
 

 

Chemical Vapor Deposition Grown 

Pristine and Chemically Doped Monolayer Graphene 

 

 

 

 

Liuyan Zhao 

 

 

 

 

Submitted in partial fulfillment of the requirements 

for the degree of Doctor of Philosophy 

in the Graduate School of Art and Sciences 

 

 

COLUMBIA UNIVERSITY 

2013 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

© 2013 

Liuyan Zhao 

All Rights Reserved 



 
 

ABSTRCT 

Chemical Vapor Deposition Grown  

Pristine and Chemically Doped Monolayer Graphene 

Liuyan Zhao 

 Chemical vapor deposition growth has been a popular technique to produce large-area, 

high-quality monolayer graphene on Cu substrates ever since its first demonstration in 2009. 

Pristine graphene grown in such a way owns the natures of zero charge carriers and zero band gap. 

As an analogy to semi-conductor studies, substitutional doping with foreign atoms is a powerful 

way to tailor the electronic properties of the host materials. Within such a context, this thesis 

focuses on growing and characterizing both pristine and chemically-doped CVD grown monolayer 

graphene films at microscopic scales. We first synthesized pristine graphene on Cu single crystals in 

ultra-high-vacuum and subsequently characterized their properties by scanning tunneling 

microscopy/spectroscopy (STM/S), to learn the effects of Cu substrate crystallinity on the quality of 

graphene growth and to understand the interactions between graphene films and Cu substrates. In 

the subsequent chapters, we chemically doped graphene with nitrogen (N) and boron (B) atoms, 

and characterized their topographic and electronic structures via STM/S. We found that both N and 

B dopants substitionally dope graphene films, and contribute electron and hole carriers, 

respectively, into graphene at a rate of  approximately 0.5 carrier/dopant. Apart from this, we have 

made comparisons between N- and B-doped graphene films in aspects of topographic features, 

dopant distribution and electronic perturbations. In the last part of this thesis, we used Raman 

spectroscopy mapping to investigate the N dopant distribution within and across structural grains.  

Future experiments are also brief discussed at the end of the thesis.  
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Chapter 1  

Introduction 

1.1 Overview on Pristine Graphene 

1.1.1 The Electronic Properties of Pristine Graphene 

Ever since its first isolation from graphite in 2004 [1], graphene has attracted enormous attention 

which spans a wide spectrum of interests, ranging from new quantum phases in condensed matter 

systems [2, 3] and bench-top models for high energy physics [4, 5] to mediating chemical reactions 

[6-8]  and applications in electric and photonic devices  [9-11]. Even before the isolation of 

graphene, theorists had already explored its elementary electronic properties thanks to the 

simplicity of its crystal structure [12, 13].  

Graphene is a single layer of carbon (C) atoms arranged in a honeycomb structure. The unit 

cell of this structure consists of two equivalent carbon atoms which are usually denoted as the A 

and B sublattices of graphene (red and blue sites in Fig 1.1a). Each carbon atom has three nearest 

neighbors in its opposite sublattice and four valence electrons. The Bravais lattice has unit lattice 

vectors of 

 ⃗  (
  

 
 
√  

 
)   ⃗  (

  

 
  

√  

 
)   ( 1.1 ) 
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where        , the nearest carbon-carbon distance. The corresponding reciprocal lattice vectors 

are 

 ⃗⃗  (
  

  
 
 √  

  
)   ⃗⃗  (

  

  
  

 √  

  
)   ( 1.2 ) 

and the Brillouin zone (BZ) is defined by the hexagon highlighted with red dashed line in Fig. 1.1 b. 

Of particular importance is the two sets of corners of the BZ,         which are referred to as Dirac 

points because of the linear band structure of graphene at these points in k-space and defined as 

 ⃗⃗⃗  (
  

  
 

  

 √  
)   ⃗⃗⃗  (
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( 1.3 ) 

 
 

 

(a) (b) 

Fig. 1.1 Crystal and reciprocal lattice of monolayer graphene (a) Honeycomb lattice of 

graphene with two sets of sublattices marked with red and blue dots and unit vectors marked 

with   ⃗⃗⃗⃗⃗ and   ⃗⃗⃗⃗⃗.  (b) Reciprocal lattice of graphene with outside hexagon (highlighted with six 

red spots) for Bragg peaks of atomic lattice, and inside hexagon (highlighted with red dashed 

line) as first Brillion Zone.  
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 In plane 𝜎 bonds are formed by the sp2 hybridization of the valence electrons from the in-

plane orbitals px, py and s. Thus, three of the four valence electrons from each carbon atom 

contribute to the formation of 𝜎 bonds with the three nearest neighbors. The 𝜎 bond is extremely 

strong which makes graphene the strongest material in the world [14, 15]; however, the electrons 

forming 𝜎 bonds are so tightly bound that they do not contribute to the electronic transport. The 

remaining one electron from each carbon atom, consisting of a pz orbital, form the delocalized   

bonds with the three nearest neighbors and determine the low-energy electronic band structure of 

graphene [12, 13, 16].  

 Within the nearest-neighbor approximation, the tight-binding Hamiltonian is  

 ̂     ∑( ̂ 
  ̂      )

   

   
( 1.4 ) 

where  ̂ 
   ̂   or  ̂ 

   ̂   creates (destroys) an electron on the A or B sublattice, respectively, the 

nearest neighbor hopping integral is          , and the summation is over all nearest neighbors 

in the honeycomb lattice. The vectors connecting the three nearest neighbors are (seen in Fig. 1.1a) 

 ⃗  (
 

 
 
√  

 
)   ⃗  (

 

 
  

√  

 
)   ⃗           ( 1.5 ) 

We can write the Hamiltonian in the basis of wavefunctions on A and B sublattices         for an 

arbitrary momentum  ⃗⃗, 

 ̂  (

 ∑    ⃗⃗   ⃗⃗⃗⃗⃗
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( 1.6 ) 

and calculate the eigenvalues of this Hamiltonian, 
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  ( ⃗⃗)     √      (
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)      (   )   ( 1.7 ) 

where   stands for    and   bands. The band structure from Eq. 1.7 is shown in Fig. 1.2a. It displays 

the electron-hole symmetry in the band structure and the valence ( ) and conduction (  ) bands 

meet each other at six BZ corners,       s. It is important to mention that the electron-hole 

symmetry results from the nearest-neighbor approximation. This symmetry is no longer preserved 

when the next nearest-neighbor hopping is considered. However, the degeneracy at        points is 

caused by the inversion symmetry of the graphene lattice structure and would not be destroyed by 

higher order approximations [16].  

 Recalling that each carbon atom contributes one electron to   bond formation, the bands for 

undoped graphene would be exactly half filled. As a result, the Fermi surface for pristine graphene 

consists of only six points at BZ corners,       s. If we only focus on the energy bands near Fermi 

surface and expand the Hamiltonian around       points, i.e. define  ⃗   ⃗⃗⃗   ⃗⃗⃗⃗⃗   ⃗⃗, we will get a 

Dirac-like Hamiltonian 

 ̂    𝜎̂⃗   ⃗        at  ⃗⃗⃗ points,  ( 1.8 ) 

or  ̂    𝜎̂⃗
   ⃗       at   ⃗⃗⃗⃗⃗ points, ( 1.9 ) 

where    
  

 
  , and 𝜎̂⃗   𝜎  𝜎   which is the vector of Pauli matrices 

𝜎  (
  
   

)  𝜎  (
  
  

)  𝜎  (
  
   

)  
( 1.10 ) 

and the basis chosen is              at   point or                at    point. The eigenvalues at both 

  and    points are  
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        | ⃗| ( 1.11 ) 

in which the energy shows linear momentum dependence. See the Fig. 1.2b for the zoom-in 

spectrum near the Fermi level.  

 

 The form for the Hamiltonian near the   and    points in graphene is the same as that for 

relativistic electrons first proposed by Dirac [17], except that the speed of light, c, in Dirac’s theory 

is replaced by Fermi velocity in graphene,         . This is the reason why the   and    points 

are referred to as Dirac points in the graphene band structure. However, although the graphene 

Hamiltonian takes the mathematical form of the Dirac equation, the “spin” in the context of 

graphene does not refer to the electron spin as in Dirac’s theory. Instead, it refers to the weight of 

(a) (b) 

Fig. 1.2 Tightbinding band structure of monolayer graphene (a) Electronic band structure 

of graphene calculated by tight binding model with only nearest neighbor hopping showing 

electron-hole symmetry. (b) Close-look at the energy spectrum near Dirac point (highlighted 

by black dashed ellipse in (a)) showing a linear dispersion.  
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the wavefunction on the basis of         , which is the reason why it is denoted as the pseudo-spin 

of graphene. Nevertheless, pseudo-spin preserves the properties of a spinnor such as chirality,  ̂ ,  

 ̂  
𝜎̂⃗   ⃗

| ⃗|
   ( 1.12 ) 

In fact, this chirality operator projects the spin onto momentum and normalizes the projection to 

the momentum value. The eigenstates of the Hamiltonian are also eigenstates of the chirality 

operator, and the eigenvalues of chirality result in      with +1 for conduction band and -1 for 

valence band at   point. Similarly, the eigenvalues for      at    point but with -1 for conduction 

band and +1 for valence band, as shown in Fig. 1.3.  

 The density of states per unit cell, which is derived from the band structure of graphene, is  

     
   

 

| |

  
    ( 1.13 ) 

Fig. 1.3 Chirality for both conduction and valence bands at both K and K’ Dirac cones. Black 

arrows indicate momentum directions, and red arrows indicate pseudo-spin directions. As 

shown above, the momentum is parallel to the pseudo-spin in the conduction band of valley K 

and the valence band of valley K’ (i.e. P=+1) and anti-parallel in the conduction band of valley K’ 

and the valence band of valley K (i.e. P=-1).  
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The density of states (DOS) spectrum shows a linear dependence on energywith zero DOS intensity 

at        which corresponds to the Dirac points.  

1.1.2 The Fabrication of Pristine Graphene 

Benefiting from the unique electronic structure discussed in section 1.1.1, graphene has been 

proven in research labs to possess a number of extremely unique properties, including highest 

mobility, longest mean-free-path [1-3] and so on [18-20]. The graphene samples used in these 

studies are primarily made by mechanical exfoliations of graphite, which is the method that Geim 

and Novoselov et. al. at Manchester University first invented in 2004 [1]. Although this method 

produces high quality graphene samples, the size of the sample is typically limited to a few tens of 

micrometers (µm) which is large enough for research purpose but not for industrial applications. 

Fig.1.4a shows a picture of this exfoliation process [21], and Fig.1.4b displays an optical image of 

such a graphene flake exfoliated onto a SiO2/Si substrate with a 300nm thick oxide layer.  

 

(a) (b) 

Fig. 1.4 Mechanically exfoliated graphene; (a) Fabrication of graphene from HOPG by 

mechanical exfoliations with scotch tape. Figure cited from Ref. [21]. (b) Optical image of 

mechanically exfoliated graphene which is deposited on 300nm thick SiO2/Si wafer. Different 

layer numbers marked according to the color contrast. As seen in (b), the monolayer graphene 

in this sample is ~20µm by 40µm. Image cited from  

http://technologiesofworld2013.blogspot.com/2013/04/graphene.html . 

http://technologiesofworld2013.blogspot.com/2013/04/graphene.html
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In order to scale up the size of graphene films, there are two most popular methods that 

have been recently developed. One is the epitaxial growth of graphene on SiC(0001) surfaces first 

reported by De Heer group at The Georgia Institute of Technology [22]. In this method, graphene 

films as large as SiC wafers (shown in Fig.1.5a) can be grown on both the C-face and the Si-face of 

Si(0001) through a high temperature (~1200oC) graphitization procedure, and the number of 

layers of graphene films is typically tuned by the graphitization time. Due to the weak interactions 

between graphene layers produced in this manner, even multilayer graphene grown on SiC(0001) 

behaves as a single sheet of graphene [23-25]. Despite the large size of graphene achieved in this 

method, the quality of graphene is limited by a few factors including wrinkles [24] , as in Fig.1.5b, 

atomic defects (particularly for growth on the Si-face) [26] , as in Fig.1.5c, and difficulties in 

isolating graphene from SiC substrates.  

 

 The other method is chemical vapor deposition (CVD) growth of graphene on transition 

metal substrates such as Ni [27], Pt [28], Ru [29], Ir [30], Rh [31], Pd[32], … , and more recently Cu 

(a) (b) (c) 

Fig. 1.5 Epitaxial growth of graphene on SiC substrate; (a) Arrays of FETs made out of 

graphene grown on the entire surface of a two-inch SiC wafer. Image cited from 

http://nanotechweb.org/cws/article/tech/39365 (b) AFM image of graphene on SiC, showing 

wrinkles formed in graphene. Image cited from Ref. [23] (3) STM topography image, showing 

many “loop” defects in graphene on SiC. Inset is a zoom-in of one of the “loop” defects observed 

in (c), which has been proven to result from Stone-wales defects. Images cited from Ref. [26]. 

http://nanotechweb.org/cws/article/tech/39365
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[33]. During the growth procedure, carbon sources (typically Methane CH4) together with 

Hydrogen (H2) flow over a hot transition metal substrate at a temperature of ~1000oC for a certain 

amount of time and then the system is cooled down to room temperature. Usually, the transition 

metal acts as a catalyst to break C-H bonds in carbon sources. However, the mechanism for 

graphene formation from the isolated carbon atoms varies between metals and depends on the 

carbon solubility in a specific transition metal. For example, Ni has high carbon solubility so that 

carbon atoms first dissolve into Ni substrates at high temperature and then precipitate onto the 

surface of Ni substrates when cooling down to room temperature. Due to such a growth mechanism, 

multilayer graphene grow on Ni substrates, and the number of layers is controlled by the amount of 

carbon atoms dissolved in the substrates at high temperature. However, Cu has very low carbon 

solubility even up to its melting temperature, so graphene growth on Cu substrates is a pure surface 

reaction process. This is why graphene predominantly grows monolayer on Cu substrates [34].  

 Although the exact mechanism for graphene seeding and nucleation on Cu surfaces remains 

disputed [35-38], CVD graphene growth on Cu substrates gained its popularity among the growths 

on the transition metals due to its low cost, self-limiting growth process, and high graphene quality 

as well. The majority (>99.9%) of the defects in CVD graphene films are grain boundaries where 

two graphene grains which are mis-oriented or translated merge together (cartoon shown in 

Fig.1.6.a). As first proved by researchers at Cornell University and UC Berkeley [39, 40], mis-

orientations between graphene grains are the main source of grain boundaries. In Fig.1.6.b, the 

false-colored TEM image shows the patchwork-like structure for a polycrystalline graphene film, in 

which different colors represent the different oriented angles of the grains. The typical grain size 

produced in this CVD recipe is on the order of a few micrometers. Zooming into one boundary 

between two grains, a line of defects is formed by pentagons and heptagons as shown in Fig.1.6.c. 
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These randomly distributed line defects were predicted [41] and proven [42] to impair the electric 

transport in graphene and their reduction or even elimination is now desired. 

 

In principle, fewer seeds at the beginning of growth results in fewer grains and thus fewer 

grain boundaries.  Along this direction, large grain size graphene has been produced when Cu 

substrates are folded into a pita-pocket geometry [43] (shown in Fig.1.7.a). A single grain size can 

be extended up to sub-milimeter scale, as shown in Fig.1.7.b. 

(a1) 

(a2) 

Fig. 1.6 Grain boundaries in CVD grown graphene; (a) Diagrams showing how a grain 

boundary is formed in graphene lattice. (a1) shows a mis-orientation of angle Θ between two 

domains, and (a2) shows a translational mis-match of length “a” between two domains. (b) A 

false colored image mapping graphene domains with different colors indicating different 

crystal orientations. Image cited from http://www.ccmr.cornell.edu/news/news.html?id=232. 

(c) A zoom-in image at the grain boundary revealing a defect line composed of heptagons and 

pentagons. Image cited from Ref.  [39]. 

(b) 

(c) 

http://www.ccmr.cornell.edu/news/news.html?id=232
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1.2 Overview on Chemically Doped Graphene 

1.2.1 The Fundamental Limits of Pristine Graphene 

Owing to the exceptional electronic properties of graphene, it has been proposed to be a promising 

candidate for many applications such as transparent electrodes for solar cells, graphene based 

field-effect-transistors (FET), and so on. However, before putting these proposals into practice, 

there are some major limits in graphene’s electronic structure that one has to overcome.  

The first shortcoming concerns free charge carriers in graphene. As the valence electrons in 

pristine graphene exactly fill the electronic bands up to Dirac point, there are no free charge 

carriers available for electronic transport in pristine graphene. Consequently, transport 

(a) 

(b) 

Fig. 1.7 Large grain size grain grown by pita-pocket method; (a) Copper foil folded into 

pita-pocket geometry. (b) Pristine graphene grown by low pressure, pita-pocket geometry, with 

single grain size as large as sub millimeters. Images cited from Ref. [42]. 
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measurements show a minimum conductivity near this charge neutrality point. It is important to 

mention that this minimum conductivity does not go to zero but stays at       even for the 

cleanest graphene sample [1-3, 16, 18]. This minimum conductivity lowers the efficiency of electron 

transport in graphene, and it must be increased for applications like electrodes. An obvious way to 

achieve this goal is to introduce free charge carriers in order to move away from the charge 

neutrality point. As shown in Fig.1.8.a, the electric field effect is a versatile way to introduce either 

electron or hole carriers into graphene by varying the polarity of the gate voltage. However, this 

field effect doping depends on the external voltage through a dielectric media and may complicate 

the geometry of a device in application. Therefore, it is desired to introduce permanent free charge 

carriers with well-controlled carrier type and concentration which is one of the major focuses of 

this thesis.  

The other limit is the semimetal nature of graphene. As seen from both    ⃗⃗  and        

spectrum in section 1.1.1, there is no band gap over any energy window in the graphene band 

structure.  However, such an electronic bandgap is essential in device physics and technology and 

governs the operation of semiconductor devices because it allows the host material to switch the 

flow of electrons on and off. It has been shown that a wide, tunable band gap can be realized in AB 

stacked bilayer graphene via a dual gating technique that breaks inversion symmetry [44]. 

However, it is still difficult to produce large area AB stacked bilayer graphene films compared to 

monolayer graphene [45]. In monolayer graphene, the absence of a band gap is protected by the AB 

sublattice symmetry of honeycomb structure. By introducing short range potentials which breaks 

up the AB sublattice symmetry, it is in principle possible to open up a band gap at the Dirac points 

[18]. Another focus of this thesis is to experimentally test these effects on the graphene band 
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structure by introducing atomically sharp potentials by incorporating atomic defects in the 

honeycomb lattice. 

Of course, besides charge injection and band gap engineering, the electronic properties of 

graphene can be tuned by many other methods like introducing magnetism [46, 47], 

superconductivity [48, 49], edge states [50], topological orders [51] and charge density waves [52].  

Given such a wide spectrum of tunable properties, this thesis is limited to the first two aspects 

specified above.  

1.2.2 The Chemical Doping of Graphene 

Chemical doping a host material with foreign species is a promising way to tailor the electronic 

properties of the host material. This technique has been widely employed in the modern 

semiconductor industrymost commonly with electron/hole-doped silicon. To make a simple 

analogy between graphene and silicon, one could imagine modulating the electronic properties of 

graphene via chemical doping as well. Let’s follow up with the desired properties of graphene 

which were discussed above.  

