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With a 12-parameter Hylleraas-type wave function containing only positive powers, a new calculation has 
been carried out for the 2 *S state of helium by the Ritz variational principle. The energy was minimized by a 
descent process. A nonrelativistic energy of —1.0876X188 Hylleraas units was reached as compared with the 
best previously published value of —1.0876015 Hylleraas units from a 6-parameter function. When mass-
polarization and o?Ry corrections are included, the 12-parameter function gives an ionization potential 2.52 
c m - 1 less than the experimental value of 38 454.64 cm - 1 . The electron density at the nucleus is also calculated 
and compared with the experimental hyperfine-spectrum value. All numerical work was carried out on an 
I.B.M. 650 computer. 

I. INTRODUCTION 

A LONG series of calculations have been made of 
the energy of the ground state of helium,1 

culminating in the 38-parameter calculation of Kino-
shita.2 When relativistic and mass-polarization correc
tions are made, the resulting comparison with the 
experimental values of the ionization energy must be 
considered as very satisfactory. 

The six-parameter variational calculations of 
Hylleraas3 and Huang4 represent the most accurate 
previously published wave functions of the 2 3 5 state.5 

They differ from the ground-state function with respect 
to symmetry and also in that two different exponential 
functions must be included, corresponding to Is and 2s 
orbits. No calculation of the relativistic corrections has 
hitherto been made for the 2 3 5 state. The mass-polariza
tion term was calculated by Stone6 with a six-parameter 
function. 

In this paper are presented the results of a twelve-
parameter variational calculation of the 2 3 5 non
relativistic energy together with relativistic and mass-
polarization corrections. Compared with the elaborate 
character of the wave functions employed in some 
recent work,2 , 7 the 12-parameter function employed 

* Work supported by the National Science Foundation, 
t Watson Laboratory Fellow, IBM. 
1 H . A. Bethe and E. E. Salpeter, Handbook of Physics (Aca

demic Press, Inc., New York, 1957), Vol. 35, Atoms I, pp. 204r-278. 
2 T . Kinoshita, Phys. Rev. 105, 1490 (1957). 
8 E. Hylleraas, Z. Physik 54, 347 (1929); 65, 209 (1930). 
4 Su-chu Huang, Astrophys. J. 108, 354 (1948). 
6 Hylleraas gave 0.08761 X^Rm*hc for the nonrelativistic ioniza

tion potential of the 2 3S state of helium. This calculation was in 
error and was later corrected by Hylleraas6 to 0.0876015 X42?He 4 ^. 
Huang employed a wave function which is formally identical 
with that of Hylleraas but obtained a value of 0.087600X 4 # H e 4 f o 
due, it must be supposed, to incomplete minimization. 

6 A. P. Stone, Proc. Phys. Soc. (London) A68,1152 (1955). 
7 Tycko, Thomas, and King, Phys. Rev. 109, 369 (1958). 

here may be regarded as of intermediate complexity. 
In spite of this fact the total energy seems to converge 
very well, and indeed the agreement of our calculated 
value with experiment seems to be as good as was ob
tained by Chandrasekhar and Herzberg8 for the ground 
state with an 18-parameter function. This is un
doubtedly related to the fact that the independent-
particle hydrogenic wave function, to which the 
Hylleraas trial function with few parameters reduces, 
is a much better approximation for a state with one 
electron excited than it is for the ground state with both 
electrons in the same orbit. (See also the discussion of 
mass polarization below.) 

An additional quantity of interest which can be 
compared with experiment is the total charge density 
at the nucleus which enters as a factor in the hyperfine 
interaction.^ 

The rather lengthy calculations of the relativistic 
corrections have not previously been done for the ex
cited states. It has appeared worthwhile to give an 
account of the methods employed in these calculations. 

II. NONRELATIVISTIC INFINITE NUCLEAR 
MASS PROBLEM 

A. Mathematical Preliminaries 

The nonrelativistic Schrodinger equation for the 
helium atom is 

W / Ze> Z<? e>\ 
— ( V ^ + V ^ + f E+—+ U = 0 , (1) 
2m \ Y\ f2 712/ 

8 S. Chandrasekhar and G. Herzberg, Phys. Rev. 98, 1050 
(1955). 

9 W . B. Teutsch and V. W. Hughes, Phys. Rev. 103, 1461 
(1954). 
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where rx and r 2 are the radial coordinates of the elec
trons with the fixed nucleus as origin and r12 is the 
interelectronic distance. We choose the following units 

a 0 / 4 = l ; 4J&*=1, (2) 

Let 

Let 

where 

where a 0 is the radius of the first Bohr orbit and R is 
the "Rydberg for infinite mass." (2) fixes the units of 
length and implies 

# / 8 m = l ; ^ = 2 . 

For this choice of units, (1) becomes 

(3) 

/ E l l 1 \ 
W+v 2

2 ) iH- ( - + - + W = o . (4) 

V4 r\ r2 2r i2 ' 

The following "elliptic coordinates" are introduced: 

s=r1+r2; t=—fi+r2; u=r12. (5) 

The Schrodinger equation becomes 
4s 4/ 2 

4'*s+ftt+it'uu-\ —is* ^t~\-^u 

2s(u?-P) 2t(s2-u2) 
_ l — — - ^ t t , H — — — - r ^ f r u t 

/E 2s 1 /E 2s 1 \ 
+ ( - + W = 0 , (6) 

\ 8 s2-t? 4w/ 
where the subscripts indicate differentiation. 

