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ABSTRACT

Low-rank graphical models and Bayesian inference
in the statistical analysis of noisy neural data

Carl Smith

We develop new methods of Bayesian inference, largely in the context of analysis of neuro-

science data. The work is broken into several parts. In the first part, we introduce a novel

class of joint probability distributions in which exact inference is tractable. Previously it

has been difficult to find general constructions for models in which efficient exact inference

is possible, outside of certain classical cases. We identify a class of such models that are

tractable owing to a certain “low-rank” structure in the potentials that couple neighboring

variables. In the second part we develop methods to quantify and measure information loss

in analysis of neuronal spike train data due to two types of noise, making use of the ideas

developed in the first part. Information about neuronal identity or temporal resolution may

be lost during spike detection and sorting, or precision of spike times may be corrupted by

various effects. We quantify the information lost due to these effects for the relatively simple

but sufficiently broad class of Markovian model neurons. We find that decoders that model

the probability distribution of spike-neuron assignments significantly outperform decoders

that use only the most likely spike assignments. We also apply the ideas of the low-rank

models from the first section to defining a class of prior distributions over the space of stim-

uli (or other covariate) which, by conjugacy, preserve the tractability of inference. In the

third part, we treat Bayesian methods for the estimation of sparse signals, with application

to the locating of synapses in a dendritic tree. We develop a compartmentalized model of

the dendritic tree. Building on previous work that applied and generalized ideas of least

angle regression to obtain a fast Bayesian solution to the resulting estimation problem, we

describe two other approaches to the same problem, one employing a horseshoe prior and

the other using various spike-and-slab priors. In the last part, we revisit the low-rank mod-



els of the first section and apply them to the problem of inferring orientation selectivity

maps from noisy observations of orientation preference. The relevant low-rank model ex-

ploits the self-conjugacy of the von Mises distribution on the circle. Because the orientation

map model is loopy, we cannot do exact inference on the low-rank model by the forward

backward algorithm, but block-wise Gibbs sampling by the forward backward algorithm

speeds mixing. We explore another von Mises coupling potential Gibbs sampler that proves

to effectively smooth noisily observed orientation maps.
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CHAPTER 1. INTRODUCTION 1

Chapter 1

Introduction

Much of this work concerns the application of Bayesian inference to problems in the anal-

ysis of data from neuroscience experiments. An explanation is appropriate, then, of the

utility and appeal of Bayesian inference. Likewise, we must demonstrate the applicability

of Bayesian inference to some problems in neuroscience.

Inference is the act of drawing conclusions from premises by the application of logic.

In statistical inference we are typically interested in some system or process that generates

data with an element of randomness, i.e. according to a probability distribution. Given

some data (the premises) from this system, we want to draw some conclusions (estimates)

about the data-generating distribution.

We often assume that the unknown distribution belongs to a parameterized set of dis-

tributions – a statistical model. Maximum likelihood estimation offers a principle for com-

puting a consistent and efficient estimator1 of the parameters, and so of the distribution:

for the given data, choose the value of the parameter that maximizes the data-generating

distribution, which we call the likelihood.

Bayesian inference takes us further. If, before collecting any data, we already have some

estimate for the parameters, in the form of a so-called prior distribution, then by Bayes rule

1Roughly speaking, an estimator is a rule for computing an estimate given some data, a consistent

estimator is one whose estimate converges to the true value as the amount of data increases, and an efficient

estimator is one whose estimate approaches the true value the most quickly of any possible estimator as the

amount of data increases.
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we may extend maximum likelihood to form a new objective function – called the posterior

– which is proportional to the product of the likelihood and the prior. The value of the

parameter that maximizes the posterior is an efficient estimate that incorporates a priori

information. This is called maximum a posteriori (MAP) estimation. What is more, beyond

the maximizing point estimate, and depending on how we go about computing the MAP

estimate, we may be able to compute the full posterior distribution, which fully represents

our uncertainty in that estimate.

When we estimate by maximum likelihood, we can sometimes use the likelihood as a

representation of our uncertainty. After all, the likeihood is a function of the parameter

we wish to estimate. However, it is not necessarily a proper probability distribution over

the parameter, because the likelihood is defined as a distribution over the data, given a

fixed parameter. This can lead to problems both of computation and interpretation. In the

Bayesian context, the prior distribution ensures that the posterior is normalizable, i.e. that

it is a proper probability distribution.

Information about uncertainty can be exceedingly helpful in deciding how to act based

on the output of the inference algorithm, and can recommend one inference method over

another when both are known to be about as accurate in general but each is better suited

to certain problem regimes. When fully Bayesian methods are passed over in favor of other

methods, it is often due to computational problems (technically speaking, samplers that are

very slow to mix, algorithms that scale poorly with problem size, and so on). Therefore,

there is a need for improved models and algorithms that will make fully Bayesian inference

more feasible. Much of the following work is in response to that need.

Inference problems arise in many neuroscience contexts. For example, brain-machine

interfaces (BMIs) aim to convey information – sensory information, motor intent, etc. –

between the brain and the outside world. Implementations sometimes involve the embedding

of an array of microelectrodes into the outermost layers of exposed neural tissue. These

electrodes record extracellular voltage over time, and so too they indirectly record firing

activity of nearby cells, i.e. spike trains. Ultimately, the device should transduce this signal

and produce, say, some motor output, such as the movement of a mechanical limb, or of a

cursor on a screen. The device must infer, from the recorded spike trains, the motor intent
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of the subject. BMIs represent an important research problem with potentially dramatic

clinical applications. They also provide a good example of the kind of technology that good

and computationally tractable statistical inference algorithms can afford us.

In this work we apply new methods in Bayesian inference to four problems in neuro-

science. First, we briefly treat the estimation of neuronal firing rate. Second, we develop

inference methods for spike-train decoding in the presence of either of two known sources

of noise: 1) jitter in the firing times and 2) ambiguity of neuronal identity in a population

of neurons of mixed type. Third, we address the problem of mapping the dendritic arbor

– finding where precisely synapses occur. Last, we treat the estimation of phase selectivity

maps from noisy or subsampled data.

As we have already remarked, inference methods that are appealing in principle for

desirable properties of their estimators are only useful if they are computationally feasi-

ble. As the size of the problem grows (as the length of the spike-train increases; as the

dendritic arbor is further compartmentalized; as the selectivity map becomes larger), the

computational cost of inference must grow reasonably slowly. In BMIs, discussed above,

one can easily understand that it is crucial for the device to take its constant flow of input

and compute decisions in real time, so that speeding up this decision process is critically

important. In each of the applications in this work we have endeavored to make the cost of

the inference method as low as is theoretically possible. To that end, we have developed a

broad class of probability models for which inference requires exceptionally little computing

time and storage.

These special models are exceptional in that they extend fast hidden Markov model

(HMM) inference algorithms beyond the domain in which they are typically applied. These

are continuous and non-Gaussian models that are amenable to standard tractable inference

methods that are typically thought to only apply to discrete or linear-Gaussian models. (By

a continuous model I mean a joint distribution over many continuous variables. Such dis-

tributions are frequently represented with nodes (variables) and edges (potentials coupling

the variables) in a so-called graphical model.) The standard forward backward algorithm

from the theory of HMMs (whose variables are discrete) may be used to perform inference

on these special models whose variables may nonetheless be continuous. This is owing to a
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special aspect of the structure of these models which we describe below.

We will briefly motivate the use of low-rank models and leave the details to the main

text. A HMM consists of two sets of variables: hidden variables {qt} and observed variables

{yt}, each indexed by, for instance, discrete time intervals t. The set of hidden variables

form a graphical model arranged as a straight chain. This means that there is a linear

order to the variables (e.g., number of cars on a road at different discrete time intervals)

and that adjacent variables (consecutive time intervals) are coupled by pairwise potentials

(probability densities). The observed variables are coupled to the chain of hidden variables

by other pairwise potentials. The graphical model the represents this joint distribution

resembles a comb. There is a backbone of hidden variables connected in a chain, and

attached to each hidden variable is an observed variable, connected by an edge.

The crucial assumptions inherent to such a model are 1) that the value of a hidden

variable qt at time t depends only on the value of the hidden variable qt−1 at time t − 1,

and 2) that the value of a given observed variable yt at time t depends only on the value

of the hidden variable qt at time t. The first assumption means that if we want to estimate

qt, and we know the value of qt−1, then we do not benefit at all by knowing additionally

the values of any of the other variables. The second assumption similarly means that if we

want to estimate yt and we know qt, then there is no point in measuring any of the other

variables, observed or hidden.

The appeal of HMMs stems partly from the fast and scalable algorithms that exist for

performing inference in them. Also, however, there are many systems one might like to

study in which these so-called Markov assumptions are very plausible.

We will not go here into much more detail about the forward backward method for

HMMs. What is important for our work is that the inference algorithm involves the com-

putation of certain integrals, and that the more possible discrete values the hidden variables

can take – the larger their state space – the more of those integrals we must compute. On

the face of it, then, it may seem impossible to allow the hidden variables to be continu-

ous. We would have to compute infinitely many integrals, a continuum in fact. What we

discovered and what we report in the main text is that for certain choices of coupling poten-

tials, the continuous variables are naturally integrated away during the recursion, leaving
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a finite number of integrals to compute and rendering inference tractable. This is true for

potentials that are separable functions, i.e. φ(qt, qt+1) = f(qt)g(qt+1), but complete fac-

torization is the condition of independence of the two variables, which would reduce the

HMM to a set of independent variables, which is a less interesting problem. The key is

that the same tractability holds for potentials that are sums of separable potentials, i.e.

φ(qt, qt+1) =
∑

i fi(qt)gi(qt+1). This opens up a wide space of models. Because a sum of

separable potentials naturally recalls the decomposition of a matrix into a sum of prod-

ucts of rank-one matrices, and because most practical potentials of this sort are sums over

relatively few terms, we call these “low-rank” models.

In the case of the problem of firing rate estimation, we make use of a low-rank model as

a prior that promotes gradually varying firing rates. In the case of the spike train decoding

application, we draw attention to a subclass of low-rank models that are conjugate to

the likelihood in our model of spike train generation. Thus we provide a broad family of

available prior distributions over the values of the time-varying input to the neuron (such as

a stimulus). In the case of phase selectivity map estimation, we consider again a family of

low-rank priors over the phase selectivity map. This illustrates that low-rank models exist

even when the parameters being estimated live in structured state spaces, such as, here, the

unit circle and, in the case of firing rate estimation, the postive reals.

In all of these examples, low-rank models are used to help introduce prior belief about

the estimated parameter without compromising the tractability of inference. Even if max-

imum likelihood for a given model is tractable, introducing an arbitrary prior distribution

will almost always render inference by maximum a posteriori less tractable. In each of

the applications described above, it is the conjugacy of the prior distribution used to the

likelihood of the generative model that ensures that inference remains feasible.

For the same reason, conjugacy plays an important role in inference in the application to

locating synapses. In that case, we start with a model whose likelihood is Gaussian. Since

we already believe that there will be few synapses – i.e. few nonzero elements to the vector

of synaptic weights – we experiment with imposing several different prior distributions

(over the synaptic weights vector) that promote sparsity of the estimate. In the case of so-

called “spike-and-slab” priors, which are mixture distributions each consisting of a scaled
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delta function plus a scaled continuous distribution, we are able to perform exact inference

tractably when the slab component of the prior is conjugate to the model likelihood. When

the slab and likelihood are not conjugate, then we must resort to approximate inference

methods.

Our hope is that the theory and experiments described in the following will leave the

reader convinced of two points: 1) that Bayesian inference is a powerful tool with wide

applicability to the analysis of neuroscience data, and 2) that low-rank models render many

applications of Bayesian inference – in neuroscience or elsewhere – tractable by extending

HMM theory to a broad class of continuous models.

In the next chapter, we begin with a detailed look at low-rank models: their defini-

tion, their special structure, certain examples, and numerical experiments. These ideas are

invoked later in Chapters 3 and 5 and comprise perhaps the most substantive novel contri-

bution of the overall work. In Chapter 3, we focus on the problem of spike-train decoding

in the presence of known sources of noise. We establish a broad class of generative models

and a broad class of priors conjugate to them. We derive inference methods that retain

tractability by the forward backward technique in spite of the presence of noise, and we

present the results of several numerical experiments that demonstrate the performance of

these methods. In Chapter 4, we turn our attention to the synapse locating setting. Here we

pick up where previous related work left off, describing the generative model and previous

approaches to sparsifying the estimated synaptic weights vector. We then present a few

other approaches and compare their performance in numerical experiments. In Chapter 5,

we discuss the problem of phase selectivity map estimation. We introduce a simple genera-

tive model and two families of conjugate prior distributions, one a low-rank model and the

other a family of simpler distributions on whom only approximate inference is possible.

Notations are consistent within each chapter and largely across chapters, and are ex-

plained in the main text. A few common points of notation merit mention here. Unless

otherwise stated, p(x) is a probability density function over the random variable x. Proba-

bility mass functions over discrete random variables are considered special cases of density
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functions and can be thought of as weighted sums of Dirac delta functions. The condi-

tional distribution representing the probability the value of x given some value for y is

written p(x|y). We write x ∼ p(x) to denote that the random variable x is drawn from

the distribution with density function p(x), but we will also sometimes write the name of

the distribution instead of its density function, as in x ∼ Bernoulli(x; p) meaning that x is

drawn from the Bernoulli distribution with success rate p.

In probability and statistics, it is customary to write a capital letter to denote a random

variable and the corresponding lowercase letter to denote the random variable’s value. E.g.,

X = x means that the random variable X takes the value x. Contrary to this tradition, in

our work capital letters usually denote sets of random variables, such as time series, while

lowercase letters denote particular random variables, e.g. X = X1:T = {xt}Tt=1. Here xt

is the random variable at position (e.g. time) t. The subscript i : j refers to elements i

through j, inclusive, of the set of random variables of which it is the subscript. T is usually

the length of a linear chain of random variables, even when they are not indexed by time.

Other notation is defined in particular chapters.
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Chapter 2

Low rank models: Tractable

inference in continuous,

non-Gaussian graphical models

Constructing tractable dependent probability distributions over structured continuous ran-

dom vectors is a central problem in statistics and machine learning. It has proven difficult

to find general constructions for models in which efficient exact inference is possible, outside

of the classical cases of models with restricted graph structure (chain, tree, etc.) and linear-

Gaussian or discrete potentials. In this work we identify a tree graphical model class in

which exact inference can be performed efficiently, owing to a certain “low-rank” structure

in the potentials. We explore this new class of models by applying the resulting inference

methods to neural spike rate estimation and motion-capture joint-angle smoothing tasks.

2.1 Introduction

Graphical models make it easy to compose simple distributions into large, more expressive

joint distributions. Unfortunately, in only a small subclass of graphical models is exact

computation of marginals and conditionals relatively easy. In particular, while the problem

of exact inference in discrete Markov random fields (MRFs) has seen a great deal of attention

recently ([Wainwright and Jordan, 2008]), non-Gaussian MRFs defined on more general
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(non-discrete) state-spaces remain a more-or-less open challenge.

As a simple example, consider inference over a chain of dependent probabilities. Such

a situation could, for instance, arise when modeling survey responses conducted over many

years in which the same yes/no question is asked each year but where the data for some

years are missing and of interest. One might want to estimate a population mean latent

positive response probability for every year (including those years missing responses) that

is expected to vary slowly from year to year. This requires specifying a smoothing prior on

a sequence of variables that lie between between zero and one. There are many ways to

specify such a smoothing prior, but even in this simple example it is hard to think of models

that allow us to compute conditional expectations exactly and efficiently. (For example, the

constraints on the latent variables and non-Gaussian likelihood rule out Kalman filtering in

a transformed space.)

Similar to inferring latent sentiment in a survey response modeling application, one

can find other latent variable “smoothing” tasks in fields as diverse as neuroscience and

motion capture. In neuroscience, it is of interest to infer the latent probability of spiking

– or firing rate – for a neuron given only observations of individual spikes over time. Note

that this problem is very similar to the survey response problem above. We show results

from “smoothing” neural firing probabilities to demonstrate the exact inference techniques

proposed in this paper. We also show an example of smoothing motion capture joint angle

time-series data, demonstrating that our exact method is applicable when even classical

approximations break down.

The aim of this work is to expand the class of models for which exact inference is

computationally feasible, in particular with models of continuous ans structured random

variables with non-Gaussian densities. We start by reviewing an auxiliary variable method

for introducing Markov chain dependencies between random variables of arbitrary type. We

then develop an efficient method for exact inference in a subset of such models, and identify

a new class of “low-rank” models in which exact inference is efficient. We perform inference

on examples of such models.
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2.2 Related work

(a) Graphical model with “smooth-

ing” dependency between latent

variables.

(b) Graphical model with latent

“smoothing” dependency induced

by auxiliary variables.

(c) Factor graph corresponding to

the graphical model in (b).

Figure 2.1

To begin, we first review the work of [Pitt, 2002] and [Pitt and Walker, 2005], who

describe an auxiliary variable approach to introducing dependency between random vari-

ables of arbitrary types. Refer to Figure 2.1 and consider the sequence of random variables

X = {xt}Tt=1. (Similarly we use the notation Y = {yt}Tt=1 and Z = {zt}T−1t=1 .) Assume

that we would like to bias estimation of the xt’s such that for all values of t, xt ≈ xt+1.

For now, also assume that we would like the x’s in this chain to be marginally identically

distributed a priori, i.e. xt ∼ G0(xt) for all t (this will be relaxed in later sections). One

way to proceed is to require that G0 is the invariant distribution of a Markov chain with

transition kernel p(xt|xt−1), i.e. G0(xt) =
∫
p(xt|xt−1)G0(xt−1)dxt−1. This constraint on

p(xt|xt−1) is the same as that for any MCMC sampler of G0; thus p(xt|xt−1) can be any

valid sampler transition kernel, e.g. the Metropolis-Hastings transition kernel.

In [Pitt and Walker, 2005] a particular transition kernel based on the Gibbs sampler is
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considered. Their clever idea was to form a joint distribution p(x, z) (dropping the subscript

notation for the moment), defined as p(x, z) = p(z|x)G0(x). Clearly, if we Gibbs-sample

from this distribution, i.e. sample z1 ∼ p(z1|x1), x2 ∼ p(x2|z1), z2 ∼ p(z2|x2), . . ., then the

marginal sequence x1, . . . , xT is marginally distributed as G0, as desired. One advantage

of this approach is that we have a great deal of freedom in our choice of p(z|x). [Pitt and

Walker, 2005] and others ([Caron et al., 2007; Gasthaus et al., 2009]) suggest choosing

p(z|x) to be conjugate to G0(x), since this implies that p(x|z) is in the same family as

G0, making sampling more straightforward. In addition, as the amount of information in

z about x is increased, neighboring values of x are more closely coupled together. We can

also easily incorporate noisy observations yt from this model (as shown in Figure 2.1): if

the likelihood of yt given xt is also conjugate to G0, then p(xt|zt−1, yt) remains in the same

family as G0, making conditional Gibbs sampling from p(X|Y ) straightforward.

2.3 Low-rank Markov chains

Constructing a Gibbs sampler to sample the x’s and z’s conditioned on observations (y’s in

Figure 2.1) is only asymptotically exact in the limit of infinite Gibbs sweeps. What has been

overlooked until now (to our knowledge) is that the x’s can often themselves be analytically

marginalized out, leaving a Markov chain in the z’s only, where computation often remains

tractable when the z’s are discrete random variables with a small state-space. Therefore,

in the subset of this class of models in which the z’s are discrete random variables, exact

inference can be efficiently performed.

To see how this is possible, consider the form of the joint distribution of the graphical

model in Figure 2.1b when the z’s are discrete random variables. In this case we can write

p(X) = p(x1)

T−1∏
t=1

∑
zt

p(zt|xt)p(xt+1|zt)

where we disregard the observations yt momentarily for the sake of clarity. To emphasize

the primary role of the x’s, p(X) can be re-expressed in the following equivalent form

p(X) ∝
T−1∏
t=1

Rt∑
zt=1

ft,zt(xt)gt,zt(xt+1) (2.1)



CHAPTER 2. LOW RANK MODELS: TRACTABLE INFERENCE IN CONTINUOUS,
NON-GAUSSIAN GRAPHICAL MODELS 12

for appropriate functions ft,zt and gt,zt , where each sum is a potential coupling neighboring

x variables, and where Rt is the size of the state-space of zt, which we will refer to as the

“rank” of the potential, for reasons that will become clear below. (The converse is also

true; it is straightforward to show that, given nonnegative ft,zt and gt,zt , we can construct

corresponding conditionals p(zt|xt) and p(xt+1|zt), although the resulting Markov chain

in the x’s may be non-stationary). In fact, the conditional distribution p(X|Y ) can be

expressed in exactly the same form, by absorbing the observation densities p(yt|xt) in the

f or g terms. In Figure 2.1c we have chosen to include the yt’s in the g factor.

