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ABSTRACT 

A framework for systematic promoter motif discovery and expression 
profiling from high dimensional brain transcriptome data 

 
Jeremy A. Lieberman 

 

 

Understanding the regulatory logic of genes across discrete brain 

substructures can elucidate the basis for neural network connectivity and the 

cause of disease. Promoter motifs, in particular, that govern high or low 

expression gene networks present an important fulcrum for phenotypic 

behavior. Using the Allen Institute Brain Atlas we took various clustering 

approaches to find closely regulated genes, and generated substructure specific 

expression profiles to run through FIRE, a motif discovery algorithm and 

iPAGE, a functional ontology algorithm. Notably, we found a single large 

cluster of genes that had tightly coordinated behavior across hundreds of brain 

substructures, as well as a unique upstream promoter signature, yet highly 

diverse ontological characteristics. We also present a BRain EXpression 

Profile ASSembly script (BEXPASS) whose output is customized for FIRE 

and iPAGE input. Lastly we look at language processing and speech control 

areas of the brain and put forward recommendations for promoters that can 

serve as part of DNA constructs for optogenetic research an emerging 

neuroscientific research method that uses bacterial light-gated ion channel 

protein, channelrhodopsin (ChR1 or ChR2), as an activity control tool to 

activate neural pathway signaling.  
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I. Introduction 

Understanding genetic network architecture of the human brain and the 

cis- regulatory elements that control transcript abundance can elucidate the 

basis for regional function and substructures involved with disease. The Allen 

Institute’s Brain Atlas project takes a step towards generating the required 

biological data by taking histological samples from an exhaustive geography 

of three dimensional coordinates in the developing mouse and human brains as 

well as the adult mouse and human brains(1),(2),(3). We present BEXPASS, a 

script that generates continuous distribution absolute and fold induction 

expression profiles for any selected brain substructure. With these expression 

profiles, and combined with only a few software packages developed in the 

Tavazoie lab and other academic labs, many high level conclusions for 

guiding neuroscientific research can be made.  

As part of the Adult Human Brain Atlas Project Hawrylycz et al. 

generated six data sets from six male and female post-mortem brains ages 18-

68. Conditions for exclusion included: brain injuries/cancer, drug/alcohol 

history, chronic renal failure, and history of infectious diseases. The data sets 

are freely available online at the Brain Atlas website. Statistical tests were 

applied to the data to confirm uniformity across brains and establish basic 

hierarchies. Analysis showed very strong correlation (Pearson coefficient = 

0.98) across the six brains sampled. A paired t-test between left and right 

hemispheres yielded no significance confounding any meta-transcriptomic 

basis for left and right brain functionality. Hawrylycz et al. clustered genes 

across all coordinates into similarly expressing modules / clusters using 

weighted gene co-expression analysis (WGCNA). Those 13 modules 
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organized into groups of genes that are highly enriched for major cell types 

(neurons, oligodendrocytes, astrocytes, microglia) with each cell type having 

~400 “hub” genes. Organization by cell type corresponded to previous studies 

about the anatomical distribution of those cell types (4). Hawrylycz et al. 

concluded that in a transcriptome context, brain histological diversity comes 

from the combinatorial mosaic of neural cell types being expressed in different 

quantities across regions (i.e. neocortex is enriched for neural cells).  

 
Figure 1. WGCNA Modules and hub genes of Brain Atlas data. The top 
band shows 13 color-coded modules of the whole genome (genes in grey not 
belonging to a module). The second band represents hub genes for major brain 
cell types that are found enriched in various modules (turquoise, neurons; 
yellow, oligodendrocytes; purple, astrocytes; white, microglia).   
 
  
 To illustrate the degree of local variance Hawrylycz et al. examined 

the transcriptional signatures of the hippocampus subregions through analysis 

of variance (ANOVA) and found that “showed distinctive expression patterns 

sufficiently robust to cluster together like-samples while distinguishing 

subdivisions from one another.” This would further confirm the fact that local 

subregions were transcriptionally, and thus histologically, unique.   

The determination of upstream transcription factor binding sites, or 

lack thereof, and thus the transcription factors that bind to it are a first level in 

understanding regulatory networks. F.I.R.E. (FIRE) is a regulatory motif 

discovery algorithm that quantifies the dependency between the presence / 

absence of a given motif in an DNA 5’ upstream / RNA 3’ UTR promoter 

region for a given expression profile using mutual information (5):  
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An information score (I) is generated using this formula for all the 

possible 8,192 DNA and 16,384 RNA 7mers in upstream and UTR regions, 

respectively. The sequences with the highest information scores are deemed 

“seeds” while remaining 7mers are discarded. At the beginning of an 

optimization procedure all seed motifs have 1 nucleotide added at the 

beginning and end flank so that all seeds now are 9mers. FIRE then iteratively 

changes single nucleotides from the original seeds as well as introducing 

degeneracy as an attempt to improve the information score of the motif with 

each change. Each information score improvement reflects the biophysical 

affinity or control that a transcription factor has with a given sequence through 

information theory differing from other biophysical models that attempt to 

directly measure Gibbs free energy (6). As FIRE changes the nucleotide at 

each position or introduces degeneracy the seed information score changes 

and the process continues: for example, A can be changed to C, G, T, [AC] , 

[ACT] , [ACG] , [ACT], etc. This continues until all possible changes are 

exhausted and a maximally informative score is reached (7). Overlapping and 

redundant motifs are avoided by measuring the information score of the 

newest iteration of a motif being optimized over the information score of all 

previous iterations of the seed against a tradeoff parameter. This tradeoff 

parameter serves as a variable to control the level of redundancy across all the 

motifs; the higher the tradeoff the more unique each motif. 

