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OPTIMAL ORDER AND EFFICIENCY FOR ITERATIONS
WITH TWO EVALUATIONS*

H. T. KUNG AND J. F. TRAUB’

Abstract. The problem is to calculate a simple zero of a nonlinear function f. We consider rational
iterations without memory which use two evaluations of f or its derivatives. It is shown that the optimal
order is 2. This settles a conjecture of Kung and Traub that an iteration using n evaluations without
memory is of order at most 2"-1, for the case n 2.

Furthermore we show that any rational two-evaluation iteration of optimal order must use either
two evaluations of f or one evaluation of f and one of f’. From this result we completely settle the
question of the optimal efficiency, in our efficiency measure, for any two-evaluation iteration without
memory. Depending on the relative cost of evaluating f and f’, the optimal efficiency is achieved by
either Newton iteration or the iteration q defined by

,(f)(x)= x
f2(x)

f(x+f(x))-f(x)

1. Introduction. We deal with optimal iteration for calculating a simple zero
of a scalar function f of one variable, which is a prototypical problem of analytic
computational complexity (Traub [9]). Early work on this problem appears in
Traub [7], [8] while recent results are due to Brent, Winograd and Wolfe [1],
Hindmarsh [2], Kung and Traub [3], [4], Rissanen [5] and Wozniakowski [12].
Surveys of recent advances are given by Traub [10], [11]. In this paper, we
consider only iterations without memory.

Kung and Traub [4] observe that a reasonable efficiency measure of an
iteration q with respect to f should be defined as

(1.1) e(,f)
log2 p(q)

v(qg, f)+a(q)’

where p(q) is the order of convergence of q, v(q, f) is the evaluation cost and a(q)
is the combinatory cost. For a given f, we are interested in finding an upper bound
on e(q, f) and hopefully obtaining an iteration which attains this upper bound. To
bound e(, f) we must know the dependence of p(q), v(q, f), and a(q) on n, the
number of evaluations.

Let P, denote the maximal order achievable by an iteration using n evalua-
tions. Kung and Traub i-3] conjecture that, for iterations without memory,

(1.2) P, =<2"-’, n 1, 2,.. -.

In this paper, we study rational two-evaluation iterations without memory.
We settle the conjecture for n 2. We could define and analyze rational one-
evaluation iterations without memory and prove the conjecture for n 1. Since
the proof follows from straightforward modifications of our theorems, we shall
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ITERATIONS WITH TWO EVALUATIONS 85

only indicate these modifications in passing. (This is done after Theorem 4.2.)
However, the techniques we use here are suitable for small values of n only. It
seems to us that the proof of the conjecture for general n will require the
development of new techniques.

Furthermore, we show (Theorem 4.1) that for any rational two-evaluation
iteration q(f)(x), one of the two evaluations must be of f at the point x. A
straightforward modification of this theorem proves that any "locally" convergent
iteration requires the evaluation of f at x. In Theorem 4.3, we show that the
second evaluation of a rational two-evaluation iteration of order 2 must be of
either [ or [’ at x + O(f (x)).

In this paper, we define cost to be the number of arithmetic operations
needed. Let E2(f) denote the optimal efficiency achievable by a rational two-
evaluation iteration withcut memory. We show that in our efficiency measure,
given by (1.1),

( 1 1 )E2(f) =max ,)c(f)+c(f +2’2c(f)+5

where c(f) and c(f’) are the costs of evaluating f and f’, respectively. Depending
on the relative cost of evaluating f or f’, the optimal efficiency E2(f) is achieved by
either Newton iteration

(1.3) y(f)(x)=x
f(x)
f’(x)’

or the iteration

(1.4) 4,(f)(x)= x
f2(x)

f(x+f(x))-f(x)"

The iteration 4’ is derived by Traub [8, 8-4]. It may also be derived as a special
case of Steffensen’s iteration [6].

Basic concepts are introduced in 2. In 3, we outline the proof of optimal
order for n 2, with the details given in the following section. Optimal efficiency is
studied in the final section.

2. Basic concepts. Let D {flf is a real analytic function defined in an open
interval I c R (the set of real numbers) which contains a simple zero at of f and f’
does not vanish on It}.