Now, if the x’s were discrete random variables, then eq. (2.1) would represent a discrete

Markov chain in which the transition matrices are of rank Rt. Recall that exact infer-

ence in such a low-rank Markov chain is relatively easy ([Siddiqi et al., 2010]), since the

computational complexity of the forward-backward algorithm is dominated by the cost of

multiplication by the transition matrix, and multiplication by low-rank matrices is relatively

cheap.

The key idea is that, as long as the z’s are discrete random variables with small state-

space, exact inference on the Markov chain X defined in eq. (2.1) remains tractable. Even

in the general (non-discrete X) case, exact inference requires just O(R2) time (assuming

constant Rt = R, t = 1, . . . , T ), as in a standard low-rank hidden Markov model; here

the z’s correspond to the latent variables. Consider the partition function of the joint

distribution p(X,Z). ∫
dX1:T

T−1∏
t=1

Rt∑
zt=1

ft,zt(xt)gt,zt(xt+1)

=

R1∑
z1=1

(∫
dx1f1,z1(x1)

∫
dx2g1,z1(x2)×

R2∑
z2=1

(
f2,z2(x2)

∫
dx3g2,z2(x3) · · ·

We arrive at the distribution of Z simply by removing the sums over the z’s from the parti-

tion function. Rearranging the products and integrals above reveals the Markov structure
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of Z.

p(Z) ∝
∫
dx1f1,z1(x1)

∫
dx2g1,z1(x2)f2,z2(x2)×∫

dx3g2,z2(x3)f3,z3(x3) · · ·∫
dxT gT−1,zT−1

(xT ) (2.2)

We can use the forward-backward algorithm to compute exact marginals or samples from

p(Z); since, given Z, the x’s are independent, we can therefore easily compute exact

marginals or samples from p(X) as well. To be explicit, expressions for the forward and

backward variables are as follows:

A
(z1)
1 =

∫
dx1f1,z1(x1)

A
(zt)
t =

Rt−1∑
zt−1

A
(zt−1)
t−1

∫
dxtgt−1,zt−1(xt)ft,zt(xt)

B
(zT−1)
T =

∫
dxT gT−1,zT−1

(xT )

B
(zt−1)
t =

Rt∑
zt

B
(zt)
t+1

∫
dxtgt−1,zt−1(xt)ft,zt(xt) (2.3)

These are message passing equations ([Bishop, 2006]) and the forward and backward vari-

ables can be computed by induction on t. Given these quantities, the marginal distributions

of the X become mixture of modes indexed by the zt:

p(xt) ∝
Rt−1∑
zt−1

A
(zt−1)
t−1

Rt∑
zt

B
(zt)
t+1gt−1,zt−1(xt)ft,zt(xt)

So, if the inner products
∫
gt−1,i(x)ft,j(x)dx can be evaluated then we can perform exact

inference in X (or more generally in X given observations Y ) in O
(∑T

t=1R
2
t

)
time, by the

forward-backward algorithm sketched above. (Note that we need only compute these inner

products once; these can therefore be pretabulated if necessary before inference begins.) It

is straightforward to show that the linear scaling of this inference with T holds for general

acyclic Markov random fields (i.e., trees) with potentials of the low-rank form described in

eq. (2.1). Moreover, for certain graphs with cycles, the full p(X) or p(X|Y ) can be treated

efficiently as a weighted sum of trees via the method of conditioning ([Pearl, 1988]).
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When applying such a model to data, it will usually not be the case that we know the

rank of the potential functions f and g. In this case R has to be estimated from data. This

is a standard model selection problem; a Bayesian approach would exploit the marginal

likelihood p(Y |R) =
∫
p(X|R)p(Y |X)dX of the observed data Y given the rank R. This

marginal likelihood can be computed directly from our forward recursion (as usual in the

context of hidden Markov models ([Rabiner, 1989])); see Fig. 2.2 for an illustration.
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log p(X|R)
log p(Y|R)

Figure 2.2: The marginal likelihood can be used to estimate the rank of the underlying

process X generating data Y . Here a sample X0 was generated from the beta-binomial

time series model p(X|R) (Section 2.4.1) with rank R = 5; i.e., Rt = 5 for all times t.

We plot the log-likelihood (circles) log p(X0|R) as a function of R. Then we generate data

Y from p(Y |X0) and use the data to estimate the rank by maximizing the log-likelihood

log p(Y |R) (crosses) as a function of R. As the binomial parameter Nt ≡ N increases, the

data Y become more informative about X0, and p(Y |R) approaches p(X0|R).

Finally, Z is guaranteed to be a proper Markov chain only if all the inner products over f

and g are positive. On the other hand, mathematically there is nothing against performing

the recursive inference with the above forward-backward variables when the inner products

can be negative, though numerical issues due to cancellation of numbers below machine

precision may be a problem in this case. We will stick to nonnegative potentials in this
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work.

2.4 Examples

2.4.1 Beta-binomial and Dirichlet-multinomial time series

We now return to the probability-smoothing example we mentioned in the introduction.

We consider a time series of binomial distributed data yt ∼ Binomial(Nt, xt). If we choose

any prior p(X) such that the posterior p(X|{Nt}, Y ) has the form of eq. (2.1), then exact

inference is tractable. For example, we could choose xt and zt to have the following simple

conjugate Beta-binomial form:

x1 ∼ Beta(α, β)

zt|xt ∼ Binomial(zt;Rt, xt)

xt+1|zt ∼ Beta(α+ zt, β +Rt − zt)

Thus xt is marginally Beta(α, β), and the dependence between xt and xt+1 — i.e., the

smoothness of the x’s as a function of time — is set by Rt: large values of Rt lead to

strongly-coupled xt and xt+1. Eq. (2.1) in this case becomes

p(X) =

T−1∏
t=1

Rt∑
zt=0

aztx
zt
t (1− xt)Rt−zt×

xztt+1(1− xt+1)
Rt−zt (2.4)

which we will call the beta-binomial smoother, for the appropriate coefficients azt .

We could consider more general priors of the form

p(X) ∝
∏
t

Rt∑
i=0

atix
αi
t (1− xt)βixγit+1(1− xt+1)

δi

where αi, βi, γi, and δi are greater than or equal to −1 so that the inner product integrals

don’t diverge, and ati > 0 for the reasons described above. Given the form of the binomial

likelihood, that the posterior p(X|{Nt}, Y ) will have the same form, but with the constants

αi, βi, γi, and δi modified accordingly. Distributions of this form could be considered

as tractable conjugate priors for binomial time series data. Note that the necessary inner
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products can be computed easily in terms of standard beta functions, and inference proceeds

in O(R2) time, assuming constant Rt = R.

Multivariate generalizations are conceptually straightforward: we replace beta distribu-

tions with Dirichlets and binomials by multinomials, since by analogy to the beta-binomial

model, the Dirichlet is conjugate to the multinomial distribution:

~x1 ∼ Dirichlet(~α)

~zt|~xt ∼ Multinomial(Rt, ~xt)

~xt|~zt ∼ Dirichlet(~α+ ~zt)

~yt|~xt, nt ∼ Multinomial(~yt; ~xt, nt)

Just as in the beta-binomial case, this defines a sequence of marginally-Dirichlet distributed

probabilities xt, with Rt controlling the smoothness of the state path X. Inference in this

case scales quadratically with the total number of possible histograms ~zt that might be

observed.
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Figure 2.3: The inferred spiking probability density from spike train data assuming a bi-

nomial spiking model and the beta-binomial smoother. The black bars are the observed

spikes. The solid white line is the inferred mean of the spiking probability. Each time unit

is 2 ms.
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2.4.2 Smoothing conjugate priors for multinomial data

In many cases one would like a conjugate prior for multinomial data that leads to smooth

estimates of the underlying probabilities. In the preceding example, we constructed a

conjugate prior for count data that has smooth and nonnegative sample paths. If we

further constrain these sample paths to sum to one, then we could interpret X as a discrete

probability distribution; it is easy to see that the resulting smoothing prior p(X) is conjugate

to multinomial data, due to the completely factorized form of the multinomial likelihood.

However, it is not immediately clear how to exploit the model’s low-rank structure to

perform inference in a tractable way, since the constraint that the components of X sum to

one breaks the tree structure of the graphical model.

One approach is to transform to a larger state-space, xt → qt = (xt st), where st denotes

the cumulative sum st = x1 +x2 + · · ·+xt. This leads to a Markov prior on the augmented

state variable Q of the form

p(Q) ∝ δ(s1 = x1)x
ν1−1
1

R∑
k1

ak1x
k1,1
1 x

k1,2
2 ×

δ(s1 = s2 − x2)xν2−12

R∑
k2

ak2x
k2,1
2 x

k2,2
3 ×

· · · δ(sT−2 = sT−1 − xT−1)xνT−1−1
T−1 ×

R∑
kT−1

akT−1
x
kT−1,1

T−1 x
kT−1,2

T × (2.5)

δ(sT−1 = sT − xT )xνTT δ(sT = 1)

As outlined in greater detail in the appendix, we can perform forward-backward inference

on this density by recursively integrating the above density, over all the xi and the si, to

compute the normalization constant, and then rearranging the summations into the form

of a sum-product algorithm. The resulting inference algorithm requires O(R2T 2) storage

and O(R6T 2) processing time.
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2.4.3 Phase data

So far our random variables have lived in convex subsets of vector spaces; standard approx-

imation methods (e.g., Laplace approximation ([Kass and Raftery, 1995]) or expectation

propagation ([Minka, 2001])) can often be invoked to perform approximate inference in

these settings. However, our method may be applied on more general state-spaces, where

these classical approximations break down. As a concrete example, consider a time-series

of phase variables (angles). The von Mises distribution

p(xt|µt, κt) ∝ eκt cos(xt−µt)

(with mean and concentration parameters µt and κt) is popular for modeling one-dimensional

angular data, largely because the necessary normalization factors can be computed easily,

and furthermore this model has the convenient feature that, like the normal density, it is

conjugate to itself ([Gelman et al., 2003]). As in our previous examples, this univariate

distribution can be augmented to tractably model smoothed time-series data. For instance,

we could take

p(X) ∝
∏
t

R∑
i=0

e
R
2
cos(xt− 2πi

R+1)e
R
2
cos(xt+1− 2πi

R+1) (2.6)

This acts as a smoothing prior, since at each time t, for each corresponding pairwise poten-

tial, each of the terms in the sum over i is a unimodal function peaked at xt = xt+1 = 2πi
R+1 .

That is, each term contributes a bump along the diagonal, and therefore the sum over i

corresponds to a nearly-diagonal transition matrix, i.e. to a smoothing prior. Larger values

of R lead to smoother sample paths in X. Inference proceeds as in the previous examples;

if the observations yt also have von Mises densities given xt (as in the example application

discussed in the next section), then the necessary inner products can be computed easily in

terms of Bessel functions.

As in the Dirichlet-multinomial case, extensions to multivariate phase data are concep-

tually straightforward (the von Mises-Fisher density generalizes the univariate von Mises

density ([Mardia and Jupp, 2000]); see [Cadieu and Koepsell, 2010] for another general-

ization). We will describe another generalization, to oscillatory or narrowband time series

data, below.
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2.5 Experiments

We began by analyzing some simple neural spike train data (http://neurotheory.columbia.edu/

∼larry/book/exercises.html) using the beta-binomial smoother. A segment of a spike train

in which each time unit represents 2 ms was obtained. The spikes (the binary observations

{yt}) were modeled as draws from a binomial distribution with time-varying probability xt.

The smoother of eq. (2.4) was used with α = β = 1, setting the a priori marginals to be

uniform distributions. We used R = 100, which leads to a prior autocorrelation time of

approximately 60 ms. The forward-backward algorithm was run to infer the distribution

over xt as a function of time as shown in Figure 2.3. The marginal mean varies smoothly

over time, rising during times of higher spike rates.

We also performed some basic comparisons to Gibbs sampling. The Gibbs sampler is

the standard approach to computation in this type of model, but as emphasized above it

only leads to approximate solutions, whereas the marginalized forward-backward approach

we have introduced here provides exact results. The basic result, shown in Figure 2.4 is

unsurprising: many Gibbs sweeps are required to achieve a certain error level, particularly

in cases where the sample paths from the conditional distribution p(X|Y,R) are strongly

coupled.

Next we turned to a dataset involving phase variables. We analyzed joint articulation

motion capture data from the CMU Graphics Lab Motion Capture Database (http://mocap.cs.cmu.edu/

search.php?subjectnumber=13&trinum=9). A time-series of angles of extension of the right

radius of a man drinking from a bottle of soda was analyzed. This motion was modeled

with the von Mises smoother of eq. (2.6) with R = 20 and κ = 2. The observations yt were

modeled as von Mises draws with mean xt. The forward-backward algorithm smoothed the

data effectively and allowed for appropriate inference in the presence of missing data, as

illustrated in Fig. 2.5.

Conceptually, we are applying a rather simple state-space model to this data, with

the true underlying angle (the hidden state variable) modeled as xt+1 = xt + εt, and the

observation modeled as yt = xt + ηt for appropriate noise terms εt and ηt. This state-space

viewpoint suggests some natural further generalizations. For example, if we let xt+1 =

xt + 2πω + εt, then xt could model a narrowband signal with dominant frequency ω. Our
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inference methods can be applied in a straightforward manner to this oscillatory model,

and may therefore be useful in a number of potential applications, e.g. the analysis of

noisy electroencephalography data, or in the acoustic applications described in [Turner and

Sahani, 2011].

2.6 Discussion

We have introduced a class of “low-rank” models for continuous-valued data in which exact

inference is possible by efficient forward-backward methods. These exactly-solvable models

are perhaps of most interest in cases where standard approximation methods (e.g., expec-

tation propagation or Laplace approximation) are unreliable, such as the application to

circular data time series discussed in section 2.4.3. Even in less “exotic” cases, such as the

beta-binomial model discussed in section 2.4.1, classical methods based on Gibbs sampling

can mix slowly (c.f. Fig. 2.4), making the exact sampler introduced here more attractive.

(More generally, of course, there is significant value in exact, not approximate, inference

methods: in mission-critical applications, for example, it is essential to have methods that

are guaranteed to return the correct answer 100% of the time.) Thus we hope that these

low-rank models might prove useful in a wide range of applications.

Directions for future theoretical research include connections with recent work on infer-

ence in reproducing kernel Hilbert spaces (RKHSs) by [Song et al., 2010b] and [Song et al.,

2010a]. The latter describe an approximate RKHS inference method in tree-structured

graphical models, e.g. over non-Gaussian continuous variables. They perform belief prop-

agation by operations on messages represented in a RKHS. Their approximate inference

algorithm takes as input samples from the variables and estimates the necessary operators.

It could be fruitful to explore connections between such a program and the methods we

present here.

Our models also bear resemblance to the Reduced-Rank Hidden Markov Models (RR-

HMMs) proposed by [Siddiqi et al., 2010]. These are n-state hidden Markov models with

rank k < n transition matrices. Probabilities in RR-HMMs can be represented in terms of

k×k matrices, and inference can be done in O(k2) time. Our method exploits a similar prop-
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erty of the models it treats, reformulating transitions between continuous state-spaces (not

only between high-dimensional discrete state-spaces) in terms of low-dimensional discrete

spaces.

Further, there are a number of models that include inference in a large number of

chains of dependent, constrained random variables for which our exact inference approach

might not only improve inference but may result in significant computational savings. One

example is the generalized Polya-urn dependent Dirichlet process (GPU-DDP) mixture

([Caron et al., 2007]). The GPU-DDP models time series observations as being draw from

a time-dependent Dirichlet mixture. The latent parameters of the mixture components are

allowed to change over time, but must be constrained in the same way that the auxiliary

variable random walk of [Pitt, 2002] constrains the latent sample paths in this paper.

Inference in GPU-DDP mixtures is hard, suffering from slow mixing and high computational

complexity, particularly in the low sample count, high-rank domain in which our exact

inference approach excels. Applying our inference procedure to GPU-DDP inference could

result in substantial improvements.

2.7 Appendix

In section 2.4.2 we describe a polynomial time smoother for multinomial data confined to

the unit simplex. Here we derive the forward variables of this smoother, which we need to

perform efficient inference. The necessary backward variables may be derived following the

same integration steps but starting from time T and proceeding backward.

Define s0 ≡ 0, and let ki be the multi-index [ki1, ki2], over which the sum
∑

ki
xki1i xki2i+1

couples xi to xi+1 (in addition to the implicit coupling by the simplex constraint). Let

{ak(t)} = {ak} be a set of coefficients, indexed by multi-index k, that we assume to be

constant over time, merely for notational convenience. Pushing all sums as far to the

right as possible, and defining δi ≡ δ(si = si+1 − xi+1), the joint density in the expanded
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state-space is

p(Q) =
R∑
k1

ak1x
ν1+k1,1−1
1 δ0×

R∑
k2

ak2x
ν2+k1,2+k2,1−1
2 δ1 × · · ·

R∑
kT−1

akT−1
x
νT−1+kT−2,2+kT−1,1−1
T−1 δT−2×

x
νT+kT−1,2−1
T δT−1δ(sT = 1)

For the purpose of computing the forward variables, the multinomial exponents {νi − 1}
may be omitted and considered absorbed by the ki,j , so as to further simplify the notation.

We compute the normalization constant of the joint distribution:

Z =

∫ 1

0
ds1

∫ s1

0
dx1 · · ·

∫ 1

0
dsT

∫ sT

0
dxT p(Q)

=

∫ 1

0
ds1

∫ s1

0
dx1

R∑
k1

ak1x
k1,1
1 δ0×

∫ 1

0
ds2

∫ s2

0
dx2

R∑
k2

ak2x
k1,2+k2,1
2 δ1 × · · ·

To compute Z, we integrate from left to right, first integrating dx1, then ds1, then dx2,

then ds2, and so on until dsT . Even after only the first five integrations, a pattern begins

to emerge:

Z =
∑
k1

ak1

∫ 1

0
ds1(s1 − s0)k1,1×∫ 1

0
ds2

∫ s2

0
dx2

∑
k2

ak2x
k1,2+k2,1
2 δ1 × · · ·

=
∑
k1

ak1

∫ 1

0
ds2

∫ s2

0
dx2(s2 − x2)k1,1×

∑
k2

ak2x
k1,2+k2,1
2 × · · ·

=
∑
k1

ak1
∑
k2

ak2B(k1,2 + k2,1, k1,1)×
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∫ 1

0
ds2s

k1,1+k1,2+k2,1
2 ×∫ 1

0
ds3

∫ s3

0
dx3

∑
k3

ak3x
k2,2+k3,1
3 δ2 × · · ·

=
∑
k1

ak1
∑
k2

ak2B(k1,2 + k2,1, k1,1)×∫ 1

0
ds3

∫ s3

0
dx3(s3 − x3)k1,1+k1,2+k2,1×∑

k3

ak3x
k2,2+k3,1
3 × · · ·

=
∑
k1

ak1
∑
k2

ak2B(k1,2 + k2,1, k1,1)×

∑
k3

ak3B(k2,2 + k3,1, k1,1 + k1,2 + k2,2)×∫
ds3s

k1,1+k1,2+k2,1+k2,2+k3,1
3 ×∫ 1

0
ds4

∫ s4

0
dx4

∑
k4

ak4x
k3,2+k4,1
4 δ3 × · · ·

The first equality results from integration with respect to x1, which removes the delta

function δ0 = δ(s0 = s1 − x1) = δ(x1 = s1), leaving (s1 − s0)k1,1 in place of x
k1,1
1 . The

second equality results from integration with respect to s1, which removes the delta function

δ1 = δ(s1 = s2−x2), which replaces (s1−s0)k1,1 = s
k1,1
1 with (s2−x2)k1,1 . Next we integrate

with respect to x2, which proceeds by the following change of variables:∫ s

0
dx(s− x)α−1xβ−1

u=x/s
=∫ 1

0
du(s(1− u))α−1(su)β−1s =

sα+β−1
∫ 1

0
(1− u)α−1uβ−1 = sα+β−1B(α, β)

where B(α, β) is the beta function. The next integration with respect to s2 removes the

delta function δ2 = δ(s2 = s3 − x3), resulting in the power of (s3 − x3). The last equality

is a result of the same change of variables when integrating with respect to x3, yielding

another beta function, and leaving the last line of the expression identical to the last line of

the expression two steps before, except that the “time” indices have all increased by one.
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To condense this expression, define k0,2 ≡ kT,1 ≡ 0, and Ki ≡
∑i

j=1 kj−1,2 +kj,1. Lastly,

define b(k1:n) ≡ B(kn−1,2 + kn,1,Kn−1). Continuing with the integration from left to right,

we find an expression for the normalization constant as the following nested sum:

Z =
R∑
k1

ak1

 R∑
k2

ak2b(k1:2)

 R∑
k3

ak3b(k1:3)× · · · R∑
kT−2

akT−2
b(k1:T−2)

 R∑
kT−1

akT−1
b(k1:T−1) ×

b(k1:T ))) · · · ))

This is not in sum-product form because, e.g., b(k1:T ) depends on all the indices of sum-

mation. We may put this into sum-product form as follows. However, we can rearrange

this summation into the form of a tractable sum-product algorithm as follows. Each sum

over ki is first a sum over ki,1 ∈ {0, · · · , R}, and then a sum over ki,2 ∈ {0, · · · , R}. The

sums are in the order k1,1, k1,2, k2,1, k2,2, and so on. Now, notice that every set of values

{ki}Ti=1 = {[ki,1, ki,2]}Ti=1 corresponds uniquely to a set of values {[ki,1,Ki]}Ti=1, with Ki as

defined above, and vice versa. Then we may sum over values of the latter quantity in the

order KT , kT−1,1, KT−1, kT−2,1, and so on, instead of summing over values of ki, and obtain

the same result. That is, we treat the Ki as sum indices instead of explicitly summing over

the ki,2.

