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ABSTRACT 

Preconditioning Methods in Cartilage Tissue Engineering: Influences of Silk 

Material Properties and Hypoxia on Chondrogenesis 

 

Supansa Yodmuang 

 

Cartilage has limited intrinsic healing potential, due to the low cell density and the lack of 

blood supply. Current treatments for cartilage repair rarely restore full structure and function to 

the native state. Tissue engineering holds promise to create cartilage grafts capable to withstand 

the stresses present in joints. More than 90% of articular cartilage tissue is composed of 

extracellular matrix and is located in the loading environment under low oxygen tension in knee 

joints. To form engineered constructs with mechanical properties compatible to native tissue, 

scaffolds should provide structural support, maintain cell phenotype and subsequently promote 

tissue development. The focus of this dissertation is on utilizing the physiological conditions 

found in joints to regulate biological behavior of cells. The first factor that was studied was the 

extracellular matrix. Two formats of silk fibroin – hydrogel and porous scaffolds – were 

examined for their potential as a supporting material for creating cartilage tissue constructs. The 

composite silk made from nano-fibers and hydrogel – a structure resembling the collagen 

network and proteoglycan in native cartilage - improved equilibrium and dynamic modulus of 

engineered tissue by 50% and 60%, respectively, in comparison to silk hydrogel without fibers.  

The second factor studied was the modulation of oxygen level, which is a major regulator 

during native cartilage development. Chondrogenic differentiation was induced in human 



   

embryonic stem cells under hypoxic conditions, in conjunction with biochemical cues from 

bovine chondrocytes. As a result, SOX9, a key transcription factor of cartilaginous lineage, was 

upregulated in the induced cells. Subsequent cultivation under normoxic conditions resulted in 

robust formation of cartilage tissue.  

Taken together, studies conducted in my thesis work address two major challenges in 

cartilage tissue engineering: i) providing cells with structural and mechanical properties similar 

to native ECM for generating in vitro cartilaginous tissue and ii) preconditioning cells with 

physiological environment for directing chondrogenic differentiation. 
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CHAPTER 1 

1. Introduction 

Articular cartilage injuries occur as a result of either traumatic mechanical destruction, 

often sports-related injury or progressive mechanical degeneration, mostly found in elder patients. 

Once cartilage cells are damaged or lost, the surrounding matrix gradually degenerates. Even 

small cartilage defects, without a proper treatment, can progress to osteoarthritis over time 

(Wang et al 2006). Osteoarthritis (OA) – a common form of arthritis that affects 27 million 

people in the United States alone (1). By 2030, an estimated 70 million American with age over 

65 will have a greater occurrence of age-related OA.  

 

 

 

 

 

 

 

Figure 1. Healthy joints and osteoarthritis joints (2) 

 
Current treatment options involve pain medications and surgical intervention. Non-

surgical interventions include lavage, shaving, debridement, abrasion chondroplasty, Pridie 

drilling, microfracture and spongilization (3). The scientific rationale behind the first four of 
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these techniques is not clear, whereas the last four methods are designed to stimulate a repair 

reaction by causing a disturbance of the bone tissue for example, or inducing therapeutic 

bleeding (3).  Surgical approaches include a procedure called osteotomy – a procedure involving 

cutting bone for realignment or mechanical load re-distribution, and distraction of joints – the 

use of a surgical frame around the joint.  The third class of therapy centers on implantation of 

cartilage tissue (3).  However, these therapeutic strategies rarely restore structure and function of 

damaged cartilage to the level of native, uninjured tissue. 

Tissue engineering is a promising alternative in the treatment of cartilage damage. One 

ultimate goal in this field of research is to develop a replacement graft, which has a structure and 

composition that resembles the native cartilage to fully restore the damaged tissue. Articular 

cartilage is believed to be one of the less complex tissue structures, because it contains only one 

cell type, chondrocytes, which are responsible for maintenance of tissue function and synthesis 

of extracellular matrix (ECM). Chondrocytes mostly reside individually within dense 

surrounding ECM. Cartilage tissue is avascular and aneural and typically relies on nutrients and 

oxygen that diffuse from synovial fluid. Cartilage tissues do not require extensive blood supply, 

as found in bone or cardiac tissues. The simplicity of tissue components (one cell type, no blood 

supply) make cartilages an ideal target tissue to develop for regenerative medicine applications. 

However, artificial regeneration is considerably constrained by (i) an inert chondrocyte cellular 

activity resulting in discrepancy of innate repair response, (ii) insufficient mechanical properties 

of neocartilage and (iii) lack of integration between graft substitutes and native tissues. 
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2. Motivation 

This dissertation is motivated by the need to improve the cartilage tissue engineering 

methodology, a very challenging and complex task bound to have profound implications on 

clinical treatments for cartilage injury and osteoarthritis. Damaged cartilage tissue has low self-

healing capacity because it does not have a direct blood supply. Thereby, the defect areas are 

isolated from local mesenchymal progenitor cells, which can stimulate the healing process. 

Cartilage injury and osteoarthritis are associated with a significant socio-economical burden 

worldwide. Tissue engineering provides alternative approaches for therapeutics and regeneration 

in orthopedic research, holding the promise for improving the quality of life of millions of 

patients by creating graft substitutes via recapitulation of tissue development in vitro. 

My research focused on following the biomimetric paradigm by re-creating the cellular 

environment to be similar to that found in a living organism for in vitro tissue development, 

remodeling and differentiation. Biomimetic approach to tissue engineering in this dissertation 

involved around developing biomaterials for cartilage tissue engineering and utilizing 

physiological condition found in knee joints to direct chondrogenic differentiation of human 

embryonic stem cells. Although search for material and cell source used in cartilage tissue 

engineering continues to develop, there are controversies in long-term success.  

 

 2.1 Hydrogel 

Hydrogels offer a unique opportunity to generate a functional cartilage substitute. 

Agarose hydrogel has long been used in cartilage tissue engineering to encapsulate chondrocytes 

because it provides hydrated environment and mechanical similarity to native cartilage and 

preserves chondrogenic phenotype (4). Although the functional outcomes of engineered 
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cartilage-based agarose showed comparable mechanical properties to native tissue, the 

mechanism underlying beneficial effects of agarose hydrogels limit the use and optimization of 

this material. Additional concern of using agarose in cartilage tissue engineering is due to the 

fact that our body cannot metabolize agarose, which may lead to a complication related to tissue 

integration (5).  

 

2.2 Cell source 

Autologous and adult stem cells, which are isolated from patients or donors, have shown 

varying degrees of proliferation and chondrogenic differentiation potential.  These cells have 

never fulfilled the requirement for being the building blocks of cartilage graft substitutes as a 

result of dedifferentiation during expansion, insufficient cell number and production of non-

cartilaginous matrix (6). Also cell isolation gets involved in the invasive procedures and induces 

donor site morbidity. Therefore, to circumvent biological and technical constrains of current cell 

source, we aim to develop alternative cell source, which possesses high proliferative capabilities 

and chondrogenic lineage differentiation. Human embryonic stem cells offer possibilities for 

obtaining an unlimited supply of cells for cartilage tissue engineering. The complications 

associated with the used of hESCs are the ways of controlling and directing their differentiation 

potentials to chondrogenic lineage.  These challenges motivated me to undertake search for new 

strategies to direct chondrogenic differentiation of hESCs.  
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3. Hypothesis  

The unifying hypothesis of this work was that the chondrogenic differentiation and 

functional assembly of cartilage tissue can be improved by engineering cartilage under 

conditions resembling those in developing native tissue. To test this hypothesis, studies were 

done to (i) optimize the structural and mechanical properties of the scaffolding material, using 

fiber-reinforced silk hydrogel scaffolds, and (ii) define the oxygen profiles during cultivation to 

first induce cell differentiation and then enhance functional cell assembly. 

 

3.1 Silk hydrogel for cartilage tissue engineering 

Hydrogel is widely used as a biomimetic of ECM. Silk hydrogel has great a potential to 

be a supportive material in cartilage tissue engineering. Still, mechanical strength of silk 

hydrogel does not sufficient to meet mechanical demands of joint loading and not match to that 

of agarose the standard material in cartilage tissue engineering.  

Providing cells with the mechanically optimized silk hydrogels, which has similar 

mechanical and diffusional properties to those in agarose, would promote tissue development 

with mechanical properties approaching the native tissue.  

 

3.2 Chondrogenesis: recreating physiological conditions of articular 

joints: hypoxia and chondrocyte-secreted factors  

Human embryonic stem cells (hESCs) have potential to differentiate to all 3 germ layers 

and can be an alternative cell source for cartilage regeneration. The experiments are designed to 
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determine effects of mimicking physiological condition on articular joints on chondrogenic 

differentiation of hESCs.  

The hypothesis in this study is priming hESCs during embryoid bodies formation with 

physiological condition would induce chondrogenic differentiation. 

 

4. Specific aims 

4.1 Silk hydrogel for cartilage tissue engineering 

Aim 1. To optimize silk fibroin properties for functional cartilage tissue engineering 

Silk fibroin materials in various structural forms (fiber, porous, thin film) have been 

successfully used as tissue engineering scaffolds because of their versatility, biodegradation and 

biocompatibility. To explore the influence of different 3D silk structures on tissue development, 

hydrogel, a standard supportive material for cartilage tissue engineering, and porous scaffold are 

compared. Silk hydrogel is further examined for concentration, and mechanical and diffusional 

properties. To this end, the silk hydrogel concentration is selected to match the diffusivity of 

agarose that yielded constructs with mechanical properties approaching those of native cartilage.  

Silk fibers are also included to modify mechanical properties of silk hydrogel.  

 

Aim 2. To correlate the hydrogel material properties to cartilage tissue development 

The mechanically optimized silk hydrogels from specific aim 1 are used as supportive 

material to investigate tissue development. This study attempts to test the hypothesis that silk 

hydrogel with mechanical properties matched to agarose can yield cartilage constructs 

approaching native tissue after 6 weeks of culture.  
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4.2 Chondrogenesis: recreating physiological conditions of articular 

joints: hypoxia and chondrocyte-secreted factors  

Aim 1. To study the effects of hypoxia-normoxia regimes on cartilage tissue 

properties in   a robust cellular model  

The regulation of cartilage ECM production under low oxygen tensions is studied to 

determine if hypoxia is a favorable condition for maintaining cartilage structure and function. 

The investigation is carried out using bovine chondrocyte-laden agarose hydrogel. Engineered 

cartilage constructs are cultured in hypoxic condition (5% O2) with various exposure times and 

tested for tissue properties compared to those cultured under normal oxygen levels (21% O2).  

 

Aim 2. To establish protocol for chondrogenic differentiation of hESCs through 

controlled oxygen tension and molecular conditioning  

The limited self-renewal and differentiation of human mesenchymal stem cells (hMSCs) 

with increasing patient age have motivated utilization of human embryonic stem cells (hESCs) 

for chondrogenic differentiation. Soluble morphogenetic factors secreted from bovine 

chondrocytes in conjunction with hypoxia are used to induce embryoid bodies (EBs) for 3 

weeks. The resulting induced cells were evaluated for chondrogenic differentiation potentials in 

pellet culture for 6 weeks.  
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CHAPTER 2 

Cartilage tissue engineering 

 

Tissue engineering is an interdisciplinary field that applies principles of cell biology, 

engineering and medicine to generate tissue substitutes that restore, maintain or improve tissue 

function (7). Fundamental components of engineered tissues that enable them to mimic native 

tissue structures and functions include matrices, stimuli and cells. In cartilage tissue engineering, 

recapitulation of mechanics needed for sustaining mechanical loading in joints is crucial in the 

success of engineered constructs.  

Cartilage is a connective tissue composed of cells, chondrocytes, dispersed in dense 

extracellular matrix (ECM). ECM is composed of complex macromolecules organized in 3D 

network forming a gel-like material and its function is to resist mechanical loading in joints.  The 

hydrophilic environment of ECM enables cartilage tissues to exhibit swelling pressure, which is 

countered by tensile strength generated from collagen network.  Besides mechanical loading, 

another intense physiological condition found in joints is low oxygen tension, i.e. hypoxia. 

Therefore, to create cartilage tissue replacement, ECM architecture, chondrocytic cells and 

physiological environment must have been orchestrated to achieve tissue properties similar to 

those present in native tissues. 
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1. Paradigms of cartilage tissue engineering  

Besides hydrogels as a material of choice to restore gel-like environment for cartilage 

tissue development, physiological conditions found in joints such as, hypoxia, mechanical 

loading and soluble growth factors must have been considered and applied to cell culture in order 

to mimic the environment in which chondrocytes reside. Established protocols for cell and stem 

cell culture have provided a wide range of alternative cell sources for cartilage. This chapter will 

provide an overview of crucial components for cartilage tissue engineering; hydrogel matrices 

for cell encapsulation, stimulating physical conditions and cells as building blocks of tissue 

formation.   

 

1.1 Hydrogels for cartilage tissue engineering 

Hydrogels are 3D network of hydrophilic polymers that absorb and retain substantial 

amount of water >30% (8). The state where soluble branched polymers start crosslinking and 

become less soluble is called “sol-gel transition”. Hydrogels have been used in tissue engineering 

research due to their unique mechanical and structural support similar to ECM. The use of 

hydrogel for tissue engineering can be found in various therapeutic applications aiming at 

delivering cells/tissue and bioactive molecules to defect sites (9). Hydrogels have long been 

investigated as an encapsulation matrix for islet cells in the production of insulin, and for 

microencapsulation drug in control-release applications (10). They recently received attention in 

regenerative tissue applications, i.e. creating engineered neuron, skin, fat, bone and cartilage. An 

ideal hydrogel for functional cartilage tissue substitute is not only biocompatible to encapsulated 

cells, e.g. provokes no damage or toxicity to cells, but also accommodates a sufficient nutrient 

and metabolite transport to and from cells. An adequate mechanical support to withstand load in 
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implant sites is one of the important aspects to consider before choosing hydrogels for cartilage 

tissue replacement.  

Hydrogels in engineered cartilage research have been prepared from synthetic and 

naturally derived polymers. Representative synthetic hydrogels are poly(ethylene)oxide (PEO), 

poly(vinyl alcohol) (PVA), poly(acrylic acid) (PAA) (11). However, degradation by-products of 

synthetic material elevate local pH and induce inflammation. Natural hydrogels include agarose, 

alginate, chitosan, fibrin, gelatin and silk. While the synthetic hydrogel allows easy processing 

and modifications, the naturally derived hydrogel offers better biocompatibility, 

immunocompatibility, and low toxicity of degradation by-products.  The use of hydrogels in 

cartilage tissue engineering aims at preserving chondrocytic phenotypes, recapitulating 

viscoelastic properties found in native tissue microenvironment. In this thesis, naturally derived 

hydrogels, agarose and silk, were exploited for encapsulating cells, and the effects of specific 

parameters on cartilage tissue development were studied.  Cell-laden agarose served as a gold 

standard of cartilage model to determine effects of hypoxia on matrix production and mechanical 

properties. The novel silk hydrogel for cartilage tissue engineering will be presented in chapter 4.  

 

1.1A Agarose  

Agarose is a hydrophilic linear polymer isolated from marine seaweed, Gelidium  

gracilaria. The polymer structure is composed of a repeating unit of disaccharide, D-galactose 

and 3,6-anhydro-L-galactose (Figure 2). Low melting temperature agarose is used in cell 

encapsulation because it exhibits hysteresis, which means that its melting point (65 ºC) is not the 

same as its gel point (26 - 30 ºC) at 1.5 % gel. Hence, temperature difference is advantageous to 

cell encapsulation by allowing cells to be encapsulated before gel setting.  
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Figure 2. Agarose is a linear polymer of disaccharide subunit of D-galactose and 3,6-

anhydro-L-galactose (12) 

 

 Agarose is thermally reversible as a result of hydrogel bond formation and the gel 

stiffness that can be controlled by varying the agarose concentration.  The smaller the pores, the 

higher is the mechanical stiffness of the gel at high concentration of agarose. In the solution (sol) 

state, as the temperature approaches the melting point, agarose is in a random coil conformation, 

while in gelation (gel) state, agarose subunit is a double helix with multiple chain aggregation 

leading to three-dimensional network formation (5). Despite the fact that agarose hydrogel does 

not contain charge groups for cell adhesion or biomolecule interaction, the hydrophilicity of the 

gel from hydroxyl groups (-OH) on the polysaccharide chains allows the covalent coupling to 

charge molecules, e.g., chitosan and peptides (13).  

An initial application of agarose in tissue engineering is to prevent immune system from 

reaching encapsulated cells owing to its inert properties that allow cells to survive and secrete 

insulin, as demonstrated in pancreatic cell microencapsulation (10).  However, the major concern 
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regarding the use of agarose in tissue replacement applications is that mammals do not have 

enzyme to metabolize agarose, which can give rise to further complication related to tissue 

integration. 