Let q be a function which maps every f6 D to q(f) with the following
properties:

1. q(f) is a function mapping I,t c It into I,t for some open subinterval I,
containing

2. q(f)(at) c9;
3. There exists an open subinterval I.tc I.t containing c9 such that if

0
xi+, q(f)(xi), then lim_,oo x, c9 whenever x0D
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86 H. T. KUNG AND J. F. TRAUB

4. There exist functions U, U1, U2 and nonnegative integers h, k, indepen-
dent of f, such that

(i) Uo R -> R is a rational function,
(ii) UI R2 R is defined formally by

(2.1) U(x,y)=y_,a,(x)y’,
o

where ai R -> R is a rational function,
(iii) U2 R 3--> R is defined formally by

(2.2) U(x, y, z)= x + ,’;’ b,.(x)y’z
Z, c,.(x)y’z

where b.i, ci,j R - R are rational functions,
(iv) for all f D,

(2.3) (/)(x) U(x, [(")(Zo),

where

(2.4) Zo Uo(x),

(2.5) z U(x, f(h’(Zo)).

If f(n)(z,,) # f(k)(z,) for some f D and both f(h)(Zo) and f(k)(z) appear formally in
q(f)(x), we say q is a rational two-evaluation iteration without memory. Let 2
denote the set of all rational two-evaluation iterations without memory.

For 0 e D., Uo and h can be chosen such that Uo(x) =- x and h 0 (Theorem
4.1). Hence by (2.3) and (2.4),

Zg’ bi..i(x)fi(x)(f’)(z,))
(2.6) ,(f)(x) x + ., ci.(x) f’(x)(f’(z,))
By (2.1) and (2.5),

(2.7) f()(z)=f)(x)+f’+)(x) a,f’(x)-x +1/2f’+2)(x) a,f’(x)-x

Substituting the right-hand side of (2.7) for f(k(z) in (2.6), we can express o(f)(x)
formally in terms of x, f(x), f((x), f(/)(x),.... Hence we can define functions
M’R-R such that

(2.8) (f)(x) Y ,(x)f’(x),

where h,(x) depend explicitly on x, f()(x), f(+l)(x), , but not on f (x). It is often
desirable to express o(f)(x) by (2.8). We call the right-hand side of (2.8) the
canonical form of q(f)(x).D

ow
nl

oa
de

d 
10

/1
0/

13
 to

 1
28

.5
9.

16
0.

23
3.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



ITERATIONS WITH TWO EVALUATIONS 87

By the Taylor series expansion of (f)(x) at at, we can easily show that there
exists a nonnegative integer p(q) such that for any f 6 D,

lim
qg(f)(x)-at

o, (x-,) S(, f)

exists for a constant S(q, f) and S(q, f) 0 for at least one f D. We define p() as
the order of convergence (order) of .

We assume that one arithmetic operation takes one unit time. Let c(f <i))
denote the time needed to evaluate f<0, i= h, k. Let a() denote the time to
compute (f)(x) from x not counting the time to evaluatef and f). We define
the efficiency of with respect to f D as

log p()
e(, f)

c(f (h) + c(f‘) + a()

(See Kung and Traub [4].)
We could easily define iteration without memory and order of convergence in

a more general setting, and some of our theorems would still hold. We have
chosen here to limit our scope because we wish to focus on optimal efficiency. This
is settled by Theorem 5.1, where the hypothesis of rational two-evaluation
iteration is crucial. Furthermore, we wish to avoid complicating the proofs.
Specifically, Theorem 4.1 holds for analytic iterations satisfying properties 2 and
3. Theorem 4.2 can be proved for analytic iterations. (See Traub [8, 5.1] and
Kung and Traub [3, Thm. 6.1].) Furthermore, Theorem 4.4 can be proved for
analytic two-evaluation iterations if infinite series are used in (2.1) and (2.2).

3. Outline o[ the proo[ o optimal order. Since the proofs of the following
section are rather detailed, we summarize the ideas and results here.

In our definition of rational two-evaluation iteration without memory,
(f)(x), we permit any two evaluations of f or its derivatives at any two points. In
Theorems 4.1 and 4.3, we cut down the "search space" of evaluations. In
Theorems 4.1, we show that one of the evaluations must be of f itself at the point x.
In Theorem 4.3, we show that the second evaluation of a rational two-evaluation
iteration of order 2 must be of either f or f’ at the point x + O(f (x)). Thus the
only rational two-evaluation iterations of order 2 are those using either

(i) two evaluations of L or
(ii) one evaluation of f and one of f’.
In Theorem 4.2, we study the functions h,(x) occurring in the canonical form

of the iteration ,
(f)(x)= E a,(x)f’(x).

i=--

It is easy to check that the iterations 3’ and O, defined by (1.3) and (1.4)
respectively, both have order 2 and canonical form

1
(3.1) x f-f(x)+O(f(x)).D
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88 H. T. KUNG AND J. F. TRAUB

In Theorem 4.2, we show that any iteration with order -> 2 has canonical form
of the type given in (3.1), and that any iteration of order >= 3 has canonical form of
the type given by

1 f"(x)
(3.2) x -,.;,.-f(x)l,x) 2(77)3] tx)+ O(f3(x)).

