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Numerous attempts have been made to find low-dimensional, formant-related representations of 
speech signals that are suitable for automatic speech recognition. However, it is often not known 
how these features behave in comparison with true formants. The purpose of this study was to 
compare two sets of automatically extracted formant-like features, i.e., robust formants and HMM2 
features, to hand-labeled formants. The robust formant features were derived by means of the split 
Levinson algorithm while the HMM2 features correspond to the frequency segmentation of speech 
signals obtained by two-dimensional hidden Markov models. Mel-frequency cepstral coefficients 
(MFCCs) were also included in the investigation as an example of state-of-the-art automatic speech 
recognition features. The feature sets were compared in terms of their performance on a vowel 
classification task. The speech data and hand-labeled formants that were used in this study are a 
subset of the American English vowels database presented in Hillenbrand et al. [J. Acoust. Soc. Am.
97, 3099-3111 (1995)]. Classification performance was measured on the original, clean data and in 
noisy acoustic conditions. When using clean data, the classification performance of the formant-like 
features compared very well to the performance of the hand-labeled formants in a gender-dependent 
experiment, but was inferior to the hand-labeled formants in a gender-independent experiment. The 
results that were obtained in noisy acoustic conditions indicated that the formant-like features used 
in this study are not inherently noise robust. For clean and noisy data as well as for the 
gender-dependent and gender-independent experiments the MFCCs achieved the same or superior 
results as the formant features, but at the price of a much higher feature dimensionality. © 2004 
Acoustical Society o f America. [DOI: 10.1121/1.1781620]

PACS numbers: 43.72.Ne, 43.72.Ar [DOS] Pages: 1781-1792

I. INTRODUCTION

Human speech signals can be described in many differ­
ent ways (Flanagan, 1972; Rabinerand Schafer, 1978). Some 
descriptions are directly related to speech production, while 
others are more suitable for investigating speech perception. 
Speech production is often modeled as a source signal feed­
ing into a linear all-pole filter. In terms of this model, the 
phonetically relevant properties of speech signals are the 
resonance frequencies of the filter, also known as formants. 
The formant representation of speech signals is attractive be­
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cause it is parsimonious yet powerful. For instance, it is well 
known that the frequencies of the first two or three formants 
are sufficient for the perceptual identification of vowels (Pols 
et al., 1969; Flanagan, 1972; Minifie et al., 1973). Many at­
tempts have therefore been made to exploit the formant rep­
resentation in speech synthesis, speech coding and automatic 
speech recognition (ASR).

A special reason why formants are attractive is their re­
lation, by virtue of their very definition, to spectral maxima. 
In the presence of additive noise, the lower energy regions of 
the spectrum will tend to be masked by the noise energy, but 
the formant regions may stay above the noise level, even if 
the average signal-to-noise ratio becomes zero or negative 
(Hunt, 1999). The formant representation may therefore be 
expected to be robust against additive noise. Automatically 
extracted formant-like2 features have shown some potential
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for noise robustness in automatic speech recognition, espe­
cially when combined with nonparametric spectral features 
(Garner and Holmes, 1998; de Wet et al, 2000; Weber et al., 
2001a).

Despite its apparent advantages, the formant representa­
tion is not widely used in speech technology applications. In 
this area, nonparametric representations of speech signals are 
most commonly used. Even if the estimate of the spectral 
envelope is derived from a parametric estimator such as Lin­
ear Predictive Coding (LPC) [which can be related to the 
source-filter model of acoustic speech production (Markel 
and Gray, 1976)], speech systems avoid an explicit interpre­
tation of the spectral envelope in terms of formants.

Given the explanatory power of the formant representa­
tion in speech production and perception research, its ab­
sence in speech technology seems awkward. One of the rea­
sons why formants are not widely used in speech technology 
is that there is no one-to-one relation between the spectral 
maxima of an arbitrary speech signal and the resonance fre­
quencies of the vocal tract. The exact causes of the many-to- 
many mapping between spectral maxima and true formants 
need not concern us here. What is essential is that despite 
numerous attempts to build accurate and reliable automatic 
formant extractors (e.g., Flanagan, 1972; Rabiner and Scha­
fer, 1978; Welling and Ney, 1996; Garner and Holmes, 1998; 
Bazzi et al., 2003), there are still no tools available that can 
automatically extract true formants from speech reliably. La­
beling spectral maxima as formants is often only possible if 
the phonetic label of the sound is known, because the spectra 
may contain a varying number of prominent maxima (Garner 
and Holmes, 1998; Stevens, 1998).

The many-to-many relation between spectral maxima 
and true formants is not the only reason why speech technol­
ogy systems avoid formant representations. Not all speech 
sounds are equally well suited to be described in terms of the 
resonance frequencies of a linear all-pole filter. Nasals and 
fricatives, for example, can only be accurately described if 
antiresonances are specified in addition to the resonances 
(Ladefoged, 1975; Stevens, 1998). The voice source may 
also contain spectral peaks and valleys that may affect the 
spectral peaks in the corresponding speech signals. Thus, 
even if it were possible to accurately and reliably label spec­
tral maxima as formants, one would still be faced with the 
fact that many portions of typical speech signals show fewer 
spectral maxima than the number of vocal tract resonances 
predicted by acoustic phonetic theory. Most of the search 
algorithms that are used in ASR are designed to deal with 
feature vectors of a fixed length. Formant extractors which 
do not yield a fixed number of spectral peaks labeled as 
formants for each data frame can therefore not be used in 
conjunction with standard ASR search algorithms.

If it is difficult, if not impossible, to consistently and 
reliably extract true formants from arbitrary speech signals, 
the question arises whether the formant-like parameters that 
are delivered by one of the existing “formant” extraction 
techniques are as versatile as the true vocal tract resonances. 
To be useful for current ASR applications, a formant extrac­
tor must be guaranteed to deliver an equal number of for­
mant parameters for each speech frame. Moreover, if the

parameter values must have at least some relation to vocal 
tract resonances, they must develop smoothly over time. In 
this study two formant-like feature representations that fulfill 
both these basic requirements were investigated: two­
dimensional hidden Markov models (HMM2) (Weber et al., 
2000) and robust formants (RFs) (Willems, 1986). The de­
tails of these techniques will be explained in Secs. II B and
II C.