 

1.1B Silk  

Silk is natural biopolymer extracted from the cocoons of silkworm, Bombyx mori. Silk 

fibers are composed of 2 different self-assembled proteins, sericin and fibroin. Sericin is a glue-

like protein that can be removed by degumming process. Native structure of silk fibers contains 2 

fibroin strands, which are wrapped around by sericin (Figure 3). Silk fibroin  is composed of 

repetitive amino acids Gly-X (X being Ala, Ser, Thr, Val), which can form antiparallel β-sheet 

alternating with random coil structure in amorphous region. The unique protein structure 

organization of silk fibroin leads to the superior mechanical properties compared to other 

naturally derived polymers.  

 

 

 

 

 

 

 

 
Figure 2. Scanning electron micrograph of silk fibers. Two fibroin core proteins are coated 

with sericin (14) 
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Silk fibroin can be used in biomedical applications in various material formats, including 

film, three-dimensional porous scaffold, electrospun fibers, microspheres and hydrogel (15, 16).  

In order to create silk hydrogel, the main application for cartilage tissue engineering, silk fibers 

are extracted from the cocoon and dissolved in aqueous solution before initiating sol-gel 

transition, the state in which to start encapsulating cells. Silk gelation can be controlled by 

several parameters, such as the concentration of silk fibroin, temperature, pH and ionic strength 

(salt). Gelation time of silk solution from 0.6% - 15% (w/v) varies from days to weeks depending 

on the initiating factors used to induce hydrogen bond formation (cross-link) between silk 

polypeptide chains. Recently, ultrasonication has been used to accelerate sol-gel transition in a 

temporally controllable manner from minutes to hours based on silk fibroin concentration and 

sonication parameters (energy output and time) (17). 

Silk fibroin in aqueous solution is in the random coil structure, whereas silk fibroin in 

sol-gel transition is in the β-sheet structure (18). The sonicated silk fibroins contain multiple 

regions of active β-sheet blocks along the silk polypeptide chains. These active β-sheet blocks 

form cross-links to the other blocks on adjacent silk polypeptide chains.  The propagation of 

inter-peptide chain formation eventually transforms sol-gel transition to gel.  The mechanical 

properties of silk hydrogel can be controlled by silk fibroin concentration. 

The major advantages of silk compared to other natural biopolymers are its excellent 

mechanical properties and biodegradability. Furthermore, silk can be chemically modified, 

mixed and cross-linked with other functional groups or other biopolymers to obtain desired 

properties suitable for particular tissues (19). Unlike agarose, silk fibroin completely disappeared 

in 1 year after subcutaneous implantation suggesting that silk can be metabolized in the body 
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(20). However, further long-term studies of silk immunogenicity are needed to get an insightful 

understanding about host responses to silk-based engineered tissues.  

 

2. Pre-conditioning cells for tissue engineering 

Tissue engineering, a cell-based treatment, offers new therapeutic options for cartilage 

damages by combining cells, scaffold and stimulating conditions to fabricate functional new 

grafts to replace damaged sites (7). Cells are crucial components of tissue engineering, because 

they serve as building blocks to generate tissues and therefore cell-based replacement requires 

sufficient amount of cells to be seeded into the scaffold. Cells in cartilage tissue engineering 

come from two major sources, which are fully differentiated chondrocytes from non weight-

bearing cartilage tissue of patients/donor and pluripotent stem cells (adult stem cells, embryonic 

stem cells and induced pluripotent stem cells) (6, 21). The former source needs to be expanded, 

while in the same time maintaining a chondrocytic phenotype. The latter needs to be 

differentiated to the stage of mature chondrocytes. Native chondrocytes (autologous or 

allogeneic) are cultured in monolayer with several passages to get considerable amount of cells. 

However, these isolated chondrocytes undergo a process of dedifferentiation that is characterized 

by a transition to a fibroblast-like phenotype. Stem cells, on the other hand, proliferate 

extensively due to their self-renewal capability. However, the challenge of stem cells involves 

directing pluripotent cells to chondrocytes.  

Pre-conditioning is fine-tuning step that maintains and/or induces chondrocytic 

phenotype. Pre-conditioning provides an environment for i) re-differentiation of de-differentiated 

chondrocytes, ii) differentiation of stem cells into cartilaginous lineages. To prepare mature early 

chondrocytes, physical and chemical conditioning can be introduced during cell culture.  
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2.1 Hydrogel  

Isolated chondrocytes are unable to retain their phenotype during expansion in monolayer 

culture. Use of hydrogels allowed chondrocytes to re-acquire their rounded shape and to continue 

producing cartilage matrix components.  Generally, differentiated chondrocytes have a spherical 

morphology associated with type II collagen and proteoglycan synthesis. After serial passages in 

monolayer, these cartilage-specific components are gradually lost and predominantly replaced by 

type I collagen alongside the flatten cell morphology. The most well known study of the 

influence of hydrogel on cell shape was performed by Benya et al (22). The de-differentiated 

chondrocytes reexpress their differentiated phenotype during suspension culture in 0.5% low Tm 

agarose. It indicated that conditioning cells in 3D environment using hydrogel encapsulation 

modulates cell shape and biosynthetic program transition from de-differentiated to differentiated  

state.   

 

2.2 Low oxygen tension 

Articular cartilage resides in hypoxic environment with oxygen concentrations ranging 

from 10% at the surface to <1% in the deep (23). Oxygen and nutrient exchange within cartilage 

tissue depend on diffusion from the synovial fluid that flows through the tissue during the joint 

movement. In order to survive in such a harsh environment, chondrocytes must be able to sense 

oxygen availability and adjust cellular metabolism to consume less oxygen at lower oxygen 

concentrations (24, 25). Chondrocytes have very low oxygen consumption compared to other 

cell types. 

During limb development, the differentiation of mesenchymal cells into chondrocytes 

and early formation of the tissues in the joints occur at low oxygen levels in which hypoxic 
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inducible factor (HIF) plays an important role in cellular adaptation to hypoxia (26). HIF is a 

heteromeric transcription factor that mediates the effects of SOX9, a chondrogenic transcription 

factor responsible for skeleton formation (27). The putative mechanism of type II collagen and 

aggrecan synthesis involves transcriptional control of ECM synthesis via SOX9 binding to 

responsive sequences of aggrecan and type II collagen. The orchestrated regulation of cartilage 

ECM production by the HIF and SOX9 supports the assumption that hypoxia is a favorable 

condition for maintaining cartilage structure and function.  

Today, most cartilage constructs are engineered by cultivation of chondrocytes or their 

progenitors under ambient oxygen concentrations (21%) that is much higher than the oxygen 

level in native joints (28). Cultivations of engineered cartilage at reduced levels of oxygen 

tension have been investigated with varying degrees of success. In general, cultures were 

subjected to a constant level of hypoxia, for a period of up to 4 weeks (29, 30), without 

transferring cultures low and high oxygen environments. The effects reported from these studies 

were controversial. The implementation of hypoxia in cartilage tissue engineering resulted in 

either adverse effects of low oxygen on cell growth and ECM assembly, or no significant effects 

(31, 32). 

Recently our laboratory demonstrated transiently low oxygen tension has beneficial effect 

on cartilage tissue development. The hypoxic conditioning regime used in cell culture was an 

initial exposure constructs to 5% O2 for 7 days (to activate cell proliferation) followed by 21% 

O2/21 days (to enhance matrix synthesis).  This reoxygenation maintained cell proliferation, and 

enhanced proteoglycan and collagen type II along with upregulation of COL2A1 throughout the 

duration of culture.   
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2.3 Chemical cues: exogenous growth factors and soluble factors from 

chondrocytes 

2.3A Exogenous growth factors  

Growth factors are used in cartilage tissue engineering to modulate cellular 

differentiation, maintain chondrocyte phenotype, as well as to regulate specific ECM synthesis. 

There are three main families of growth factors involved in chondrogenic differentiation; the 

transforming growth factor beta (TGF-β) family, fibroblast growth factors family (FGFs), the 

insulin-like growth factor (IGF). The effects of many of these growth factors alone and in 

combination have been studied for cartilage tissue engineering,  

Members of the TGF-β family are probably the most widely used growth factors in 

cartilage tissue engineering. The notable members of the TGF-β family include TGF-β1, TGF-

β3 and bone morphogenetic proteins (BMPs). They not only have been shown to regulate cell 

growth but also to up-regulate proteoglycan and collagen type II synthesis. Several groups 

demonstrated the use of TGF-β family in chondrogenic differentiation of MSCs and embryonic 

stem cells (33). BMPs, especially BMP-2 and BMP-7, play an important role in chondrogenesis 

and osteogenesis during skeleton development and have been demonstrated to stimulate 

chondrogenesis in adipose stem cells (34).  

Basic fibroblast growth factor (bFGF) has been shown to stimulate chondrocyte 

proliferation.  FGF-18 in conjunction with FGF receptor 3 has recently been shown to activate 

signaling, which promotes chondrogenic differentiation of limb bud mesenchymal cells, and 

enhance matrix production of articular cartilage in vivo (35). 
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The effects of IGF-1 were demonstrated in monolayer culture chondrocytes by increasing 

anabolic activity of chondrocytes resulting in profound synthesis GAG and up-regulation of 

aggrecan and collagen type II gene expression(36). The effects of platelet-derived growth factor 

(PDGF) on proliferation and ECM synthesis have not been extensively reported, but it has been 

shown to have an effect on chondrocyte proliferation (37). 

 Furthermore, synergistic effects of several growth factors applied simultaneously have 

been detected in several studies. BMP-2 and TGF-β1 work in concert for the chondrogenesis of 

periosteal cells (38); it was suggested that BMP-2 induces neochondrogenesis, while TGF-β1 

modulates the terminal differentiation in BMP-2-induced chondrogenesis. Combined treatments 

with TGF-β3 and BMP-6 or TGF-β3 and IGF-1 were shown to be the most effective 

combinations for chondrogenic induction of bone marrow MSCs (39). However, growth factor 

combinations do not always interact synergistically. For example, the addition of IGF-1 and 

TGF-β in combination did not improve the histologic features or mechanical performance of 

tissue engineered cartilage constructs (40). 

 Perhaps the most exciting new results have come from studying the synergism between 

growth factor application and mechanical stimulation. Bonassar et al. found that the combination 

of IGF-1 and dynamic compression led to a 290% increase in proteoglycan synthesis, a degree 

far greater than that achieved by either stimulus alone (41). Also, Mauck et al. showed that the 

combination of dynamic deformational loading with either TGF-β1 or IGF-1 increased the 

stiffness of engineered constructs by 277% or 245%, respectively, with respect to untreated free-

swelling constructs (42). 
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2.3B Soluble factors from chondrocytes  

Soluble substances from cells known under the collective term of cytokines play essential 

role to mediate cell growth and survival. There are 2 approaches to deliver soluble factors to cell 

culture. 1) co-culturing cells with helper cells secreting molecules and 2) growing cells in 

conditioned medium. 

 

2.4 Co-culture 

Co-culturing was first used in in vitro culture of embryos and embryonic fibroblasts 

(helper cells). Embryos are grown on top of monolayer fibroblasts. Fibroblasts provide chemical 

and physical supports to embryos by secreting growth factors and nutrients needed for embryo 

development and serving as a substrate for embryo attachment, respectively. The idea of using 

paracrine secretion in embryo cultures has been adopted for culture 2 cell types separate by 

transwell while maintain cell-cell communication through secreted proteins and molecules across 

nanometer-size pore. In chondrogenic differentiation, co-culture MSCs with articular 

chondrocytes seeding on transwell showed a decrease in hypertrophic differentiation (43). 

Hwang et al. demonstrated chondrogenic commitment in ESCs co-cultured with bovine 

chondrocytes (44).  

It is important to not that target cells could also secrete substance to the culture medium 

and alter phenotype of other cells on the transwell. To eliminate artifacts from 2-way 

communication, culturing target cells in conditioned medium may be an alternative approaches 

to deliver soluble factors. Conditioned medium may help to extract the effects of substance on 

target cells and maintain batch-to-batch consistency. 
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2.5 Conditioned medium 

Conditioned medium is a spent medium harvested from culture cells. It contains 

metabolites, growth factors (e.g. interleukins, EGF, and PDGF), and extracellular matrix protein 

(e.g. collagen, fibronectin and various proteoglycan), which are secreted into the medium by the 

cultured cells. The medium is obtained by sterile filtration and is added to fresh culture medium 

for up to 1/3 to 1/2 of the final volume (45). The biochemical analysis of the constituents 

responsible for a particular biological activity is still not completely elucidated to detect secreted 

growth factors. Despite the fact that components in conditioned medium have not been 

completely identified, the use of conditioned medium is widely accepted in cell culture.  

Chondrogenesis is an orchestrated molecular and cellular process during embryogenesis 

driven by chondroprogenitors that firstly undergo mescenchymal condensation. Inducing stem 

cells in media supplemented with only one or two purified growth factors may not be sufficient 

for chondrogenic lineage commitment compared to culturing stem cells in conditioned media 

containing mixture of secreted soluble factors. Conditioned medium obtained from bovine 

chondrocytes was able to induce chondrogenic and osteogenic differentiation of MSCs during in 

vitro micromass culture (44). 
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2.6 Stimulation of cells during in vitro chondrogenesis 

2.6A Mechanical loading  

Chondrocytes are connected to their microenvironment by focal adhesion mediated 

through binding between cell membranes and ECM. This cell-matrix interaction (focal adhesion) 

plays role in structural integrity of cartilage tissue. In addition, focal adhesions are involved in 

the process of mechanotransduction, in which cells regulate transcriptional activities based on 

mechanical signals received at their surface. Although the exact mechanism of 

mechanotransduction in the chondrocytes has not been completely elucidated, in the molecular 

viewpoint it has been suggested that elements of the cytoskeleton and integrins allow the 

coordination of mechanical forces and transcriptional changes. From medical evidences in canine 

studies, articular cartilage in the knee becomes significantly stiffer following loading in 

physiological ranges as a result of running on a treadmill (46). It has been proposed that 

mechanical stimulation serves to maintain and even up-regulate the production of ECM. 

Therefore, in vitro culture has adopted mechanical stimulation applied to engineered cartilage 

aiming to promote ECM synthesis with the expected outcome of the increase in mechanical 

properties. Methods to deliver mechanical stimulation to cartilage constructs include hydrostatic 

pressure, direct compression and shear forces. The parameters that may be varied during 

application of mechanical stimulation include strain or magnitude, frequency, duration and 

magnitude of loading as well as the time point at which the cells are subjected to loading.  

 

2.6B Exogeneous ATP 

In order to recreate the physiologic loading environment, a majority of cartilage tissue 

engineering studies has focused on various ways of applying direct compression in combination 
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with application of growth factors (47-49). This external mechanical stimulation leads to 

activation of mechanotransduction cascades, which promote chemical signaling inside the cell. 

However, direct mechanical stimulation is not always a suitable method, and the utilization of 

mechanisms underlying mechanotransduction might allow for a highly effective and less 

aggressive alternate means of stimulation. In particular, purinergic, ATP-mediated signaling 

pathway is strongly implicated in mechanotransduction within articular cartilage. ATP 

(adenosine 5’- triphosphate) has been indicated as one of the first molecules to be released in 

response to mechanical stimulation (50-54). To recreate the physiologic loading environment in 

the absence of externally applied forces, exogenous ATP was supplemented in culture medium 

aiming to activate purinergic signaling pathway in chondrocytes. Significant increases in 

equilibrium and dynamic modulus of engineered cartilage were observed after 4 weeks of culture 

(55).  
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CHAPTER 3 

Silk Hydrogel for Cartilage Tissue engineering 
 

1. Background  

Cartilage tissue engineering is a new treatment option for joint repair. Engineered 

cartilage constructs are expected to have sufficient mechanical and functional outcomes at the 

time of implantation to survive the physical demands of joint loading. Currently, agarose-based 

engineered cartilage can yield tissue constructs with biochemical and mechanical properties 

comparable to native cartilage and thereby serve as gold standard of in vitro engineered cartilage. 

However, agarose have limited studies in animal models because of its non-degradability, which 

hinders graft integration to the surrounding host tissue.  Furthermore, it is still not understood 

which characteristics of agarose contribute to its superior functionality. The systematic studies of 

cartilage tissue formation cannot be easily conducted in agarose hydrogel, because the capability 

to modify and customize agarose structure and composition is rater limited. On the other hand, a 

novel biomaterial, silk fibroin, can be fabricated in various formats, e.g., film, fiber, porous 

scaffold, hydrogel, and be conjugated with functional groups to promote cell adhesion (56, 57). 

The versatility of silk fibroin allows it to be a powerful tool for understanding the mechanism 

underlying beneficial effects of hydrogel on cartilage tissue formation and optimizing protocols 

in future material development. 

This chapter focuses on the use of silk hydrogel in cartilage tissue engineering. 

Comparative studies of two silk fibroin formats (hydrogel and porous scaffold), which provide 
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3D environment to cells will be demonstrated. An endeavor to improve mechanical properties of 

silk hydrogel by fiber reinforcement will be described at the end of this chapter. 