(The formulas for Ai(x) for iterations of arbitrary order were established by Traub
[8, 5.1] in a somewhat different setting. See also Kung and Traub [3, Thm. 6.1].)

The main result on optimal order is given in Theorem 4.4 which states that a
rational two-evaluation iteration without memory has order at most two. The
proof uses a "comparison series" technique first exploited by Traub [7], [8,
especially Thms. 5.2, 5.3 and Chap. 9] and also by Kung and Traub [3, Thm. 6.1].
We compare the canonical form of a rational two-evaluation iteration with the
canonical form given by (3.2) and show these forms must be different. Hence the
order is less than 3, and since order is an integer in our setting, this implies the
order is at most 2.

4. Optimal order.
THEOREM 4.1. If q e l)2, then Uo(x)= x and h =0, or else Ul(x, y)=x and

k O. Therefore, without loss of generality, we assume that Uo(x) x and h 0 in
the rest of the paper.

Remark. Although in 2 it was assumed that Uo and U1 are rational, the
proof of this theorem requires only that one of Uo, U be continuous and the other
one be analytic.

Proof. For ( e 2)_, f e D and x e I,r, define

(4.1)

Then by (2.3),

(4.2)

Therefore, by (4.2),

(4.3)

Zo(X) Uo(x),

y,,(x) [(")(Zo(X)),
z,(x) G(x, yS(x)),

y(x) C)(z,(x)).

(/)(x) U2(x, yo(X), y(x)).

h

We shall first show that either Uo(x)=-x or Ul(X, y) X. Suppose that Uo(x) x
and U(x, y) x. Assume that Uo is continuous and U is analytic. Since Uo(x) x,
there exists Woe R such that Uo(wo)# Wo. By the continuity of Uo, Uo(w) # w for
all w e Io, for some open interval Io containing Wo. Choose f e D such that c9 Wo
and zl(x)# x, where z(x) is defined by (4.1). Since U1 and f are analytic, z is
analytic. Hence {xlz,(x)= x} has measured zero. We shall show that

,([)(w)= w

for all w e lo711,: such that z,(w) # w. By (4.2), we have

(4.4) o(f)(w) G(w, yo(W), y,(w)).D
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ITERATIONS WITH TWO EVALUATIONS 89

Since Zo(W)= Uo(w)# w and z(w) w, there exists a polynomial q such that

q(w) 0,

q’(w)= 1,

q’h(Zo(W)) y(w),

q’k(Z(W)) y(w).

Obviously, q D and Cq w. By (4.3) with f replaced by q,

(4.5 w U2(w, yo(W), y(w)).

Equations (4.4) and (4.5) imply that (f)(w) w. Hence for any Xo Io f-) I.t such
that Zo(Xo) Xo, q(f)(xo)= xo, which does not converge to at. This contradicts
property 3 in 2. Therefore, either Uo(x) =- x or U(x) =-- x. This can be proved in
the same manner if we assume that U is continuous and Uo is analytic.

To prove the theorem it suffices to show the following:
(i) if U(x, y) x, then Uo(x) =- x and h 0;
(ii) if U(x, y)=-x and k 0, then Uo(x)=-x and h 0;
(iii) if Uo(x) x, then U(x, y) -= x and k 0;
(iv) if Uo(x)=-x and h 0, then U(x, y) x and k 0.

We shall only prove (i), since (ii), (iii), (iv) can be proved similarly. Assume that
U(x, y) x. By the first part of the proof, this implies that Uo(x) =- x. Suppose that
h >_-1. Choose f D such that z(x) x. Then for any fixed w I. such that
z(w) w, there exists a polynomial q with the following properties:

q(w) 0,

q’h’(w) f’(w),
qO’)(Zl(W)) fO’)(Zl(W)).