The best way to compare the performance of automati­
cally extracted formant-like features and true formants would 
be to evaluate their performance in a real ASR system. How­
ever, all state-of-the-art ASR systems rely on very large cor­
pora to train probabilistic models in a fully automatic man­
ner. Obtaining corpora that are sufficiently large for ASR 
purposes is only feasible if no manual intervention is needed 
in the acoustic analysis of the signals. Due to the lack of 
tools to compute true formants reliably and accurately, ex­
perts are needed to add formant labels to the speech in a 
training database. This makes it practically impossible to 
provide sufficiently large training corpora for the develop­
ment of formant-based processing. Yet, the theoretical attrac­
tiveness of the formant representation has motivated several 
attempts to overcome this hurdle.

One way to circumvent the problem that there are no 
databases with true formant labels that are sufficiently large 
to train an ASR system, is to look for another task on which 
the representations can be compared, and from which one 
might draw inferences to realistic ASR tasks. Such a task 
would, of course, require a suitably labeled database. One of 
the few corpora that does include hand-labeled formants is 
the American English Vowels (AEV) database presented in 
Hillenbrand et al. (1995). The AEV data have been used for 
experiments with human and automatic vowel classification, 
a task that is much simpler than continuous speech recogni­
tion. However, it is safe to assume that if a formant-like 
representation fails to approach the same vowel classification 
performance as the true formants in the AEV database, it is 
highly unlikely that such a representation could yield the 
theoretical advantage expected from true formants on a more 
realistic continuous speech recognition task.

Thus, the goal of the research reported in this paper was 
to investigate the degree to which formant-like features can 
approximate the performance of true formants in a vowel 
classification task, and to interpret the results in terms of the 
extent to which formant-like features can harness the theo­
retical advantages of true formants in ASR. More specifi­
cally, the aims of the research reported here are

(1 ) to investigate the degree to which RFs and HMM2 fea­
tures resemble true formants.

(2) to compare the performance of true formants with RFs 
and HMM2 features on a vowel classification task. In 
order to strengthen the link with current research in 
ASR, a set of nonparametric features, i.e., mel-frequency 
cepstral coefficients (MFCCs), was also included in the 
experiments. In addition, two different classification 
techniques were used: Linear Discriminant Analysis 
(LDA) and Hidden Markov Models (HMMs). The out­
come of these experiments should indicate to what ex­
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tent a close relation between acoustic features and vocal 
tract resonance frequencies is important for automatic 
vowel classification.

(3) to investigate the claim that formant-like features are in­
herently robust against additive noise, because they are 
related to the spectral maxima that will stay above the 
local spectral level of additive noise.

The rest of this paper is organized as follows: Section II 
briefly introduces the AEV database, the RF algorithm, and 
the HMM2 feature extractor. Section III reports on the ex­
perimental setup and the results of the vowel classification 
experiments. The results are followed by a discussion and 
conclusions in Secs. IV and V, respectively.

II. DATABASE AND FORMANT EXTRACTION

A. Database of American English vowels

The speech material that was used in this study is a 
subset of the database of American English vowels (AEV) 
presented in Hillenbrand et al. (1995). The AEV database 
contains recordings of 12 vowels (/i, i, e, , ,  a, o, u, u, #, 
e, o/) produced in isolated /h-V-d/ syllables by 45 men, 48 
women, and 46 children. Various acoustic measurements 
were made for each token in the database, including vowel 
duration, vowel steady-state times,3 formant tracks, and fun­
damental frequency tracks.

To obtain the formant tracks, candidate formant peaks 
were first extracted from the speech data by means of a 14th- 
order LPC analysis. These values were subsequently edited 
by trained speech scientists. The formant tracks were only 
hand-edited between the start and end times of the vowels,
i.e., the formants corresponding to the leading /h/ and trailing 
/d/ of the /h-V-d/ syllables were not manually labeled. Only 
the formant tracks corresponding to the vowel sections of the 
/h-V-d/ sections were therefore used in the classification ex­
periments described in Sec. III.

Where irresolvable formant mergers occurred, Hillen­
brand et al. put zeros into the higher of the two formant slots 
affected by the merger. In order to use the vowels containing 
mergers for our classification experiments, we replaced the 
zeros by the frequency value in the lower formant slot, i.e., 
two equal values were used. Irresolvable mergers occurred in 
about 4% of the vowel tokens.

In the Hillenbrand study, F1, F2, and F3 were measured 
for all the signals. F4 tracks were only measured if they were 
clearly visible in the peaks of the LPC spectrum. In 15.6% of 
the utterances, F4 could not be measured. For the purpose of 
the current investigation, we therefore decided to limit the 
scope of the hand-labeled formant feature set to the first three 
formants. In addition, we decided to use an equal number of 
male and female utterances and not to use the children’s data. 
The latter decision was made because it could not be guar­
anteed that the two automatic formant extractors could 
handle children’s speech appropriately.

The mean values that were measured for the first three 
male and female formants were all well below 4 kHz (Hill­
enbrand et al, 1995). We therefore decided to downsample 
the original 16 kHz speech data to 8 kHz. Furthermore, the

acoustic analyses in our experiments adhered to the same 
time resolution used by Hillenbrand et al. Specifically, all 
analyses used a frame rate of one frame per 8 ms. This al­
lows a frame-to-frame comparison of the hand-labeled for­
mants with the formant-like features generated by the two 
automatic extraction techniques. Finally, in keeping with 
what has become standard practice in ASR, the formant fre­
quencies were mel-scaled before they were used in the clas­
sification experiments4 (Davis and Mermelstein, 1980; 
Rabiner and Juang, 1993).

B. Robust formant algorithm

The robust formant (RF) algorithm was initially de­
signed for speech coding and synthesis applications 
(Willems, 1986). The algorithm uses the split Levinson algo­
rithm (SLA) to determine a fixed number of spectral maxima 
for each speech frame (Delsarte and Genin, 1986). Instead of 
directly applying a root solving procedure to the LPC poly­
nomial, a so-called singular predictor polynomial is con­
structed from which the zeros are determined in an iterative 
procedure. The iterative procedure guarantees that the num­
ber of complex conjugate pairs of zeros is always equal to 
half the LPC order, provided that the order is even. Thus, the 
algorithm will always return the same number of parameters. 
Moreover, since the procedure tends to spread the zeros 
evenly on the unit circle, it enforces a large degree of conti­
nuity in the parameter tracks (as a function of time). After the 
frequency positions of the RF features have been established, 
their corresponding bandwidths are chosen from a predefined 
table such that the resulting all-pole filter minimizes the error 
between the predicted data and the input.

