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THE ALGEBRAIC THEORY OF MATRIX POLYNOMIALS*

J. E. DENNIS, JR.,? J. F. TRAUB$ AND R. P. WEBER

Abstract. A matrix S is a solvent of the matrix polynomial M(X) AoXm +. +Am if M(S) 0
where Ai, X, S are square matrices. In this paper we develop the algebraic theory of matrix
polynomials and solvents. We define division and interpolation, investigate the properties of block
Vandermonde matrices, and define and study the existence of a complete set of solvents. We study the
relation between the matrix polynomial problem and the lambda-matrix problem, which is to find a
scalar such that AoA +A1’ m--1 _.... d- Am is singular.

In a future paper we extend Traub’s algorithm for calculating zeros of scalar polynomials to matrix
polynomials and establish global convergence properties of this algorithm for a class of matrix
polynomials.

1. Introduction. Let A0, AI,. A,,, Xbe n x n complex matrices. We say

(1.1) M(X) AoX +A1X’’-1 +... +A,
is a matrix polynomial. A matrix S is a right solvent of M(X) if

M(S) 0.

The terminology right solvent is explained below. For simplicity we sometimes
refer to right solvents as solvents. We say a matrix W is a weak solvent of M(X) if
M(W) is singular. If Ao is singular, one can shift coordinates and reverse the order
of the coefficients to get a related problem with a nonsingular leading coefficient.
We will ignore such problems and deal primarily with the case where M(X) is
monic (Ao =- I).

We are interested in algorithms for the calculation of solvents. Since rather
little is known about the mathematical properties of matrix polynomials and
solvents, we develop that theory here. We extend division and interpolatory
representation to matrix polynomials and study the properties of block Vander-
monde matrices. In a future paper [3] we shall show that a generalization of
Traub’s algorithm [11] for calculating zeros of a scalar polynomial provides a
,globally convergent algorithm for calculating solvents for a class of matrix
polynomials. We shall also report elsewhere on the use of solvents to solve systems
of polynomial equations. Most of the results of this paper as well as additional
material first appeared as a Carnegie-Mellon University-Cornell University
Technical Report [2].

If the Ai are scalar matrices, Ai aI, then (1.1) reduces to

(1.2) M(X) aoX + alX"-1 +. + a,,.
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832 J. E. DENNIS, JR., J. F. TRAUB AND R. P. WEBER

This problem, has been thoroughly studied (Gantmacher, [4]) and we have such
classical results as the Cayley-Hamilton theorem and the Lagrange-Sylvester
interpolation theorem.

If X is a scalar matrix, X /, then (1.1) reduces to

(1.3) M(AI) M(A) A0A +A1A m--1 ..[.., .. iA,.
This is called a lambda-matrix and has also been thoroughly studied (Lancaster
[7]). Unfortunately, both (1.2) and (1.3) are sometimes called matrix polynomials
but we shall reserve this name for (1.1). A great deal is, of course, known about
another special case of (1.1), the case of scalar polynomials (n 1). A discussion of
much of what is known about matrix polynomials may be found in MacDuffee [9].
The special case of calculating the square root of a matrix has been analyzed
(Gantmacher [4]). Bell [1] studies the conditions under which an infinitude of
solutions of (1.1) exist.

A problem closely related to that of finding solvents of a matrix polynomial is
finding a scalar A such that the lambda-matrix M(A) is singular. Such a scalar is
called a latent root of M(A) and vectors b and r are right and left latent vectors,
respectively, if for a latent root p, M(p)b 0 and rTM(p) 0. See Lancaster [7],
Gantmacher [4], MacDuffee [9], and Peters and Wilkinson [10] for discussions of
latent roots.