Clearly, q e D and cq w. Therefore we can again show that q(f)(w) w. This is a
contradiction.

To simplify notation, in the rest of the paper we shall often write
f, A, a, b., c, for f’(x), A(x), a(x), b,(x), c,(x), respectively.

Recall that for q 6, we can express q(f)(x) by its canonical form, i.e.,

(4.6) q(f)(x) Y. A,(x)f’(x).

THEOREM 4.2.
(i) If p(q) >- 2, then li O for < O, ,o=X and l -l/f ’.
(ii) If p(q)>-_3, then I,=0 for <O, ,o x, ,,=-l/f’ and ,2=-f"/(2f’3).
Proof. We shall only prove the second part of the theorem. The first part may

be proved analogously.
Define an iteration such that for any f 6 D,

f f"(4.7) (g(f)(x) x
f, 2f;$f 2.
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90 IX. T. KUNG AND J. F. TRAUB

It is well known that p(3)= 3. (For example, see Traub [8, 5.1].) Define

(4.8) T(f)(x)
(f)(x) /(f)(x)

f3
Then by (4.6) and (4.7),

(4.9) T(f)(x)= ,,f-+(Ao-x)f-3+ f--2"3f 2"3f--’-t3/f "3f-ifi--3,

Suppose that p(q)-> 3. Then, since p()= 3, (4.8) implies that

lim lT(f)(x)l< oo
otf

for all f 6 D. Hence it follows from (4.9) that

1 f"fori<0, Ao=x, 11=--- and A2= El

From Theorems 4.1 and 4.2, we can immediately prove the conjecture (1.2)
for n 1 as follows: Let q(f)(x) be a rational one-evaluation iteration without
memory. Then by a straightforward modification of Theorem 4.1 the evaluation
must be of f at x. Hence

qg(f )(x) H(x, f (x))

for some rational function H: R2 R. It follows that the canonical form of
cannot be given by

1
x f-f(x) + O(f(x)).

Therefore, by Theorem 4.2, p(q)< 2. Since p(q) is an integer, we have p(q)_-< 1.
This proves the conjecture (1.2) for n 1.

TIXEORFM 4.3. Let q ft2 and p(q) >= 2. Then
(i) k=0orl,
(ii) ao is the identity function.
Proof. (i) Suppose that k =>- 2. Then by (2.7) and (2.8) it is clear that &(x) does

not depend on f’(x) explicitly. Hence by Theorem 4.2, p(q)< 2. Thus we have
shown the first part of the theorem.

(ii) Assume that ao(x) x. Then the set {xJao(x) x} has measure zero. Note
that

(4.10) f’(zl) f’)(ao(x))+f’+’(ao(x))(al(x)f(x)+ a2(x)f2(x)+ .)+....

Suppose that p(qg) _>- 2.
Case 1. (k 0). Since q(f)(at) at and f(cg) O, by (2.6) and (4.10) we have

c9 c9+
ZY bo,(oq) f (ao(oq))
Y’.g Co,j(e9) f (ao(cg))j"D
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ITERATIONS WITH TWO EVALUATIONS 91

Therefore

Z bo,j(at) f (ao(ct)) 0
0

for all f D. This implies ttat

(4.11) bo,j(x)O,

Let r be the largest integer such that

b,,(x) 0,

Then by (4.11), r 0. Clearly, r (rn. Note that

where

Y__, b,,(x)f’(x)f(zl)= f’+(x)B(f)(x),
0

B(f)(x) Z
Ojm

(}im--r--1

By Theorem 4.2, it is clear that

This implies that

(4.12) 1+

bi+,-,,j(x) f’(x)f(z,).

q(f)’() o.

(r + l.)f’(o#)f’(oq)B(f)(oq)
Z Co,i(oq) f (ao(oq))

Hence r must be equal to 0. Note that

B(f)(oq)= , b,,j(o#)f(ao(oq))j.
Ojm

Therefore (4.12) is reduced to

i=0, 1,’.-,r.

