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ON LAGRANGE-HERMITE INTERPOLATION* 

J. F. TRAUBt 

1. Introduction. Let the p(n + 1) numbers y m) 0 < i < n 0 < m 
< p - 1, be given. It is well known that there exists a unique polynomial 
Pn,p(t) of degree p(n + 1) - 1 such that 

(1-1) ~~Pnm) (xi) = yi 
m) 

O < i < n, 0 :5 m < p -1 

A classical problem is to find a formula for Pnsp(t) in the form 
n p-1 

Pn, p ( z yB m*(t)H iP=O m=) 

The conditions on the Cn: P(t) are that 

(1.2) Dt'Cmnn (x,) = 6j,mar,i% 0 < r < n, 0 < j < p-1, 

where Dt d/dt and aj,m is a Kronecker symbol. These conditions are used 
by Householder [5, pp. 193-195] to derive the formulas for p = 1, 2. The 
formula for p = 3 is given by Salzer [9]. The solution for n = 0 is given by 
Taylor's formula. 

Many authors have reported on the case where p depends on i. General 
prescriptions for a solution in this more general case may be found in Fort 
[2, pp. 85-88], Greville [3], Hermite [4], Krylov [6, pp. 45-49], Kuntzmann 
[7, pp. 167-169], and Spitzbart [12]; but these prescriptions do not deter- 
mine the structure of the interpolating polynomial. By restricting ourselves 
to the case where p is independent of i, which is the most important case in 
practice, we can determine the structure. Salzer [10] discovered some of the 
properties of P ,, (t) by semiempirical means. 

We shall obtain, by a partial fraction expansion, a solution of surprising 
simplicity. [See (3.6), (3.7), or (3.8).] The solution depends upon the Bell 
polynomials which we now discuss. 

2. Bell polynomials. Let g = q(t) and define B. by 

(2.1) eWG Dtnewg = B,(co) = B,(co; ga , * * gqn), qi _g9 

B, is a polynomial in co with coefficients which are polynomials in gi . De- 
fine U.,k by 

n 
B.(w; gX g.) = E U.,k( * g.k+l)c o 

kayO 

* Received by the editors May 4, 1964, and in revised form July 2, 1964. 
t Bell Telephone Laboratories, Incorporated, Murray Hill, New Jersey. 
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ON LAGRANGE-HERMITE INTERPOLATION 887 

Then 

Unk = ! 0 DW-Bn(0). kc! 

The Bn( 1; 91 * 9n) were studied by Bell [1]. (See also Schlomilch 
[11, p. 4].) An explicit formula for Bn is 

Bn = n! co xII1 (9-b 
where j = EiZ- bi and where the sum is taken over all nonnegative inte- 
gers bi for which nj=i ibi = n. 

Let F(t) = f[g(t)]. Then 
'n 

(2.2 n)= Zf(k) fUnk (g q ... g(n-k+1) 
k-O 

or 

F = Bn (f; ', . g(n)), f (k) fk. 

Generating functions and symbolic recurrence relations for the Bell 
polynomials may be found in Bell [1] and Riordan [8, pp. 35-38, 45-48]. 
The first five Bn are: 

Bo = 12 

B1 = wgq, 

B2 = W 2g2+ ?42, 

B33 = W3+ 32 g2 + W/3, 

B4 = C4O9 + 6Cw 3q212 + co2(4g,93 + 3922) + Wg4 

3. The formula for the interpolatory polynomial. Let P(t)/Q(t) be a 
proper rational function and let Q(t) have a zero of multiplicity p at xi. 
Let 

1 Z 
PI," .+ 77(t) 

Q(t) j=i (t - xi) 

P(t) E (t-x__ + x(t). 

Then it is easy to show that 
i p (*-k)(Xi 

(3.1) 13P'P-j = Zap p-k (-) 
k=O ( ) 
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This result is the key to the solution of the Lagrange-Hermite interpolation 
problem. It permits us to write the interpolatory polynomial as a linear 
combination of the yjm)* 

Let 
n 

r = 11 (t - xi), Q(t) = , 
i=O 

(3.2) 
= 

Ri (t) = t ( )t Li Mt)-R(() . R 
tt 

- - xi L() 
Ri (xi) 

We calculate the contribution to Pnp(t) due to xi and then sum on i. We 
have 

Pnp( t ) _Q ( t) P~Q(t) -Q) (t - )+ P(t) 

Opi P5 = j5 p ( j-k) (X) 1aptip-k A kRi (xi) 
k3.0p- Z p (j - k)! ~RPx) 

Using 
p(Fk)(Xi) yi= k 

we obtain, after some manipulation, 

Pnp,(t) = LiP(t) E (in) (t - 
m=0 Mn! 

(33i (t-x ) R (xi)DtvRi-P(xi) + p(t). 
V=O v! 

Let 

(3.4) S Sv(xi) = (-1)v(v-1)! E 1 
r=O;r 7 i (xi - Xr) 

It follows from (2.1), (3.2), and (3.4) that 

(3.5) RiP(xi)DtvRi P(xi) = B,(p; Si, ***,). 