The following relation between latent roots and solvents is well known
(Lancaster [7]). A corollary of the generalized B6zout theorem states that if S is a
solvent of M(X), then

(1.4) M(A) Q(A)(IA S),

where Q(h) is a lambda-matrix of degree m- 1. It is because of (1.4) that S is
called a right solvent. The lambda-matrix M(A) has mn latent roots. From (1.4)
the n eigenvalues of a solvent of M(X) are all latent roots of M(A). The n(m- 1)
latent roots of Q()t) are also latent roots of M()t). Thus if one is interested in the
solution of a lambda-matrix problem, then a solvent will provide n latent roots
and can be used for matrix deflation, which yields a new problem Q(A).

We summarize the results of this paper. In 2 we define division for matrix
polynomials and derive some important consequences. This definition includes
scalar division and the generalized B6zout theorem as special cases. Section 3
contains a brief discussion of block companion matrices. In 4 we give a sufficient
condition for a matrix polynomial to have a complete set of solvents. In 5 we
introduce fundamental matrix polynomials and give a generalization of interpola-
tion. In the final section we study the block Vandermonde matrix.

2. Division of matrix polynomials. We define division for matrix polyno-
mials so that the class is closed under the operation. It reduces to scalar division if
n=l.

THEOREM 2.1. Let M(X) X +AIX"-I +. +A. and W(X)
XP-bB1Xp-lq-...-t-Bp, with m >-p. Then there exists a unique, monic matrix
polynomial F(X) o] degree m-p and a unique matrix polynomial L(X) of degree
not exceeding p- 1 such that

(2.1) M(X) F(X)Xp -I- BIF(X)Xp-1 -1.-o,, .4- BpF(X) -[- t(X),D
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MATRIX POLYNOMIALS 833

Proof. Let F(X) Xm-p + F1xm-p-1 q-. -- Fro_p and L(X)
LoXp-I+L1Xp-2+ + Lp_1. Equating coefficients of (2.1), F1, F2, "", F,_p
and Lo, L1, ’’’, Lp-x can be successively and uniquely determined from the m
equations. Q.E.D.

Equation (2.1) is the matrix polynomial division 6f M(X) on the left by W(X)
with quotient F(X) and remainder L(X).

DEFINITION 2.1. Associated with the matrix polynomial, M(X)=-
X +AxX"-1 +. +A,,, is the commuted matrix polynomial

(2.2) (/I(X) =-
If ;/(R) 0, then R is a left solvent of M(X).

An important association between the remainder, L(X), and the dividend,
M(X), in (2.1) will now be given. It generalizes the fact that for scalar polynomials
the dividend and remainder are equal when evaluated at the roots of the divisor.

COROLLARY 2.1. If R is a left solvent of W(X), then f_,(R) II(R).
Proof. Let Q(X)- M(X)-L(X). Then it is easily shown that

(2.3) O(X) =-- Xm-pV(X) +Xm-p-1 I/(X)F1 +’.. + V(X)Fm-p.
The result then follows immediately since ((R)=0 for all left solvents of
W(X). Q.E.D.

The case where p 1 in Theorem 2.1 is of special importance in this paper.
Here we have W(X)=X-R where R is both a left and right solvent of W(X).
Then Theorem 2.1 shows that

(2.4) M(X) =- F(X)X- RF(X) + L,

where L is a constant matrix. Now Corollary 2.1 shows that L -//(R), and thus

(2.5) M(X) =- F(X)X- RF(X) /]I(R).

There is a corresponding theory for//(X). In this case, (2.1) is replaced by

(2.6) ]/I(X) XPI-I(X) -I- Xp-II(X)B1 -I-...-+-I(X)Bp
and Corollary 2.1 becomes the following.

COROLLARY 2.2. If S is a right solvent of W(X), the N(S) M(S).
We again consider the case of p 1. Let W(X) X- S. Then (2.5) becomes

(2.7) ll(X) =- XI?-I(X)- I?t(X)S + M(S).