Z b,,j(s) ul)j+ Z Co,j(S)12 0
()jm ()jq

then by (4.13),

(4.13) b,,,(oq)f’(o#)f(ao(oq)) + Z c,,,,(xr)f(ao(o#)) 0
()jrn Ojq

for all f D. Since for any real number s such that s # ao(s) and any real numbers u
(: 0), v there exists f D such that

f (s) O, i.e., cr s,

f’(s)=u,

f(ao(s))=v,
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92 H. T. KUNG AND J. F. TRAUB

holds for any s, u, v such that u # 0 and s ao(s). Therefore

b,,i(x) =- O,

This contradicts the definition of r.
Case 2. (k 1). In this case, we substitute

f’(ao(x)) +f"(ao(x))(al(x)f(x) + a2(x)f(x) +" ")...

for f’(zl). Then following the same procedure used in Case 1, we obtain

(4.14) Y’. b,.j(ct)f’(at)f’(ao(t))’ + Y. Co.j(o#)f’(ao(at)) =0
Oj<m Ojq

rather than (4.13) for all f D. By the same reasoning as used before, we get a
contradiction.

The main result on optimal order is given as follows.
THEOREM 4.4. Ifq is a rational two-evaluation iteration without memory, then

p()-<_2.
Proof. Suppose that p(()=>3. By Theorem 4.3, k-0 or 1 and

zl x 4- af/ a2f 4- . Hence

(4.15) f(z) -(1 / af’)f +(a2f’ +(a/2)f")f +...,

f,(zl)=f,+(a,f +a2f2+. .)f,,+(aaf +azf2+. .)z(f,,/2)+.
(4.16)

=f’+af"f+(a2f"+(al/2)f"’)f2+’.’.

Hence if we substitute the right-hand sides of (4.15) and (4.16) for f(z) and
f’(z), respectively, then we can define ui and i as follows"

E b,,ff(z,) if k 0,
o

Y. b,.jff’(z) if k 1,
o

and

o

q

E c,.ifT(z,) if k =0,
o

) if k 1E Ci,fif’(z’
o

Then by (2.2),

(d)(x)=x+,T la, f i"
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ITERATIONS WITH TWO EVALUATIONS

Hence by Theorem 4.2,

(4.17) o uf’ 1 f" 3)f--f + O(ff
Suppose that , 0 and 0 for < n. Then by (4.17),

(4.18) v=0 fori<n+l,

(4.19) f ’v,+, -i,,

(4.20) 2f’3v.+2 -,f"- 2f’2,+,.
Case 1. (k 0 and a # 0). It is easy to check that

/Zo Co,o,

, C,,o + Co,,(1 + af’),

2 C2,o + Cl,,(1 + a,f’)+Co,2(1 + a,f’)g+co,(a2f +(a/2)f"),
(4.21) i.,=C,,o+C2,,(l+af’)+c,,2(l+a,f’)e+co,,(l+alf’)

+C,,l(a2f’ +(a/2)f")+ 2Co,2(1 + a, f’)(a2f’ +(a2,/2)f ’’)

+ Co,,(af’+ a,af"+ (a2/6)f"’).

Since/,, #: 0 and i 0 for < n, by (4.21) one can easily see that

(4.22) c,,j 0 whenever + j < n.

Hence

/. C.,o+ C.-,.1(1 + all’)+""" + Co,.(1 + a,f’)",

>,+, c,+,,o+ c,,,(1 +a,f’)+.." + Co,,+,(1 +a,f’)"+’

+ C.-,,l(a2f’ +(a/2)f")+ 2C.-2,2(1 + a,f’)(a2f’ +(a/2)f")
+’" + nco,, (1 + a, f’)"-’(aif’+ (a 2/2)f").

93

Similarly, by (4.18), we also have

v,+ b,+l,o + b,,(1 + all’)+. + bo,,+,(1 + af’)"+1,

v,+2 b,+2 o +b,+,(1, + all’)+’’’ + bo,,+2(1 +af,),+2
+ b,,,(azf’ + (a/2)f") + 2b,_,2(1 + a, f’)(a2f’ + (a2/2)f")
+... +(n + 1) bo,,+(1 + al f ’)" (azf + (a/2)f").

From (4.19),

b.+,,of’ + b,,,l(1 + a,f’)f’ +. + b2..-1(1 + alf’)"-lf
(4.23). + b,, (1 + alf’)"f’ + bo,,+(1 + al f’)"+f’

[Cn,O + Cn--l,l(1 + alf’) +’’" + Co,n(1 + al f’)’*].D
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94 H. T. KUNG AND J. F. TRAUB

Comparing the coefficients of/’"+2, f,.+l, f,,. in (4.23), we get

(4.24) bo,,+l bl,, 0,

(4.25) b2,,_1 -aco,,,.

