, areas in developing countries far from the mainstream distri-

bution network, this process could find a niche foothold in anticipation of cheaper renewable

energy.

7.2 Liquid fuel synthesis

Technologies to synthesize liquid fuels have been known almost as long as the ’grandfather

technology’ of high-pressure chemistry in the Haber-Bosch process mentioned above. Limit-

ing the whole host of technologies and process routes to those starting with synthesis gas, a
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Figure 7.1: The increase in unconventional natural gas reserves in the U.S. have effectively de-
coupled the domestic price of natural gas from oil. The conversion assumes 1.1 GJ/MMBTU and
6.1 GJ/bbl respectively. Data from EIA (2013).

general reaction can be written as

CO + 2 H2 = liquid + heat. (7.3)

Thus, the same heat transfer argument as with ammonia synthesis holds that the reactor

design can be greatly simplified at smaller sizes. Moreover, when synthesizing longer hydro-

carbon chains, e.g. with Fischer-Tropsch synthesis, the distribution of the output depends

strongly on process conditions, which in conjunction with heat management is easier to

control at a smaller scale. These factors have generated interest in micro-channel synthesis

reactors (Knobloch et al., 2013; LeViness et al., 2011).

The economic incentives to synthesize liquid fuels from natural gas have been greatly

magnified as the price of this commodity has been decoupled from crude oil in recent years,

see Figure 7.1. Moreover, much of the new resource base is in the form of shale gas, or

other unconventional deposits. In comparison to conventional sources, these are generally

much smaller. Converting the natural gas to a liquid on-site using modular and small-scale

technologies reduces the need for a pipeline infrastructure, while at the same time yields
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a product which today commands a higher price. Similarly, gas that currently is flared at

remote petroleum plays due to lack of transportation infrastructure could also be transformed

into liquids and more easily stored and subsequently transported.

While the economic incentives exist today to transform natural gas to liquid fuels other

carbon and energy feedstocks can be used. Mentioned by LeViness et al. (2011) are biomass

and waste, which both typically are distributed and therefore require small-scale synthesis

technologies. More interesting perhaps is the possibility of recycling atmospheric carbon

as liquids, either for use in the transportation sector directly or as an intermediate energy

storage. Either way, such capabilities are more tractable in small-scale and modular imple-

mentations than in rigid, large-scale installations.

7.3 Mining

Labor productivity is a key metric in evaluating mining operations since labor cost typically

accounts for a large fraction of total costs. Therefore the most natural way to increase

profitability of a given mine has been to scale up the size of individual process equipment such

as loaders and haulers. Indeed, as seen in Figure 1.1 (right), the size of the largest available

haulers has increased by a factor ten over the past 50 years. A general consequence of this

trend is that smaller mines which preclude the use of larger equipment become less profitable,

and mining operations tend to be more concentrated on large mines (Bozorgebrahimi et al.,

2003). This trend was documented by Bartos (2007) in the case of the global copper industry

from 1975 to 2000.

In a report on the future of the mining industry published by the Rand corporation

in 2001 (Petersen et al., 2001), the opinion among key industry insiders was divided as to

whether there would be a continued increase in truck sizes or if the economies of scale had

reached a peak. In hindsight, knowing that truck sizes have indeed stagnated and the very
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largest trucks have stalled in the 400 ton class (as can be observed by considering the current

portfolio of Caterpillar), the latter viewpoint seems to have prevailed. Bozorgebrahimi et al.

(2003) illustrate some of the possible factors behind this apparent trend. For instance,

auxiliary civil works, e.g. roads and bridges, to accommodate larger trucks going in and

out of a mine become more costly. Moreover, larger equipment diminishes the possibility

of selective mining techniques, thus resulting in the transportation of lower grade ores for

further processing. The complexity of larger machinery also increases markedly at the largest

end of the spectrum and hence requires additional training of operators and repair crews as

well and larger (and more expensive) maintenance facilities.

With these issues in mind as well as considering workers’ safety, automating various

mining processes is a potentially attractive means for future cost reductions. Moreover, with

mining typically being a remote operation, avoiding the additional infrastructure that has

to be provided in order to accommodate on-site labor further increases the attractiveness of

automation. According to Bellamy and Pravica (2011), the cost of one mining truck driver

in remote areas of Australia amounts to $150,000 per year1, of which more than $36,000 goes

to auxiliary support such as transportation, accommodation and food. Operating in three

shifts, this translates into $450,000 per year per truck in labor costs which does not include

personnel in training. Assuming that the investment required for a single truck is on the

order of $5 million, the capital charges at 10% interest are almost on par with labor costs,

making the potential benefits of automation apparent.