 Firstly, in order to introduce free charge carriers into graphene films, species with an excess 

or depletion of electrons are usually suitable. Taking a look at the periodic table, we can first locate 

the two neighbors of carbon which are boron on the left side and nitrogen on the right side. 

Intuitively, boron has one less electron than carbon, so it should withdraw some amount of 

electrons from the carbon lattice when it is embedded in the matrix. As a result, boron doped 

graphene film would be hole doped. Similarly, nitrogen doped graphene would be electron doped. 

However, theoretical calculations predict much richer physics than such intuitions [53, 54]. First, 

there are multiple ways that a boron/nitrogen atom can incorporate into the honeycomb lattice of 
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graphene [53], including graphitic (a boron/nitrogen atom replaces a carbon atom and forms     

bonds with three nearest neighboring carbon atoms, see Fig. 1.8a), pyridinic (a boron/nitrogen 

atom replaces two carbon atoms and forms     bonds with two closest carbon atoms and a vacancy 

in the lattice, see Fig. 1.8b) and nitrilic (nitrogen remains     bonds with two hydrogen atoms and 

one carbon atoms in the lattice , see Fig. 1.8c) forms. Moreover, whether the dopants contribute 

electrons or holes is predicted to depend on the doping form of the dopants. Specifically, in nitrogen 

doped graphene, graphitic nitrogen dopants contribute electrons into graphene while pyridinic and 

nitrilic forms donate holes. In fact, there are cases of coexistence of all the doping forms in the same 

sample in both CVD [55, 56] and post treatment [57, 58] samples. Therefore, a careful 

characterization of the relation between doping form and its contribution to free charge carrier is 

necessary to understand the doped graphene material. Second, it is known in semiconductor 

science that a dopant forms spatially and energetically localized states, and free charge carriers 

result from the ionization of such localized states. Whether such a classical picture applies in 

graphene, where the quasi-particles behave as massless Dirac fermions, is another intriguing 

question. For the sake of simplicity, taking graphitic nitrogen dopants as an example, we can treat 

such a nitrogen dopant to the first order as a localized positive charge at one atomic site and an 

extra electron obeying the Dirac band structure. This motivates questions of Coulomb interactions 

in Dirac fermions, which have been intensively explored in theory [54, 59-62] and recently in 

experiments [5, 63]. Besides chemically dopoing with these two neighboring elements of carbon, a 

second option would be using metal atoms, such as potassium (K) and calcium (Ca). In such cases, 

the metal atoms physisorb on the surfaces of graphene films, rather than forming any chemical 

bonds with carbon atoms in the graphene. Nevertheless, the charge transfer from the physisorbed 

metal atoms can dope graphene with large concentrations of electrons[49, 64, 65], depending on 
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the coverage of the metal atom adsorption. In particular, a full layer of Ca atoms on graphene can 

shift the Fermi level as high as the M point where graphene is heavily electron doped, which is 

hardly reachable by any other doping methods [49]. 

 

(a) 

(b) 

(c) 

Fig. 1.8 Cartoon models for different doping forms of nitrogen/boron dopants. (a)Graphitic 

doping form, a single dopant atom substituting a carbon atom in the lattice, predicted to n-

dope graphene. (b) Pyridinic doping form, a dopant atom and an adjacent vacancy replacing 

a unit cell of carbon atoms, predicted to p-dope graphene. (c) Nitrilic doping form, -NH2 

group attaching to a carbon atom in graphene, predicted to p-doped graphene even stronger 

than pridinic case. Red ball for nitrogen/boron dopant, blue ball for hydrogen atom, and gray 

one for carbon atom.  
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 Secondly, since the discover of graphene, there have been several methods attempting to 

open a band gap in the band structure of graphene. The method of chemical doping can be 

categorized into two groups. The first group aims at deforming the     network by forming a local 

    bonding environment; hydrogen (H) [66] and fluorine (F) [67] atoms are selected to be the 

proper dopants. In this method, a H/F atom stays on top of a carbon atom and pulls the carbon 

atom out of graphene plane just enouhg so as to form     bonding (see in Fig. 1.9a).  In the     

hybridized carbon case, a carbon atom forms tetrahedral geometry with its four neighbors, and 

each of the four valence electrons from the carbon atom pairs with one electron from each 

neighboring atom. Such pairs of electrons between two nearest neighbors are strongly localized, 

just as that in 𝜎 bonds of graphene, and this is why     bonded carbons do not provide conductivity 

as in, for example, diamond. Due to the     bonding geometry, two H/F atoms could not bond with 

two neighboring carbon atoms in a benzene ring, and the second nearest neighbor is the closest 

choice for a second H/F atom. As a consequence, fully doped graphene has a layer of H/F atoms 

attaching to one sublattice of carbon atoms on one side of graphene and another layer of H/F atoms 

binding with the other sublattice of carbons on the other side (as shown in Fig. 1.9b ). It has been 

shown experimentally that fully H doped graphene (graphane) opens up a band gap of at least 

      , while fully F doped graphene (Fluorographene) is a band insulator with      band gap. 

The band gaps are adjustable by tuning the concentration of H/F dopants in graphene. The second 

category tries to introduce a band gap by breaking AB sublattice symmetry in graphene which is the 

fundamental origin of the gapless nature at Dirac points. Of course, H/F doped graphene described 

in the previous method breaks sublattice symmetry, however, it also alters the entire electronic 

structure, at least locally, around dopants by converting     bonding into     bonding, changing the 

unique electronic properties of graphene. As a comparison to H/F, graphitic N/B doped graphene 
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perturbs the system least by preserving     bonding while still breaking the symmerty between the 

two sublattices (by putting dopants in one sublttice but not the other). Theoretical studies of 

graphitic N/B doped graphene claim that a band gap opens with the size of the gap depending on 

the concentration of the dopants but also on the distribution of the dopants [68]. It is most effective 

to induce sublattice asymmetry when the dopants are in the same sublattice of graphene, and least 

effective when dopants randomly distribute between the two sublattices. A simple mathematical 

way of understanding this is as follows: with the asymmetry of Δ between the A and B sublattice, 

the diagonal terms in the Hamiltonian around the K point is express as  

 ̂  (
            

             
) at K points. 

( 1.14 ) 

The eigenvalues of this Hamiltonian are  

     
 

 
  √      

  
 

 
     ( 1.15 ) 

From the formula for     , the gap size equals the sublattice asymmetry Δ. A sketch of such a band 

structure is shown in Fig. 1.10, with a comparison to that of pristine graphene.  

 Finally, besides introducing free charge carriers and a band gap in graphene, chemical 

doping is also applied to modulate other electronic properties of graphene. For examples, a full 

layer of Ca deposition on graphene can introduce one dimensional charge density waves (CDW) 

[52] , can introduce superconductivity instability from saddle point (M point) singularity [49], or 

magnetic elements such as Mn [69, 70], Co [71], Ni [72],etc., are predicted theoretically to induce 

magnetism in graphene.  



 
 

CHAPTER 1. INTRODUCTION  18 

 

 

(a) 

(b) 

Fig. 1.9 Cartoon model for F-doped graphene; (a) Cartoon model for fluorine (F)- or hydrogen 

(H)-doped graphene. The F/H atom staying right on top of a carbon atom and pulling it slightly 

out of the plane of graphene film. The red arrows pointing to two possible closest sites where 

a second F/H atom can attach on the top surface.  (b) Cartoon for fully F-/H-doped graphene. 

F/H on top surface of graphene graphene occupying one sublattice of the honeycomb lattice 

while those on bottom surface attaching to the other sublattice. The oneycomb lattice 

deformes into a zig-zag pattern as shown in the inset.  

(a) (b) 

Fig. 1.10 Band gap opening at Dirac point; (a) Sketch of the electronic band structure for 

Eq.1.15 where sublattice asymmetry is introduced. A band gap of Δ shows at the Dirac point, 

which equals the strength of asymmetry between the A and B sublattices. (b) Band structure for 

pristine graphene, showing gapless nature at Dirac Point.   
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1.3 Scanning Tunneling Microscopy/Spectroscopy 

Scanning Tunneling Microscopy/Spectroscopy (STM/S) is a powerful local probe technique that 

detects topographic features and electronic structures (i.e. local density of states (LDOS)) with sub-

pico-meter spatial resolution. This capability of probing topography and LDOS at exactly the same 

position allows us to correlate any electronic inhomogeneity with structural anomalies such as 

impurities or defects in the host lattices. In the past decades, this unique ability of STM/S has been 

used to probe a number of systems, including single crystal metals (Cu(111) [73], Au(111) [74],etc.), 

semiconductors (Mn-doped GaAs(110) [75, 76], (doped) Si(111) [77, 78], etc.), super-conductors 

(Ba2Sr2Ca2CuO8+  [79], pnictide[80, 81], etc.), topological insulators (Bi1-xSbx [82, 83], etc.), and 

graphene (pristine graphene on SiO2 [84] and on BN [85, 86], B/N [87]-doped graphene, Co-doped 

graphene [63], Ca-doped graphene [5], etc.) 

1.3.1 The Basic Theory of STM/S 

The concept of STM/S arises from the phenomenon of quantum mechanical tunneling where an 

electron with energy   has certain probability   to tunnel through a barrier with energy   even 

larger than  , as long as there is available states at energy   on the other side of the barrier 

(cartoon diagram shown in Fig. 1.11a ).  

In the scenario of tunneling in STM/S, the vacuum between tip and sample acts as the 

potential barrier and its value typically equals the work function of the tip/sample,       . Here, 

we make an assumption that the work function of the tip is almost equals to that of the sample, 

which is generally true in reality (the work functions of conductors vary within a few tens of meV). 
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When there is no bias potential   applied between tip and sample, the Fermi level of tip and sample 

align  

 

with each other, and no net tunneling process happen, as shown in Fig. 1.11b. When a positive bias 

is applied on the sample with respect to the tip, a net tunneling of electron from tip to sample 

happens at the energy window from    to     , as seen in Fig. 1.11c. Vice verse, a net flux of 

electrons flows from the sample to the tip when negative bias is applied on the sample, as seen in 

(a) (b) 

(c) (d) 

Fig. 1.11 Diagrams for tunneling processes; (a) Diagram for tunneling process, with 

potential barrier modeled as a square potential. (b) Fermi levels tip and sample aligned without 

bias voltage applied between the two. (c) and (d) Tunneling processes with bias voltage applied, 

showing modified potential barrier due to electric field, and tunneling direction depending on 

the bias polarity.  
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Fig. 1.11d.   Here, it is worth pointing out two assumptions which are typically accepted in modeling 

the tunneling phenomenon. First, the bias potential between tip and sample should be substantially 

smaller than the work functions of the tip/sample, normally within the range of               . 

When the bias potential is greater than the work function, the system enters into the field emission 

regime, which is different from tunneling regime and may cause damage to sample. Second, since 

the bias potential is typically much smaller than tunneling barrier, we usually ignore the electronic 

field effect in the tunneling process, i.e., we still model tunneling barrier as a square potential in Fig. 

1.11a rather than a sloped edge in Fig. 1.11c.  

With these widely accepted assumptions, one of the most popular theories to model the 

tunneling phenomenon is Bardeen Tunneling Theory, with a couple of modification by Tersoff and 

Hamann [88-90]. Under Bardeen theory, the tunneling current is approximated as: 

  
   

 
∑ (    )              |   |

 
        

   

   
( 1.16 ) 

 

where µ, ν labels the energy states in the tip and the sample respectively,        stands for Fermi 

distribution at temperature  ,   is the bias potential applied between tip and sample, and     is 

the tunneling matrix element between state µ in the tip and state ν in the sample and is given by  

    
  

  
∫  ⃗⃗⃗⃗⃗     

       
         ( 1.17 ) 

where    and    are the wave functions for state µ in the tip and state ν in the sample, and the 

integral is over the entire tunneling area (its typically determined by the tip size in STM/S). By 
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introducing the local density of states for both tip and sample, the current formula can be rewritten 

as  

  
   

 
∫                            | |   

  

  

   
( 1.18 ) 

where t, s denotes the tip and the sample respectively, and M is the tunneling matrix given by Eq. 

1.17. In topography mode, the tip height with respect to sample surface is adjusted (this parameter 

is hidden in the tunneling matrix element M) so as to maintain a constant current. As seen from the 

current expression, the apparent height obtained from STM image reflects physical heights (such as 

the steps in single crystal samples), electronic perturbations as well (such as scattering interference 

pattern caused by defects), and even differences between species (more discussion in the following 

Section 1.3.2). In      spectroscopy mode, the current   variation is recorded as a function of the 

bias voltage  , while the tip is held at a fixed height over the sample surface.  

Usually STM/S works in low temperature regime in order to suppress the thermal 

broadening effects. At low temperatures, the Fermi distribution function could be approximated as 

a step function, 

             {
       
        

           

         
 . 

( 1.19 ) 

With this approximation, the current function in Eq. 1.18 can be simplified as  

  
   

 
∫              | |   

  

     

   
( 1.20 ) 

Assuming the bias energy is fairly small (as described above), the tunneling matrix element is 

usually considered to be constant over this narrow energy window of           , and therefore it 

can be move out from the integral. Furthermore, a metallic tip usually has a constant DOS over a 
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broad energy range, and thus       is eligible to be taken out from the integral as well. As a result of 

these approximations, the current is now written as  

     
   

 
  | | ∫        

     

  

  
( 1.21 ) 

A derivative of      with respect to  , 
  

  
, will be directly proportional to the local density of states 

at energy of      ,  

  

  
            ( 1.22 ) 

This is how STS works to probe the LDOS of a sample. In practice, we can either numerically 

differentiate the      curve, or directly record 
  

  
 values at various bias voltages with the help of  

the lock-in technique. 

1.3.2 Discussions of Tunneling Matrix and Temperature Effect 

As described above, to a first order approximation, the tunneling matrix element     is 

approximated to be constant over a narrow energy window for a uniform sample surface. However, 

if the sample contains more than one element which contribute conductive electrons, the tunneling 

matrix could be sensitive enough to pick up the difference between the elements, despite the 

similarity of their LDOS. Taking the example of boron, carbon and nitrogen, the    orbitals extend 

differently in space. As shown in Fig. 1.12,    orbital of carbon extends further than that of nitrogen, 

but shorter than that of boron. As a result, the tunneling matrix over these three elements at the 

same physical height from the surface will follow the order of                  .  Therefore, 

in constant current topography mode, the apparent height for boron is highest, and that for carbon 

is less, and that for nitrogen is the least among the three. Of course, such subtle difference in 
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apparent height/tunneling matrix is never enough for an accurate element analysis if the elements 

are not pre-known. Nevertheless, it can be very useful, for example, when assigning whether it is a 

graphitic boron or nitrogen dopant in graphene films which will be discussed in details in Chapter 2 

and 3.  

 

 In Section 1.3.1, we assume that the temperature effect in spectroscopy measurements is 

ignorable for the sake of simplicity. However, this assumption is not always valid, especially when 

the energy width of a feature is comparable to the thermal energy. In this case,   

  
   

 
  | | ∫                      

  

  

  
( 1.23 ) 

under the assumptions of constant tip LDOS and constant tunneling matrix. Hence, 

  

  
     

   

 
  | | ∫      

  

  
        

  

  

   
( 1.24 ) 

Fig. 1.12 Calculated atomic orbital intensity for boron (B), carbon (C) and nitrogen (N), as a 

function of radial distance, showing that the orbital of B extends furthest,  C less, and N least. 
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which is proportional to the convolution between the LDOS of sample and the derivative of Fermi 

distribution function. From a mathematical perspective, convolution means smoothing a function 

(     ) with another function (
  

  
), and only the features in the function       sharper than the 

width of function 
  

  
 will be strongly affected by the “smoothing” process. At temperature  , the 

width of 
  

  
 is approximately    . For example, a gap feature in 

  

  
    is more pronounced at low 

temperature of 4K, and gets rounded at the gap edge at a higher temperature of 77K.    

1.4 Micro-Raman Spectroscopy 

1.4.1 Raman Spectroscopy of Graphene 

Raman spectroscopy has been proved to be an essential part of graphene research ever since its 

first report on graphene characterization in 2006 [91]. It has been widely used to determine the 

number of layers [92-94], the orientations between layers [45, 95], the chirality of edges [96], the 

quality of a film [92-94], and the effects from functionalization such as doping [97, 98], strain [99-

101], magnetic fields [102, 103] and inhomogeneity. All the capabilities mentioned above exploit 

the four signature peaks in Raman spectroscopy on graphene, namely, D, G, D’ and 2D peaks. In this 

section, I will give a brief description of each peak and its physical origin. 

 Raman spectroscopy on graphene is resonance Raman spectroscopy because the energy of 

exciting light matches the energy difference between electronic states in the graphene band 

structure. Such energy match strongly enhances the transition probability between electronic 

states and life time at excited energy states, and hence increases the chance of Raman scattering.  
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The scattering process can be understood with a combination of electronic band structure (shown 

in Fig. 1.13b) and phonon band structure of graphene (shown in Fig. 1.13a).   

 

Shown in Fig.1.14a is the scattering process for G peak formation. (1) An electron at         

adsorbs an incoming photon           and gets excited to state        . Due to energy and 

momentum conservation,         , and      ; (2) The excited electron         is scattered by 

a phonon (     ) and gets to a virtual state        . Similarly as in step (1), we have         , 

and         ; (3) Finally, the electron drops from virtual state         to initial state         

with an emission of a photon          . Here,         , and      . All together, we have 

        ,     . When looking into the phonon spectrum in Fig. 1.13a, a phonon at momentum 

     has energy of            , which is the defined as G peak in Raman scattering. As has been 

provenexperimentally, G peak frequency is sensitive to strain [99-101] and doping [97, 98], while G 

peak intensity depends on the number of layers [91] and the orientation between layers [45, 95]. 

Fig.1.14b shows the scattering process for 2D band formation. As we can see from the 

diagram, two phonons with the same energy and opposite momentums are involved in this 

(a) (b) 

Fig. 1.13 Phonon and electron band structures of monolayer graphene; (a) Phonon spectrum 

of graphene. Image cited from Ref. [93] (b) Energy spectrum of graphene. 
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scattering process, with a momentum   . Searching in the phonon spectrum, we find the energy of 

the phonon with a momentum    is          . Therefore, the Raman shift results from this 

process is twice the phonon energy, ~        , and this Raman band is called as 2D band. 2D 

band characterizes the properties of graphene from a few aspects. Its width is a good indicator of 

number of layers [91] for multilayer graphene, and reflects doping levels [97, 98] as well for 

monolayer graphene. Its frequency is tied with doping [97, 98], while its intensity is sensitive to 

impurities either in or on the surface of graphene[92, 93].  

In pristine graphene, all the scattering processes are assisted by phonons, and hence only G 

and 2D peaks show up in Raman spectroscopy. However, any impurities in graphene lattice can act 

as scatters as well.  Therefore, two more peaks, D and D’ peaks, show up in the vicinity of any 

defects in graphene.  

In Fig.1.14c, the scattering procedures for D peak is depicted. As we can see, it looks quite 

similar as the 2D diagram in Fig.1.15b, except one of the two phonon assisted scatterings between 

the two Dirac cones is replace by an elastic inter-valley scattering from impurities. As a result, the 

Raman shift equals one phonon energy          which is half of the 2D Raman shift.  

Similarly as the D peak, the D’ peak originates from one phonon assisted scattering and one 

impurity assisted scattering, but within one Dirac cone, as shown in Fig.1.14d. The phonon involved 

has a momentum   , therefore we see an energy slightly higher than the G mode,          .  
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More recently, with better resolution measurement, more Raman peaks have been observed 

in graphene experimentally [94], including so called D’’, D+D’’, D+D’ and 2D’ peaks, as shown in Fig. 