 

2. Specific aims 

Aim 1. To optimize silk fibroin properties for functional cartilage tissue 

engineering 

Silk fibroin materials in various structural forms (fiber, porous, thin film) have been 

successfully used as tissue engineering scaffolds because of their versatility, biodegradation and 

biocompatibility. To explore the influence of different 3D silk structures on tissue development, 

hydrogel, a standard supportive material for cartilage tissue engineering, and porous scaffold are 

compared. Silk hydrogel is further examined for concentration, and mechanical and diffusional 

properties. To this end, the silk hydrogel concentration is selected to match the diffusivity of 

agarose that yielded constructs with mechanical properties approaching those of native cartilage.  

Silk fibers are also included to modify mechanical properties of silk hydrogel.  

 

Aim 2. To correlate the hydrogel material properties to cartilage tissue 

development 

The mechanically optimized silk hydrogels from specific aim 1 are used as supportive 

material to investigate tissue development. This study attempts to test the hypothesis that silk 

hydrogel with mechanical properties matched to agarose can yield cartilage constructs 

approaching to native tissue in 6 weeks of culture.  
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3. Methodology  

3.1 Silk hydrogel preparation 

Silk fibroin solution was extracted from cocoons of Bombyx mori as previously described 

(58). Briefly, the cocoons were boiled for 40 min in 0.02 M sodium carbonate (Na2CO3) and then 

silk protein was dissolved in 9.3M LiBr solution followed by dialysis against distilled water for 4 

days using Slide-a-Lyzer dialysis cassette (MWCO 3,500, Pierce). To make a silk hydrogel, the 

silk solution was adjusted to concentration of 2% or 4% (w/v) and sonicated with a Branson 450 

Sonifier (Branson Ultrasonics Co. Danbury, CT) at 12% amplitude for 15 seconds to initiate 

gelation. Then sonicated silk was poured into sterile mold made of 2 glass plates, which were 

separated by 2.5 mm thick spacer. Cylindrical disks (4 mm in diameter x 2.5 mm thick) were 

cored out using a biopsy punch. 

 

3.2 Silk porous scaffold preparation 

Silk fibroin solution from above step was diluted to 6 - 8% (w/v). Two ml of the silk 

fibroin and 4 g NaCl particles were mixed together in Teflon cylinder containers and sit in room 

temperature for 24 hours.  Then, NaCl particles were leached out in distilled water for 2 days, 

leading to porous silk scaffolds with pore size of 500 - 600 µm.  
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3.3 Silk fiber preparation 

The development of these micron-sized non-immunogenic silk fibers has recently been 

accomplished by Mandal et al (33). The formation of these fibers involves rapid alkaline 

hydrolysis of degummed silk fibers in sodium hydroxide solution. Sodium hydroxide pellets 

(NaOH) weighing 3.5 g (to obtain 17.5 M solution) were added to 5 ml of distilled water. When 

approximately 70% of the NaOH pellets are dissolved, the dried degummed silk fibers weighing 

0.35 g were added and stirred with a spatula. Then the digested reaction was stopped by adding 

45 ml of water and centrifuged at 3,500 rpm for 5 minutes. Washing step is repeated from 5 to 8 

times to remove excess remaining alkali. The pH of the solution is measured and the pH is 

adjusted to 7.0 using hydrochloric acid. Finally the fibers are suspended in PBS and lyophilized 

to generate a silk fiber powder. To obtain large (400 - 500 µm long) and medium (150 - 200 µm 

long) silk microfibers, the hydrolysis reaction was carried for 30 and 180 seconds, respectively.  

To obtain very fine/smaller (10 - 20 µm long) silk fibers, the reaction mixture was set up in a 

boiling water bath for 60 seconds to aid rapid hydrolysis.  Once the fibers have been washed and 

lyophilized they can be stored indefinitely at ambient conditions.  

 

3.4 Preparation of cell-hydrogel constructs (silk and agarose) 

Sterilized silk solution were diluted into 2(%w/v), mixed with DMEM powder and 

sodium bicarbonate (NaHCO3) to get the final concentration of 1.34% and 0.37%, respectively. 

The mixture was sonicated using a Branson 450 Sonifier (Branson Ultrasonics Co., Danbury, 

CT) for 15 seconds with the 12% amplitude to initiate gelation. Primary bovine chondrocyte 

suspension in as less as 50 µl was added into the sonicated silk solution to get final seeding of of 

20 x 106 cells/ml in hydrogel. After mixing, the cell/hydrogel mixture was poured into sterile 
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molds and allowed to become gel in the same way as described in acellular constructs 

preparation. Cylindrical disks (4 mm in diameter x 2.5 mm thick) were cored out using a biopsy 

punch, resulting in 6.2 x 10
5 
cells per disc.  

For the preparation of cell/agarose hydrogel constructs, one volume of cell suspension (at 

40 x 10
6 
cells/ml in culture medium) was mixed with an equal volume of 4% low-melt agarose 

(Type VII, Sigma) in phosphate buffered saline (PBS) at 37 °C to yield a final cell concentration 

of 20 x 10
6 
cells/ml in 2% agarose hydrogel. The cell/ agarose hydrogel mixture was casted and 

cored out as described in silk hydrogel construct preparation. 

 

3.5 Preparation of cell-porous silk constructs  

The porous scaffolds were then sterilized via autoclaving and hydrated by incubation in 

culture medium (overnight). Similar to the hydrogel constructs, disks (4 mm in diameter x 2.5 

mm thick) were cored out using a biopsy punch from the porous silk scaffold stock. 

Chondrocytes (6.2 x 10
5 

cells per scaffold) were suspended in 25 µl of culture medium and 

slowly loaded into the hydrated scaffold. Constructs were incubated at 37 °C for 2 hours for 

complete attachment. The culture medium was then switched to chondrogenic growth medium 

for the duration of the culture period.  

 

3.6 Preparation of cell-fiber reinforced hydrogel  

Fiber-reinforced agrarose hydrogel was prepared by mixing 4% agrose with equal 

volume of PBS containing silk fibers with or without cells to obtain final concentration of 2% 
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agarose, with 20 x 106 cells/ml and 2 (%w/v) fibers; (%w/v = %weight of fibers/volume of 

hydrogel). For fiber-reinforced silk hydrogel was prepared by pre-sonication 8% silk solution for 

60 seconds at 12% amplitude and mixing with an equal volume of PBS containing silk fibers 

with or without cells to obtain final concentration of 4% silk hydrogel with 2 (%w/v) fibers. 

Cells/gel/fibers mixture was allowed to set and cored out from a gel slab by the method 

described above. 

 

3.7 Construct cultivation  

Constructs from hydrogel, porous scaffold fiber-reinforced hydrogel were maintained in 

culture for up to 42 days, with the twice weekly change of chondrogenic growth medium 

(hgDMEM supplemented with 5 mg/mL proline, 1% ITS+, 100 nM dexamethasone, 50 µg/mL 

ascorbate, and 10 ng/mL TGF-β3 for the first 2 weeks.  

 

3.8 Diffusion measurement by FRAP  

Acellular agarose and silk hydrogels (2.5 mm thick x 4 mm diameter) of 2 and 4 (%w/v) 

were soaked in a saturated (0.5 mg/mL) 70 kDa fluorescein-conjugated solution for over 24 

hours.  Samples were placed on a Olympus Fluoview FV1000 Confocal Microscope subjected to 

fluorescent recovery after photobleaching (FRAP) of a thin line using a 405 nm laser for 30 

seconds.  Images (320 x 320 pixels) were acquired using a 20X objective before, during, and 

after the photobleaching process, allowing for analysis using a custom MATLAB code according 

to (Albro+ 2009), which fits the FRAP to the Gaussian equation,         
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in which I  is the fluorescence intensity as a function of position (x) and time (t), M is the total 

amount of bleached species, and , with D being the diffusion coefficient.  A linear 

regression was applied to a plot of w2 against t (R2 ~ 0.99) to acquire a value for D.  D values 

outside two standard deviations were removed as outliers, and a 2-way ANOVA (Statistica, 

Tulsa, OK) with Tukey’s Honest Significant Difference Test, α = 0.05, was used to determine 

significance.  For each group, n > 5 samples.   

 

3.9 Mechanical properties 

Compressive properties of constructs were measured in unconfined compression using a 

custom-made mechanical testing device (59). Constructs were placed in a testing chamber and 

equilibrated under a creep tare load of 0.5 g for 30 minutes. Stress-relaxation tests were 

performed at the ramp velocity of 1 µm/s up to 10% strain. The equilibrium Young’s modulus 

(EY) was determined from the equilibrium stress-strain data.  

 

3.10 Biochemical assay  

Constructs (n = 5 per group and time point) were harvested on days 0, 7, 14, 21 and 28 

and digested for 16 hours at 56 °C with 20 µl/ml papain in 1 mg/ml of proteinase K (Fisher 

Scientific, Pittsburgh, PA) containing 1mM iodoacetamide and 10 mg/ml pepstatin-A (Sigma 

Aldrich, St. Louis, MO). Total DNA content was quantified using PicoGreen assay (Invitrogen, 

Carlsbad, CA) following the manufacturer’s protocol. For Proteoglycan content, aliquots of 

digested tissue samples were analyzed using the 1,9-dimethylmethylene blue dye binding 

(DMMB) assay to determine the glycosaminoglycan (GAG) content (60).  

Dtw 42 =
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3.11 Scanning electron microscopy 

Cell-free hydrogels were freeze-dried and the fractured sections were obtained using 

razor blade. The fractures surfaces were sputter-coated with gold/palladium in the presence of 

argon gas at room temperature. Amray 1830 scanning electron microscope was used to visualize 

surface features at 200x and 500x magnification. 

 

3.12 Histology and immunohistochemistry 

Constructs were fixed in 4% paraformaldehyde overnight at 4 oC,  transferred to 70% 

ethanol, embedded in paraffin and sectioned at 8 mm. The sections were stained with 

hematoxylin and eosin for general evaluation, Alcian Blue for GAG, and picrosirius red for bulk 

collagen. Sections for immunohistochemistry staining were hydrated, and antigen retrieval was 

performed using heated 0.01 M citrate buffer with pH 6.0 for 15 minutes.  Quenching of the 

endogenous peroxidase was done by immersing the sections in 0.3% H2O2/methanol for 10 

minutes at room temperature. The sections were incubated with blocking serum (Vectastain 

ABC, Burlingame, CA) for 30 minutes at room temperature, rinsed with PBS, incubated 

overnight at 4 oC with 1:1000 of type II collagen monoclonal antibody (Millipore, Temecula, 

CA) and for 30 minutes with biotinylated secondary antibody (Vectastain ABC, Burlingame, 

CA). For signal enhancement and detection, Vectastain ABC Kit with peroxidase and DAB 

Peroxidase Substrate Kit (Vectastain ABC, Burlingame, CA) were added as described in the 

manufacturer’s protocol. 
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3.13 Statistical analysis  

Statistics were performed with STATISTICA software (Statsoft, Tulsa, OK). Data were 

expressed as the average ± SD of n = 4 - 6 samples per group and time point. The differences in 

construct properties between the groups were examined by analysis of variance (α = 0.05), with 

DNA, matrix contents, EY or relative level of target gene expression as the dependent variable, 

followed by Tukey’s Honest Significant Difference Test.  

 

4. Results 

4.1 Cartilage tissue formation in silk hydrogel and silk porous scaffold  

Chondrocytes cultured in both silk formats demonstrated an increase of DNA content up 

to day 28 (Figure 4A). The slightly reduction of DNA content observed on day 42 (Figure 4A) 

associated with an increase in wet weight. Specifically, there was a 29 and 42% increase of wet 

weight from day 28 to 42 for the hydrogel and porous scaffold groups, respectively. GAG 

content gradually accumulated in hydrogel, while in the porous scaffold group the GAG content 

reached a plateau on day 42 (Figure 4B). The compressive modulus of porous scaffold group 

slowly increased and yield 123 ± 37 kPa on day 42, whereas the hydrogel group showed 

excellent mechanical properties of 174 ± 23 kPa (Figure 4C). 
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Figure 3. Biochemical content and mechanical properties of hydrogel and porous scaffold 

DNA content (A), GAG content (B) and compressive modulus (C) were measured every 2 weeks 

(*p < 0.05 compared to the previous time point, n = 4).  
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Figure 4. Cartilage tissue development in silk hydrogel and porous scaffold 

A: Live/dead staining on Day 42 (insert-magnified for cell morphology, bar = 50 µm). B: 

Construct macroscopic view after 42 days of culture. C: Picrosirius red (top) and Alcian blue 

(bottom) staining for collagen and GAG content, respectively, bar = 1 mm.  

 

Chondrocytes encapsulated in the silk hydrogel exhibited spherical morphology, in 

contrast to a fibroblastic, spindle-like morphology of cells in porous scaffolds (Figure 5A). In 

addition, cells appeared smaller in size in hydrogel than in the porous scaffolds. Figure 5B 

illustrates the macroscopic view of constructs after 42 days of culture. The silk hydrogel group 



   
 

 

34 

maintained the cylindrical disk shape with a smooth surface while the porous scaffolds appeared 

to be more irregular. Histological staining of collagen and GAG revealed uniform matrix 

distribution in the hydrogel construct with lacunae formations (Figure 5C). Furthermore, 

immunohistochemical staining revealed stronger and more uniform type II collagen staining 

throughout the constructs and faint type I collagen signal (Figure 6). 

 

 

 

 

 

 

 

 

 

 

Figure 5. Immunochemistry of collagen type II and type I 

Collagen type II was detected in hydrogel and porous scaffold constructs while low collagen type 

I was observed in both groups, bar = 1 mm 

 

4.2 Intrinsic mechanical properties of materials  

Equilibrium and dynamic (at 1 Hz) compressive moduli of the cell-free hydrogels and the 

porous scaffolds were compared to examine if the intrinsic mechanical properties could be a 
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factor in cartilage development (Figure 7). Porous silk scaffold with sponge-like texture showed 

the highest mechanical properties. The 2% silk hydrogel used in cell encapsulation in previous 

study had the lowest equilibrium and dynamic moduli. Its mechanical properties of 2% silk gel 

were far behind agarose and porous silk scaffold. When concentration of silk increased from 2% 

to 4%, equilibrium modulus of silk gel (18 ± 2 kPa) was similar to agarose (14 ± 2 kPa). 

Interestingly, dynamic modulus of 4% silk gel (189 ± 29 kPa) was higher than that of agarose 

(64 ± 8 kPa) and approaching to that of silk porous scaffold (215 ± 72 kPa).  

 

 

 

 

 

 
Figure 6. Intrinsic biomechanical properties of the materials 

Equilibrium (A) and dynamic (B) modulus (at 1 Hz) ( a  p < 0.05 compared with the agarose 

hydrogel group, x p < 0.05 compared with the silk porous scaffold group, n = 3 - 5)  

 

4.3 Diffusivity of solute molecule in silk hydrogel and agarose hydrogel  

Diffusion coefficient (D) is a parameter that measures the rate of diffusive transport, and 

appears as a coefficient of the diffusion equation. The effects of hydrogel concentration on 

fluorescent tracers diffusivity in agarose and silk hydrogel was investigated using Fluorescence 

Recovery After Photobleaching (FRAP) technique. Hydrogels were bleached in a thin line to 
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generate region of interest (ROI) and fluorescence recovery by FITC-dextran (MV = 70 kDa) 

diffusion was monitored. Diffusion rate of FITC-dextran depended on the types and 

concentrations of a hydrogel, as demonstrated in Figure 8. The diffusivity of agarose and silk 

hydrogels significantly decreased when the concentration of the hydrogel was raised to 4%. 

Interestingly, 2% agarose did not show differences in solute transport as compared to 4% silk 

hydrogel.  Because of this diffusive similarity, the samples with 2% agarose and 4 % silk 

hydrogel will be used for further comparison – first, with respect to the fiber sizes, and then with 

respect to their tissue development properties.   

 

 

 

 
 

 

 

 

Figure 7. FITC-dextran diffusivity in agarose and silk hydrogels 

Agarose and silk hydrogels were soaked with FITC-dextran overnight and measured diffusivity 

using FRAP technique. * indicates significant difference 
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4.4 Mechanical properties of fiber-reinforced hydrogels  

Hydrogels obtained from previous studies were subjected to modify mechanical 

properties by silk fibers reinforcement. Acellular hydrogel constructs with various fiber sizes 

were formed in the dimension of 2.5 mm thick x 4 mm in diameter and measured equilibrium 

and dynamic moduli in an unconfined compression machine. The silk hydrogel with fibers 

showed an increase of mechanical properties in regard to different fiber sizes (Figure 9). The 

highest equilibrium (34 ± 3 kPa)  and dynamic (353 ± 56 kPa) moduli were found in silk 

hydrogel when it was reinforced by fibers 500 µm long. The dynamic modulus of all fiber-

reinforced silk hydrogel groups responded to different frequencies. However, there was no 

mechanical improvement in agarose hydrogel associated with fiber reinforcement. Equilibrium 

and dynamic moduli did not show significant differences between reinforced agarose and 

agarose control group (no fibers). 