Even though tests have been performed recently on operating retro-fitted autonomous

mining trucks in Australian mines (Bellamy and Pravica, 2011), such technology has not yet

caught on. With non-stationary and interacting robotic systems making progress by the day,

as manifested by Google’s autonomous car (Folsom, 2011) and ‘Junior’, the driver less vehicle

1Numbers are given in $ Australian but with an exchange rate of roughly 1:1, the use of USD is roughly
equivalent
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developed by Volkswagen and Stanford through DARPA (Stanek et al., 2010), it is only a

matter of time before such technology becomes viable in an isolated area such as a mine.

When the technology does become available, there is little reason automation should proceed

with the ultra-large-size equipment of today and not with much smaller units, perhaps in the

1-10 ton class. In addition to the flexibility arguments raised in previous example favoring

small unit size, smaller automated units can make smaller mines economical alongside large

ones, thus increasing the total resource base. Also, from a physical perspective, the dead

weight to payload ratio is likely to decrease with smaller trucks, suggesting potential fuel

savings as well.



Chapter 8

Conclusion

In the discussion on economies of scale it has here been emphasized that this concept should

not be viewed as synonymous with large-scale individual units of production. Many of the

same benefits can be obtained in a paradigm of small-scale and modular units. For instance,

external economies are to a greater extent functions of aggregate firm input and output rather

than granularity of capacity. Similarly, the reduction in overheads and other indivisibilities

on a firm level that are achieved through centralization can be garnered in exactly the same

way by centralizing many small units in one location. On the other hand, only by scaling

down in size and up in numbers can benefits arising from distributed operation be attained.

The common assertion that the often observed ‘two-thirds-law’ in engineering cost es-

timates is inextricably linked to material consumption in the production stage of physical

capital has been refuted on physical grounds. Were this argument inherently true, any

strategy that relies on providing large-scale aggregate capacity through mass-production of

small-scale units would potentially be disqualified by resource constraints. It should be noted

that the veracity of relative materials reductions observed in various scale-up enterprises are

not being challenged. However, if these observations have been made where the scale-up

was truly (or close to) uniform, then the original small-scale pilot unit was not optimally
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designed to begin with from a structural perspective.

The notion that cost tend to decline as cumulative production grows has been studied

from a unit-scale perspective. Importantly, with a clear distinction between large and small-

scale technologies, it was concluded that the latter, on average, exhibit rates 10 percentage-

points higher learning rates. The suggested explanation to this statistical result is that

the mass-production process allows for continuous improvements, product and process al-

terations and incorporation of exogenous technological improvement. Such effects arguably

have a lower return in the generally highly customized construction process of large-scale

installations.

Comparing the estimated cost reductions of scaling up in size and scaling up in numbers

reveals that for typical values of respective parameters the two strategies result in roughly

the same investment cost. Based on a case study of the operational cost in the four main

electricity generating technologies in the U.S., the only factor that gives rise to significant

operational economies of unit scale is increased labor productivity. Thus, in an environment

where automation technologies are not only low-cost but increasingly reliable and capable the

proposition of scaling down and possibly distributing capacity is presents many opportunities

for reduced cost and increased utility by diffusing the technology to a wider group of users.

The observation that a paradigm marked by mass-production of small-scale units, as

opposed to customized large-scale installations, likely will entail shorter lifetime and lead

time of capital has financial ramifications. To capture the increased flexibility of engaging

and disengaging markets a real options model is introduced as an optimal multiple stopping

problem with lifetime and lead time as explicit parameters. In addition to a sensitivity

analysis with respect to relevant parameters, it was shown that the investment cost of capital

lasting 2.5 years need only be roughly half (per unit capacity) of an investment lasting

25 years in order to be competitive when given the opportunity of multiple consecutive
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investments.

In addition to a brief discussion on three technologies that in their current implementation

would benefit from scaling down, a more detailed case study was performed on the actual

separation stage in reverse osmosis desalination. With the backdrop of the current trend of

operating at ever higher recovery rates and longer feed channels it was shown that shorter

channels has an intrinsic advantage based on transport phenomena. In addition to the

possibility of mass-producing small-scale desalination system that compare favorably to large-

scale systems from an energy consumption, the insights gathered are also valuable for future

unconventional approaches to desalination, e.g. submarine operation.