1.15. In the upper panel we see the 2D’ peak in pristine graphene and in the lower panel we see 

D+D’’, D+D’ and 2D’ peaks in defected graphene. They have much lower intensity than the four main 

(a) (b) 

(c) (d) 

Fig. 1.14 (a) (b) (c) and (d) Diagrams of scattering processes for G, 2D, D and D’ bands in 

Raman spectroscopy of graphene. Arrow with wiggles for phonon assisted scattering, and 

arrow for electronic scattering. (a) One phonon with zero momentum involved in G band 

scattering process. (b) Two phonons with ~K momentum involved in 2D band scattering 

process. (c) One phonon with ~K momentum involved in D band scattering. (d) One phonon 

with >~zero momentum in D’ band scattering process. 
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peaks described above, and are not as sensitive as the four to perturbations. I are not going to focus 

on them in this thesis, and detailed information about them can be found in Ref [93]. 

 

1.5 Outline of the Thesis 

After giving the introduction to the basics of (doped) graphene and the main techniques, the rest of 

this thesis will be organized as following.  

 Chapter 2 will focuses on the synthesis of pristine monolayer graphene films on various 

copper substrates, and the microscopic characterizations by STM on these as-grown graphene 

samples. The discovery of uniform growth of monolayer graphene films on copper foil in 2009 

generated significant interest in understanding and optimizing the CVD conditions for large area 

graphene productions. Among all the factors in CVD conditions, copper substrate is the most 

important one because it not only limits the graphene growth to a monolayer thickness, it also 

Fig. 1.15 High resolution Raman spectroscopy of pristine graphene (upper panel) and 

defected graphene (lower panel), with extra peaks D+D’’, D+D’, 2D’ showning up beside the 

four signature peaks G, 2D, D and D’. Image cited from Ref. [93]. 
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reduces the cost for fabrications. Along this direction, we studied the influence of the surface 

structure of copper substrate on the growth of large area monolayer graphene by CVD in ultra-high 

vacuum (UHV). Using atomic resolution STM, we found that graphene grows primarily in registry 

with the underlying copper lattice for Cu(111) and Cu(100) single crystals. Graphene on Cu(111) 

forms a microscopically uniform sheet, and its quality is determined by the presence of grain 

boundaries where graphene grains, with mismatched orientation or lateral translation, meet. 

Graphene grown on Cu(100) with the same recipe does not form a uniform sheet but instead 

displays exposed nano edges, while graphene grown on copper foil under the same condition only 

forms isolated dendritic patterns. Our results indicate the importance of the copper crystal 

structure on the microstructure of graphene films produced by CVD.  

 Production of large scale high-quality pristine graphene is a great step towards the ultimate 

goal of graphene based electronics. However, two fundamental limits of pristine graphene, absence 

of both free charge carriers and a band gap, remain to be solved at this stage. Chemical doping has 

been proved in a good number of systems to be a powerful way to tailor the electronic properties of 

a host material. Therefore, we introduce either a nitrogen source (NH3) or a boron source (B2H6) 

during the graphene CVD growth process, and as a result, achieve nitrogen- or boron-doped 

graphene.   

 In Chapters 3 and 4, I will briefly describe the synthesis of doped graphene films on copper 

foil substrates in a CVD furnace, and mainly focus on the topographic and electronic 

characterizations of as-grown nitrogen- (Chapter 3) and boron- (Chapter 4)doped graphene at the 

microscopic scale. As theory has predicted, different doping forms of nitrogen/boron dopants will 

affect the electronic structure of graphene in different ways.  Prior to our experiments, macroscopic 
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characterizations on nitrogen-doped graphene have shown the coexistence of graphitic and 

pyridinic doping forms, and no direct measurements have ever been done to correlate the doping 

form and its electronic properties. In Chapter 3, we identify that more than 90% of the dopants in 

nitrogen doped graphene are single graphitic dopants. Furthermore, we simultaneously measured 

the dopant concentration and doping level at the same local area, and found each graphitic nitrogen 

dopant contributes      electron to graphene system. Finally, we examined the perturbation in 

electronic band structure in the vicinity of nitrogen dopants, and find such disturbances to be 

within     from the dopant site. In Chapter 4, we show that only      of the impurities are 

graphitic boron dopants while the remaining defects are associated with stone-wales defects. 

Graphitic boron dopants, like nitrogen, donate      hole carrier to the graphene sheet per boron 

dopant and perturb the electronic structure as locally as     . Density functional theory 

calculations indicate that boron dopants interact strongly with the underlying substrate while 

nitrogen dopants do not. Such local bonding differences between graphitic boron and nitrogen 

dopants lead to large scale differences in dopant distribution. The distribution of dopants is 

observed to be completely random in the case of boron, while nitrogen displays strong sublattice 

clustering. This difference in dopant distribution between sublattices theoretically will result in 

different degrees  of sublattice symmetry breaking, and hence different ways of opening a band gap 

at Dirac points. The other     structural defects create local electronic resonances and cause 

electronic scattering, but do not electronically dope graphene films.  

 Large area CVD graphene inevitably contains a good number of grain boundaries and these 

grain boundaries are the main factor in determining the transport properties of pristine graphene. 

What are their influences in chemically doped graphene films is the question we would like to 

answer in Chapter 5. Chapter 5 combines the measurements of Micro-Raman Spectroscopy and 



 
 

CHAPTER 1. INTRODUCTION  32 

STM topography, to show the nitrogen distribution within grains and around grain boundaries. 

Typically in three dimensional polycrystals, the impurities in them tend to migrate to the grain 

boundaries and subsequently modify the electronic structures around the grain boundaries. 

However, our experiments on the two dimensional nitrogen-doped graphene demonstrate that, in 

contrast to three-dimensional polycrystals, the graphitic nitrogen dopants in doped graphene 

polycrystals avoid grain boundaries and edges over micron length scales while distributing 

uniformly in the interior of each grain. We further show that this phenomenon is independent of 

the details of the growth procedure (such as temperature, pressure, substrate, and precursor) and 

instead a result of the bonding and coordination of individual nitrogen atoms in the carbon lattice.  
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Chapter 2  

Influence of Cu Crystal Surface on CVD Graphene Growth 

2.1 Overview of CVD Graphene Growth on Cu Substrates 

The successful growth of large-area, few layer graphene films [1-4] has the potential to 

revolutionize applications of graphene in electronic, mechanic and photonic devices [5-8]. In the 

past few years, chemical vapor deposition (CVD) growth has been used to produce such thin-layer 

films on a number of transition metal substrates, including Cu [1, 9], Ni[2, 10, 11], Ru [12-15], Ir 

[16-19],…. Among these transition metals, Cu substrate is of especial interest, because of the low 

cost of Cu as substrates and, perhaps more importantly, the fact that the catalytic growth of 

graphene on Cu substrates is self-limiting and mostly (>90%) results in formation of single layer 

graphene [1]. Understanding the impact of Cu substrate on graphene films is thus crucial to the 

quest of achieving high quality, large-area, single layer graphene.  

2.1.1 Standard Recipe for CVD Graphene Growth on Cu Substrates 

The report on successful growths of large-area monolayer graphene films on Cu foils [1] sets up the 

protocol recipe for graphene growth on Cu foil substrates in a CVD furnace. In Fig. 2.1, the diagram 

shows a standard setup for CVD graphene growth on Cu, – a furnace, a mechanical pump, a quartz 

tube and three ultra-high purity gases including Methane (CH4), Hydrogen (H2) and Argon (Ar). A 

tyical procedure for growing graphene on Cu foil is described as follows: (1) Place a piece of Cu foil 
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in the middle of the quartz tube, and start pumping the system afterwards. (2) Rise up the 

temperature of the furnace to 1000oC at the position to the left of the Cu foil, and then move the hot 

furnace to the position of Cu foil. (3) Add in H2 gas at a flow rate of 2 sccm to clean the Cu foil at 

1000oC. (3) Add in CH4 gas at a flow rate of 35sccm to grow graphene. Note the ratio between H2 

and CH4 is chosen to be ~1:17 in Ref [1]. (4) Shut down both H2 and CH4 gases and cool down the 

system in Ar environment. This recipe not only has been well adopted by a great number of 

research groups [20-26], but also has been scaled up to the industry level for mass productions of 

monolayer graphene films [4].  

 

2.1.2 Modified Recipes for CVD Graphene Growth on Cu substrates 

Although the recipe in Ref. [1] is capable of producing large-area, high quality, polycrystalline 

monolayer graphene, the quest of achieving even better quality never stops, neither does the 

curiosity of learning the growth mechanism. In fact, there are quite a number of parameters that are 

tunable during growth, including overall pressure, ratio between H2 and CH4, geometry of Cu foil, 

precursors, temperature, and crystallinity of Cu substrate. 

Fig. 2.1 Cartoon for the CVD graphene growth setup, including three precursor gases, a quartz 

tube, a piece of Cu foil, a furnace and a mechanical pump. 
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 It has been proved that H2, rather than CH4, dictates the size and shape of graphene grains 

[27]. By increasing the ratio of H2 to CH4 during CVD growth, individual grains of graphene are 

cultivated into a hexagonal shape and their sizes are noticeably increased (from ~3-5µm to 

~20µm), even though at a cost of much slower growth speed [27].  Besides the ratio between H2 

and CH4, decreasing the overall growth pressure, together with creating a stable environment for 

growth, contributes to increase the grain size of graphene. Two manners have been reported to 

achieve ultra-large grain size (typically in order of a few hundreds µm) graphene in stable, low 

pressure environment. One is to fold a piece of Cu foil into pita-pocket geometry so that it creates a 

steady atmosphere inside the pocket [28]. The other way is to put a small quartz tube with one end 

sealed inside the growth quartz tube and keep the open side of the small tube facing the flow of 

gases [29]. In this way, the trapped gases inside the small quartz tube will be stabilized. The former 

method has been widely applied to produce large grain size graphene [24-26] 

 A second alternative to achieve well-shaped, large grain size graphene is by using Benzene, 

instead of a mixture of H2 and CH4, as the precursor for growth [30, 31]. Furthermore, due to the 

structural similarity between Benzene and graphene, high quality graphene films can be grown at a 

relatively low temperature of ~300oC, compared with at least >800oC for H2 and CH4 as precursors. 

From the perspective of saving energies and costs, it is an attractive recipe to put into practice. 

However, the liquid form of Benzene requires more cares to handle with.  

 Finally, the influence of Cu substrate crystallinity on graphene growth is also a popular 

aspect to investigate [32-34], and this is where we put our effects in. Simply imaging that the Cu foil 

used for CVD graphene growth is neither pure (98% purity) nor smooth (facets and grains in 

polycrystalline Cu foil), we would naturally wonder how an atomic-thick layer of film may grow on 
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top of it with high quality. Under such a motivation, we performed atomic-scale STM studies of 

graphene films grown on Cu(111), Cu(100), and polycrystalline Cu  with the same modified recipe 

(described in Section 2.2) in ultra-high vacuum (UHV).  

2.2 Sample Preparation in UHV  

2.2.1 Preparations of Cu Substrates 

The crystal structure for Cu single crystal is Face Centered Cubic (FCC) (Fig. 2.2a). If the bulk is cut 

normal to a crystalline direction of (x, y, z), the exposed surface is usually labeled as Cu(xyz). The 

surface structure depends on the crystallinity of the surface. Here, we choose two most common Cu 

surfaces, Cu(111) and Cu(100), to grow graphene on. As shown in Fig. 2.2b, the Cu(111) surface 

structure is a hexagonal lattice with a lattice constant of 2.55Å, and the stacking order between the 

layers follows ABCABC….  In Fig. 2.2c, it shows the square lattice of Cu(100) surface, with a lattice 

constant of 2.55Å.  The single crystals that we used in our experiments are pre-cut at desired 

crystalline orientations. Both of the single crystals are disks of 1.5mm think and 9mm in diameter.  

 

Fig. 2.2 (a) FCC structure for Cu single crystal;  (b) Hexagonal lattice of Cu(111) surface, 

with lattice constant of 𝑎 = 2.55Å; (c) Square lattice of Cu(100) surface, with lattice 

constant of 𝑎 = 2.55Å 

(a) (b) (c) 
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 A standard way to prepare clean surfaces of single crystals in UHV is by repeated cycles of 

Ar+ ion sputtering to remove the surface contaminants and subsequently annealing to flatten the 

surfaces. Shown in Fig. 2.3a is a typical Cu(111) surface with sputtering but not annealing. 

Sputtering (at Ar pressure of 5       torr, accelerating voltage of 1.5kV, and emission current of 

20mA for 15mins) creates mountain/valley-like features over the Cu(111) surface, and these 

features are formed by layers of Cu terraces as evidenced by the steps and step heights of ~2Å in 

the line profile in inset of Fig. 2.3a. After a subsequent annealing (at 650oC for 15mins) after 

sputtering, the surface rearrange into large flat terraces so as to minimize the surface energy. 

Shown in Fig. 2.3b is a typically clean Cu(111) surfaces that we usually obtain. However, if the 

surface contains a good amount of impurities, it is usually difficult to get as clean and large terraces 

as in Fig. 2.3.b. We will show more results of this case in session 2.2.2 when we deposit a lot of 

carbons on the surface.  

 Following the standard recipe describe in last paragraph, we prepared both Cu(111) and 

Cu(100) surfaces prior to the growth of graphene on them. Over a large scale (~300nm), both 

surfaces show terraces as that in Fig. 2.3b. However, when zooming into a smaller scale, we observe 

atomic size depletions on Cu(111) surface (Fig. 2.3c and line profile in Fig. 2.3d) but not on Cu(100) 

surface. Such depletions originate from the sulfur (S) impurities in Cu single crystals[35], and 

should be in both Cu(111) and Cu(100). The S impurities stand out only on Cu(111) surface, 

because they act as scattering centers for the two dimensional electron gas (2DEG) of Cu(111) 

surface states [35], but no surface states are present on Cu(100) surface. A low bias (Vbias=0.1eV) 

topography on Cu(111) surface displays ripple-like features surrounding these defects as a 

consequence of quantum interferences from scattering, as shown in Fig. 2.3c. 
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2.2.2 Preparations of Graphene on Cu Substrates 

After obtaining clean Cu surfaces, we are ready to prepare graphene thin films on top of them. Here, 

we choose ethylene (C2H4) as the only precursor for the graphene growth because it is easier to 

(a) (b) 

(c) (d) 

Fig. 2.3 Preparations of Cu(111) surface. (a) STM topography of Cu(111) surface after 

𝐴𝑟+ bombardment; (b) STM image of clean Cu(111) surface, displaying terraces and 

steps; (c) Zoom-in of Cu(111) surface, showing sulfur defects (atomic depressions); (d) 

Line profile across one sulfur defects, as marked by the arrow in (c), showing a depth of 

~0.15Å for the defect and a wavelength of ~15Å for the ripple-feature. Scanning 

conditions: 𝑉𝑏𝑖𝑎𝑠 =  .8𝑉 and 𝐼𝑠𝑒𝑡 =  .8𝑛𝐴 for (a) and (b); 𝑉𝑏𝑖𝑎𝑠 =  . 𝑉 and 𝐼𝑠𝑒𝑡 =  .3𝑛𝐴 

for (c). 
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monitor one component at one time in UHV chamber. The only two parameters that we can adjust 

are pressure of C2H4 and temperature of Cu substrates.  

 At the first trial of growth, we attempted to grow graphene on Cu(111) by heating up the 

crystal up to ~900oC in C2H4 at a pressure of ~10-5 torr range for 20mins (up to 104L of C2H4 

deposited on to Cu surface). This was followed by annealing the sample at 800oC for 15mins at 10-9 

torr and cooling down to room temperature. We found that these conditions are not sufficient to 

grow large-area graphene on Cu(111) surfaces. Comparing with the previous in-situ graphene 

growths in which graphene was grown by passing ~100L hydrocarbon over heated transition metal 

substrates [12, 13, 36], it indicates that the catalytic efficiency of Cu is much lower than that of 

other transition metals such as Ni, Ru, Ir, … We did, however, find evidence of carbon incorporation 

into Cu single crystals – the well-ordered terraces of pristine Cu(111) disappeared and are replaced 

by a rough topology with islands and valleys as shown in Fig. 2.4a. A natural question is whether 

these islands are graphene nano-islands. The answer is no because the step heights for islands and 

valleys on this surface are the same as Cu(111) step height, ~2Å, as displayed in the line-profile in 

Fig. 2.4b. Further-more, the atomic resolution topography on the surface only show a hexagonal 

lattice with lattice constant same as that of Cu(111), ~2.55Å. Therefore, we conclude that the 

surface in Fig. 2a is indeed a disordered Cu (111) surface. Sequential scans of topography images 

taken over the same area, in Fig. 2.4c and Fig. 2.4d, show that these Cu islands and valleys can 

diffuse over the surface in a relative short time scale, less than 4mins per scan. To be specific, we 

highlighted the changes in Fig. 2.4c and Fig. 2.4d, where the black arrow points to the position with 

two depressions getting merged and the write arrow points to spot with the top layer of Cu 

vanishing after one scan. More changes in the sizes and shapes of islands and depressions are also 

observable in the two scans.   



 
 

CHAPTER 2. Influence of Cu Crystal Surface on CVD Graphene Growth    45                    

 

 We attribute such an unstable, disordered surface to the incorporation of carbon atoms in 

the top layers of the crystal, which prevents Cu surface arranging in large terraces as in the case of 

pristine Cu(111). Therefore, we annealed such a rough Cu(111) surface at high temperature of  

800oC for extended periods of time of a few hours. As a result, the islands and valleys combine to 

form well-ordered terraces, as shown in Fig. 2.5a. Taking a careful look at the terraces, we notice 

(a) (b) 

(c) (d) 

Fig. 2.4 Cu(111) surface after 1st trial of graphene growth. (a) STM image of Cu(111) 

surface after 1st trial of graphene growth, showing islands and depressions over the 

surface; (b) Line profile at the position indicated by the blue arrow in (a), confirming 

the step height of 2.0Å; (c) and (d) Sequential scans of STM images taken at the same 

area, with the black arrow highlighting the merge of two depressions and writing arrow 

pointing the disappearance of a top layer. Scanning conditions: 𝑉𝑏𝑖𝑎𝑠 =  .6𝑉, 𝐼𝑠𝑒𝑡 =

 .8𝑛𝐴. 
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that the hexagonal island in the center of the image does not align with any other terraces, and the 

step height of this island is ~1.5Å (Fig. 2.5b), different from that of Cu(111). Moreover, the atomic 

resolution topography on this hexagonal island displays a honeycomb lattice with a lattice constant 

of ~2.45Å (inset of Fig. 2.5a). Therefore, it is evident that this center island is a piece of graphene 

naon-flake. It is worth to stress on two points here. First, the DOS of pristine graphene around its 

Fermi level (e.q. Dirac point) is much smaller than that of Cu(111) surface states, because graphene 

is a semi metal with almost zero DOS around Dirac points [37] while Cu(111) surface states is 

metallic with constantly high DOS above -0.5eV (referenced with its Fermi level) [35]. Such a 

difference in DOS is exactly the main reason why the apparent height of graphene on Cu(111) is 

smaller than that of Cu(111) steps. Second, as highlighted in Fig. 2.5.a, the orientations of the edges 

of the graphene island match very well with the crystalline directions of the honeycomb lattice. This 

indicates that the zigzag edge is the growth front for this graphene nano-island. A survey across the 

surface shows less than 1% of surface is covered by such islands, which is far away from a full 

coverage of monolayer graphene.  