Restricting X to a scalar matrix AL and noting that M(A)--//(), we get the
generalized B6zout theorem (see Gantmacher [4, Chap. 4]) from (2.5) and (2.7):

(2.8) M(A)=-(IA-R)F(A)+I(R)=-H(A)(I-S)+M(S)

for any matrices R and S. If in addition R and S are left and right solvents,
respectively, of M(X), then

(2.9) M(X) =- F(X)X- RF(X),

(2.10) ]/(X) XI?-I X) I?-I X)SD
ow

nl
oa

de
d 

10
/1

0/
13

 to
 1

28
.5

9.
16

0.
23

3.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



834 J. E. DENNIS, JR., J. F. TRAUB AND R. P. WEBER

and

(2.11) M(A) (Ih R)F(A) H(A)(IA S).

Hence Corollaries 2.1 and 2.2 are generalizations of the generalized B6zout
theorem.

Equation (2.11) is the reason why R and S are called left and right solvents,
respectively.

The use of block matrices is fundamental in this work. It is useful to have a
notation for the transpose of a matrix with square blocks.

DEFINITION 2.2 Let A be a matrix with block matrices (Bij) of order n. The
block transpose of dimension n of A, denoted AB("), is the matrix with block
matrices (Bji).

The order of the block transpose will generally be dropped when it is clear.
Note that, in general, An(,) #A T, except that n 1.

An important block matrix, which will be studied later in this paper, is the
block Vandermonde matrix.

DEFINITION 2.3. Given n x n matrices $1," ", S,,, the block Vandermonde
matrix is

l I
S

v(&,

S?-1

(2.12)

S2

A scalar polynomial exactly divides another scalar polynomial, if all the roots
of the divisor are also roots of the dividend. A generalization of the scalar
polynomial result is given next. The notation is that of Theorem 2.1.

COROLLARY 2.3. If W(X) has p left solvents, R1, ", Rp, which are also left
solvents of M(X), and if VB(RI, ,Rp) is nonsingular, then the remainder
L(X)=O.

Proof. Corollary 2.1 shows that /(Ri)=O for i=1, ..., p. Since
VB(R,. ., Rp) is nonsingular, and since

I. R1 Rf-1 Lp_ll
R2 Rt-1 Lp-2

Rp R-1 Lo

/,(R 1)\

l f_,(Rp)

=0

it follows that L(X) O. Thus

(2.13) M(X) =- F(X)Xp +B,F(X)Xp-’ +... + BpF(X). Q.E.D.D
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MATRIX POLYNOMIALS 835

From (2.11) it follows that the eigenvalues of any solvent (left or right) of
M(X) are latent roots of M(A). These equations allow us to think of right (left)
solvents of M(X) as right (left) factors of M(A).

In the scalar polynomial case, due to commutivity, right and left factors are
equivalent. Relations between left and right solvents can now be given.

COROLLARY 2.4. I]: S and R are right and left solvents o]M(X), respectively,
and $ and R have no common eigenvalues, then F(S)= O, where F(X) is the
quotient of division of M(X) on the left by X-R (see equation (2.9)).

Proo] Equation (2.9) shows that

(2.14) F(S)S RF(S) O.

Since S and R have no common eigenvalues, F(S)= 0 uniquely. This follows,
since the solution of AX XB has the unique solution X 0, if and only if A and
B have no common eigenvalues. See Gantmacher [4, Chap. 8]. Q.E.D.

Given a left solvent R of M(X), Theorem 2.1 shows that F(X) exists
uniquely. If S is a right solvent of M(X) and if F(S) is nonsingular (S is not a weak
solvent of F(X)), then (2.14) shows that

(2.15) R F(S)SF(S)-1.

This gives an association between left and right solvents.

3. Block companion matrix. A useful tool in the study of scalar polynomials
is the companion matrix which permits us to bring matrix theory to bear on the
analysis of polynomial zeros. We study properties of block companion matrices.
Definition 3.1, Theorem .3.1 and Corollary 3.1 can be found in Lancaster [7].