In conclusion, this thesis has provided several reasons why a small unit scale should be

strongly considered in any technology development process that a priory does not have a

natural scale. Rather than predicating continued development on a positive response to the

question “Does the technology scale up?”, the question that should be posed is “Does the

technology scale up in size or in numbers?”. With the unrelenting progress in automation

technologies it is the prediction of this observer that firms that cling to the largely outdated

mantra of “bigger-is-better” will find them self outmaneuvered by nimbler and modular tech-

nologies.
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Appendix A: Proofs of Chapter 5

Some fundamental properties of asset pricing with a log-normal underlying process (geometric

Brownian motion) are briefly reviewed before the statements in Chapter 5 are proved.

A complete probability space (Ω,F ,P) is assumed to be equipped with a filtration F =

(F)t≥0 associated with the Brownian motion Bt, which by definition satisfies Bt − Bs ∈

N (0, t− s) for t− s > 0. The uncertain output price process Xt is modeled by a geometric

Brownian motion through the stochastic differential equation in (5.4), which is repeated here

for convenience:

dXt = αXt dt+ σXt dBt, X0 ∈ (0,∞). (A.1)

Given a sufficiently smooth function f(x, t), the Itô-Doeblin formula, see e.g. (Shreve, 2004,

p.146), can be stated as

df(t,Xt) = ∂tf(t,Xt)dt+ ∂xf(t,Xt)dXt +
1

2
f(t,Xt)dXtdXt

=

(
∂tf(t,Xt) + αXt∂xf(t,Xt) +

1

2
σ2X2

t ∂xxf(t,Xt)

)
dt

+σXtf(t,Xt)dBt, (A.2)

where dB2
t = dt and all higher order terms in dt have been neglected. If the dt-term vanishes

it can be shown that (f(t,Xt))t≥0 is a martingale, i.e. E {f(t,Xt)|Fs} = f (s,Xs) , s < t.

Assuming that the value v of an asset (or investment opportunity) depends only on the price
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Xt means that v can be determined by requiring that the discounted present value process

(e−rtv (Xt))t≥0 is a martingale. That is, v has to satisfy the differential equation from (A.2)

−rv + αxv′ +
1

2
σ2x2v′′ = 0 ,

which, through the ansatz v = Avγ, gives rise to the polynomial equation

1

2
σ2γ(γ − 1) + αγ − r = 0 . (A.3)

Thus, any functions of the form

v(x) = Axγ− +Bxγ+ , (A.4)

where γ± are the two solutions to (A.3), render the process (e−rtv (Xt))t≥0 a martingale.

With a positive discount rate r and with the requirement that the discount rate exceeds

the drift rate, r > α, it can be seen that one of the solutions, γ−, to the equation above is

negative and the other, γ+, is greater than one. Demanding that the value v(x) is bounded

for finite x forces A = 0. The positive root, simply referred to as γ, is given by

γ =
1

2
− α

σ2
+

√(
1

2
− α

σ2

)2

+
2r

σ2
.

For further background to stochastic calculus see e.g. Shreve (2004); Harrison (1985).

Proposition 1. The value function v(k)(x), k ≥ 1, satisfies,

v(k)(x) = sup
~τ∈Sk

E

{
k∑
i=1

e−rτiψ+(X0,x
τi

)

}
, (A.5)

with ψ+(x) = max{0, ψ(x)}.
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Proof: For every fixed stopping rule ~τ = (τi)
k
i=1 ∈ Sk, we define a subsequence (τ̂j)

s
j=1,

s ≤ k, of (τi)
k
i=1 by recording only those stopping times at which the reward is non-negative:

{τ̂j} =
{
τi |ψ(X0,x

τi
) ≥ 0 ; i = 1, . . . , k

}
.

In the case of finite k we can append the subsequence (τ̂j)
s
j=1 with k − s infinite stopping

times, τ̂k−s+1 = · · · = τ̂k = ∞ to create the full sequence ~̂τ = (τ̂j)
k
j=1. Since the stopping

times within ~τ are refracted with at least the constant time T , the same is true for those in

~̂τ by construction, and therefore ~̂τ ∈ Sk.

By avoiding those stopping times with a negative reward, the total discounted reward:

gk(x;~τ , ψ) :=
k∑
i=1

e−rτiψ(X0,x
τi

), ~τ ∈ Sk,

is dominated by gk(x; ~̂τ, ψ) in expectation, namely,

E {gk(x;~τ , ψ)} ≤ E
{
gk(x; ~̂τ, ψ)

}
. (A.6)

In addition, choosing ~τ to be ~̂τ results in the equality gk(x; ~̂τ, ψ) = gk(x; ~̂τ, ψ+), almost surely.