 

(a) (b) 

Fig. 2.5 Graphene nanoisland. (a) STM image of a hexagonal graphene nanoisland 

grown on Cu(111); inset image shows the honeycomb lattice obtained on the 

nanoisland, with zig-zag edge aligned with the edge of island; (b) Line profile taken at 

the position along the blue arrow in (a), with graphene’s apparent height of 1.5Å. 
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 In order to achieve large-area monolayer graphene, the results of the first trial suggest to 

increase the C2H4 exposure to the hot Cu surface. Accordingly, the clean Cu(111) single crystal was 

exposed at ~900oC to 1 mtorr C2H4 for 5mins (~3     L), which was followed by annealing at 

800oC in UHV for 15mins. As a result of this preparation procedure, we achieved monlayer 

graphene covering the entire Cu(111) surface. We applied the same recipe for graphene growth on 

Cu(100) surface, and Cu foil as well. Sooner after the growth, we transferred the samples from the 

preparation chamber into STM chamber for characterizations. The results of STM characterizations 

are discussed in details in the following session 2.3, and Raman spectroscopy measurements are 

shown in session 2.4 as well.  

2.3 Atomic Scale Characterizations of Graphene/Cu Substrates 

2.3.1 Graphene/Cu(111) 

Over a large scale of a few hundreds nanometers, the surface displaces large and clean terraces just 

as the pristine Cu(111) surface does, as shown in Fig. 2.6a. A close look at one of the terraces shows 

a hexagonal pattern with a periodicity of ~6   .5   and a peak-to-trough apparent height of 

 .35   . Å, as shown in Fig. 2.6b. Atomic resolution topography, in Fig. 2.6c, clearly displays the 

perfect honeycomb lattice of pristine graphene. Aside from the hexagonal superstructure, a few 

dark depletions are also observable over the area in Fig. 2.6b, one of which is highlighted by a red 

dashed box. These depletions result from the sulfur impurities in the Cu single crystal underneath 

graphene, and graphene films grow over them without any interruptions in the lattice. As shown in 

Fig. 2.6d, the honeycomb lattice of graphene runs continuously across such a defect in Cu. This 

observation shed light on the question whether impurities in Cu substrates cause defects in 

graphene grown on top. Apparently, our results suggest that, impurities, at least the ones at atomic 

sizes, would not affect the graphene quality.  
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The hexagonal superstructure observed in Fig. 2.6b is in presence through the entire 

surface of graphene/Cu(111). It can be explained by the “beating” formed by overlaying the 

honeycomb lattice of graphene on top of the hexagonal lattice. As shown in Fig. 2.7a and Fig. 2.7b, 

hexagonal superstructures with different periodicities form when a layer of graphene is placed on 

top of a layer of Cu(111) with mis-oriented angles of   = 2
  and   =  5

  respectively.  

(a) (b) 

(c) (d) 

Fig. 2.6 Graphene grown on Cu(111) single crystal. (a) Large scale STM image of 

gr/Cu(111), showing large and flat terraces; (b) Zoom-in STM image, showing Moiré 

pattern with periodicity of ~6.0nm; (c) Atomic resolution topography, showing perfect 

honeycomb lattice of graphene; (d) Atomic resolution STM image of graphene over 

sulfer defect in Cu substrate. Scanning conditions: 𝑉𝑏𝑖𝑎𝑠 =  .6𝑉 and 𝐼𝑠𝑒𝑡 =  .8𝑛𝐴.  
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A simple mathematical way to model such a problem is to sum up two periodic lattices, for 

instance, in one dimensional case, 

 =    (   )      (   ) ( 2.1 ) 

where    and    are the wave vectors for the two periodic lattices. Eq.2.1 can be further simplified 

as, 

 = 2    (
     
2

 )    (
     
2

 ) ( 2.2 ) 

Here we adopt the assumption that      , thus the periodicity of Eq.2.1 can be considered from 

two situations. 

(1) If |
  +  

     
| =    , then the wave vector for Eq.2.2 is exactly      . That is equivalent to 

say the two lattices are commensurate at the wave vector of      . It is better illustrated 

(a) (b) 

Fig. 2.6 Cartoon diagrams visualizing Moiré pattern formed by graphene and Cu(111). 

Depending on the angle between graphene and Cu(111), the Moiré pattern wavelength 

and angle vary. 
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by the example in Fig. 2.7a, where   =  . ,   =  . , and |
  +  

     
| =   . For any two points 

which are separated by   =
  

     
, as highlighted by the dark arrows in Fig. 2.8a, their h 

values are exactly the same. The superstructure from Eq. 2.2 are also outlined with red 

dashed lines which repeats at a frequency of       . 

 

(a) 

(b) 

Fig. 2.8 Examples of Moiré pattern in 1-dimensional situation. (a) Commensurate case 

when|
𝑘 +𝑘 

𝑘  𝑘 
| = 𝑁   . The envelop has wave vector of 𝑘  𝑘 ; (b) Non-commensurate 

case when |
𝑘 +𝑘 

𝑘  𝑘 
| ≠ 𝑁   . The envelop has wave vector of 𝑘  𝑘 . 
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(2) If |
  +  

     
| ≠    , then the wave vector for Eq.2.2 could be assigned as, but not exactly in 

fact      . This is because the two lattices are not commensurate at wave vector of 

     , but the super-structure pattern almost repeat at the periodicity of   =
  

     
. For 

instance,   =  . ,   =  .85, and |
  +  

     
| = 3 3⁄ .  As illustrated in Fig. 2.8b, the two spots 

(highlighted by two arrows) separated by    do not have the same h values, but the 

outlined envelop have a periodicity about   .   

Therefore, the wave vector of two periodic lattice overlapping each other can be approximated by  

  =       . ( 2.3 ) 

This conclusion in one dimensional case can be generalized to two dimensional case as well, but 

attentions should be paid to the symmetry of the two lattices. In the case of Cu(111) and graphene, 

both of whose lattices have six-fold symmetry, therefore 

  ⃗⃗⃗⃗ =   ⃗⃗ ⃗⃗     ⃗⃗ ⃗⃗ ⃗⃗   , ( 2.4 ) 

where   ⃗⃗ ⃗⃗  and    ⃗⃗ ⃗⃗ ⃗⃗   stand for the wave vectors of graphene and Cu(111) respectively. The relation in 

Eq. 2.4 is displayed in Fig. 2.9. Due to symmetry, we only consider the angles of misorientation 

within the range from 0o to 30o. With the value of Cu(111) and graphene wave vectors known, we 

can calculate the periodicity of the superstructure from the angle mismatch (Θ) between Cu(111) 

and graphene, and vice verse,  through the relation 

  = √  
     

  2    ( )      . ( 2.5 ) 
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 Surveying over the graphene/Cu(111) surface shows that the majority of the super-

structures seen on the surface have a wavelength ~6nm. Putting   =
  

 
    ,    =

  

 .   
     

and    =
  

 .   
     in Eq. 2.5, we found the angle between graphene lattice and the underlying 

Cu(111) lattice is  =   . This indicates that graphene primarily grows in registry with the Cu(111) 

hexagonal lattice underneath, and it is further confirmed by the Low Energy Electron Diffraction 

(LEED) pattern in Fig. 2.10. In LEED pattern, the six brightest spots represent the combination of 

Bragg peaks of Cu(111) and the aligned graphene pieces. Besides this, a faint ring is also visible at 

the same diameter as the six Bragg peaks, representing the crystalline orientations of the remaining 

graphene pieces which are misoriented from Cu(111) lattice.  

Fig. 2.9 Calculation of Moiré pattern between graphene and Cu(111). Wave vector of 

Moiré pattern equals to the difference between that of Cu and graphene. 
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In the presence of graphene domains with different crystalline orientations, it is natural to 

ask where and how these domains stich together. Fig. 2.11a and Fig. 2.11b are two intereting cases 

where a grain boundary is found on the surface of graphene/Cu(111) surface. Fig. 2.11a shows an 

image taken on an area of the sample where a number of nm-scale impurities are present. The 

super-structure orientations and wavelengths are clearly different across the line of impurities, 

showing that graphene grain boundaries can be stabilized by such large-scale impurities. In Fig. 

2.11b, we see that a graphene grain boundary exists at the step edge of an atomic terrace of 

Cu(111). However, the large-scale impurities in Fig. 2.10a and the step edges in Fig. 2.10b are not 

necessary for the formation of grain boundary. Instead, a more common case of graphene grain 

boundaries is shown in Fig. 2.11c where the two mis-oriented honeycomb lattices merges together 

through atomic scale defects. Due to the electronic component in STM topography, it is hard to 

directly visualize the structure of the defects through STM. Later on Transmission Electron 

Microscopy (TEM) results revealed that the grain boundaries are primarily made of pentagons and 

heptagons [20]. The domains of graphene usually runs across the steps of Cu(111) without any 

Fig. 2.10 LEED pattern of graphene/Cu(111) taken at beam energy of ~70eV. Yellow 

arrow pointing the Bragg lattice of Cu(111) and aligned graphene domains, and red 

arrow highlighting the ring from the LEED pattern of mis-oriented graphene domains.  
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disruption in graphene lattice. As shown in Fig. 2.11d, the Moiré pattern extends continuously from 

the upper terrace to the lower one, indicating the continuity of the honeycomb lattice of graphene.  

 

(a) (b) 

(c) 

(d) 

Fig. 2.11 Grain boundaries in graphene films grown on Cu(111) surface. (a) One grain 

boundary stabilized by nano-scale impurities, with red and green hexagons highlight 

the two Moiré patterns on two sides of the grain boundary; (b) One grain boundary at 

the step edge, proven by two different Moiré patterns on the two terraces, with scale 

bar of 5nm; (c) One grain boundary on the terrace of Cu. Inset is a zoom-in across the 

grain boundary (d) A graphene domain runs continuously over a Cu step (derivative 

image). Scanning conditions: 𝑉𝑏𝑖𝑎𝑠 =  .8𝑉 and 𝐼𝑠𝑒𝑡 =  .6𝑛𝐴.  
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In several previous experiments [38, 39], graphene has been reported to be impervious to 

many gases and chemicals, and thus provides an atomically-thin protective coating for the surface 

to which it adheres. We have probed this property of graphene on the Cu(111) surface by exposing 

the graphene-covered Cu(111) crystal to the ambient atmosphere for about one month and then 

imaging the surface without performing any cleaning cycles.  Under normal circumstances, the 

reactive surface of Cu would be completely oxidized, but we found (in Fig. 2.12) that the 

superstructure of graphene on Cu(111) can still be easily imaged, indicating that both graphene and 

Cu(111) surfaces survive from oxidation in air.  

 

 After taking careful investigations on the topographic structures of graphene/Cu(111), we 

further studied the electronic properties of such system by performing STM measurements at 

different energy levels. Shown in Fig. 2.13a –c are a sequence of STM topographs taken over the 

same area of the surface at various tip-sample bias voltages. Three prominent features are 

observable in these images – point-like defects, electronic “rings” around the point defects and the 

Fig. 2.12 Graphene on Cu(111) after exposure to air for one month. Moiré pattern 

indicates that graphene prevents Cu(111) surface from getting oxidized in ambient 

atmosphere. Scanning conditions: 𝑉𝑏𝑖𝑎𝑠 =  . 𝑉 and 𝐼𝑠𝑒𝑡 =  .5𝑛𝐴. 
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hexagonal superstructure. The point-like defects have been shown to be sulfur defects in Cu(111) 

substrates [35] and graphene runs across them continuously. The second feature observed in the 

graphene/Cu(111) surface is the presence of “rings” around the sulfur defects at bias energies 

greater than -500meV (referenced to the Fermi level of graphene/Cu(111)). These “rings” are 

similar to the scattering interference patterns seen on pristine Cu(111) surface [35]. Fig. 2.13d 

displays the wave vectors of the “ring” features in Fig. 2.13a and b respectively. As we see, the wave 

vectors are not symmetric about Femi levels, and their value of ~3.5 nm-1 is much larger than that 

of graphene near Dirac points, [0, 1.0]nm-1 for the energy window of [ED, ED+1.0eV]. Therefore, it is 

convincing that these ripples are scattering interference patterns from Cu(111) surface states, 

instead of from graphene. Furthermore, comparing the wave vectors in Fig. 2.13d with that of 

pristine Cu(111) at the same energies, they still differ a little from each other. This indicates the 

influence of the existence of the adjacent monolayer graphene films on the electronic structure of 

Cu(111) surface. We have delivered a full set of STS map measurements to probe the interactions 

between graphene and Cu(111) surface states when they are put into proximity, and found that the 

band edge of Cu(111) surface states is shifted up for about 100meV and the effective mass of 

Cu(111) surface states is renormalized to 1.5 times of the pristine one. Later on in this session, we 

will have detailed descriptions of these findings. The third feature seen prominently in Fig. 2.13 is 

the hexagonal pattern which we described earlier. We note that while the wavelength of the 

superstructure is not energy dependent, the intensity of the pattern is strongly dependent on the 

bias energies and becomes very weak below -500meV where happens to be about the band edge of 

Cu(111) surface states. This indicates that the Moiré pattern between graphene and Cu(111) is not 

only a result of geometry, but also coupled with electronic interactions.  
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 As seen from the topography in last paragraph, the ring-like feature originated from the 

quantum interferences of Cu(111) surface states has a strong energy dependence. To quantify such 

an energy dependence as well as to compare the result with pure Cu(111) surface states, we 

performed careful differential conductance maps (dI/dV maps) at various bias energies and did fast 

Fourier transformation (FFT) of each map to obtain the wavelength of the ring feature. We show 

(a) (b) 

(c) (d) 

Fig. 2.13 Bias dependent topographs of graphene/Cu(111). (a)-(c) STM topography 

images taken at different bias energies of -50meV, 50meV, -500meV respectively. 

Insets of (a) and (b) showing Fourier transformation of their corresponding 

topography; (d) Plot of angular averaged FFT intensity V.S. wave vector. 
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one of such maps taken at an area of            at a bias energy of 0.2eV in Fig. 2.14 and its FFT 

in the inset of Fig. 2.14. Clearly, we observe two rings in the FFT image. One guess could be that one 

of them results from the quantum interference pattern of Cu(111) surface states and the other one 

from graphene. Whether this guess is the fact will be further testified by the plot of energy V.S. wave 

vector.  

 

 Fig. 2.15(a) displays the FFT images for various bias energies. The two-ring feature shows 

up in all positive bias voltages (i.e. above Fermi level) and is absent in all negative bias energies. 

The relation between bias energies and the wave vectors extracted from FFT maps is plotted in Fig. 

2.15(b). There are two prominent features shown in the plot. First, one wave vector (red diamond) 

of the two rings above Fermi level stays constant over the positive bias energies while the other set 

(green diamond) of plot is well fit by a parabolic function (blue dashed line). This fact states that 

Fig. 2.14 Quantum interference pattern map of graphene/Cu(111) surface at an area of 

          . Scanning conditions: 𝑉𝑏𝑖𝑎𝑠 =  .2𝑉 and 𝐼𝑠𝑒𝑡 =  .2𝑛𝐴. Inset shows the FFT 

of this map, with two sets of rings clearly seen. 

20nm
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one ring with parabolic band structure indeed originates from the scattering of Cu(111) surface 

states while the other one with constant wave vector is not related with quantum interferences in 

graphene. The interference pattern with constant wave vector was previously reported in Au(111) 

surface states [40, 41]. However, the exact reason of this feature remains unknown. Some guess is 

the in-elastic tunneling of Cu(111) surface states electrons with higher tunneling energies, or the 

elastic tunneling of Cu(111) bulk electrons. Second, as a comparison with pure Cu(111) surface 

states (red circles and solid black fitting line), the band structure of Cu(111) surface states is 

strongly modified by the presence of a layer of graphene film on top. The fitted results show that 

the effective mass increases from 0.4   to 0.58   (~50% incensement) and the band edge shifts 

from -0.45V to -0.3V. Such dramatic changes in the band structure indicate the interactions 

between graphene layer and Cu(111) surface states. One obvious confinement resulting from this 

overlying geometry is the Moiré pattern superstructures. Therefore, we studied the modified band 

structures of the Cu(111) surfaces in multiple areas with different Moiré pattern periodicities, and 

show our results in Fig. 2.15(c). Clearly, the modified band structure of Cu(111) surface states is 

independent on the Moiré pattern wavelengths. This is different from the findings in the literature 

on an adhesion layer of metal atoms on top of Cu(111) [42, 43] where it is stated that the 

superstructure is the origin of band structure modification. However, in the literature, the band 

structure modification is more of a shift in band edges, rather than a big change in effective mass.  

 At this stage, we do not have a definite answer to why the presence of graphene monolayer 

modifies Cu(111) surface states so dramatically. As we know, graphene is a true two-dimensional 

electron gas (2DEG) which behaves as massless Dirac fermions, while Cu(111) surface states is a 

quasi-2DEG whose band structure obeys Schrödinger equation. When these two 2DEG are put into 
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proximity, the interactions/screenings between their electrons must play an important role in 

determining the resulted electronic structures.  

 

2.3.2 Graphene/Cu(100) 

Besides Cu(111), Cu(100) is another crystalline facet commonly seen in Cu polycrystals [44-46]. 

Therefore, it is important as well to understand the graphene growth on Cu(100) surface. Here, the 

crystal structure of Cu(100) is a square lattice, which has a totally different symmetry compared to 

the honeycomb lattice of graphene.  

(a) 
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Fig. 2.15 Modified band structure of Cu(111) surface states in the presence of graphene 

monolayer. (a) A set of FFT of dI/dV maps taken over bias energies from -0.35V to 0.35 

V. (b) Band structure of graphene/Cu(111). (c) Band structure of graphene/Cu(111) 

taken at multiple areas with different Moiré pattern periodicities.  
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 The same recipe of producing large-area monolayer graphene on Cu(111) single crystal was 

employed here to grow graphene on Cu(100). As a result, we find that while most of the Cu(100) 

surface (>95%) is covered by with graphene films, the microscopic structure of graphene shows 

nano-scale valleys in graphene reaching down to the surface of Cu(100) substrate, as shown in the 

large scale STM topography in Fig. 2.16a and the line profile in Fig. 2.16b. These results certainly 

indicate a much poorer quality of graphene grown on Cu(100) surface, as compared to that on 

Cu(111).  

 

 The graphene layer itself on Cu(100) mostly displays a linear superstructure of ~11Å 

periodicity, as shown in Fig. 2.17a. We can clearly observe the honeycomb lattice of graphene on 

top of this linear superstructure, and find the angle mismatch of approximately 2o (in case of Fig. 

2.17a) between the linear pattern and the honeycomb lattice. To visualize the origin of this linear 

superstructure, we can put a layer of honeycomb lattice on top of a layer of square lattice with their 

crystalline orientation aligned at ~2 , as shown in Fig. 2.17b. Aside from the majority of the linear 

(a) (b) 

Fig. 2.16 Graphene grown on Cu(100). (a) Large scale STM image of graphene/Cu(100) 

showing cracks in graphene films. (b) Line profile along the blue arrow in (a), showing 

the crack in graphene film reaches the surface of Cu(100). 
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pattern, we do occasionally observe some “quasi-hexagonal” superstructures, such as the one 

shown in Fig. 2.17c, as well. This “quasi-hexagonal” forms by properly choosing the mis-alignment 

between graphene lattice and Cu(100) lattice, as shown in Fig. 2.17d.  