A potential disadvantage of the SLA is that it cannot 
handle formant mergers in a way that resembles the proce­
dure used in Hillenbrand et al. (1995). Because of the ten­
dency of the SLA to distribute poles uniformly along the unit 
circle, formant mergers are likely to result in one or two 
“resonances” that are shifted away (in frequency) from the 
true resonances of the vocal tract.

As was mentioned in the previous section, the scope of 
this study is limited to the frequency range between 0 and 4 
kHz and to the values of the first three formants. However, in 
the AEV database the mean value (taken over all the relevant 
data) of F4 is 3.536 kHz (o=  135.5) for males and 4.159 kHz 
(o =  174.7) for females. This implies that, for some of the 
vowels produced by male speakers, the frequency band be­
tween 0 and 4 kHz may contain four vocal tract resonances 
instead of three. An automatic formant extraction procedure 
applied to the AEV data should therefore be able to deal with 
a potential discrepancy between the true number of formants 
in the signal and the requirement that only the first three 
formants must be returned. For the RF extractor, the simplest 
way to cope with this requirement is to use a sixth-order LPC 
analysis.5 However, the accuracy of the LPC analysis is 
bound to suffer if a sixth-order analysis is used to analyze 
spectra with four maxima, because two complex poles are 
usually required to model each spectral peak (Stevens, 
1998). In these cases an eighth-order LPC seems more ap­
propriate, although it introduces the need to select three RFs 
from the set of four.
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TABLE I. Mean Mahalanobis distance between the hand-labeled formants
and the RF features.

Gender RF3 3RF4

Male 3.5 2.1
Female 1.6 5.3
All 1.9 3.0

Given these constraints, there are a number of possible 
choices that can be made concerning the calculation of the 
RFs. We considered two of these: (1) calculate three RF fea­
tures per frame (RF3); (2) calculate four RF features per 
frame and use only the first three (3RF4). These two sets of 
RF features were calculated every 8 ms over 16 ms Ham­
ming windowed segments. We subsequently calculated the 
Mahalanobis distance between the hand-labeled formants 
(HLFs) and the RF3 and 3RF4 features, respectively. The 
Mahalanobis distance between two distributions is defined as 
(Duda et a l, 2001):

i2 = ( x - ^ ) t2  -  1 ( x - ^ ) .  (1)

The mean Mahalanobis distance (across all vowels) be­
tween the HLFs and the two sets of robust formants are 
given in Table I. The results in Table I show that the RF 
features are closer to the HLFs if the order of the analysis 
corresponds to the inherent signal structure. If there is a mis­
match between the number of spectral peaks the algorithm 
tries to model and the number of spectral maxima that actu­
ally occur in the data, the distance between the RFs and 
HLFs increases. In the rest of this paper we will present 
results for both gender-dependent and gender-independent 
data sets. Because the RF3 features yielded the smallest Ma­
halanobis distance for the mixed data set, these will be used 
in the gender-independent experiments. In the gender- 
dependent experiments, the RF3 and 3RF4 features will be 
used for the female and male data, respectively.

C. The HMM2 feature extractor

HMM2 is a special mixture of hidden Markov models 
(HMMs), in which the emission probabilities of a conven­
tional, temporal HMM are estimated by a secondary HMM 
(Weber et al., 2001b). As shown in Fig. 1, one secondary

Time vector

FIG. 1. Left panel: Schematic representation o f an HMM2 system in the 
time/frequency plane. The left-righ t model is the temporal HMM with a 
top -dow n  frequency HMM in each o f  its states. Right panel: Example o f a 
temporal ‘‘FF’’ vector (left) as emitted by a frequency HMM. Each o f  the 
squares in this feature vector corresponds to a four-dimensional subvector. 
Gray arrows indicate the frequency positions at which transitions between 
the different frequency HMM states took place. The corresponding indices 
form an HMM2 feature vector (right).

HMM is associated with each state of the temporal HMM. 
While the conventional HMM works along the temporal di­
mension of speech and emits a time sequence of feature vec­
tors, the secondary HMM works along the frequency dimen­
sion, and emits a frequency sequence of feature vectors, 
provided that features in the spectral domain are used.

In fact, each temporal feature vector can be seen as a 
sequence of subvectors. The subvectors are typically low­
dimensional feature vectors, consisting of, for example, a 
coefficient, its first- and second-order time derivatives, and 
an additional frequency index (Weber et al, 2001c). If such a 
temporal feature vector is to be emitted by a specific tempo­
ral HMM state, the associated sequence of frequency subvec­
tors is emitted by the secondary HMM associated with the 
corresponding temporal HMM state. Therefore, the second­
ary HMMs (in the following also called frequency HMMs) 
are used to estimate the temporal HMM state likelihoods. In 
turn, the frequency HMM state likelihoods are estimated by 
Gaussian mixture models (GMMs). As a consequence, 
HMM2 can be seen as a generalization of conventional 
HMMs, where higher dimensional GMMs are directly used 
for state emission probability estimation.

Frequency filtered filterbanks (FFs) (Nadeu, 1999) are 
typically used as features for HMM2, because they are com­
paratively decorrelated in the spectral domain. In certain 
ASR tasks, the baseline performance of the FF coefficients 
has been shown to be comparable to that of other widely 
used state-of-the-art features such as MFCCs (Nadeu, 1999). 
For the HMM2 systems that were used in this study, a se­
quence of 12 FF coefficients was calculated every 8 ms. 
While a larger number of FF coefficients could possibly be 
advantageous, this number was chosen in order to make the 
number of features used for HMM2 comparable to that con­
ventionally used in HMMs. Together with their first- and 
second-order time derivatives plus an additional frequency 
index, these FF coefficients form a sequence of 12 four­
dimensional subvectors. Each square in the vector labeled 
‘‘FF feature vector’’ in Fig. 1 therefore represents a four­
dimensional subvector.

Speech recognition with HMM2 can be done with the 
Viterbi algorithm, delivering (as a by-product) the segmenta­
tion of the signal in time as well as in frequency. The fre­
quency segmentation of one temporal feature vector reflects 
its partitioning into frequency bands of similar energy. Sup­
posing that certain frequency HMM states model frequency 
bands with high energy (i.e., formant-like regions) and others 
those bands with low energies, the Viterbi frequency seg­
mentation could be interpreted as an alternative way to rep­
resent formant-like structures.

For each temporal feature vector, we determined from 
the Viterbi segmentation at which point in frequency (i.e., 
between which subvectors) a transition from one frequency 
HMM state to the next took place. For example, in Fig. 1 the 
first HMM2 feature vector coefficient is 3, indicating that the 
transition from the first to the second frequency HMM state 
occurred before the third subvector. In the case of four fre­
quency HMM states connected in a top-down topology (as
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seen in Fig. 1), we therefore obtain three integer indices (cor­
responding to precise frequency values). In our classification 
experiments, these indices were used as three-dimensional 
feature vectors in a conventional HMM.