That means that maximizing over the stopping rules ~̂τ for the original problem v(k)(x) will

achieve the upper bound (RHS of (A.5)) with the non-negative reward ψ+. In summary,

v(k)(x) ≡ sup
~τ∈Sk

E {gk(x;~τ , ψ)} = sup
~̂τ∈Sk

E
{
gk(x; ~̂τ, ψ+)

}
= sup

~τ∈Sk
E
{
gk(x;~τ , ψ+)

}
. �

The following refers to the single optimal stopping problem

v(1)(x) = sup
τ1∈S

E
{
e−rτ1ψ

(
X0,x
τ1

)}
. (A.7)
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Also, repeated reference will be made to the operator Λ, which is defined by

Λ = γ − x d
dx

.

Lemma 1. Let ψ : R+ → R be a reward function in the single stopping problem (A.7). If

x∗1 is a global maximum for ψ(x)/xγ on R+ and if

d

dx
Λψ(x) ≡ (γ − 1)ψ′(x)− xψ′′(x) ≥ 0, x ≥ x∗1, (A.8)

then

v(1)(x) = ψ(x ∨ x∗1)

[
1 ∧

(
x

x∗1

)γ]
, x ∈ R+,

where v(1)(x) is continuous on R+.

Proof: From the Laplace transform of the first passage time to x∗1 the function v̂(x), where

v̂(x) =


ψ(x∗1)

(
x
x∗1

)γ
, x < x∗1,

ψ(x), x ≥ x∗1,

(A.9)

is a candidate for the solution. From the conditions on ψ(x), it follows that, for x ≥ x∗1,

Λψ(x) = γψ(x)− xψ′(x) ≥ 0, (A.10)

d

dx
Λψ(x) = (γ − 1)ψ′(x)− xψ′′(x) ≥ 0. (A.11)

Looking at the drift term of e−rtv̂(Xt),

E
{
de−rtv̂(Xt)

}
= e−rt

ψ(x∗1)

(x∗1)γ

[
−r + αγ +

1

2
σ2γ(γ − 1)

]
11{Xt≤x∗1}dt

+ e−rt
[
−rψ(Xt) + αXtψ

′(Xt) +
1

2
σ2X2

t ψ
′′(Xt)

]
11{Xt≥x∗1}dt, (A.12)
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it is observed that first term vanishes identically, and the second term is non-positive following

from (A.10) and (A.11). Hence, (e−rtv̂(Xt))t≥0 is a supermartingale, which implies that

v̂(x) = E
{
e−r(0∧τ)v̂(X0,x

0∧τ )
}
≥ E

{
e−r(t∧τ)v̂(X0,x

t∧τ )
}
, τ ∈ S. (A.13)

The assumption of a linear bound on ψ(x) implies that e−r(t∧τ)v̂(X0,x
t∧τ ) is integrable. Also,

taking the limit t→∞ in (A.13) and maximizing over τ yields:

v̂(x) ≥ sup
τ∈S

E
{
e−rτψ(X0,x

τ )
}
. (A.14)

Conversely, choosing the specific stopping time τ = τx∗1 , the process
(
e
−r(t∧τx∗1 )

v̂(Xt∧τx∗1
)
)
t≥0

is a martingale by construction and therefore

v̂(x) = E
{
e
−r(t∧τx∗1 )

v̂(Xt∧τx∗1
)
}

= E
{
e
−rτx∗1 v̂(x∗)

}
= E

{
e
−rτx∗1ψ(x∗)

}
≤ sup

τ∈S
E
{
e−rτψ(X0,x

τ )
}
. (A.15)

The expressions in (A.14) and (A.15) together give the desired result,

v̂(x) = v(x) = sup
τ∈S

E
{
e−rτψ(X0,x

τ )
}
. �

A.1 Optimal Multiple Stopping Problem

With Lemma 1 and Proposition 1 the main result can be stated and proved.

Theorem 1. Let ψ : R+ → R be a reward function with a break-even point x0. If Λψ(x) is

convex for x ∈ (x0,∞), with Λψ(x) increasing for large x, then, for every k ≥ 1, there exists
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an x∗k > x0 such that

v(k)(x) = ψ(k)(x ∨ x∗k)
[
1 ∧

(
x

x∗k

)γ]
, k ≥ 1, (A.16)

where

ψ(k)(x) = ψ(x) + e−rTE
{
v(k−1)(X0,x

T )
}
. (A.17)

Moreover, the sequence (x∗k)k≥1 is strictly decreasing, and
(
v(k)
)
k≥1

is a strictly increasing

sequence of continuous functions on R+. Also, for any bounded subset D ∈ R+ there exists

a constant KD, such that v(k)(x) ≤ KD, for x ∈ D and k ≥ 1.