A two-step randomization process discards 7mers that do not meet a 

threshold for statistical significance. First, expression profiles are randomly 

shuffled and the information values calculated between the unchanged motif 

profile and the shuffled expression profile. This is repeated Nr times with only 

3 



 

 

motifs being deemed statistically significant (p < (1/Nr)) if and only if it is 

greater than all Nr random information values. The second test involves 

removing one-third of genes removed and the motif information score being 

recalculated against the remaining two-thirds. This process if repeated 10,000 

times with only motifs that maintain robustness in 6/10 of those jack knife 

tests being retained.  

The combined purpose of FIRE, the Brain Atlas Project data sets, 

BEXPASS, and other research tools is to elucidate promoter motifs, their 

control over downstream reading frames, and the networks and signaling 

cascades they affect. Beyond established high throughput methods for drug-

molecule interaction, optogenetics is an emerging field in neuroscience that 

utilizes the bacterial light-gated ion channel protein, channelrhodopsin, as an 

activity control tool to activate neural pathway signaling (8). Opsins are a 

family of proteins conserved across a large number of species comprising of 

seven-transmembrane domain receptors and a chromophore molecule capable of 

absorbing light of a certain wavelength. The approximately 350 amino acid long 

opsin N-terminus protrudes into the extracellular space while the C-terminus 

into the cytoplasm with the chromophore covalently linked within one of the 

seven helical domains.  Chromophores found in opsins are vitamin-A based 

retinaldehydes with subtypes varying across species (9). Exposing a bacterial 

(Chlamydomonas reinhardtii) cell expressing channelrhodopsin (ChR1 or 

ChR2) to light can cause the transmembrane domain of the opsin to open its 

ion channel and depolarize the plasma membrane by allowing anions to flow 

in. This changes the electrochemical gradient which in neural in neural cells 

creates an action potential along the axon which is the basis for neural circuit 

communication. The evolutionary purpose of this is for Chlamydomonas 
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reinhardtii to use its phototaxic ability to position itself in relation to the sun 

for photosynthetic growth. Until now two methods for optogenetics have been 

used in model organisms like algae, drosophila, and mice. The first method 

involves transgenically inserting a channelrhodopsin gene into cells through a 

viral vector with using the Cre-Lox recombinant mechanism. Until recently, 

engineering the requisite lox sequences into loci of choice and achieving 

sufficient opsin expression was difficult. Currently, numerous mouse strains 

expressing a variety of transgenic opsin proteins are commercially available 

(10). The second method for optogenetics uses the endogenously expressed 

channelrhodopsin proteins in chlamydomonas reinhardtii and other bacterial 

species. The shortcoming in this method is that one is limited to studying 

bacterial behavior in relation to phototaxis.  

 

II. Materials/Methods 

The Allen institute generated six comprehensive brain data sets 

extracting 393-946 anatomically discrete histological samples via manual 

macrodissection for larger identifiable brain structures and via laser 

microdissection for smaller structures. The microarray tissue samples 

comprised of 50 – 200mg of tissue for macrodissected structures and 0.9mm3 

of tissue for the laser microdissected regions.  

The six brain sets were dissected and sampled at different times over a 

three year time period, 4 brains first and then the last 2 which necessitated a 

greater number of normalization procedures. For within brain normalization 

each microarray (batch) data set was fitted to flexible multivariate local 

regression and an applied correction to accommodate for deviations from the 
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batch-wise average due to non-biological biases including spatial bias on the 

array, GC content, and expression differences based on dissection methodi.  

To allow cross brain comparison the data sets were normalized by alignment 

to a control sample, to a single brain mean expression value, and finally to a 

global mean across all six brains (11).  

The microarray that was used for all samples was an Agilent 4x44K 

Whole Human Genome array with an additional 16 thousand customized 

probes (12). We imported raw microarray into and pre-processed it using 

RStudio, a software development suite for the R programming language, 

which has robust statistics libraries and toolkits. FIRE is implemented in 

UNIX and runs off a perl command line. Probe metadata came with 

annotations for Agilent probe IDs and their corresponding Entrez Gene ID. 

Since multiple probes can be annotated to a single Entrez Gene ID we 

eliminated redundancy, for the purposes of clustering, by consolidating the 

58,692 Agilent probes into their respective 20,787 Entrez Gene IDs (see 

Figure 2 for process flow diagram).  

Entrez 
Gene 
ID 

Structure ID: 4143 
Structure: middle 
temporal gyrus, Left, 
inferior bank of gyrus 

Structure ID: 4151 
Structure: inferior temporal 
gyrus, Left, bank of mts 

Structure ID: 
4270 
Structure: Long 
Insular Gyri, Left 

Structure ID: 4142 
Structure: middle 
temporal gyrus, Left, 
superior bank of gyrus 

41 7.825312 8.114584 8.066223 8.149979 
43 6.722330 6.720349 6.429786 6.881889 
47 7.265754 7.535887 7.327293 7.646113 
Table 1. Representative X-Y organization of Brain Atlas Data sets. X-axis: 
microarray tissue samples from a 3-Dimensional coordinate. Y-axis: genes.  
 