 

 Based on the symmetries of honeycomb lattice of graphene and square lattice of Cu(100), 

there are two ways to align graphene lattice with Cu(100) lattice. One alignment is to match one 

reciprocal lattice vector of graphene to a-axis of Cu(111), as shown in Fig. 2.18a, and the other one 

(a) (b) 

(c) (d) 

Fig. 2.17 Moiré pattern of graphene on Cu(100) surface. (a) and (c) STM topography of 

graphene on Cu(100), displaying linear Moiré pattern and “quasi-hexagonal” Moiré 

pattern; (b) and (d) Cartoon diagrams, visualizing Moiré pattern from mismatching 

Cu(100) lattice with graphene lattice. 
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to align graphene lattice vector along with b-axis of Cu(111), as illustrated in Fig. 2.18b. A LEED 

pattern of graphene/Cu(100), in Fig. 2.18c, indeed shows two sets of hexagons and they are 30o 

rotated with each other. With the help of illustration from Fig. 2.18a and Fig. 2.18b, we assign the 

two sets of hexagons are two sets of graphene Bragg lattice which are aligned with a-axis and b-axis 

of Cu(100) surface respectively. The strong intensity of the two hexagons indicates that graphene 

growth on Cu(100) surface prefers to be in registry with Cu(100) crystalline directions. Besides 

these two sets of hexagons, a faint ring feature also shows at the same radius as the two hexagons in 

the LEED pattern. This ring feature signals for the other graphene domains whose orientations are 

off from a- and b-axis of Cu(100), which is in good agreement of observations of “quasi-hexagonal” 

superstructures in STM images in Fig. 2.17c.  

  

2.3.3 Graphene/Cu foils 

The Cu foils used in typical CVD graphene growth in tube furnaces are polycrystalline, where much 

more crystalline facets of Cu are in presence [32]. Based on our comparisons between graphene 

(a) (b) (c) 

Fig. 2.18 LEED pattern of graphene on Cu(100) surface. (a) and (b) Cartoon diagrams 

for graphene aligning with Cu(100) lattice; (c) LEED pattern of graphene/Cu(100), 

displaying two sets of hexagons aligned with two crystalline orientations of Cu(100), 

𝑘𝑎⃗⃗⃗⃗  and 𝑘𝑏⃗⃗⃗⃗ . 
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growth on Cu(111) and Cu(100) single crystals, we find that graphene growth faster and better on 

Cu(111) than on Cu(100) with the same growth recipe, and predict that it requires much stronger 

conditions to produce good quality of graphene on Cu foils than on Cu(111)/Cu(100) single crystals. 

As a test, we attempted to produce graphene on Cu foil with the same growth conditions as on Cu 

single crystals, and rarely found any graphene flakes grown. Fig. 2.19 shows an optical image of a 

piece of graphene flake on SiO2/Si substrate which was grown on Cu foil in UHV conditions. As we 

see, the coverage of growth is very low since we only find such isolated flakes after the growth. 

Moreover, the growth front is rather complicated due to the un-isotropy of the carbon diffusion on 

Cu foil, as compared to the zigzag growth front and the hexagonal island of graphene/Cu(111) as 

shown in Fig. 2.5b.  

 

 After comparing graphene films grown in UHV conditions on Cu(111), Cu(100) single 

crystals and Cu foils, it is worth to take a microscopic look at the graphene films grown in tube 

furnace with the standard recipe. So we sent a piece of as-grown graphene/Cu foil, applied a gentle 

annealing treatment at ~350oC for 3-4 hours, and imaged with STM afterwards. Fig. 2.20a displays 

Fig. 2.19 Optical image of graphene flake grown on Cu foil in UHV and transferred to 

SiO2/Si substrate, displaying dendritic structure of the graphene island. 

2.23µm

26.68µm
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a large scale STM topography of graphene on Cu foil. The overall roughness results from the 

polycrystalline nature of Cu foil which preserves even after 1000oC high temperature treatment 

during graphene growth. A close look at the graphene on a terrace of Cu foil, in Fig. 2.20b, clearly 

shows the perfect honeycomb lattice, as well as a faint Moiré pattern. We did notice that there are 

no atomic defects observed in the domains of graphene produced by this CVD method. 

 

2.4 Raman Spectroscopy of Graphene/Cu Substrates 

Raman spectroscopy has been a necessary technique to characterize graphene ever since it 

demonstrated its unique capability in 2006 [47]. Here, after performing microscopic level studies 

on graphene grown on Cu single crystal and polycrystalline substrates via STM, we also 

characterized these systems by raman spectroscopy from a micron-meter scale perspective.  

 After the growth and STM characterizations in-situ, we took graphene/Cu substrates out of 

UHV chamber and performed raman measurements on them without any further treatment ex-situ. 

(a) (b) 

Fig. 2.20 STM topography images of graphene on Cu foil grown by conventional CVD 

recipe. (a) Large scale topography displaying Cu foil roughness; (b) Zoom-in image on 

a terrace of Cu foil, showing perfect honeycomb lattice and a faint superstructure on 

top of it. 
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Fig. 2.21 upper panel shows a Raman spectroscopy taken on graphene/Cu(111). The presence of D 

peak in the spectrum indicates defects in the surveyed area which is the spot size of laser, ~20µm 

in diameter [48-50]. As STM topography images have proved that there are no atomic defects 

within the domains of graphene films, the defects detected here must originate from the ones at 

grain boundaries.  A rough estimation of defect concentration from Raman spectroscopy is by the 

equation reported by Ruinstra and Koenig [51], 

√
 

 
=
56 

  
 (
  
  
)
  

,  ( 2.6 ) 

where ρ is the concentration per nanometer-square and    is the excitation laser energy used in the 

Raman measurements in eV. We used green laser with wave length of 534     (~2.3eV) in the 

experiment, and measured the value of  
  

  
=  . . With the fact that the defects are at the edge of 

each domain, we have the relation between domain size and defect concentration, 

 =
         

   
 , ( 2.7 ) 

where    is the proper atomic density at graphene boundaries in unit of     , R is radius of the 

domain, and    is the width of the domain boundaries. Here we set   = 2Å and        
  , and 

put them into Eq. 2.6 and Eq. 2.7, we get    .   . Therefore, the estimated domain size of 

graphene grown on Cu(111) is in order of 1µm, which is slightly smaller than the ones (~3-4µm) 

from CVD tube growth.   

In Fig. 2.21 lower panel, a Raman spectroscopy of graphene grown on Cu(100) shows a 

much larger 
  

  
 ratio, indicating a much smaller domain size of graphene or much more defects in 
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the film. In conjunction with the valley-features in STM topography images (Fig. 2.14a and b), a 

much worse quality of graphene grown on Cu(100) is further confirmed.  

 

 Insightful analysis of Raman spectrum on graphene/Cu(111) and Cu(100) suggests  large 

non-uniform physisorbed strain in graphene films that depends on both the crystalline structure of 

Cu substrates and the registry between graphene and substrate [52]. The details are not covered in 

this thesis, and further information can be found in Ref. [52].  

 In summary of the STM and Raman studies on graphene grown on different Cu substrates, 

we demonstrated that Cu crystalline structure plays an important role in the quality and speed of 

CVD graphene growth on them. Graphene grows primarily in registry with the underlying Cu lattice 

for both Cu(111) and Cu(100) cases. The graphene has a hexagonal superstructure on Cu(111) with 

a significant electronic component, whereas it has a linear superstructure on Cu(100). The film 

quality is limited by the grain boundaries, and the best growth is obtained on the Cu(111) surface.     

Fig. 2.21 Raman spectra taken on graphene/Cu(111) and graphene/Cu(100). G and 2D 

peak showing monolayer graphene on Cu substrates, while D peak indicating the 

presence of defects in graphene films on Cu substrates. Larger D peak intensity of 

graphene/Cu(100) indicating worse quality of graphene on Cu(100) than on Cu(111). 
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Chapter 3  

Visualizing Individual Nitrogen Dopants in N-doped Graphene 

3.1 Overview of Nitrogen Doped Graphene 

Chemical doping is a powerful way to tailor the electronic properties of a host material via proper 

introductions of heteroatoms [1]. This technique has been used not only in semi-conductor industry 

as everyone knows [2], but also in graphitic materials such as graphite [3-7] and carbon nanotubes 

[8-11]. More recently, the discovery of graphene [12] made it possible to introduce this chemical 

doping method into inherently two dimensional (2d) systems [13], and it is expected to have 

fundamentally different consequences in altering the properties of such 2d host materials. In the 

last a couple of years, significant progresses in nitrogen doped (N-doped) graphene have been 

made in producing large-scale samples [14-34], characterizing structural/electronic properties [14, 

16, 18, 24, 27], and initiating potential applications [26-28].  

3.1.1 Fabrications of Nitrogen Doped Graphene 

In recent years, several experimental techniques have been developed to dope the carbon lattices. 

These include methods applied during growth of large-area graphene films [15, 16, 18, 19, 22, 25, 

26, 33, 34], and ways to modify the carbon materials after its growth [14, 17, 21, 23, 26, 29-32], as 

well as a new one-pot procedure to produce highly doped, few-layer graphitic structures [20].  
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 The main approach used to directly synthesize large-area N-doped graphene is chemical 

vapor deposition (CVD) [16, 22, 24, 25]. In addition to the precursors that are used during pristine 

graphene growth, we introduce another precursor which includes nitrogen element. Shown in Fig. 

3.1 is a typical CVD set up for synthesis of large-area N-doped graphene films on Cu foil substrates. 

The gray colored components stand for the ones same as in pristine graphene growth [35] while 

the yellow colored parts highlight the new ones specifically for N-doped graphene growth. The N-

doped graphene films that we use in our experiment are grown in such a setup, with Cu foil as the 

substrate, methane as the carbon source, and ammonia as the nitrogen source. By tuning the ratio 

between methane and ammonia, we can well control the nitrogen concentration in the resulted 

graphene films. To be specific, the partial pressure of methane during growth is monitored to be 

1.8torr while that for ammonia is selected to be any value in the range from 0.01torr to 0.15torr. As 

a result of these growth parameters, the nitrogen doping level in the graphene films ranges from ~0% 

to ~0.5%. It is hard to achieve even higher nitrogen doping level, because the ammonia precursor 

starts to react strongly with Cu substrate and prevents the graphene growth when the ammonia 

partial pressure exceeds 0.15torr in this setup.  

 

Fig. 3.1 Cartoon for Nitrrogen doped graphene CVD growth setup, including three precursor 

gases, a quartz tube, a piece of Cu foil, a furnace and a mechanical pump. The gray background 

parts for pristine graphene growth while the yellow highlighted part for N-doped growth. 
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 Apart from our recipe for N-doped graphene growth, other substrates [24] or precursors 

[25] have also been employed in producing N-doped graphene films. In fact, different growth 

recipes result in different doping forms of nitrogen dopants. It has been reported that using nickel 

(Ni) film as substrate and methane/ammonia ratio of 5:1 as precursor results in mainly pyridinic 

and pyrrolic nitrogen dopants in the graphene lattice [24]; however, if mixture of ethylene and 

ammonia is used as precursor while Cu foil is used for substrate, then the majority of the nitrogen 

dopants are in the pyridinic doping form [25]. Moreover, an atmospheric-pressure CVD growth 

with a mixture of methane and ammonia on Cu substrate is shown to produce di-graphtic-nitrogen 

dopants in graphene lattice [22]. Contrasting to these reports, our growth recipe produce graphitic 

nitrogen doped graphene films. Shown in Fig. 3.2 is a diagram including different nitrogen doping 

forms.  

 

 Post treatment is an alternative, other than direct synthesis, to produce N-doped graphene 

films, especially on the insulating substrates, such as mechanically exfoliated graphene on SiO2/Si 

Fig. 3.2 Cartoon for different doping forms of nitrogen dopants in doped graphene films.  
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Hydrogen
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pyrollic
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substrate and epitaxial grown graphene on SiC substrate.  There are a few approaches that are 

reported to dope pristine graphene films after their synthesis, mainly including thermal reaction 

[21, 32], ion implantation [21, 23, 29], and plasma treatment [30, 31]. Thermal reaction refers to 

heating graphene samples in ammonia environment at high temperature (      ), in which the 

nitrogen doping level is controlled by the annealing time and the ammonia pressure. It has been 

proven that this method mainly incorporate nitrogen into graphene lattice via pyridinic doping 

form [21]. In an ion implantation treatment, high energy (~50-500eV) nitrogen ions (N+) shoot 

onto the graphene surface, and then a post annealing (~     ) process is applied in UHV. This 

method leads to a coexistence of pyridinic and graphitic nitrogen dopants. Depending on the energy 

and the flux of nitrogen ions, the ratio between the two doping forms and the overall nitrogen 

doping level are adjustable [29]. Plasma treatment is a popular way used to produce N-doped 

carbon nanotubes, and has been recently employed to synthesize N-doped graphene films, in which 

the carbon materials are placed in a nitrogen plasma atmosphere. The nitrogen concentration in 

graphene is controlled by the plasma strength and the exposure time as well. Different from the 

other two methods above, plasma treatment not only incorporates nitrogen into graphene as 

desired, but also introduce oxygen as a side effect. Notably, there is no up limit for the nitrogen 

doping level in these post treatment as long as the films preserve to be graphene-like. The reported 

values for nitrogen concentration reach up to ~10% [32] which is hardly possible for CVD 

approaches.  

 Of course, in addition to what we have mentioned, there are much more chemical ways to 

synthesize N-doped graphene films, for instance, segregation growth approach [33], arc-discharge 

approach [18], hydrazine solvo-thermal approach [34] and so on. More details can be found in a 
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recent review article about N-doped graphene in Ref. [26]. But in the following part of this chapter, 

we will focus on CVD grown samples.  

3.1.2 Characterizations of Nitrogen Doped Graphene 

Several characterization techniques, including x-ray photoemission spectroscopy (XPS) [24, 27], 

Raman spectroscopy [14, 16, 18], and transmission electron microscopy (TEM) [36], have been 

used to analyze the effects of the doping process in graphene.  

 

Before walking through these reported characterizations on N-doped graphene, it is worth 

to briefly describe the procedure for transferring graphene from a growth substrate to an insulating 

substrate, as it is prerequisite for certain techniques such as Raman spectroscopy. Shown in Fig. 3.3 

is a cartoon diagram of how to transfer graphene from a metal substrate to a target substrate. 

Firstly, coat a thin layer of polymer (2-6%PMMA dissolved in anisole) on the surface of graphene 

and dry it. Secondly, etch away the metal substrate by chemical solutions until PMMA/graphene 

floats on the solution. FeCl3 solution or (NH4)2SO4 solution is typically used for removing Cu and Ni 

Fig. 3.3 Cartoon for transferring CVD grown graphene from Cu foil substrate to target substrate  
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substrates. Thirdly, wash the PMMA/graphene in DI water a few times. Forth, scoop PMMA/ 

grapene with the target substrate and dry them in air. Finally, etch away PMMA in acetone and dry 

it again in air.  

 XPS is the first choice to characterize N-doped graphene because it provides the species, 

concentrations, and configurations in the material. Specifically, the peaks at ~400eV and ~285eV in 

the XPS spectrum of N-doped graphene correspond to the transitions from N1s and C1s to   bands 

of graphene respectively. The ratio of N1s peak intensity to C1s one is used to determine the 

nitrogen doping level in the film. Moreover, the N1s peak can be further deconvoluted to several 

individual peaks which are assigned to pyridinic N (~398.6eV), pyrrolic N (~400.5eV) and graphitic 

N (~401.8eV). Similarly, the ratio of the peak intensities between these N-related peaks indicates 

the concentration of each doping form.  

 Raman spectroscopy is an essential technique in N-doped graphene studies due to its power 

in graphene researches [37]. Although it could not provide specific element analysis, it is a good 

tool to probe the effects from chemical doping, such as impurity concentration and carrier doping 

level [38-40]. On one side, the incorporation of nitrogen atoms into graphene lattice is always 

accompanied by the introduction of defects, even for the graphitic doping form. Such defects lead to 

the appearances of D and D’ peak in Raman spectra. According to Tuinstra-Koenig relation [41], the 

impurity concentration can be determined from the intensity ratio between D peak and G peak. On 

the other side, the nitrogen dopants are supposed to contribute free charge carriers into graphene 

whose concentration can be monitored by the G peak frequency shift [42, 43].  

  Comparing to XPS and Raman spectroscopy, TEM directly visualizes the structures of the 

nitrogen dopants in graphene lattice. Due to the local charge redistribution, a graphitic nitrogen 
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dopant shows as a triangle which is formed by the three nearest neighboring carbon atoms from 

the dopant site. Such graphitic nitrogen dopants are observed on the N-doped graphene grown by 

methane and ammonia precursors on Cu foil substrate [36]. In contrast to this, no nitrogen dopants 

are observed on the sample prepared on Ni films. Instead, a good number of stone-wales defects are 

detected [44].  

3.1.3 Our Approaches to Study Nitrogen Doped Graphene 

As learned from the literature, nitrogen dopants may get incorporated in graphene lattice in various 

doping forms, and their local distribution is expected to be inhomogeneous. Till now, a microscopic 

understanding of the atomic and low-energy electronic structure induced by the doping process in 

monolayer graphene is still lacking, so does the correlation between them. In our experiment, we 

used the atomic-resolution imaging capabilities of the scanning tunneling microscopy (STM) to 

probe the local structure in the vicinity of a nitrogen dopant in monolayer graphene and 

spectroscopic (STS) imaging to measure the density of states and carrier concentration at the 

nanoscale. Furthermore, the capability of taking STM/S at the same area correlates the structural 

and electronic characters of N-doped graphene. As a supplement to STM/S measurement, we also 

employ scanning Raman spectroscopy, core-level x-ray spectroscopy and first-principles 

calculations to characterize the effect of nitrogen-doping on the graphene films. 

3.2 Topographic Characterizations of Nitrogen Doped Graphene 

3.2.1 Structure of Individual Nitrogen Dopants  

As soon as the N-doped graphene films are grown, they are transferred from CVD tube furnace into 

UHV chamber through ambient for STM/S characterizations. Then a gentle annealing process at 
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~350oC for ~3-4 hours is applied to the sample in order to get rid of any physisorbed species on the 

sample surface.  

 Shown in Fig. 3.4a is a large scale topographic image taken on N-doped graphene/Cu foil. 

Despite the background roughness from the Cu foil substrate, a good number of bright features are 

observed in addition to the honeycomb lattice. These bright features are almost identical and 

extend for a few atomic spacings [20, 45]. As a comparison, Fig. 3.4b shows a topography image 

taken on pristine graphene on Cu foil, where no extra features other than honeycomb lattice are 

observable. This indicates that these bright features in Fig. 3.4a are associated with nitrogen 

dopants. By counting the number of bright features at this area and associating each with a single 

nitrogen dopant, we arrive at a nitrogen doping concentration per carbon atom of 0.34%. We have 

taken same measurements across several similar samples and got nitrogen concentrations between 

0.23 and 0.35%. More discussions of this will be shown in Section 3.2.2. 