To sum over all possible values of this second set of indices, the values of the indices must

be constrained to be compatible. For instance, k1,1 = 1 is not compatible with K2 = 0,

because K2 = k1,1 + k1,2 + k2,1 ≥ k1,1. This compatibility requirement manifests in the

upper and lower bounds of the sums over these indices in eq. (2.7). Consider the sum over

k1,1, given some values for k2,1 and K2 (which come earlier in the multiple sum). A priori,

k1,1 ∈ {0, · · · , R}. However, k1,1 = K2−k2,1−k1,2 ≤ K2−k2,1 and k1,1 = K2−k2,1−k1,2 ≥
K2 − k2,1 − R, so we have k1,1 ∈ {max{0,K2 − k2,1 − R}, · · · ,min{R,K2 − k2,1}}. These

are the values of k1,1 that are to be summed over, i.e. that are compatible with the values

of previously specified indices. More generally,

ki,1 = Ki+1 − ki+1,1 −Ki−1 − ki−1,2 − ki,2

≥ Ki+1 − ki+1,1 − (2i− 1)R
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ki,1 = Ki+1 − ki+1,1 −Ki−1 − ki−1,2 − ki,2

≤ Ki+1 − ki+1,1

0 ≤ ki,1 ≤ R

ki,1 ∈ {max{0,Ki+1 − ki+1,1 − (2i− 1)R}, · · · ,

min{R,Ki+1 − ki+1,1}}

Similarly,

Ki = Ki+1 − ki+1,1 − ki,2

≥ Ki+1 − ki+1,1 −R

Ki = Ki+1 − ki+1,1 − ki,2

≤ Ki+1 − ki+1,1

Ki ≥ ki,1

Ki ∈ {max{ki,1,Ki+1 − ki+1,1 −R}, · · · ,

Ki+1 − ki+1,1}

We redefine b(k1:n) = B(kn−1,2 + kn,1,Kn−1) as the same quantity in terms of the new

indices of summation, b(Kn−1,Kn) ≡ B(Kn − Kn−1,Kn−1). Putting this all together we

can write the normalization constant in the form of a sum-product algorithm, arranging the
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sums in the prescribed order and pushing all factors as far to the left as possible:

Z =

R(2T−2)∑
KT=0

 min{R,KT }∑
kT−1,1=max{0,KT−(2(T−2)−1)R}

KT∑
KT−1=max{kT−1,1,KT−R}

(2.7)

a[kT−1,1,KT−KT−1]b(KT−1,KT ) (· · · (

min{R,K4−k4,1}∑
k3,1=max{0,K4−k4,1−5R}

K4−k4,1∑
K3=max{k3,1,K4−k4,1−R}

a[k3,1,K4−K3−k4,1]b(K3,K4) (

min{R,K3−k3,1}∑
k2,1=max{0,K3−k3,1−3R}

K3−k3,1∑
K2=max{k2,1,K3−k3,1−R}

a[k2,1,K3−K2−k3,1]b(K2,K3) (

min{R,K2−k2,1}∑
k1,1=K1=max{0,K2−k2,1−R}

a[k1,1,K2−K1−k2,1]b(K1,K2)
)))
· · ·
))

Note that since we are no longer explicitly summing over ki,2, it has been replaced by

Ki+1 −Ki − ki+1,1 in the second element of the multi-index indexing the coefficients {ak}.
The forward variables A(i,j), then, can be immediately read off as follows. The first and
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second superscripts index values of kt,1 and Kt, respectively:

A
(i,j)
2 =

min{R,j−i}∑
k=max{0,j−i−R}

a[k,j−k−i]B(j − k, k)

i ∈ {0, · · · , R}, j ∈ {i, · · · , i+ 2R}

A
(i,j)
t =

min{R,j−i}∑
k=max{0,j−i−(2t−3)R}

j−i∑
l=max{k,j−i−R}

a[k,j−l−i]B(j − l, l)A(k,l)
t−1

i ∈ {0, · · · , R}, j ∈ {i, · · · , i+ 2(t− 1)R}

A
(j)
T =

min{R,j}∑
k=max{0,j−(2t−4)R}

j∑
l=max{k,j−R}

a[k,j−l]B(j − l, l)A(k,l)
T−1

j ∈ {0, · · · , 2(T − 1)R}

and Z =
∑2(T−1)R

i=0 A
(i)
T . Similarly we can derive backward variables C

(i,j)
t , where the

first superscript indexes kt−1,2 and the second indexes Lt ≡
∑T

i=t ki−1,2 + ki,1. Marginal

quantities can be computed readily. The singleton marginal density is

p(xt) =
1

Z
R∑
i=0

i+2(t−2)R∑
j=i

R∑
k=0

k+2(T−1−t)R∑
l=k

(2.8)

A
(i,j)
t−1C

(k,l)
t+1 B(j, l)

R∑
kt−1,2=0

R∑
kt,1=0

a[i,kt−1,2]a[kt,1,k]x
kt−1,2+kt,1
t (1− xt)j+l

Therefore this method requires O(R2T 2) storage for the forward and backward variables,

and O(R6T 2) processing time to compute marginals. For processing time, one factor of T

comes from the number of marginals to compute. The other factor comes from the number

of forward variables for each time, which increases linearly with T , manifesting in the limits

of the sums over j and l in eq. (2.8).
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Figure 2.4: For different amounts N of data, the marginal means of a Markov chain X

of length T = 100 were computed both exactly and approximately by Gibbs sampling,

using the beta-binomial smoother. Here we plot the root mean square error per time step

of the Gibbs solution with respect to the exact solution as a function of the number of

Gibbs sweeps. For each value N of the binomial count parameter we plot this curve for

three values of the rank R. Each curve is the median of 25 traces, each the average of

10 independent runs of the Gibbs sampler. Each of the 25 traces corresponds to different

randomly generated input data from p(Y |R). The sampler was initialized with each xt

drawn independently from the marginal prior distribution, p(xt) = Uniform([0, 1]). The

Gibbs estimates converge most quickly when p(X|Y,R) is most uncoupled, that is, when

R is small and/or N is large; when R is large or N is small the Gibbs error requires many

sweeps to shrink towards zero.
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Figure 2.5: The inferred probability density of angle in motion capture data. The solid

white line is the observed signal. The dotted white line, mostly obscured by the solid white

line, is the inferred mean. The colorbar indicates the inferred posterior. Bands appear in

intervals where the observations are suppressed. They are tapered because, deeper within

the band, distant observations are less informative of the density, which is therefore nearly

uniform. Inset: Inference with no data held out. The solid line is the observed signal, the

dashed line the inferred mean. Much of the noise in the signal has been smoothed. Each

time unit is 2 ms.
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Chapter 3

Information loss in spike trains due

to spike time jitter and ambiguity

of neuronal identity

3.1 Abstract

We investigate Bayesian methods for optimal decoding of noisy or incompletely-observed

spike trains. Information about neural identity or temporal resolution may be lost during

spike detection and sorting, or spike times measured near the soma may be corrupted with

noise due to stochastic membrane channel effects in the axon. We focus on neural encod-

ing models in which the (discrete) neural state evolves according to stimulus-dependent

Markovian dynamics. Such models are sufficiently flexible that we may incorporate realistic

stimulus encoding and spiking dynamics, but nonetheless permit exact computation via

efficient hidden Markov model forward-backward methods. We analyze two types of signal

degradation. First, we quantify the information lost due to jitter or downsampling in the

spike-times. Second, we quantify the information lost when knowledge of the identities of

different spiking neurons is corrupted. In each case the methods introduced here make it

possible to quantify the dependence of the information loss on biophysical parameters such

as firing rate, spike jitter amplitude, spike observation noise, etc. In particular, decoders
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that model the probability distribution of spike-neuron assignments significantly outperform

decoders that use only the most likely spike assignments, and are ignorant of the posterior

spike assignment uncertainty.

3.2 Introduction

Bayesian decoding of spike trains has received a great deal of previous attention; see e.g.

[Pillow et al., 2011] for a recent review. Bayesian decoding methods are particularly ap-

pealing because they are optimal in principle (assuming that the “encoding model” — the

probabilistic model that describes how information is encoded in the spike trains — is cor-

rectly specified), and also because prior knowledge can be explicitly incorporated into the

Bayesian model [Kass et al., 2005].

Much of the previous neural decoding literature has assumed that the spike trains to

be decoded have been observed completely and noiselessly. Of course, in practice this is

rarely the case. For example, information about neural identity or correlations may be lost

during spike sorting [Lewicki, 1998; Hill et al., 2011], or spike times measured near the

soma may be corrupted with noise due to stochastic membrane channel effects in the axon

[Aldworth et al., 2005; Faisal et al., 2005; Faisal and Laughlin, 2007]. The recent rise in

popularity of optical (e.g., calcium-based) methods for spike detection (which typically offer

significantly less signal resolution than electrical recording methods) have made these issues

more pressing [Cossart et al., 2003; Ohki et al., 2005]; see, e.g., [Mishchenko et al., 2011]

for a recent related discussion.

The main contribution of this work is a general framework, using flexible spiking models

of populations of neurons, for computationally tractable Bayesian spike train decoding when

spike trains are corrupted by either the presence of spike time jitter or spike sorting identity

errors. Our goal is to obtain a better analytical and computational understanding of the

impact of these spike corruptions on the optimal decoder. Our approach makes heavy use

of well-known efficient inference algorithms for hidden Markov models.

Related questions have been previously investigated using simple Poisson neuron models

[Aldworth et al., 2005; Gollisch, 2006; Ventura, 2008b]. In this paper we extend these anal-
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yses to a more realistic and flexible class of spiking models. We focus on a Markovian model

of spiking dynamics that is similar to those treated in [Herbst et al., 2008; Toyoizumi et al.,

2009; Calabrese and Paninski, 2011; Escola et al., 2011; Nossenson and Messer, 2011], and

which is closely related to the spike-response/generalized-linear model framework that has

become popular in the recent computational and statistical neuroscience literature [Truc-

colo et al., 2005; Paninski et al., 2007]. This model class is sufficiently flexible that we may

incorporate realistic stimulus encoding and spiking dynamics, but nonetheless permits ex-

act computation via efficient forward-backward methods familiar from the theory of hidden

Markov models.

Any such Bayesian approach must specify a prior distribution on the signals to be

decoded. In the context of this Markovian neural encoding model, we note that the broad

class of “low-rank” state-space models recently introduced in [Smith et al., 2012] provides

a convenient set of conjugate priors [Casella and Berger, 2001] in our setting, implying that

the posterior marginal distributions of stimuli given the model’s sufficient statistics can be

computed exactly, further enabling efficient computation.

We focus here on two major mechanisms of spike train corruption. First, we examine

the impact of errors in the timing of each observed spike on decoder performance. Second,

we quantify the loss of decoding efficiency when knowledge of the identities of the observed

neurons is discarded or corrupted. A concrete example of the latter problem involves spike

sorting in low-SNR regimes, where overlaps in spike clusters can lead to errors or excessive

uncertainty in the identity of the neuron contributing any observed spike. In each case,

our methods allow us to quantify and compute the loss in decoding performance efficiently

over a range of parameter values, contributing to a more systematic understanding of the

importance of these effects.

The paper is organized as follows. We first define more specifically the models of spike

train corruption that we will consider, along with the relevant model assumptions. Then we

will describe how to compute the resulting Bayesian decoders, given spike train data which

has been corrupted by these mechanisms. In each case, the decoder involves the execution

of a two-stage Gibbs sampler [Robert and Casella, 2005] that we will describe in detail. We

will briefly describe a class of stimulus priors for which our methods are made particularly



CHAPTER 3. INFORMATION LOSS IN SPIKE TRAINS DUE TO SPIKE TIME
JITTER AND AMBIGUITY OF NEURONAL IDENTITY 33

efficient by “Rao-Blackwellization” of the Gibbs sampler, in which the sample average is

replaced with an estimator with lower variance [Robert and Casella, 2005]. Finally, we will

present the results of some analyses of simulated data, where we can compare directly to

Bayesian decoders given uncorrupted spike train data, and close with a discussion of some

open directions for future research.

3.3 Sources of information loss

For simplicity, we assume that each observed neuron responds conditionally independently

to the stimulus (Fig. 3.1). We will focus on Bayesian reconstruction of stimuli from spike

trains corrupted by spike-time jitter and neuron identity loss. In both cases, we assume that

the state of each neuron evolves according to some Markovian dynamics, passing through

single-neuron states Q = {qt}, where qt is the state of the neuron at time t. Some or all

of the transition probabilities may be functions of the stimulus X = {xt}, where xt is the

value of the stimulus at time t. (As usual, the X may be viewed more generally as some

filtered or transformed representation of the physical stimulus, or may represent some more

abstract covariate that the neural activity depends upon.) We assume that time has been

discretized into equal-length bins that are sufficiently small that a given neuron can fire at

most once within each bin.

3.3.1 Spike time jitter

Biophysically, sources of the variability in spike-times include stochasticity in the activity of

ion channels and in synaptic transmission, or in the timing of spike detection, particularly

in optical recordings. (Note that temporal downsampling can also be interpreted as a form

of temporal noise, once the spike times are upsampled back to their original resolution.)

The input to the decoder, then, may be a set of spike trains Y = {yt}, yt ∈ {0, 1}, jittered

from the true spike-time data D. In devising a decoding algorithm, one might ignore these

sources of noise and take the observed spike-times as the actual times. Alternatively, one

may perform inference directly on the temporally corrupted signal, explicitly modeling the

sources of temporal noise.
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Figure 3.1: Problem schematic. Neurons are exposed to a common stimulus X. They

generate spike trains D which are then degraded by sources of noise. By Y we denote the

degraded signal, which is the input to a decoder that reconstructs the stimulus. The spike

trains D are assumed to be conditionally independent given the stimulus X.

The importance of spike-time noise has been recognized previously; for example, [Ald-

worth et al., 2005] describe an iterative algorithm for dejittering spike trains by aligning sin-

gle stimuli to find the most likely stimulus to have preceded a jittered spike. Our approach

differs by attempting to reconstruct the entire stimulus given a jittered full spike train,

instead of a single spike. In addition, [Gollisch, 2006] introduces an iterative expectation-

maximization (EM) algorithm that improves receptive field estimates by explicitly incorpo-

rating spike-time jitter into a linear-nonlinear Poisson (LNP) model. By contrast, we will

focus on stimulus decoding, rather than the estimation of encoding models; in addition, our

approach is able to handle more general non-Poisson spike generation.

3.3.2 Spike identity loss

A key challenge in neural recording is the problem of spike sorting: correctly assigning each

spike to the neuron that generated the spike, given noisy extracellular voltage or optical

recordings [Lewicki, 1998; Hill et al., 2011]. Any single electrode (or optical pixel) will

often record the activity of more than one neuron, in addition to any background noise. An

optimal decoder therefore needs to keep track of the posterior uncertainty corresponding

to the assignment of each spike, as previously emphasized, e.g., by [Wood and Black, 2008;
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Ventura, 2008b; Ventura, 2008a], in the context of spike trains which can be modeled

as inhomogeneous Poisson processes. (See also [Chen et al., 2012], who like [Ventura,

2008b] emphasize the importance of retaining as much information as possible in the raw

extracellular voltage signal, and not discarding the “unsortable” spikes.) Again, a key

extension here is to generalize to the non-Poisson setting.

3.4 Model assumptions

We model the dynamics of the neurons in the observed populations in terms of discrete-time

Markov chains, similar to the models treated, e.g., in [Sahani, 1999; Herbst et al., 2008;

Calabrese and Paninski, 2011; Escola et al., 2011]. These models are sufficiently flexible

to handle refractoriness, burstiness, adaptation, and other aspects of spike train dynamics

while at the same time remain highly computationally tractable, as we will describe in

further depth below.

Fig. 3.2 illustrates a simple example of a Markovian model neuron with three states.

In this model, spiking occurs in the state (1). States (2) and (3) are non-spiking states,

and the only dependence of these dynamics on the stimulus X is that the transition from

state (3) to state (1) at time t occurs with probability f(xt). We observe only the spikes

(or a noisy function thereof); the state variables are never observed directly. Aside from

the choice of response function f(xt), the only free parameter is p23, which determines the

average length of the refractory period1. In all of our experiments (results shown below) we

assume that the neuronal population is composed of conditionally independent neurons of

exactly this type, with f(xt) = xt or f(xt) = 1− xt. This choice is for simplicity and is not

essential, as will become clear below; some conditional interdependence among the neurons

is possible with only a slight cost in tractability, for example, and the stimulus-dependence

of the various transition probabilities could similarly be more complicated.

Next we describe the model assumptions corresponding to each of the information-loss

1Note that the refractory period here is relative. Markov models that impose an absolute refractory

period are easy to imagine. Indeed, similar models have been considered that include an absolute refractory

period via some number of additional refractory states that the neuron passes through deterministically

(e.g., [Herbst et al., 2008; Haslinger et al., 2010]). Our methods apply to such models as well.
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mechanisms discussed above.

3.4.1 Spike time jitter

In this setting we assume that we can only observe temporally-jittered versions of the true

spike times. For concreteness, we assume that the jittered spike times have been drawn

from discretized Gaussian distributions with standard deviation σ centered on the actual

(unknown) spike time. We assume that σ is known or can be estimated based on previous

experiments. (All of these assumptions can be relaxed considerably.)

3.4.2 Identity loss

In this setting we focus on spike-sorting errors. Observations here correspond to spike fea-

ture vectors, which represent, e.g., the amplitude and width of the spike voltage waveform,

or a projection onto principal components in voltage waveform space. The distributions of

these spike features overlap, so it is impossible to say with certainty which spike came from

which neuron. For concreteness, we assume that these feature vectors are two-dimensional

and drawn from Gaussian distributions whose mean and covariance are known or can be

estimated. (Again, all of these assumptions can be relaxed considerably.)

3.5 Stimulus decoding

In both of the settings described above, the accuracy of stimulus reconstructions provides

a measure of the information conveyed in the observed spike data. For a given stimulus

prior p(X) and noise distribution p(Y|X), we would like to, for example, compute the mean

summed squared error (MSE),

EP (X,Y)

∑
t

(xt − x̂t)2 , (3.1)

where X̂ is the posterior mean E(X|Y), the optimal stimulus reconstruction for the given

Y under the square error loss function. We use bold-face Y to refer to the noisy signals

from all neurons, and Y to refer to the noisy signals from just one neuron. Similarly, we

use Q to refer to the state sequence of the assembly of neurons, and Q to refer to a single
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Figure 3.2: Left: A simple discrete-time model for a neuron responding to a time-varying

stimulus X = {xt}. A neuron in the resting state (3) enters the spiking state (1) with a

probability that is a function of the current stimulus value. The neuron passes immediately

from (1) to a refractory state (2) where it stays for a time drawn from the geometric

distribution with parameter p23, which is not a function of the stimulus. Right: example

values of the hidden state sequence Q, the true (unobserved) spike times D, and the observed

spike data Y .

neuron’s state sequence. When appropriate, we include a superscript index to specify the

neuron, as in Qi.

Our approach to compute the expression in (3.1), is to 1) draw many stimuli X from the

stimulus prior P (X), 2) for each stimulus, draw a sample state sequence Q and noisy obser-

vations Y from the model P (Q,Y|X), 3) decode each set of noisy observations separately

to obtain X̂, and finally 4) compute the squared error
∑

t (xt − x̂t)2 for each such sample

and average to obtain an unbiased Monte Carlo estimate of the expected loss (3.1). Steps

1, 2 and 4 are straightforward. For these Markovian neuron models, step 3 may be accom-

plished by the use (described below) of Gibbs sampling [Robert and Casella, 2005] in time

that scales linearly with the duration of the experiment, i.e. the number of observations.

3.5.1 Gibbs sampling and Rao-Blackwellizaition

Gibbs sampling is a Markov chain Monte Carlo (MCMC) algorithm for sampling from

complicated joint distributions p(Z) = p(z1, z2, · · · , zn) whose conditional distributions

p(zi|Z\zi) are relatively easy to sample from, where Z\zi is the set of components of Z
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except for zi [Robert and Casella, 2005]. The algorithm proceeds by first initializing all

the components of Z with some typical values. Then one cycles through the components

(in whatever order, so long as all components are iterated over), sampling each zi from its

conditional distribution p(zi|Z\zi), holding all the other components fixed at their previous

values. Then the value of zi is updated to the sampled value before moving on to the next

component in the cycle, and that value may be added to a tally. To estimate the marginal

means of the components, these tallies are finally divided by the overall number of cycles.