Proof: Be the definition of the reward function with a break-even point x0, we know that

ψ(x) < 0 and ψ′(x) ≥ 0 for x < x0, and ψ′(x0) > 0. This implies that

Λψ(x) = γψ(x)− xψ′(x) < 0, x ≤ x0.

Particularly, since Λψ(x) is convex on (x0,∞) and increasing for large x, there is exactly one

solution, x∗1, to Λψ(x∗1) = 0, and furthermore, (d/dx)Λψ(x∗1) > 0 for x ≥ x1. Recall from

Lemma 1 that

v(1)(x) = ψ(1)(x ∨ x∗1)

[
1 ∧

(
x

x∗1

)γ]
, (A.18)

where ψ(1) ≡ ψ. In addition,

ψ(2)(x) = ψ(1)(x) + e−rTE
{
v(1)(X0,x

T )
}
. (A.19)

Since ΛE {g(Xt)} = E {Λg(Xt)} for any integrable function g, we apply (A.19) to get

Λψ(2)(x) = Λψ(1)(x) + e−rTE
{

Λv(1)(X0,x
T )
}

= Λψ(1)(x) + e−rTE
{

Λψ(1)(X0,x
T )11{Xt≥x∗1}

}
, (A.20)
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where in the second step we have used the fact that Λv(1)(x) vanishes in the continuation

region of v(1)(x), i.e. for x < x∗1. Since Λψ(1)(x) is assumed convex on (x0,∞), the expectation

E
{

Λψ(1)(X0,x
t )11{Xt≥x∗1}

}
is also convex on (x0,∞). Being the sum of two convex functions,

Λψ(2)(x) is also convex on (x0,∞). Moreover, since Λψ(1)(x)11{x≥x∗1} is an increasing function

(and strictly positive for x > x∗1), (A.20) implies that Λψ(2)(x) is increasing for large enough

x.

It is observed from (A.18) and (A.19) that ψ(2)(x) is a continuously differentiable increas-

ing function with limx→0 ψ
(2)(x) = limx→0 ψ

(1)(x) < 0. Furthermore, if ψ(1)(x) is bounded

by f(x) = ax, for some a > 0, then one can show that v(1)(x) ≤ ax, and therefore

ψ(2)(x) ≤ ax+ e−rTE
{
aX0,x

T

}
≤ a

(
1 + e−(r−α)T

)
x. (A.21)

This ensures the existence of a maximum at x = x∗2 to the function ψ(2)(x)/xγ, and conse-

quently also the existence of a solution to Λψ(2)(x) = 0. Also, Proposition 1 implies that

x∗2 ≥ x0 as it is never optimal to exercise with negative payoff. The convexity of Λψ(2)(x) on

(x0,∞) ensures that there is exactly one such maximum, uniquely defined by

Λψ(2)(x∗2) = 0, and
d

dx
Λψ(2)(x) > 0, x ≥ x∗2.

Hence, by applying Lemma 1 again one obtains

v(2)(x) = ψ(2)(x ∨ x∗2)

[
1 ∧

(
x

x∗2

)γ]
.

Also, from the bound on ψ(2)(x) in (A.21) we infer that v(2)(x) ≤ a
(
1 + e−(r−α)T

)
x.

Repeating the argument above, one can similarly show the existence and uniqueness of
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a stopping boundary x∗k, for every k ≥ 1, and also derive an upper bound for each v(k):

v(k)(x) ≤ ax

(
k−1∑
i=0

e−(r−α)iT

)
. (A.22)

Proving by induction that Λψ(k+1) > Λψ(k), would together with the previous part of the

proof imply that x∗k+1 < x∗k. As previously remarked, Λψ(1)(x)11{x≥x∗1} is positive for x > x∗1.

From (A.20) it follows that

Λψ(2)(x)− Λψ(1)(x) = e−rTE
{

Λψ(1)(X0,x
T )11{Xt≥x∗1}

}
> 0,

Now, assume that Λψ(k)(x) > Λψ(k−1)(x). From the definition of ψ(k)(x) in (A.17) one has

Λψ(k+1)(x)− Λψ(k)(x) = e−rTE
{

Λv(k)(X0,x
T )− Λv(k−1)(X0,x

T )
}

= e−rTE
{

Λψ(k)(X0,x
T )11{x∗k≤Xt≤x∗k−1}

}
+e−rTE

{(
Λψ(k)(X0,x

T )− Λψ(k−1)(X0,x
T )
)

11{x∗k−1≤Xt}

}
> 0.