 

 A close-up topography of one of these doping features (shown in Fig. 3.5a) reveals three 

bright spots forming a triangle pattern. The distance between the bright spots is equal to the 

Fig. 3.4 Topography comparison between N-doped and pristine graphene. (a) STM image of N-

doped graphene. Bright features are associated with nitrogen dopants. (b) STM topography of 

pristine graphene, showing perfect honeycomb lattice. 𝑉𝑏𝑖𝑎𝑠 =  .6𝑉, 𝐼𝑠𝑒𝑡 =  .5𝑛𝐴 
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graphene lattice constant of 2.46Å. Far away from the doping feture, the honeycomb lattice of the 

graphene is recovered. As shown in Fig. 3.5b, we overlie a lattice mesh on top of Fig. 3.5a, where the 

vortexes stand for the hollow positions of the honeycomb.  Following the superimposed honeycomb 

lattice through the doping structure situates each of the three bright spots on a carbon atom of the 

 

 same sublattice (dark markers in Fig. 3.5b) and the center of the triangle on a carbon site in the 

opposite sublattice (white marker in Fig. 3.5b). A STM line scan through the dopant (Fig. 3.5c) 

yields a maximum apparent out-of-plane height of  .6   .   and would be consistent with the 
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Fig. 3.5 Topography of individual graphitic nitrogen dopants. (a) STM topography of a single 

graphitic nitrogen dopant in graphene. (b) Graphene lattice overlaid on top of image in (a), the 

white dot marking the nitrogen position, three black spots labeling three nearest neighbors of 

N atom, and six green dots for six atoms in a Benzene ring. 𝑉𝑏𝑖𝑎𝑠 =  .6𝑉, 𝐼𝑠𝑒𝑡 =  .5𝑛𝐴 (c) Line 

profile across the nitrogen dopant, as marked in (a). (d) Simulated STM topography of a 

graphitic nitrogen dopant.  
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scenario of a nitrogen atom substituting for a carbon atom and staying in the plane of the graphene 

film. Therefore, we attribute such three-spot triangle features to the individual 

substitutional/graphitic nitrogen dopants in the honeycomb lattice. From sampling areas on several 

different N-doped graphene samples, we observe that more than 90% of the dopants are of this 

form. Moreover, the observed STM image closely matches our simulated STM image (Fig. 3.5d) 

computed from the local density of states for graphitic doping where one nitrogen atom replaces a 

single carbon atom, as well as other recent calculations[46] . The calculated STM image shows the 

bright features (red spots in Fig. 3.5d) on the nearest neighbor carbon atoms to the nitrogen dopant 

(blue marker in Fig. 3.5d). Visible features extend to several lattice spacings from the nitrogen 

dopant with an overall triangular symmetry, which all fit with the experimental results.  

 A larger area STM image, shown in Fig 3.6a, locates 14 dopants all in the graphitic doping 

form. Apart from the local structure around each dopant, we also see long three “tails” extending 

from each dopant. The “tails” are aligned 30o off the crystalline directions of the honeycomb lattice. 

In fact, these features arise from the inter-valley electron scattering induced by the nitrogen dopant, 

and similar features have been seen before in other experiments [47, 48]. The fast Fourier 

transform (FFT) of Fig. 3.6a is displayed in Fig. 3.6b, showing evidence of this strong inter-valley 

scattering. Two sets of points arranged in hexagons are observed in Fig. 3.6b. Whereas the outer 

hexagon of points in the FFT corresponds to the atomic lattice, the inner hexagon of spots in this 

FFT locates at the six Brillion Zone (BZ) corners, Ks and K’s. This indicates the origin of the inner 

hexagon is the electron scattering between Dirac cones. Further discussions about scattering 

physics of graphene in the vicinity of nitrogen dopants will be shown in Section 3.3.4.  
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The STM topography surveys over multiple N-doped graphene films show that the majority 

of the doping occurs via graphitic substitutions. However, we indeed come across a few much more 

(a) (b) 

Fig. 3.6 “Tail” features in STM topography of N-doped graphene. (a) STM topography with 14 

graphitic N dopants, showing three “tails” extending from each dopant site. (b) FFT of image 

(a), with outer hexagon for atomic lattice and inner hexagon for inter-valley scattering, the 

origin of the “tail”-feature in topography (a). 𝑉𝑏𝑖𝑎𝑠 =  .6𝑉, 𝐼𝑠𝑒𝑡 =  . 𝑛𝐴 
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Fig. 3.7 STM topography of other defects observed in N-doped graphene films.  
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complicated features in the samples. Shown in Fig. 3.7 are four examples of these complicated 

structures. The feature sizes are much larger than that of the graphitic nitrogen dopant, indicating 

that they may contain more than one nitrogen/impurity in the structures. In the literature, the 

other two commonly observed doping forms in N-doped graphene are pyridinic and pyrollic forms. 

However, these features are nowhere close to an individual pyridinic N dopoant or a pyrollic one. 

Since they only occur at a very low concentration, we have not taken deep investigations over them. 

3.2.2 Distribution of Nitrogen Dopants 

Having taking a careful look at the structure of individual nitrogen dopants, we zoom out to a larger 

scale to investigate their distributions in space, and in honeycomb lattice as well.  

 Large scale STM images, such as those in Fig. 3.4a and Fig. 3.6a, can give us information on 

whether clustering of nitrogen dopants occurs during growth. To analyze the possibility of dopant 

clustering, we use STM images to calculate the averaged cumulative number of dopants (N(r)) as a 

function of distance (r) from a dopant site. A statistical uniform distribution requires a quadratic 

relation between these two quantities, i.e.  ( ) =    . In fact, we surveyed eight different areas on 

different samples with various concentrations of nitrogen dopants, and plotted the relation for each 

area in Fig. 3.8. All of the eight plots fall in the same trend in Fig. 3.8, as highlighted by the gray band, 

although they may have slightly shifts from one to the other in x(or y) direction. The trend of the 

plot corresponds to the distribution form, while the slight shift arises from the different nitrogen 

concentrations. Fitting from plot in Fig. 3.8 indeed gives a power of two which is consistent with 

quadratic distribution. This confirms that the nitrogen dopants are uniformly distributed in space 

during the growth of N-doped graphene films.  
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 However, the nitrogen dopants are embedded in the honeycomb lattice of graphene, which 

endorses another freedom, sublattices, in the consideration of nitrogen distribution. In principle, 

nitrogen dopants can be in either A or B sublattice of graphene lattice, and the triangle feature 

formed by the nearest neighboring carbon atoms has 180o rotation with respect each other. Shown 

in Fig. 3.9 a and b are two cartoons displaying substitutions in A and B sublattices respectively and 

the orientations of resulted triangles.  

 

 The orientation of the triangle pattern is therefore used as an indicator for identifying in 

which sublattice the nitrogen dopants are. Noticing in Fig. 3.10a, all the 14 triangles orient in the 

same direction, indicating that all the 14 nitrogen dopants substitute the carbon atoms in the same 

Fig. 3.8 Spatial distribution of nitrogen dopants on Cu foil with various N concentrations.  The 

plot of cumulative number of N atoms as a function of distance from a N site falls in quadratic 

power law, indicating N dopants are uniformly distributed over the surface. 
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Fig. 3.9 Cartoon for N dopants in A or B sublattice of graphene lattice. The triangle formed by 

the nearest neighboring carbon atoms is rotated 180o respective to each other. 
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sublattice. To make a reliable statement on this surprising finding of sublattice segregation, we 

surveyed a number of different larger areas (~        ) and present a typical one in Fig. 3.10b. 

There are in total 119 nitrogen dopants, in which 32 of them are in one sublattice and the 

remaining 87 are in the other sublattice. The uneven number of nitrogen dopants in two sublattices, 

together with their distribution in Fig. 3.10b, clearly supports that the nitrogen dopants prefer to 

substitute the carbon atoms in the same sublattice locally, at a length scale of at least 40nm.  

 

 A more thorough study on nitrogen dopant distribution between two sublattices reveals 

that nitrogen dopants in the same sublattice form domains with sizes beyond 100nm, and the 

boundaries between these domains are rather sharp, narrower than the average nearest dopants 

distance. The details of this study are not included in this thesis, but will be found in Ref. [49].  

3.3 Electronic Characterizations of Nitrogen Doped Graphene 

A chief purpose of chemically doping graphene is to modulate its electronic properties. Therefore, 

we performed detailed spectroscopic measurements of the differential conductance dI/dV to learn 

(a) (b) 

Fig. 3.10 N dopant distribution between A-B sublattices. (a) STM topography of 14 N dopants 

all in one sublattice of the honeycomb lattice. (b) Large scale STM image of 119 N dopants, with 

87 of them in one sublattice and the other 32 in the opposite sublattice. Scanning conditions: 

𝑉𝑏𝑖𝑎𝑠 =  .6𝑉, 𝐼𝑠𝑒𝑡 =  . 𝑛𝐴 
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the effect of the nitrogen atoms on the low-energy electronic structure of the doped graphene films. 

Here, dI/dV is the derivative of the current with respect to the voltage obtained using a lock-in 

amplifier. As described in Section 1.3.1, dI/dV spectrum is proportional to the local density of states 

(LDOS) where the spectrum is taken. Here, we not only performed individual dI/dV spectrum at 

fixed locations, but also dI/dV maps to probe the spatial variations in the LDOS.  

3.3.1 Charge Carrier Injection from Nitrogen Dopants 

The most prominent feature seen in all of the dI/dV curves, which have been observed previously in 

monolayer graphene on SiO2/Si and BN [50, 51], are two depressions near zero bias and -300meV 

relative to the tip potential. An example of such dI/dV curves is shown in Fig. 3.11a, where the black 

spectrum is obtained by averaging over 6  6  dI/dV curves taken over a          area. The 

first depression at zeros bias (marked by yellow arrow in Fig. 3.11a) occurs when the energies of 

the tunneling electrons are too low to excite the optical phonon mode at a momentum of K in 

graphene monolayers that can enhance the tunneling current [50]. The second depression at -

300meV (marked by red arrow in Fig. 3.11a) occurs near Dirac point where the DOS is low [12]. As 

reported in Ref. [50], the actual Dirac point shift relative to Fermi level (zero bias energy) should be 

the energy value for the second depression subtracted by the optical phonon energy (63meV).  

Apart from this phonon-assisted inelastic tunneling process, there are reports about direct 

tunneling process in STM measurements of graphene [52-54], in which only one depression is 

observable in dI/dV spectrum and happens at the Dirac point.  In fact, the total tunneling current is 

the summation of currents from both tunneling processes, but the ratio between the two tunneling 

probabilities are determined by the tip geometry. Based on the Heisenberg uncertainty rule, 

electrons tunneling from a blunt tip have a narrow distribution of parallel momentum around zero. 
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Due to the momentum conservation in the tunneling process, these electrons can only tunnel into 

the states at Dirac cones of graphene by gaining the desired momentum of K through inelastic 

scattering with optical phonons at momentum of K. However, the electrons from a sharp tip have a 

wide distribution of the parallel momentum, some of which may have large enough parallel 

momentum to directly tunnel into the states at Dirac cones. Shown in Fig. 3.11b is a cartoon for the 

dI/dV spectrum resulted from the two tunneling processes, where the two Dirac associated 

depressions are 63meV apart from each other. In a real situation, when both tunneling processes  
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Fig. 3.11 Dirac point shift relative to Fermi level in vicinity of graphitic N dopants. (a) Spatially 

averaged dI/dV spectrum (dark line) with variations (gray band) over the area (         ) 

where the measurements were taken, with red arrow and orange arrow indicating the Dirac-

associated and phonon-induced depressions in the spectrum. Scanning conditions: 𝑉𝑏𝑖𝑎𝑠 =  .5𝑉 

and 𝐼𝑠𝑒𝑡 =  . 𝑛𝐴 (b) Cartoon diagram showing two tunneling processes. (c) Histogra of spatial 

variations of Dirac point shifts in the area.  
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have comparable chances to happen, the Dirac-related depression could be at any energy between 

the two extreme cases. Our results belong to such a catalogue since the gap at zero bias is not well 

defined as that in Ref. [50]. The fitted value for the position of second depression is at ~-300meV, 

but we took the value in middle of (-300meV, -240meV) as the real Dirac point shift with an 

uncertainty of 30meV,   =           . A statistical distribution of Dirac point energies 

extracted from the spectra in Fig 3.11a is shown in Fig. 3.11c, in which the mean is around -270meV, 

and the full width of half maximum (FWHM) is approximately 30meV. As the Dirac point is 270meV 

below the Fermi level, the N-doped graphene samples are electron-doped.  

We use the energy of the Dirac point measured at each position of a sample to convert to a 

charge-carrier density at that location using the ideal graphene band structure, namely, 

 =
  

 

 (   )
 
 , ( 3.1 ) 

where n is the charge carrier density,    is the Dirac point shift with respect to Fermi level, and   is 

Plank’s constant h divided by 2 . Taking a value for the Fermi velocity   =  .    
    , we 

arrive at an average charge-carrier density of (5.    .  )       electrons per    . Meanwhile, 

the nitrogen dopant concentration can be calculated by simply counting the number of observed 

dopants in the area where the measurements are performed. The observed nitrogen doping in this 

area corresponding to 0.34% nitrogen atoms per carbon atom, or equivalently, a nitrogen dopant 

density of  .          . Together with the charge-carrier density measured by STS, this results 

implies that each graphitic nitrogen dopant contributes (on average)   .    .   mobile carriers 

to the graphene lattice. We have performed such detailed STM/S measurements across different 

samples with nitrogen concentrations varying from 0.23% to 0.35% (Fig. 3.12a) and found a strong 

correlation between the nitrogen dopant concentration and the extracted charge-carrier density. 
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The averaged charge-carrier doping rate per graphitic nitrogen is ~0.5e/N, as shown in the inset of 

Fig. 3.12a.  

  

Our DFT calculations provide insight to the electrostatic balance between the nitrogen 

dopants and free carriers in the graphene sheet. Focusing on a single, graphitic nitrogen dopant, the 

projected nitrogen density of state (pDOS) on the  -system (Fig. 3.12b) revealed a resonance 

caused by the nitrogen    orbital centered 0.3eV above the Fermi level. The pDOS for the carbon 

nearest neighbor exhibited a shoulder caused by its electronic coupling to the nitrogen, with a 

reduced shoulder on the next nearest neighbor. The occupied fraction of these resonances 

represented the localized charge near the nitrogen centers. The balancing charge went to the rest of 

the   states. The Dirac point still appeared in the pDOS, shifted to below Fermi level, as also seen in 

our total DOS and in other recent calculations [46, 55]. Furthermore, we studied nitrogen 
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Fig. 3.12 Average charge carrier (electron) doping rate by N dopants. (a) Spatially-averaged 

charge carrier concentration as a function of N dopant concentration for five different samples. 

(Inset) Free charge carrier per N atom for each of the five samples. (b) Calculated projected 

DOS near Fermi level for 1% doping. (c) Calculated charge carrier doping rate for different N 

doping levels (obtained by varying the super-cell in calculations as indicated by the labels next 

to every plot) 
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concentrations from 0.6% to 5.6% by varying the super cell size for a single nitrogen dopant. Using 

the Dirac point shift in the total DOS as a measure of free electron concentration, we estimate that 

50% to 70% of the extra electron from a N dopant is delocalized (Fig. 3.12c), with oscillations 

indicative of electronic interference effect in the simulation cells that we used. A value of ~60% 

would be consistent with the experiment values shown in Fig. 3.12a. 

 To draw comparisons with other measurements of doping in graphene films, it is important 

to understand the effect of the Cu foil substrate on the carrier concentration via charge transfer [56, 

57], as well as by changing the charge screening in the graphene layer. We performed STM 

measurements of pristine graphene films on Cu foils and estimated that the doping induced by the 

Cu foil substrate into the graphene film is less than 1012 electrons/cm2, as shown in Fig. 3.13a. The 

Cu substrate can also modify the charge screening length in the graphene film, we studied nitrogen 

doped graphene films transferred to a SiO2/Si dielectric substrate [58], a process that may leave 

residue on or below the graphene surface. Typical STM and atomic force microscopy images display 

surface roughness of a few nanometers, but occasionally we found a small region of the sample 

where the graphene honeycomb lattice could be resolved. Fig. 313b shows the averaged dI/dV 

spectrum taken over one of such clean areas (the STM image is shown in the inset in the derivative 

mode to remove the overall roughness of the substrate and enhance the atomic contrast). The 

overall features in the spectrum are preserved, but now   =            ( =     
      ). 

The transfer processes, as well as the SiO2 substrate itself, introduce an unknown doping 

concentration into the film; thus, it is not possible to directly compare the doping level of the two 

samples. However, the spectrum of doped graphene on SiO2 is broadly consistent with the spectrum 

of doped graphene on Cu foil, indicating the absence of a strong hybridization between the 

graphene and underlying Cu substrate.  
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3.3.2 Band Gap Opening or Not? 

Recent literatures claim that sufficient doping of nitrogen in graphene films leads to a band gap 

opening around Dirac point, because the presence of nitrogen atoms breaks the A-B sublattice 

symmetry of honeycomb lattice [59]. Therefore, it is worth to revisit our results from this 

perspective when writing this thesis.  

 Indeed, from STM topography of the single graphitic nitrogen dopants, it is clear that the 

sublattice symmetry has been broken at least around the dopant site. In Fig. 3.14, we highlighted 

the bright spots around a nitrogen dopant with green dots, and found that these spots are all at 

carbon sites on the same sublattice of graphene lattice. Only a couple of lattice constants away from 

the dopant site, the sublattice symmetry got recovered as evidence by the equal apparent heights at 

A and B sites (i.e. perfect honeycomb structure).  

(a) (b) 

Fig. 3.13 Effects of Cu foil on the electronic structures of N-doped graphene films. (a) Spatially 

averaged dI/dV (dark line) spectrum with variations (gray band) taken over a          

area on pristine graphene/Cu foil. (Inset) STM topo of pristine graphene/Cu foil. 𝑉𝑏𝑖𝑎𝑠 =

 . 𝑉, 𝐼𝑠𝑒𝑡 =  .5𝑛𝐴 (b) Spatially averaged dI/dV spectrum (dark line) with variations (gray 

band) taken on a          area on N-doped graphene/SiO2. (Inset) STM topo of such 

transferred sample. 𝑉𝑏𝑖𝑎𝑠 =  . 𝑉, 𝐼𝑠𝑒𝑡 =  . 𝑛𝐴. 
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 Whether such local A-B sublattice asymmetry introduces a band gap around Dirac point is 

investigated by taking dI/dV spectrum carefully around the nitrogen dopant site. As shown in Fig. 

3.15, the dI/dV curves were measured at nitrogen site, first, second, fourth bright spots and ~2nm 

away from the feature. The two-depression feature is clearly visible in all the spectrum and the 

positions of the Dirac points are aligned at the same energy, indicating the delocalized nature of the 

charge carriers. However, there is no “GAP”-feature around Dirac point in any of the spectrum, even 

the ones where the sublattices are asymmetric.  

 The absence of energy gap at Dirac point, against the recent theory predictions [59], can be 

explained by the combination of low nitrogen concentration and lack of energy resolution in our 

setup. Graphitic nitrogen dopants in graphene breaks sublattice symmetry in such a weak way that 

nitrogen doping level as high as ~2% only introduces a sublattice asymmetry of ~100meV, 

equivalently, a band gap of ~100meV [59]. According to this, a doping level of ~0.3% is supposed to 

Fig. 3.14 Sublattice asymmetry induced by the presence of graphitic N dopant. A STM image 

with honeycomb lattice overlaid on top shows that the intensity on one sublattice around N 

dopant is stronger than that on the other sublattice (as marked by green dots) while the equal 

intensity on both sublattices is found far away from the dopant site (perfect honeycomb 

lattice).  
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open a band gap of ~10meV. Unfortunately, two factors in our STM setup may limit us to observe 

such a band gap even if it is in presence. The first one is thermal broadening effect. Our experiments 

are performed at 77K, where the thermal energy is in order of        , comparable size of the 

gap feature. Secondly, the activation energy used in Lock-in measure dI/dV spectrum was set to 

~10meV, which may also obscure the band gap feature.  