DEFINITION 3.1. Given a matrix polynomial

M(X)Xm q-A1Xm-l q + A,,

the block companion matrix associated with it is

/0 0 -A,,

I -Am-1
(3.1) C=

I -A1 /

It is well known that the eigenvalues of the block companion matrix are latent
roots of the associated lambda-matrix. Simple algebraic manipulation yields

THEOREM 3.1. det(C-AI)--- (- 1) det(IA +AIA m-l+. +A,).
Since C is an mn by mn matrix, we immediately obtain the following well

known result.
COROLLARY 3.1. M(A) has exactly mn finite latent roots.
Note that if M(A) were not monic and had a singular leading coefficient, then

the lambda-matrix can be viewed as having latent roots at infinity.D
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836 J.E. DENNIS, JR., J. F. TRAUB AND R. P. WEBER

The form of the block companion matrix could have been chosen differently.
Theorem 3.1 also holds for the block transpose of the companion matrix:

(3.2) CB

It will be useful to know the eigenvectors of the block companion matrix and its
block transpose. The results are a direct generalization of the scalar case and are
easily verified. See for example Jenkins and Traub [6] or Lancaster and Webber
[8].

THEOREM 3.2. If p is a latent root of M(A) and b and r are right and left
latent vectors, then p is an eigenvalue of C and of C and

/
Pibi

(i) is the right eigenvector of C,
m--1

Pi bi/

Piri

(3.3) (ii) is the left eigenvector of C, and

(iii) is the right eigenvector o.f C,

bi
where

M(A)bi
=biAm--1 + bll)A m-2 +... + b(m-1)

4. Structure and existence of solvents. We introduce the concept of a
"complete set" of solvents. This is analogous to the fact that a scalar polynomial ofD
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MATRIX POLYNOMIALS 837

degree n has n zeros. We establish a sufficient condition for a matrix polynomial to
have a complete set of solvents.

The fundamental theorem of algebra does not hold for matrix polcnomials.
This is known from the extensive studies of the square-root problem: X A. See
Gantmacher [4, p. 231].

A sufficient condition for the existence of a solvent (Lancaster [7, p. 49]) is
given by

LEMMA 4.1. If M(A) has n linearly independent right latent vectors, bl, ,
bn, corresponding to latent roots 01, ", pn, then QAQ- is a right solvent, where
Q [bl, , b,] and A diag(ol, ", p,).

It follows from the above theorem that if a solvent is diagonalizable, then it
must be the form QAO-a where the columns of O are right latent vectors of M(A).

COROLLARY 4.1. If M(A) has mn distinct latent roots, and the set of right
latent vectors satisfy the Haar condition (that every set of n of them are linearly

independent), then there are exactly (mnn) different rightsolvents.

Consider now the special case of a matrix polynomial whose associated
lambda-matrix has distinct roots. We call a set of m solvents a complete set if the
mn eigenvalues of this set exactly match the distinct latent roots. Note that we
have defined the concept of complete set only for the case of distinct latent roots.
In Theorem 4.1 we shall show that in this case a complete set of solvents exists. We
consider the following example to illustrate Lemma 4.1, the definition of a
complete set of solvents and Theorem 4.1.

Consider the quadratic
-1 -6

X+M(X) X +
2 -9 -2 14

The corresponding lambda-matrix has latent roots 1, 2, 3, 4 with corresponding
latent vectors (1, 0), (0, 1), (1, 1), (1, 1). The problem has a complete set of

(1 2)and $2=(4 0)solvents Sa 0 3 0 2
Other solvents have eigenvalues 1, 2; 1, 4

and 2, 3. The only pair which cannot be the eigenvalues of a solvent is 3, 4.
Before proceeding with Theorem 4.1 we prove two preliminary results.
LEMMA 4.2. Ifa matrixA is no.nsing.ular, then there exists a permutation of the

(All A12)columns ofA to such thatA 21 .22/’ where A11 is square and ofarbitrary
order less than n and All and A22 are nonsingular.

Proo[. Let 1 -< k < n. Expand det(A) in terms of square matrices formed from
the first k rows using the Laplace expansion. Since det(A) # 0, one of the products
in the expansion is nonzero and the result follows. Q.E.D.