In this consolidation we also eliminated roughly 40% of the expression 

values across all brain coordinates for not beating a two background tests. 

These two tests included a t-test to ensure the probe’s mean expression is 

significantly different from background and then a background subtraction 

signal test to establish significant difference between signal and background.  
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The second step involved conversion (and expansion) of the 20,787 

Entrez Gene IDs to 32,665 RefSeq IDs since FIRE only accepts RefSeq IDs. 

This step recreated redundancy that we aimed to eliminate in Step 1; however, 

FIRE has a step that eliminates redundant transcripts. It was preferred to let 

FIRE handle the redundancy with a one-to-many conversion rather than do 

one-to-one conversion and have to pick a single RefSeq transcript ID that 

might bias FIRE’s results. Conversion tables for Step 2 conversion were 

obtained from the Ensembl Genome Broswer (13).  

 

Step 1. Consolidation of Agilent Probe IDs to Entrez Gene IDs 

 

 

 

 

Step 2. Conversion of Entrez Gene IDs to Refseq IDs 

 

 

Figure 2. Probe Conversion Process Flow: Agilent to Entrez to RefSeq 

For initial analysis expression values were clustered across within each 

brain across all coordinates using the k-means algorithm. The Hartigan and 

Wong method of k-means minimizes the Euclidean sum of squares distances 

between for each high dimensional (393-946 coordinates) gene observation. 

Two methods were used to determine the number of clusters. The first 

is a rule of thumb in clustering, the square root of N observations divided by 

two: √(n/2); the second is the elbow method which says that the optimal 

3.8198428 

Expression Value 

5 18 

Cluster Entrez ID 

5 

5 

5 

Cluster 

3.8198428 NM_000663 

3.8198428 NM_001127448 

3.8198428 NM_020686 

Expression Value RefSeq ID 

2.2450983 

4.4857557 

5.3945873 

Expression  
Value 

18 

18 

18 

Entrez ID 

1 A_23_P152505 
(Agilent) 

0 A_24_P330684 
(Agilent) 

1 CUST_52_PI416408490 
(Custom) 

Background Flag 
(1=Pass, 0=Fail) 

Agilent Probe ID 

3.8198428 

Expression 
Value (Avg.) 

5 18 

Cluster Entrez ID 
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number of clusters is the point at which the percentage of explained variance 

becomes marginal with the addition of additional cluster; explained variance is 

the between cluster sum of squares divided by the total sum of squares (See 

Table 2 for explained variances). We also clustered the data several times 

around the optimal number cluster number. The √(n/2) method’s optimal 

cluster number was 102 and so in addition we clustered at multiples of 15 (± 

15x): 57, 72, 87, 117, 132, 147. The elbow method’s optimal cluster number 

was 4-6 so we clustered genes with 2-8 clusters for exhaustive variation. 

Following initial results from running these clusters through FIRE we 

subsequently clustered with 20 and 30 clusters to have coverage over the gap 

between 8 and 57. Each of the 98 k-means cluster combinations were ran 

through FIRE algorithm using default parameters and discrete distribution 

with each cluster serving as a bin. 

 Variance Explained Based on Number of Clusters 

Brain ID 2 clusters 3 clusters 4 clusters 5 clusters 6 clusters 7 clusters 8 clusters 
10021 65.3% 79.0% 84.4% 86.9% 88.4% 89.3% 89.8% 
12876 65.7% 79.3% 84.2% 86.6% 87.9% 88.8% 89.3% 
14380 67.8% 80.9% 86.1% 88.5% 89.9% 90.7% 91.2% 
15496 66.7% 80.2% 85.6% 88.1% 89.6% 90.5% 91.0% 
15697 65.8% 79.9% 85.4% 88.1% 89.6% 90.5% 91.1% 
9861 64.2% 78.1% 83.3% 85.7% 87.1% 87.9% 88.5% 
Table 2. Variance Explained Based on Number of Clusters. Each of the six 
brains cluster extremely similarly and have marginal variance explanation 
after 5 clusters 
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Figure 3. Ontological Representation 

Each of the coordinates in the six data 

sets has an ID number placing it in a 

node on an ontological tree. This 

hierarchy was used to isolate 

coordinates of the brain to analyze 

which genes are highly expressed and 

repressed in those areas. Figure 3 

shows a small example of the 

ontological organization to the 

hypothalamus used by Hawrylycz et al.

For each gene coordinate expression data point (Xi, j), a Z-score was calculated 

based on the mean and standard deviation for that unique gene across all coordinates 

within one brain. Initially, we looked at all substructures of the hypothalamus, 

amygdala, and basal ganglia. However, because of histological heterogeneity within 

these three rather broad brain regions of interest, we proceeded to find a “higher 

resolution” set of insertion candidates for substructures within them.  