Following Hylleraas we replace (6) by the varia
tional formulation 

\=(M-L)/N, (7) 
where 

<Pi(s^u)=\l/i(KS,Kt,KU). 

fi(s,t,u) = e-^svWWfifat), 

[ sinhQo-/) 1 

(ID 

We note that there are two nonlinear parameters a, K, 
while for the ground state only one such parameter is 
used. Our trial function is a generalization of an anti-
symmetrized product of two hydrogen-like wave 
functions. 

Equation (7) becomes 

\=(K2M-KL)/N. (12) 

M, L, N become quadratic forms in the d, for our 
choice of ^, with matrix coefficients functions of <r only. 

M= E aCjMijio), 

L= E CiCjLij(<r), 

N= E CiCjNiji*). 
t \ ; - l 

(13) 

M= f ds( duf dtitutf-NW+W+ff) 
•'o •'o ^0 

+2s(u*-m*+u+2t(s*-u*)+ifu^ (8) 

L= f dsf duf dt[2su--\(s2--P)'}P, (9) 
JQ J0 JQ 

#=if dsf duf dtil?u(s2-P). (10) 
•'o •'o 

The limits of integration come from the following con
siderations. Triangle inequalities imply — u^t^u^s 
^ o o . Since the integrands in (8), (9), (10) are even 
functions of /, we can restrict t to positive values and 
double the volume element. 

We choose as trial functions 

In series (11) we restricted ourselves to pi, qif r»^0. 
It has been pointed out 1 0 that such a series cannot 
satisfy the Schrodinger equation formally. Kinoshita 
removed this restriction, replacing it by the require
ment that his function obey Kato's boundary condi
tions.11 The question as to how closely a series with our 
restriction can approximate an eigenfunction has not 
been decided. Since we achieved a very definite improve
ment over the six-parameter result, we have limited 
ourselves to positive powers in this investigation. I t 
should be pointed out that introduction of negative 
powers would complicate formulas for the matrix 
elements, but would otherwise cause no new difficulties. 

To calculate the expectation values of the various 
operators encountered in this paper, three types of 
integrals were needed. To establish notation we list 
them all below: 

U(p,q,r,(t)= f dsf duf dte-'sHW 
Jo JQ JQ 

X 

sinh2(|<r/) 

sinh(i<7/) cosh(i<7*) 

lcosh2(I<rf) 

(14) 

lA= E Ci<pi{s,t,u). 
*=4 

1 0Bartlett, Gibbons, and Dunn, Phys. Rev. 47, 679 (1935). 
1 1 T . Kato, Trans. Am. Math. Soc. 70,195,212 (1951); Commun. 

Pure Appl. Math. 10, No. 2, 151 (1957). 
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X sinh (Jo-/) cosh(|cr/) 

lcosh2(Jo-/) 

(15) 

when p^ 0, 0, — 1, 

R 0 0 R8 RU sHqu 
W(p,q,r,d)= I ds I dul dter* 

Jo Jo Jo s—t 
fsinh2(£er/) 

X sinh (Jo-/) cosh (Jo-/) 

Lcosh2(J(70 

(16) 

when p^ 0, q^ 0, — 1, 

where 

d= 1 corresponds to sinh2(JCR/), 

d=0 corresponds to sinh (Jo-/) cosh (Jo-/), 

d= — l corresponds to cosh2 (i<rt). 

B. Calculation of L, M, JV 
Any of our ̂  can be represented by a four-tuple of 

numbers (pi, qiy n, 0 t), where 

0i=\ if / i(Jo-/) = sinh (Jcr/), 

0 * = - J if / L ( I ( 7 / ) = cosh(i(r0. 
Note that multiplication of di by —1 is equivalent to 
interchange of sinh (\at) and cosh (Jo-/). That is, —1 
operating on di is equivalent to (2/a)(d/dt) operating 
on/t-(£o7). 

TABLE I . Summary of nonrelativistic values. 

I I . 
lOPi+Vi+ria 

6-Par. 12-Par. 

1 (0,0,0, i ) 1.0000000 1.0000000 
2 (1,0, 0, i ) -2.9048000 -2.8596935 
3 (0,1,0, - i ) -2.8390000 -2.7618353 
4 (0 ,0 ,1 , *) -0.8218000 -0.9133951 
5 (1 ,0 ,1 , *) -0.6630000 -0.8072628 
6 (0 ,1 ,1 , - i ) 1.1300000 1.1314343 
7 (0,0, 2, I) 0.2711045 
8 (1,0, 2, I) -0.0019456 
9 (0,1,2, -I) -0.0981906 

10 (2, 0, 0, I) 0.3274611 
11 (0, 2,0, I) -0.0331554 
12 ( I , I , O , -I) 0.0369968 

K 0.67504 0.66444 
a 0.55000 0.55000 
L 304.61561 250.08928 
M 225.62677 188.19418 
N 94.53310 76.392594 

A -1.0876015 -1.0876088 

H . M . F O L E Y 1100 

TACI J / L A C * I 

t = l , • • • , » , (23) 
"This procedure is based on ideas of T. Kinoshita (private 

communication). 

when p^O, q^O, 

JR 0 0 R* RU SNQUR 

ds\ dul dt e~8 

0 •'O *A) s+t 

fsinh2(§d-/) 

Let 

U(PI+PI+A, QI+QT+B, r,+fy+c, D) = UIJ(A,B,C,D), (17) 

then 

Li^LUAIL, 0,1, OI+E^+WUAIO, 2,0, 
-Uii{2, 0, 0, (18) 