As for the monotonicity of the sequence (v(k))k≥1, we first show that v(2) > v(1). Since

v(1) > 0 from Lemma 1, it follows from (A.17) that

ψ(2)(x)− ψ(1)(x) = e−rTE
{
v(1)(X0,x

T )
}
> 0. (A.23)

By the fact that x∗2 < x∗1 and ψ(2)(x) > ψ(1)(x), the inequality

v(2) = ψ(2)(x) > ψ(1)(x) = v(1)
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holds for x ≥ x∗1. Moreover, since ψ(2)(x)/xγ is maximized at x = x∗2, it can be seen that

v(2)(x) = ψ(2)(x) ≥ ψ(2)(x∗1)

(
x

x∗1

)γ
> ψ(1)(x∗1)

(
x

x∗1

)γ
= v(1)(x), x ∈ (x∗2, x

∗
1).

Similarly, for x ≤ x∗2,

v(2)(x) = ψ(2)(x∗2)

(
x

x∗2

)γ
≥ ψ(2)(x∗1)

(
x

x∗1

)γ
> ψ(1)(x∗1)

(
x

x∗1

)γ
= v(1)(x), x < x∗2 . (A.24)

Hence, it is proven that v(2) > v(1). By induction, one obtains

ψ(k)(x)− ψ(k−1)(x) = e−rTE
{
v(k−1)(X0,x

T )− v(k−2)(X0,x
T )
}
> 0.

With this inequality the steps from (A.23) to (A.24) can be followed to arrive at v(k)(x) >

v(k−1)(x). Finally, the inequality in (A.22) implies that the value function v(k) admits the

following bound for any k:

v(k)(x) ≤ aM

1− e−(r−α)T
, x < M. �

It now remains to consider the behavior of the solution to the optimal multiple stopping

problem in the limit of infinitely many exercise rights. That is, the following value function

is to be investigated

v(∞)(x) = sup
~τ∈S∞

E

{∑
n≥1

e−rτnψ(X0,x
τn )

}
. (A.25)

Since (e−rtaXt)t≥0, where ax > ax− b ≥ ψ(x), is a supermartingale for all Xt and since the

refracted stopping times (τn)(n≥1) satisfy τn ≥ (n− 1)T , it follows that

v(∞)(x) ≤ E

{
∞∑
n=1

e−rτnaX0,x
τn

}
≤

∞∑
i=0

E
{
e−riTaX0,x

iT

}
=

ax

1− e−(r−α)T
. (A.26)
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That is, v(∞)(x) is bounded on every bounded subset of R+. Defined through an integral in

(A.25), this bound ensures continuity of v(∞)(x) on every compact subset of R+. Finally, the

following convergence result is proved.

Proposition 2. The sequence v(k)(x) converges uniformly to v(∞)(x) on every compact subset

of R+.

Proof: Without loss of substantial generality, one can assume that x ≤ M . Let (τ ∗n,∞)n≥1

is an optimal stopping rule for the value function v(∞)(x) in (A.25). Employing a similar

argument as in (A.26), with f(x) = ax bounding ψ(x), one obtains

v(∞)(x) = E

{
k∑

n=1

e−rτ
∗
n,∞ψ(X0,x

τ∗n,∞
) +

∞∑
n=k+1

e−rτ
∗
n,∞ψ(X0,x

τ∗n,∞
)

}

≤ v(k)(x) + E

{
∞∑

n=k+1

e−rτ
∗
n,∞f(X0,x

τ∗n,∞
)

}

≤ v(k)(x) + aM
e−(r−α)kT

1− e−(r−α)T
. (A.27)

The fact that (τ ∗n,∞)kn=1 is an admissible, but not necessarily optimal, stopping rule for

v(k)(x) is used in the second step. With x ≤ M it follows from Theorem 1 that (v(k))k≥1 is

strictly increasing and bounded, and hence convergent on [0,M ]. The uniform convergence

of v(k) → v(∞) on x ∈ [0,M ] then follows from (A.27). �

A.2 Numerical Implementation

The expressions for u(k)(x) and v(k)(x) in (5.15) and (5.16) form the basis of our numerical

algorithm, whereby u(k)(x), v(k)(x), and x∗k are computed iteratively for k = 1, 2, 3, . . . The

calculations were carried out on a grid of 500 points regularly spaced between 0 and xmax,

where the latter was determined by the process and model parameters. The computation
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of the expectation in (5.17) is complicated by the fact that u(k−1)(x) is not bounded on

R+. However, since the choice of reward function, ψ(x) in (5.23), is approximately affine

for large x, so are Λψ(x) and u(k−1)(x). Rather than truncating the distribution we can

instead linearly extrapolate u(k−1)(x) outside the given grid. Since (x∗k)k≥1 is decreasing, the

necessary range of the grid depends mainly on x∗1. Specifically, xmax was chosen to be the

upper bound on a two-sided 99.9% confidence interval around x∗1,

xmax = exp

(
ln(x∗1) +

(
α− 1

2
σ2

)
T + 3.29σ

√
T

)
.