HMM2 design options

The design of an HMM2 system can vary substantially, 
depending, for example, on the task and on the data to 
model. There are a number of design options which deter­
mine the performance of an HMM2 system. These include 
issues like model topology (which needs to be considered 
both in the time and the frequency dimension), the addition 
of frequency indices, different initialization possibilities, as 
well as different (combinations of) segmentation strategies 
that can be applied for training and test purposes. These 
design options are discussed in detail in Weber (2003).

The models that were used to obtain the results reported 
on in Sec. III all had a three-state, left-right topology in the 
time domain and a four-state top-down topology in the fre­
quency domain. Frequency indices were included as addi­
tional feature components in the frequency subvectors. The 
initialization of the gender-independent HMM2 models was 
based on the assumption of alternating high and low energy 
frequency HMM states. The gender-dependent models were 
initialized according to the hand-labeled formant frequen­
cies’ segmentation. The HMM2 features that were used for 
training were obtained by means of forced alignment while 
those that were used for testing were obtained from a free 
recognition. Training and testing were done with HTK 
(Young et al, 1997) and the HMM2 systems were realized 
as a large, unfolded HMM, which is possible when introduc­
ing synchronization constraints (Weber et al., 2001b).

Finally, it should be pointed out that results from a pre­
vious study have shown that adding first-order time deriva­
tives does not improve the classification performance of 
HMM2 features on the AEV database (Weber et al., 2002). 
In that study, it was argued that this result can be attributed 
to the nature of the AEV data, exhibiting only very few spec­
tral changes (see Sec. IIIA 2 for a graphical illustration), in 
conjunction with the very crude nature of the HMM2 fea­
tures. Often, the frequency segmentation of one phoneme 
would be the same for all time steps, resulting in zero-valued 
time derivatives. In other cases, oscillations between two 
neighboring segmentations were observed, which gave 
equally meaningless derivatives.

III. EXPERIMENTS AND RESULTS

In the following, the design, execution, and results of the 
vowel classification experiments are described. In Sec. III A, 
the first question posed in Sec. I is addressed, i.e., to what 
extent the features yielded by the two automatic formant 
extractors resemble the hand-labeled formants in the AEV 
database. The design of the classification experiments is sub­
sequently described in Sec. IIIB. Section IIIC reports on the 
Linear Discriminant Analysis (LDA) classification results. 
The LDA experiments enable us to relate our results to those 
reported in Hillenbrand et al . (1995). The results of the 
HMM classification experiments are presented in Sec. IIID.

TABLE II. Mean Mahalanobis distance between the hand-labeled formants,
RFs and HMM2 features.

Gender RF HMM2

Male 2.1 8.0
Female 1.6 9.1
All 1.9 5.6

The HMM experiments were conducted in order to deter­
mine whether the classification performance of hand-labeled 
formants with LDA generalizes to the classification perfor­
mance obtained with the maximum likelihood (ML) proce­
dures that are dominant in the ASR community. Finally, Sec. 
IIIE reports on the classification performance of the auto­
matically extracted formant-like features in (simulated) noisy 
acoustic conditions.

A. How formant-like are RFs and HMM2 features?

There are no generally accepted procedures to assess the 
degree to which formant-like features resemble true for­
mants. In this study we approached the problem in two 
complementary ways: by means of a formal distance mea­
sure that captures the goodness-of-fit in a single measure, 
and by means of a graphical illustration of the physical na­
ture of the differences that underlie the summary measures.
1. Statistical distance

The Mahalanobis distance was introduced in Sec. II B as 
a means to select the RF feature sets that were closest to their 
hand-labeled counterparts, in terms of statistical distance. 
The minimum values from Table I are repeated in Table II, 
together with the mean Mahalanobis distances between the 
HLFs and the HMM2 features. The values in Table II clearly 
indicate that, in terms of statistical distance, the RFs are 
more similar to the HLFs than the HMM2 features.

2. Graphical illustration
Some of the issues involved in comparing HLFs, RFs, 

and HMM2 features can be illustrated by means of a typical 
example, in the form of a representative token of the vowel 
/?•/. Figure 2 shows the HLF tracks corresponding to a fe­
male pronunciation of the vowel overlaid on a spectrogram 
representing the frequency range between 0 and 4000 Hz. 

The same example was used to create the graphs in Fig.
3. In each of the subplots in Fig. 3, the y  axis corresponds to 
frequency index, the x  axis to time, and darker shades of gray 
to higher intensity levels. Figure 3(a) shows the same HLFs 
as in Fig. 2, but overlaid on the mel-weighted log-energy 
within each frame. The mel-scaled filterbank that was used to 
obtain the energy values consisted of 14 filters that were 
linearly spaced in the mel frequency domain between 0 and

—  4000NIc
30000

1 2000
cr
l£  1000

100 200 T im e  [ms]

FIG. 2. HLF tracks corresponding to a female pronunciation o f the vowel
/»/.
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FIG. 3. Feature tracks corresponding to a female pro­
nunciation of the vowel /^/: (a) HLFs overlaid on the 
mel-scaled log-energy of each frame, (b) the same 
HLFs on the corresponding FF features; (c) RFs on the 
mel-scaled log-energy of each frame, and (d) HMM2 
feature tracks on FF features.

2146 mel (corresponding to the frequency range between 0 
and 4000 Hz, as in Fig. 2). Figure 3(b) shows the HLFs 
overlaid on 12 FF features, which were derived form the 14 
filterbank values, and which were used to train the HMM2 
feature extractor. It can be seen that, while the HLFs follow 
spectral maxima in the filterbank domain, they are positioned 
at the transitions from low to high intensity regions in the FF 
domain. Figure 3(c) shows the tracks of the RF features 
overlaid on the mel-scaled filterbank features, while Fig. 3(d) 
shows the HMM2 feature tracks overlaid on FF features.