 

 

 

 

 

 

 

Figure 8. Mechanical properties of fiber-reinforced hydrogels 

Cell-free constructs incorporated with different sizes of fibers were measured equilibrium and 

dynamic moduli. * p < 0.05 compare with control group (no fibers). ᴪ p < 0.05 compare with 1 

Hz within the same group, ᶲ p < 0.05 compare with 500 µm, (n = 20) 
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Figure 9. Scanning electron micrograph of fiber-reinforced hydrogels 

Cell-free constructs of 4% silk and 2% agarose hydrogel were freeze-dried and visualized 

microscopic structures. Silk hydrogel (A), fiber-reinforced silk hydrogel (B), agarose hydrogel 

(C) and fiber-reinforced agarose hydrogel (D).  Silk fibers are clearly seen in 500x inserts 

 

Microarchitecture of hydrogels and fibers was visualized under SEM. Silk hydrogel 

showed organized flake-like structures (Figure 10A). When fibers were introduced to create 

reinforced silk hydrogel, the disorientation of hydrogel flakes was observed and they could 

adhere to fibers (Figure 10B). Agarose hydrogel formed intact layer with pores size between 30 

– 50 µm (Figure 10C), while reinforced agarose showed bigger pore size 50 – 100 µm (Figure 

10D). The fiber showed smooth surface and clearly separated from agarose hydrogel. 
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4.5 Cartilage tissue development in fiber-reinforced silk hydrogel 

Mechanical integrity of engineered construct is important at the time of implantation to 

survive the harsh physical demands of joint loading. Acellular silk hydrogel constructs 

reinforced by fibers size 500 µm showed the highest mechanical integrity and thereby this 

reinforced fiber-silk hydrogel formula was subject to study tissue development compared to 

agrose hydrogel. Primary chondrocytes were encapsulated in silk hydrogel or fiber-reinforced 

silk hydrogel at a density of 20 x 106 cells/ml. Viability and distribution of encapsulated cells 

were observed under fluorescent microscope. 

 

 

 

 

 

 

 
 

 
 

 

Figure 10. Chondrocytes seeded in hydrogel at day 3 

Live/dead assay showed viable chondrocytes in hydrogel. Silk hydrogel (A), fiber-reinforced silk 

hydrogel (B), agarose hydrogel (C) and fiber-reinforced agarose hydrogel (D).  Bar = 200 mm 
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Figure 11. Biochemical assay of engineered cartilage constructs 

DNA (A), GAG (B) and total collagen (C) content.  α p < 0.05 compared to previous time point 

within the same group, β p < 0.05 compared effects of fiber reinforcement of the same hydrogel,         

*  p < 0.05 compared to agarose at the same time point, n = 5 
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Chondrocytes encapsulated in hydrogels showed homogeneous cell distribution. Live 

cells were observed in constructs cultured at all hydrogel groups (Figure 11). DNA content 

significantly increased over course of study in reinforced silk and agarose hydrogels (Figure 

12A). The beneficial effects of fibers on cell proliferation could be detected in silk hydrogel. On 

day 42, an increase in DNA content was observed in reinforced silk hydrogel compared to silk 

hydrogel without fibers. However, DNA content of reinforced agarose and agarose control was 

comparable at the end of study.  

Silk fibers improved proteoglycan production as demonstrated by greater amount of 

GAG content at Day 42 in fiber-reinforced silk hydrogel (2.5 ± 0.5 (%wwt)) compared to silk 

hydrogel (1.8 ± 0.4 (%wwt)) (Figure 12B).  The control cartilage constructs made from agarose  

showed an excellent GAG content (4.3 ± 0.5 (%wwt)). Interestingly, in contrast to silk hydrogel, 

fibers did not improved proteoglycan production in agarose as shown in low GAG content (2.4 ± 

0.3 (%wwt)) at the end of study. 

Collagen content in native cartilage ranges from 7 to 16 (%wwt) depending on age and 

species (61). In this study, the highest collagen content was obtained in agarose group (5.8 ± 0.3 

(%wwt)), whereas fiber-reinforced agarose had the lowest collagen content (1.8 ± 0.1 (%wwt)) 

(Figure 12C). For silk hydrogel, combining fibers promoted collagen production as 

demonstrated by an increase of collagen content from  (2.9 ± 0.1 (%wwt)) in silk hydrogel to 

(3.7 ± 0.1 (%wwt)) in reinforced silk hydrogel. 
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Figure 12. Mechanical properties of engineered cartilage constructs 

Young’s modulus (A) and dynamic modulus (B).  α   p < 0.05 compared to previous time point 

within the same group, β  p < 0.05 compared effects of fiber reinforcement of the same hydrogel,         

* p < 0.05 compared to agarose at the same time point, ᴪ p < 0.05 compare with 1 Hz within the 

same group, n = 5  



   
 

 

43 

4.6 Mechanical properties and matrix elaboration of fiber-reinforced 

hydrogels 

Constructs (n = 5) in all groups were measured compressive modulus every week for 6 

weeks. At end of culture period, agarose constructs yielded the highest compressive Young’s 

modulus (EY) of 521 ± 11 kPa as compared to constructs made from fiber reinforced agrose (281 

± 48 kPa), silk hydrogel (201 ± 20 kPa), and fiber reinforce silk hydrogel (303 ± 42 kPa) (Figure 

13A).  

In Figure 13B, fiber reinforcement effectively improved dynamic modulus of silk 

hydrogel, while combining fibers into agarose hydrogel adverse dynamic modulus of the 

constructs. It is interesting to note that dynamic modulus of constructs made from fiber-

reinforced agarose was initially comparable to those made from agarose without fibers (day 0 to 

28). Then after the day 28, reinforced agarose showed inferior mechanical properties (Figure 

13A – B) and ECM composition (Figure 12B - C).  

By day 42, constructs made from fiber-reinforced silk hydrogel exhibited uniform 

cartilage-like tissue organization and glycosaminoglycan (GAG) production similar to those 

made from agarose (Figure 14). Light GAG staining was observed in engineered cartilage 

constructs made from fiber-reinforced agarose and silk hydrogels (Figure 14D). In figure 15, 

collagen type II was abundantly found in constructs made from agarose control compared to 

other hydrogels. Within the silk groups, fiber-reinforced constructs showed stronger collagen 

type II than fiber-free constructs (Figure 15A and B). Immunostaining in figure 15 E-H was not 

able to detect collagen type I in all groups.  
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Figure 13.  Alcian Blue staining for glycosaminoglycan 

Glycosaminoglycan distribution in silk hydrogel (A), reinforced silk hydrogel (B), agarose (C) 

and reinforced agarose (D), bar = 100 mm. Fibers and GAG co-localization is clearly seen in 

magnified images of reinforced silk hydrogel (E) as indicated by arrows, but not in agrose (F). 



   
 

 

45 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 14. Immunohistochemistry for collagen 

A-D: Collagen type II. E-H: Collagen type I.  Silk gel  (A and E), reinforced silk gel (B and F), 

agarose (C and G) and reinforced agarose (D and H) 
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5. Discussion  

Unique characteristics of silk fibroin, which are repetitive primary sequence that leads to 

significant homogeneity in secondary structure β-sheet and physical crosslink of inter-peptide 

chains, generate a stable hydrophilic and neutral pH environment that supports cells. In previous 

study, it was shown that one particular type of silk hydrogel preparation can support tissue 

viability and yield cartilaginous constructs (58).  A number of other hydrogels – alginate, 

collagen and chitosan – have been investigated for cartilage tissue engineering, however, none of 

these materials have resulted in mechanical functionality approaching that of native cartilage.  At 

the beginning, 3D formats of silk fibroin (hydrogel and porous scaffold) were examined for 

cartilage development potential and the 2% silk hydrogel was used in comparative aspects to 2% 

agarose hydrogel, the “gold standard” of engineered cartilage. Even though the 2% silk hydrogel 

had, at the start, 6 times less mechanical properties than those of porous scaffold, the resultant 

cartilaginous tissues of silk hydrogel constructs showed higher mechanical properties and more 

matrix content on day 42 than those made of porous scaffold. This finding suggested that the 

initial mechanical properties of materials are not the only factor to direct cartilage tissue 

formation.  Chondrocytes prefer to reside in 3D hydrogel matrix rather than in porous structures. 

The hydrogel may provide immediate locations for newly synthesized matrix to deposit as 

compared to porous scaffold does.  

An intensive investigation of silk hydrogel concentration contributing to mechanical 

integrity revealed that the mechanical and mass transport properties of the 2% silk hydrogel did 

not match those of the 2% agarose hydrogel.  When concentration of silk hydrogel increased to 

4%, its equilibrium modulus was comparable to that of 2% agarose. Also, the diffusivity of 70 

kDa FITC-conjugated molecules, which are approximately the same size as growth 
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factors/cytokines, in the 4% silk hydrogel was similar to their diffusivity in the 2% agarose 

hydrogel. To this end, hydrogel mechanics and diffusivity of soluble molecules in the gel matrix 

are governed by the concentration of silk fibroin. There is a concern that an increase of the silk 

concentration that was meant to provide an increase of mechanical support may also cause the 

impedance of the transport of nutrients and waste products into and out of cells in constructs with 

high hydrogel concentration.  However, we demonstrated that the 4% silk hydrogel was found to 

support cell viability and ECM production.  

Mechanical function is desired of the engineered cartilage to prevent joint loading, as soft 

constructs may fail upon implantation.  Taking advantage of the versatility of silk fibroin, the 

composite substrate for cell encapsulation was systematically developed. Fiber-reinforced silk 

hydrogel is meant to create a functional cartilage constructs with immediate mechanical support 

at the shortest possible culture time. Silk fibers form a mesh-like structure and provide tensile 

stress as collagen fibers do in native tissue. Acellular constructs of fiber-reinforced hydrogels 

were tested for the optimal length of fibers, which give gel the highest mechanical properties, 

and this fiber-gel composite was used as a supporting material to assess tissue development. The 

4% silk hydrogel reinforced by 500 µm fibers showed the highest mechanical when fibers were 

added to the final concentration of 2 (%w/v).  Fiber-reinforced silk hydrogel constructs showed 

promising tissue development in term of higher GAG content, collagen type II elaboration and 

mechanical properties compared to unreinforced constructs. Surprisingly, fiber-reinforced 

agarose constructs showed inferior cartilage tissue properties compared to the agarose control.  

The discrepancy of biochemical and mechanical properties of fiber-reinforced agarose 

can be explained by discontinuity at the interphase boundary between fiber and agarose hydrogel. 

The reinforced agarose had low GAG staining where the silk fibers are located, whereas the 
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fibers embedded in silk hydrogel were surrounded by GAG (Figure 14E). Silk fibers and silk gel 

are the same protein-based materials, which were homogeneously mixed and the fiber-gel 

adhering was observed under scanning electron micrographs (Figure 10B). In contrast to 

reinforced-agarose, fibers and gel were clearly separated (figure 14F). Further studies will 

elucidate the underlying fiber-gel interaction that causes positive and negative effects on tissue 

formation, i.g., we may study the local stain around where fiber-gel is present.  

Agarose has been used as a “gold standard” for developing cell-based repair for cartilage 

injuries, because it yields mechanical and tissue properties approaching to those of native tissues. 

However, agarose is nondegradable and has minimal capability for customizing its structure and 

composition, which seriously limits systematic studies of chondrogenesis as a function of 

hydrogel properties. Silk is biodegradable and has been FDA approved as an implant material for 

soft tissue repair (62). This dissertation has demonstrated the feasibilities of silk fibroin for 

generation of engineered constructs that is compatible to agarose, and therefore silk fibroin could 

be an alternative material for cartilage tissue engineering. Versatility of material formats is 

needed for elucidating the mechanism that underlies the efficacy of hydrogel for cartilage tissue 

development. A comparative study of tissue formation in the same material but in different 

formats may lead to the understanding of required scaffold properties for a particular tissue and 

provide a systematic modification of biomaterials for every tissue engineering. 

 

6. Summary  

Silk fibroin could be fabricated into various formats (hydrogel and fibers) and was 

demonstrated to be a novel composite material for cartilage tissue engineering. The 4% silk 

hydrogel showed similar mechanical and diffusional properties to the 2% agarose hydrogel. 
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Texture and dynamic modulus of this silk hydrogel were modified by silk fibers, which might 

play a similar role to collagen in native tissues. The resulting fiber-reinforced silk hydrogel 

supports cell viability and yields constructs with promising mechanical properties. Together with 

biocompatibility and biodegradability, silk fibroin is an attractive biomaterial for cartilage tissue 

engineering. 
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CHAPTER 4  

Chondrogenic differentiation of human embryonic stem cells – 

recreating physiological conditions of articular joints: hypoxia and 

chondrocyte-secreted factors 

 

1. Background 

Cell-based cartilage tissue engineering offers therapeutic options for patients with 

cartilage injury and osteoarthritis (33). Tissue engineering involves combining cells with 

matrices in order to support cell growth and de novo extracellular matrix accumulation and 

growing cell/matrix constructs under optimal conditions, supplemented with chondrogenesis-

inducing factors. In this respect, the cells serve as basic building blocks, which respond to the 

chemical and physical stimuli applied in culture system and preserve characteristics of specific 

tissues. Chondrocytes isolated from articular cartilage and expanded in vitro have been widely 

used in cartilage tissue engineering. However, the complications associated with invasive 

procedures, donor site morbidity, chondrocyte de-differentiation during expansion and 

fibrocartilage formation at implanted sites are motivating the search for new cell sources for 

cartilage tissue engineering (6).  

Adult stem cells, e.g., from bone marrow (human mesenchymal stem cells, hMSCs) and 

fat (human adipose-derived stem cells, hASCs) have been studied over the last two decades and 

exhibit varying degrees of proliferation and chondrogenic differentiation potential (63, 64). The 
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low success of hMSCs and hASCs chondrogenic differentiation may be due to limited self-

renewal and differentiation with increasing donor or patient age, and/or impaired articular 

chondrogenic lineage commitment (65). Importantly, differentiation pathway of MSCs in vivo is 

very tightly regulated since the same pathway of endochondral ossification is responsible for 

both bone and cartilage development (66). In order to effectively recapitulate the chondrogenesis 

from MSCs, it is necessary to have a very stringent control of MSC differentiation to 

chondrocytes, to avoid premature hypertrophy, mineralization and ossification (67). However, 

most common in vitro protocols induce in MSCs an unnatural pathway of differentiation to 

chondrocyte-like cells that fails to produce permanent cartilage formation. Umbilical cord stem 

cells (USCs) are considered to be earlier stage than adult stem cells and to contain proliferative 

mesenchymal progenitor cells which can differentiate into osteoblasts, chondrocytes and 

adipocytes (68, 69). Despite the fact that USCs show promising differentiation potential, 

engineered chondrogenic tissues derived from USCs produced collagen type I which is 

abundantly found in fibrocartilage (70). Moreover, an umbilical cord contains mostly 

hematopoietic stem cells in much higher percentage than mesenchymal stem cells, thereby USCs 

are not the best source of cells for chondrognesis.  

Pluripotent human embryonic stem cells (hESCs) possess the capacity to differentiate 

into all germ layers and offer an opportunity to obtain an unlimited supply of cells for cartilage 

tissue engineering. hESCs line H9 were derived from inner cell mass of a blastocyst in 1998 (71) 

and have been continuously used in tissue engineering research (72, 73). Chondrogenic 

differentiation of H9 has been achieved in vitro by using different combinations of growth 

factors and supplements to induce the chondrogenic lineage from hESC colonies or embryoid 
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bodies (EBs), followed by progenitor cell expansion in monolayer culture, and cartilage-like 

tissue development in monolayer, pellets and hydrogels (74-76).  

In addition to soluble supplements in culture media and physical forces provided by the 

bioreactors, oxygen tension has been shown to regulate chondrogenic differentiation. Beneficial 

effects of hypoxia have been widely accepted for up-regulating the expression of Sox9, a key 

transcription factor of chondrocyte differentiation (26). However, the effects of low oxygen 

tension on early chondrogenic induction of hESCs have not been evaluated despite the fact that 

cartilage tissue formation in vivo occurs in hypoxic environment. 

In the first part of this study, bovine chondrocytes, the standard cell model in cartilage 

engineering with well described characteristics, were used for optimizing cell culture conditions 

under low oxygen tension. In the next step, the established hypoxic condition protocol in 

conjunction with soluble biochemical cues from bovine chondrocytes was applied to the novel 

cellular model comprised of cultured human EBs to induce chondrogenic differentiation. 

 

2. Specific aims  

Aim 1. To study the effects of hypoxia-normoxia regimes on cartilage 

tissue properties in a robust cellular model  

The regulation of cartilage ECM production under low oxygen tensions is studied to 

determine if hypoxia is a favorable condition for maintaining cartilage structure and function. 