In our analysis we used three tools to find gene ontology enrichments within 

gene clusters. The first is FIRE’s native gene ontology function that uses the 

hypergeometric distribution. The second gene ontology tool used is GOstat, which 

uses Fisher’s Exact test (one-tailed hypergeometric) compared against a chi-squared 

test (χ2) and is Benjamini FDR corrected at .1 (14). The third tool used is iPAGE 

which, like FIRE, uses the concept of mutual information to quantify how informative 

an annotated pathway is to a bin of genes in a given expression profile (15).  

BEXPASS is a self-contained R language script that uses the most 

comprehensive data set from the Brain Atlas Project and generates two whole genome 
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expression profiles based on a user-selected brain coordinate of choice. One of the 

two expression profiles is continuous ranking of absolute expression levels of each 

gene(i) in the selected brain subregion(j) from highest (X1j) down to lowest(X20787j). 

The second method calculates a ratio of the given gene-coordinate expression level 

over the gene mean across all coordinates (Xij/mean(Xi)). These expression profiles 

are written in a format that can be immediately run through FIRE. 

To assess the robustness of BEXPASS, the Allen Institute Brain Atlas data 

sets, and their combined functional linkage to FIRE we ran a three fold cross 

validation for the absolute and ratio / fold induction expression profiles for brain 

ID#9861. For gene indices 1-20,787 we random generated three sets of 6,929 index 

values (1/3rd) without replacement. From those random values, six test sets (three 

absolute expression, three ratio / fold induction) were created of length 6,929. Six 

training sets (three absolute expression, three ratio / fold induction) were created from 

the remaining genes for length 13,858. The six training sets were then run through 

FIRE with default stringency parameters, 20 bins, and continuous distribution. The 

significant motifs that emerged from these six FIRE runs were then recycled and 

rerun through FIRE in non-discovery mode against their respective six test sets. Non-

discovery mode allows a pre-selected group of motifs to be evaluated for enrichment 

against an expression profile and allowed us to test whether FIRE would replicate 

results on a smaller but highly similar expression profile. Figure 4 shows a 

comparison of motif signatures between training and test sets. While the enrichments 

and under-representations are not as significant (or deep) in the test set as they are in 

the training set, the general color patterns remain the same signifying FIRE’s ability 

to reproduce results from a smaller, similar expression profile.  
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Figure 4. FIRE results for ratio / fold induction training and test set #1. A) Upper 
figure: training set results. B) Lower figure: test set results. Motifs 4 and 5 are in 
reverse order.  
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III. Data 

The Hawrylycz et al. data sets are six tables of 58,692 probes (x-axis) and 

363-946 brain coordinates (y-axis). 84% of microarray transcripts (29,412) are 

expressed in at least one structurei.  

 
Brain ID No. of coordinates 

(Microarray samples) 
Total Expression 
Readings (x58,692) 

Range of Expr. 
(Min – Max) 

Mean Standard 
Deviation 

10021 893 52,411,956 0 - 18.58565 4.3778 0.1505718 
12876 363 21,305,196 0 - 18.52619 4.6015 0.1490856 

14380 529 31,048,068 0 - 18.13379 4.6902 0.1067083 
15496 470 27,585,240 0 - 18.24433 4.8131 0.1368528 
15697 501 29,404,692 0 - 18.31623 4.8828 0.1231501 
9861 946 55,522,632 0 - 18.38175 4.2453 0.1627419 

Table 3. Summary of sample coordinate locations.  

 

 

Figure 5. Distribution of expression readings in Brain ID#9861. The value of 
zeros is skewed due to the quantity of probe readings that do not pass background 
 

For each brain substructure, the last node from the root in the ontological tree, 

anywhere from 1-11 coordinate samples were taken depending on the brain.171 brain 

substructures were represented with at least two samples in at least two brains. Tables 

3-4 and Figure 5 show meta-statistics for the data sets. The histogram of microarray 

readings from brain ID#9861 is skewed towards zero (as it is in the other five brains) 

due to the high number of probes that did not beat background.   
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Brain region 

Brain 1 
# of Samples 
Hemisphere: 

R(L) 

Brain 2 
# of Samples 
Hemisphere: 

R(L) 
Sample structures Isolation 

Method 

Frontal Cortex 130 (63) 119 (61) 
Orbital gyri; superior, middle, and inferior 
frontal gyri; rostral and subcallosal gyri; 

precentral gyrus; paracentral lobule  
Macro 

Parietal Cortex 67 (32) 54 (26) Superior and inferior parietal lobules; 
postcentral gyrus; paracentral lobule  Macro 

Temporal Cortex 125 (61) 74 (37) Superior, middle, and inferior temporal 
gyri; fusiform gyrus; transverse gyri  Macro 

Occipital Cortex 28 (15) 43 (22) 
Striate and extra-striate cortex from the 

cuneus and lingual gyrus; occipito-
temporal gyrus; lateral occipital gyri 

Macro 

Insula 10 (4) 7 (3) Short and long insular gyri Macro 

Cingulate Gyrus 21 (10) 27 (11) Anterior, posterior, and retrosplenial 
regions of the cingulate cortex Macro 

Parahippocampal 
Gyrus 13 (7) 8 (4) Parahippocampal gyrus Macro 

C
or

te
x 

Hippocampus 60 (32) 54 (27) CA1-CA4 pyramidal cell layers; dentate 
gyrus; subiculum LMD 