Since Gibbs sampling provides samples from the full joint distribution p(Z), we may use

these samples to compute estimates of any desired marginal moments or quantiles.

In an important variant of Gibbs sampling which we employ in the stimulus decoding

problem, for each cycle and for each component, the conditional mean of the component,

rather than the sampled value of the component, is tallied in the estimation of the marginal

mean of the component. When this is possible, i.e. when the conditional expectation

E(zi|Z\zi) is known for any value of the other components Z\zi, it can be shown that

the variance of this estimator is less than that of the average of sample values. Such an

algorithm is termed a Rao-Blackwellized Gibbs sampler [Robert and Casella, 2005]. More

generally, when feasible, we can record the full conditional distribution p(zi|Z\zi) at each

iteration, and therefore obtain better estimates of the conditional variance, quantiles, etc.,

as well.

The Gibbs approach is most useful when the sampling from these conditional distri-

butions is simpler than sampling from the joint distribution directly, as is the case in the

present stimulus decoding problem. The details of this application are detailed below.

3.5.2 The stimulus decoder Gibbs sampler

We proceed by conditioning on the hidden state sequence Q that led to the generated spike

train D; the probability of a stimulus X given the observed data Y may be written as the

marginal probability p(X|Y) =
∫
p(X,Q|Y)dQ. Thus, to obtain a sample from p(X|Y),

we draw samples from p(X,Q|Y) but only record the value of X. We sample from this joint

distribution by Gibbs sampling: given the sample Q(i), we draw X(i) from p(X|Q(i),Y) and

record X(i) (or the Rao-Blackwellized statistics p(X|Q(i),Y) or E(X|Q(i),Y), if these are
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analytically available), then draw Q(i+1) from p(Q|X(i),Y), and iterate. Fig. 3.3 shows an

example sequence of samples of X and Q.

The problem of stimulus reconstruction has been reduced to the problem of sampling

from these two conditional distributions, p(X|Q,Y) and p(Q|X,Y). What remains is to

sample from these conditional distributions in an efficient way; in particular, since we are

interested in reconstructing stimuli given long samples of spike train data, it is important

to develop methods that scale linearly with the length of the observed spike train data. In

the following we will address each subproblem in turn, and we will illustrate the procedure

with the simple three-state Markov model neuron introduced above.

Both in the jitter and identity loss cases, sampling from p(Q|X,Y) will be a matter of

framing the dynamics and noisy signal as a hidden Markov model. Once that is done, we

can sample from p(Q|X,Y) using standard forward-backward recursions [Rabiner, 1989].

Sampling from p(X|Q,Y) turns out to require similar approaches in both jitter and identity

loss cases, and will involve a simple application of Bayes rule to write down the distribution

to be sampled from. In the case that this distribution can be integrated analytically, we

can employ Rao-Blackwellization.

3.5.3 Hidden Markov models

Hidden Markov models (HMMs) [Rabiner, 1989] are convenient graphical models for the

analysis of discrete-time systems. HMMs represent joint distributions over latent (unob-

served) variables on which some observed variables depend. To be concrete, a HMM consists

of two components. First is a discrete Markov chain of latent variables Z = {zt}Tt=1, so that

p(zt|z1, · · · , zt−1) = p(zt|zt−1).

Second is a discrete set of observations W = {wt}Tt=1, one observation corresponding to

each latent variable, and each of which has the Markov property

p(wt|Z,W\wt) = p(wt|zt).

Many systems can be reasonably modelled by HMMs. In our case, the variables wt will cor-

respond to the binary presence or absence of a spike at time t, or the observed spike feature
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Figure 3.3: An example sequence of samples from p(X|Q) and p(Q|X,Y), drawn via the

Gibbs method described in the main text. The dashed curve is the actual stimulus. The

solid curves in the stimulus panels are samples of X. The bars in the neurons firing panels

show the number N of neurons firing at each time bin in the sample state sequence sample

Q. I.e., Nt is the number of neurons in the spike state (qt = 1) at time t. These data are

from a simulation of 300 neurons responding to a sinusoidal stimulus with p23 = 0.1. The

jitter amplitude is σ = 2. 100 equilibration sweeps were made before these samples were

recorded. The bottom two panels show the number of spikes in the jittered and actual spike

trains at each point in time.
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vector at time t; the zt variables correspond to the unobserved neuronal state illustrated in

Fig. 3.2.

It turns out that inference in a HMM – i.e. estimation of the latent variables given

only values of the observed variables – is particularly efficient. In particular, inference

time is linear in the length of the Markov chain. When Z and W form a hidden Markov

model (HMM), sampling from the posterior state distribution p(Z|W ) proceeds via the

standard filter-forward sample-backward HMM recursion [Fruhwirth-Schnatter, 2006]. We

first compute the “forward probabilities”

at(i) = p(w1, · · · , wt, zt = i),

which can be computed recursively in O(N2T ) time, where N is the number of possible

states of each zi. The forward variables are indexed by state, i = 1, 2, · · · , N , and form a

N × T matrix. We then recurse backwards to sample:

zT ∼ p(zT = i|W ) =
aT (i)∑
i aT (i)

zt ∼ p(zt|Zt+1:T ,W )

= p(zt|zt+1,W )

∝ p(zt+1|zt)p(zt|W1:t)

∝ p(zt+1|zt)at(zt).

In the first line, the use of “∼” means that zT is drawn from the distribution p(zT = i|W ).

By appending all the sampled zt variables into a single vector Z, we obtain a sample from

the full conditional distribution p(Z|W ) in O(T ) total time.

The model parameters themselves (the transition probabilities αij = p(zt+1 = j|zt = i)

and the observation probabilities ηij = p(wt = j|zt = i) can be inferred, e.g., via the

standard Expectation Maximization algorithm [Rabiner, 1989]; see [Escola et al., 2011] for

further discussion. In the following we take the model parameters as known for simplicity.

3.5.4 Sampling from the posterior state distribution p(Q|X, Y )

To apply the efficient inference methods associated with HMMs to our information loss

settings, we must frame each as a HMM but with the noisy (as opposed to the actual)
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spikes as the observations. This entails characterizing the neurons in each setting as a system

whose states Q1:T form a Markov chain, given stimulus X, and whose noisy observations

Y1:T depend on the states Q1:T in a Markovian fashion [Rabiner, 1989]. In either setting,

the neurons would trivially form a HMM if not for the information loss; for any Markovian

neuron model, whether or not there is a spike at a given time bin depends only on the

neuron’s state qt at that time. Once the information loss mechanism is introduced, however,

it is the noisy signal Y1:T (i.e., the jittered spike times, or the observed noisy feature vectors)

that we must formulate as the observation of a conditional HMM.

3.5.4.1 Spike time jitter

We seek to frame the generation of spike trains in the jitter setting as a HMM. However,

note that each neuron’s spike train and state sequence are conditionally independent of all

other neurons’ spike trains and state sequences, given the stimulus. Therefore, to sample the

whole set Q of state sequences given all the jittered spike trains Y and given the stimulus

X, we can sample Q given Y for each neuron in isolation.

Consider a neuron with Markovian dynamics as described above, so that D is its un-

jittered spike train, with spike times {ti}, i = 1, · · · , Nspikes. Then that neuron’s state

sequence Q forms a HMM with D as the observations. Given D and the stimulus X

and with knowledge of the underlying Markovian dynamics of the neuron, we can sample

Q ∼ p(Q|X,D) by the standard filter forward sample backward algorithm.

If instead we are given a jittered spike train Y , with jittered spike times {yi}, i =

1, · · · , Nspikes, then sampling Q is not so straightforward. Y and Q do not form a HMM.

To see this, consider a given jittered spike time yi. This spike corresponds to some true

spike time t, whose spike is the observation from the neuron in state qt. However, t could be

anywhere in a window of time bins surrounding yi. The width of this window is determined

by the jitter amplitude. In this sense the spike time yi may contain information regarding

the state of the neuron at any of several or many time bins. We therefore need to take an

alternate approach to sampling Q in the jittered case.

One approach is to break up the sampling into two Gibbs steps. First, sample the true

spike train D, given X and Y . Then, with D in hand, sample Q ∼ p(Q|X,D) by the
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forward backward recursion described above. (Note that p(Q|X,D, Y ) = p(Q|X,D), since

Y is nothing but a corrupted copy of D.) There are many options for sampling D. One

straightforward approach is to use Gibbs again, this time sampling one spike at a time.

(Of course in some cases — for example, in the case of a highly bursty neuron — it might

make more sense to move multiple spikes at once. The discussion below can easily be

generalized to this case; see, e.g., [Mishchenko and Paninski, 2011] for further discussion.)

More precisely, for each 1 ≤ i ≤ Nspikes, we sample ti from

p(ti = t|{tj 6=i}, X, Y ) ∝ p(Y |ti = t, {tj 6=i})p(ti = t|{tj 6=i}, X). (3.2)

The second factor on the right hand side can be computed by a forward-backward recursion.

(It is worth noting that we do not have to perform the full recursion every time we update

a spike time ti: a local change in ti will have only a local effect on the values of the forward

and backward probabilities. As we recursively update these probabilities, therefore, we can

stop once we see that the difference between the updated values and the previous values is

negligible. This ensures that the cost of a spike time update does not scale with the total

length of the spike train.)

To compute the the first factor on the right hand side of eq. (3.2), we need to specify a

model for the temporal noise process that defines p(Y |D). The simplest model is that each

spike time is jittered independently:

p(Y |D) =
∑
σ

Nspikes∏
j=1

p(yσ(j)|tj).

The sum over σ here is over all Nspikes! possible permutations (relabelings) of the spikes,

accounting for the fact that we don’t know which spike in the observed set Y corresponds

to a given spike ti in the unobserved true set D. However, once we pick a labeling σ that

maps D to Y , then computing the conditional probability of Y just reduces to a product

over the individual jitter densities p(yσ(j)|tj).
Clearly, direct computation of the sum over σ becomes intractable as Nspikes becomes

large, since the number of terms in the sum grows exponentially. However, note that we

do not have to compute the full sum. Instead, we just need to compute the change in the

sum as the i-th spike is moved from the current time ti to a new time t′i. If the variance of
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the jitter distributions p(yj |tj) is not too large, any given spike time tj will only be close to

a few observed spikes yi, and the computation of the change in p(Y |D) becomes tractable.

As a concrete example, if yi is sufficiently distant from the nearest other observed spikes

that we can neglect the probability that the spike times have been switched by the jitter,

then we can uniquely associate the observed spike yi with a single true unobserved spike ti,

and we have

p(Y |D)

p(Y |D′) =

∑
σ p(yσ(i)|ti)

∏
j 6=i p(yσ(j)|tj)∑

σ p(yσ(i)|t′i)
∏
j 6=i p(yσ(j)|tj)

≈
p(yi|ti)

∑
σ

∏
j 6=i p(yσ(j)|tj)

p(yi|t′i)
∑

σ

∏
j 6=i p(yσ(j)|tj)

=
p(yi|ti)
p(yi|t′i)

.

(We have abused notation slightly here: this sum over σ includes all permutations of the

Nspikes− 1 spike times not including ti or yi.) Thus we can now combine the two necessary

factors in eq. (3.2), and update ti either via standard Gibbs or a Metropolis-within-Gibbs

[Robert and Casella, 2005] approach. (See [Chen et al., 2009; Tokdar et al., 2010] for some

related approaches.)

3.5.4.2 Neural identity loss; spike addition or deletion

In the identity loss / spike sorting setting, any given observed spike could have been emitted

from any of multiple neurons. Separate independent neuron models cannot capture such

ambiguity, and therefore we must combine the models across neurons appropriately.

One direct approach is to construct a single state space that represents the dynamics of

all the neurons at a given recording electrode. Suppose there are m discernible neurons at

a given location, each with at most K Markovian internal states. We can track the state of

all of these neurons simultaneously by forming the direct product of each individual state’s

transition and observation matrices (obtaining a joint state variable that can take on at

most Km possible values), as discussed in [Calabrese and Paninski, 2011]. If each neuron i

has a transition matrix Pi, then the joint state transition matrix is the Kronecker product

[Horn, 1986] of the single-neuron transition matrices,

P =

m⊗
i=1

Pi.
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To construct a HMM it remains to specify an emission matrix, whose entry (i, j) is the

probability of seeing observation i given that the system is in state j. For our three state

neuron, observed without noise, this would be a 3× 2 matrix:
1 0

0 1

0 1

 ,

where the rows correspond, from top to bottom, to the states firing, refractory, and rest-

ing, and the columns correspond, from left to right, to the observations firing and not

firing. Changing this emission matrix would be one way of modeling spontaneous spiking

or dropped spikes.

In the spike sorting setting, we replace this simple discrete observation alphabet with

a continuous, typically multi-dimensional feature vector y defined in terms of, e.g., the

amplitude of the voltage (or the magnitude of some projection onto a principal component)

triggered on a threshold crossing. We write this in terms of the density function

bq(y) = Prob[yt = y|qt = q].

If we assume for concreteness that the observed feature vectors have a Gaussian distribution

given the identity of the neuron that emitted the spike, then bq(y) is readily evaluated as

the Gaussian density at y, with mean and covariance corresponding to the neuron that is

firing (as indexed by the multineuron state q).

We can easily extend this model to treat the possibility of dropped spikes or spontaneous

spiking. To account for dropped spikes, we add a cluster corresponding to no spike, with

its own mean and covariance. Assume that the probability of a spike being dropped is

pd. Then whenever q is a spiking state for one of the neurons, there is a chance, pd,

that the observation is drawn from the cluster corresponding to the absence of a spike.

The observation density may be modified accordingly to handle this possibility. See also

[Goodman and Johnson, 2008], who find that in at least some cases false positives will have

a greater negative effect on decoding than either dropped or mislabeled spikes.

If all the neurons at some electrode have the same response function (a very special case),

then all we are interested in is the number of neurons in each state. In this case the state
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space size scales polynomially in the number of neurons m at the recording location, not

exponentially. The transition probabilities in this condensed state-space may be computed

as follows. Define the vector ~nt such that n
(k)
t is the number of neurons in state k at time

t. For each state k, define the vector ~νtk as follows: ν
(i)
tk is the number of neurons in state

i at time t that were in state k at time t − 1. Then ~nt =
∑

k ~νtk. The transitions of the

neurons in state i at time t − 1 are independent of the transitions of the neurons in state

j 6= i at times t− 1. Therefore

p(~nt|~nt−1) = p

(∑
k

~νtk

∣∣∣∣∣~nt−1
)

= conv
[
p
(
~νtk

∣∣∣n(k)t−1)]
= conv

[
Mult

(
n
(k)
t−1, p(qt|qt−1 = k)

)]
where the qt index the single-neuron states, conv() denotes m-fold discrete convolution, and

Mult(N, p) denotes the multinomial distribution with parameters N and p. The first equal-

ity follows by definition. The second equality follows because ~nt is the sum of independent

random variables ~νtk, and because p (~νtk |~nt−1 ) = p
(
~νtk

∣∣∣n(k)t−1), i.e. ~νtk is conditionally

independent of the other components of ~nt−1. The transition of each neuron from state k

to some state i is a trial with a fixed finite number of possible outcomes, independent of all

other trials. Therefore each vector ~νtk is drawn from a multinomial distribution with n
(k)
t−1

trials and event probabilities p(qt = i|qt−1), i = 1, · · · ,K.

Finally, note that we can easily extend our model to treat multiple spikes in a time bin,

whether by the same neuron or by different neurons at the same electrode, but the model

becomes more complex as the time bin width increases, and as the maximum possible

number of spikes per bin grows. For example, at an electrode monitoring two neurons, A

and B, multiple spikes could be treated by the addition of Gaussian modes for events like

“A spikes, B does not”, “A does not spike, B spikes twice”, “A and B both spike once”,

and so on.

In summary, whether or not all neurons have the same transition matrix, we have

established that we may sample from the posterior p(Q|X,Y) in a computationally efficient

way. However, the computational cost does grow exponentially with the number of neurons
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m in a single cluster. If m is very large, it becomes more attractive to use a blockwise-Gibbs

approach (as described, e.g., in [Mishchenko and Paninski, 2011]), in which we sample the

states of a small subset of neurons while holding the states of the other neurons fixed.

3.5.5 Sampling from the posterior stimulus distribution p(X|Q, Y )

We have shown that we can tractably sample from one side of the Gibbs sampler decoder

(the p(Q|X,Y) side) in a way that scales linearly with the temporal length T of the dataset

to be decoded. In the other stage, we sample the stimulus X from p(X|Q,Y). We will

show that this half of the Gibbs sampler is relatively straightfoward; moreover, this step

can be made particularly efficient in certain special cases.

First note that Y contains no more information about the stimulus than Q, so that

p(X|Q,Y) = p(X|Q) ∝ p(Q|X)p(X). The conditional density p(Q|X) factorizes into a

product of its transition probabilities: for each neuron,

p(Q|X) ∝ p(q0)
∏
t

p(qt+1|qt, xt),

by the Markov assumption.

If we restrict our model to log-concave transition probabilities p(qt+1|qt, xt) (i.e., assume

that log p(qt+1|qt, xt) is concave in xt), and if our stimulus prior is log-concave in X as well,

then the posterior on X is log-concave and therefore unimodal, which means that the

sampler will not get trapped in local optima, and we can use efficient sampling methods

as discussed in [Ahmadian et al., 2011]. The restriction to log-concave nonlinearities is not

severe in our class of Markov models; see e.g. [Escola et al., 2011] for further discussion.

If we specialize further we can obtain an even more efficient sampler. In our simple three-

state model, let’s assume that the transitions p(qt+1 = “spike”|qt = “rest”, xt) = f(xt)

depend on xt in a simple linear fashion: either f(xt) = xt (for cells of “ON” type) or

f(xt) = 1 − xt (for cells of “OFF” type). In this case the likelihood term p(Q|X) can be

written in a very simple form:

p(X|Q,Y) ∝
∏
t

x
C(t)
t (1− xt)D(t) (3.3)

where C(t) counts the number of ON neurons passing into the spike state from the rest
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state, plus the number of OFF neurons remaining in the rest state at time t; D(t) is defined

similarly, but with ON and OFF reversed.

This likelihood term leads to a remarkably simple posterior if p(X) has a similar form.

For example, if xt is chosen independently at each time step, with a uniform distribution

on the interval [0, 1], then the posterior on X is given by a simple independent product

of beta distributions, which can be sampled trivially. (Similar expressions involving sums

of incomplete beta functions hold for the case that the stimulus prior is composed of an

independent product of polynomials, or if the response functions f(.) have a more general

polynomial form.)

Of course, the assumption that each xt is a priori independent in time is typically too

strong. In general, the choice of stimulus prior will depend on the details of the particular

experimental setup. What is most important is to have available a broad class of tractable

models to choose from. [Smith et al., 2012] recently introduced a class of models which we

can use to provide a convenient correlated prior for X. These so-called low-rank models

are joint distributions whose structure allows for fast exact inference in settings where

standard models such as the discrete HMM or linear Gaussian models are not applicable.

These models consist of joint distributions over continuous variables X whose dependency

structure can be expressed via discrete latent variables Z = {zt} coupling the main variables

X. In the case that p(X) forms a Markov chain, such a low-rank p(X) may be decomposed

as follows:

p(X) = p(x1)
T−1∏
t=1

p(xt+1|xt)

= p(x1)
T−1∏
t=1

R∑
zt

p(zt|xt)p(xt+1|zt) (3.4)

for appropriate discrete auxiliary variables zt. (The first equation above is the standard

Markov condition; the second equation expresses the low-rank nature of the conditionals

p(xt+1|xt), with R denoting the “rank” of the model.) See [Smith et al., 2012] for full

details; the key point is that exact inference over X is tractable in this case via standard

forward-backward recursions in O(TR2) time, despite the fact that the xt variables may be

non-discrete and highly non-Gaussian. As one useful example of a low-rank model, consider
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p(X) of the nearest-neighbor polynomial form

p(X) ∝
∏
t

R∑
i=0

atix
αi
t (1− xt)βixγit+1(1− xt+1)

δi , 0 ≤ xt ≤ 1. (3.5)

(The normalization constant of p(X) is found via the same forward recursion as is used to

perform inference.) As discussed in [Smith et al., 2012], this class of priors has several helpful

features. First, with an appropriate choice of the polynomial order R and the coefficients

{ati}, we have a good deal of flexibility in modeling the correlations in xt. Second, this

prior is conjugate to the likelihood term (3.3); i.e., the posterior has the same form as the

prior. Finally, by the general theory mentioned above, exact samples can be drawn from

this prior (and posterior) in O(TR2) time. As an example, Fig. 3.4 illustrates the effect of

changing the prior when computing the posterior expectation E(X|Q). In particular, we

used

p(X) ∝
∏
t

R∑
i=0

(
R

i

)2

xit(1− xt)R−ixit+1(1− xt+1)
R−i (3.6)

for two different choices of the parameter R, which (as discussed further in [Smith et al.,

2012]) serves to set the smoothness of samples from p(X): larger values of R correspond to

smoother samples from the prior (and in turn to a smoother posterior expectation). (We

point out that, as discussed in [Smith et al., 2012], R can be chosen by standard model-

selection methods (e.g., maximum marginal likelihood); in addition, for sources of signals

that tend to have occasional large jumps, we can add a “slab” term – i.e. a small constant

– to each pair potential to allow for such jumps, and that such a prior would still be an

instance of Eq. (3.5).) We do not present detailed error statistics here, as this example is

meant only to illustrate the behavior of the smoother given fully-observed spike trains; we

will discuss applications to corrupted spike trains below.