Once the columns of A are permuted to get All and A22 nonsingular, the
process can be continued to simila.rly divide 22 into nonsingular blocks without
destroying the nonsingularity of All. We thus arrive at

LEMMA 4.3. If A, a matrix of~ order ran, is nonsingular, then there exists a
permutation 0]’ the columns ofA to A (Bii), with Bi a matrix of order n, such that
Bii is nonsingular ]’or 1, , m.D
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838 J. E. DENNIS, JR., J. F. TRAUB AND R. P. WEBER

The existence theorem is given by
THEOREM 4.1. If the latent roots of M(A) are distinct, then M(X) has a

complete set of solvents.
Proof. If the latent roots of M(A) are distinct, then the eigenvalues of the

block companion matrix are distinct, and hence the eigenvectors of the block
companion matrix are linearly independent. From Theorem 3.2 the set of vectors

Pibi

for 1, , mn, are eigenvectors of CB. The matrix whose columns are these
mn vectors is nonsingular. Lemma 4.3 shows that there are m disjoint sets of n
linearly independent vectors hi. Using the structure QAQ-1 of Lemma 4.1, the
complete set of solvents can be formed. Q.E.D.

COROLLARY 4.2. IfM(A) has distinct latent roots, then it can be factored into
the product of linear lambda-matrices.

Proof. Since M(A) has distinct latent roots, there exists a right solvent S and
M(X) Q(X)(IX- S). Q(A) has the remaining latent roots of M(A) as its latent
roots. It follows then, that the latent roots of Q(A) are distinct. Thus the process
can be continued until the last quotient is linear. Q.E.D.

The process described in the above proof considers solvents of the sequence
of lambda-matrices formed by the division M(A)= Q(A)(IA- S).

DEFINITION 4.1. A sequence of matrices C1, ooo, C form a chain of
solvents of M(X) if C is a right solvent of Qi(X), where Q,(X)=-M(x) and

(4.1) Q,(A)-- Qi-I(A)(IA -C), i= m,. , 1.

It should be noted that, in general, only C, is a right solvent of M(X).
Furthermore, (71 is a left solvent of M(X). An equivalent definition of a chain of
solvents could be defined with C, a left solvent of T(X), and

(4.2) T(A) (I)t- C,_+I)T-a(A), i= m," , 1.

COROLLARY 4.3. If the latent roots of M(A) are distinct, then M(X) has a
chain of solvents.

If Ca,’", C,, form a chain of solvents of M(X), then

(4.3) M(A)=-IA" +AIA"-I +" "+A,=-(IA-CO(IA-C2)" "(IA-C,,).

This leads to a generalization of the classical result for scalar polynomials which
relates coefficients to elementary symmetric functions. By equating coefficients of
(4.3), one gets the followingD
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MATRIX POLYNOMIALS 839

THEOREM 4.2. If C1, "’’, C,, form a chain of solvents [or M(X)=
+A1xm-1 __... _. Am then

(4.4)

A1 -(C1+ C2+""" + C,.),

A2 (CIC2 + CIC3 +"" + C,._xC,.),

Am--(-1)mCiC2 "Cm.

5. Interpolation and representation. Given scalars Sl, Sin, the
fundamental polynomials mi(x) of interpolation theory are defined so that
mi(sj) 3q. We generalize these relations for our matrix problem.

DEFINITION 5.1. Given a set of matrices, $1, , S,, the fundamental matrix
polynomials are a set of m- 1 degree matrix polynomials, MI(X), ", M,, (X),
such that M(Si) ./.

Sufficient conditions on the set of matrices, $1, "", S,,, for a set of
fundamental matrix polynomials to exist uniquely will be given in Theorem 5.2.
First, however, we need the following easily proven result.

THEOREM 5.1. Given m pairs of matrices, (Xi, Yi), 1, .., m, then there
exists unique matrix polynomials

and

such that

PI(X) A1Xm-I "b A2Xm-2 d-. 4r A,,,

P2(X) xm -t-B1Xm-l-k + B,,

PI(X) P2(X)= Y

]’or 1, , m if and only if V(X1, , X,,,) is nonsingular.
Let M(X) have a complete set of solvents, $1,..., S,,, such that

V(S1," ", Sin) is nonsingular. According to Theorem 5.1, there exists a unique
matrix polynomial

(5.1) M X) =-- A (li Xm-1 +’’"-!-A m
such that

(5.2) Mi(Si) 3qI.