Using (3.5) and adding the contributions from all the xi, we obtain as a 
solution to our problem 

Pn p(t) __ Li(t) Y ( ) i E _* _1 
(3.6) i=O m=0 V=O 

* B,(p; SI, S,S). 

Thus the essence of the pth order Lagrange-Hermite formula is contained 
in the B,(p; SI, * * , ), O < v - p 1. Let 

Gpim = (t-x) B(p; Si I S,). 
v=O v. 
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ON LAGRANGE-HERMITE INTERPOLATION 889 

Observe that Gp,i,m may be obtained from the polynomial Gpio by truncat- 
ing the highest m terms. Hence for each p, Pnp(t) may be easily obtained 
from Gp Gpio. The first five G, are: 

Ci = 1, 

G2= 1 + (t - x)2S1, 

G3 = 1 + (t - xi)3S1 + 2(t - Xi)2[32S12 + 3S2], 

G4 = 1 + (t - xi)4S, + 2(t - xi)2[42Si2 + 4S2] 

+ I(t -_xi)3[43S13 + 3.42S1S2 + 4S3j, 
G= 1 + (t -_xi)5S1 + 2(t -_xi)2[52SI2 + 5S2] 

+ 1(t - Xi)3[53S13 + 352S1S2 + 5S3] 

+ (t -_xi)[54S14 + 653S12S2 + 52(4S1S3 + 3S2 2) + 5S4]. 

Equation (3.6) may be written in a number of other ways. Let 

T, = Tv(x*) = (v -1)! E x_ 
r=Ofrpzi Xi - Xr 

Then 
n p-i t-X m P-i-rn 

(3.7) Pnp(t) = E Lip(t) E (tMI x) i() E , B,(p; T, T,). 
i=O m=O mV. i!v 

Let 
P-1-m 

Hp,m, = l r U (Ti), *.. * Tv-k, ) 
v=k V.I 

Then 

P(t) n p-1 (t X mn 
p-i1-m L* (t) Yj y(m) Z pimk H 

i=o m=0 m.I k=O 

A formula for Pnw,(t) in which the coefficients are polynomials in the 
Li(j)(xi) may be obtained as follows. Let 

Ri-p(t) = f[g(t)], f(U) =u-P, g(t) = Ri(t). 

Then using (2.2), and with L'j) Li'j)(xi), 

Rp(xi)DevR-P(xj) = i (-1)kk!C(p + k - 1, k)Uv,k(L', . L(v-k+1) 
k=O 

Hence 
n P-1 

(t X 

PBt,(t) = j Lip(t) , - yi(m)Epim 

(3.8) p-1-m (t -xi)^ , ( k ( c 
izO VI k=O 

- Uvk( L (P-k~rl) 
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Observe that EpXm may be obtained from the polynomial Ev X o by trun- 
cating the highest mt terms. Hence for each p, Pn, (t) may be easily ob- 
tained from Ep - Epi ,o . The first five Ep are 

El = 1, 

E2= 1 + (t - xi)[-2L'], 

E3 =1 + (t - xi)[-3L'J + 2(t - xi)2[-3L" + 12(L')2], 

?4 =1 + (t - x)[-4L'J + 2(t - X)2[-44L" + 20(L')2] 

+ 6 (t -x) 3[-4L"' + 60L'L" - 120(I')3], 

E5 = 1 + (1 -x,)[-5L'] + '(t - x)2[-5L" + 30(L')2] 

+ 6( -xs)3[-5L"' + 90L'L" - 210(L')3] 

+ (t - xl)4[-5L(4) + 120L'L"' + 90(L")2 - 1260(L')2L" 

+ 1680(L')4]. 

As far as calculation with these formulas is concerned, observe that 

Li j'(Xi) = Rij(Xi)-) 
Ri (xi)- 

The Ri() (x,), j _ 0, may be obtained from 7r(t) by repeated synthetic 
division. 

4. Some applications. The interpolation formula may be used to gener- 
alize the Cauchy relations, 

n 
t ZxLit), j = 0 1, *, n. 

i=O 

Corresponding to the case j = 0, we have the following generalization. 

(4.1) 1 E Li(t) B(p; Si, *,Sr). 
i=O v=O Y. 

Since the leading coefficient of t on the right side of (4.1) vanishes, 
n 

(4.2) E BP-,(p; Si, * , SV-l) = 0. 
i=O [r(i] 

This generalizes 
n 

E /()= O. 
i= 7'(xi) 

We can derive a formula for the confluent divided difference with the 
same number of repetitions of all arguments, f[xo , p; x1, p; ; Xn p]. 
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ON LAGRANGE-HERMITE INTERPOLATION 891 

(This notation is introduced in Traub [13, pp. 241-242].) Since this divided 
difference is the coefficient of the highest degree term in (3.6), we obtain 

fAXO ;x ; ;n Z Bp-i -m( p I S., , Sp-p-m ) 

(4.2) f=0 Mm) (x i)) 
n -r (m) (X.) 

raz E j 
* 
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