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COMPUTATIONAL COMPLEXITY OF ITERATIVE PROCESSES*

J. F. TRAUB-

Abstract. The theory of optimal algorithmic processes is part of computational complexity.
This paper deals with analytic computational complexity. The relation between the goodness of an itera-
tion algorithm and its new function evaluation and memory requirements are analyzed. A new con-
jecture is stated.

Key words, computational complexity, optimal algorithm, optimal iteratiola, numerical mathe-
matics, iteration theory.

1. Introduction. Computational complexity is one of the foundations of
theoretical computer science. The phrase computational complexity seems to have
been first used by Hartmanis and Stearns [12] in 1965 although the first papers
belonging to the field are those of Rabin [28], [29] in 1959 and 1960.

One of its important components is the theory of optimal algorithmic pro-
cesses. We distinguish between optimality theory for algebraic (or combinatorial)
processes, which we. call algebraic computational complexity, and optimality
theory for analytic (or continuous) processes, which we call analytic computational
complexity.

The last few years have witnessed striking developments in algebraic compu-
tational complexity; for example, the multiplication of numbers (Cook [6],
Sch6nhage and Strassen [31]), the multiplication of matrices (Winograd [41],
Strassen [32], Hopcroft and Kerr [14]), polynomial evaluation (Winograd [41]),
median of a set of numbers (Floyd [10]), graph planarity (Hopcroft and Tarjan
[15]). Surveys may be found in Knuth [19], Borodin [1], and Minsky [24].

Research on analytic computational complexity dates to the early sixties
(Traub [33]-39]) and predates most of the algebraic results. More specifically, the
work on analytic computational complexity to date has concerned optimal
iteration. Recent results are due to Brent [2], Cohen [3], Cohen and Varaiya [4],
Feldstein [7], Feldstein and Firestone [8], [9], Hindrnarsh [13], Jarratt [16],
King [18], Kung [21], Miller [22], [23], Paterson 27], Rissanen [30], and Winograd
and Wolfe 42], [43]. (Kung and Paterson’s results are summarized at the end of
2.)

In this paper we define basic concepts and pose some fundamental questions
in optimal iteration. In the terminology of Knuth [20] we perform a Type B
analysis. That is, we consider a family of algorithms for solving a particular
problem and select the "best possible." We survey earlier work, report recent
progress, and state a new conjecture. Since the field is changing rapidly, some ofthe
results cited have not yet appeared in the open literature. An abbreviated version
ofthis material was presented (Traub [40]) at the IFIP 71 Congress, with somewhat
different terminology and notation.
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168 J.F. TRAUB

This paper is intended for the nonspecialist in iteration theory and therefore
some precision in definitions and some generality in the models of iteration algo-
rithms are sacrificed.

2. Basic concepts. We begin by specifying the problem. Let Fdenote the class
of infinitely differentiable real functions defined on the real line. We assume that if
f F, then fhas at least one simple zero , that is, a number such that f() 0,
f’() 4= 0. The assumption of infinite differentiability is for simplicity. For any
algorithm we shall discuss, f need only have a small number of derivatives on a
finite interval.

Our problem is to approximate for fe F. This zero-finding problem may
seem rather specialized, but, in fact, it is equivalent to the fixed-point problem ofcal-
culating a number such that g(), a ubiquitous problem in mathematics and
applied mathematics. It may be formulated in an abstract setting and covers partial
differential equations, integral equations, boundary value problems for ordinary
differential equations as well as many other important problems (Collatz [5]).

We consider iterative algorithms for the approximation of . A sequence of
approximating iterates {x} is generated by an iteration function. We shall not
give a formal definition of iteration algorithm. The interested reader may consult
Ortega and Rheinboldt [25] and Cohen and Varaiya [4].