Note that M(X) has the same solvents as M(X), except S has been deflated out.
The/V/(X) are the fundamental matrix polynomials.

Denote by V(SI,..., S-I, S+I,’’ ", S,,) the block Vandermonde at the
m- 1 solvents, S1," , S,, with Si deleted.

THEOREM 5.2. If matrices S1, "", S,, are such that V(S1,"’, S,,) is
nonsingular, then there exist unique matrix polynomials M(X) =-
A]i)xm-I+...+A) ]:dr i=1, ’’’, m such that MI(X), ..., M,(X) areD
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840 J. E. DENNIS, JR., J. F. TRAUB AND R. P. WEBER

fundamental matrix polynomials. I]’, .furthermore, V(S1," Sk-1, Sk+l,""", Sin)
is nonsingular, then AIk is nonsingular.

Proof. V(S1," .,S,) nonsingular implies that there exists a unique
set of fundamental matrix polynomials, MI(X),. , M,,(X).
V(S1,’", Sk-i, Sk/l,’’’, S,,,) nonsingular and Theorem 5.1 imply that there
exists a unique monic matrix polynomial Nk(X)=-X"- +Nkx"-2 +" +Nk,
such that Nk(S) 0 for ] # k. Consider Qk(X) =-- Nk(Sk)Mk(X). Qk(S) Nk(S)
for j 1,’’ ", m. Since V(S1," ", S,,) is nonsingular and both Qk(X) and Nk(X)
are of degree m- 1, it follows that Qk(X)=-- Nk(X). Thus Nk(X)= Nk(Sk)Mk(X).
Equating leading coefficients, we get I=Nk(Sk)Ak, and thus Ak is
nonsingular. Q.E.D.

The fundamental matrix polynomials, M(X), , M,(X), can be used in a
generalized Lagrange interpolation formula. Paralleling the scalar case, we get the
following representation theorems.

THEOREM 5.3. If matrices $1, S are such that V(Sx,..., S,) is
nonsingular, and MI(X),..., M,(X) are a set of ]undamental matrix polyno-
mials, then, .for an arbitrary

G(X)=-BX’-+ +B,,(5.3)

it ]’ollows that

(5.4) o(x)= E O(S,)M,(X).
i=1

ProoI’. Let Q(X)= Y.,= G(Si)Mi(X). Then Q(S,)= G(Si) for i= 1, ..-, m.
Since the block Vandermonde is nonsingular, it follows that Q(X) is unique and
hence G(X)-- Q(X). Q.E.D.

A lambda-matrix was defined as a matrix polynonial whose variable was
restricted to the scalar matrix AL Thus the previous theorem holds for lambda-
matrices as well.

COROLLARY 5.1. Under the same assumptions as in Theorem 5.3, ]’or an
arbitrary lambda-matrix

(5.5)

it follows that

(5.6) G(A) Y G(S)M(A).
i=1

Fundamental matrix polynomials were defined such that M(Sj)= 3jI. A
result similar to (2.9) can be derived based on the fundamental matrix polyno-
mials. It was previously ( 2) developed using matrix polynomial division.

THEOREM 5.4. If M(X) has a set of right solvents, $1, "", S,,, such that
V(S1, S,,) and V(Sx, Si-1, Si+x, S,) ]’or each i= 1, ..., m are
nonsingular and MI(X), "’, M,,(X) are the set q[ fundamental matrix polyno-
mials, then

(5.7) M(X)X- SIVI(X)=- AM(X) for 1,..., m,

where Ao is the leading matrix coefficient ofM(X).D
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MATRIX POLYNOMIALS 841

Proof. Let Qi(X) =- Mi(X)X- S,M(X). Note that Q,(Sj) 0 for all . M(X) is
the unique monic matrix polynomial with right solvents S, ..., S,, since
V(S1,"’, S,,) is nonsingular. The leading matrix coefficient of Q(X) is A(a
which is nonsingular, since V(Sa,..., S,_x, S+x,..., S) is nonsingular. us
M(X) A’)-Q,(. Q.E.D.