We can further improve the efficiency of the sampler by the Rao-Blackwellization proce-

dure discussed above, because it is also possible to compute the posterior moments E(xt|Q),

E(xat |Q), E(xtxs|Q), etc., using a similar O(TR2) forward-backward approach. Thus, for

example, if we want to estimate the posterior mean E(X|Y), instead of recording X(i) at

each iteration of the Gibbs sampler, we record E(X(i)|Q(i)), and average over these quan-

tities at the end of the sampling run. In the more general case of log-concave posteriors
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Figure 3.4: Estimating a stimulus from spike trains with a smoothing low-rank prior. A

sinusoidal stimulus (thin black line) was the success probability for a neuron to fire, i.e.

p(nt = 1|xt) = xt, nt ∈ {0, 1}; nt not shown. The stimulus was estimated as its posterior

mean E(xt|{nt}) with a low-rank smoothing prior of the form of Eq. (3.6) with ranks R = 10

and R = 100. Note that the spikes nt were completely and noiselessly observed here; no

spike train corruption has been applied.

on X, we typically can not Rao-Blackwellize exactly, but nonetheless we can often substi-

tute an approximation to the mean to obtain a more efficient estimator. For example, for

smooth and unimodal posteriors, the MAP estimate arg maxX p(X|Q) tends to be a good

approximation to the posterior mean E(X|Q). [Pillow et al., 2011] discuss efficient methods

for computing the MAP estimate, which can subsequently be plugged in to approximately

Rao-Blackwellize the estimate of the posterior mean.

3.6 Results

3.6.1 Spike time jitter

Fig. 3.5 illustrates the effects of spike-time jitter on decoding accuracy of a stimulus drawn

from a low-rank prior. We simulated the responses of 300 neurons driven by this stimulus,

using the simple Markovian model described in Fig. 3.2, with p23 = 0.1 (recall that this

parameter is inverse to the average refractory time) and firing rate p31 = xt. The elements
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Figure 3.5: Effects of jitter scale on decoding accuracy for stimulus drawn from the prior of

Eq. (3.6) withR = 10. In the decoder, the same low-rank prior was used. The reconstruction

algorithm was run for 1,000 sweeps after 100 burn-in sweeps using 300 neurons and p23 = 0.1.

The thick solid line is the actual stimulus. The thin solid line is the reconstruction, with

plus or minus one posterior standard deviation shaded gray. The black and white bars

show the number of actual (black) and jittered (white) spikes at each instant. The accuracy

deteriorates with increasing jitter while the variance of the posterior density increases.

of the initial state probability vector were chosen at random. We then independently jit-

tered each true spike according to a discretized Gaussian distribution with zero mean and



CHAPTER 3. INFORMATION LOSS IN SPIKE TRAINS DUE TO SPIKE TIME
JITTER AND AMBIGUITY OF NEURONAL IDENTITY 52

standard deviation 0 (top) and 2 (bottom). For these parameter values, the probability of

spike crossing or overlap was negligible (recall the discussion in section 3.5.4.1 about the

computation of p(Y |Q)). The Rao-Blackwellized Gibbs sampler was run for 1,000 iterations

after a burn-in period of 100 sweeps, using a prior for X which was independent (stimu-

lus values at different time bins are independent) and uniform on [0, 1]. As expected, the

accuracy of the reconstruction diminishes with increasing jitter scale.

Fig. 3.6 summarizes how the reconstruction accuracy varies as the number of neurons

changes, and also as the jitter amplitude grows, for this square-wave stimulus. Similar

reconstructions for several different types of stimulus are shown in Fig. 3.7 and Fig. 3.8.

In Fig. 3.7, the same independent uniform prior is used in the decoder. In Fig. 3.8, the

decoder uses a low-rank prior of the form of Eq. (3.6). This corresponds to Eq. (3.4) where

x1 ∼ Uniform([0, 1])

zt|xt ∼ Binomial(zt;R, xt)

xt+1|zt ∼ Beta(zt, R− zt)

This simple beta-binomial form of the prior (p(X)) makes it possible to analytically compute

the necessary integrals in the Rao-Blackwellized estimator.

The relative accuracy of the reconstruction of the jittered signal varies significantly

across different test stimuli. This is consistent with the fact that none of these stimuli

(except the one drawn from the independent uniform prior) are “typical” stimuli, under

this stimulus prior. However, it is true for any sensible prior that the relative accuracy of

the reconstruction will increase with the smoothness of the actual stimulus; the smoother

the signal, the less information is lost by jittering a spike a small amount.

We have confirmed in our computer experiments that the computing time involved in

inference in the spike time jitter setting scales linearly with the number of neurons as well

as with the time T . For example, with 50 neurons, p23 = 0.1, jitter amplitude σ = 1, T = 50

time bins, and 1,000 Gibbs sweeps after 100 burn-in sweeps, estimation of a square-wave

X took 41.7 seconds on a MacBook Pro with a 2.6 GHz Intel Core i7 processor and 8 GB

1600 MHz DDR3 RAM. For the same parameter values except for 100 neurons, estimation

took 80.9 seconds. For the same parameter values except for 50 neurons and T = 100 time
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Figure 3.6: Accuracy (MSE) of reconstruction in the jitter case for various values of number

of neurons and jitter amplitude, averaged over 100 reconstructions. A value of p23 = 0.1 was

used for the refractory transition probability. The stimulus was modeled with a low-rank

prior of the form of Eq. (3.6) with a rank of R = 10. The experiments ran for 1,000 Gibbs

sweeps after a burn-in period of 100 sweeps. The actual stimulus used was a square wave

with a period of 10 time bins.

bins, estimation took 79.5 seconds.

3.6.2 Identity loss

In the case of identity loss, we compare the performance of our decoder to that of two

simple decoders. The first decoder is given the spike feature vectors and spike-times that

our full decoder receives, computes the overall most likely state path for Q (i.e., the Viterbi

path [Rabiner, 1989]) given the spike-times, and takes the spike-neuron assignments of

this state path to be the true assignments; i.e., all uncertainty about the spike sorting is

discarded. Subsequently, this decoder computes the posterior mean assuming these spike-

neuron assignments – E(X|DMAP ) = E(X| arg maxD p(D|Y )). The second simple decoder
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Figure 3.7: Reconstructions of different stimuli both for no jitter and for jitter using the

independent uniform prior. The same parameter values as in Fig. 3.5 were used, except

that 10,000 Gibbs sweeps were run after 1,000 burn-in sweeps. For very smooth stimuli

(flat; sinusoidal) reconstruction from the jittered spike train may in fact be more accurate

(in terms of MSE) than reconstruction from the original spike train. For less smooth

stimuli (more typical of samples from the independent uniform prior) reconstruction from

the original spike train is more accurate than reconstruction from the jittered spike train.

is given the actual spike-neuron assignments and subsequently computes the posterior mean

E(X|D). (We expect this decoder to outperform any decoder that does not have access
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Figure 3.8: Reconstructions of different stimuli both for no jitter and for jitter using the

low-rank prior of Eq. (3.6) with rank R = 10. The same parameter values as in Fig. 3.5 were

used, except that 10,000 Gibbs sweeps were run after 1,000 burn-in sweeps. Here, smoother

signals are more accurately estimated than they were with the independent uniform prior

(see Fig. 3.7).

to the uncorrupted spike train data D.) In each case, in our experiments, an independent

and uniform prior on X was used for the decoding. For each neuron, p23 was set at 0.5.

We simulated 5-10 electrodes (see figure captions for specific values), on each of which two

neurons were recorded. At each electrode, one of the neurons had the same transition matrix
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as the simple Markovian model above. The other neuron had a transition matrix identical

except that p31 = 1 − xt and p33 = xt instead of p31 = xt and p33 = 1 − xt. (I.e., on each

electrode we simulated a neuron of ON and OFF type.) The observed feature vectors were

sampled for each neuron from a Gaussian distribution with each neuron’s assigned mean

and covariance. Reconstruction proceeded by Rao-Blackwellized Gibbs sampling, assuming

zero jitter.

A sample stimulus along with its reconstructions for varying degrees of spike cluster

overlap is shown in Fig. 3.9. Reconstruction quality is poor when the overlap between

the feature Gaussian distributions is high (i.e., when spike sorting is challenging). The

Bayesian estimate, however, stays closer to the mean, whereas the MAP-based estimate

ranges widely, having committed to certain spike assignments to neurons. The same is true

in the case of partial spike cluster overlap, where the reconstructions look somewhat better.

The Bayesian decoder remains somewhat agnostic as to the assignment of spikes to neurons:

the assignments vary from sweep to sweep of the sampler (data not shown). Meanwhile, the

MAP-based decoder does not vary its assignments; since every sweep of the sampler will

involve the same assignments, the reconstruction will be further from the mean than for the

Bayesian decoder, with a smaller posterior variance, making this estimator “overconfident”

and more frequently wrong than the fully Bayesian estimator.

We averaged the results of 100 reconstructions to compare the MSE of each decoder.

Results are shown in Fig. 3.10. We find that that the full Bayesian decoder outperforms

the Viterbi-spikes decoder. This practical example (Fig. 3.10) illustrates that properly

accounting for spike sorting uncertainty can lead to significantly improved decoding, echoing

results from earlier work (e.g., [Wood and Black, 2008; Ventura, 2008b; Ventura, 2008a;

Chen et al., 2012]) using simpler, Poisson-based encoding models.

3.7 Conclusions and extensions

We have described methods for optimal Bayesian decoding of noisy or corrupted spike train

data, and for quantification of the information lost due to several different possible sources

of noise, including uncertainty in neural identity, spike deletion or insertion, and loss of tem-
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Figure 3.9: Sample reconstructions of a simple sawtooth stimulus for three examples of

monotonically decreasing spike sorting difficulty. When spike clusters overlap completely

(bottom panel), neither the MAP-based estimate nor the Bayesian estimate performs well.

The Bayesian estimate, however, is more agnostic, providing estimates which are close to the

posterior mean stimulus value. The MAP-based estimate “overcommits” to its assignments

of spikes to neurons. In the case of partial overlap (middle panel), both the MAP-based and

Bayesian estimates perform better, with the Bayesian estimate noticeably more accurate

than the MAP-based estimate in several regions. In the case of negligible overlap (top

panel), the three decoders produce nearly identical reconstructions. Reconstructions were

conducted using 20 neurons (10 electrodes) and a uniform stimulus prior. The Gibbs sampler

ran for 10,000 sweeps after a burn-in period of 1,000 sweeps.

poral resolution due to noise or low-temporal-resolution recording techniques. Our methods

allow us to quantify the loss of decoding accuracy as a function of various biophysical and

experimental variables of interest, including the jitter amplitude, stimulus frequency con-

tent (cf. [Goldwyn et al., 2010]), the number of neurons, firing rates, the refractoriness of

the observed neurons, and so on. One practical example (Fig. 3.10) illustrates that prop-

erly accounting for spike sorting uncertainty can lead to significantly improved decoding,

echoing results from earlier work (e.g., [Wood and Black, 2008; Ventura, 2008b; Ventura,
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2008a; Chen et al., 2012]) using simpler, Poisson-based encoding models.

A couple of directions for potential future work are clear. First, we have focused on

the case of neural populations which fire in a conditionally independent manner given the

stimulus. Such an assumption might be sensible in the analysis of spike train data obtained

via extracellular recordings where electrodes are relatively widely spaced. However, we have

made this assumption here purely for the sake of clarity and simplicity. A good deal of recent

work has focused on models which can account for additional dependence structure; see,

e.g., [Vidne et al., 2012] for a recent review of this literature. It would be natural to extend

our framework to handle models of this type, perhaps via the efficient blockwise-Gibbs

samplers discussed in [Mishchenko and Paninski, 2011]. Second, while we have focused on

a model-based approach here, there is a long history of more nonparametric jitter-based

approaches for addressing hypotheses about the importance of temporal precision in the

nervous system; see [Amarasingham et al., 2012] for a nice recent review. It would be

interesting and valuable to explore further links between these nonparametric approaches

and the parametric, decoding-oriented approach we have taken here. Finally, [Naud and

Gerstner, 2012] consider the problem of stimulus decoding given observations of summed

spike counts from a population of identical neurons. This can be considered a special case

of our spike identity loss setting. It would be interesting to investigate the possibility of

combining their analytical approaches with our MCMC-based techniques developed here.
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Figure 3.10: Left. Reconstruction error for the three spike-sorting decoders described in

the main text. For each separation distance of the two spike clusters 100 reconstructions

were performed of stimuli randomly drawn from the uniform prior over [0, 1]T incident on

10 neurons (5 electrodes) with refractory probability p23 = 0.5. The dotted line traces the

error of the MAP-based estimate. The solid line traces that of the Bayes estimate, which

consistently outperforms the MAP-based decoder. For reference, the performance of an op-

timal decoder that knows the correct spike assignments is included (dashed line). Samplers

were run for 10,000 sweeps after burn-in periods of 1,000 sweeps. Right. Illustration of the

degree of overlap in one-dimensional Gaussians with with unity standard deviation.
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Chapter 4

Bayesian inference of sparse

synaptic connectivity with

spike-and-slab models

4.1 Abstract

We address the question of how to infer the locations of synapses onto dendritic trees of

neurons. We assume a compartmentalized neuron and a dynamical model in which the time-

varying voltages in all compartments are governed by a constant connectivity matrix (or

weight matrix) which acts on the vector of inputs to the compartments. The experimenter

only has direct access to a vector of noisy observations. A priori we assume that the true

connectivity matrix is sparse, since presumably most compartments will not be very close

to a synapse. Previous work [Pakman et al., 2012] applied and generalized the ideas of least

angle regression [Efron et al., 2004a] to obtain a fast Bayesian solution to this estimation

problem that imposes sparsity in the estimates of the weight matrix. A key feature of the

dynamical model considered in that work is that the logarithm of the likelihood (probability

of the data given the synpatic weights) is quadratic in the synaptic weights. In this work

we explore two other approaches to the same problem. Both approaches assume the same

likelihood. Where they differ from one another and from the model in [Pakman et al., 2012]
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is the choice of prior over the synaptic weights. One approach employs the horseshoe model

of [Carvalho et al., 2010], and the other uses spike-and-slab models.

4.2 Introduction

Understanding the synaptic organization of local neural circuits remains a central challenge

in neuroscience.1 To make progress towards this aim it would be of great value to measure

the full synaptic connectivity on the dendritic tree. In particular, we would like to quantify

not just which neurons are connected to a given cell, but also where these synaptic inputs

are on the postsynaptic dendritic tree, and with what strength (Fig. 4.1). Such a technique

would help in addressing a variety of open questions on the localization and maintenance

of synaptic plasticity [Sjostrom et al., 2008], and would facilitate the study of nonlinear

dendritic computations.

To achieve this goal, we can combine the ability to stimulate individual presynaptic

neurons with high temporal resolution (either electrically or optically) and to simultaneously

image postsynaptic neurons at subcellular spatial resolution. In particular, we can use two

available, complementary types of data to obtain the best possible estimates:

1. Anatomical measurements of the postsynaptic neuron’s shape and dendritic arboriza-

tion. This provides a backbone on which we can build a dynamical model of the

postsynaptic cell.

2. Voltage-sensitive fluorescence, observed at subcellular resolution. Modern imaging

methods can access small dendritic structures and allow rapid sampling from many

spatial locations [Reddy and Saggau, 2005; Iyer et al., 2006; Vucinic and Sejnowski,

2007; ?]. This provides access to the key dynamical variable of interest, the spatiotem-

poral subthreshold voltage.

Since current voltage imaging technologies have relatively low signal-to-noise ratio (SNR)

[Djurisic et al., 2004; Dombeck et al., 2004; Sacconi et al., 2006; Nuriya et al., 2006; Canepari

1This and the following section borrow heavily from the text of [Pakman et al., 2012].
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Figure 4.1: Schematic of method. By observing a noisy, subsampled spatiotemporal voltage

signal on the dendritic tree, simultaneously with the presynaptic neuron’s spike train, we can

infer the strength of a given presynaptic cell’s inputs at each location on the postsynaptic

cell’s dendritic tree.

et al., 2007; Milojkovic et al., 2007; Fisher et al., 2008; Djurisic et al., 2008; Canepari et al.,

2008; ?], we have to apply optimal filtering methods to exploit these measurements .

[Pakman et al., 2012] present fast methods to optimally filter such voltage measurements

and infer synaptic weights. There the problem is formulated in a state-space model frame-

work and builds on previously developed fast Bayesian methods [Huys et al., 2006; Huys

and Paninski, 2009; Paninski and Ferreira, 2008; Paninski, 2010; Huggins and Paninski,

2012; ?] for performing optimal inference of subthreshold voltage given noisy and incom-

plete observations. [Pakman et al., 2012] showed that these fast filtering methods can be

combined with fast optimization methods from the sparse Bayesian literature [Efron et al.,

2004b] to obtain a fast Bayesian solution to this synaptic estimation problem.

In inferring synaptic weights, an alternative to MAP with a regularizing prior is to

take a fully Bayesian approach, for which there are several options. In such an approach,

we choose from among various known sparsity-inducing priors, and more fully characterize
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the resulting posterior distribution, ultimately yielding not only a point estimate for the

synaptic weights, but also some measure of the uncertainty in our estimate: error bars, to

put it simply.

In the next section we describe the dynamical model, following closely [Pakman et al.,

2012]. Following that, we introduce the two families of priors we use to enforce sparsity

in our synaptic weight estimates: the horseshoe model and spike-and-slab models. We

then derive the key equations used to implement the inference procedure in each case. We

conclude with the results of numerical experiments comparing the performance of these

Bayesian methods against one another and against the method in [Pakman et al., 2012].

4.3 Dynamical model

We begin by describing the dynamical model adopted in [Pakman et al., 2012]. We assume

that observations are available from a neuron with N compartments in which the passive

cable dynamics and the observation equations are

Vt+dt = AVt +WUt + εt, εt ∼ N (0, σ2dtI) t = 0, . . . , T − 1 (4.1)

yt = BtVt + ηt, ηt ∼ N (0, CyI) t = 1, . . . , T . (4.2)

In the first equation, Vt is an unobserved N -dimensional vector of compartment voltages at

time t that evolves according to a discretized cable equation with timestep dt, perturbed

by a Gaussian noise source εt. Assuming we can stimulate K presynaptic neurons in a

controlled manner, Ut represents a K-dimensional vector of known presynaptic signals (the

presynaptic spike times filtered by some fixed synaptic current filter). Finally, W is the

N ×K matrix of synaptic weights that we want to estimate.

We assume an experimental setting in which we simultaneously perform Z voltage ob-

servations at each discrete time t. (Z could vary with time, but to keep the notation

manageable we will assume that Z is fixed here.) In the second equation, (4.2), yt is an

Z−dimensional vector of observations related instantaneously to Vt by the Z × N matrix

Bt that specifies how the observations are performed. Cy is the covariance noise of the ob-

servations, which depends on the imaging apparatus used in each experiment. We assume
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this covariance is proportional to the identity for simplicity, i.e. Cy ∝ I, but this condition

can also be easily relaxed.

This linear Gaussian model, with a passive (i.e. voltage independent) dynamic matrix A,

can be a valid description for regimes with low network firing rate, so that the postsynaptic

dendritic tree is in a subthreshold state. Furthermore, we assume that synaptic inputs are

sufficiently small that the postsynaptic response may be treated using linear dynamics. (In

an experimental setting we may enforce the subthreshold condition pharmacologically, by

blocking voltage-gated sodium channels in the post-synaptic cell.)

On the other hand, real neural systems are known to depart from this linear, passive

Gaussian regime. The noise can be non-Gaussian and strongly correlated (due, e.g., to un-

observed spikes in the circuit), and the dynamics equation becomes non-linear when voltage

dependent conductances and driving forces are taken into account. Also, for some measure-

ment techniques, the observation equation may depart from the form (4.2). [Pakman et al.,

2012] discuss some of these generalizations.

The log-likelihood log p(Y, V |W ) can’t be evaluated because it involves the unobserved

voltages, but we can consider p(Y |W ). This quantity is Gaussian, since p(Y, V |W ) is Gaus-

sian, so log p(Y |W ) is a quadratic form W TMW + rTW , where M and r depend on Y . For

details of the relationship between Y and M and r, see [Pakman et al., 2012]. In that work

the authors take for W a lasso (‘least absolute shrinkage and selection operator’) prior

log p(W |λ) = −λ
∑
i,j

|W i,j |+ const. (4.3)

where λ is a tuning parameter. This prior has the effect of sparsening the estimate Ŵ .