Our aim is to discuss optimal iteration algorithms. There are a number of
measures we could optimize. For example, we could minimize the total number
ofarithmetic operations needed to approximate to within an error e. This measure
is strongly dependent on the particular fin question. For our current purpose, we
prefer a measure which is not so dependent on fand which is easier to calculate.
(At the end of this section we report recent optimality results which optimize
arithmetic operations.)

We introduce general measures ofcost and goodness. The cost consists of two
parts: the new evaluation cost e and the memory cost m.

DEFINITION. The new evaluation cost e is defined as the number ofnew function
evaluations required.

This definition is motivated by the following considerations. An iteration
step consists of two parts.

1. Calculate new function values.
2. Combine the data to calculate the next iterate.

Since the evaluation of functions requires invocation of subroutines whereas the
calculation of the next iterate requires only a few arithmetic operations, we neglect
the latter.

A function evaluation is the calculation off or one of its derivatives. Thus
if f(xi) and f’(xi) are required, e 2. We could assign a new evaluation cost of
0j for the evaluation offt) (Traub [39, p. 262]), but this would make the measure
f-dependent.

We turn to the second component of the cost.
DEFINITION. If previous function evaluations at x_ , ..., x_,, are used to

calculate xg+ , then we define m as the memory cost ofthe iteration.
Another component of the cost is not included in this paper. An iteration

such as the secant iteration involves the subtraction of quantities which are close
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COMPUTATIONAL COMPLEXITY OF ITERATIVE PROCESSES 169

together, and to maintain accuracy, more precision should perhaps be carried.
The theory should be extended to include this cost.

We turn now to a measure of the goodness ofan iteration. Let xi --, .
DEFINITION. If there exists a number p such that

lim Ixi+l 1 A # O, ,-. Ix- 1
then p is called the order of the iteration.

This definition of order will serve for our purposes. For other definitions of
order the reader is referred to Ortega and Rheinboldt [25] and Cohen and Varaiya
[4].

This is a reasonable measure of goodness since if x is near , then xi+ has
about p times as many significant figures as x. A discussion may be found in
Traub [39, Appendix C].

The order has two additional properties which make it useful for our purposes.
It depends primarily on the algorithm and only weakly onfand it is fairly easy to
calculate. For example, for all twice continuously differentiable functions f for
whichf"() # 0, Newton iteration (see Example 1 below) has order p 2. (Recall
we are assuming throughout this paper thatf’() 4: 0.) Under the same conditions,
the secant iteration has order p (1 + v/) ___" 1.62.

Two widely known iteration algorithms may serve to illuminate these
definitions. We shall use them to introduce data flow charts which are a convenient
way to describe algorithms from our point of view.

Example 1. Newton iteration. Let x0 be given. Define

Xi + Xi
f(xi)

[xi, f(xi), f’(xi)].

The data flow chart of Fig. 1 exhibits the process at step i. For Newton iteration,

e=2, rn=0, p=2 (iff"(a):0).

Evaluate

f(x) f’(x)

Calculate

Xi+

FIG. 1. Dataflow chartfor Newton iteration
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170 j.F. TRAUB

Example 2. Secant iteration. Let x0, x x, be given. Define

(x, x_ 1)
xi + xi f(xi)

f(xi) f(xi- )

[xi, xi- x, f(xi), f(xi- 1)].

The data flow chart of Fig. 2 exhibits the process at step i. For secant iteration,

e= 1, m= 1, p=1/2(1 +x//)-" 1.62 (if/"() - 0).

Evaluate

f(xi)

Obtain from memory

x_ ,, f(x,_ ,)

Calculate

Xi+

FIG. 2. Dataflow chart for secant iteration

We now pose the following optimality questions which will be our focus for
the remainder of this paper. Other optimality problems will be discussed at the
end of this section.

2.1. Two optimality questions.
1. What is the maximal order Pe,m which can be achievedfor iterations which use

e newfunction evaluations and have memory m ?
2. What is the most that memory m is worth ? That is, what is Pe,m Pe,o ?
The answers depend on the class of iterations under study. Traub [39, 1.22]

introduced four classes depending on the function evaluation and memory require-
ments of the algorithms. These classes are:

one-point;
one-point with memory;
multipoint;
multipoint with memory.