A previous result (equation (2.5)) stated that if R is a left solvent of M(X),
then there exists a unique, monic polynomial (X) of degree m- 1 such that

(5.8) M(X) (X-R,(X).

Comparing (5.7) and (5.8), we obtain the following result.
COROLLARY 5.2. Under the conditions of eorem 5.4, (X)

[A(-IM( and

(5.9) R, [A’)]-S,A’)
is a left solvent of M(X).

IfM( has a set of right solvents, S,. , Sm, such that V(S1," , S) and
V(S1," ", S_, S+,. ., S) for 1,. ., m are all nonsingular, then by (5.9),
there exists a set of left solvents of M(X), R, , R, such thatR is silar to S
for all i.

COgOLLARY 5.3. Under the conditions of eorem 5.4, ifR is defined as in
(5.9), then

(5 10) (A)[A(’h-I(A)=(IA-R,)-M(A).

Proof. The result follows from (5.8) and Corollary 5.2. Q.E.D.

6. Block Vanflermonfle. The block Vandermonde matr is of fundamental
importance to the theory of matrix polynomials. This section considers some of its
properties.

It is well known that in the scalar case (n 1),

(6.1) det V(S1,""", Sin) H (si-sj),
i>i

and thus the Vandermonde is nonsingular if the set of si’s are distinct. One might
expect that if the eigenvalues of X1 and X2 are disjoint and distinct, then
V(X1, X2) is nonsingular. That this is not the case is shown by the following
example. The determinant of the block Vandermonde at two points is

(6.2) I
det V(X1, X2) det

X1
I
} det (X2-

X2/

Even if X1 and X2 have no eigenvalues in common, X2-X1 may still be singular.

(2 0)(4 2) yieldsX2_Xsingular. NowifweThe exampleXa=
_2 1 andX2= 0 3

include X 0 5
we find V(X, X., X) to be nonsingular. Thus it is possible

for V(X, X, X3) to be nonsingular and V(XI, X) to be singular.D
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842 J. E. DENNIS, JR., J. F. TRAUB AND R. P. WEBER

It will be shown that the X1 and X2 in this example cannot be the set of
solvents of a monic quadratic matrix polynomial. First we state a well known
property of an invariant subspace.

LEMMA 6.1. Let matrixA have distinct eigenvalues andNbe a subspace ofC
ofdimension d. Supposefurther that ifv N, thenAv N. Under these conditions, d
of the eigenvectors ofA are in N.

Our main result of this section can now be stated:
THEOREM 6.1. IfM(A has distinct latent roots, then there exists a complete set

of right solvents of M(X), $1, "", S,, and for any such set of solvents,
V(S1, S,) is nonsingular.

Proof. The existence was proved in Theorem 4.1. The hypothesis that $1,, S,,, are right solvents of M(X) X +A1Xm- +... +A,, is equivalent to

(6.3) =(-sT’,...,

(6.4) O= - V(SI,... Sin) diag (Sl, ., Sm).

s? s2/

0 (A.,, ", A1) V(S1, ", Sm) S?,..., S

Hence for all v e N, we have

Letting D diag (Sl," Sin), (6.4) shows that for all v N, Dv N. Since D has
distinct eigenvalues, Lemma 6.1 applies, and there are as many eigenvectors of D
in N as the dimension of N. Since the eigenvalues of the solvents were assumed to
be distinct, it follows that the eigenvectors of D are of the form
(Or, Or, wr, Or, ..., 0), where w is an eigenvector of one of the S’s. Let
u= (0r, Or, wr, Or, 0r) be an arbitrary eigenvector of D in N. Thus
V(S1,... ,S,,)u=0. But then, Iw=0, which is a contradiction. Thus det
V(Sl, Sin) 0. Q.E.D.