The investigation is carried out using bovine chondrocyte-laden agarose hydrogel. Engineered 

cartilage constructs are cultured in hypoxic condition (5% O2) with various exposure times and 

tested for tissue properties compared to those cultured under normal oxygen levels (21% O2).  
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Aim 2. To establish protocol for chondrogenic differentiation of hESCs 

through combined controlled oxygen tension and molecular 

conditioning  

The limited self-renewal and differentiation of human mesenchymal stem cells (hMSCs) 

with increasing patient age have motivated utilization of human embryonic stem cells (hESCs) 

for chondrogenic differentiation. Soluble morphogenetic factors secreted from bovine 

chondrocytes in conjunction with hypoxia are used to induce embryoid bodies (EBs) for 3 

weeks. The resulting induced cells were evaluated for chondrogenic differentiation potentials in 

pellet culture for 6 weeks.  

 

3. Methodology 

3.1 Aim 1 materials and methods  

3.1A Preparation of cell-agarose constructs 

Bovine chondrocytes were encapsulated in agarose hydrogel at a final concentration of 20 

x 106 chondrocytes/ml in 2% agarose. The cell-agarose mixture was cast between two sterile 

glass plates separated by a 1 mm spacer to form a rectangular slab (70 mm x 80 mm x 1 mm). 

Cylindrical discs were cored out using biopsy punch and then transferred into 24 well plates 

integrated with an oxygen sensor platform (PreSens, Germany). Each construct was cultured in a 

separate well in 1 ml of chondrogenic medium with medium changed twice a week. For the first 

14 days, chondrogenic medium was additionally supplemented with 10 ng/ml TGF-β3 

(Invitrogen, Carlsbad, CA).  
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3.1B Experimental design  

All experiments were performed in triplicate, using 4 joints in each of the three individual 

studies (n = 12 joints total). Data are represented as mean ± SD for n=5 constructs engineered 

using cells from one animal, to minimize batch-to-batch variability, as reported in several 

previous studies (77, 78). Cartilage constructs were cultured in static culture under three different 

oxygen supply regimes as shown in Figure 16. Normoxic group (21% oxygen for 28 days) was 

cultured in a chamber (Billups-Rothenberg, Inc., Del Mar, CA) that was maintained in 

humidified air containing 21% O2, 5% CO2 (normal incubator conditions). Hypoxic group (5% 

oxygen for 28 days) was cultured in an airtight chamber flushed daily with a humidified gas 

mixture (5%O2, 5%CO2 and 90%N2) to equilibrate culture medium at 5% oxygen. Reoxygenated 

group was maintained at 5% O2, 5% CO2, and 90% N2 for 7 days and then transferred to 21% 

O2, 5% CO2 and 90% N2 for additional 21 days. Humidity was maintained by adding 20 ml water 

into a Petri dish placed in the chamber. To validate the consistency of oxygen levels during 

cultivation, oxygen levels in culture medium were monitored continuously by oxygen Sensor 

Dish Reader (PreSens, Germany) for 20 hours after each medium change (Figure 16).  
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Figure 16. Experimental design of transient hypoxia on cartilage tissue formation 

Tissue constructs were cultured in 24 well plates. Each well contained one tissue construct and 

was fitted with an oxygen sensor that measured oxygen concentration in real time by using a 

SDR SensorDish® Reader. Normoxic and hypoxic groups were maintained at 21% O2 and 5% 

O2, respectively, for 28 days. Reoxygenation group was maintained at 5% O2 for 7 days followed 

by 21% O2 for 21 days. Medium was changed twice a week (red arrows). Oxygen levels were 

measured and recorded for 20 hours after media replacement (blue arrows). 
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3.1C Measurement of cartilage tissue properties  

Constructs (n = 5 per group and time point) were harvested on days 0, 7, 14, 21 and 28 

and analyzed for DNA content, GAG content, and cartilaginous gene expression. Equilibrium 

modulus  (EY) of constructs was accessed every 2 weeks. At the end of culture period (day 28), 

constructs were harvested and specifically detected for collagen type II using ELISA. Histology 

analysis was performed to visualize extracellular matrix distribution. All methods were described 

in Appendix A. 

 

3.2 Aim 2 materials and methods  

3.2A Cell culture 

hESCs (H9) were maintained in 6-well plates on mouse embryonic fibroblast (MEF) 

feeders (Globalstem) in hESC medium composed of DMEM-F12, 10% Knockout Serum 

Replacer, 1 mM L-Glutamine, 0.1 mM MEM Non-essential Amino Acids, 0.1 mM 2-

Mercaptoethanol and 4 ng/ml bFGF.  hESCs were passaged every 3-4 days with daily medium 

changes. Human mesenchymal stem cells (hMSCs) were obtained from Lonza, seeded at a 

density of 5 x 103 cells/cm2 and cultured in expansion medium (highGlucose DMEM 10%, FBS, 

100 U/ml penicillin, 100 µg/ml streptomycin and supplement with 0.1 ng/ml bFGF) with 

medium changes twice a week.  

 

3.2B Embryoid body (EB) formation and induction  

hESCs cultures were incubated in 1 mg/ml collagenase IV (Life Technologies) in 

Knockout DMEM at 37 °C for 5 min. Collagenase IV solution was aspirated and replaced with 2 
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ml of hESC medium (KnockOut™ DMEM, 25% KnockOut™ Serum Replacement, 1 mM L-

Glutamine, 100 nM 2-Mercaptoethanol, 1x non-essential amino acid, 4 ng/ml b-FGF). Peeled 

hESC colonies were removed from wells by cell scrapers, transferred into 50 ml conical tube and 

centrifuged at 200 x g for 5 minutes. Supernatant was discarded and replaced with chondrocyte-

conditioned medium (CCM). Cell suspension was mixed, distributed into Ultra-Low Attachment 

6 well plates (Corning, Tewksbury, MA) and cultured as noted in specific studies, with medium 

changes twice a week. 

 

3.2C Chondrocyte-conditioned medium (CCM)  

Bovine chondrocytes were isolated from carpometacarpal joints of 4 to 6 month-old 

bovine calves as described previously (4). Chondrocytes were seeded at a high density of 2.5 x 

105 cells/ cm2 and cultured in growth medium (highGlucose DMEM 10%, FBS, 100 U/ml 

penicillin, and 100 µg/ml streptomycin) for 24 hours. Attached cells were rinsed twice with PBS. 

Conditioned medium was obtained by incubating the chondrocyte cultures in growth medium 

without FBS for 48 hours. The medium was collected, passed through 0.2 µm filtered, and kept 

in 20 ml aliquots at -80 ºC until use. Chondrocyte conditioned medium (CCM) was prepared by 

diluting the filtered medium (1:1) with fresh growth medium to get a final concentration of 5% 

FBS for EB induction.  

 

3.2D Experimental designs of EB induction and chondrogenic differentiation 

Study 1. Effects of conditioned medium and hypoxia on EBs gene expression 

EBs were prepared and cultured in CCM or growth medium with 5% FBS. Three groups were 

compared (Figure 17): EBs in CCM cultured at 5% O2, EBs in CCM cultured at 21% O2, and 
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EBs in growth medium cultured at 21% O2 (control group). EBs were cultured for 3 weeks, and 

collected weekly to assay gene expression. 

 

 

 

 

 

 

 

Figure 15. Study 1 experimental setup: effects of conditioned media and hypoxia on EBs 

induction 

EBs were prepared from hESCs and cultured in CCM or growth medium for three weeks under 

5% O2 or 21% O2 to determine the effects of media and oxygen levels on gene expression. 

 

Study 2. Effects of hypoxic culture duration on EBs induction  

EBs were prepared and cultured in CCM for total of 3 weeks. Four groups were compared: 3 

weeks of 5% O2 (hypoxia group), 2 weeks of 5% O2 followed by 1 week of 21% O2 (transient 2 

hypoxia group), 1 week of 5% O2 followed by 2 weeks of 21% O2 (transient 1 hypoxia group) 

and 3 weeks of 21% O2 with no hypoxic exposure (normoxia group). At the end of experiment, 

EBs were collected to assay gene expression (Figure 18). 
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Figure 16. Study 2 experimental setup: effects of hypoxic culture period on EBs induction 

EBs were induced in CCM with different hypoxic (5% O2) exposure periods: 3 weeks (hypoxia 

group), 2 weeks (transient 2 hypoxia), 1 week (transient 1 hypoxia) and no exposure (normoxia). 

 

Study 3. Chondrogenic differentiation of cells induced in EBs  

Chondrogenic differentiation potential of EBs derived from i) transient 2 hypoxia group, the 

best induction condition from Study 2, and ii) normoxia group were compared. After 3 weeks of 

induction, the EBs were dissociated into single cells (79), counted and 2 x 105 cells were used to 

prepare chondrogenic pellets. The pellets were cultured for 6 weeks under 21% O2 in 

chondrogenic medium (ChondM), composed of high glucose DMEM supplemented with 10 

ng/ml TGF-β3 (Peprotech, NJ), 5 mg/ml proline, 1% ITS+ (BD Biosciences), 100 nM 

dexamethasone (Sigma), 50 µg/ml ascorbate-2-phosphate (Sigma), 10 mM HEPES, 100 U/ml 

penicillin, and 100 µg/ml streptomycin, with medium changes twice a week. Chodrogenic 

differentiation control pellets were prepared from 2 x 105cells hMSCs and cultured in parallel 
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(Figure 19). Pellets were collected weekly to assay gene expression, and at the end of 

experiment for biochemical analyses and histology. 

 

 

 

 

 

 

 

 

 

 

Figure 19. Study 3 experimental setup: chondrogenic differentiation of EB-induced cells 

Pellet culture was used to assess the potential for cartilage tissue formation. Transient 2 hypoxia 

EBs and normoxia EBs were dissociated into single cells, pelleted and cultured in ChondM for 6 

weeks. hMSC pellets were used as chondrogenic differentiation control. 

 

3.2E Embryoid body and pellet dissociation 

The EBs and chondrogenic pellets (1 week) were dissociated into single cells as 

previously described (79). Briefly, EBs or pellets were collected, washed in PBS and incubated 

in 0.2% collagenase type II (Gibco) for 1 hour at 37 ºC. The cell suspension was centrifuged at 

200 x g for 5 minutes, discarded supernatant, and incubated in 0.25% trypsin for 5 minutes at 37 

ºC. Then, an equal volume of DMEM containing 10% FBS was added to quench the enzymatic 
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digestion. Clumped cells were dissociated by drawing the cell suspension through a 20G needle 

for 6 -10 times. Dissociated EBs were washed with DMEM and resuspended in ChonM for 

chondrogenic differentiation in Study 3. An aliquot of dissociated pellets was washed with PBS 

and subjected to stain with antibodies for flow cytometric analysis.  

 

3.2F Flow cytometry   

Dissociated pellets (1 week) and washed out cells from those pellets were rinsed with 

PBS, counted and 2 x 105 cells were resuspended in staining buffer (1% BSA in PBS). Cells were 

stained with N-cadherin monoclonal antibody conjugated with DyLight®488 (clone EPR1792Y, 

Abcam) at 4 ºC for 30 minutes and fixed in 4% paraformaldehyde and incubated at 4 ºC for 15 

minutes. Analysis was performed on the BD FACSCalibur™ (BD). For control, cells were 

stained with rabbit IgG isotype antibody (clone ab153686, Abcam). 

 

3.2G Soluble receptors array of embryoid bodies  

  To determine differential expression of soluble receptors of EBs which were 

induced in transient 2 hypoxia condition, total protein from transient 2 hypoxia EBs was 

extracted and prepared using Proteome Profiler™ Array according to the manufacturer’s 

instructions (R&D Systems). The array contains 119 antibodies specific for soluble receptors 

printed duplicate on membrane. Chemiluminescent signals generated from Streptavidin-HRP 

were detected by Image Station 4000MM Pro (KODAK) and analyzed using ImageJ software 

(National Institutes of Health). The intensity signals of induced EBs were normalized with those 

of non-induced EBs which were cultured in DMEM containing 5% FBS under 21% O2 for 3 

weeks. Predicted protein functional interaction was generated from Search Tool for the Retrieval 
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of Interacting Genes/Proteins (STRING 9.0) based on occurrence, co-expression, experiments 

and text mining database (80). 

 

3.2H Real-time PCR  

Total RNA was extracted from embryoid bodies and chondrogenic pellets using RNeasy® 

Mini Kit, and the DNA was removed by RNase-Free DNase Set according to the manufacturer’s 

instructions (QIAGEN). Total RNA was quantified using NanoDrop™ Spectrophotometer 

(Thermo Scientific, Wilmington, DE), and 10 ng was used for reverse transcription with High 

Capacity cDNA Reverse Transcription Kit (Applied Biosystems®). Gene expression was 

evaluated using the StepOnePlus™ Real-Time PCR system (Applied Biosystems®). The 

following TaqMan® Gene Expression Assays were used for detection of transcription factors: 

SOX9 (Hs01001343_g1), RUNX2 (Hs00231692_m1), FOXA2 (Hs00232764_m1), PAX6 

(Hs00240871_m1), OCT4 or POU5F1 (Hs01654807_s1) and NANOG (Hs02387400_g1), 

extracellular matrix components: COL1A1 (Hs01076780_g1), COL2A1 (Hs00264051_m1), 

COL10A1 (Hs00166657_m1) and ACAN (Hs00153936_m1), and cell adhesion molecule: CDH2 

encoding N-cadherin  (Hs00983056_m1). Gene expression values were normalized to GAPDH 

(Hs02758991_g1) by the 2-ΔCt method (81). All reactions were performed in triplicates. 

Representative graphs are shown with error bars indicating standard deviation of 4 samples for 

each time point. 
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3.2I Mesenchymal stem cell PCR array  

 RNA samples of hESCs-derived pellets from transient 2 hypoxia EBs at week 4 and 

hMSCs (reference cells) were isolated, treated to remove genomic DNA and used for cDNA 

synthesis by using RT2 First Strand Kit (QIAGEN). Microarray was performed in 96 well format 

of RT2 Profiler PCR Array of Human Mesenchymal Stem Cells (QIAGEN) using RT2 SYBR 

Green Fluor qPCR Mastermix (QIAGEN). The array has collection of genes involved in hMSC-

specific markers, hMSC differentiation markers (chondrogenesis, ostogenesis, adipogenesis), 

stem cell markers and other genes associated with hMSCs. House keeping genes, validation of 

genomic DNA contamination, reverse transcription and PCR transcription control were included 

in the array. The CT values were analyzed using web-based data analysis software (QIAGEN) to 

determine fold changes at p-value < 0.05. 

 

3.2J Histology, immunohistochemistry and immune fluorescence 

Chondrogenic pellets were fixed in 4% paraformaldehyde overnight at 4 ºC, transferred 

to 70% ethanol, encapsulated in HistoGel™ (Thermo Scientific), embedded in paraffin and 

sectioned at 5 µm. The sections were stained with Alcian Blue to detect glycosaminoglycanes 

(GAG) using standard procedures. Collagen type I and type II were evaluated by 

immunohistochemistry. Pellet sections were rehydrated, and antigen retrieval was performed 

using heated 0.01 M citrate buffer (pH 6.0) for 15 minutes. Blocking endogenous peroxidase 

activity was performed by immerging the sections in 0.3% H2O2/methanol for 30 minutes at 

room temperature. The sections were incubated with blocking serum (Vectastain ABC, 

Burlingame, CA) for 30 minutes at room temperature, rinsed 3 times in PBS for 5 minutes each, 

incubated overnight at 4 ºC with 1:100 mouse anti-human IgG collagen type I or type II 
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monoclonal antibodies (Millipore, Temecula, CA), washed and incubated for 30 minutes with 

biotinylated secondary antibody. For signal detection, Vectastain ABC Kit with peroxidase and 

DAB Peroxidase Substrate Kit were added as described in the manufacturer’s protocol 

(Vectastain ABC, Burlingame, CA). For human nuclei immunofluorescence staining, the 

sections were permeabilized with 0.2% Triton X-100 in PBS for 45 minutes, blocked with 

normal goat serum for 1 hour at room temperature, incubated overnight at 4 ºC with 1:100 anti-

human nuclei antibody (clone 235-1, Millipore, Temecula, CA). The sections were incubated 

with goat anti-mouse IgG secondary antibodies conjugated with FITC and counterstained with 

DAPI. 

 

3.2K Biochemical analysis  

Chondrogenic pellets (n = 4) were harvested every week and digested for 16 hours at 56 

ºC with 20 µl/ml papain in 0.5 mg/ml of proteinase K (Fisher Scientific, Pittsburgh, PA) 

containing 1 mM iodoacetamide and 10 mg/ml pepstatin-A (Sigma Aldrich, St. Louis, MO). 

Aliquots of digested pellets were analyzed for the glycosaminoglycan (GAG) content using the 

1,9-dimethylmethylene blue dye binding (DMMB) assay (60). GAG content was normalized to 

DNA content which was quantified using PicoGreen assay (Invitrogen, Carlsbad, CA) following 

the manufacturer’s protocol.  