 

3.3.3 Perturbation to Local Electronic Structures 

As evidenced in the STM topography of a graphitic nitrogen dopant (shown in Fig. 3.15), the 

electronic structure around the dopant site has been perturbed due to the presence of nitrogen, 

Fig. 3.15 dI/dV spectra taken on a N atom and the bright topographic features around N atom 

on N-doped graphene/Cu foil, offset vertically for clarity.  The top curve is taken ~2nm far 

away from the N dopant site. (Inset) Positions where the spectra were taken. Scanning 

conditions: 𝑉𝑏𝑖𝑎𝑠 =  . 𝑉, 𝐼𝑠𝑒𝑡 =  . 𝑛𝐴. 
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which may affect the electronic nature of the doped graphene film. In the following, we analyze 

such local electronic perturbations around a dopant through STS map measurements.  

 

 In Fig. 3.16, we show spectra obtained on and far away (~2nm) from a dopant atom. 

Although the overall features of the spectra were preserved on the nitrogen atom, the electron-hole 

asymmetry in the local density of states (LDOS) was much stronger on the nitrogen atom, in accord 

with the DFT calculations (Fig. 3.12b). This enhanced electron-hole asymmetry at the dopant site 

can be explained by sub-critical Coulomb interaction in a Dirac fermion system [60], in which the 

nitrogen dopants can be considered as a positive charged impurity and an extra electron. The 

absence of resonances in dI/dV spectra indicates no quasi-bound states formed around the 

nitrogen dopants, consistent with the theory of a subcritical Coulomb impurity. Moreover, the 

nitrogen dopants tend to attract negative charged carriers (above ED) and repel positive charge 

carriers (below ED), which requires more (less) DOS below (above) Dirac point to host the excess 

(depletion) of charge carriers, resulting in the enhanced electron-hole asymmetry.  

Fig. 3.16 dI/dV spectra taken on a N atom and ~2nm away from the N atom on N-doped 

graphene/Cu foil, showing an enhancement of electron-hole asymmetry at/around dopant 

site. Scanning conditions: 𝑉𝑏𝑖𝑎𝑠 =  . 𝑉,  𝐼𝑠𝑒𝑡 =  . 𝑛𝐴. 
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 To study the spatial evolution of this electron-hole asymmetry, we performed STS mapping 

in a 2.5-nm area centered at one graphitic nitrogen dopant. Shown in Fig. 3.17a are a set of these 

maps, acquired at bias voltages from -1.0V to +1.0V. The maps did not show much contrast at high 

positive bias, but the LDOS around the nitrogen atom was strongly suppressed at energies below 

the Fermi level. The LDOS recovered its background value within a few lattice constants from the 

dopant site. We plotted, in Fig. 3.17b, the radial distribution of the dI/dV intensity from the set of 

maps in Fig. 3.17a as a function of distance from the nitrogen atom, normalizing the background 

value of the dI/dV to unity for each energy. The variations in the intensity of spectral weight that 

are caused by the nitrogen dopant were energy dependent, but the decay lengths were ~7Å for all 

energies, as shown in Fig. 3.17c.  
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Fig. 3.17 Spectroscopic mapping around a single dopant. (a) STS maps taken in vicinity of a 

single N dopant ( .5   .5   ) at various bias energies from -1.0V to +1.0V. (b) Radially 

averaged differential conductance as a function of distance from N atom site, normalized to 

unity at distance far away from N site. (c) Extracted decay (squares) length for all the energies 

and the ratio (triangles) of the dI/dV on N site to the background.  Scanning conditions: 

𝑉𝑏𝑖𝑎𝑠 =  . 𝑉,  𝐼𝑠𝑒𝑡 =  . 𝑛𝐴. 
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3.3.4 Quantum Interferences in the Presence of Nitrogen Dopants 

Scattering is another electronic effect that results from the presence of impurities/defects in a host 

lattice [1]. Revisiting the electronic band structures of graphene, two kinds of scattering processes 

may occurs in the vicinity of nitrogen dopants. One is the scattering happening within a Dirac cone, 

which involves small momentum changes. The other one happens between two Dirac cones with 

large momentum changes. The diagrams of the two scattering processes are shown in Fig. 3.18. 

Usually, the former is referred as intra-valley scattering while the latter is inter-valley scattering.  

  

Shown in Fig. 3.19a and b are a STM topography on a 5  5    area and the dI/dV map 

taken at the same area respectively. The tiny bright spots in Fig. 3.19a are individual graphitic 

nitrogen dopants, one of which is highlighted with a red arrow. A FFT of Fig. 3.19b is displayed in 

Fig. 3.19c. The hexagon of six spots results from the inter-valley scattering (the short wavelength 

pattern hardly visible in Fig. 3.19b) while the center brightness is related to intra-valley scattering 

(the long wavelength fluctuations in Fig. 3.19b). Since the two scattering processes happen at quite 

K’ K

Intra-valley

Inter-valley

Г

Fig. 3.18 Cartoon diagram for intra-valley and inter-valley scatterings.  
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different real-space length scales, we will discuss them separately in the following at proper length 

scales.  

 

 Inter-valley scattering happens at a wavelength of √   ( =  . 6 ). Therefore, a proper 

scale of STM/S image to visualize it in real space is ~10nm. Fig. 3.20a and b display topographic and 

dI/dV images on an area of   .5    .5   , with 22 graphitic nitrogen dopants. A FFT (inset in Fig. 

3.20b) of Fig. 3.20b shows an outer set of hexagon for atomic lattice and an inner set of hexagon for 

inter-valley scattering. To focus on the inter-valley scattering, we filtered out the information of 

atomic lattice from Fig. 3.20b, and show only the scattering pattern in Fig. 3.20c. The intensity of 

inter-valley scattering pattern clearly varies over space. Thus, we plotted the auto-correlation (Fig. 

3.20d) of Fig. 3.20c. In an auto-correlation map, the periodicity of the peaks indicates the 

wavelength of the inter-valley scattering interference pattern averaged over the imaged area, and 

the intensity indicates the delay trend of the interference pattern in real space. A line cut of through 

the center of this auto-correlation map is displayed at the bottom in Fig. 3.21a (+0.5eV curve), 

(a) 
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Fig. 3.19 Coexistence of inter-valley and intra-valley scattering in N-doped graphene films. (a) 

STM topography of a 5  5    area on N-doped graphene/Cu foil. (b) Differential conducta-

nce map at the area in (a). (c) FFT of image (b) showing wave vectors of both inter- and intra-

valley scattering. Scanning conditions: 𝑉𝑏𝑖𝑎𝑠 =  . 𝑉,  𝐼𝑠𝑒𝑡 =  . 𝑛𝐴 
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normalizing the first peak intensity to unity. Similarly, we plotted in Fig. 3.21a a set of line-cuts 

from auto-correlation maps at bias energies from -0.5eV to +0.5eV. All the spectra show similar 

periodicities and decaying envelops. In Fig. 3.21b, we plot the normalized peak intensities as a 

function of peak positions for all the spectra in Fig. 3.21a. The plots all fall in the same trend, ~1/r, 

independent of bias energy, which is in accordance with the theory prediction of back-scattering in 

monolayer graphene [61-63].  
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Fig. 3.20 Inter-valley scattering in N-doped graphene/Cu foil. (a) STM topography of an area 

with 22 graphitic N dopants. (b) dI/dV map taken at the same area as in (a). (Inset) FFT of 

image (b) showing an outer set hexagon for atomic lattice and an inner set hexagon for inter-

valley scattering. (c) Filtered dI/dV map from (b) with only scattering information but not 

atomic information. (d) Auto-correlation of image (c) showing periodicity and decay pattern. 

Scanning conditions: 𝑉𝑏𝑖𝑎𝑠 =  .5𝑉,  𝐼𝑠𝑒𝑡 =  . 𝑛𝐴 
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 Intra-valley scattering interference patterns for monolayer graphene have been shown to 

have periodicity of a few nanometers [47, 64]. Zooming out to a larger scale of 5  5    , we 

show a set of dI/dV maps at bias energies from -0.5V to +0.5V taken at the same area in Fig. 3.22. 
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Fig. 3.21 Decay of inter-valley scattering. (a) Line-cuts through the center of auto-correlation 

maps at various bias energies. (b) Extracted peak values and positions in the line-cuts in (a) at 

different bias energies, normalized to unity at the first peak.   
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The FFT of each map is also shown in the inset of the corresponding map. The FFT shows an 

obscure disk in the center, rather than a well-defined ring-like feature as reported in Ref. [64]. 

However, the radius of the disk does depend on the energy, which decreases gradually from +0.5V 

to ~-0.3V and increases again from -0.3V to -0.5V. This observation indicates the Dirac point is at ~-

0.3eV respect to Fermi level, which is consistent with our findings Section 3.3.1.  

 

 In fact, there are a couple of arguments about intra-valley scattering in monolayer graphene 

in the literature. Ref. [61] predicts that the intra-valley scattering in monolayer graphene decays as 

1/r2, different from the conventional materials that decays at 1/r. As a result, the FFT of inter-valley 

scattering interference pattern shows a disk-like feature. This prediction has been proven by G.M. 

Rutter et al that only a disk feature in FFT is observed for monolayer graphene on SiC while a ring 

feature in FFT is captured in bilayer graphene [47]. However, in contrast with this, Y.B. Zhang et al 

10nm

0.5V 0.4V 0.3V 0.2V 0.1V

-0.5V -0.4V -0.3V -0.2V -0.1V

Fig. 3.22 Intra-valley scattering in N-doped graphene/Cu foil. dI/dV maps taken at an area of 

50nm by 50nm on N-doped graphene/Cu foil, at different bias energies ranging from -0.5V to 

+0.5V. (Inset) FFT of each dI/dV map showing a disk-like pattern with its radius changing 

over bias energies.  
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reported a ring feature in FFT for monolayer graphene on SiO2/Si [64]. At this stage, it seems our 

results are in agreement with Ref. [47] and [61].  

3.4 Raman Characterizations of Nitrogen Doped Graphene 

While STM/S is a powerful technique with which to extract the information about electronic 

structure and doping on nanoscale, it is also important to characterize the electronic homogeneity 

of the films on the micrometer scale [38, 40, 65]. To address this issue, we performed scanning 

Raman spectroscopy measurements on three samples including pristine graphene, nitrogen doped 

graphene with ammonia partial pressure of 0.1 torr and 0.13 torr (short written as PG, NG10, 

NG13).  

Shown in Fig. 3.23a are typical Raman spectra taken at different locations on NG10. All the 

spectra show the G and 2D bands for pristine graphene [37], as well as the D and D’ bands usually 

seen in the presence of defects [38]. However, we see that different locations of the sample exhibit 

different peak magnitudes and frequencies. In particular, some spectra display characteristics of a 

low carrier/defect density (bottom curve – high 2D/G ratio, small D/G and D’G ratios), while other 

spectra show the presence of more dopants (top curve). To better understand the spatial 

inhomogeneity, we performed these spectroscopic measurements at every 1µm of the PG, NG10 

and NG13 samples over a          areas. Shown in Fig. 3.23b are maps of the ratio of 2D/G peak 

heights, extracted from the spectral maps. In previous studies on pristine graphene, this ratio was 

shown to be sensitive to the carrier and defect concentration in the film. We see firstly that the PG 

sample shows a much higher 2D/G ratio on average, indicating fewer defects or dopants in the film. 

The doped samples clearly show the presence of micrometer-sized patches with higher nitrogen 

concentration on average. Furthermore, we noticed that the size of the patches is doping level 
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dependent, indicating that the patches are truly related to the local dopant concentration. These 

conclusions are supported by the analysis of the G band frequency which is correlated to the 

amount of charge carriers present in the sample [66, 67]. Shown in Fig. 3.23c are maps of G peak 

frequency taken at the same area as in Fig. 3.23b. Histogram of G peak frequencies for each sample 

is shown in Fig. 3.23d. We see a clear shift in the frequency of the G peak across the samples, 

consistent with the fact that charge carrier concentration increases as nitrogen doping level 

increases. The G peak shift of ~ .      between pristine graphene and NG10 (which is used for 

STM measurements) corresponds to a carrier concentration of ~5          , which agrees very 

well with STM findings of 5.           . 
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Fig. 3.23 Raman spectra of N-doped graphene/SiO2/Si. (a) Three Raman spectra taken at 

various spots on sample NG10, showing differences in the signature peaks.  (b) 2D/G maps for 

pristine, NG10, and NG13 samples. (c) G peak frequency maps taken on pristine, NG10 and 

NG13 samples. (d) Statistics of G peak frequency for pristine, NG10 and NG13 samples, showing 

a blue shift as the N concentration increases.  
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 More details about spatial inhomogeneity of nitrogen concentration will be discussion in 

Chapter 5. 

3.5 NEXAFS Characterization of Nitrogen Doped Graphene 

STM/S and Raman spectroscopy both provide indirect evidence of the presence of nitrogen dopants 

due to the lack of ability in element analysis.  

 

Therefore, we confirmed the nitrogen incorporation into graphene lattice by performing x-

ray photoemission spectroscopy (XPS) and near-edge x-ray absorption fin structure (NEXAFS) at 

the nitrogen K-edge for a pristine graphene and NG10 doped sample, results shown in Fig. 3.24. The 

addition of NH3 in the graphene growth resulted in sharp peaks at 400.7eV and 408eV in the 

NEXAFS spectrum, corresponding to 1s-to-  and -   transitions respectively, for a single molecular 

species. The sharpness and strong polarization dependence of the peaks indicate that this species 

has well-defined, in-plane N-C bonds in the graphene lattice. Based on previous studies [68-70], the 
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Fig. 3.24 NEXAFS (total electron yield) for pristine and NG10 sample on Cu foil at N K-edge. 

N-doping results in a new peak at 400.7eV in the spectrum due to graphitic N dopants. (Inset) 

XPS for pristine and NG10 sample, showing a higher binding energy component in N-doped 

graphene (marked as the dark arrow). 
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peak can be assigned to sp2-bonded graphitic nitrogen with three nearest carbon neighbors. 

Representative N1s XPS shows a higher-binding energy components (black line) for the NH3-grown 

samples, indicating the formation of more electronegative N-C bonds in the graphene lattice as 

opposed to at edges or defects (gray line). This higher-binding energy peak is generally considered 

as a signature of graphitic nitrogen in studies of modified carbon films [17, 32, 70, 71].  
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Chapter 4  

Atomic and Electronic Structures of B-dope Graphene 

4.1 Background of B-doped Carbon Lattices 

Tailoring the electronic properties of monolayer graphene can unlock many potential electronic 

applications of graphene [1-3]. In pristine undoped graphene, the Fermi level coincides with the 

Dirac point, where the conductivity of the system is at its minimum [1]. By introducing free charge 

carriers, the conductivity increases linearly with the carrier density [4, 5]. Furthermore, tuning two 

regions of a single graphene sheet with electrons and holes respectively can produce p-n junctions 

[6, 7], the elementary building blocks of current electronic devices.  Therefore, it is crucial to 

control the type and concentration of charge injected into graphene, especially in the absence of 

external fields.  

 In the last chapter (Chapter 3), we discussed the effects of nitrogen doping in monolayer 

graphene on its atomic and electronic structures, graphitic nitrogen dopants introducing ~0.5e/N 

to the graphene lattice with only local electronic perturbations around dopant sites [8]. Boron, as 

the other neighbor of carbon in periodic table, is naturally selected to be the acceptor-dopant for 

introducing hole carriers into graphene. However, unlike nitrogen doped graphene, boron doped 

(B-doped) graphene has been much less explored experimentally [9-16] and basic questions about 

the dopant structure, dopant distribution and their effect on the electronic properties of graphene 
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films remain largely unanswered. Before going to our ways of seeking the answers to these 

questions, we will first take a look at what have been tried and obtained in the literature.   

4.1.1 Literature of B-doped Carbon Allotropes 

Even before the discovery of monolayer graphene, boron doping has been successfully used to 

modulate the electronic properties of other carbon materials, such as graphite [17-25], bucky balls 

[26, 27] and carbon nanotubes[28-31]. One of the most popular methods used to synthesize these 

B-doped carbon lattices is to cook the mixture of host carbon materials and elemental boron (or 

boron-containing powder, for instance, boron oxides) at elevated temperature of ~1400-1600oC for 

several hours [19, 20, 23, 25, 28-30]. In this procedure, the boron concentration can be tuned from 

less than 0.1% up to 3% depending on the reaction time [28]. Besides this method, ion implantation 

[22], arc discharge [27, 31] and chemical vapor deposition (CVD) [24] have also been employed to 

produce B-doped carbons.  

Several experimental techniques have been used to characterize these B-doped carbon 

lattices, including x-ray diffraction (XRD) [23, 25], x-ray photoemission spectroscopy (XPS) [27], 

Raman spectroscopy [19, 23, 28], scanning tunneling microscopy (STM) [20], transmission electron 

microscopy (TEM) [29], and scanning electron microscopy (SEM) [25] as well. From a large scale, 

typically in a few tens of micrometers, SEM images show interstitial defect loops (~ 10µm in 

diameter) between layers in B-doped graphite [25]. When zooming into nanoscale, STM 

topographic images reveal single substitutional B dopants in B-doped graphite samples [20] while 

TEM images display signatures of defects induced by B incorporations in carbon nanotubes but 

without showing the defect structures in details [29]. From a more statistical point of view, Raman 

spectroscopy indicates the presence of defects by the appearance of D and D’ defect modes [19, 23, 
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28], and XPS presents a rather broad B1s peak in the spectra of B-doped carbon lattices, indicative 

of multiple bonding configurations for the B dopants [27]. 

However, much less have been done in B doping monolayer graphene films so far. The chief 

reason seems to be the difficulty in synthesizing high-quality monolayer B-doped graphene, 

possibly because B-related gases/liquid are strongly reactive to water from ambient. Searching in 

the literature of B-doped graphene, a few attempts have been made in the direction of sample 

fabrication. The first one is to extract single layer B-doped graphene from pre-B-doped graphite via 

mechanical exfoliation [14]. Just as in the case of pristine graphene, the sample size is limited to, a 

few tens of micrometers at most, in this technique. Nevertheless, the quality of the sample has been 

testified by Raman spectroscopy and Raman mapping.  The second way is to grow the doped films 

via CVD in which a B-containing precursor is introduced as the B source. J. Gebhardt et al 

synthesized B-doped graphene on Ni(111) substrate both in a CVD process with triethylborane as 

the source and by segregation of boron from bulk nickel [13], while H. Wang et al reported to grow 

monolayer B-doped graphene on Cu foil by the sole solid feedstock of phenylboronic acid (C6H7BO2) 

[15]. Another alternative way to grow B-doped graphene layers is by arc discharge graphite in the 

presence of B-containing environment, for instance, B-doped graphite or in B2H6 vapor [16].   