Striatum 34 (17) 44 (22) Caudate nucleus; putamen; nucleus 
accumbens Macro/ LMD 

Globus Pallidus 8 (4) 13 (6) Globus pallidus Macro/ LMD 

Basal Forebrain 7 (4) 10 (5) Septal nuclei; cholinergic basal forebrain; 
bed nucleus of the stria terminalis LMD 

Claustrum 17 (8) 11 (6) Claustrum LMD 

Te
le

nc
ep

ha
lo

n 
C

er
eb

ra
l N

uc
le

i 

Amygdala 12 (12) 22 (9) Lateral, basolateral, basomedial, central, 
and cortico-medial amygdalar nucle LMD 

Dorsal Thalamus 46 (23) 39 (17) Anterior, medial, lateral, posterior, and 
intralaminar nuclei of the thalamus Macro/ LMD 

Ventral Thalamus 7 (3) 10 (5) Reticular nucleus and zona incerta LMD 

Subthalamus 3 (1) 3 (2) Subthalamic nucleus LMD 

Epithalamus 8 (3) 2 (1) Habenular nuclei; paraventricular nucleus 
of the thalamus LMD 

D
ie

nc
ep

ha
lo

n 
  

Hypothalamus 9 (5) 22 (11) 
Anterior, lateral, posterior, and preoptic 

hypthalamic areas; paraventricular, 
supraoptic, ventromedial hypothalamic 

nuclei; mammillary bodies 

LMD 

    
Mesencephelon 44 (27) 62 (34) 

Cranial nerve nuclei 3 and 4; substantia 
nigra; red nucleus; ventral tegmental area; 
pretectal regions; midbrain raphe nuclei, 

superior and inferior colliculi 

LMD 

Cerebellar Cortex 32 (21) 27 (18) Cortex from the lateral hemispheres, 
paravermis, and vermis Macro 

Cerebellar Nuclei 12 (5) 7 (5) Deep cerebellar nuclei LMD 

Basal Pons 12 (5) 12 (6) Pontine grey LMD 

M
et

en
ce

ph
al

on
 

  

Pontine 
Tegmentum 45 (22) 38 (22) 

Cranial nerve nuclei 5-7; pontine reticular 
formation and raphe pontis; locus 

coeruleus; superior olivary complex 
LMD 

    

Myelencephelon 78 (39) 85 (46) 

Cranial nerve nuclei 8-12; spinal portion of 
the trigeminal nucleus; raphe nuclei and 
reticular formation of the medula; arcuate 
nucleus; inferior olivary complex; cuneate 

nucleus; gracile nucleus 

LMD 

    White Matter 2 (1) 1 (1) Corpus callosum and cingulum bundle Macro 
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Table 4. Summary of sample coordinate locations.  

Each of the six brain data sets came with annotation files about the coordinates  

(seen in Table 5). Along with general information about the subregion of each 

microarray coordinate were Montreal Neurological Institute (MNI) coordinates, a 

spatial-imaging framework for cross subject brain comparison. MNI coordinates are a 

newer development of the Talairach Brain Atlas, which has long been the basic 

framework for brain spatial definition (16).  

 

Structure ID Slab 
Number 

Structure 
Acronym 

Structure Name MNI-X MNI-Y MNI-Z 

4077 22 PCLa-i paracentral lobule, anterior part, 
Right, inferior bank of gyrus 

5.9 -27.7 49.7 

4323 11 Cl Claustrum, Right 29.2 17.0 -2.9 
4323 18 Cl Claustrum, Right 28.2 -22.8 16.8 
4440 18 LGd Dorsal Lateral Geniculate 

Nucleus, Left 
-24.6 -24.6 1.3 

4266 17 CA4 CA4 field, Right 31.1 -31.3 -7.3 
Table 5. Abridged coordinate annotation data 

 

IV. Discussion 

The growth of available biological data over the last decade has shed light on 

the high amount of dynamic pathways in living organisms (17). Because of the 

complexity of human genetic regulatory network architecture, genes can co-express 

and co-cluster in endless unique permutations across multiple conditions. Given these 

precedents it would seem counter intuitive that 4-6 clusters (based on variance 

explained) was determined to be the optimal cluster amount for a whole genome high 

coordinate expression profile. However, stratifying unique clusters from Euclidean 

sum of squared differential distance in >393 dimensions with a range of 0-18 simply 

can’t truly delineate unique and dynamically integrated pathways.  

The one exception to this is that across all our FIRE runs there was a group of 

genes, significantly composed of the olfactory receptor family, that consistently 
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clustered together and had a visually unique motif signature (see Figure 6A for a 

representative example). FIRE’s native gene ontology function uses the 

hypergeometric distribution to identify significant gene ontologies and “olfactory 

receptor activity” was significant enriched in this cluster in FIRE runs going as low as 

three clusters. Further GO analysis was only done on the 57-147 cluster runs because 

this “super cluster” would be more stratified and have less noise. In this “super 

cluster”, across 42 FIRE runs ranging from 57-147 clusters, there were 527 unique 

genes (356 with GO annotations, 171 without) that clustered together 42 out of 42 

times. Running those 527 unique genes through GOstat with the Current Composition 

of Human Gene Ontology Annotation Table as the reference database yields 75 over 

represented gene ontologies among unique sub-groups of 20-100 genes (pval < .01, 

Benjamini FDR corrected at .1). Only 47 of the 527 genes in the cluster actually have 