 

3.2L Western blot analysis  

Chondrogenic pellets were washed in PBS and homogenized in buffer containing 50 mM 

Tris-HCl, pH 7.4, 150 mM NaCl, 1% Triton X-100, 0.1% SDS and protease inhibitor cocktail 

(Sigma). Tissue lysate was centrifuged at 4 ºC for 10 minutes at 12,000 x g. The supernatant was 
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transferred to a new tube and the total protein concentration was quantified. Equal amount of 

protein of 15 µg was fractionated for all groups by 10% SDS-PAGE and transferred to PVDF 

membrane using standard protocol. Purified human collagen type II (Millipore) was loaded into 

the gel as positive control. The membrane was blocked overnight with 5% skim milk in TBST (2 

mM Tris, 50 mM NaCl and 0.1% Tween 20), incubated overnight at 4 ºC with 1 µg mouse anti-

human IgG collagen type II or 1:500 mouse anti-human IgG actin monoclonal antibody 

(Millipore). The membrane was incubated with 1:1000 of goat anti-mouse IgG conjugated with 

alkaline phosphatase antibody for 1 hour and washed with TBST for 5 minutes 3 times. For 

signal detection, 1-Step™ NBT/BCIP solution was added to the membrane and incubated for 5-

15 minutes until desired color developed. Collagen type II and actin protein band intensities were 

quantified using ImageJ software (National Institutes of Health). 

 

3.2M In vivo Studies  

Chondrogenic pellets were subcutaneous transplanted into immunocompromised (SCID-

Beige) mice. Animal protocols were approved by the Institutional Animal Care And Use 

Committee (IACUC). Mice were obtained at 6 weeks of age and anesthetized using an 

intraperitoneal injection of ketamine (80 mg/kg) and xylazine (5 mg/kg). hESCs- and hMSCs-

derived chondrogenic pellets were implanted into separate sides of the dorsal region of the same 

animal. The pellets (n = 3) were harvested 4 weeks after implantation, fixed in 4% 

paraformaldehyde for 24 hours at 4 ºC and further processed for histology. 
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3.2N Statistical Analysis  

Statistical analysis was performed with STATISTICA software (Statsoft, Tulsa, OK). 

Data were expressed as the average ± SD of n = 4 samples per group at each time point. The 

differences in gene expression and GAG content between the groups were evaluated using two-

way ANOVA, followed by Tukey’s Honest Significant Difference Test. p < 0.05 were 

considered statistically significant.  

 

4. Results 

4.1 Results of specific aim 1 

4.1A Oxygen levels in culture medium  

The level of O2 in culture medium was measured to validate each of the oxygen regimes 

(normoxia, hypoxia, reoxygenation). Partial pressures of O2 were measured in wells containing 

constructs and reference wells without constructs (Appendix B, Supplemental figure 1). 

Oxygen uptake rate (OUR) was estimated from a steady-state balance of O2 in medium (82): 

𝑑 𝑂!
𝑑𝑡 = 𝑘!𝑎  𝑂! !"#"!"$%" − 𝑂! !"#$%&'!% − 𝑂𝑈𝑅

 

where 𝑂! !"#"!"$%" and 𝑂! !"#$%&'!% are dissolved O2 concentration in wells without constructs 

and wells containing a cartilage construct, respectively, and kLa = 0.9 h-1 is the volumetric liquid 

phase mass transfer coefficient (83). Assuming steady state without change in total O2 level over 

a period of 20 hours, OUR could be calculated as follows: 

𝑘!𝑎  𝑂! !"#"!"$%" − 𝑂! !"#$%&'!% = 𝑂𝑈𝑅
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The cells consumed less oxygen in hypoxic conditions than in normoxic and reoxygenated 

conditions as indicated by measured values of the oxygen uptake rate (OUR) (Appendix B, 

Supplemental figure 2). The calculated values of OUR were in the range of those previously 

reported (Appendix B, Supplemental table 1).  

 

4.1B Effects of hypoxia on cell proliferation, proteoglycan synthesis and mechanical 

properties of engineered cartilage 

Chondrocytes encapsulated in agarose hydrogel survived at all oxygen levels, from 21% 

O2 (normoxia) to 5% O2 (hypoxia) either continuously or followed by reoxygenation. Live cells 

were observed in constructs cultured at all oxygen tensions. Cell proliferation under hypoxic 

conditions was similar to normoxic conditions by day 7 (Figure 20). Effects of hypoxia on cell 

proliferation were seen by day 14 (9 ± 0.3 µg DNA in hypoxia v.s. 8 ± 0.5 µg in normoxia, p = 

0.016) and day 21 (12 ± 0.3 µg at hypoxia v.s. 10 ± 0.7 µg at normoxia, p = 0.00017). 

Reoxygenated cultures showed similar cell proliferation patterns to hypoxic cultures up to day 

21. The hypoxia and hypoxia-reoxygenation groups initially demonstrated significant growth in 

comparison with the normoxia group. However, a decrease in DNA content in the hypoxic group 

(9 ± 1.6 µg) was observed by day 28 while normoxic (11 ± 1.4 µg) and reoxygenated groups (12 

± 1.5 µg) maintained cell proliferation throughout the duration of study.  

Proteoglycan production was initially comparable in normoxic and reoxygenated 

cultures. However, the GAG content of normoxic group reached a plateau at day 21 (501 ± 15 µg 

on day 21 and 481 ± 17 µg on day 28), whereas that of the reoxygenated group continued to 

increase (486 ± 6 µg on day 21 and 598 ± 10 µg on day 28). The GAG content of the 
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reoxygenated group was significantly higher than that in either normoxic or hypoxic groups at 

day 28 (Figure 20). 

 

 

 

 

 

 

 

 

 
Figure 20. Effect of oxygen exposure on cartilage tissue development 

Constructs from the three experimental groups described in Figure 16 were analyzed for DNA 

content (A), GAG production (B), GAG/DNA (C), equilibrium modulus, EY (D) and type II 

collagen content (E). Hypoxia-reoxygenation culture best maintained DNA content and 

promoted GAG synthesis. Constructs cultured for 28 days at different oxygen levels were 

specifically quantified for type II collagen content. There were no differences in type II collagen 

production between constructs cultured at 21% O2 and 5% O2, whereas hypoxia-reoxygenation 

significantly promoted type II collagen synthesis. Error bars denote standard deviation, * P<0.05 

compared to 21% O2, Ψ P<0.05 versus reoxy, ξ P<0.05 versus previous time point within the 

same group, n = 5 
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GAG accumulation in the hypoxic group on day 28 was significantly lower in 

comparison to both the normoxic and reoxygenated groups, consistent with the low cell 

proliferation. Hypoxic group had low values of GAG/DNA on day 14, corresponding to the time-

point when DNA content was higher and GAG content lower than in the other groups (Figure 

20A and B). Continuous normoxia maintained the DNA and GAG production over time in 

culture as indicated by the constant GAG/DNA values in this group. The reoxygenated group 

gradually increased GAG/DNA production as the tissue constructs were maturing (Figure 20C), 

in accordance with the increase in mechanical properties (Figure 20D). At the end of the culture 

period, reoxygenated constructs yielded the highest equilibrium modulus (EY) of 510 ± 28 kPa as 

compared to constructs cultured in normoxic (418 ± 68 kPa) and hypoxic (280 ± 21 kPa) 

conditions.  

 

4.1C Reoxygenation promotes cartilaginous gene expression  

Real-time PCR was performed to evaluate cartilage tissue development at the 

transcriptional level. Total RNA of constructs was used to detect the expression of cartilaginous 

markers (COL2A1 and ACAN), a key transcription factor of chondrocytes (SOX9), and a key 

dedifferentiation marker (COL1A1) (Figure 21). During early phases of culture, chondrocytes in 

all groups showed low expression of COL2A1, the gene encoding for type II collagen. By day 

21, normoxic cultures gradually increased the COL2A1 gene expression and suppressed 

expression of COL1A1, the gene encoding for type I collagen. The COL2A1 gene expression in 

the reoxygenated group was upregulated to an even higher degree than in normoxic group, 

whereas hypoxia downregulated COL2A1 gene expression by half. Reoxygenation temporarily 
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promoted COL1A1 gene expression (on day 14), followed by suppression of this de-

differentation marker in mature constructs (day 21 and 28). 

 

 

 

 

 

 

 

 

 

Figure 17. Gene expression of cartilaginous markers in normoxic, hypoxic and 

reoxygenated cultures 

Cartilaginous gene expression in constructs grown in normoxic, hypoxic or hypoxia-

reoxygenation conditions were determined by real-time PCR and normalized to GAPDH levels. 

The chondrogenic dedifferentiation marker, COL1A1, decreased with time in all groups. The 

expression levels of COL2A1, ACAN and SOX9 genes significantly increased in the hypoxia-

reoxygenation group as compared to either normoxic or hypoxic groups. Data are shown as 

average ± SD (n = 5). * P<0.05 versus 21% O2,Ψ P<0.05 versus reoxygenated group, ξ P<0.05 

versus the previous time point within the same group.  
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The expression of ACAN, the gene encoding for core protein aggrecan, increased over 

time in all groups and the expression profiles were consistent with type II collagen expression. 

SOX9 was upregulated in the reoxygenated group by day 21, and increased further by day 28. 

Enhanced expression of SOX9 paralleled with enhanced expressions of COL2A1 and ACAN.  

 

4.1D Type II collagen synthesis in engineered cartilage  

The ability to synthesize type II collagen, a trimeric fibrous protein abundant in articular 

cartilage, is a specific marker of cartilage tissue development. Constructs were collected on day 

28 and enzymatically digested to obtain monomeric collagen before performing ELISA. 

Reoxygenated culture resulted in significantly more type II collagen (15 ± 1 µg/ml) than either 

normoxic (10 ± 2 µg/ml) or hypoxic (9 ± 2 µg/ml) conditions (Figure 20E). 

 

4.1E Histology of engineered cartilage  

Constructs cultured at normoxic, hypoxic and transiently hypoxic conditions exhibited 

similar gross histomorphology. Chondrocyte-seeded hydrogels progressively transformed to stiff 

and opaque constructs over 28 days of culture. Chondrocytes at the construct centers were 

uniformly distributed in small cell clusters, while chondrocytes at the periphery formed larger 

clusters (Figure 22A). Safranin O staining showed homogeneous distribution of GAG in the 

constructs (Figure 22B). Partial GAG loss was observed by faint GAG staining on the edges, 

especially in hypoxic conditions. Type II collagen was located at intercellular spaces and was 

more abundant around cells, as shown by immunohistochemistry (Figure 22C). Notably, 

reoxygenated constructs showed stronger type II collagen staining than the other two groups.  
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Figure 22. Histology and immunohistochemistry of 28-day constructs from the normoxic, 

hypoxic and hypoxia-reoxygenation groups 

A: H&E staining showed that chondrocytes are distributed throughout constructs, with larger cell 

clusters located on the periphery. B: Safranin O stain for glycosaminoglycan (GAG).                

C: Immunostaining for type II collagen. Arrows indicate strong type II collagen staining areas in 

the reoxygenated group.  
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4.2 Results of specific aim 2 

4.2A Synergistic effects of CCM morphogenetic factors and hypoxic culture on EB 

gene expression 

We performed chondrogenic lineage induction by culturing EBs in CCM for 3 weeks 

(Figure 17). Real-time PCR revealed that EB formation in CCM under 21% O2 up-regulated 

SOX9 expression on week 2 compared to EBs cultured in growth medium under 21% O2. To 

investigate effects of hypoxia on chondrogenic linage induction, EB culture was conducted in 

5% O2. We found that CCM medium and hypoxia were able to up-regulate SOX9 compared to 

CCM with 21% O2 (Figure 23A). The kinetics of SOX9 expression in CCM EBs under hypoxia 

and normoxia was similar, with temporary up-regulation of SOX9 at 2 weeks, followed by a 

decrease at 3 weeks (Figure 23A). On week 2, EBs in hypoxia increased SOX9 by 3 fold (p < 

0.05) over EBs in normoxia.  

We found that CCM also significantly induced osteogenic transcription factor RUNX2 

(Figure 23B). Unlike SOX9 expression, RUNX2 was higher under 21% O2 than 5% O2 tension, 

and peaked at week 3 of culture. A significant decrease of pluripotent transcription factor gene 

expression, OCT4, was detected over time in all groups (Figure 23C).  
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Figure 18. Transcription factor gene expression of EBs cultured in conditioned media 

under hypoxic condition 

Real-time PCR showed expression profiles of SOX9 (A), RUNX2 (B) and OCT4 (C) over the 

time course of EB induction. *  p < 0.05 compared within the same medium group, α p < 0.05 

compared with growth medium group at the same time point, and β  p < 0.05 compared with 

21% O2 conditioned medium (CCM) at the same time point  

 

4.2B The effects of hypoxic culture period on EB gene expression  

The results of Study 1 suggested that both CCM and hypoxia influenced SOX9 

expression, and that SOX9 peaked at 2 weeks of hypoxic induction in CCM. Therefore, we 

conducted Study 2 to determine the optimal periods of low oxygen tension for chondrogenic EB 

induction (Figure 18). Figure 24A shows that 2 weeks of culture under 5% O2 followed by 1 

week of culture under 21% O2 (transient 2 hypoxia) significantly up-regulated SOX9 (p < 0.05) 

compared to all other conditions. SOX9 exhibited the lowest expression in 3 weeks under 21% 

O2 (normoxia). Interestingly, varying the hypoxic exposure period affects RUNX2 expression to 

a lesser extent, as indicated in (Figure 24B). However, we observed significantly lower RUNX2 

expression in EBs cultured under 5% O2 for 3 weeks without reoxygenation.  
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At 3 weeks of EBs induction, OCT4 expression was low in every chondrogenic induction 

condition (Figure 24C); especially both transient hypoxic groups showed significant decreases 

of OCT4 compared to 3 weeks of 5% O2 group (hypoxia). 

 

 

 

 

 

Figure 24.  Transient hypoxia promoted SOX9 expression 

EBs were cultured in conditioned media (CCM) with different exposure periods of 5% O2 for 3 

weeks and determined expression of SOX9 (A), RUNX2 (B) and OCT4 (C). *  p < 0.05 

significantly different compared to other groups 

 

4.2C Differential soluble receptors of induced EBs  

In order to understand the response of cells to the induction regime, 119 receptors of 

transient 2 hypoxia EBs (induced EBs) were compared to those of EBs cultured in 5% FBS in 

growth medium under 21% O2 (non-induced EBs) (Figure 25A). Forty two receptors with the 

expression ratio of induced EBs : non-induced EBs more than 1.5 were showed in (Figure 25B). 

Based on biological relevance using STRING database, the up-regulated proteins were 

categorized into 3 groups: involved in cell migration and motility (p = 0.0073), cell adhesion (p 

= 0.0067), and cellular component morphogenesis (p = 0.042) (Figure 25B). The receptors that 

were up-regulated were TIMP-1, LGALS3, LGALS3BP, EpCAM and ITGB1. 

 



   
 

 

76 

 

 

 

 

 

 

 

 

 

 

 

Figure 19. Differential expression of receptors of induced EBs 

A: The 119 receptor arrays were printed in duplicate. Transient 2 hypoxia induction (left) and 

non-induction (right). B: Up-regulated receptors with the ratio of induced : non-induced more 

than 1.5 were categorized into 4 sub-groups, cell migration and motility, cell adhesion and 

cellular component morphogenesis 
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4.2D Gene expression of lineage markers during chondrogenic differentiation in 

pellet cultures 

  Pellet culture was used to evaluate the potential for cartilage tissue formation in vitro, by 

allowing single cells to initiate the first step of chondrogenic differentiation, the cell 

condensation. EBs induced by transient 2 hypoxia and normoxia conditions were dissociated into 

single cells and cultured in ChondM for 6 weeks under 21% O2. We found that SOX9 expression 

in pellets made from transient 2 hypoxia EBs increased over time until week 4, followed by a 

gradual decrease (Figure 26A). The SOX9 expression of the pellets made from normoxia EBs 

gradually increased at a slower rate and reached a comparable level at 6 weeks as the transient 2 

hypoxia EBs at 4 weeks. In comparison, hMSC pellets remarkably expressed high SOX9 level 

after one week and the peak of expression between 2 and 3 weeks, followed by a significant 

down-regulation at weeks 4 and 5 (Figure 26A).  

RUNX2 expression profiles were similar for pellets derived from transient 2 hypoxia EBs 

and normoxia EBs, showing a slow increase over 6 weeks of culture. However, the expression 

levels during the first 3 weeks were relatively low compared to the pellets derived from hMSCs, 

which constantly expressed RUNX2 levels (Figure 26B).  

Expression of transcription factors involved in endodermal (FOXA2) and ectodermal 

(PAX6) lineage differentiation was monitored to determine the nonspecific lineage induction. 

FOXA2 expression in pellets prepared from EBs was detected only at the initiation of cultures 

(week 0), and was not detected in the following weeks (Figure 26C). The expression of FOXA2 

in hMSCs pellets was not detected before 2 weeks, was slowly up-regulated until week 5, and 

was not detected on week 6. Pellets derived from transient 2 hypoxia EBs exhibited increasing 

levels of PAX6 expression until week 4, while pellets derived from normoxia EBs showed low 
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PAX6 expression levels (Figure 26D). We could not detect PAX6 in hMSCs pellets (Figure. 