We shall discuss optimality results for only the first three classes in this paper.
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COMPUTATIONAL COMPLEXITY OF ITERATIVE PROCESSES 171

These classes model algorithms appropriate for stationary iterations on
sequential machines. An iteration rule is stationary if it does not change from step to
step. A formal definition may be found in Ortega and Rheinboldt [25]. Because of
the assumption of sequential machine, the definition of one-point iteration with
memory ( 5) uses the same number of derivatives at each point. On parallel
machines we may want to vary the number of derivatives at each point. The case
where the number of derivatives varies is studied by Traub [39, pp. 60-65] and
Feldstein and Firestone [8].

Besides those posed earlier, we discuss some additional optimality questions.
An important measure of the goodness of an algorithm is the efficiency index
defined by

E (log2 p)/e.

This measure is defined without motivation by Ostrowski [26, Chap. 3]. A deriva-
tion may be found in Traub [39, Appendix C]. Gentleman [11] gives an axiomatic
treatment. A study of iterations with high values of the efficiency index is reported
by Feldstein and Firestone [9].

When we consider algorithms for a fixed problem, it becomes meaningful to
optimize relative to the number of arithmetic statements. Paterson [27] takes for
his efficiency measure

Ev (log2 p)/,

where p denotes the order and denotes the number of multiplications or di-
visions. He excludes from .M multiplication or division by a constant. Paterson
considers iterations q which have the following properties"

(i) 05 is a rational function;
(ii) b is univariate;

(iii) lim_.o x is an algebraic number;
(iv) b has rational coefficients.

Under these conditions, Paterson proves that E <__ 1.
The Newton iteration for the problemf x2 A (which converges to v/),

Xi + Xi +

has p 2, M 1. Hence E 1 which shows the result is sharp.
Kung [21] defines the multiplication efficiency

E (log2 p)/M,

where M is the total number of multiplications or divisions required. He removes
all restrictions on q5 except condition (i). Kung shows that E =< 1. Since condition
(i) is not a restriction for a computer algorithm, this is a very general result.

For the iteration
2

Xi + Xi Xi -which converges to -1/2, p 2, M 1. Hence E 1 which shows the bound is
sharp. On the other hand, E 1/2 for the Newton iteration for the square root in
Kung’s measure.
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172 J.F. TRAUB

Kung derives another interesting result. Let Pt denote the maximal order for
a sequence generated by an iteration with M multiplications. Then Pt =< 2M for
all positive integers M. Moreover, this bound is sharp.

3. Interpolatory iteration. Before discussing optimality results for classes of
iterations, we discuss particular families of iterations which play a special role in
the theory, the interpolatory iteration algorithms Ie,m introduced and analyzed
by Traub 38], [39]. For our purpose here, we need not know how formulas for
interpolatory iteration are derived. Indeed, there are two families of interpolatory
iterations derived from direct and inverse iteration. Both families have the same
order for a given e and rn and we shall not distinguish between them. In both
families, I2,o is Newton iteration and I1,1 is secant iteration.

For interpolatory iterations we have a complete theory relating order to
evaluation and memory costs. Let qe,m denote the order of an interpolatory
iteration Ie, Then we have the following basic result.

THEOREM (Traub [39, 3.3 and 6.1]). qe,o e. For all finite e and m > O,
e < qe,m < e + 1. For efixed, qe,m is a strictly increasingfunction ofm and

lim qe,m e + 1.
m--

This is a very satisfying result. It says that for interpolatory iteration, increasing
memory while keeping the number of new evaluations fixed always increases the
order.

The following is an important corollary.
COROLLARY (Traub [39, 6.1]). For allfinite m, qe,m- qe,o < 1.
Thus for interpolatory iterations memory adds less than unity to the order.
Upper and lower bounds on the order are given by the following theorems.