Mij^pipluuiO, 0,1, di+dj) 
-Uti(-2, 2, 1, 0,+0,)] 
-UPI+pj)LUi}(l, 0, 1, BI+6,) 
- « , , ( - 1 , 2, l,0,-f-0y)] 
+IC«u(2,0,1,0,+0y)-M,7(0,2,1, 0,+0 y)] 
+Mi[«<y(2,-2,l,0i+(9 J) 
- « , v (0 , 0, 1, 0,+0,)] 

- M l V ( 0 , l, i, 0 - 0 , ) ] 

+ k d > i i ( 2 , - i , 1, -0 ,+0,) 
- « 0 ( O , I, i, -DI+EJ)-] 

+ I < ^ C « . V ( 2 , O, l, - 0 , - 0 , ) 

-w, v (0, 2, 1, - 0 , - 0 , ) ] 
+RFL«u% 0, - 1 , 0rf+0y) 
-«« (0 , 2, - l , 0 , + 0 ; ) ] 
+ ( M + ^ ) [ « < X O , O, i, BI+dj) 

-UiiiO, 2, - l , 0 D - 0 , ) ] 
- K n + r y ) [ « , 7 ( l , 0, 1, 0,+0y) 
-UuiX, 2, - l , 0 i+0y) ] 
+ (^y+?^.)[«<y(2, 0, - 1 , 0H-0,-) 
-«< y(0, 0, 1, 0 H - 0 , ) ] 
+JoT ,-[>, 7(2, 1, - 1 , 0,—0y) 
-M,y(0, 1, 1, 0,-0,)] 
+ f o T y ( > i , ( 2 , 1, - 1 , -0<±0y) 

- « j y ( 0 , 1, 1, - 0 H - 0 , - ) ] , (19) 

^ . i = I C « . 7 ( 2 , 0, 1, 0i+0y)-M,7(O, 2, 1, 0 ;+0y)]. (20) 

C. Minimization 

Let us consider a held constant. Then minimize (12) 
as follows. First we minimize explicitly with respect to 
K by the condition d\/dic=0. Thus one parameter is 
determined by K=L/2M and (12) becomes 

\=-\D/MN. (21) 

Equivalently, we maximize 
/(<r0,c) = D/MN; c= ch • • •, cn (22) 

by an iterative procedure12 
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where b is a suitably chosen scalar which will be dis
cussed later. By differentiating (22) we see 

energy by 

(24) df /2Li Mi Ni\ 
— = 2 / ( ) , 
da V L M N/ 

d2f L / d / V R 2 

— = - ( — ) + 2 / —(LLu—2L?) 
dc? f\dci/ IL2 

1 1 1 
{MMu—2M?) {NNa-wM, (25) 

M2 N2
 J 

where 
n n n 

Li= E LijCj; Mi= £ MijCj; Ni= £ NijCj. 
y-i y=i y-i 

By using the same d2f/dct

2 for a large number of 
iterations, the machine time per iteration becomes small 
since only df/da need be calculated at each step. 
After iterating a few hundred times, we extrapolate the 
Ci for a few hundred iterations and then start iterating 
again with these new c». We choose b so that there is 
little oscillation in the a and df/dci. This descent 
method has the advantage that round-off error cannot 
build up. 

To minimize the energy with respect to o-, we select 
a value of a (from a lower order calculation, for ex
ample) and calculate £,»•/, M,y, Nij. For this value of a 
we can determine K, C , X by the process discussed above. 
We repeat this procedure for a number of values of a . 
We thus obtain a set of pairs (<ry,Xy). By interpolation 
or extrapolation we can determine the value of <r corre
sponding to the best value of X and use this a to make a 
final choice of the remaining parameters and of X. 

The numerical values of the wave-function param
eters and the energy at minimization for the 6- and 12-
parameter functions are listed in Table I. 

HI. CORRECTION FOR NUCLEAR MOTION 
AND RELATIVITY 

A. Nuclear Motion 

In a coordinate system with respect to the center of 
mass of the atom, the Schrodinger equation becomes1 

h2 

\ (V! 2 +V 2

2 )+F Vi-V 
L 2fi M H e 

(26) 

h2 r 
= I ^ ( V l ' V 2 ) ^ 7 

Mm J 
(27) 

Integrating by parts and introducing Hylleraas units, 
we have 

€ = Vi^-Vrfrfr, (28) 
M^e J 

or for our functions 

WK 2 

where M H 6 is the mass of the helium nucleus and 
/I = ViM HE/ (m+Miie). 

Motion of the nucleus has modified the Schrodinger 
equation in two ways. 

(1) The actual mass has been replaced by the re
duced mass of the electron. This can be dealt with by 
replacing the Rydberg for infinite nuclear mass R^ by 
R»(l—m/Mm) when we express our energy in wave 
numbers. 

(2) A perturbing term is added which changes the 

MHJV 
(29) 

P= f dsf duf dtVif-V*lM(s2-P) 
Jo Jo Jo 

= f dsf duf dOt(*+fi-2tfi)(f.*-4rt 
Jo JQ JO 

!) 
' 0 •'o " 0 

- « ( S 2 - < 2 ) L A „ 2 - 2 5 ( « 2 - « ! ! ) ^ . 