The data in Fig. 3 show that the RF feature tracks are 
fairly similar to the HLFs. Most importantly, there are no 
obvious examples of missing formants or wrong labels. The 
RF features exhibit more frame-to-frame variation than their 
hand-labeled counterparts. In this example, the LPC spec­
trum of the vowel contained multiple peaks in the F2-F3 
region, while the human labelers consistently preferred a 
peak at a lower frequency than the RF procedure. We have 
not been able to verify whether this type of frame-to-frame 
variation is related to those parts of the vowels in which the 
human labelers found it most difficult to find the “correct” 
spectral peaks. It is also not clear whether this variation has 
affected the classification performance of the RF features, 
relative to the more smooth HLF features. During normal 
human speech the articulators move relatively slowly. The 
smooth HLF feature tracks therefore seem to be more plau­
sible than the slightly more ‘‘noisy’’ RF features. The short­
term variations in the RF features are the result of the at­
tempt of the low-order LPC analysis to account for the 
spectral envelope in the original acoustic signal, which is not 
only determined by the vocal tract resonances, but also by 
the excitation. For the RF extractor to yield feature tracks as 
smooth as the HLF an additional smoother would have to be 
applied to the raw RF values.

The HMM2 features are very crude and do not resemble 
either the HLF or the RF tracks. The crudeness is due to the 
fact that the HMM2 features are derived from 12 FF features, 
instead of spectral envelopes sampled at multiple equidistant 
frequencies. However, the feature tracks in Fig. 3(d) indicate 
that, for the example utterance illustrated in the figure, the 
HMM2 method succeeded in separating high from low in­

tensity regions in the FF domain. While the first and third 
HMM2 feature tracks are roughly situated near formant po­
sitions (corresponding to the transition between low and high 
intensity in the FF domain, and to spectral peaks in the spec­
trogram), the HMM2 track in the middle can be supposed to 
correspond to a spectral valley. General trends present in the 
signal (such as the upward tendency for the highest formant 
at the end of the vowel) are also reflected by the HMM2 
tracks.

For other data examples, unexpected transitions and os­
cillations of the HMM2 feature tracks were also observed. 
These effects are explained in more detail in Weber (2003). 
However, for most examples, one or two HMM2 feature 
tracks correspond to a certain degree (given their low accu­
racy, which is limited by the low frequency resolution of the 
FF features) to the HLFs, while another one frequently cor­
responds to a spectral valley.

B. Experimental setup

Given the fact that the AEV database is quite small, a 
three-fold cross-validation was used for the classification ex­
periments. The classifiers (LDA and HMM) were trained on 
two subsets of the data, and tested on the third one. Thus, 
each experiment consisted of a number of independent tests. 
Moreover, all tests were performed in two conditions, 
gender-independent and gender-dependent. The gender- 
independent data sets were defined as three nonoverlapping 
train/test sets, each containing the vowel data of 60(train)/ 
30(test) speakers, with an equal number of males and fe­
males in each set. For the gender-dependent data, three inde­
pendent train/test sets were defined for males and females 
separately. Each train/test set consisted of 30(train)/15(test) 
speakers. For the gender-independent data sets, the classifi­
cation results reported in the following correspond to the 
mean value of the three independent tests. The gender- 
dependent results were obtained by averaging the classifica­
tion results of six independent experiments (three male and 
three female).

Five different feature sets were used to conduct the 
vowel classification experiments, i.e., hand-labeled formants
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TABLE III. LDA classification results (% correct): gender-independent data.

Feature type stst 20%80% 20%stst80%

Hillenbrand
HLF
RF
HMM2
MFCC12
MFCC-LDA3

81.0 
77.0 (±2.5) 

63.4 
31.7 
73.1 
67.3

91.6 
91.4 (±1.7)

81.8
48.7 
90.5 
88.3

91.8 
91.9 (±1.

83.0
52.2
91.2
90.1

(HLFs), robust formants (RFs), HMM2 features, and two 
sets of mel-frequency cepstral coefficients (MFCCs). The 
MFCCs were included as an example of acoustic features 
that are commonly used in ASR applications. MFCCs de­
scribe the spectral envelope in a small number of orthogonal 
coefficients (Davis and Mermelstein, 1980; Rabiner and 
Juang, 1993). Usually, 10 to 15 MFCCs are needed to obtain 
a sufficiently accurate description of the spectrum. The first 
set of MFCCs that was used in this study, MFCC12, con­
sisted of 12 MFCCs ( c j ... c 12) .6 However, the MFCC12 fea­
ture set contains four times as many coefficients as the HLF, 
RF, and HMM2 representations. We therefore decided to cre­
ate a three-dimensional MFCC set, MFCC-LDA3, by pro­
jecting the twelve-dimensional MFCCs into a three­
dimensional feature space. In order to accomplish the 
transformation, an appropriate transformation matrix was de­
rived from the relevant training data by means of LDA.

C. LDA classification results

This section reports on an experiment that compares the 
performance of RFs, HMM2, and MFCC features to the per­
formance of HLF features on a task that is very similar to the 
one described in Hillenbrand et al. (1995). In contrast with 
the original study, we used an LDA [instead of quadratic 
discriminant analysis (QDA)], we included all vowels,7 and 
we used only the adult speakers’ data. To maintain the 
equivalence between the LDA experiments described here 
and the corresponding experiments with HMMs that are de­
scribed in Sec. IIID, we used the three-fold cross-validation 
scheme described in Sec. IIIB for training and testing (in­
stead of a leave-1-out jackknifing procedure). As in Hillen- 
brand’s study, we investigated classification performance for 
a single set of formant values determined in the vowel steady 
state (stst), pairs of formant values measured at 20% and 
80% of the vowel duration (20%80%), and triplets in which 
the steady state value was added to the values at 20% and 
80% of the vowel duration (20%stst80%).

The classification rates obtained for the gender- 
independent data are given in Table III and those for the 
gender-dependent data in Table IV. Table III also contains

TABLE IV. LDA classification results (% correct): gender-dependent data.

Feature type stst 20%80% 20%stst80%

HLF
RF
HMM2
MFCC12
MFCC-LDA3

79.4 (±2.4) 
76.1 
48.5 
81.7 
73.9

93.6 (±1.5)
91.2 
60.1 
94.5
92.3

93.8 (±1.4) 
92.0 
63.8 
94.2 
93.5

the results from the QDA experiments reported in Hillen­
brand et al. (1995). The results show that our results for the 
HLF features, obtained with a simpler discriminant analysis 
technique, are very close to Hillenbrand’s results. Human 
classification for the same data (based on the complete /h- 
V-d/ utterances) was 95.4% correct (Hillenbrand et al., 
1995). The results in Tables III and IV indicate that the 
vowel classes can be separated reasonably well (in compari­
son with human performance) by the steady state values of 
their first three formants. Information about patterns of spec­
tral change clearly enhances the distinction between classes.