Comparing the coefficients of f" in (4.20), we get

_[b,,,,a ,3 f,),-a/,3]f +2b,_,(l+alf’)a ,3f +...+(n-1)bz,,_,(l+a

C,,o + c,_,,,(1 +alf’)+". + Co,,(1 +a, f’)" +c,_,., aZf ’2

(4.26)
+ 2c,_2,2(1 + af’)af ’2

+’" +nco,,(1 + a aif
Comparing the coefficients of f’"+’ in (4.26), we get

(4.27) (n- 1)b2,,_, =-nco,,a,.

Equations (4.25) and (4.27) imply that

b2,,,-1 Co,,, 0.

Equations (4.23) and (4.26) are reduced to

b,+1,of’ + b,,(1 + a f’)f’ +... + b3,,-2(1 + a f,),-2f,
(4.28)

------[Cno+C,,-(l+a,f’)+’’. + C,,._(1 + a, f’)"-’],
and

_[b,,,a,f,3+..2 + (t 2) b3,.-2(1 +a, f ,).-3af,3]
(4.29)

f ,)n--1 t2 f ,)n--2--C,,o+’’’+Cl,,,_(l+al +c,,_.laif +’’’+(n--1)Cl,,_(l+a af’2

Comparing the coefficients of f,.-1 and f’" in (4.28) and (4.29), respectively, we
get

(4.30) b3,.-2

(4.31) (n- 2)b,,_ =-(n- 1)c,,,_,a,.
Equations (4.30) and (4.31) imply that

b3,n-2 Cl,n-1 O.

By induction we can show that

for j=0, 1, n.

Therefore, ix, 0. This is a contradiction.
Case 2. (k 0 and a, 0). Suppose that a, 0 for all i> 0. Then q is a

rational one-evaluation iteration. Hence p(q)=< 1 < 2 and the theorem is proved.
Therefore, here we consider the case that a, # 0 for some -> 2. In the following we
shall assume that a20. (The argument used below can be immediately
generalized to the case when the smallest value such that a, # 0 is not 2.)

Since z, x + a2f + af +. ,
f(z,)=f+(a2f2+a3f3+...)f,+(a2f2 +a3f3 .31_,, )2 T_lt_,,,,f’’D
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ITERATIONS WITH TWO EVALUATIONS 95

To simplify notation, we define A1, Az, by

f(zl) Alf+ Azf + A3f3+ A4f4 -[-’’’.

Then A1 1, A=af’, A3=a3f ’, A4=(a4f’+(a/2)f"), etc. Note that f" does
not appear in A1, A and A3.

It is easy to check that

/Zo Co,o,

/.L1 Cl,O+ o,lA1,

jLL2 C2,0 -- c1,1A1 + Co,2A + co,lA2,

/.*3 C3,o + c2,A1 + Cl,A + Co,3A + (c1, + 2Co,2A1)Az + Co,A3,

/./,4 C4,o + c3,1A1 + ,2A + 1,3A31 + Co,4a + (c2,1 + 2c,2A1

+ 3Co,3A)A2 + Co,2A +(c1,1 + 2Co,2AI)A3 + Co,A4,

]A,5 C5 0"[- C41A1 + c3,2A + c2,3A + c,4A + Co,sA -- (C3,1

+ 2c2,2A + 3c1,A + 4Co,4A)A2 + (c,2 + 3Co,A)A2 + (c,1 + 2c,A1
+ 3Co,A)A + (c1,1 + 2Co,2A)A4 + 2Co,2A2A + Co,lA,

Suppose that/xi 0 for < 4. Then since a2 # 0, we have

Co,1 C 1,1 .ql_ 2Co,A 0.

Hence/a[,4 does not depend on A, for -> 3 and/z5 does not depend on Ai for _-> 4.
We shall first prove by induction that, in general, if/zi 0 for < n, then

(i) /x, does not depend on A for i=> 3,
(ii) /X,/l does not depend on A for -> 4.

Assuming the assertion is true for n <-r, we shall verify it for n r + 1. Suppose
that/z 0 for < r + 1. Then, of course,/x 0 for < r. Hence by the induction
hypotheses,

(4.32) r does not depend on Ai for -> 3,

(4.33) ]Zr+l does not depend on Ai for 4.

We now prove (i) for n--r+ 1. By (4.33), a term in /xr+ is of the form
AIA;A where3

(4.34) el + 2e2 + 3e3 =< r + 1.