annotations for olfactory receptor activity. Figures 6B and 6C show that this similarly 

behaving group of genes is actually quite diverse with enrichments for rhodopsin-like 

receptor activity and cytokine receptor activity among others. To confound the 

regulation of this cluster even further is that its motif regulators as found in FIRE do 

not explain its regulatory behavior. We only considered those motifs that have a Z-

score greater than 20 are to have serious explanatory value. Across FIRE runs for the 

super cluster only redundant variations of the AAAATAT motif had Z-scores greater 

than 20. A handful of other motifs that did not appear consistently across FIRE runs 

had Z-scores around 10. Notably, it always showed significant under-representation 

of the CCGCCCC motif which is a common binding site for multiple transcriptions 

factors and consistently had Z-scores greater than 60.  
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Figures 6. A) FIRE output: representative example of olfactory cluster that is 
highly enriched for set of promoters and highly absent for others. The super 
cluster is represented in the right third of the matrix with significant under-
representation for the first 7 and last 11 promoters and significant over representation 
for promoters 8-13. B) Most enriched promoters. Set of most enriched promoters 
for the “super cluster” across all FIRE runs. C) Most significant Gene Ontology 
results for the super cluster across FIRE runs. 

 

WCGNA modules attained by Hawrylycz et al. mirrored anatomical 

distributions of neural cell types. Since those modules were significantly enriched for 

hub genes of each neural cell type they therefore represented an ideal expression 

profile for FIRE and iPAGE in order to ascertain motifs that control and characterize 

cell type differentiation and identify enriched pathways. Figure 8 shows strong FIRE 

results with numerous motifs having Z-scores greater than 20 and with most clusters 

Motif Seed Z-score 
range 

Motif Name 

[ACG]A.[AC]ATAT - 
[AGT][AG].AATAT[ACT] Arid5a_1 
[AG][ACT]AA[AGT]TAT Croc, Dlx3, Dlx5 
AAAA[AGT]TT SUM1, STB3, 

SFP1 
[AGT][AG].AATAT[ACT] Arid5a_1 
[ACG]A[AG]AAT[AT]T 

 
 
 
AAAATAT 

 
 
 

20-30 

SFP1, SUM1 
AG[ACT]CA[GT]A[AG] - 
[AGT][AG]GA[GT]AGA[AGT] GATA3 
[ACT][CG]ACAG[AT]G[AGT] DCE_S_II 
[AGT]CACTC[AC]A[ACT] - 
[ACG]ACAGAG[AGT][AGT] - 
AG[ACT]CA[GT]A[AG] 

 
 
 
ACAGAG 

 
 
 

10-12 

- 
[ACT]T[AC]TCC[ACT] Sig1 
[ACT]TCTCT[AC][CT][ACT] - 
[ACT]T[AC]T[AC]TCC[ACT] 

 
TCTCTCC 

 
9-10 

Sig1 

Biological Process P-val. Molecular Function P-val. Cellular 
Component 

P-val. 

Sensory perception of chemical 
stimulus 

<1.00e-80 Olfactory receptor activity 3.22e-79 Extracellular space 6.33e-25 

Sensory perception of smell <1.00e-80 Rhodopsin-like receptor 
activity 

2.72e-52 Intrinsic to membrane 6.27e-20 

Sensory perception 5.67e-72 G-Protein coupled receptor 
activity 

1.36e-42 Integral to membrane 1.13e-19 

Neurological system process 8.28e-52 Transmembrane signaling 
receptor activity 

4.19e-41 Membrane Part 7.27e-16 

Multicellular organismal process 6.42e-48 Receptor activity 1.88e-31 Extracellular region part 1.28e-14 
System Process 2.34e-43 Signal transducer activity 1.07e-24 Membrane 1.32e-11 

Defense response 8.26e-20 Molecular transducer activity 1.07e-24 Intrinsic to plasma 
membrane 

7.87e-05 

Plasma membrane 4.18e-34 Cytokine receptor activity (8) 8.03e-06 Intermediate filament 0.000306 
G-protein coupled receptor 

signaling pathway 
1.48e-36 Cytokine activity 0.00092 Intermediate filament 

cytoskeleton 
0.000306 

Cell surface receptor signaliing 
pathway 

6.02e-30 Pancreatic ribonuclease 
activity 

0.00258 Integral to plasma 
membrane 

0.00068 
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showing distinct over and under representations for specific pathways. Module 2, of 

which neuron hub genes make up one tenth, yielded several of the strongest 

transcription factor binding sites. Oligodendrocyte hub genes, which represent 

roughly a quarter of module 12 genes, yielded only one over-represented motif and no 

under represented motifs. Module 10 which is almost entirely made up of astrocyte 

hub genes yielded only under-representation for 1 transcription factor. Lastly, 

modules 8 and 9 which are entirely and half, respectively, made up of microglia hub 

genes yielded 2 over-represented and 5 under-represented motifs.  