This choice of xmax, together with the number of gridpoints, was an acceptable compromise

between having a large enough grid to ensure a linear behavior of u(k−1)(x) without undue

computational complexity. When comparing different scenarios, i.e. different values for T, ν

and I, the largest grid was used throughout.

Using a trapezoidal method, the expectation in (5.17) was calculated as

E
{
u(k−1)(X0,x

T )
}

=

∫ xmax

0

u(k−1)(z)g(z;x, T, α, σ)dz +

∫ x′

xmax

(kz +m)g(z;x, T, α, σ)dz,

(A.28)

where kz + m is the linear extrapolation of u(k−1) for x > xmax and where g(z;x, T, α, σ) is

the density function of the lognormal distribution. The upper limit x′ in (A.28) was chosen

so that the support of the distribution contained a two-sided confidence interval around x,

for every x ≤ xmax.

The boundary points x∗k were found using a simple bisection method on the convex

function in (5.18). The calculations of u(k)(x), and therefore also of x∗k and v(k)(x), were

terminated once a tolerance ε, defined by

ε =
|u(k) − u(k−1)|
|u(k)| , (A.29)
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had reached ε ≤ 10−3. Such a tolerance yields a solution v(k)(x) that is within 0.1% of v(∞)(x),

an accuracy that is likely good enough considering reasonable errors in the estimation of the

underlying parameters. In the results, x∗∞ and v(∞)(x) denote the stopping boundary and

the value function respectively at the termination of the algorithm according to the tolerance

in (A.29).

Figure A.1 demonstrates the convergence of the algorithm for the value function v(k)(x)

and the stopping boundary x∗k respectively. Default parameter values used in the calculations

below are given in Table 5.1. According to Theorem 1,
(
v(k)(x)

)
k≥1

is strictly increasing and

the sequence of stopping boundaries (x∗k)k≥1 is strictly decreasing. In Figure A.1 (left), we see

that the value function increases monotonically with each iteration. After 50 iterations the

tolerance ε, defined above, was less than 10−5. Moreover, we notice that the value function

appears linear for large x. In Figure A.1 (right), the stopping boundary x∗k decreases rapidly

from 0.85 to 0.44, where it should be mentioned that the break-even point was x0 = 0.33. The

convergence is clear even after 20 iterations. In particular, the stopping boundary x∗1 = 0.85

from the first iteration helps define the upper bound xmax of the grid.

The stopping boundary x∗k is the price level at or above which the first investment should

be made, with in mind the option to make k−1 more investments later. All investments have

to be separated in time by at least the lifetime T . In Figure A.1, the number of exercises

(iterations) is k = 50, which together with the lifetime of T = 5 years, gives a time horizon

of ≥ 250 years. Such a time horizon is practically infinite under reasonable circumstances.

On the other hand, with a large k, the number of remaining investment opportunities should

have a smaller impact on the first investment timing. This is evidenced by the convergence

of x∗k to a constant level as k increases.

From numerical tests, it was found that the refraction time (lifetime) T strongly influences

the speed of convergence. This is intuitive due to the discount factor e−rT in the definition of
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Figure A.1: (Left) Convergence of the value function, v(k)(x), for k = 1, . . . , 50. (Right) The
stopping boundary x∗k decreases rapidly over iterations.

u(k)(x) in (5.17), reducing the differences over iterations. On the other hand, the lead time

ν has much less bearing on the rate of convergence since it only affects the first investment

timing.