It is easy to check that its coefficient is

S(el, e2, e3)
(el + e2+ e3)!

C (r+ 1)--(e +2ez+3e3),e +e2+e3"

e3 Ae2A e3However, since A1 1, AlaA2A3 --2 -3. After replacing A by 1 in/xr+l, we
e2z e2 in/x+ which isobtain the coefficient of a2 3 1,

YS(e,,e,e),
el
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96 H. T. KUNG AND J. F. TRAUB

where the summation takes all values of e, satisfying (4.34). Similarly, the
e2+e in Ix iscoefficient of A2 l-e3

E T(el, e2, e3),

(4.36) Z S(e,, e,)
(e2 + 84 +" q- e,)!

", ZT(e,,’",e,).
el e2!e4!" e,! el

Then it can be shown that

Suppose that e,-> 1 for some -> 4. Then

r + 2- (2e4 + 3e5 +" + (t- 2)e,) --< r.

Hence [ar+2--(2e4... 0 and [ar+2--(2e4+... does not depend on A3. Therefore e3--0
and Zest S(el,’’’, et)---O. Hence we have shown that (ii) holds for n r + 1.

Since Ix, 0 for < n, by (4.17), u, 0 for < n + 1. Hence we can similarly
show that v,+2 does not depend on Ai for >= 4. Since f" does not appear in A,, A2
and A3, we have shown that f" does not appear in Ix,, Ix,+, and u,+2. But by (4.20),

Ix,f"= -2f’u,,+z- 2f’zIx,,+1.
Therefore, Ix, 0. This is a contradiction.

Case 3. (k 1). In this case, it is easy to check that

(4.37)

Ixo Co,o + c0,1 f’ + c0,2 f’2 +
Ix, C,,o + c,,, f’ + c,,2f ’2 +"" + co,lair"+ 2Co,2alf’f"+ 3Co,3a, f,zf,, +.

(Cl,0 -- Cl, f’+ c,,2f ’2 +’’ ") + a, f"(Co,, + 2Co,2f’ + 3Co,3f ’2 +’’ "),

Ix2 (C2,0 -- C2,1 f! "if- C2,2f ’2 +’" ") -k- alf"(C,,l + 2Cl,2f’ + 3Cl,3f ’2 -k-’" ")

+ (a2f"+ (a,/2) f"’)(Co,, + 2Co,2f’ + 3Co,3f ’2 +" "),

where

(e + e.+ e)!
T(el, ez,_e3)-- C(r+l-e3)--(el+2e2+2e3),el+e2+e3,e!(e+e)!

and e, satisfies (4.34). Clearly, we have

(e2+ e3)!
(4.35) S(el, e2, e3)= T(e,, e, e3).

e2!e3!

Now suppose e3 >- 1. Then r + 1-e3<-r. Hence Ixr+-e 0 and Ix+,-e does not
e+e independ on Ai for i=>3. Therefore, the coefficient of A2 Ixr+l--e3,
e3 in Ixr+, is zero2el T(e,, e2, e3), must be zero. By (435) the coefficient of A2A3

We have shown that (i) holds for n r + 1. The proof of (ii) for n r + 1 is similar.
Let the coefficient of A2Ae3Aen’’’3x4 A e’t in Ix+ be 2el S(el,’’" e,) and that of
A2-e3+ea++e’Ae33 in Ixr+2-(2e4+3es+’’’+(t-2)eD be Zel T(e,... e,), where > 4 and

ie <= r + 2.
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ITERATIONS WITH TWO EVALUATIONS 97

Since Ix, # 0 and Ix, 0 for < n, by (4.37) one can easily see that

Hence

fori<n, j=0,1,....

fv t2
[d,n Cn,O-JU Cn,1 -[- Cn,2 f
IX,+1 (c,+,o + c,+,, f’ + ")+ a f"(c,, + 2c,,2f’ + 3c,,3 f ’2 + ").

Similarly, by (4.18), we also have

v,+, b,+,,o+ b,+,,,f’ + b,,+,,2/’2 +’" ",

u,+2 (b,+2,o + bn+z,lf’ nt-’" ")+ alf"(b,+l,, + 2b,+,,2f’ + 3b,+,,3f ’2 +’" ").

Comparing the coefficients of f,i, 0, 1,.. in (4.19), we get

C,,o 0,
(4.38)

c,,j b,+l,j_l, j 1, 2,’" ".