They show that maximum a posteriori inference in this setting is a concave problem, and

they exploit certain features of the experimental setup to keep the computational cost of

inference low. They modify this method (which they call LARS, for ‘least angle regression’,

which is an algorithm for solving the lasso), introducing a prior with support only on the

positive reals. (They call the method employing this prior LARS+.) This encodes into our

model the phenomenon known as Dale’s law, according to which all of a given neuron’s

synapses are either excitatory or inhibitory.

The numerical experiments reported in [Pakman et al., 2012] show that the LARS and
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LARS+ inference methods for inferring the location and strength of synaptic connections

are useful, at least when sampling in certain ways (i.e. when Bt has certain structure).

They report that LARS+ performs better than LARS (and better than the ordinary least

squares solution) and is able to learn the weights even under low SNR conditions.

4.4 Bayesian approaches

As alternatives to LARS and LARS+, we considered and implemented as priors over W the

Bayesian Lasso of [Park and Casella, 2008], the Horseshoe prior introduced in [Carvalho

et al., 2010], and spike-and-slab models like those described in [Mitchell and Beauchamp,

1988]. Ultimately, in the context of our problem, what we found that, among these alter-

natives, the most reliable estimates came from were spike-and-slab models. The Bayesian

lasso did not perform well and we will not go into its details, but we will derive the key

equations for the inference algorithms with the horseshoe and spike-and-slab models.

4.4.1 The horseshoe model

The horseshoe model for a very simple linear regression problem is defined and described

in [Carvalho et al., 2010]. Here we first define the horseshoe model, following closely the

description in [Carvalho et al., 2010], and then we write out the full conditional distributions

necessary to run the Gibbs sampler. Last, we lay out the precise algorithm.

In the horseshoe model we observe a p-dimensional vector y such that y|θ ∼ N (θ, σ2I),

and we suppose that

θi|λi ∼ N (0, λ2i ), (4.4)

λi|τ ∼ C+(0, τ), (4.5)

τ |σ ∼ C+(0, σ) (4.6)

where C+(0, a) is the standard positive half-Cauchy distribution with scale parameter a.

One measure of the amount of shrinkage of θi toward zero is E(κi|y), where we have defined

the parameter

κi ≡
1

1 + λ2i
. (4.7)
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The model get its name from the horseshoe-shaped prior for κi that is implied by the half-

Cauchy prior on λi. That is, the model is such that a priori the probability of very little

shrinkage or very severe shrinkage is high, with the probability of intermediate shrinkage

much lower, the aim being to differentiate between signal and noise and to attenuate the

latter while leaving the signal alone.

It can be readily be shown that joint distribution over the variables in the model is

p(y, θ, λ, τ, σ) ∝ 1

σp+1

1

1 +
(
τ
σ

)2 1

τp

p∏
i

1

1 + λ2i

1

λi
exp

{ −θ2i
2λ2i τ

2

}
exp

{−(yi − θi)2
2σ2

}
(4.8)

∝ 1

σp+1

1

1 +
(
τ
σ

)2 1

τp

p∏
i

1

1 + λ2i

1

λi
exp

{(
θi −

λ2i τ
2yi

σ2 + λ2i τ
2

)2
/(

2λ2i τ
2σ2

σ2 + λ2i τ
2

)}
(4.9)

The full conditional for θ is the obvious Gaussian distribution. The full conditional for λi

is:

p(λi|y, θ, τ, σ) ∝ 1

1 + λ2i

1

λi
exp

{ −θ2i
2λ2i τ

2

}
dλi (4.10)

As for λi, make the change in variables ui = λ2i :

p(ui|y, θ, τ, σ) ∝ 1

1 + ui

1

ui
exp

{ −θ2i
2τ2ui

}
dui (4.11)

To sample from the full conditional distribution for ui we employ rejection sampling with an

envelope distribution. Such a sampling scheme is based on the observation that if X ∼ f(x)

and g(x) – the “envelope” – is a density function such that f(x) ≤ Mg(x) for a constant

M ≥ 1, then to sample X ∼ f we can generate Y ∼ g and U ∼ Uniform([0,Mg(y)])

until 0 < u < f(y) [Robert and Casella, 2005]. For an envelope we use the Inverse Gamma

distribution with α = 1 and β =
θ2i
2τ2

. We sample ui from this distribution and transform

back to λi =
√
ui.

p(τ |y, θ, λ, σ) ∝ 1

1 +
(
τ
σ

)2 1

τp
exp

{
1

2

∑
i

−θ2i
λ2i

1

τ2

}
dτ (4.12)

As for τ , make the change in variables u =
(
τ
σ

)2
:

p(u|y, θ, λ, σ) ∝ 1

1 + u

1

u(p+1)/2
exp

{
1

2σ2

∑
i

−θ2i
λ2i

1

u

}
du (4.13)
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Again we make use of rejection sampling with an envelope distribution. For an envelope we

use the Inverse Gamma distribution with α = (p + 1)/2 and β = 1
2σ2

∑
i
θ2i
λ2i

. We sample u

from this distribution and transform back to τ = σ
√
u.

The full conditional for σ is:

p(σ|y, θ, λ, τ) ∝ 1

σp+1

1

1 +
(
τ
σ

)2 exp

{
−1

2σ2

p∑
i

(yi − θi)2
}

(4.14)

A change of variables u =
(
τ
σ

)2
brings this to a form that we might think to envelope with

a Gamma density:

p(u|y, θ, λ, τ) ∝ u(p−2)/2

1 + u
exp

{
−1

2τ2

p∑
i

(yi − θi)2u
}

(4.15)

Sample u from this distribution and then transform back to σ = τ√
u

. The full conditional

distribution over σ is derived in the same way and is closely related.

It turns out that for the full conditional distributions for λ and τ (and σ), one cannot

feasibly draw samples using rejection sampling with the envelope distributions we have

mentioned because the acceptance rates are very low. But we can rejection sample from

these conditionals by alternating between two different envelopes. The two envelopes are

inverse Gamma densities (Gamma in the case of σ whose α parameters differ by one.

Basically, one envelope works well (has high acceptance rate) for the target density half of

the time, and the other works well the other half of the time: they complement one another.
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Algorithm 1 Horseshoe Gibbs sampler

Initialize σg = 1, τg = 1, λg,i ∼ C+(0, τ)g, and θg,i ∼ N (0, λ2g,i) for i = 1, 2, . . . , p, p the

dimensionality of the data y.

for Niter iterations do

Sample θg,j , j = 1, 2, . . . , p:

Set mj = λ2g,jτ
2
g yj

/(
σ2g + λ2g,jτ

2
g

)
.

Set sj = λ2g,jτ
2
g σ

2
g

/(
σ2g + λ2g,jτ

2
g

)
.

Draw θg ∼ N (m, s2).

Tally θg.

Sample λg,j , j = 1, 2, . . . , p:

Set a = (p− 1)/2

Set b = θ2g,j
/(

2τ2g
)

.

Sample L ∼ p(L = x) ∝ x−a(1 + x)−1e−bx by rejection sampling with envelope

distributions Inverse Gamma(a, b) and Inverse Gamma(a− 1, b), switching envelope

distribution after each rejection.

Set λg,j =
√
L.

Sample τg:

Set a = 2

Set b =
∑

j θ
2
g,j/(2σ

2
gλ

2
g,j).

Sample T ∼ p(T = x) = x−a(1 + x)−1e−bx by rejection sampling with envelope

distributions Inverse Gamma(a, b) and Inverse Gamma(a− 1, b), switching envelope

distribution after each rejection.

Set τg =
√
T .

Sample σg:

Set a = (p− 1)/2

Set b =
∑

j(yj − θj)2/(2τ2).
Sample S ∼ p(S = x) = xa(1 + x)−1e−bx by rejection sampling with envelope

distributions Gamma(a, b) and Gamma(a− 1, b), switching envelope distribution after

each rejection.

Set σg =
√
S.

end for
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Algorithm 1 is written for the model as it is defined in [Carvalho et al., 2010]. However,

our problem does not involve data generated from a Gaussian draw from the vector to be

estimated. It can be shown that with minor modification the above algorithm is still useful.

In particular, to sample Wg (corresponding to θg in the algorithm) we draw

Wg ∼ N (A−1r/σ2, A−1) (4.16)

with

A ≡ 1

σ2
M +

1

τ2
diag(λ⊗ λ). (4.17)

Also, σ in the original model is introduced in the full data likelihood, but in the synaptic

model of [Pakman et al., 2012] we actually restrict our focus to the W -dependent terms of

the likelihood for computational reasons. So we ignore σ and instead choose τ by empirical

Bayes, using expectation-maximization to compute the estimate.

4.4.2 Spike-and-slab models

A spike-and-slab model of a single variable w consists of a prior that is a mixture of a

continuous distribution (a centered Gaussian, for instance) and a delta distribution centered

at the origin. In the first spike-and-slab model that we will consider here, the density of w

is

f(w) = (1− a) · δ(w) + a · N (0, τ2)[w] (4.18)

where 0 ≤ a ≤ 1 and τ2 is the variance of the Gaussian distribution, whose density we

abbreviate in the rightmost term. The finite support at zero is consistent with our intuition

that synaptic weights often are exactly zero, namely where there is no synapse nearby at

all. Inference with the other priors we considered would never yield weight estimates of

exactly zero.

We implemented two spike-and-slab priors: one with the density (4.18) and the other

with the same density except that we replaced the Gaussian mixture component with a

truncated Gaussian distribution:

f(w) =


(1− a) · δ(w) + a · 2N (0, σ2)[w] if w ≥ 0

0 otherwise

(4.19)
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This second prior, with support only on non-negative weight values, is consistent with Dale’s

law, according to which a given neuron’s synapses are either all inhibitory or all exictatory:

i.e., the synaptic weights all have the same sign [Gerstner and Kistler, 2002]. This assumes

that all of the synapses onto the neuron in question connect it to a single other neuron.

Inference in both cases consists in Gibbs sampling the posterior of the weights given

the data D = {M, r} and under the spike-and-slab prior. Not surprisingly, the formulas

involved in the unconstrained case are arrived at more readily than those of the constrained

sampler. We outline here derivation of the spike-and-slab sampler algorithms. We then

show a comparison of the performance of our Bayesian methods, alongside the performance

of the LARS and LARS+ algorithms. We also treat inference with a log-normal slab, which

is more in keeping with empirical distributions of synaptic weights.

4.4.2.1 The unconstrained spike-and-slab model

We can draw from the spike-and-slab prior itself, i.e. the density (4.18), by first drawing a

Bernoulli sample with success rate a and then drawing from the Gaussian N (0, σ2) if the

result is success, and drawing from the delta distribution (i.e. picking zero) if the result

is failure. Since the posterior is simply this mixture prior times the likelihood, samples

from the posterior can be drawn in just the same way, but with a different success rate αi

for each weight and with a different, generally noncentered, Gaussian mixture component.

In the following we find both the sparisity parameter and the Gaussian component of the

posterior.

4.4.2.1.1 Finding the sparsity parameter Define S ∈ RN to be a vector of such

Bernoulli draws, such that

si|αi ∼ Bernoulli(αi) (4.20)

wi|si, τ2 ∼


N (0, τ2) if si = 1

δ(wi) if si = 0

(4.21)

By a straightforward application of Bayes rule it can be shown that

αi = p(si = 1|S−i, D) =
1

1 + (1− a)/(a ·R)
(4.22)
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where

R =
p(D|S−1, si = 1)

p(D|S−i, si = 0)
(4.23)

where we have defined S−i to be S with the ith element deleted. (The same subscript has

another meaning for the vectors r and W and for the matrix M , which is defined below.)

In fact, we will not need αi itself. We would use αi by drawing si|S−i, D from its

Bernoulli distribution, in the usual Gibbs sampler. However, following the ideas outlined in

[Liu, 2008], we increase the efficiency of the Gibbs sampler by “Metropolizing” it: at sweep

g of the sampler, we change the value of si with acceptance ratio

p
(
s
(g+1)
i = 1− s(g)i

)
= min

1,
p
(
si = 1− s(g)i |S−i, D

)
p
(
si = s

(g)
i |S−i, D

)
 = min

1,

(
1− a
a ·R

)2s
(g)
i −1


(4.24)

Our aim, then, is to compute R. This can be achieved by writing both the numerator

and denominator as integrals over W−i, but there is a shorter route to the final expression

that will suggest how to approach the same computation in the constrained model. This

shorter route consists in viewing R as an expectation value. We can write

p(D|S−i, si = 0) =

∫
dWp(D|W,S−i, si = 0)p(W |S−i, si = 0) (4.25)

∝
∫
dW−i exp

{
−1

2
W T
−iAW−i + rT−iW−i

}
(4.26)

where A = M−i + 1
τ2
I and M−i is the matrix resulting from removing some of the rows and

columns of M : those indexed by i and those with indices corresponding to elements of S

that are zero. Similarly, W−i and r−i are the vectors W and r, respectively, with the ith

element removed, as well as those elements Wj and rj such that Sj = 0.

Similarly,

p(D|S−i, si = 1) ∝
∫
dwi

∫
dW−i exp

{
−1

2
W T
−iAW−i + rT−iW−i

}
· (4.27)

· 1√
2πτ2

exp

−
∑
j:sj=1
j 6=i

wiwjMji −
1

2
w2
iMii + riwi −

1

2τ2
w2
i

 (4.28)
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The proportionality constants in Equations (4.25) and (4.27) are the same. Then we have

that

R =
1√

2πτ2

∫
dwiE

[
e−wiW

T
−imi

]
exp

{
−1

2
w2
i

(
Mii +

1

τ2

)
+ riwi

}
(4.29)

where mi is the ith column of M with removed all the elements corresponding to zero

elements of S as well as the ith element. Evaluating a couple of straightforward Gaussian

integrals yields that R, in full, is given by

R =

√
1

τ2
∣∣Mii + 1

τ2
−mT

i A
−1mi

∣∣ exp

{ (
mT
i A
−1r−i − ri

)2
Mii + 1

τ2
−mT

i A
−1mi

}
(4.30)

and we can find αi via Equation (4.22).

4.4.2.1.2 Finding the Gaussian mixture component For selecting the variance τ2

of the Gaussian slab component of the prior, we use an expectation-maximization algorithm.

We present both E and M steps together:

τ2t+1 = arg max
τ2

E(log p(D,W,S|τ2))τ2t (4.31)

= arg max
τ2

E(log p(W |S, τ2))τ2t (4.32)

= arg max
τ2

∑
S

∫
da dWS

(
−1

2
|S| log τ2 − W T

SWS

2τ2

)
p(WS |D,S, τ2t )p(S, a|D, τ2t )

(4.33)

= arg max
τ2

1

J

J∑
j=1

∫
dWSj

(
−1

2
|Sj | log τ2 −

W T
Sj
WSj

2τ2

)
p(WSj |D,Sj , τ2t ) (4.34)

where the Sj are J samples of {S, a} from the posterior p(S, a|D, τ2t ) and can be obtained

using the collapsed Gibbs sampler. For each Sj , we take Q samples {WSj ,i}, i = 1, · · · , Q
from

p(WSj |D,Sj , τ2t ) ∝ exp

{
−1

2
W T
Sj

(
M +

1

τ2

)
WSj + rTWSj

}
W ≥ 0 (4.35)

and we get

τ2t+1 ≈ arg max
τ2

1

JQ

J∑
j=1

Q∑
i=1

{
−1

2
|Sj | log τ2 −

W T
Sj ,i

WSj ,i

2τ2

}
(4.36)

=
1

KQ

J∑
j=1

Q∑
i=1

W T
Sj ,iWSj ,i =

〈
W TW

〉
/ 〈|S|〉 (4.37)
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where the averages are over Gibbs sweeps and where we defined

K =
J∑
j=1

|Sj | (4.38)

We take this same approach to update the sparsity parameter a. The update is

a = 〈|S|〉 /N (4.39)

4.4.2.1.3 Sampling sparsity and weights vectors In summary, then, given a value

of a, we sample S from the posterior by, for each component sj , computing R as in equation

(4.30), in turn computing αj , and sampling sj ∼ Bernoulli(αj). The details are shown in

Algorithm (2). Note that whereas the prior p(S|a) factorizes into independent Bernoulli

components of S, the posterior p(S|W,D, a) does not factorize. Different components of

S depend on one another. This manifests in Equation (4.30) in that the indices of the

components of, for instance, r that make up r−i are the indices of the components of S−i

that are zero.

Algorithm 2 Sampling the sparsity vector S in the unconstrained spike-and-slab model

Given the current sample S,

for each component j of S do

Compute mj , the jth column of M .

Compute IS , the set of indices i for which si = 0.

Compute M−j , the matrix M with removed rows and columns with index in IS .

Compute r−j by removing from r each component with index in IS and also the jth

component.

Compute A = M−j + I/τ2.

Compute R =
(
τ2
∣∣∣Mjj + 1/τ2 −mT

j A
−1mj

∣∣∣)−1/2 ·
· exp

{(
mT
j A
−1r−i − ri

)2/(
Mjj + 1/τ2 −mT

j A
−1mj

)}
Compute αj =

(
1 + 1−a

a R
)−1

.

Draw sj ∼ Bernoulli(αj).
end for
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Once we have S we need to sample W |S,D. By Bayes rule,

p(W |S,D) ∝ p(D|W,S)p(W |S) (4.40)

which is just the integrand in equation (4.26). Call W1 the vector W with all zeros deleted,

and similarly define r1 and M1 and A1. Completing the square, we see that

W1|S,D ∼ N (A−11 r1, A
−1
1 ) (4.41)

Since we have analytical expressions for the sufficient statistics of p(W |S,D), we can Rao-

Blackwellize our Gibbs sampler, recording at each step the mean and covariance of W |S,D,

which should yield an estimator with smaller variance [Robert and Casella, 2005]. This

computation is detailed in Algorithm (3). Once again, whereas p(W |S) factorizes into

independent components of W , p(W |S,D) is a correlated normal density.

Algorithm 3 Rao-Blackwell step in unconstrained model: record sufficient statistics of

W |S,D
Given the current sample S,

Compute M1, the matrix M with entries of rows and columns with index in IS set to

zero.

Compute A1 = M1 + I/τ2.

Record µ = A−11 r1 and C = A−11 .

The whole inference algorithm for the unconstrained model is detailed in Algorithm (4).

4.4.2.2 The constrained spike-and-slab model

The constrained prior of Equation (4.19) encodes our assumption that all synaptic weights

should have the same sign, i.e. Dale’s law. This prior introduces the challenge of sampling

from high-dimensional truncated distributions (truncated normals, in our case). Inference

with the constrained prior follows the same outline as in the unconstrained case, but the

sampling of S and W is handled in a different way. The empirical Bayes method of setting

hyperparameters a and τ2 is unchanged.
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Algorithm 4 Estimation in the unconstrained spike-and-slab model

Choose starting values for variance τ2 and sparsity parameter a.

for NE.B. iterations (or until convergence of τ2 and a) do

Initialize S, say, by drawing each element from Bernoulli(a).

for NG Gibbs sweeps after NB burn-in cycles do

Sample S according to Algorithm (2).

Sample W according to Algorithm (3). Record W only after burn-in cycles.

end for

Set τ2 =
〈
W TW

〉
/ 〈|S|〉 and a = 〈|S|〉 /N , where the averages are over Gibbs sweeps.

end for

The most obvious difference in sampling S and W in the constrained setting is that,

instead of sampling all the components of S and then drawing a sample W |S from a mul-

tivariate normal distribution, here we sample block-wise component pairs (si, wi), as sug-

gested in [Mohamed et al., 2011]. As opposed to the unconstrained case, here we cannot

easily sample from the marginal p(si|S−i, D) because integrating over W to compute R is

intractable.