26D).  

To test for loss of pluripotency, OCT4 and NANOG were also monitored over the time 

course of chondrogenic pellet differentiation. After week 1, we did not detect OCT4 in 

chondrogenic pellets derived from transient 2 hypoxia and normoxia EBs, and in hMSC pellets 

(Figure 26E). NANOG expression was detected transiently on weeks 3 and 4 of pellet culture, 

with higher expression levels in pellets derived from normoxia EBs compared to transient 2 

hypoxia EB (Figure 26F). We could not detect NANOG expression in hMSC pellets (Figure 

26F).  
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Figure 26. Transcription factor expression of chondrogenic pellets 

hESCs-derived chondrogenic pellets in transient 2 hypoxia and normoxia groups were collected 

weekly and analyzed the expression of chondrogenic; SOX9 (A), osteogenic; RUNX2 (B), 

endodermal lineage; FOX2 (C), ectodermal lineage; PAX6 (D), and pluripotent transcription 

factors; OCT4 (E) and NANOG (F). * p < 0.05 compared within the same group, α  p < 0.05 

compared to hMSCs, β p < 0.05 compared to normoxia, ND = not detectable  
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4.2E Chondrogenic pellets at week 4 showed distinct gene expression profiles 

compared to mesenchymal stem cells  

We determined chondrogenic differentiation of the week 4 hESC-chodrogenic pellets (the 

highest SOX9 expression) derived from transient 2 hypoxia EBs using the PCR array containing 

the collection of mesenchymal lineage genes. In this analysis we used hMSCs as reference cells. 

The differentially expressed genes considering p-value cutoff = 0.05 between the hESC-

condrogenic pellets and hMSCs are presented in Supplemental table 1 of Appendix C. Among 

90 genes in PCR array, 39 genes were significantly altered with fold change larger than 2 (14 up-

regulated genes and 25 down-regulated genes) as shown in scatter plot Figure 27. The genes that 

were up-regulated were BMP6, BMP4, ABCB1, ERBB2 and SOX9. Whereas the most down-

regulated genes were MCAM, EGF, NOTCH1, KITLG and RHOA. The hESC-chondrogenic 

pellets showed 29 additional genes with ±2 fold change (p < 0.05) compared to hMSCs as 

summarized in Supplemental table 1 of Appendix C. The clustering plot demonstrated two 

main clusters, the reference hMSCs and the week 4 hESCs-derived chondrogneic pellets. 

Moderate levels of stem cell markers were expressed in the hESCs-derived chondrogenic pellets 

expressed stem cells marker (Figure 28, region 1) whereas the expression of mesenchymal 

markers was suppressed (Figure 28, region 2). The up-regulation of chondrogenic genes was 

highly expressed in the hESCs-derived chondrogenic pellets (Figure 28, region 3).  
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Figure 20. Scatter plot of 90 genes of Human Mesenchymal Stem Cell PCR array 

Relative gene expression (2-∆CT) of week 4 hESCs-derived chondrogenic pellets was plotted 

against that of hMSCs. Genes with significant fold change (±2 fold with p < 0.05) were showed 

in the scatter plot. 
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4.2F Cartilaginous matrix production is increased in chondrogenic pellets derived 

from transient 2 hypoxia EBs  

We analyzed gene expression of collagen type I and type II to evaluate the progression of 

chondrogenic differentiation. Chondrogenic pellets derived from transient 2 hypoxia EBs 

progressively increased COL2A1 encoding collagen type II which is the marker of chondrocyte 

maturation (Figure 29A), while those derived from normoxia EBs increased the COL2A1 

expression at a slower rate. Chondrogenic pellets from hMSCs expressed COL2A1 from week 2 

onward, exhibiting constant levels over the time course of study. Interestingly, we found a 

transient increase followed by the decrease in COL1A1 expression, indicating a switch in profiles 

from collagen type I to type II in all pellet groups. In the first 2 weeks of culture, pellets 

exhibited high levels of COL1A1, followed by a marked reduction by 70% in both transient 2 

hypoxia and normoxia pellets and by 50% in hMSC pellets (Figure 29B). Further more, between 

weeks 4 and 6, hMSCs-derived chondrogenic pellets maintained the levels of COL1A1 

expression, whereas that of the hESCs-derived chondrogenic pellets was reduced to modest 

levels. In addition, COL10A1 encoding collagen type X, the hypertrophic marker, showed 

minimal expression in both hESCs-derived pellets, whereas COL10A1 expression in hMSC 

pellets gradually increased (Figure 29C).   

At the end of chodrogenic differentiation, pellets were evaluated for the presence of 

collagen type II and type I. Pellets derived from transient 2 hypoxia EBs stained homogeneously 

for collagen type II in the extracellular matrix space (Figure 30A), whereas pellets derived from 

normoxia EBs exhibited positive staining in the territorial matrix space only (Figure 30B). 

hMSC pellets exhibited a weaker and less homogenous staining compared to pellets derived 
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from transient 2 hypoxia EBs in cells and pericellular space (Figure 30C). We were not able to 

detect collagen type I in all three chondrogenic pellets (Figure 30D-F).  

An abundance of collagen type II together with the loss of collagen type I corresponded 

with high COL2A1 and low COL1A1 gene expression levels in late chondrogenic differentiation 

stages (5-6 weeks) (Figure 29A-B). We further confirmed the immunohistochemical data by 

evaluating the collagen type II using western blot analysis. Collagen type II bands with 

molecular weight of 140 kDa were detected in pellets made from transient 2 hypoxia EBs, 

normoxia EBs and hMSCs (Figure 30I). Semi-quantitative evaluation of the protein band 

intensity showed a significantly higher amount of collagen type II relative to actin in pellets 

derived from transient 2 hypoxia EBs compared to normoxia EBs and hMSCs (Figure 30J).  
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Figure 21. Clustering analysis of differential expressed 

human mesenchymal genes 

Cluster plot displays distinct gene expression profiles of 

undifferentiated hMSCs (reference cells) and week 4 hESCs-

derived chondrogenic pellets. Stem cell markers and other 

mesenchymal associated genes in hESCs-derived pellets 

were displayed in moderate levels (region 1). hESCs-derived 

chondrogenic pellets lost mesenchyme and osteogenic 

markers (region 2) and highly expressed chondrogenic 

related genes (region 3). Color gradient of the heat map from 

green to red represents an increase in expression levels. 
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Figure 22. Collagen gene expression of chondrogenic pellets 

Pellets derived from transient 2 hypoxia EBs, normoxia EBs and hMSCs were analyzed for gene 

expression. A: COL2A1 (collagen type II) B: COL1A1 (collagen type I) and C: COL10A1 

(collagen type X) * p < 0.05 compared within the same group, α  p < 0.05 compared to hMSCs, β 

p < 0.05 compared to normoxia, ND = not detectable 
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Figure 30. Type II and type I collagen of chondrogenic pellets 

Immunohistochemistry showed localization of type II and type I collagen of 6 week pellets 

derived from transient 2 hypoxia EBs (A and D), normoxia EBs (B and E) and hMSCs (C and 

F). Negative staining of type II (G) and type I (H) collagen immunohistochemistry of pellets 

derived from transient 2 hypoxia EBs. I: Representative Western blot of collagen type II in 

chondrogenic pellets. Purified human type II collagen was used as positive signal detection. J: 

Relative intensities of collagen type II levels (n=3) were normalized to Actin levels using ImageJ 

software. Values are expressed as mean ± SD. * p < 0.05 significantly different compared to 

other groups 
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4.2G Cell condensation and proteoglycan production in chondrogenic pellets  

The initial stage of chondrogenesis is cellular condensation which depends on cell-cell 

interaction mediated by cell adhesion molecule, N-cadherin (84). hMSCs consistently formed 

pellets in 24 hours, in contrast to EB-derived progenitors where some of the cells did not pellet 

and were washed out during the subsequent medium changes. A defined shape of condensed cell 

aggregates appeared within 4 days in dissociated cells from transient 2 hypoxia EBs, whereas the 

aggregates obtained from dissociated normoxia EBs took 12 days to form.  

Gene expression studies demonstrated temporally-dependent gene expression of CDH2 

encoding cell adhesion molecule N-cadherin, and ACAN encoding chondroitin sulfate 

proteoglycan core-protein during chondrogenic pellet maturation. The pellets made from EBs in 

both induction conditions exhibited high CDH2 expression in the first week of pellet formation 

(Figure 31A). Similarly to hMSC pellets, high expression of CDH2 was maintained until week 2 

in transient 2 hypoxia group, followed by a continuous decrease. In contrast, CDH2 expression 

started decreasing after the first week in pellets from normoxia EBs.  

ACAN expression was low in both hESCs-derived pellets during the first three weeks 

compared to hMSCs-derived pellets, which showed a progressive increase in expression at 

weeks 2, 4 and 6 (Figure 31B). ACAN expression in pellets made from transient 2 hypoxia EBs 

showed an earlier an higher up-regulation compared to pellets derived from normoxia EBs, 

reaching the final expression levels higher than those in hMSC pellets (Figure 31B).  

Gene expression data were confirmed by Alcian blue staining, which showed a low 

glycosaminoglycan (GAG) accumulation for all three groups of pellets after 3 weeks (Figure 

32A, C, E). We found homogeneous but light blue staining in hMSCs-derived pellets (Figure 

32E) and cluster staining in pellets derived from transient 2 hypoxia EBs (Figure 32A). After 6 
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weeks of culture, an abundant, homogenous GAG staining was observed in pellets from transient 

2 hypoxia EBs and hMSCs (Figure 32B, and F), in contrast to pellets from normoxia EBs which 

stained less, predominantly in the central region (Figure 32D). Biochemical analysis showed a 

significant increase in the GAG (Figure 32G) from week 3 to week 6, which corresponded to the 

increased GAG accumulation detected by Alcian blue staining (Figure 32B, D, F). The 

appearance of chondrocyte in lacunar spaces surrounded by dense ECM was clearly seen in 

pellets made from transient 2 hypoxia EBs in magnified view as indicated by arrows (Figure 

32B).  

 

 

 

 

 

 

 

Figure 23. N-cadherin and aggrecan gene expression of chondrogenic pellets 

Chondrogenic pellets were assayed gene expression of cell adhesion molecule (CHD2) (A) and 

extracellular matrix glycoprotein (ACAN) (B). * p < 0.05 compared within the same group,         

α  p < 0.05 compared to hMSCs, β p < 0.05 compared to normoxia, ND = not detectable 
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Figure 32. Alcian blue staining and flow cytometric analysis of N-cadherin presenting cells 

Transient 2 hypoxia EBs (3A-B), normoxia EBs (3C-D) and hMSCs (3E-F). Arrows indicate 

lacunae inside 40x inserts. Bar = 200 µm. G: GAG content was presented in GAG/DNA. * p < 

0.05 compared within the same group, α  p < 0.05 compared to hMSCs, β p < 0.05 compared to 

normoxia.  H: Flow cytometric analysis. Cells of 1 week chondrogenic pellets and washed out 

cells were stained with N-cadherin DyLight®488 antibody. Percentages of N-cadherin positive 

cells are indicated in each figure. 
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4.2H Model of chondrogenic differentiation of hESCs   

According to temporal changes in gene expression of ECM and cell-cell interaction 

molecules and spatial organization of ECM deposition in chondrogenic pellets, we propose the 

following model for in vitro chondrogenic differentiation of hESCs in pellet culture (Figure 33). 

Cell condensation mediated through N-cadherin expressing cells was confirmed by flow 

cytometric analysis. Cells from 1 week aggregates and washed out cells of those aggregates were 

stained with N-cadherin antibody conjugated with DyLight®488. Only a small fraction of washed 

out cells was positive for N-cadherin, while more than 60% of cells in the pellets were able to 

detect N-cadherin (Figure  32H). 

In the model, the 3 week-induced EBs were dissociated into single cells and formed 

pellets. Some cells were washed out during medium changes. After 1 week, cells were tightly 

packed (cell condensation occurred), small number of washed out cells was observed and pellet 

size gradually increased over time. ECM separated neighboring cells away from each other 

starting from the center of pellets to the periphery. Lacuna-like formation was observed, where 

dense territorial/capsular matrix being formed around two cells was observed at sites where two 

cells were getting encapsulated the dense ECM.  
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4.2I Phenotypic stability and in vivo maturation of hESCs-derived chondrogenic 

pellets 

To determine the risk of teratoma formation and ectopic stability of cartilage tissues after 

transplantation, the 6 weeks hESCs- and hMSCs-derived chondrogenic pellets were 

subcutaneously implanted into SCID mice, and the developing tissues were examined 4 weeks 

after implantation. The incidence of teratomas was not found after implantation as indicated by 

uniform tissue formation. The three germ layers, ectoderm (Nestin), mesoderm (Vimentin) and 

endoderm (Alpha-fetal protein) were not detected in the pellets (Figure 34A). Capillaries could 

be detected outside of pellets and stained with CD31 antibody specific for mouse vascular 

endothelial cells (Figure 34A). Anti-human nuclei staining confirmed chondrogenic pellets 

derived from human origin (Figure 34A).  

hESCs-derived chondrogenic pellets were more intensely stained for collagen type II and 

GAG than pellets generated by hMSCs (Figure 34B). Collagen type I staining did not show in 

both pellets. Interestingly, we were able to detect the onset of collagen type X in hMSCs-derived 

chondrogenic pellets (Figure 34B). Representative bone markers, ALP and ostepontin, were not 

observed in implanted pellets (Figure 34C). 
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Figure 34.  Histological analysis of chondrogenic pellets in vivo 

A: Identification of three germ layers by immunohistochemistry. Nestin (NES) indicates 

ectoderm, Vimentin (VIM) indicates mesoderm and Alpha-fetoprotein (AFP) indicates  

endoderm. Vascular endothelia cells were stained with CD31 antibody. Immunofluorescence 

staining confirmed the human origin of chondrogenic pellets (green). The dashed line shows the 

outline of the pellets. Insert boxes with bar = 200 µm show negative staining of 

immunohistochemistry. B: Immunohistochemistry of collagen and Alcian blue staining for 

GAG. Rectangular boxes indicate 60x magnified regions. C: Immunohistochemistry of bone 

protein, ALP and Osteopontin.  
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5. Discussion  

Our studies aim to identify alternative cell sources to be used in cartilage tissue 

engineering instead of the adult stem cells which undergo age-dependent decrease in 

proliferation and chondrogenic differentiation. Human embryonic stem cells (hESCs) provide 

unlimited cell supplies and are able to differentiate into cell types in 3 germ layers. Despite the 

challenges for the use of ESCs, associated with how to control their differentiation potentials into 

particular lineages as well as with the complications after ESC-derived tissue implantation, ESCs 

offer a great therapeutic potential and renewable cell source for regenerative medicine.  

The directed chondrogenic differentiation protocol was based on the sequence of 

pathways active in development to create differentiation regime using only 7 exogenous growth 

factors and supplements (74). Here, we propose a novel approach in chondrogenic differentiation 

which takes advantage of the physiological conditions found in native joints- low oxygen tension 

and conditioned medium which has been reported to contain secreted morphogenetic factors 

necessary for maintenance of the healthy cartilage tissue (85). EB induction was conducted for 3 

weeks, the critical period when mesodermal precursors may develop (86) in various induction 

regimes. We detected that cells derived from transient 2 hypoxia EBs showed an excellent 

chondrogenic differentiation in pellet culture. Transient 2 hypoxia EBs were cultured in 

chondrocyte-conditioned medium (CCM) under 5% O2 for 2 weeks followed by 21% O2 for 1 

week. At the end of the 3 week induction period, the expression of SOX9 was significantly 

increased compared to that of EBs which were continuously cultured in CCM under 21% O2 for 

3 weeks (normoxia group) without switching oxygen levels. Our finding indicated that CCM and 

low oxygen tension play a role in chondrogenic commitment of hESCs through EB formation 

(Figure 23A and 24A). We were able to detect the up-regulation of RUNX2 when EBs were 
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cultured in CCM, albeit the up-regulation was evident only when the culture was maintained in 

21% O2 compared to EBs which were cultured in 5% O2. These results suggested lineage 

specific differentiation depends not only on chemical cues from CCM, but also on the oxygen 

levels.  