-Uist-uWJd (30) 
Note that 

P=-M+2 I dsl du if dsf 

X ( dt[u{s>-u*)W-u{fi-u*)4,?-], (31) 
•'o 

where M was defined by (8), and is known for a given 
value of a. Therefore we can shorten our calculations 
considerably by calculating the integral expression on 
the right side of (31). For our functions 

Ru-lpipfoiiQ, 0,1,0<+0,)-«<,(-2,0,3, 
- ( M - * Y ) [ « « ( L , 0,1, *<+*/)-«</(-1,0,3, M - T F Y ) ] 

+*C««(2,0,1,0d-0y)-«<,-(0,0,3,0,+fl,)] 
-2g«£««(0,0,1,9i+e,)-un{0, - 2 , 3 , 
-cqluviO, 1,1, - M - ^ - M ^ O , - 1 , 3 , -9t+$,X\ 
-<rqlui3(0,1, L . ^ - ^ - ^ O , - 1 , 3 , 0 , - 0 , ) ] 
- M « O ( 0 , 2 ,1 , - 0 - 0 y ) - « o - ( O , 0, 3, -$i-ei)2. 

(32) 
Results of Mass-Polarization Calculations 

6-parameter 12-parameter 

5.27X lQr7 Hylleraas units S.13X 10~7 Hylleraas units 
0.232 cm- 1 0.225 cm"1 

We note that the mass-polarization term, which is a 
measure of the electron correlation, is only 1/20 of the 
value 4.79 cm""1 calculated for the ground state.1 This 
seems to be a rather striking evidence of the independent 
character of the motion of the two electrons in this state. 



J . T R A U B A N D H . M . F O L E Y 1 1 0 2 

( V I 4 ) = j TVTYDT. ( 3 9 ) 

•'O •'O ^ 0 IT HAS BEEN POINTED OUT 1 3 THAT USING THIS INTEGRAL LEADS 

TO DIFFICULTIES WHICH CAN BE AVOIDED B Y USING THE FORM P U 

/ ( V X V O W R , = J dsj duf dtiA^yuis2-^ 

2 /-st+u2\ 
+^u+2l— 1 ^ . ^ ( 4 0 ) 

u \u(s—t)/ 

4 

5+/ 

+ 2 F < F C F D « F dtiA^iBitfuis+t) 
JO JO JO 

+ 1 dsl dul dt{B^Y . ( 4 7 ) 
JQ •'O JO s—t 

T H E FIRST TWO INTEGRALS ON THE RIGHT SIDE OF ( 4 7 ) REQUIRE 
2 / st+u2 \ ONLY INTEGRALS OF TYPE U(p,q,r,d). T H E LAST INTEGRAL 

+ L M - 2 ( ) ( ^ U T + ^ « « ) - ( 4 1 ) REQUIRES TYPE W(p,q,r,d). W E SEPARATE OUR CALCULATION 
W INTO THREE PARTS BECAUSE OF THE LIMITED STORAGE CAPACITY 

1 3 J. Sucher and H . M . Foley, Phys. Rev. 95, 9 6 6 (1954) . OF OUR MACHINE. 

B. Relativistic Corrections NOTE 

T H E BREIT EQUATION IN PAULI APPROXIMATION IN POSITION = - WTYFC, - / , u), ( 4 2 ) 

S P A C E I S WHERE THE M I N U S SIGN IS DUE TO THE ANTISYMMETRIC CHAR-

. v ACTER OF OUR WAVE FUNCTIONS. SINCE THE OPERATORS V I 2 AND 
TY— Y, \ ) Y 2 2 A R E N O T E V E N FUNCTIONS OF WE CANNOT RESTRICT OUR-

^ 2 SELVES TO POSITIVE POWERS OF / . INSTEAD WE NOTE THAT 

HO=V ( V ! 2 + V 2

2 ) . ( 3 4 ) 

2M R R 0 0 R' RU 

I ( V I V ) 2 ^ R = I dsl dul dt(Vi^)2u(s2-fi) 
HO IS THE HAMILTONIAN FOR THE NONRELATIVISTIC EQUATION. J —u 

H L = ( V ! * + V 2

4 ) . ( 3 5 ) = I dsl dul dt(VH,)2<?-fi) 
Smzc2 J O J O •'O 

HI IS THE RELATIVISTIC CORRECTION DUE TO VARIATION OF MASS , T * , F * , F U « . N ^ N 

WITH VELOCITY. + J O

 dsJQ

 duJQ ^ V M * 2 - * 2 ) - ( 4 3 ) 

<?H2 1 / u - ( u - V I ) V 2 \ 
^ 2 = O7 ^2 \ V L * V 2 " ' ~2 # ' @® WITH THESE LIMITS OF INTEGRATION WE CAN MAKE USE OF THE 

l[mc) u \ u / INTEGRALS DENNED IN ( 1 4 ) - ( 1 6 ) . NOTE THAT 

HI CORRESPONDS TO THE CLASSICAL RELATIVISTIC CORRECTION TO o / \ 2 \ _ /(TJ O/\2\ 
THE ELECTROMAGNETIC INTERACTION BETWEEN ELECTRONS. " IR)/—U RR)/• 

( Z 7 3 ) = 0 FOR ALL S STATES. W E SHALL CARRY OUT IN SOME DETAIL THE CALCULATION OF THE 

FIRST INTEGRAL ON THE RIGHT SIDE OF ( 4 3 ) . T H E SECOND IN-

^ 2 ( 3 7 ) TEGRAL CAN BE DONE SIMILARLY. 
H*=72 Y ' € L + V R I F W E T R Y T 0 EXPRESS THIS INTEGRAL IN TERMS OF U, F , W 