As our goal was to compare the performance of the HLF 
features with that of the other features, the 95% confidence 
intervals corresponding to the HLF results are indicated in 
parentheses. The values in Tables III and IV show that, with 
the exception of the MFCC12 features, the HLF features 
outperform all the other features in terms of vowel classifi­
cation rate. The difference between HLF and the other results 
is much larger for the gender-independent experiments than 
for the gender-dependent experiments. This difference is es­
pecially evident for the RF features: for the gender- 
independent experiments the HLF features outperform the 
RF features by more than 10% (absolute), whereas the cor­
responding difference for the gender-dependent experiments 
is less than 3% (absolute).

The data in Tables III and IV also show that the classi­
fication performance of the HMM2 features is substantially 
lower than the results obtained for the other feature sets. This 
observation indicates that the vowel classes are not linearly 
separable given these features at just one, two, or three dif­
ferent instances in time. While the HMM2 features at any 
given moment may not be sufficient to discriminate between 
the vowel classes, the additional information required to do 
so may be provided by a complete temporal sequence of 
HMM2 features. This presupposition will be investigated in 
the following section within the framework of HMM recog­
nition.

The MFCC12 features achieve classification rates that 
compare very well with those of the HLF features. Although 
they perform slightly better than the HLF features in the 
gender-dependent experiments, this difference is not signifi­
cant. This result indicates that, for the current vowel classi­
fication task, three HLF features and 12 MFCCs are equally 
able to discriminate between the vowel classes. The three­
dimensional MFCCs outperform both the RFs and the 
HMM2 features and their classification performance is only 
slightly inferior to the classification rate achieved by the 
MFCC12 features.

D. HMM classification rates on clean data

The classification rates in Tables III and IV were ob­
tained by means of a LDA. In discriminative training algo­
rithms such as LDA, the aim of the optimization function is 
to achieve maximum class separability by finding optimal 
decision surfaces between the data of the different classes. 
However, the recognition engines of most state-of-the-art 
ASR systems are trained using a ML optimization criterion. 
The training algorithms therefore learn the distribution of the 
data without paying particular attention to the boundaries
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TABLE V. HMM classification results (% correct) for gender-independent
and gender-dependent data.

Feature type Gender-independent Gender-dependent Feature dimension

HLF 87.7 (±2) 89.6 (±1.8) 6
RF 84.1 90.5 6
HMM2 77.0 87.2 3
MFCC13 92.3 92.1 26
MFCC-LDA3 79.9 81.6 6

between the different data classes. Although discriminative 
training procedures have been developed for ASR, they are 
not as commonly used as their more straightforward ML 
counterparts (e.g., Juang et al., 1996). The LDA classifica­
tion described in Sec. IIIC also required a time-domain seg­
mentation of the data. In real-world applications this kind of 
information will not be available. The aim of the next experi­
ment is therefore to evaluate the classification performance 
of the different feature sets using HMMs that were derived 
by means of ML training.

Toward this aim, we compared the vowel classification 
rates achieved by the five feature sets used in the LDA ex­
periments. With the exception of the HMM2 features, the 
first-order time derivatives of all the features were also in­
cluded in the acoustic feature vectors. Since in mainstream 
ASR it is usual to add overall energy to MFCC features, we 
extended the MFCC12 vectors to MFCC13 by adding c0. 
The resulting feature vector dimensions for the HLF, RF, 
HMM2, MFCC13, and MFCC-LDA3 features were there­
fore 6, 6, 3, 26, and 6.

Classification experiments were conducted using both 
the gender-independent and the gender-dependent data sets 
defined in Sec. III B. For each of the vowels in the AEV 
database and for each acoustic feature/data set combination, 
a three state HMM was trained. The EM algorithm imple­
mented in HTK was used for the ML training (Young et al., 
1997). Each HMM state consisted of a mixture of ten con­
tinuous density Gaussian distributions. The results of the 
classification experiments are shown in Table V. Once again, 
the 95% confidence intervals corresponding to the HLF re­
sults are indicated in parentheses. The values in the last col­
umn of Table V correspond to the dimensions of the different 
feature sets.

According to the results in Table V, the HLF features 
consistently achieved classification rates of almost 90% cor­
rect. Even though these values are significantly lower than 
those measured in the LDA experiments, they do indicate 
that, in principle, the HLF features are suitable to be used as 
features in combination with state-of-the-art ASR methods, 
i.e., using HMMs, ML training, and Viterbi classification.

A remarkable difference between the LDA and HMM 
experiments is the excellent classification rate achieved by 
the HMM2 features: these features perform much better in 
combination with HMMs than with LDA. Table V shows 
that, for the gender-dependent data, the HMM2 features not 
only outperform the MFCC-LDA3s but also approximate the 
performance of the HLF and RF features, in spite of their 
lower feature dimensionality.

The data in Table V also show that, for the current vowel

classification task, HLF features compare very well with 
MFCCs. Although the MFCC13 features outperform their 
HLF counterparts on both gender-independent and gender- 
dependent data, this is at the price of a much higher feature 
dimensionality. MFCCs with the same dimension (MFCC- 
LDA3) perform significantly worse than both MFCC13 and 
HLF. In contrast to what was observed for the LDA experi­
ments, the RFs and HMM2 features also perform much bet­
ter in comparison with the MFCC-LDA3 features.

A comparison between the gender-independent and 
gender-dependent results shows that, in general, the gender- 
dependent systems work better, even in the case of HLF 
features. This observation is in good agreement with the re­
sults of the LDA experiments. Another similarity between 
the HMM and LDA results is the fact that the classification 
performance of the automatically extracted formant-like fea­
tures are especially gender-dependent. Although not to the 
same extent as the formant-like features, the performance of 
the MFCC-LDA3 features is also enhanced by using gender- 
specific modeling. Only the performance of the MFCC13 
features seems to be insensitive to gender differences. The 
MFCC13 features are probably less sensitive to the gender- 
dependent properties of the data because, in addition to in­
formation on the formants, they also contain information 
about spectral level and general spectral shape.

E. HMM classification rates on noisy data

In this experiment, the models trained on the MFCC13, 
RF, and HMM2 features that were used for the experiments 
described in Sec. IIID, were tested in noise. The HLF fea­
tures could not be included in this experiment, because it was 
not possible to obtain hand-labeled formants for the noisy 
data. The models were trained on clean data only and noisy 
acoustic conditions were simulated by artificially adding 
babble and factory noise to the test data at SNRs of 18, 12, 6, 
and 0 dB. The babble and factory noise were both taken from 
the Noisex CD (Noisex, 1990). The Noisex babble noise 
contains speech from many different people speaking simul­
taneously and individual speakers and utterances cannot be 
discerned from the hubbub. As a result, the signal power is 
fairly constant and the long-term spectrum is quite flat. The 
long-term spectrum of the Noisex factory noise also does not 
exhibit any significant peaks. However, the factory noise is 
not stationary; it contains a number of hammer blows and 
other noise bursts.