4.4.2.2.1 Blockwise sampling of sparsity and weight components The main idea

here is that in each Gibbs sweep we cycle through pairs (si, wi) of corresponding components

of S and W , first sampling si|S−i,W−i, D, and then sampling wi|si, S−i,W−i, D. We write

p(si, wi|S−i,W−i, D) = p(si|S−i,W−i, D) · p(wi|si, S−i,W−i, D) (4.42)

The first factor is Bernoulli and we can compute the success rate αi similarly to how we did in

the unconstrained setting. The second factor is a delta function when si = 0, and is a trun-

cated normal when si = 1, as we show next. We can sample efficiently from one-dimensional

truncated normal distributions, and so we can effectively Rao-Blackwellize this estimator

too; for each sample si|S−i,W−i, D, we draw multiple samples of wi|si, S−i,W−i, D.
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4.4.2.2.2 Finding the sparsity parameter To compute αi = p(si = 1|S−i,W−i, D)

in the constrained setting, once again we start by considering the ratio

p(si = 1|S−i,W−i, D)

p(si = 0|S−i,W−i, D)
=
p(D|S−i, si = 1,W−i)

p(D|S−i, si = 0,W−i)
· p(si = 1|S−i,W−i)
p(si = 0|S−i,W−i)

(4.43)

=
p(D|S−i, si = 1,W−i)

p(D|S−i, si = 0,W−i)
· a

1− a (4.44)

≡ ρ · a

1− a (4.45)

Since we are conditioning on W−i now, computing ρ is simpler than computing R of the

unconstrained setting. Consider first the denominator of ρ:

p(D|S−i, si = 0,W−i) =

∫
dwip(D|S−i, si = 0,W−i, wi) · p(wi|S−i, si = 0,W−i) (4.46)

= p(D|S−i, si = 0,W−i, wi = 0) (4.47)

= p(D|W−i, wi = 0) (4.48)

∝ exp

{
−1

2
W T
−iM−iW−i + rT−iW−i

}
(4.49)

The numerator of ρ is

p(D|S−i, si = 1,W−i) =

∫
dwip(D|S−i, si = 1,W−i, wi) · p(wi|S−i, si = 1,W−i) (4.50)

=

∫
dwip(D|S−i, si = 1,W−i, wi)N ′(0, τ2)[wi] (4.51)

∝
∫
dwi exp

{
−1

2
W T
−iM−iW−i + rT−iW−i

}
· (4.52)

· 2√
2πτ2

exp

{
−wiW T

−imi −
1

2
w2
iMii + riwi −

1

2τ2
w2
i

}
·

(4.53)

· I(wi > 0) (4.54)

whereN ′(µ, σ2) is a normal distribution truncated to the nonnegative reals with mean µ and

variance σ2. The first factor of the numerator cancels with the denominator. Completing

the square on what remains and performing the integral, we arrive at

ρ =
2√
Aiiτ2

e−k/2Φ
(
h
√
Aii

)
(4.55)
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where

h =
(
W T
−imi − ri

)
/Aii (4.56)

k = −
(
W T
−imi − ri

)2
/Aii (4.57)

Aii = Mii + 1/τ2 (4.58)

and Φ(x) is the cumulative distribution function of a standard normal distribution, evalu-

ated at x.

Once we have ρ, we compute αi and sample si. As for wi, we want to sample from

p(wi|si = 1, S−i,W−i, D) ∝ p(D|si = 1, S−i, wi,W−i) · p(wi|si = 1, S−i,W−i) (4.59)

We recognize the first factor on the right as the integrand of the numerator of ρ. The second

factor on the right is simply the truncated normal p(wi|si = 1, S−i,W−i) = p(wi|si = 1) =

N ′(0, τ2), leaving us with

wi ∼ N ′ (h,Aii) (4.60)

with h and Aii defined as above. The inference algorithm in the constrained setting is

detailed in Algorithms (5) and (6).

4.4.2.3 Spike-and-slab with log-normal slab

Instead of a Gaussian (or truncated Gaussian) slab, consider inference of synaptic weights

with a log-normal prior, which is more consistent with experimental evidence:

si|αi ∼ Bernoulli(αi) (4.61)

wi|si, µ, τ2 ∼


1

x
√
2πτ2

exp
{
− (log x−µ)2

2τ2

}
if si = 1

δ(wi) if si = 0

(4.62)

As with the constrained Gaussian slab, we Gibbs sample pairs (si, wi). We want to sample

from

p(si, wi|S−i,W−i, D) = p(si|S−i,W−i, D) · p(wi|si, S−i,W−i, D) (4.63)



CHAPTER 4. BAYESIAN INFERENCE OF SPARSE SYNAPTIC CONNECTIVITY
WITH SPIKE-AND-SLAB MODELS 78

Algorithm 5 Sampling a pair (sj , wj) of sparsity and weight components

Given the current sample S−j and W−j ,

Compute mj , the jth column of M .

Compute IS , the set of indices i for which si = 0.

Compute M−j , the matrix M with removed rows and columns with index in IS .

Compute r−j by removing from r each component with index in IS and also the jth

component.

Compute A = M−j + I/τ2 and Ajj = Mjj + 1/τ2

Compute h = (W T
−jmj − rj)/Ajj

Compute k = −(W T
−jmj − rj)2/Ajj

Compute ρ = 1√
2πτ2

e−k/2
(
1− Φ(−h

√
Ajj)

)
Compute αj = a/(a+ (1− a)ρ).

Draw sj ∼ Bernoulli(αj).
Draw wj ∼ N ′(h,

√
Ajj); sample many w

(l)
j for effective Rao-Blackwellization.

Algorithm 6 Estimation in the constrained spike-and-slab model

Choose starting values for variance τ2 and sparsity parameter a.

for NE.B. iterations (or until convergence of τ2 and a) do

Initialize S and W , say, by drawing from p(S,W |a, τ2).
for NG Gibbs sweeps after NB burn-in cycles do

for each component i of S do

Sample si and wi according to Algorithm (5). Record wi only after burn-in cycles.

end for

end for

Set τ2 =
〈
W TW

〉
/ 〈|S|〉 and a = 〈|S|〉 /N , where the averages are over Gibbs sweeps.

end for
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We cannot sample from p1(si) = p(si|S−i,W−i, D) exactly, but we can draw approximate

samples – samples from p̃1(si), say – by making a Laplace approximation to the likeli-

hood, as shown below. It is also not possible to draw exact samples from p2(wi|si) =

p(wi|si, S−i,W−i, D). We will sample instead from a similar distribution p̃2(wi|si) and ac-

cept these samples with a Metropolis-Hastings acceptance probability.

The distribution for which we will make a Laplace approximation is

p2(wi|si = 1) = p(wi|si = 1, S−i,W−i, D) (4.64)

= p(D|si = 1, S−i, wi,W−i) · p(wi|si = 1) (4.65)

∝ 1

wi
exp

{
(ri −W T

−imi)wi −
1

2
Miiw

2
i −

(logwi − µ)2

2τ2

}
(4.66)

Differentiating, we arrive at

dp2(wi|si = 1)

dwi

∣∣∣∣
wi=w0

= 0 =⇒
(
ri −W T

−imi

)
−Miiw0 −

1

τ2
(logw0 − µ+ τ2)

1

w0
= 0

(4.67)

The presence of the logarithm precludes a closed form solution for w0. We can approximate

log(1 + x) by the first term in its Taylor series (x) when x is small. We know that the

mode of the log-normal distribution is eµ−τ
2
. We can imagine factoring out the mode from

w0, resulting in the logarithm of a number close to one. Unfortunately the deviation of w0

from the mode is often substantial and the approximation doesn’t hold. We have resorted

to solving for w0 numerically by Newton’s method.

With w0 in hand, we find the curvature of the peak of the true distribution:

A = − d2

dw2
i

log p2(wi|si = 1)

∣∣∣∣
wi=w0

(4.68)

= − d2

dw2
i

{
− logZ − logwi +

(
ri −W T

−imi

)
wi −

1

2
Miiw

2
i −

(logwi − µ)2

2τ2

}∣∣∣∣
wi=w0

(4.69)

= − d

dwi

{
− 1

wi
+
(
ri −W T

−imi

)
−Miiwi −

1

τ2
(logwi − µ)

1

wi

}∣∣∣∣
wi=w0

(4.70)

= Mii +
1

τ2w2
0

(
1− logw0 + µ− τ2

)
(4.71)

where Z is a normalizing constant.
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Bringing everything together, we come to the Gaussian approximation of Equation

(4.66):

p2(wi|si = 1) ≈ p̃2(wi|si = 1) ≡
√
A

2π
exp

{
−A

2
(wi − w0)

2

}
(4.72)

Then our approximate ρ is

ρ =
p(D|S−i, si = 1,W−i)

p(D|S−i, si = 0,W−i)
(4.73)

=

∫∞
0 dwip(D|S−i, si = 1,W−i, wi)p(wi|si = 1)

p(D|S−i, si = 0,W−i, wi = 0)
(4.74)

=
1√

2πτ2

∫ ∞
0

dwi
1

wi
exp

{(
ri −W T

−imi

)
wi −

1

2
Miiw

2
i −

(logwi − µ)2

2τ2

}
(4.75)

≈ 1√
2πτ2

∫ ∞
0

dwif(w0) exp

{
−A

2
(wi − w0)

2

}
(4.76)

where we have defined

f(w) ≡ 1

w
exp

{(
ri −W T

−imi

)
w − 1

2
Miiw

2 − (logw − µ)2

2τ2

}
(4.77)

Then

ρ =
f(w0)√
Aτ2

Φ
(√

Aw0

)
(4.78)

While approximate inference in the spike-and-slab model with log-normal slab is tractable,

we do not present the results of experiments with this slab, as the results do not signifi-

cantly differ from those of experiments with the truncated Gaussian slab. Moreover, as the

results of the following section show, spike-and-slab estimates with the truncated Gaussian

slab successfully recover synaptic weights, even when they are drawn from a log-normal

distribution.

4.5 Results

Figures (4.2), (4.3), (4.4), and (4.5) display the performance of both of the spike-and-slab

inference algorithms (S+S for the unconstrained case and S+S+ for the constrained case),



CHAPTER 4. BAYESIAN INFERENCE OF SPARSE SYNAPTIC CONNECTIVITY
WITH SPIKE-AND-SLAB MODELS 81

alongside the LARS and LARS+ estimates. The S+S+ estimates are the only to ever

be exactly zero. All the estimates deteriorate as the level of noise increases. While the

Bayesian methods offer natural error bars, none of them uniformly outperforms the LARS

and LARS+ methods.

4.6 Conclusions

Inferring the location of synapses in dendritic trees is a central problem in neuroscience and

is one step toward mapping the synaptic connectivity of the entire tree. Methods using

a linear model of subthreshold voltage dynamics throughout a compartmentalized neuron

and making use of the lasso have been successful in recovering synaptic weights from noisy

observations of the system. While this represents a substantial step toward addressing the

problem of locating synapses, the methods do not provide much in the way of any measure of

the uncertainty of the estimates. By contrast, a major strength of Bayesian methods is that

their estimates come with natural error bars. Instead of merely reporting the Gibbs sample

mean of the posterior of our estimand given the data, we may more fully characterize the

posterior distribution – at a minimum, reporting its variance – to give a more comprehensive

statement of what the value of the estimand might be.

Here we explored several Bayesian methods: the Bayesian lasso (results not shown), the

horseshoe of [Carvalho et al., 2010], and spike-and-slab models with and without positivity

constraint. We showed that these Bayesian methods do not outperform LARS and LARS+,

and LARS+ seems to be the best method of them all. Why do the Bayesian methods fall

short? Ostensibly, LARS and LARS+ do a better job of pulling small signals to zero and

leaving large signals alone. Whether another choice of prior might produce a Bayesian

method with superior performance remains an open question.
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Figure 4.2: Estimates of synaptic weights for a small (35-compartment) neuron with true

nonzero weights (blue) drawn from a log-normal distribution with shape parameter σ2 =

0.0625 and log-scale parameter µ = 0. Error bars on the spike-and-slab estimates at a given

component show the quartiles of the set of Gibbs samples of that component (including

samples from the spike). The observation noise in this case is Cy = 0.01. Spike-and-slab

and horseshoe samplers ran for 1000 Gibbs sweeps after 100 burn-in sweeps.
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Figure 4.3: Estimates of synaptic weights for a small (35-compartment) neuron as in Figure

(4.2) but with Cy = 0.1.



CHAPTER 4. BAYESIAN INFERENCE OF SPARSE SYNAPTIC CONNECTIVITY
WITH SPIKE-AND-SLAB MODELS 84

0 2 4 6 8 10 12 14 16 18
−0.5

0

0.5

1

1.5

2

Compartment number

W
ei

gh
t v

al
ue
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Figure 4.4: Estimates of synaptic weights for a small (35-compartment) neuron as in Figure

(4.2) but with Cy = 1.
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Figure 4.5: Estimates of synaptic weights for a small (35-compartment) neuron as in Figure

(4.2) but with Cy = 10. In this case the horseshoe sampler was left to run for 10,000 Gibbs

sweeps after 1,000 burn-in sweeps in case the poor performance were due partly to slow

mixing.
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Chapter 5

Inferring orientation selectivity

maps with low-rank von Mises and

related priors

5.1 Abstract

In many areas of the nervous system, different nearby neurons that respond to the same

input (or, more generally, whose firing is related to the same covariate) do not respond

in the same way as one another. In general, different neurons may be tuned to respond

selectively to different particular features of the same input. Sometimes the distribution

of this selectivity over neurons is, seemingly, spatially random. In other cases, though,

selectivity varies smoothly with the location of the neuron in space. In this work we focus on

the case of smoothly varying selectivity of angular variables. One such variable is orientation

of a visual stimulus. In visual cortex, different neurons respond preferentially to different

orientations of a presented stimulus. Another such variable is the phase of a system during

a rhythmic motion. In particular, certain spinal neurons whose firing is correlated with the

act of walking are such that any one neuron will fire most around a particular point in the

the cyclic motion. In both the case of orientation selectivity and phase selectivity, selectivity

has been found to vary rather smoothly with respect to the location of the neuron. In this
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work, we explore two models – one of them one of the low-rank models of chapter 2 – for

such phase maps and apply them to real and synthetic data. We find that here low-rank

models are quite slow, which is to be expected given the loopy structure of the graphs that

represent phase maps. A comparatively simple model is substantially faster and is successful

at partially reconstructing phase maps from noisy or subsampled observations.

5.2 Introduction

We develop two models of smoothly varying phase selectivity maps. One is a loopy variant

of the low-rank models described in Chapter 2 that exploits the self-conjugacy of the von

Mises distribution – a distribution over angular variables. The other is a simpler model

whose tractability also relies upon the self-conjugacy of the von Mises. In the following,

we first recapitulate the essential ideas of low-rank models, specifically in the context of

inference on directional random variables, i.e. variables that can be represented as unit

vectors. Because Chapter 2 develops low-rank models only on tree (i.e. non-loopy) graphs,

we provide a detailed derivation of the necessary forward backward variables and equations

(and normalization constants) in this loopy case, for the block-wise approach that we take to

necessarily approximate inference on this model. In a numerical experiment, we demonstrate

the smoothness and patchiness of draws from the prior in this model. Then we move on

to the simpler model. We define the model likelihood and prior and apply it to estimation

of a spinal neuron phase selectivity map from subsampled data, showing that the estimate

approaches the full observation, with respect to a natural measure of error.

5.3 Low-rank models revisited

Low-rank models are joint distributions whose structure allows for fast exact inference in

settings where standard models such as hidden Markov models and linear Gaussian models

are not applicable. We can perform fast inference on any low-rank model with a tree

structure, i.e. without loops. Beyond that, low-rank inference may be used in the context

of block-wise sampling of loopy distributions, which may speed up mixing of the sampler

compared to a point-wise sampler.
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Continuous
Discrete

Figure 5.1: On the left, a general chain structured distribution of latent variables X and

observations Y . On the right, such a model expressed in terms of discrete auxiliary variables

Z.

Suppose, for simplicity, that we are interested in a distribution p(X) over some latent

variables X, whose dependence structure forms a chain. (More generally, consider the

posterior of X given some observations Y .) Suppose that X is continuous but with non-

Gaussian marginals, so that neither HMMs nor linear Gaussian models are appropriate. But

suppose that the dependence structure of X can be expressed in terms of latent variables

Z with some small discrete state space, where each neighboring pair of continuous x’s is

coupled through some discrete variable z, as shown in Figure 5.1. The graph on the left

has the form

p(X|Y ) = p(x1)
T−1∏
t=1

[
p(xt+1|xt)

]
p(yt|xt).

The graph on the right, as the distribution p(X|Y ), has the same form, but it can also be

expressed as

p(X|Y ) = p(x1)

T−1∏
t=1

[
Rt∑
zt

p(zt|xt)p(xt+1|zt)
]
p(yt|xt)

where we have replaced the transition kernel between xt and xt+1 with a sum over zt,

which is a discrete variable with few states. This resembles the decomposition of a matrix

into rank-one matrices, by singular value decomposition, for example, except that p(zt|xt)
and p(xt+1|zt) are continuous functions, not vectors. Nonetheless, we can consider such a



CHAPTER 5. INFERRING ORIENTATION SELECTIVITY MAPS WITH
LOW-RANK VON MISES AND RELATED PRIORS 89

potential function to be in some sense a truncated approximation to some more complicated

or “high-rank” function, where Rt here is the rank of the truncated function, which is just

the size of the state space of zt. If the x’s were discrete random variables, then this equation

would represent a discrete Markov chain in which the transition densities are of rank Rt,

and inference in this kind of Markov chain is relatively easy, since multiplication by low-rank

matrices is relatively cheap.

The key idea here is that exact inference of the Markov chain X is tractable even in

the general, non-discrete case. In these distributions, X can be marginalized out, leaving

a Markov chain in Z only, where exact inference is tractable by the forward backward

algorithm.

p(Z) ∝
∫
dx1p(z1|x1)

∫
dx2p(x2|z1)p(z2|x2)

∫
dx3p(x3|z2)p(z3|x3) · · ·

∫
dxT p(xT |zT−1)

(I’ve omitted the factors p(yt|xt) here, for brevity. They may be considered absorbed into

the respective factors p(zt|xt).) The corresponding forward variables are shown here. These

expressions, and similar ones for the backward variables, can be derived by induction on t.

A
(z1)
1 =

∫
dx1p(x1)p(z1|x1)p(y1|x1)

A
(zt)
t =

Rt−1∑
zt−1

A
(zt−1)
t−1

∫
dxtp(xt|zt−1)p(zt|xt)p(yt|xt)

But given Z, the x’s are independent, so we can easily compute exact marginals or samples

from p(X) as well.

p(xt|Y ) ∝
Rt−1∑
zt−1

A
(zt−1)
t−1

Rt∑
zt

B
(zt)
t+1p(xt|zt−1)p(zt|xt)p(yt|xt)

The marginal distribution of xt can be exactly expressed in terms of the neighboring forward

backward variables of Z. So we’re doing discrete forward backward to perform inference on

continuous variables.

An important thing to note is that we can compute these exactly so long as the inner

products here are evaluable:
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∫
dxtp(xt|zt−1)p(zt|xt)p(yt|xt)

These integrals correspond to the inner products of left and right singular vectors in the

discrete Markov chain analogy, of which there are few kept from the “full rank” density.

Also, note that we need only compute these inner product integrals once. They can be

tabulated before inference begins.

If we can compute the inner product integrals, analytically or numerically, then inference

takes O(R2T ) time and O(RT ) storage (assuming a fixed Rt = R). If the potential function

basis functions p(zt|xt) and p(xt+1|zt) are such that p(xt+1|xt) is effectively banded, as

would often be the case in smoothing applications, then the speed would scale linearly with

the rank of the potentials as opposed to quadratically, further speeding up inference.

5.4 The von Mises distribution and smoothing potential

5.4.1 The von Mises distribution

The von Mises distribution is popular for modeling one-dimensional directional data, largely

because the necessary normalization factors can be computed easily, and furthermore the

density function is conjugate to itself, like the Gaussian. On the unit circle, the von Mises

distribution can be parametrized by the “mean” angle φ where the mode of the density

resides:

f(x|φ, κ) =
eκ cos(x−φ)

2πI0(κ)

where I0(x) is the order 0 modified Bessel function. (Assume throughout that κ is fixed.)

Instead, however, consider the unit vector x from the circle’s center to the point on the

perimeter an angle x away from the x-axis. Similarly define µ to be the vector with tail at

the circle’s center and point on the perimeter making the angle φ with the x-axis. This we

may write

f(x|µ, κ) =
eκµ

Tx

2πI0(κ)
.
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This is more generally an expression for the p-dimensional von Mises-Fisher distribution on

the surface of the p-sphere, where x and µ are p-vectors and where (2πI0(κ))−1 is replaced

by the more general normalization constant

Cp(κ) =
κp/2−1

(2π)p/2Ip/2−1(κ)
.

In particular,

C3(κ) =
κ

4π sinhκ

A fairly simple algorithm for sampling from the von Mises distribution is described

in [Best and Fisher, 1979] and implemented in the Circular Statistics Toolbox written for

MATLAB by Peter Berens and described in [Berens, 2009]. Said toolbox also includes useful

functions such as evaluation of the von Mises density function.

5.4.2 The von Mises smoothing prior

Suppose we have a time series of angular variables X that we know to vary gradually. Then

we may want to model X with a low-rank chain distribution that couples neighboring x’s

in such a way both that smoothness is imposed on X and that the necessary inner products

are very easy to compute. One such model is

p(X) ∝
∏
t

R∑
i=0

eκt cos(xt−
2πi
R+1)eκt cos(xt+1− 2πi

R+1) (5.1)

For each time step t, this can be viewed as, and is, a superposition of unimodal functions

of xt and xt+1, each peaked at xt = xt+1 = 2πi
R+1 for i = 1, · · · , R, as illustrated in Figure

5.2.

5.5 Loopy orientation map model

On the cortical surface, we know that in many cases nearby columns of cells have similar

tuning properties, so that if we want to estimate the tuning properties of some of these

columns that we observe simultaneously then it makes sense to share information across

neurons by smoothing. In primary visual cortex, the preferred orientation is usually a

smooth function of position. See [Ohki et al., 2006] for an example of analysis of orientation

preference data.
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Figure 5.2: The von Mises smoother transition kernel, shown for rank R = 3 (left) and

R = 10 (right), where κt := R in each case.