Appendix B: Numerical Algorithm –

RO Desalination

B.1 Laminar Channel

A flow field ~w = (u(x, y), v(x, y)) is assumed in the laminar channel, where

u(x, y) = 6u(x)
y

h

(
1− y

h

)
, (B.1)

where u is the local channel average longitudinal velocity, and where

v(x, y) =
du

dx

h

2

[
1− 6

(y
h

)2

+ 4
(y
h

)3
]
. (B.2)

The boundary condition on the vertical component v is given by

v(x, 0) =
h

2

du

dx
= vp(x) , (B.3)

where the permeation rate vp is determined by the local pressure and concentration levels

vp = A [∆p−∆π] = A [(p− p0)− fos(cm − cp)] . (B.4)
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For a laminar flow between two planes, the pressure loss along the channel is given by

dp

dx
= −12ηu(x)

h2
. (B.5)

Local concentration levels are found by solving the steady state continuity equation for salts

in the feed channel:

0 = u∂xc+D∂xxc− v∂yc+D∂yyc , (B.6)

subject to the following boundary conditions:


c(x, y) = c0, x < 0,

∂yc(x, y)|y=h
2

= 0,

vp(x)c(x, 0)−D∂yc(x, y)|y=0 = vp(x)c(x, 0)(1−R) .

(B.7)

The first condition in (B.7) corresponds to the assumption of a uniform concentration profile

of the feed before it enters the channel. The second condition follows from the symmetry of

the problem across the entire height of the channel. A solute mass balance on the membrane

surface, where longitudinal diffusion has been neglected, yields the third condition, where R

is the rejection coefficient of the membrane. This last boundary condition also couples the

steady state continuity equation to the permeation equations (B.3) and (B.4).

The equations (B.3) and (B.5) are discretized by

ui = ui−1 −
2vp,i−1

h
kx, vp,0 = 0, u0 = u(0) i = 1, . . . Nx , (B.8)

pi = pi−1 −
12ηui
h2

kx, p0 = p(0), i = 1, . . . Nx . (B.9)
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The continuity equation is discretized with a finite difference scheme

∂xci,j =
ci,j − ci−1,j

kx
, ∂xxci,j =

ci−2,j + 2ci−1,j − ci,j
k2
x

, (B.10)

∂yci,j =
ci,j+1 − ci,j

ky
, ∂yyci,j =

ci,j−1 + 2ci,j − ci,j+1

k2
y

. (B.11)

The backward difference in the horizontal direction in (B.10) allows for the coupled equations

(B.4) and (B.6) to be solved progressively along the channel given the initial applied pressure

p(0) and the feed flow rate, expressed via the average velocity u(0). The number of grid points

Nx was chosen to be 500 (the same number of vertical grid points in the discretization of

(B.6)). The numerical program was verified by performing an overall mass-balance of the

streams entering and exiting the channel which gave an accuracy within 1%.

B.2 Turbulent Channel

The equation governing the flux through the membrane is the same as in the laminar channel

(B.4). However, the pressure loss in the turbulent channel is modeled by

dp

dx
= − f

dh

ρu2

2
, (B.12)

where the friction factor f and the hydraulic diameter dh are estimated parameters. Also, as

opposed to stipulating a flow field and solving the steady-state continuity equation for the

salt in the channel the turbulent flow is assumed to exhibit a polarization layer of thickness

δ according to

c(y) =


(cb − (1−R)cm)e(δ−y)vp/D + (1−R)cm, 0 ≤ y ≤ δ,

cb, δ ≤ y ≤ h/2,

(B.13)
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where cb and cm are the concentrations in the bulk and at the membrane respectively. Eval-

uating (B.13) at the membrane wall gives the needed second relation between cm and vp, in

addition to (B.4),

Rcm
cb − (1−R)cm

= evp/k , (B.14)

where the mass transfer coefficient k is also a numerically estimated parameter.

The longitudinal velocity and the pressure in the channel are calculated iteratively through

ui = ui−1 −
2vp,i−1

h
kx, i = 1, . . . Nx (B.15)

pi = pi−1 −
f

dh

ρu2
i

2
kx, i = 1, . . . Nx , (B.16)

where the subscript on f indicates a dependence on the local Reynolds number (feed velocity).

Moreover, the superficial longitudinal velocity in the feed channel is discretized similarly as

well

ui = ui −
2vp,i−1

h
kx, i = 1, . . . Nx . (B.17)

A solute mass balance,

ci =

(
2(1−R)vp,i−1

kx
h

+ ci−1ui−1

)
/ui, c0 = c0, i = 1, . . . , Nx,

allows for the calculation of the bulk concentration cb,i, used in (B.14), from the average

concentration

ci =
1

h/2

∫ h/2

0

ci(y)dy ,

with ci(y) from (B.13).

These iterative steps make possible the solution of the couple equations (B.4) and (B.14),

giving vp,i and cm,i. The same longitudinal grid was used as in the laminar case (Nx =
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500, kx = L/Nx.) The numerical program was verified with a solvent mass balance with an

accuracy within 1%.