[ ( 1 4 ) , ( 1 5 ) , ( 1 6 ) ] INTEGRALS WE WOULD ARRIVE AT AN EX-

J ? 4 IS A RELATIVISTIC TERM CHARACTERISTIC OF THE DIRAC PRESSION WHICH HAS ON THE ORDER OF 1 0 0 0 TERMS. W E SHOW 

THEORY. N O W T O AVOID S U C N A FORMULA. LET 

< # 6 } = 0 SINCE IT IS PROPORTIONAL TO <53(u)>, AND (HS)=0. VI^Arf+Btf/is-t), ( 4 4 ) 

WHERE 
(A) Calculation of (HI) 

__¥ Atf=t„-W.T+FTIW'UU+ (2/u)fuy ( 4 5 ) 

( H ^ = — S ( ^ + ^ 2 % ( 3 8 ) 5 L ^ S 4 ( ^ _ ^ ) + 2 C ( - ^ + W

2 ) / W ] ( ^ . - ^ < ) . ( 4 6 ) 

T H E N 
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W(j>i+pj+a, qt+qj+b, r.+fy+c, d) 
=Wij(a, b, c, d), (54) 

where W was denned by (16). Then 

We note again that the can be represented by a In Eq. (S3) 
four-tuple of numbers CP<,<7,-,r,-,0J). Let 

G,y(a, b,c,d)= (Pi+Pi+a, qt+qj+b, r.+ry+c, d) 
Gi(a, b, c, ± 0 , ) = (pt+a, qt+b, n+c, ±0,-), (48) 

then L e t 

Atf^Kl+^GiiO, 0,0,0.) 
+ r , ( r , + l ) G , ( 0 , 0 , - 2 , 0 , ) 
+q,Gi(0,-1,0,0,) 
+ $ , ( $ , - 1 ) G , ( 0 , - 2 , 0 , 0 , ) 
-p&i-1,0,0,0,) 5 1 ( / = E A r F^F^ia) 
-2piqiGi(-\, - 1 ,0 ,0 , ) x[v>iMf'+v+i,bt+b->,c»+c-'+\,d»ei+d-iej) 
+Pi(pi-l)G,(-2,0,0,0i) +wij(ai>+ay, 6 " + ^ + l , c " + ^ + l , d^+d^. 
+£<TG , ( 0 , 0 ,0 , -0 , ) 
+<r G (0 — 1 0 — 0) ^ ° e n a ^ e u s t o c a ^ c u l a t e these matrix elements, 

* * ' ' ' o 0 -J) (49) w e n a v e t o ^ o a c^ m t 0 m a c n m e t n e tabulated 
' ' ' integrals, the four-tuples (/>,-,g,,/,-,0.) and the four-tuples 

Bi\lti=r,Gi(l, 1, —2, 0,) Gi(aP,bP,cfi,dP). The machine can then be programed 
+2r<g,G,(l, 0, —2, 0.) to form all matrix elements. 
- 2/>,r,G,(0, 1 , - 2 , 0.) Results for {Hi).— 
- ( r , + 2 ) G , ( 0 , 0,0,0.) 
- (4g ,+2r ,? , )G , (0 , - 1 , 0,0.) 
+ (4^+2/>,r,)G,(-l, 0,0,0.) 
-<r(r ,+2)G(0, 0, 0, -0 . ) 

+<rr,G,(l, 1, - 2 , -0 , ) . (50) 

6-parameter 12-parameter 

- 522916c? Hylleraas units - 5.22052a2 Hylleraas units 
-122.225 cm- 1 -122.009 cm"1 

(B) Calculation of (H2) 

To illustrate the calculation of (47) we consider in ^h2 r / V I - V * . u - ( u - V I ) V 2 > 

detail 
1 dsl dul dt{B^)2 =BX\ (51) 
0 • '0 *M> s~ t 

$w r u - ( u - V I ) V 2 \ 
{H2)= I H ——+ Wr. (55) 

Bx+ , = E * W)G,(a<»,&V<y«0,); 
where d " = ± l . 

(52) 

Let xu be the jth coordinate of the ith electron rela
tive to the nucleus. 

V L ' V 2 u - ( u - V I ) V 2 

+ 
Bx

2= £ CiCjBuf, 
U U* 

where 

r9 r u u(s+t) 
Bu?=\ dsl dul dt(B^%){B^3) 

J0 J0 JQ s—t 

= I F T , W ; Y W f dsf du 
Jo Jo 

Jru u(s+t) 
I dt Giia^MAd^Gjiayfiy^^,) 

^ E A T ^ / W ^ M f dsf duf dt 
Jo Jo JO 

X [ G , . , V + a ? + l , V+br, cP+f+1, d^6i+d%) 