The example considered before this theorem, was a case where matrices X1
and X2 had distinct and disjoint eigenvalues and det V(X1, X2) 0. Thus by the
theorem, they could not be a set of right solvents for a monic, quadratic matrix
polynomial. In contrast with the theory of scalar polynomials, we have the
following result.

Assume det V(SI,... Sm)--O and let N be the nullspace of V(SI,...
Letting v e N and using (6.3), we get

D
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MATRIX POLYNOMIALS 843

COROLLARY 6.1. There exist sets containing m matrices which are not a set of
right solvents ]’or any monic matrix polynomial of degree m.

We now tie Theorem 6.1 together with the results of 5 to obtain the
following result,

THEOREM 6.2. If M(A) has distinct latent roots, then
1. there exists a complete set of solvents, S1, ,
2. V(S, S,) is nonsingular,
3. there exists a set of fundamental matrix polynomials, Mi(X), such that

M,(Sj) 6,I, and
4. for an arbitrary G(X),

o(x)= Z (S,)M,(X).
i=1

We now prove a generalization of (6.1), that the Vandermonde of scalars is
,tu) .s(X) be a monic matrixthe product of the differences of the scalars. Let s..

polynomi-al of degree d -> k with right solvents $1, , Sk. The superscript d will
be omitted if d K.

THEOREM 6.3. If V(SI, Sk) is nonsingular for k 2,. , r- 1, then

(6.5) det V(Sl," ", S)= det V(Sl,’", St-l) det Ms,...s_(S).
Proof. The nonsingularity of V(S1,’’’ Sr_l) and Theorem 5.1 guarantee

that Msl...sr_l(X) exists uniquely. The determinant of V(S1,’", Sr) will be
evaluated by block Gaussian elimination using the fact that for an arbitrary matrix
E of the proper dimension,

(6.6) det (AC

(6.7)

D C D /"

det V(SI, St) det

S-S
=det

I

Sr- S1

s-l__ Sr1-1D
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844 J. E. DENNIS, JR., J. F. TRAUB AND R. P. WEBER

=det

/II I I \
$2-S $3-S St-S1

)o s

r--l) r--l)

where M)s2(X) (Xa S.)-(Sa Sla)(S2 S1)-I(x $1). ($2- $1) is nonsingu-
lar, since det ($2- $1) =det V(S1, $2) # O. It will be shown that after k steps of the
block Gaussian elimination, the general term for the i, ] block, i, j> k, is
M<..1.)sk(Sj). Assume it is true after k- 1 steps. Then after k steps, the i, ] element
is

S,...Sk-l(Sj) Sl’"Sl--

Mi-1) v\This is merely s...s) evaluated at X S# Using the fact that the determinant
of a block triangular matrix is the product of the determinants of the diagonal
matrices (see Householder [5]), the result follows. Q.E.D.

COROLLARY 6.2. If V(SI,..., Sk-1) is nonsingular and Sk is not a weak
solvent o[ Msl...s_l(X), then V(S, Sk) is nonsingular.

It is useful to be able to construct matrix polynomials with a given set of right
solvents.

COROLLARY 6.3. Given matrices $1,’", S,, such that V(S1, ., Sk) is
nonsingular ]’or k 2,. ., m, the iteration No(X) I,

(6.8) N,(X) N_(X)X-N,_x S,)S,NC,I(S,)N,__(X)
is defined and yields an m degree monic matrix polynomial N,,(X), such that
Nm(Si) 0 for i- 1,..., m.

Proof. NI(X)=-X- $1 MsI(X). Assume Nk(X)-- Msl...sk(X). Then from
(6.8), Nk+l(Si)=O for i= 1,... ,k+l and hence Nk+I(X)=-Ms,...s/(X). The
sequence of block Vandermondes being nonsingular guarantees the nonsingular-
ity of Ni-(Si). Q.E.D.
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