5.5.1 Smooth prior and posterior distributions of an orientation map

Here we make a minor change in notation: Z is now observations, not auxiliary variables,

which will go by k, l, and m. Figure 5.3 is a graphical model of the orientation preferences

of an array of cortical columns. (The graphical model has rows and columns, and the nodes

represent columns of cells. Hopefully it is clear from context which kind of column is being

referred to in each instance. We will mostly refer to the columns of cells as nodes). Let oi,j

denote the preferred orientation of the node at position (i, j). We make a noisy observation

zi,j of each node’s orientation preference. Then we have that

p(O,Z) = p(O)p(Z|O)

p(Z|O) =
∏
i,j

p(zi,j |oi,j). (5.2)

We need a smoothing prior p(O). One convenient choice is to use a low-rank spatial prior.

p(O) = p(o1,1)
∏
i,j

p(oi,j+1|oi,j)p(oi+1,j |oi,j) (5.3)

Here the term p(oi,j+1|oi,j) penalizes roughness in the horizontal direction, and p(oi+1,j |oi,j)
penalizes the vertical direction. The following edge potentials serve to smooth orientation

maps, coupling adjacent nodes to keep their values similar:

p(oi,j |oi−1,j) ∝
R∑
k=0

eκ cos(oi−1,j− 2πk
R+1)eκ cos(oi,j−

2πk
R+1) (5.4)

p(oi,j |oi,j−1) ∝
R∑
k=0

eκ cos(oi,j−1− 2πk
R+1)eκ cos(oi,j−

2πk
R+1)
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Figure 5.3: A graphical model of orientation selectivity, omitting observed nodes and their

dependencies.

We can suppose that each node has a flat prior p(oi,j), as we do here for simplicity, or we

can suppose von Mises priors about set modes. Throughout, the concentration parameter

κ is assumed to be fixed, though this assumption can be relaxed. With the observations

included the graphical model may be depicted as in Figure 5.4, where the small black circles

denote the observations which have probability

p(zi,j |oi,j) ∝ eκ cos(zi,j−oi,j). (5.5)

Figure 5.4: A graphical model of orientation selectivity, including observed nodes and their

dependencies.
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5.5.2 The conditional distribution of a column

Define rk to be the unit vector that makes an angle of 2πk
R+1 with the x-axis. Define oi,j to

be the vector that makes an angle of oi,j with the x-axis. Define zi,j to be the unit vector

that makes an angle of zi,j with the x-axis. Suppose that we have marginal estimates for

every node and that we wish to block-wise draw a sample from the jth column. Without

loss of generality, assume 1 < j < N where N is the number of columns and M the number

of rows. The conditional distribution of the jth column given the rest of the nodes and

given the observations is

Pj ≡ p(O1:M,j |O\O1:M,j , Z) (5.6)

= p(O1:M,j |O1:M,j−1, O1:M,j+1, Z1:M,j)

= p(o1,j |o1,j−1, o1,j+1, z1,j)
M∏
i=2

p(oi,j |oi−1,j , oi,j−1, oi,j+1, zi,j).

This first factor is

p(o1,j |o1,j−1, o1,j+1, z1,j) ∝ p(o1,j−1)p(o1,j |o1,j−1)p(o1,j+1|o1,j)p(z1,j |o1,j) (5.7)

∝ p(o1,j |o1,j−1)p(o1,j+1|o1,j)p(z1,j |o1,j)

∝
R∑
k=0

eκr
T
k o1,j−1eκr

T
k o1,j

R∑
k′=0

eκr
T
k′o1,jeκr

T
k′o1,j+1 · eκzT1,jo1,j .

The second factor is

p(oi,j |oi−1,j , oi,j−1, oi,j+1, zi,j) ∝ p(oi,j−1)p(oi−1,j)p(oi,j |oi,j−1)p(oi,j+1|oi,j)p(zi,j |oi,j)

∝ p(oi,j |oi,j−1)p(oi,j+1|oi,j)p(zi,j |oi,j)

∝
R∑
k=0

eκr
T
k oi,j−1eκr

T
k oi,j

R∑
k′=0

eκr
T
k′oi,jeκr

T
k′oi,j+1 · eκzTi,joi,j .

Putting these together, the conditional distribution is

Pj ∝
R∑
k=0

eκr
T
k o1,j−1eκr

T
k o1,j

R∑
k′=0

eκr
T
k′o1,jeκr

T
k′o1,j+1 · eκzT1,jo1,j× (5.8)

T∏
i=2

R∑
k′′=0

eκr
T
k′′oi,j−1eκr

T
k′′oi,j

R∑
k′′′=0

eκr
T
k′′′oi,jeκr

T
k′′′oi,j+1 .
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5.5.3 Sampling a column block-wise by the filter forward sample back-

ward algorithm

Along column j, starting from the top (i = 1), we compute forward variables each corre-

sponding to a particular value of the auxiliary value ki that connects oi,j to oi+1,j . It is

helpful to have the joint factor graph representation in Figure 5.5 in mind. In this figure,

the index of summation over an auxiliary variable labels the factor corresponding to that

auxiliary variable.

A
(k1)
1 =

∫
do1jp(o1j)p(k1|o1j)p(z1j |o1j)

=
1

ZA,1

∫
do1j

 R∑
l1=0

e
κrTl1

o1,j−1e
κrTl1

o1j

R∑
m1=0

eκr
T
m1

o1jeκr
T
m1

o1,j+1

 e
κrTk1

o1jeκz
T
1jo1j

=
1

ZA,1

R∑
l1=0

R∑
m1=0

e
κ(rTl1

o1,j−1+rTm1
o1,j+1)

∫
do1je

κ(rl1+rm1+rk1+z1j)
T o1j

=
1

ZA,1

R∑
l1=0

R∑
m1=0

e
κ(rTl1

o1,j−1+rTm1
o1,j+1) 1

C3(κ · ||rl1 + rm1 + rk1 + z1j ||)
(5.9)

A
(ki)
i =

R∑
ki−1=0

A
(ki−1)
i−1

∫
doi,jp(oi,j |ki−1)p(ki|oi,j)p(zi,j |oi,j)

=
1

ZA,i

R∑
ki−1=0

A
(ki−1)
i−1

∫
doi,j

 R∑
li=0

e
κrTli

oi,j−1e
κrTli

oi,j
R∑

mi=0

eκr
T
mi

oi,jeκr
T
mi

oi,j+1

 e
κrTki−1

oi,j
e
κrTki

oi,j

=
1

ZA,i

R∑
ki−1=0

A
(ki−1)
i−1

R∑
li=0

R∑
mi=0

e
κ
(
rTli

oi,j−1+rTmioi,j+1

) ∫
doi,je

κ(rli+rmi+rki−1
+rki+zi,j)

T oi,j

=
1

ZA,i

R∑
ki−1=0

A
(ki−1)
i−1

R∑
li=0

R∑
mi=0

e
κ
(
rTli

oi,j−1+rTmioi,j+1

)
1

C3(κ · ||rli + rmi + rki−1
+ rki + zi,j ||)

(5.10)

where the normalization constant for each time step t is computed by summing over the

unnormalized variables A
(kt)
t with respect to kt. With these variables in hand we can use

the standard filter forward sample backward algorithm of hidden Markov model theory to

generate samples from the prior (with observations set to zero) or posterior. Here’s how:



CHAPTER 5. INFERRING ORIENTATION SELECTIVITY MAPS WITH
LOW-RANK VON MISES AND RELATED PRIORS 96

Figure 5.5: A graphical model of orientation selectivity, including observed nodes and aux-

iliary variables and their dependencies, drawing attention to a forward backward run on

the second column from the left. The shaded nodes’ values are held as constants, as are the

observations. At each step of the forward recursion, to each possible value of ki corresponds

a forward variable A
(ki)
i .

first we want to sample oj,M given oj−1,M , oj+1,M , and zj,M . That marginal distribution is

p(oM,j |oM,j−1, oM,j+1, zM,j)

=
∑
k

A
(k)
M−1e

κrTk oM,j

R∑
k′=0

eκr
T
k′oM,j−1eκr

T
k′oM,j

R∑
k′′=0

eκr
T
k′′oM,j+1eκr

T
k′′oM,j · eκzTM,joM,j

=
∑
k

A
(k)
M−1

R∑
k′=0

eκr
T
k′oM,j−1

R∑
k′′=0

eκr
T
k′′oM,j+1

(
eκr

T
k oM,jeκr

T
k′oM,jeκr

T
k′′oM,jeκz

T
M,joM,j

)
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Next we compute the conditional distribution used to sample the rest of the elements of the

column:

p(om,j |om+1,j , om,j−1, om,j+1, zm,j)

=
∑
k

A
(k)
m−1

R∑
k′=0

eκr
T
k′om,j−1

R∑
k′′=0

eκr
T
k′′om,j+1

(
eκr

T
k om,jeκr

T
k′om,jeκr

T
k′′om,jeκz

T
m,jom,j

)
×

R∑
k′′′=0

eκr
T
k′′′om+1,jeκr

T
k′′′om,j

=
∑
k

A
(k)
m−1

R∑
k′=0

eκr
T
k′om,j−1

R∑
k′′=0

eκr
T
k′′om,j+1

R∑
k′′′=0

eκr
T
k′′′om+1,j×

(
eκr

T
k om,jeκr

T
k′om,jeκr

T
k′′om,jeκr

T
k′′′om,jeκz

T
m,jom,j

)
5.5.4 Computing marginal distributions by the forward backward algo-

rithm

As above with the forward variables we may derive backward variables:

B
(kM−1)
M =

∫
doM,jp(oM,j |kM−1,j)p(zM,j |oM,j)

=
1

ZB,M

R∑
lM=0

R∑
mM=0

e
κ
(
rTlM

oM,j−1+rTmM
oM,j+1

)
1

C3(κ · ||rlM + rmM + rkM−1
+ zM,j ||)

(5.11)

B
ki−1

i =
R∑

ki=0

Bki
i+1

∫
doi,jp(oi,j |ki−1)p(ki|oi,j)p(zi,j |oi,j)

=
1

ZB,i

R∑
ki=0

Bki
i+1

R∑
li=0

R∑
mi=0

e
κ
(
rTli

oi,j−1+rTmioi,j+1

)
1

C3(κ · ||rli + rmi + rki−1
+ rki + zi,j ||)

(5.12)



CHAPTER 5. INFERRING ORIENTATION SELECTIVITY MAPS WITH
LOW-RANK VON MISES AND RELATED PRIORS 98

With these in hand we are equipped to write down the marginal distribution of any given

node:

p(oi,j |Z) ∝
R∑

ki−1=0

A
(ki−1)
i−1

R∑
ki=0

B
(ki)
i+1p(oi,j |ki−1)p(ki|oi,j)p(zi,j |oi,j)

=
R∑

ki−1=0

A
(ki−1)
i−1

R∑
ki=0

B
(ki)
i+1

 R∑
li=0

e
κrTli

oi,j−1e
κrTli

oi,j
R∑

mi=0

eκr
T
mi

oi,jeκr
T
mi

oi,j+1

×
(5.13)

e
κrTki−1

oi,j
e
κrTki

oi,j .

5.5.5 Low-rank prior draw

Figure 5.6 is a sample from the loopy von Mises orientation preference model for rank R = 5.

2500 cells , rank 5, conc. param. 5
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1

2

3

Gibbs sweep 20

Figure 5.6: A sample 50×50 grid of angles drawn from the von Mises orientation map prior

with rank R = 5 and κt = 5 ∀t. Twenty Gibbs sweeps were made.
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5.6 A simpler phase selectivity map model

While the loopy low-rank model for orientation preference is tractable in principle – i.e. it

has favorable scaling properties – we find that in absolute terms the corresponding Gibbs

sampler is quite slow. The is especially so because computational cost scales quadratically

for the rank, and for low rank there is not much smoothing. With this in mind, we consider

a simpler model.

For our likelihood, we suppose that the true distribution over phases for any given

spiking neuron i is von Mises with some mean vector ~µi and concentration parameter ~κi.

As a prior, we assume that neuron i has a mean phase drawn from a mixture distribution

parameterized by the mean phases of i’s nearest neighbors and defined as follows:

p
(
µi

∣∣∣{µj}j∈Ni ) ∝ ∏
j∈Ni

(a+ b · f(||~xj − ~xi||) · g(|φj − φi|))

≡
∏
j∈Ni

(
0.005 + 0.04 · exp

{
−1

τ
||~xj − ~xi||

}
exp {κ cos(φj − φi)} /eκ

)
Here κ is a global concentration parameter distinct from the observation concentration

parameters {κi} defined above. The f(·) function decreases with increasing distance between

neurons, muting the influence of faraway neurons. The g(·) function is also unimodal (it

is indeed a von Mises density). It promotes the closeness of the selectivities of physically

nearby neurons. The additive constant makes the potential between each pair of neurons a

spike-and-slab potential that allows for occassional sharp changes in the selectivity across

the map. The particular parameter values were chosen to fit data described below.

5.7 Experimental data

We apply both the loopy low-rank model and the simpler model to the estimation of phase

maps from subsampled observations of real mouse spinal neuron firing data.1 In each case,

we tune our model parameters using one data set, and then measure the performance of

each tuned model by applying it to a second data set. The 3-dimensional spatial positions

of the neurons have been precisely determined. We take the (vector) average of the full

1Phase selectivity data provided by Tim Machado.
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set of observations for a particular neuron to be ground truth, and we subsample 5% of

these observations to form the likelihood for each inference algorithm. According to this

likelihood, each neuron’s firing phase is a von Mises random variable with mean parameter

equal to the average of the subsampled observations.

In the experimental setup, a mouse spinal cord is isolated in a dish and stimulated to

evoke a network state similar to walking.2 During walking, many muscles must be activated

at precise times during the step cycle. The spinal cord can generate this pattern by itself

while disconnected from muscles. It is known that motor neurons that control a particular

neuron are spatially clustered together in the spinal cord; each such cluster is called a motor

pool.

In the experiment, hundreds of motor neurons that connect to the mouse hindlimb were

imaged during this walking-related network state. Obvious from the measurements (see

the topmost panel of Figure 5.8 in Section 5.8) are spatial clusters of neurons with similar

phase tuning. Presumably, the motor neurons that fire together are motor pools. If we can

clearly identify which motor neurons belong to which pools then we can address a number

of important questions: What is the correspondence between anatomical pools (which areas

connect to a specific muscle) and functional pools? How may we explain the complexity of

the network output during walking? Also, what is the variance in phase preference across

a motor pool?

5.8 Phase map reconstruction: simpler model

We fix the concentration parameter κi := 50 for each neuron i. One might instead compute

the maximum likelihood estimate of κi from the subsampled data for each neuron. For τ

we choose the value 14. Inference is made tractable by exploiting the fact that the neuron-

neuron potential falls off quickly with the distance between neurons. In our computations,

the potential factors were only computed for the 10 nearest neighbors for each neuron.

The subsampled observation likelihood is the input to a Gibbs sampler that effectively

smooths this selectivity map according to the simpler model prior. Results are shown in

2Much of the text in this section is adapted from communications with Tim Machado.
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Figures 5.7 and 5.8. Here shown at 10,000 Gibbs sweeps, but even after only 1,000 or fewer

sweeps, the Gibbs sampler yields an estimate that is more than 20% more accurate that

the raw subsampled observation. We define the error to be proportional to the sum of the

magnitudes of the vector differences between the true (fully observed) phase preference and

the estimated preference. Figure 5.9 shows maps of the magnitude of the this vector error

for the subsampled observation as well as for a Gibbs sample and the Gibbs running average.

There are two types of spinal neuron that are roughly 180 degrees out of phase with one

another. This shows up in Figure 5.7 as the light blue horizontal bands near plus and minus

pi. The presence of this feature makes inference with the simpler phase selectivity model

less effective because this feature is not accounted for in the model. Notice that in the

negative region of the vertical axis of the full observation in Figure 5.8 there are two regions

(red and light blue) that are each fairly uniform within itself but are about 180 degrees out

of phase with one another. This sharp boundary will not likely be recovered by inference

with the simpler model. Rather, we expect that the two regions will bleed together, and

this is indeed what we see in the Gibbs sample and average in the third and fourth panels

of Figure 5.8. We have set the parameters of the simple model by hand, tuning the model

to achieve the best possible reconstruction of the data. As a test of the resulting mode, we

then fix these parameters and use the same model to reconstruct the selectivity map from a

different set of subsampled data; see Figure 5.10. The smoothed estimate represents more

than a 25% reduction in the error from the raw subsampled data, which is as good as the

reduction in the case of the original data.

5.9 Phase map reconstruction: low-rank model

We applied a low-rank model as described above to analysis of the same spinal neuron data.

First we formed a (loopy) graph by connecting each neuron with its two nearest neighbors.

Connected neurons were coupled by the von Mises smoother potential in Equation (5.1).

We set a global κ parameter to be equal to the rank R, which we set to 10. Increasing

the rank only makes the smoother smooth more uniformly around the unit circle, so that

larger values are best, but computational cost does increase quadratically with the rank.
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A smoothed estimate of the selectivity map of the spinal neurons is shown in Figure 5.12.

After 1,000 Gibbs sweeps, the sampler appears to have converged to the posterior average.

It is clear that in this instance a simpler solution is preferable to the low-rank model, both

for its accuracy and tractability.

As in the case of the simpler model, we tested our model with fixed parameters by using

it to reconstruct a different dataset; see Figure 5.13. Once again, it is clear that the simple

selectivity model outperforms the low-rank model, the latter reducing the error by less that

20%.
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Figure 5.7: Selectivity distributions and neuron-neuron potential for simple model. Left:

The empirical distribution of the difference in phase preference between two neurons (ver-

tical axis) in the full observation, for each (binned) value (horizontal axis) of the distance

between two neurons. Center: The same empirical distribution as in the left panel but

for the sample selectivity map at Gibbs sweep number 10,000. Right: The neuron-neuron

potential, for each value of the distance between two neurons, as a function of the difference

in their phase preferences.
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Figure 5.8: Progress of the Gibbs sampler for the simpler phase selectivity model applied

to data from spinal neuron recordings. First panel: The full observation map. The third

spatial dimension is represented by the varying size of the circles, each circle corresponding

to a single neuron. The value of the phase preference is represented by the color of the circle,

according to the colorbar at the far right. Second panel: The subsampled orientation

selectivity map. Third panel: The selectivity map sample at Gibbs sweep number 10,000.

Fourth panel: The selectivity map average over the first 10,000 Gibbs samples.
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Figure 5.9
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Figure 5.9: Maps of the errors in the estimate at different locations against that of the

subsampled observation, for the simpler phase selectivity model applied to data from spinal

neuron recordings. First panel: The full observation map. The third spatial dimension is

represented by the varying size of the circles, each circle corresponding to a single neuron.

The value of the phase preference is represented by the color of the circle, according to

the colorbar at the far right. Second panel: The subsampled error map. Each point is

colored corresponding to the vector difference of the subsampled and fully observed phase

preferences. Third panel: The error map for Gibbs sweep number 10,000. Fourth panel:

The error map for the average over the first 10,000 Gibbs samples.
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Figure 5.10: Progress of the Gibbs sampler for the simpler phase selectivity model applied

to different data from spinal neuron recordings. First panel: The full observation map.

The third spatial dimension is represented by the varying size of the circles, each circle

corresponding to a single neuron. The value of the phase preference is represented by

the color of the circle, according to the colorbar at the far right. Second panel: The

subsampled orientation selectivity map. Third panel: The selectivity map sample at

Gibbs sweep number 10,000. Fourth panel: The selectivity map average over the first

10,000 Gibbs samples.
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Figure 5.11: Selectivity distributions and neuron-neuron potential for low-rank model. Left:

The empirical distribution of the difference in phase preference between two neurons (ver-

tical axis) in the full observation, for each (binned) value (horizontal axis) of the distance

between two neurons. Center: The same empirical distribution as in the left panel but

for the sample selectivity map at Gibbs sweep number 1,000. Right: The neuron-neuron

potential, for each value of the distance between two neurons, as a function of the difference

in their phase preferences.
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Figure 5.12: Progress of the Gibbs sampler for the low-rank phase selectivity model applied

to data from spinal neuron recordings. First panel: The full observation map. The third

spatial dimension is represented by the varying size of the circles, each circle corresponding

to a single neuron. The value of the phase preference is represented by the color of the circle,

according to the colorbar at the far right. Second panel: The subsampled orientation

selectivity map. Third panel: The selectivity map sample at Gibbs sweep number 1,000.

Fourth panel: The selectivity map average over the first 1,000 Gibbs samples.
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Figure 5.13: Progress of the Gibbs sampler for the low-rank phase selectivity model applied

to different data from spinal neuron recordings. First panel: The full observation map.

The third spatial dimension is represented by the varying size of the circles, each circle

corresponding to a single neuron. The value of the phase preference is represented by

the color of the circle, according to the colorbar at the far right. Second panel: The

subsampled orientation selectivity map. Third panel: The selectivity map sample at

Gibbs sweep number 1,000. Fourth panel: The selectivity map average over the first

10,000 Gibbs samples.
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