The “hub” genes referenced in Hawrylycz et al were originally annotated as 

cell specific marker genes by Oldham et al (18). Enough homology exists between 

homo sapiens and mus musculus that Oldham used a transcriptome database of 

purified mouse astrocyte, neuron, and oligodendrocyte cell colonies to identify the 

marker genes for each cell type. The purified cell lines came from the postnatal mouse 

brain at various postnatal ages from 1 day old to 30 days old in Cahoy et al (19). Cells 

were sorted using fluorescent-activated cell sorting (FACS) and transcriptomes were 

measured by Affymetrix GeneChip Arrays. While astrocytes and oligodendrocytes  

share functionality under the nomenclature of “glial”  cells Cahoy’s analysis showed 

that their transcriptomes are as differentially expressed from one another as they are 

from neurons. We took the list of genes (between 2000 and 3000 per cell type) enriched 

by greater than 1.5-fold and statistically different by significance analysis of 

microarrays (SAM) with a false discovery rate (FDR) threshold of 1% and ran them 

through FIRE and iPAGE with continuous distribution (fold enrichment) with default 

parameters. This yielded only 1-3 weak motifs per cell type. There was no overlap 

between positive results for FIRE and iPAGE as none of the bins that showed enriched 

significance for a motif displayed significance for an ontological category as well. 

Lowering stringency to a minR of 2 and jack knife tests to 4 yielded only more weak 

motifs. Six weak motifs emerged for oligodendrocytes under less stringent parameters 
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with four of them being located on 3’ UTR; one of those motifs was a binding site for at 

least a dozen microRNAs. Notably, the most enriched bin of genes in neurons was 

significantly enriched for the biological process “chloride transport” and the KEGG 

pathway “Neuroactive ligand receptor interaction”.  

Genes greater than 20 fold enriched in the three major CNS cell types (117 

genes in astrocytes, 175 genes in neurons, 83 genes in oligodendrocytes), were deemed 

“cell specific” genes Cahoy et al. These >20 fold enriched gene sets were rerun 

through FIRE and iPAGE as a single gene cluster.  Results were poor with only 

astrocytes showing two strong motifs: the first is a 3’ UTR motif that binds cyclic 

AMP response element CRE–BP1 and Hepatic Leukemia Factor. The second motif is 

undiscovered with a GAAACGC seed. iPAGE confirms the Cahoy et al.’s conclusion 

that oligodendrocytes and astrocytes have significantly distinct transcriptomes as >20 

fold enriched cluster against background (whole RefSeq genome) showed enrichment 

for different GO categories (see Figure 7). 

 

 
 
 

Astrocyte 
(117 genes) 

 

 
 

Neuron 
(175 genes)  

 
Oligodendrocyte 

(83 genes)  

Figure 7. iPAGE results for >20 fold enriched genes in three major central 
nervous system cell types. Cluster 0 is >20 fold enriched genes and cluster 1 is 
background. 
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Figure 8. WCGNA Module FIRE results. Looking at this figure laterally, the X-axis 
represents modules from WCGNA clustering. The brain regions in which those clusters are 
highly expressed are listed across the top of the grid. The Y-axis represents how informative 
the presence/absence of each motif is within each cluster. 

WCGNA module FIRE results  

M0 – Occipital Cortex, several cerebellar and thalamic regions 

M1 – Frontal and temporal cortex, insula,  basal pons 

M2 – Clausrum and ventral thalamus 

M3 – Myelencephalon 

M4 – Epithalamus 

M5 – Striatum 

M6 – Occipital cortex and claustrum 

M7 – Globus pallidus, epithalamus, cerebellar nucleii 

M8 – Globus pallidus 

M9 – Globus pallidus, epithalamus, dorsal thalamus, striatum 

M10 – Globus pallidus, striatum, and cerebellar nucleii 

M11 – White matter 

M12 – Occipital lobe, cerebellar cortex, metencephalon 
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Figure 9. 13 WCGNA modules iPAGE results.  

 

Brain Regions of Interest and their DNA constructs 

 The emerging recombinant technology to insert genes encoding light sensitive 

proteins in strategic genomic locations for optogenetic research requires 

comprehensive brain atlas data to identify structures where a specific promoter motif 

governs a network of highly expressed genes. Such promoters or genomic regions 

represent the basis for an artificial DNA construct.  

The hypoglossal nucleus is the synapse of axons descending from the 

myencephalon to the hypoglossal nerve that has direct control over muscular tongue 

movement. Elucidation of the function of this nerve pathway has important 

implications for speech pathology. Using BEXPASS we assembled expression 
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profiles for the hypoglossal nucleus and ran it through FIRE (default stringency 

parameters, continuous distribution, 32 bins of ~1000 genes per bin) to yield 

promoters that govern high expression in the hypoglossal nucleus. Results are shown 

in Figure 10. On a fold induction basis there are no strong motifs for genes that are 

specifically enriched in this region. However, based on absolute rankings, the 

uncharacterized 3’UTR motif [CGU]C[AC]NUAAA is the only overrepresented in 

the two bins of most highly expressed genes, albeit without a particularly strong Z-

score of 15.1. These two bins show ontological enrichment for, GO:0003735 

structural constituent of ribosome, GO:0000786 nucleosome, GO:0005740 

mitochondrial envelope, GO:0003954 NADH dehydrogenase activity, and 

GO:0000502 proteasome complex (sensu Eukaryota).  
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Figure 10. FIRE results for hypoglossal 
nucleus. A) Left, lateral view, results for 
expression profile on an absolute ranking 
basis with one good motif candidate for a 
DNA construct. B) Below, redacted 
results for expression profile on a ratio / 
fold induction basis. Only the most 
induced bins shown, with no good motif 
candidates for a DNA construct yielded. 
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The right cerebellum has been known to be an important language-processing 

center of the brain. More functionally specific, ignoring background noises and other 

people speaking in order to hear a specific sound of interest is the process of 

“suppression of interference”, an area of interest in neurocognitive research (20). 