+Gi,(af>+ay, W+by+l, c»+Cy+l, 

1 
X :. (53) 

s-t 

1 3 A 2 1 
= - E + -

U I=L dxudxzi u* 
3 3 r e2 1 

X E E (x2i— Xii)(x2k-Xlk) , (56) 
i=i k=i I dxud2kl 

KVi'V2 u - ( u - V I ) V 2 \ 
+ Udr 

u uz / 

dsj duj dty[\s2+P+— - 3 « 2 J 

X ( ^ 8 - ^ « ) + ~ ( ^ - « 2 ) ^ - + ~ ( W 2 - ^ T T 

u u 

- 2 ( 5 2 - / 2 ) ^ 
u J 

(57) 



i.i-l 

0 W = T ( l - « * ) « « ( 2 , 2, - 2 , Oi+6,) 
+i(l-<r 2)«,Y(2,O,O,0,+0y) 
- C 2 r , + 4 r , l ) + 2 r , ( r , ~ 1 ) ] 
X«<Y(2, 0 , - 2 , ^ + 0 , ) 
-? / (? / -1 )««(2 , -2 ,0 ,0 ,H -0 , ) 
-(fr+2r,)««y(l, 2,-2,0,+0y) 
-(/» i -2r J ) M , 7 (l ,O,O,<?,+0 i ) 
+ K L - < 7 2 ) « , y ( 0 , 2,O,0,+0y) 
+ C 2 r , + 4 ^ r , + # , ( ^ - l ) + 2 r y ( r y - 1 ) ] 
X K , / ( 0 , 2, - 2 , 0 < + O i ) - t ( l - < r 2 ) M , 7 ( 0 , 0 , 2 , 0 d - 0 y ) 
+ C 4 r , ^ - 4 r ^ , + ^ ( ^ - l ) - ? X ? Y - l ) ] 
X«,Y (0 ,0 ,0 ,0 , -+0y)+3 g / ? , - l)w,Y(0, - 2,2,0,+0y) 
-P&iii-1, 2, 0,0,+0y)+3^Y«,Y(-1,0, 2, 
+ / > Y ( / > , ~ l ) « « ( - 2 , 2, 0, 0,+0y) 
- 3 ^ Y ( / » Y - l ) « , Y ( - 2 , 0, 2, 0<+0y) 
-(r(GY+2ry)«,Y(2, 1, -2,01-0,) 
-<7?YW,Y(2, -1,0,0,—0y) 
- < r ( 9 Y - 2 r y ) « , Y ( 0 , 1, 0, 0,-0y) 

+3<7?YM<Y(0, - 1, 2, 0,~0y). (58) 
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96.945 cm"1 

12-parameter 

4.1435a2 Hylleraas units 
96.838 cm"1 

Results for (H2) — 
6-parameter 

- S ^ X I O - V 

Hylleraas units 
-1.98X10-2 cm"1 

12-parameter 

- 7 . 9 9 X 1 0 - ^ 
Hylleraas units 

-1.87X10- 2 cm"1 

(C) Calculation of (H*) 

(2mc) 
- ( V R 8 I + V 2 - £ 2 ) , (59) 

where S;= — ViV is the Coulomb field due to the nu
cleus plus the other electron. 

(60) 

where 

(«3(ri))= 

Let 

(2mc) 

=— f WriWdn. (61) 
4a-IV */« 

R 0 0 

(62) 

(63) 

IV. CALCULATION OF D(p) 

Z > ( 0 ) S W [ j T | * ( r i , 0 ) | W r i + J T |^(0,r 2 ) | 2 ^r 2 j , (66) 

where ^(rir 2) is the normalized two-electron wave 
function and #o is the radius of the first Bohr orbit of 
hydrogen. We summarize our results. 

6-parameter 12-parameter Experimental14 

D(0) 33.18456 33.14795 33.18388=b0.00023 

V. RESULTS AND DISCUSSION 

It is instructive to compare the results of the present 
calculations, Table II, with those made for the ground 
state of helium with various numbers of variational 
parameters as presented by Kinoshita.2 Referring to 
the nonrelativistic energies obtained directly from the 
variational calculations, we note that the increase in 

TABLE I I . Summary.* 

A* =5.32504 X10~«; Ru** =109722.267 cm"* 
Six parameters Twelve parameters 

<#o> -1.0876015 Hyl. units 
- 4 7 7 336.41 c m - 1 

-1.0876088 Hyl. units 
- 4 7 7 339.61 cm"" 

E =mass polar. 5.27 X10-» Hyl. units 
0.232 cm-i 

5.13 X10- ' Hyl. units 
0.225 cm"1 

(HI) -5.22976A* Hyl. units 
-122 .225 cm-i 

-5.22052A* Hyl. units 
-122 .009 cm"* 

<H2> - 8 . 4 6 X10"<A* Hyl. units 
- 1 . 9 8 XI0 -2 c m - 1 

- 7 . 9 9 X10-«A* Hyl. units 
- 1 . 8 7 X 1 0 - 2 cm-* 

(H.> 4.1481A* Hyl. units 
96.945 cm"* 

4.1435A* Hyl. units 
96.838 cm"1 

Relativistic shift in 
ionization energy 
=£,• 

0.08245A* Hyl. units 
1.9267 cm-i 

0.07784A* Hyl. units 
1.8192 cm~* 

1.695 cm"* 1.594 cm"1 

* Constants taken from E. R. Cohen and J. W. M. Dumond: Handuch 
der Physik (Springer-Verlag, Berlin, 1956), Vol. 35. 

b F. Paschen and R. Gotze, Scriengesetze der Linienspektren (1922). 
1 4 R. Novick and E. Commins (private communication). 

6 parameters 12 parameters Experimental 

Ionization 0.0876054 Hyl. units 0.0876124 Hyl. units 0.0876181 Hyl. units 
energy 38 449.05 cm-* 38 452.12 cm-* 38 454.64 cm"' •> 

D(0) 33.18456 33.14795 33.18388 ±0.00023 

Six parameters Twelve parameters 

Ionization energy shift 
(experimental-
theoretical) 

5.59 cm-* 2.52 cm"* 

* . - ( r i ) = ^ ' * i » < + « + « / . ( K > ' i ) , (64) 

0 « = K £ D - & + G R F ? Y + R H - R Y + 2 ) ! 