The transient 2 hypoxia was chosen as the best induction regime for chondrogenic 

differentiation of EBs in pellet culture due to the increase in SOX9 and decrease in OCT4. The 

up-regulation of SOX9 together with down-regulation of OCT4 suggested that hESCs had a 

tendency to accumulate the population of chondrogenic lineages and lost their pluripotency 

during EB induction. It indicated that transient 2 hypoxia condition may help to suppress stem 

cell characteristics which could transform cells to other lineages besides chondrocytes. In 

addition, pluripotent markers OCT4 and NANOG, eventually disappeared when chondrogenic 

differentiation was conducted in pellet culture. We compared chondrogenic differentiation 

potential of hMSCs, widely used in chondrogenesis, to hESCs and found early expression of 

SOX9 and accumulation of GAG in hMSC pellets. It indicated that hMSCs were promptly 

differentiated to chondrogenic lineages before hESCs. However, the overall expression levels of 

SOX9 together with extracellular matrix genes (ACAN and COL2A1) in hMSC pellets 

demonstrated that chondrogenic differentiation potentials of hMSCs were limited compared to 

hESCs induced by transient 2 hypoxia condition. Instead, the mature hMSC pellets expressed 

collagen X gene, the hypertrophic marker, higher than hESC pellets. Mesenchymal PCR array 

confirmed not only high expression of SOX9 in week 4 chondrogenic pellets but also the up-

regulation of growth factors in TGF-β family (BMP6, BMP4, GDF15, TGF-β3, which regulates 

cartilage growth and development. The PCR array results suggested that hESCs committed to 

chondrogenic lineages.  
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The expression of FOXA2 a key transcription factor of gut formation (the representative 

of endodermal linages) was suppressed within 1 week in both hESC pellets derived from 

transient 2 hypoxia and normoxia EBs. However, the expression of PAX6, a transcription factor 

of eye formation and sensory organs (the representative of ectodermal linages) was up-regulated 

in pellets derived from transient 2 hypoxia EBs and was minimally detected in pellets derived 

from normoxia EBs. It could be possible that hESCs tend to differentiate to neurons by default 

unless the cells receive specific factors to alter differentiation program to desired lineages (87). 

Notwithstanding that secreted factors from chondrocytes during EB induction aid cells to 

preferably become chondrogenic linage, low oxygen tension may also play role in neurogenic 

inductions (88) - as we can see from low PAX6 in pellets made from normoxia EBs compared 

that of in pellets made from transient 2 hypoxia EBs. Therefore, balance between chemical cues 

and hypoxia (oxygen levels and exposure periods) is still a great challenge in chondrogenic 

differentiation of hESCs.  

At the end of the induction period levels of EB receptors, which responded to the 

induction regime (hypoxia and secreted factors from bovine chondrocytes) were determined by 

antibody array. Receptors which were up-regulated are involved in cell migration, cell adhesion, 

and cellular component morphogenesis. This result indicated a high degree of dynamic changes 

occurring during EB induction. Increased receptors expression in hESCs may contribute to 

understand the mechanism behind lineage choices and lineage decisions. In addition this study 

may also help to identify soluble factors released from chondrocytes necessary for 

chondrogenesis. SDS-PAGE analysis and silver staining of condition medium show two 

molecular weight groups (Appendix C, Supplemental figure 1). These two groups are in the 

approximate molecular weight ranges for secreted extracellular matrix and growth factors.  
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Identification and efficient isolation of progenitors from EBs for chondrogenesis remains 

a major challenge.  Scarce information about surface markers hinders the use of Fluorescence-

Activated Cell Sorting (FACS) method for specific selection of chondrogenic progenitors for 

tissue engineering. Rather than to adopt cell sorting to select the progenitors, EB dissociation 

separating blastocyst-like structure to single cells allowed individual cells to undergo self-

selection and to form aggregates. An excellent homogeneity in 6-week old chondrogenic pellets 

was probably obtained through the loss of discordant cells by medium changes during 

chondrogenic pellet formation. The discordant cells might separate from progenitors, enter 

apoptotic pathway and leave the aggregate (89). The dissociated cells that express N-cadherin are 

not necessarily the only chondrogenic progenitors. bFGF receptor and NCAM on cell surface 

also mediate mesenchymal condensation (84, 90). Although dissociated EBs express N-cadherin, 

it remains to confirm whether the dissociated EBs also express the bFGF receptors and NCAM. 

Further studies of the expression of adhesion protein in induced EBs will help to identify 

markers of chondrogenic progenitors. 

Immunocollagen staining and western blot analysis confirmed that transient 2 hypoxia 

induction expedited the process of chondrogenic differentiation in hESCs in comparison to 

normal induction or standard hMSC culture. Collagen type II was detected in pellets derived 

from normoxia EBs and hMSCs, but collagen type II was not completely secreted into 

periclellular spaces. Relative intensity of western blot band of pellets derived from transient 2 

hypoxia EBs increased in comparison to that derived from other groups.  

We propose the model of chondrogenic differentiation of hESCs in pellet culture system 

based partly on N-cadherin-mediated cell condensation. All together, we demonstrated 

chondrogenic differentiation of hESCs via EB induction under low oxygen tension in 
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conjunction with soluble factors from chondrocytes. The dissociated EBs differentiated into a 

homogeneous chondorgenic pellets without the use of laborious cell sorting.  

 

6. Summary  

Roles of physiological oxygen levels in cartilage tissue development were demonstrated 

in the standard cartilage model, bovine chondrocytes encapsulated in agarose hydrogel. 

Constructs exposed to 5% O2 for 1 week + 21% O2 for 3 weeks increased cartilaginous gene 

expression and cartilage specific ECM accumulation compared to constructs cultured under 5% 

O2 for 4 weeks. This finding suggested that temporal gradients of oxygen tension might play a 

crucial role during the formation of functional cartilage tissue. The biomimetic physiological 

conditions, hypoxia, and soluble factors from chondrocytes, were applied to synergistically 

induce chondrogenic differentiation of hESCs.  

The embryoid bodies cultured in chondrocyted-conditioned medium under transient 2 

hypoxia regime (5% O2 for 2 weeks + 21% O2 for 1 week) showed up-regulation of SOX9 and 

subsequently formed chondrogenic pellets with homogeneous ECM. Human embryonic stem 

cells can differentiate and serve as unlimited supply for tissue regeneration. However, the central 

challenge facing embryonic stem cell research is how to direct them into specific cell types. 

Here, we reported a method for inducing chondrogenic differentiation of hESCs through the 

combined controll oxygen tension and molecular conditioning. The current findings will 

contribute to the further development a new cell source for cartilage regeneration. 
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Appendix A 
 

Histology and immunohistochemistry  

Constructs were fixed in 4% paraformaldehyde overnight at 4oC, transferred to 70% 

ethanol, embedded in paraffin and sectioned at 8 mm. The sections were stained with 

hematoxylin and eosin for general evaluation, and safranin-O for GAG. Sections for 

immunohistochemistry staining were hydrated, and antigen retrieval was performed using heated 

0.01 M citrate buffer with pH 6.0 for 15 minutes.  Quenching of the endogenous peroxidase was 

done by immersing the sections in 0.3 % H2O2/methanol for 10 minutes at room temperature. 

The sections were incubated with blocking serum (Vectastain ABC, Burlingame, CA) for 30 

minutes at room temperature, rinsed with PBS, incubated overnight at 4oC with 1:1000 of type II 

collagen monoclonal antibody (Millipore, Temecula, CA) and for 30 minutes with biotinylated 

secondary antibody (Vectastain ABC, Burlingame, CA). For signal enhancement and detection, 

Vectastain ABC Kit with peroxidase and DAB Peroxidase Substrate Kit (Vectastain ABC, 

Burlingame, CA) were added as described in the manufacturer’s protocol. 

 

Collagen Type II ELISA  

Constructs harvested after 28 days of culture were homogenized in an ice-cold mortar, 

resuspended in 0.8 ml of 0.05 M acetic acid containing 0.5 M NaCl, pH 3.0, mixed with 0.1 ml 

of 10 mg/ml pepsin solution in 0.05 M acetic acid, and stored at 4 °C for 48 hours. The pH of 

samples was adjusted to 8.0 using 1 N NaOH. The samples were digested using 0.1 ml of 1 

mg/ml pancreatic elastase in 1X TBS (0.1M Tris, 0.2 M NaCl, 5mM CaCl2, pH 8) at 4 °C 

overnight on a rotating rocker and centrifuged at 10,000 rpm for 5 minutes. This double 
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enzymatic digestion was performed to obtain monomeric collagen, by first digesting collagen 

fibrils into polymeric collagen by protease (pepsin) and then converting polymeric collagen into 

monomeric form by elastase digestion. Supernatant was collected and diluted in assay buffer 

according to the manufacturer’s protocol (M.D. Bioproducts, St Paul, MN). The absorbance at 

450 nm was plotted against concentration to obtain a standard curve by a 4-parameter logistic (4-

PL) curve fit that was used to determine the amounts of collagen type II.  

 

Mechanical properties  

Compressive properties of constructs were measured in unconfined compression using a 

custom-made mechanical testing device (59). Constructs were placed in a testing chamber and 

equilibrated under a creep tare load of 0.5 g for 30 minutes. Stress-relaxation tests were 

performed at the ramp velocity of 1 µm/s up to 10% strain. The equilibrium Young’s modulus 

(EY) was determined from the equilibrium stress-strain data.  

 

Real-time PCR  

Constructs were extracted to isolate the total RNA using TRIzol® Reagent (Invitrogen, Carlsbad, 

CA), treated with DNAse I (Ambion, Austin, TX) and quantified using NanoDrop™ 

Spectrophotometer (Thermo Scientific, Wilmington, DE). Reverse transcription was performed 

using High Capacity cDNA Reverse Transcription Kit (Applied Biosystems, Foster City, CA). 

Quantitative PCR was carried out using the 7500 Fast Real-Time PCR System. The following 

TaqMan® Gene Expression Assays were used for detection of cartilaginous gene expression: 

COL2A1 (Bt03251861_m1), COL1A1 (Bt03225322_m1), ACAN (Bt03212186_m1), and SOX9 

(custom designed forward primer: ACGCCGAGCTCAGCAAGA; reverse primer: 
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CACGAACGGCCGCTTCT; probe: CGTTCAGAAGTCTCCAGAGCTTGCCCA) (91). Gene 

expression values were reported in relative levels to GAPDH (Bt03210913_g1) by the 2-ΔCt 

method(81). All reactions were performed in triplicates. Representative graphs are shown with 

error bars indicating standard deviation of 4 samples for each oxygen condition.  

  

Statistical Analysis  

Statistics were performed with STATISTICA software (Statsoft, Tulsa, OK). Data were 

expressed as the average ± SD of n = 4-6 samples per group and time point. The differences in 

construct properties between the groups were examined by analysis of variance (α = 0.05), with 

DNA, matrix contents, EY or relative level of target gene expression as the dependent variable, 

followed by Tukey’s Honest Significant Difference Test.  
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Appendix B 
 

Supplemental figure 1. Oxygen level in culture medium at day 7, 14, 21, and 28 

Oxygen levels were measured for 20 hours after each medium change. Traces show the 

measured partial pressure of oxygen. Black lines refer to the wells without tissue constructs, 

colored lines refer to wells with tissue constructs. The Oxygen Uptake Rate for each data set was 

calculated from the average difference between the two corresponding oxygen levels as 

explained in the Methods section. 
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Supplement figure 2. Oxygen Uptake Rates (OUR) of engineered cartilage constructs  

Cells in hypoxic conditions consumed less O2 than other groups. Data are shown as average ± SD 

(n = 5) of values calculated from experimental data (one example of such data is shown in S-

Figure 1). * P<0.05 versus 21% O2 , ξ P<0.05 versus the previous time point within the same 

group.  
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Supplemental table 1. Oxygen uptake rates for chondrocytes from different species 

 

 

 

 

 

 

 

 
 
 
 
 

Chondrocytes Oxygen 
consumption rate 

(×10-15 mol/cell/hr) 

 Reference 

Bovine articular cartilage 1.84 (92) 

Bovine chondrocytes in suspension culture 0.96 (92) 

Human chondrocytes in monolayer 36 (93) 

Avian growth plate at hypertrophic zone 93.2 (94) 
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Appendix C 

 

Supplemental table 1. Up- and down-regulated genes of week 4 hESCs-derived 

chondrogenic pellets compared to hMSCs  

             (± 2 fold change, n = 3, p < 0.05)   

 
Reference seq. Gene 

Symbol 

Description Fold 

regulation 

p-value 

NM_001718 BMP6 Bone morphogenetic protein 6 81.237 0.000001 
 

NM_130851 BMP4 Bone morphogenetic protein 4 75.5103 0.009437 
 

NM_000927 
 

ABCB1 ATP-binding cassette, sub-family B 
(MDR/TAP), member 1 

43.2346 
 

0.002377 
 

NM_004448 
 

ERBB2 V-erb-b2 erythroblastic leukemia viral 
oncogene homolog 2, neuro/glioblastoma 
derived oncogene homolog (avian) 
 

33.4393 
 

0.0003 
 

NM_000346 SOX9 SRY (sex determining region Y)-box 9 11.6406 0.000008 
 

NM_001200 
 

BMP2 Bone morphogenetic protein 2 
 

8.2226 
 

0.000049 
 

NM_001709 
 

BDNF Brain-derived neurotrophic factor 
 

8.1751 
 

0.03162 
 

NM_000572 
 

IL10 Interleukin 10 
 

7.955 
 

0.000358 
 

NM_001154 
 

ANXA5 Annexin A5 
 

7.2051 
 

0.000076 
 

NM_000214 JAG1 Jagged 1 7.1511 0.027269 
 

NM_002211 
 

ITGB1 Integrin, beta 1 (fibronectin receptor, beta 
polypeptide, antigen CD29 includes MDF2, 
MSK12) 
 

6.7638 
 

0.011628 
 

NM_004864 GDF15 Growth differentiation factor 15 
 

3.492 
 

0.000193 
 

NM_006617 NES Nestin 
 

3.1779 
 

0.000009 
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NM_003239 
 

TGFB3 Transforming growth factor, beta 3 
 

2.9194 
 

0.0238 
 

NM_006500 
 

MCAM 
 

Melanoma cell adhesion molecule 
 

-236.4152 
 

0.001649 
 

NM_001963 
 

EGF 
 

Epidermal growth factor 
 

-197.7788 
 

0.000338 
 

NM_017617 
 

NOTCH1 
 

Notch 1 
 

-82.2336 
 

0.000245 
 

NM_003994 
 

KITLG KIT ligand 
 

-80.0848 
 

0.001354 
 

NM_001664 
 

RHOA 
 

Ras homolog gene family, member A 
 

-23.9324 
 

0.002331 
 

NM_000610 
 

CD44 
 

CD44 molecule (Indian blood group) 
 

-23.6385 
 

0.003398 
 

NM_001150 
 

ANPEP 
 

Alanyl (membrane) aminopeptidase 
 

-22.3961 
 

0.003434 
 

NM_000660 
 

TGFB1 
 

Transforming growth factor, beta 1 
 

-22.0013 
 

0.003567 
 

NM_000887 
 

ITGAX 
 

Integrin, alpha X (complement component 3 
receptor 4 subunit) 
 

-21.7384 
 

0.000336 
 

NM_004346 
 

CASP3 
 

Caspase 3, apoptosis-related cysteine 
peptidase 
 

-21.0014 
 

0.001091 
 

NM_000210 
 

ITGA6 
 

Integrin, alpha 6 
 

-11.9345 
 

0.000224 
 

NM_020429 
 

SMURF1 
 

SMAD specific E3 ubiquitin protein ligase 1 
 

-9.6176 
 

0.002113 
 

NM_004465 
 

FGF10 
 

Fibroblast growth factor 10 
 

-7.2574 
 

0.004142 
 

NM_004348 
 

RUNX2 
 

Runt-related transcription factor 2 
 

-6.2551 
 

0.000208 
 

NM_002526 
 

NT5E 
 

5'-nucleotidase, ecto (CD73) 
 

-6.2323 
 

0.001009 
 

NM_003642 
 

HAT1 
 

Histone acetyltransferase 1 
 

-6.0939 
 

0.000644 
 

NM_000576 
 

IL1B 
 

Interleukin 1, beta 
 

-5.9739 
 

0.000093 
 

NM_002609 
 

PDGFRB 
 

Platelet-derived growth factor receptor, beta 
polypeptide 
 

-5.7338 
 

0.000368 
 

NM_022739 
 

SMURF2 
 

SMAD specific E3 ubiquitin protein ligase 2 
 

-3.5897 
 

0.001052 
 

NM_002097 
 

GTF3A 
 

General transcription factor IIIA 
 

-3.3619 
 

0.003657 
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NM_003376 
 

VEGFA 
 

Vascular endothelial growth factor A 
 

-3.2631 
 

0.015938 
 

NM_002253 
 

KDR 
 

Kinase insert domain receptor (a type III 
receptor tyrosine kinase) 
 

-2.7741 
 

0.005661 
 

NM_182828 
 

GDF7 
 

Growth differentiation factor 7 
 

-2.5779 
 

0.010635 
 

NM_005607 
 

PTK2 
 

PTK2 protein tyrosine kinase 2 
 

-2.4408 
 

0.001707 
 

NM_00011 ENG Endoglin -2.1149 
 

0.027684 
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Supplemental figure 1. Chondrocyte conditioned medium silver-stained SDS-PAGE gel  

Bovine chondrocytes were cultured in serum albumin-free DMEM for 48 hours and 

collected to analyzed in in 8% and 15% polyacrylamide gel. Bovine serum albumin from the 

chondrocytes is the major component of conditioned medium located around 60 kDa. Protein 

bands size below the serum are expected to be secreted growth factors and subjected to further 

characterized. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