Filipi et al. organized a subject pool of native Italian speakers who were also 

conversant in English (native language=L1, second language=L2). Subjects were 

asked to listen to simultaneous audio tracks of sentences of different subjects in L1 

and L2 and asked follow up questions about the L2 sentences in order to assess their 

comprehension and ability to block out L1. All of this was done while subjects while 

undergoing brain magnetic resonance imaging. That imaging data was mined and 

researchers were able correlate higher gray matter density in the right lateral 

paravermis of the cerebellum to better control of interference. From a ratio / fold 

induction expression profile there are no strong motifs that would serve as good DNA 

constructs for insertion into the right lateral paravermis. An absolute value expression 

profile yielded three overrepresented motifs. The first is CCCGCCC, a common 

binding motif that has showed up as the strongest motif across virtually all FIRE runs 

in our research. The second motif is N[ACT]ACT[AT]CCG with a strong Z-score of 

37.7. These two motifs both govern the highest expression bin that is enriched for 

GO:0003735 structural constituent of ribosome, GO:0003954 NADH dehydrogenase 

activity, GO:0006334 nucleosome assembly, GO:0044455 mitochondrial membrane 

part, and GO:0006007 glucose catabolic process. The third motif is the 

uncharacterized 3’ UTR motif N[CU]AAUAAA, which is very similar to the 

[CGU]C[AC]NUAAA motif we proposed as a construct candidate in the hypoglossal 

nucleus and both originated from the seed CAAUAAA.  
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Figure 11. Abridged FIRE results for absolute value expression profile of the 
right paravermis.  
 

More fundamental than the concept of suspension of interference is that the 

fluid interchange between and simultaneous use of L1 and L2 lies within the same 

brain substructures and to a lesser extent the same neural circuits (21). Crinion et al. 

used a similar bilingual subject pool (German-English and Japanese-English) to test 

whether semantic activation is independent of the language stimuli. Their method 

involved presenting word combinations with related meaning (trout-SALMON) or 

unrelated meaning (trout-HORSE). The first word (prime) and second word (target) 

were written in every two-by-two pairwise permutation of L1 and L2. Whole brain 

neuroimaging was done through positron emission tomography (PET) and functional 

MRI. Crinion et al. were able to showed increased activation in the left caudate when 

prime and target were in different languages and lowered activation levels when they 

were in the same language; this is evidence that “different languages are processed [to 

some extent] by different neural populations”. Again, to find promoters governing 

highly expressed genes in the left body of caudate and the left head of caudate we ran 
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BEXPASS produced expression profiles through FIRE and iPAGE with continuous 

distribution, 32 bins, and default stringency parameters.  

The left head of caudate the ratio / fold induction expression profile yielded a 

strong 5’ TATA box motif for the highest expressed bin with a Z-score of 39.4; this 

bin was enriched for GO:0008227 amine receptor activity. The absolute value 

expression profile yielded two strong motifs. The first was the recurrent CCGCCCC 

which was overrepresented in the 5th,6th, and 7th highest expressed bin of genes; the 

5th bin showed enrichment for GO:0008380 RNA splicing. The second motif was the 

3’ UTR characterized binding site for microRNAs, N[AU][GU]UUU[GU]U[AGU], 

in the 2nd-8th bins and had a Z-score of 34.9. MicroRNAs are short strands of RNA 

that, along with a group of proteins including RNase, form an RNA-induced silencing 

complex (RISC) which regulate roughly 25% of the human genome. The mechanism 

of action occurs when the RISC bonds with strands of complementary mRNA and 

silence its translation by degrading it (22). MicroRNA function has emerged as a 

therapeutic class of molecules primarily as a silencer of oncogenes and its role in the 

brain is understood primarily in areas of neurodevelopment and cellular 

differentiation (23). Given their role as silencers, the N[AU][GU]UUU[GU]U[AGU] 

motif would not be a good promoter for a DNA construct.  

 

Figure 12. Absolute value expression FIRE results for the left head of caudate.  
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The left body of caudate ratio / fold induction expression profile yielded no 

strong motifs while the absolute expression profile yielded four motifs. The first motif 

is the recurrent 5’ CCGCCCC. The second motif is the uncharacterized 5’ motif 

[AC]N[AT]ACG[CGT]N and is highly enriched in the 4th most highly expressed bin. 

That bin is functionally enriched for GO:0006334 nucleosome assembly and 

GO:0008380 RNA splicing. The third motif is a basic leucine zipper binding site 

[AC]CG[AT]NATC[GT] enriched in only a single bin without any functional 

enrichment. The fourth motif is the uncharacterized 3’ UTR motif 

[CGU][AGU]N[CGU]CGUU[ACU] whose bin is enriched for GO:0030286 dynein 

complex. See figure 13 for complete left body of caudate FIRE results.  

 

Figure 13. Abridged Absolute value expression FIRE results for Left Body of 
Caudate. 
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