88, 8C, CC pi+pj+qi+qj+ri+N+3). (65) 

(See Appendix A.) 

Results for (Hi).— 
6-parameter 

4.1481a2 Hylleraas units 
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number of parameters from 6 to 12 in the 2 ZS calcula
tions resulted in a lowering of the nonrelativistic energy 
by only 3 cm - 1 . This is approximately the amount by 
which the energy was lowered in the ground state work 
on increasing the number of parameters from 14 to 18. 
This apparent convergence of the 2 ZS calculation for a 
moderate number of parameters is presumably an 
indication that hydrogenic single-particle wave func
tions are a much better approximation in excited states 
than in the ground state. The marked reduction in the 
electron correlation, measured by the mass-polarization 
term, as compared with the ground-state value is con
sistent with this interpretation. 

The evaluation of the expectation values of the rela-
tivistic and other operators is A PRIORI much less ac
curate than that of the nonrelativistic Hamiltonian by 
the variational method. The fact that our net rela-
tivistic correction differs by only 0.1 cm - 1 between the 
6- and 12-parameter functions is perhaps sufficient 
justification for the belief that these corrections can be 
applied, and a comparison of the total energy with the 
experimental ionization energy can be made which is 
significant. 

We note that the final theoretical value for the 
ionization energy is only 2.52 cm - 1 below the present 
experimental value. This is a very satisfactory result in 
view of the moderate number of variational parameters 
employed and is consistent with the remarks in the first 
paragraph of this section. We note that the greater 
experimental accuracy for the 2 ZS state as compared 
with the ground state, makes it a better state in which 
to compare theory, including higher order electro-
dynamic corrections, with experiment. 

The comparison of the electron charge density at the 
nucleus with the experimental value derived from the 
hyperfine splitting has been discussed by Teutsch and 
Hughes.9 The "experimental value" D(0) is derived with 
neglect of nuclear structure effects. We note that while 
a six-parameter wave function yields a value of D(0) 
which agrees almost exactly with the experimental value, 
the value which we obtain with our 12-parameter func
tion differs by 1 part in 103 from the experimental value 
deduced by Teutsch and Hughes. The following rough 
argument indicates that no better agreement can really 
be expected with the wave function available. From the 
apparent rate of convergence of the variational energy 
value together with the degree of agreement with the 
experimental ionization energy one cannot argue that 
the variational energy (nonrelativistic) is closer than 
1 part in 106 to the energy of the 2 3 5 state. Because of 
the minimal property of this energy value, the wave 
function, on the average, is not better determined that 
1 part in 103. The observed accuracy of our 12-param
eter value of D(0) is consistent with this estimate, and 
the closer agreement with experiment found with 6-
parameters must be regarded as accidental. 
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APPENDIX A 

To evaluate the numerous integrals encountered in 
this investigation, we define the following functions. 

For n an integer: 

For/3<l, 

Y{M= ( e^tnEi(t)dt} (Al) 

where 

J* 0 0 er* 
—dx. 

t x 

For 0 ^ 0 , 

F ( M = ^ R R ( - i ) n + 1 i n ( i - « 

+(-«•£ (-i)'(^)'J], 
F(0,»)=»! /»+l . 

Recursion: 
F(/J,«): («//3) Y(J3, n-1)+ '-. 

(1-/3) • 

For n an integer: 

For/3<2, 

£(&«)= f e»Hnm{t)dt. (A2) 

Recursion: 

£(£,») = - (n/fiLip, n-1) + (2//3)F(/3-1, « - 1 ) , 
•n2 2 • ( - 1 ) ' 

£ O J , 0 ) = — r - S — — (1-0)/ . 
6/3 f 

In particular we need 

Z,(1.55,0)=1.90403182, 
1,(0.45,0) = 1.48382912, 
L(l, 0) = 7 ^ / 6 . 

RX RA E~XT in* 
H(p,n)= | e»Hndt\ dx. (A3) 

Jo J i x— 1 
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For/3>i, 
« ! r -

H(p,n)--
( l - / j ) » + i L 

my 
f l m 8 1 n ( l - | 8 ) 

To tabulate these functions for the required values of 
/3 we sum the following infinite series. 

F o r / ? < f , and 0 ^ 0 , 

« 1 /(S—1\ » n 1 
- £ - ( ) - l n ( l - / J ) £ -

» <-l 1 / £ - 1 \ 
— + E E - — ) • 

g ( f t » ) - * ' J ^ + i [ l n ( l - ^ ) ] 2 

« / 0 V 1 » 1 
+ Z ( ) - - l n ( l - 0 ) £ -

/ 0 - i y » < - i l 

x - ' ( A 4 ) 

V 0 / < - 2 > - i * ; V 0 / J 

/ 7T2 » 1\ 

For p^O, q^O, r^O, 

U(p,q,r,d) = <foĵ  <ft<rW%rj 

• ( - i ) ' / o . « y 

, - 1 / 
^ y ~ o , 
V 0 . 5 5 / 

• l / 0 .55 \> 
Z - { — ) = 0 . 

; - i ?\1.SS/ 

69310353, 

39257179. 

Rather than the functions (Al, A2, A3, A4) defined 
above we actually need certain linear combinations of 
these functions. For any C ( 0 , » ) we define: 

C..08(<r),«)=C[^(<r),M]+CG8(-<r),»] 

- 2 C D 8 ( 0 ) , » ] , 

C,M<r),n)=C[p(<r),nl-C[J3(-<T),nl, (A5) 
CeMr),n)=C[p(<r),nl+C[fi(-*),n\ 

+2CD8(0),»]. 