Xi + (e,oXi, f(xi), fe- 1)(xi)].
The data flow chart for a one-point iteration is given in Fig. 3.

Let

e,m-- e + 1 qe,m,

and let e denote the base of natural logarithms.
TI-IORM (Traub [39, 3.3]).

(e + 1)
< (e,m <

(e + 1)----"
A sharper result is given by the next theorem.
THEOREM (Kahan 17]).

(e+ 1)m+ 1 =(e+ 1)m+- 1- em/(e+ 1)"
Values of qe,m for small values of e and m may be found in Table 1.

4. One-point iteration.
DEFINITION. An iteration function belongs to the class of one-point iterations

if all new function evaluations are at the point x and if its memory m 0.
Thus
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COMPUTATIONAL COMPLEXITY OF ITERATIVE PROCESSES 173

TABLE
Values ofq

1.000
1.618
1.839
1.928

2.000
2.732
2.920
2.974

3.000
3.791
3.951
3.988

Xi

Evaluate

f(xi), ..., fte- t(xi)

xi+ e,o[x,f(x),..., f- 1)(xi)]

FIG. 3. Dataflow chartfor one-point iteration

For one-point iterations the first optimality question is settled by the theorem
below. Recall that Pe,m is the optimal order for an iteration characterized by new
function evaluations e and memory m.

THEOREM (Traub [33], [39, 5.4]).

5. One-point iteration with memory.
DEFINITION. An iteration function belongs to the class of one-point iterations

with memory if all new function evaluations are at the point xi and if its memory
m>0.

Thus

xi+ dPe.m[Xi, f(xi), f(e- )(xi) xi_ , f(xi ), f(e- )(xi_ ),

"’’, Xi-m, f(xi-m), fe- )(xi-re)I

The semicolon separates new function evaluations from those recovered from
memory. The data flow chart for a one-point iteration with memory is given in
Fig. 4.

The initial conjecture on optimality for this class was reported at the 1961
National ACM Conference.
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174 J.F. TRAUB

Obtain from memory

xi-1, f(x_ 1), fe-

xi-,,, f(Xi-m), fe- 1)(Xi_,,

Calculate

Xi (I)e,m[Xi, f(xi), "", fte- 1)(Xi). Xi 1, "’’, f(e- 1)(Xi_m)]

FIG. 4. Dataflow chartfor one-point iteration with memory

CONJECTURE (Traub [33], [39, 6.3]). For all one-point iterations with finite
memory m,

Pe,m-Pe,o < 1.

Until the late sixties no progress was reported, but there have been exciting
recent results. The matter has been investigated by Winograd and Wolfe [42] who
assert a stronger result. Under weak conditions on the admissible iteration
functions, interpolatory iteration Ie, is optimal among all iterations characterized
by new function evaluations e and memory m. The truth of the conjecture then
follows from the corollary in 3.

Winograd and Wolfe 42] have pointed out an ambiguity in the notion of
memory since instead of using memory explicitly at each step, one can use it
implicitly by encoding it in other data. Cohen and Varaiya [4] cite an example of
such an encoding. Cohen and Varaiya deal with the ambiguity by adding a con-
dition to the definition of order which insures that encoding does not increase
the rate. Winograd and Wolfe [43] deal with the case where all past points are
remembered. This side-steps the encoding issues.

Rissanen [30] resolves the ambiguity by imposing a smoothness condition on
admissible algorithms. He proves that then the secant iteration (that is, the inter-
polatory iteration 11,1) has maximal order among all algorithms one with e 1,
m=l.
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COMPUTATIONAL COMPLEXITY OF ITERATIVE PROCESSES 175

6. Multipoint iteration. We summarize the situation for one-point iterations
with or without memory. A one-point iteration with e new function evaluations
(and therefore e 1 derivatives) is of order at most e. A one-point iteration with
memory with e new function evaluations (and therefore e- 1 derivatives) is
of order less than e + 1. Table 2 summarizes the situation.