Next, comparing the coefficients of f" in (4.20), we get

2alf’3(b,+, + 2b,+,2f’ + 3b,+,3f ’2 +" ")
(4.39)

[ (c.,1+ ").--(C,,o+C,,, +c,,2/ +"’)-2a 2c,,:/ +..t2 t2

Hence, comparing coefficients of f", 0, 1, in (4.39), we get

Cn,o Cn, O,
(4.40)

-c,,j+-2]ac,, 2(]- 1)ab,+,_l, ] 1,2,-...

From (4.38) and (4.40) it is trivial to see that

c,,=0 for]=0,1,2,....

Therefore, Ix, 0. This is a contradiction.

5. Optimal efficiency.
LEMMA 5.1. If p 122 and q uses evaluations off and f’, then a(q)>-2.
Proof. It suffices to show that q(f)(x) depends explicitly on x, f(x) and f’(z,).

Suppose that q(f)(x) does not depend explicitly on x. Then

p(f)(x) G(f (x), f’(z,))

for some rational function G R: R. Since ,(f)(o#) at,

(5.1) G(O, f’(oq))=

for all f e D. Clearly, for any real numbers s, (t 0), there exists f e D such that

o# s, f’(oq) t.

By (5.1) we have

G(0, t)= sD
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98 H. T. KUNG AND J. F. TRAUB

for all (t, s) with # 0. This is a contradiction. [-]

LEMMA 5.2. If (2, p(()_-->2, and uses evaluations of f only, then
a(q)_->5.

Proof. We assume notation used in Case 1 of the proof of Theorem 4.4.
Suppose/z, 0 and/x, 0 for < n. From (4.19) we can easily see that n > 0.

Case 1. (n 1). Suppose al=0. Then/zl C,o+Co,. But -f’v2=/x #0, a
contradiction. Hence a 0.

By (4.23),

Hence

C1,0 -1- CO,1 (1 + a f ’) # 0,

CI,O Co,l

b1,1 bo,2 0,

b2,o a Co,.

,t,(f)(x) x-
alfz(x) +

f (Zl)-- f (x) +

Since the higher order terms in f (x) cannot cancel the terms shown, the theorem is
proved for this case.

Case 2. (n=>2 and aO). By (4.23) we know that some bi,j0 for i+j
n + 1 =>3. To compute bi,jfif(z) from f and f(zl) needs at least 2 multiplica-

tions. The computation for getting z, the division and the combination with x
require another three arithmetic operations. Hence a(q)=> 5.

Case 3. (n => 2, a 0). We can assume the notation used in Case 2 of the
proof of Theorem 4.4. Since zl x + a2f + a3f +. , to compute z from x and
f (x) requires at least two arithmetic operations. The division takes one arithmetic
operation and to combine with x requires another arithmetic operation. Hence it
suffices to show that to compute g c,f(x)f(z) from f(x) and f(zl) takes at leas[
one arithmetic operation.

Suppose that ca,o 0. Then since by (4.32), C,o+Co, =0, Co,1 #0. Hence to
compute gc,fi(x)fJ(z) from f(z) needs at least one arithmetic operation.
Suppose, on the other hand, that cl,o=0. Then Co, =0. Since/x, -0, by (4.3),
c, S0 for some i, j with i+j>-2. Hence to compute g ci,jf(x)f(z) from f(x)
and f(zl) again needs at least one arithmetic operation. [3

For any f 6 D, define

E2(f su e(, f).

Then E2(f) is the optimal efficiency achievable by a rational two-evaluation
iteration without memory with respect to f. By Theorem 4.4 and Lemmas 5.1 and
5.2, we have

(5.2) ( 1 1 )Ez(f) <= max c(f) + c(f’) + 2’ 2c(f) + 5D
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ITERATIONS WITH TWO EVALUATIONS 99

Consider Newton iteration y and the iteration q, defined by (1.2) and (1.3),
respectively. We have

(5.3) e(y, f) c(f)+c(f’)+2’
and

1
(5.4) e(q,, f)

2c(f) + 5

From (5.2), (5.3) and (5.4) we have the main result on optimal efficiency.
THEOREM 5.1.
(i) If c(f’) <-- c(f) + 3, then

1
E2(/) c(f)+c(f’)+2’

i.e., Newton iteration is optimal.
(ii) /f c(f’) >= c(f + 3, then

1
E2(f)=2c(f)+ 5’

i.e., the iteration defined by (1.4) is optimal.
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