Figure 4 gives an overview of the classification perfor­
mance of gender-dependent models tested in noise. Classifi­
cation rate is shown as a function of SNR for both babble 
and factory noise. Similar, but slightly inferior, results were 
obtained for the gender-independent models. (These results 
are not shown here.)

In Sec. I it was argued that, in the presence of additive 
noise, the lower energy regions in speech spectra will tend to 
be masked by the noise energy, but that the formant regions 
(spectral maxima) may stay above the noise level, even if the 
average signal-to-noise ratio becomes zero or negative. This 
line of reasoning gave rise to the hypothesis that a represen­
tation in terms of formants or formant-like features should be 
comparatively robust against additive noise. However, the

1788 J. Acoust. Soc. Am., Vol. 116, No. 3, September 2004 de Wet et al.: Formant-like features for vowel classification



FIG. 4. Average classification rates (% correct) for 
gender-dependent models trained on clean MFCC13 
(+), RF (*), and HMM2 (O) features and tested in 
babble (left panel) and factory (right panel) noise. The 
corresponding feature vector dimensions are 26 
(MFCC13), 6 (RF), and 3 (HMM2).

results in Fig. 4 do not support this hypothesis. In fact, the 
figure shows that the recognition performance of all three 
systems deteriorates in noise. While the performance of the 
different features is comparable at SNRs of 18 dB and 
higher, at lower SNRs the performance degradation of the 
MFCC13 features seems less severe than that of the formant- 
related features. To a certain extent, this result may be ex­
plained by the fact that the MFCC13 system has a total of 26 
feature components at its disposal, while the dimensionality 
of the RF and HMM2 systems is restricted to 6 and 3, re­
spectively. The higher-order MFCCs—which may contain 
redundant information in clean conditions—seem to be better 
at maintaining system performance in adverse acoustic con­
ditions. However, no analysis was done to determine to what 
extent the errors made when using the different features are 
complementary. It was also not investigated whether classi­
fication performance could be improved by using a combi­
nation of different feature streams.

For all three systems the drop in recognition rate is more 
severe in factory noise than in babble noise. Factory noise 
also seems to affect the RF features more than HMM2. The 
type of performance degradation shown in Fig. 4 is equiva­
lent to results obtained for other databases in comparable 
simulations of noisy conditions (e.g., de Wet et a l, 2000).

In principle, the argument that spectral maxima may stay 
above the noise level seems to be plausible. However, the RF 
features (which are supposed to model spectral maxima of an 
all-pole signal) clearly fail in noisy acoustic conditions. This 
observation suggests that the RF algorithm is ‘‘misled’’ by 
the added noise, such that it is no longer capable to find the 
spectral maxima that correspond to the formants. The noisier 
the signal, the more the all-pole character of the speech sig­
nal disappears. Consequently, the fixed order all-pole model 
of the RF-algorithm is no longer able to estimate the param­
eters of the underlying speech production system, and the 
RF-extractor is turned into a parametric estimator of the 
peaks in a spectral envelope, the details of which are increas­
ingly determined by the noise.

The failure of the HMM2 system at low SNRs may be 
explained as follows: for heavily degraded speech, the num­

ber of recognition errors made by the HMM recognizer em­
bedded in the feature extractor is bound to increase. As a 
result, the corresponding HMM2 features will be calculated 
by the ‘‘wrong’’ HMM2 feature extractor, i.e., the HMM2 
model corresponding to the wrong phoneme will give the 
best likelihood score and will therefore be chosen for feature 
extraction. Recognition errors made by the HMM2 feature 
extractor and the conventional HMM recognizer (which uses 
the erroneous HMM2 features) accumulate, which will forc­
ibly lead to severe degradations at low SNRs.

IV. DISCUSSION

One of the aims of this study was to investigate the 
degree to which RFs and HMM2 features resemble true for­
mants. The statistical distances and graphical illustrations 
provided in Sec. IIIA showed that, of the two automatically 
extracted formant-like feature sets, the RFs are more similar 
to the HLFs than the HMM2 features. In fact, the automati­
cally extracted RF features resembled the HLF features quite 
closely, provided that the RF algorithm was given prior in­
formation about the gender of the speaker. This information 
helps the RF algorithm to avoid one of the most important 
errors in automatic formant assignment, i.e., labeling spuri­
ous peaks as formants, with the results that all higher-order 
formants in the frame are labeled incorrectly.

Although HMM2 can, in principle, be used as an esti­
mator of true formants, the implementation of HMM2 that 
was used in this study is not a formant extractor in the clas­
sical sense. Because the HMM2 features were derived from a 
12-parameter frequency filtered filterbank, they are inher­
ently very coarse. However, the coarse quantization of the 
HMM2 features is not an intrinsic limitation of this approach 
to the representation of spectral envelopes. Rather, it is one 
of the implications of the way in which the current version of 
HMM2 has been implemented. Other implementations, 
which use filters with much narrower pass bands than the 14 
critical band filters used in this study, should be investigated.

In our comparison of the performance of true formants, 
RFs, and HMM2 features on a vowel classification task, the
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following observations were made. For the gender-dependent 
data the overall classification performance obtained for the 
20%stst80% condition with LDA is better than the results of 
the HMM classifiers. For the gender-independent data the 
difference is not equally clear. Apparently, removing the 
overlap between different vowels from males and females 
helps the LDA to find an optimal class separation. The ML 
classifier implemented by the HMMs seems to be less pow­
erful in this regard.

The most salient difference between the LDA and HMM 
results concerns the classification rates that were obtained for 
the HMM2 features. While the HMM2 results for the HMM 
classifier are comparable with the corresponding HLF re­
sults, the LDA classifier does not seem to be able to distin­
guish between the vowel classes if it is trained on HMM2 
features. This result indicates that it is not possible to distin­
guish between the vowel classes in the coarsely quantized 
HMM2 feature space when only a few points (in time) are 
taken into consideration. Due to the coarseness of the 
HMM2 features, HMM2 feature tracks may change rather 
abruptly at any point in time. For example, an abrupt change 
may occur before the 20% duration point for some pronun­
ciations of a certain phoneme and after the 20% duration 
point for other pronunciations of the same phoneme. The 
LDA classifier does not seem to be able to deal with these 
differences. The HMM classifier, on the other hand, is able to 
handle these changes in the data because it classifies vowels 
in terms of a complete temporal sequence of HMM2 fea­
tures.