TABLE 2
Summary offacts about iterationfunctions

One-point
One-point with memory

New function

evaluations

Highest

derivative

Optimal

order

e

<e+l

Is there a class ofiteration algorithms for which these restrictions do not hold?
An affirmative answer is provided by multipoint iterations (Traub [37], [39, 1.2]).

DEFINITION. An iteration function belongs to the class of multipoint iterations
if new function evaluations are made at more than one point and if its memory
m--0o

We shall confine ourselves to giving a general prescription and a data flow
chart of a multipoint iteration only for the case of a two-point iteration. Then

z ck[x, f(x), f(e 1)(Xi)],

Xi+ 9[Xi, f(xi), f(e- 1)(Xi) Zi f(zi), f(e2- 1)(Zi)].
The data flow chart is given by Fig. 5.

A fourth class of iterations, multipoint with memory, is defined by Traub
39, 1.2]. We shall not discuss multipoint iteration with memory here.

Table 2 lists two types of requirements, one on the total number of new func-
tion evaluations and a second on the highest derivative required. First we give
examples to show that the restriction on derivatives need not apply for multipoint
iterations.

Example 3.

xi- 2(x)+ ((x))’
dp(xi) xi f(x).

This is a particular case of the Steffensen-Householder-Ostrowski iteration
(Traub [39, Appendix D]). Note that no derivatives are used. Yet if f’()- 1,
p=2.

Example 4. Let L >= 3 be fixed and let

where
xi + dp[xi, f(xi), f’(xi), f(22),""", f(2L_ 1)],

2j 2j(Xi) 2j_ x(xi)
f(2j_ (xi)

f’(x)
j=2,...,L- 1,
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176 J.F. TRAUB

Evaluate

f(xi),.." ftel-

Calculate

z [xi, f(x), f- )(x)]

Evaluate

f(zi), ft,2- )(zi)

Calculate

x+ O[x,f(x, ,f’- (xO, z, f(z, f-

FIG. 5. Dataflow chartfor two-point iteration

and

,(x) x.
This is a multipoint iteration based on L 1 points. The new function evaluations
are L 1 evaluations offand one off’. For all twice continuously differentiablef
for whichf"(e) - 0, this iteration is of order L (Traub [39, 8.34]).

These two examples show that for multipoint iterations there is no connection
between the highest derivative required and the order.

For these two examples, the order equals the number of new function evalu-
ations. Since we proved this was always the case for one-point iterations, we might
be tempted to suppose that this result holds for multipoint iterations also. That
this is not the case is shown by the following example.

Example 5.

f(xO
zi xi f’(xi)’

f(xi) [ f(z,)
x,+x x,

f’(x,) k2f(z,) f(x,)

The data flow chart is given in Fig. 6 and a picture in Fig. 7.
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COMPUTATIONAL COMPLEXITY OF ITERATIVE PROCESSES 177

Evaluate ",[f(xi), f’(xi)

Calculate

Zi

Evaluate

f(z,)

Calculate

Xi+

FIG. 6. An example ofa multipoint iteration

Xi+I
Zi Xi

FIG. 7. Geometric interpretation. D is the midpoint of the line between (zi, O) and (x, f(xi)).
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178 J.F. TRAUB

This iteration uses two evaluations offand one off’ and is of order 4. Jarratt
[16] has constructed a fourth order iteration using just two evaluations off’ and
one off. King [18] constructs a family offourth order methods which use two values
offand one value off’.

We turn to optimality considerations for multipoint iterations. As before
let Pe,o denote the maximal order for an iteration with new function evaluations
e and no memory. Ifwe permit only one-point or multipoint iterations (no memory),
we know that P2,o >- 2 (Newton iteration) and P3,o => 4 (Example 5 above).

NEW CONJEC:URE. For all one-point or multipoint iterations without memory,

P2,o=2, P3,o=4.
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