The symbols C„, ,«., C ( ! ( 0 , » ) which occur in the follow
ing formulas should be interpreted as follows. For 
sinh25(rt integrals use C , , ( 0 , » ) , for sinh§<rf cosher/ in
tegrals use C,cifi,n), for cosh2§o-< integrals use C C ( . ( 0 , » ) . 

sinh25(r/ 

sinhjo-/ coshjcr/ 

Lcosh2J<7< 
r+1 

X\(p+r+l)\ E 
P+R+1 (q+j) ! 

3=0 
A8BT8CTEC((TY q+j+l)-p\ £ 

3=0 

p ( g + r + l + i ) ! 
e(<ryq+r+2+j)\. (A6) 

For ^ 0 , g ^ 0 , 

ds\ dul dte~* 
0 ^0 ^0 u 

F o r ^ l , g ^ l , 

dsl dul dt e~* 
0 ^ 0 •'o u2 

I c o s h 2 ^ 

S S ^88,8C,CC 
y-0 *=ofe!(y+l) 

s i n h 2 J < r / 

s i n h | o - / c o s h j o - / 

c o s h 2 | ( r / 

8 8 , 8C, CE\ (A7) 

For 9 ^ 1 , 

= l [ ( # - D ! Z M ^ 
. ( < r , ? + j ) . (A8) } 

^ 0 0 „8 ~U 
U(0, q,-2, d)= I dsl dul dt • 

Jo ^ 0 JQ u2 

f s i n h 2 ^ / 

s i n h ^ c o s h | o - / 

L c o s h 2 i ( r / 

[=ll(q-1) c o M ~ F „ , 8C, „(<r,g)J (A9) 
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o Jo s+t 

s inh 2 Jo- / 

< s i n h | < r / cosh^at 

X O s h 2 | o - / 

1 Yi+r i {-\)^^j\{p+q+r+k-j)\ 
4 - E E 
r+lLy-o *=o k\ 

88, 8C, cc Or, p+q+r+l+k-j) 

»-i y ( - l ) » " i l ( # + 8 + H - * - j ) ! 
+ E E 

j = 0 *=0 k\ 

+ 

88, 8C, CC 

(<r, P+q+r+l+k-j) 

( - l ) l ( - 1 ) ^ - 1 ] 2H-<H-H-2 
Y88t8C,cc[i(*+l),p+q+r+l^. (A10) 

For ^ 0 , ^ 0 , 

/.«» ^* /•« e 
F ( j M > ~ M ) = I * I D U \ D T ~ 

• 'O ^ 0 • ' o u 

>w e~*sptq 

is+t) 

sinh2i<7/ 

sinh|<7^ coshjo-/ 

I c o s h 2 ^ 

=IL E E E 88, 8C, CC 
(<r, p+q+l-j) 

( - 1 ) ' 
+ E ( - i ) ^ 1 + , ' i ! F „ . „ , « ( < r , / ' + < ? - i - i ) + L„,,c,ee(l+ 

y=o 2 
(All) 

For £ ^ 0 , ^ 0 , r^O, 

-co ^* 5 p / % r 

W(p,q,r,d)= I & I d« I * e r « sinhio-/ cosh^c/ 

1 TiH-r i i ! ( ^ + ^ + r + ^ - i ) ! 
= I E E • 

r + l L / = o k=o kl 
- « * S S , * C , CC 

(<r, ^ + g + f + l + * - i ) 
p - i y jKp+q+r+k—j)l 1 

- E E . , —A... u. oc(c, P+q+r+l+k-j) J. (A12) 

For p^0, q^O, 

TF(# ,« , -1 ,<0 - dsl dul dt—— 
Jo Jo Jo u(s—t) 

= I [ E E E 

7=0 /c=0 

fsinh2|o-/ 

sinh Jo-/ cosh|o"/ 

lcosh2|(7-/ 

ft! 

R^,1 Y * jKp+q+i-j-W 
1 1 E E E 

j = 0 k=0 1=0 /!(&+!) 
*± 88, 8C, CC (?, p+q+l-j) 

+ E j\y 88, 8C, CC (*,P+q-j-l)+H 88, 8C, CC (?,p+q)\. (A13) 
3=0 J 

APPENDIX B associated with each operator were found, and finally 
All computations were done on an IBM. 650 com- we computed the expectation values of these operators, 

puter, a medium-size machine with 2000 storage loca- F o r a computation of this size many checks are neces-
tions. First all functions such as Y88(P,n) were tabulated sary. A typical example is the following. The fastest 
and used in computation of the integrals. There were way to generate the Y(p,n) is by the recursion formula, 
some 600 integrals of each type. Next the matrices In addition, however, we employed the explicit formula 

For/>^0, r^O, 
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for Y(fi,n) to find its value for a large n and compared 
it with the value predicted by recursion. 

Almost all matrices encountered were symmetric. 
This property was used as a check in the initial phases 
of each machine computation. 

The most powerful check was the following. We 

chose /«-(i<r/) = cosh(Jcr/), took (7=0, and picked pi, qi, r< 
so that we had functions suitable for the ground state. 
By setting <r=0 in our programs we tabulated functions, 
integrals, and matrices for this state. All energy correc
tions were then calculated and compared with published 
results. 