In both the LDA and the HMM classification experi­
ments, the classification rates measured for the gender- 
dependent data sets were higher than the corresponding re­
sults for the gender-independent data sets. Classification 
performance is determined by two factors, i.e., the degree of 
estimation noise in the features and the overlap between the 
vowels in the feature space. The observation that the auto­
matically extracted formant-like features generally yielded 
much better results for the gender-dependent data sets may 
be explained by the fact that the vowel classes are better 
separated in a gender-dependent feature space. However, the 
RF and HMM2 features clearly benefit more from the gender 
separation than the HLF and MFCC features. This suggests 
that, for the RF and HMM2 features, the gender separation 
also achieved a certain degree of reduction in estimation 
noise in the features themselves.

The classification experiments also showed that the dif­
ference between the gender-dependent and gender- 
independent results was much smaller for the HLF features 
than for the other feature representations. This observation 
can probably be explained by the fact that the human labelers 
knew the gender of the speakers. The labelers also knew the 
identity of the tokens while they were assigning the formant 
labels. This gives the HLF features another advantage over 
the automatically derived features: these either rely on im­
perfect classification results (in the case of HMM2) or have 
no knowledge about the token for which feature extraction is 
attempted (in the case of the RF features). However, a com­
parison of the results obtained with HLF and gender- 
dependent RF features suggests that, for the vowel classifi­

cation task investigated in this study, the advantage of expert 
knowledge is rather small when the gender of the speakers is 
taken into account by the automatic feature extraction proce­
dures. This observation may not generalize to other data­
bases. Especially in fluent, continuous speech the phonetic 
context of the vowels will be richer and have a bigger impact 
on the spectral envelopes. After all, the /h-V-d/ context was 
chosen to minimize coarticulation effects, which will be es­
pecially cumbersome for automatic (and manual) formant 
extraction, e.g., in the case of nasal consonants.

A comparison of the classification performance of HLFs 
and RFs for the LDA and HMM experiments, and of HLFs 
and HMM2 features for the HMM experiments, suggests that 
features that are directly related to vocal tract resonances 
have very few advantages over formant-like features, as long 
as the measurement errors in the different feature types are 
comparable. Especially the results obtained with the HMM2 
features, which definitely do not represent formants in the 
sense of vocal tract resonances, suggest that consistency (in­
cluding smoothness of the feature tracks over time) is more 
important than the relation to the underlying, physical speech 
production process. This result suggests that the formant ex­
traction technique that was recently proposed in Bazzi et al. 
(2003), which guarantees a fixed number of formant values 
for each frame as well as smooth feature tracks over time, 
would be a viable candidate to deliver formant-like features 
that can be used in ASR.

Finally, the results in Sec. IIIE show that the formant­
like features that were investigated in this study are not in­
herently robust against additive noise. Neither the RFs nor 
the HMM2 features were able to keep track of the spectral 
maxima that should remain intact in noisy speech data. For 
the use of formants in ASR the message appears to be that 
the theoretical advantages of the formant representation are 
neutralized by the enormous difficulty of building a reliable 
automatic formant extractor, especially one that is also able 
to process noisy speech. The theoretical advantages of the 
formant concept for processing noisy speech can only be 
harnessed by signal processing techniques that take full 
profit of continuity and coherence in the signals, both in time 
and in frequency.

The relative success of adding formant candidates to 
MFCC parameters in the work of Holmes et al. (1997) sug­
gests that a feasible alternative would be to address formant 
extraction and ASR simultaneously. Hypotheses about for­
mant values should be conditioned by phone observation 
probabilities, because knowledge of the recognized sound is 
a powerful knowledge source to guide the classification of 
spectral peaks as formants. At the same time, an interpreta­
tion of the signal in terms of sounds and words that makes 
sense against the background of formant candidates should 
result in more accurate ASR than one that does not. This 
suggests that, for a formant representation to have its maxi­
mum impact on ASR, it is not just the signal processing and 
feature extraction that must be advanced. Major advances in 
the search and decision processes that eventually link fea­
tures to words, meanings, and intentions are also required.
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V. CONCLUSIONS

In this paper, a number of issues related to the use and 
usefulness of the formant concept in ASR were investigated. 
Because there are no databases available that contain enough 
true formant data to train ASR systems, we focused on the 
AEV database introduced in Hillenbrand et al. (1995).

The first conclusion that can be drawn from our data is 
that, of the two automatic formant extraction techniques un­
der investigation, robust formants did approximate hand­
labeled formants rather closely, provided that the RF algo­
rithm had prior knowledge of the speaker gender. The 
HMM2 features, on the other hand, did not resemble vocal 
tract resonances.

Second, for the automatic classification of vowels, we 
found little advantage in using acoustic features that have a 
direct relation to vocal tract resonances. If the features are 
consistent and feature tracks are smooth, their performance 
can approximate that of true, hand-labeled formants.

Third, the theoretical robustness of formant measures 
against additive noise could not be verified for either of the 
two automatically extracted, formant-like feature sets. Back­
ground noise seems to introduce additional spectral peaks in 
the spectral envelopes, which cannot be effectively discarded 
as formant candidates by the relatively simple signal pro­
cessing techniques underlying RF extraction and HMM2 fea­
ture computation.

In summary, it seems fair to say that, for the clean ex­
perimental conditions that were studied in this investigation, 
the formant representation of speech signals has no compel­
ling advantages (when used as a conventional feature set) 
over representations that do not involve error-prone labeling 
decisions such as MFCCs. In noisy conditions, we found that 
the theoretical advantages of the formant concept were vastly 
diminished by the failure of our signal processing techniques 
to reliably distinguish between spectral maxima that must be 
attributed to vocal tract resonances and maxima that are in­
troduced by the noise.
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1Some of the experimental results reported in this study were presented in 
‘‘Evaluation of formant-like features for ASR,’’ Proceedings of the Seventh 
International Conference on Spoken Language Processing, Denver, CO, 
September 2002.

2In this paper the term formant or true formants refers to the resonance 
frequencies of the vocal tract. The term formant-like refers to features that 
are similar, but not necessarily identical, to true formants.

3Vowel steady state was defined by Peterson and Barney as, ‘‘... following 
the influence of the /h/ and preceding the influence of the /d/, during which 
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