Similar as N-doped graphene and other B-doped carbon allotropes, several standard 

techniques, including XPS [15, 16], Raman spectroscopy [14, 16] and SEM [16], have been employed 

to investigate these B-doped graphene films. The presence of B dopants in carbon lattices is proven 

by the B1s peak at ~190eV in XPS spectra, which can typically be decomposed into a few sub-peaks 

representing different bonding configurations [15, 16]. B dopants in graphene lattice act as defects, 

and thus D and D’ bands show up in the Raman spectroscopy. It is worthwhile to point that D band 
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intensity is extremely enhanced due to the elastically scattered photo-excited electrons by B atoms 

before emitting a phonon [14]. A Raman spectrum for B-doped monolayer graphene with only 

~0.22% B concentration is shown in Fig. 4.1a [14]. As a comparison, a Raman spectrum for N-

doped graphene with similar N doping level is displayed in Fig. 4.1b, with a much shorter D band 

height. TEM and SEM images typically provide the large scale morphology of the B-doped graphene 

films. So far, no direct imaging on B dopant structures in monolayer graphene has been reported by 

any technique.  

 

  

4.1.2 Our Approaches for B-doped Graphene Preparations and Characterizations 

(a) (b) 

Fig. 4.1 Raman spectroscopy measurements on B-doped and N-doped graphene with dopant 

concentrations of ~0.22% and 0.3% respectively. (a) Raman spectrum taken from Ref. [14]; 

Note that G’ peak is equivalent to 2D peak. (b) Raman spectrum taken on N-doped graphene 

films transferred on SiO2/Si substrate. The significant difference in D peak intensities between 

B-doped and N-doped graphene indicate the different electron scattering rates induced by B and 

N dopants in graphene lattice.  
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The B-doped monolayer graphene films for our experiments were grown by the CVD method on 

polycrystalline copper foils using a mixture of CH4, H2 and B2H6 gases at 1000oC in a quartz tube 

furnace [32, 33].In the quest of understanding the B doping form, distribution and their effect on 

the electronic structures, we use STM/S in conjunction with x-ray absorption spectroscopy (XAS) to 

investigate the atomic and electronic structures of these B-doped monolayer graphene films. 

Moreover, we interpret our experimental results using first principle density function theory (DFT) 

calculations.  

Our best-quality B-doped graphene films were produced by using quartz tubes that have 

been exposed to boron before growth, i.e. “tube-doped” manner. Specifically, in the process, the 

tube (with a piece of copper foil inserted) was first heated at 1000oC at 7.0 torr with a flow of 6 

sccm of CH4 and 1-5sccm of B2H6 of 1% B2H6 in H2 for 30mins. Afterwards, a new piece of Cu foil 

was introduced into the tube and B-doped graphene growth was then performed using only 6sscm 

of CH4 and 100sccm of H2. It is found that the prior exposure of the tube to boron is sufficient to 

dope the graphene in subsequent growths.  

What we think it happens during this growth procedure is as follows. Due to its relatively 

high vapor pressure at 1000oC, some Cu is deposited onto the side walls of the quartz tube. 

Additionally, as the reaction temperature is effectively at the eutectic point of the B-Cu system [34], 

a significant amount (in terms of relative atomic %) of B is introduced into both the Cu foil and the 

Cu on the tube sidewalls. Subsequent growths are then exposed to B from the evolution of this 

sidewall alloy as opposed to direct flow of B2H6. Given the nature of this process, it is difficult to 

provide a precise concentration for these “tube-doped” graphene growths. However,  empirically 

we have found that the most successful B-doped graphene growth are performed directly after the 
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initial tube exposure, while successive syntheses are not as effective. A cartoon diagram for the 

growth set is shown in Fig. 4.2 with parts specific for B-doped graphene highlighted with bright 

colors.  

 

 Following the growths, as-grown B-doped graphene films on Cu foil were transferred for 

STM/S measurements from ambient conditions into an ultra-high-vacuum (UHV) chamber, and 

annealed at ~350oC for ~5 hours to clean the surface. STM/S measurements were taken at 77K.  

4.2 Similarities with N-doped Graphene 

Since boron and nitrogen are symmetric about carbon in the periodic table, they are expected to 

share some similarities in chemically doping graphene films. In the following of this section, we will 

discuss these similarities found in atomic structures and electronic properties. Here, we limit our 

discussions in 4.2.1 and 4.2.2 to the “tube-doped” samples since they have the best-quality among 

all the growth conditions.  

Pre-deposited Cu-B alloy

Fig. 4.2 Cartoon diagram of a CVD growth setup for B-doped (“tube-doped”) graphene growth. 

The yellow colored part highlight the one specifically for B-doped graphene growth, while the 

gray colored parts are the parts shared with pristine/N-doped graphene growth.  

 B-doped graphene films/Cu foil are provided by Mark Levendorf in Park group @ Cornell U.  



 
 

CHAPTER 4. Atomic and Electronic Structures of B-doped Graphene  113 
 

4.2.1 Boron Doping Forms 

A representative large scale topography is shown in Fig. 4.3. The appearance of bright features is 

associated with the Boron doping process since they are absent in the pristine graphene case. A 

careful examination through these features reveals that the majority of them (one of them marked 

by a red arrow) look identical while a few highlighted ones (marked by orange arrows) are much 

more complicate and extend further in space. We will first focus on the major ones and then move 

to the minor ones (details in Section 4.3.1).  

 

Fig. 4.3 A STM topographic image taken on an 30 × 30n 2 area on “tube-doped” (B-doped) 

graphene films on Cu foil. The red arrow marks the one of the majority “bright” structures while 

the orange arrows highlight the complicate defect structures. Scanning conditions: 𝑉𝑏𝑖𝑎𝑠 = −0.5𝑉 

and 𝐼𝑠𝑒𝑡 = 0.5𝑛𝐴 
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A close-up look at the common feature exhibits a triangular shaped core with three “tails” 

extending from the three edges of the triangle, as shown in Fig. 4.4a. This structure exhibits all the 

features expected from a graphitic dopants: by following the unperturbed honeycomb lattice from 

(a) 

(b) 

 

 

 

 

-0.3 1.0Å

1.0nm

(c) 

0 1 2 3

0

1

Distance (nm)

H
ei

gh
t 

(A
)

H
ei

gh
t 

(Å
)

(d) 

1.2 Å

0.0 

Fig. 4.4 Individual graphitic Boron dopant. (a) A STM topographic image taken on a single 

graphitic Boron dopants on “tube-doped” graphene on Cu foil. (b) Image in (a) overlaid with a 

lattice mesh, with the green dot indicating the center of the triangle at a Carbon site, the three 

dark spots at the apexes of the triangle sitting on the first three nearest neighboring Carbon 

sites and the six yellow spots highlighting the Carbon sites in a perfect honeycomb ring. (c) A 

line profile taken across the Boron dopant site, as indicated by the dark dashed line in (a). (d) 

DFT calculations simulated STM topography for a single graphitic dopant with bias voltage of-

0.5eV. Scanning conditions for (a): 𝑉𝑏𝑖𝑎𝑠 = −0.5𝑉 and 𝐼𝑠𝑒𝑡 = 0.5𝑛𝐴 
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the position far away from the dopant sites, as indicated in Fig. 4.4 b by the overlaid mesh on top of 

image in Fig. 4.4a, we can determine that the center of the triangle is at a carbon site (CB) (green 

spot in Fig. 4.4b) and the three apexes are at the three nearest neighboring carbon sites (C1B) (three 

dark spots in Fig. 4.4b). The line profile across this feature (Fig. 4.4c) shows an apparent height of 

 .0  0.   at the dopant site. Furthermore, DFT calculations [35, 36] simulating a single graphitic B 

dopant structure in free-standing graphene (shown in Fig. 4.4d) closely match the experimentally 

observed shape and the apparent height (~1.0Å in theory calculations).  

 A survey over multiple areas in multiple samples shows that such substitutional B dopants 

take up ~80% of the “bright” features over the sample surfaces. The concentration of B dopants 

varies from sample to sample, ranging from  .5 ×  0 2   2 to  .3 ×  0     2, which results from 

the un-controllable doping level in the “tube-doped” growth process.  

4.2.2 Electronic Structures 

A chief reason to create B-doped graphene is to introduce hole carriers into the graphene sheet, in 

analogy with the case of electron doping for N-doped graphene [8]. So far, we have confirmed, over 

80% of the features in B-doped graphene films are individual graphitic B dopants, which makes it 

possible to test the charge carrier injection efficiency.  

 In order to measure the charge carrier type and density contributed by the graphitic B 

dopants, we performed detailed STS measurements on multiple B-doped graphene samples. Fig. 

4.5a shows a spatially averaged differential conductance (dI/dV) spectrum (dark curve) with 

variations (gray band) taken over an area of 30 × 30n 2 on B-doped graphene films on Cu foil with 

spatial resolution of ~0.5nm. Similar as in the case of N-doped graphene [8], two depressions are 
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seen in the spectrum. One of them is at the Fermi level EF (i.e. at zero bias voltage marked with the 

red arrow in Fig. 4.5a), which is associated with the phonon-assisted inelastic tunneling process 

[37]. The other one locates at ~150meV above EF, which is assigned to be Dirac point (ED) where 

density of states (DOS) of graphene stays low. The fact that Fermi level is below Dirac point (i.e. 

EF<ED) indicates that the graphene film is indeed hole doped. The statistical histogram of Dirac 

points extracted from all the dI/dV spectra (about 3600 spectra) in Fig. 4.5a is displayed in Fig. 4.5b, 

with a mean value of ED=110meV and full width half maximum (FWHM) of ΔED=30meV. Using the 

relation of 

  =
  

2

      
2
   ( 4.1 ) 

where     0     [1, 4, 5], we estimated a hole carrier concentration of   =   .0   .  ×

 0     2 in this area.  
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Fig. 4.5. Dirac point shifts in STS on “tube-doped” graphene on Cu foil. (a) Spatially averaged 

dI/dV spectra (black line) and variations (gray band) over an area of 30 × 30n 2. Red arrow 

indicates the gap induced by insufficient energy for phonon-assisted inelastic tunneling process 

while the orange arrow points the apparent Dirac point position. (b) Histogram of the spatial 

variation of Dirac points for B-doped graphene in this 30 × 30n 2 area. Scanning conditions for 

(a): 𝑉𝑏𝑖𝑎𝑠 = −0.5𝑉 and 𝐼𝑠𝑒𝑡 = 0.3𝑛𝐴. 
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 By counting the number of B dopants at the same area as the dI/dV measurements, we have 

a B dopant concentration of   =  .  ×  0 2   2. The ratio of 
  

  
⁄  gives us the average number 

of hole carriers contributed by per B dopant, which is equal to   =  0. 0  0. 0     in this area. 

Detailed STM and STS measurements over multiple B-doped graphene samples with varying B 

doping levels (Fig. 4.6a) show similar doping rates of ~0.5h/B. Our experiment thus indicates that 

the magnitude of the electronic doping rate caused by graphitic B dopants is very similar to that of 

graphitic N dopants in graphene films. Our DFT calculations (Fig. 4.6b) confirm that graphitic B 

dopants induce a deficiency of charge in graphene sheet at an average withdrawing rate of ~0.5h/B 

[38], consistent with our experimental results.  
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Fig. 4.6 Averaged carrier (hole) concentration as a function of B dopant density. (a) Spatially 

averaged hole carrier concentration as a function of averaged Boron doping level over four 

different samples. (Inset) Hole carrier per Boron dopant as each of the four samples, showing a 

hole carrier doping rate of ~0.5h/graphitic B. (b) DFT calculations of hole carrier concentration 

per Boron dopant calculated for five Boron doping levels by varying the supercell in the 

calculations.  



 
 

CHAPTER 4. Atomic and Electronic Structures of B-doped Graphene  118 
 

 

Furthermore, we investigated the perturbations in electronic structures induced by the 

presence of B dopants. Same as in the case of N-doped graphene, B dopants break A-B sublattice 

symmetry locally around dopant sites, by showing stronger intensity on one sublattice than on the 

other one in the topographic images. We performed further dI/dV spectra and maps over a single 

dopant to focus on the electronic variations over space. Fig. 4.7a shows two dI/dV spectra taken 

on/around and far away from the B dopant.  An enhancement in electron-hole asymmetry is clearly 
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Fig. 4.7 Spectroscopic mapping around a single graphitic B dopant. (a) dI/dV spectra taken 

on/near the B dopant  (dashed line) and far away from the B dopant (solid line) for B-doped 

graphene on Cu foil. Scanning conditions: 𝑉𝑏𝑖𝑎𝑠 = −0.5𝑉 and 𝐼𝑠𝑒𝑡 = 0.3𝑛𝐴;  (b) A set of STM 

spectroscopic maps taken over an  .5 ×  .5n 2 area in the vicinity of a single graphitic B 

dopant for B-doped grpahene films on Cu foil at different bias energies from -1.0V to +1.0V. 

Scanning conditions: 𝑉𝑏𝑖𝑎𝑠 = −0.8𝑉 and 𝐼𝑠𝑒𝑡 = 0.5𝑛𝐴; (c) Radially averaged dI/dV (differential 

conductance) as a function of the distance from the B atom at different bias energies from -1.0V 

to +1.0V, normalized to unity at distances far away from the B dopant site. The fits are to an 

exponential decay function.  
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observable in the spectrum taken around B dopants, due to the fact that B dopants attract positive 

charge carriers and repel negative charge carriers. A set of dI/dV maps taken around a B dopant at 

various bias energies from -1.0V to +1.0V, in Fig. 4.7b, shows intensity contrast between dopant 

neighborhood and background in local density of states (LDOS) at positive biases but not in 

negative biases, in accord with dI/dV spectra in Fig. 4.7a. The radially averaged dI/dV intensity as a 

function of distance from B dopant site is plotted in Fig. 4.7c for all ten energy levels measured in 

Fig. 4.7b, with the background dI/dV intensity normalized to unity. All of the spectra are well fit by 

exponential functions with similar decay lengths of ~6Å but different ratios of dI/dV intensity at 

dopant site to that of background. This indicates that the perturbation in LDOS in vicinity of B 

dopants is localized around dopant sites, just the same as N-doped case [8].  

4.3 Differences to N-doped Graphene 

Despite the similarities between graphitic B and N in graphene lattice, subtle differences between 

them have been reported in the literature. For instance, B-C bond is about 0.5% longer than C-C 

bond while N-C bond has about the same length as C-C bond [16]; elemental B interacts much 

stronger with Cu than N does [34]. How will these differences affect the properties of B- (N-) doped 

graphene films?  

4.3.1 STM Topographic Features 

As discussed in last section, the overall triangular symmetry of the graphitic B is very similar to the 

case of graphitic N dopants in graphene lattice. However, important differences exist in the details 

of the structure. This is best visualized in the angular averaged topographic line profile through 

graphitic B and N dopants, as displayed in Fig. 4.8a. While the topographic features for both kinds of 
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dopants extend to a radius of about 1.0nm, the topographic maximum occurs at different locations 

in the two cases. In the case of the B dopant, the maximum height is observed at the B dopant site 

(green diamond, inset Fig. 4.8a). However, in the case of N dopant, the maximum is seen close to the 

nearest neighboring carbon sites to the N dopant (green circle, inset Fig. 4.8a). This difference is 

further confirmed by high-resolution atomic images of graphitic B and N dopants, shown in Fig. 4.8 

b and c.  

 

 In a STM topographic image, an apparent height increase at a given atomic site can arise 

either from a real structural height increase, or from electronic effects if the tunneling amplitude is 

enhanced over the atom. In order to distinguish between these two possibilities, we performed DFT 

calculations of the bonding environment, charge density distribution and local density of states for  
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Fig. 4.8 STM topographic difference between graphitic B and N dopants. (a) Angular averaged 

line profile for graphitic B dopant (blue line) and N dopant (black line). The light blue band 

indicates the length scale over which the Boron and Nitrogen dopants perturb the local density 

of states of graphene. (Inset) Zoom-in of line profile shown in (a), with green diamond for the 

highest point in B dopant and green circle for the highest spot in N dopant. (b) and (c) High 

atomic resolution STM topographic images of single B (𝑉𝑏𝑖𝑎𝑠 = −0.5𝑉 and 𝐼𝑠𝑒𝑡 = 0.5𝑛𝐴) and N 

𝑉𝑏𝑖𝑎𝑠 = 0.5𝑉 and 𝐼𝑠𝑒𝑡 = 0.5𝑛𝐴 dopants, with green markers highlighting the highest spots in the 

topography. 
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graphitic B and N doped graphene on top of a commensurate slab of Cu(111) single crystal, as 

shown in Fig. 4.9a and Fig. 4.9b respectively. Our DFT calculations show that there is a substantial 

difference in the interactions between the Cu substrate and the B and N dopant. The N dopants are 

seen to not interact significantly with Cu substrate. They remain coplanar with the surrounding 

graphene, with the N-C nearest neighbor distance of 1.40Å, which is very close to the C-C nearest 

neighbor distance of 1.41Å in our calculations. Similarly, the vertical distances of N and C from the 

Cu plane are almost identical at 3.35Å and 3.32Å respectively. On the other hand, empty    states of 

B localized in the region around the dopant site drive strong interactions with Cu   
2 and   states. 

This interaction pulls B closer to the Cu substrate and drives a deformation of the initially flat 

graphene [20]. In particular, the vertical distances of B and C from the Cu plane are 2.39Å and 2.78Å 

respectively. The interaction is observed also from a more apparent charge modulation on top of 

(a) 

N on Cu
N-Cu: 3.35 Å
C-Cu: 3.32 Å

+ 0.001

- 0.001

(b) 

B on Cu
B-Cu: 2.39 Å
C-Cu: 2.78 Å

+ 0.001

- 0.001

Fig. 4.9 DFT calculations of structures and charge density differences for graphitic N and B 

dopants on a commensurate Cu slab. (a) Structure and charge density differences in N-doped 

graphene commensurate with Cu(111), with the N dopant on top of a Cu atom. Red denotes 

excess of charge and blue for a deficit of charge. (b) Structure and charge density differences in 

B-doped graphene with B atom on top of a Cu atom.  

 Theory work was done by Lucia Pálová in Reichman’s group at Columbia U. 
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the Cu surface. This difference between N and B interaction with Cu is found independent of the 

registry to the Cu(111) surface. Our DFT calculations therefore indicate that the apparent height 

difference between B and N dopants in the STM topographic images is a purely electronic effect that 

arises from the fact that the    orbital of the B dopant extends further than that of the N dopant [36]. 

 Apart from these individual graphitic B dopants, there are a good number of additional 

topological defects (~20%) in the graphene films. Fig. 4.10a shows a 30 × 30n 2 scan displaying 

some of these defects (marked by white arrows), a few graphitic B dopants (marked by red/green 

triangles) as well as hexagonal Moiré pattern associated with mismatch between graphene lattice 

and the underlying Cu lattice [39]. Closet-up images of these defect structures shown in Fig. 4.10b 

reveal a variety of the defect forms. These includes four pentagon-heptagon pairs surrounding a 

hexagon (inset 1, Fig. 4.10b) [40], a grain boundary loop composed of six pentagon-heptagon rings 

(inset 2, Fig. 4.10b) [41], and more complicated combinations of pentagon-heptagon defects (inset 

3-6, Fig. 4.10b). The basic defect structure is the Stone-Wales (SW) defects that has been observed 

in graphene prepared by CVD growth on Nickel substrates [42, 43] and by epitaxial growth on SiC 

substrate [40, 44]. The SW defect is the topological defect with the lowest energy of formation per 

dislocation [40]. In both pristine graphene and N-doped graphene grown by CVD on Cu foil, we do 

not observe isolated or grouped SW defect structure. The ~20% concentration of SW defect 

structures in B-doped graphene is thus related to the introduction of B atoms during the CVD 

growth. Previous experiments on graphite have shown that the introduction of B atoms into 

graphite causes interstitial defect loops [25], and increases roughness in the graphitic basal plane 

[20, 45]. The similarities of our observation with these previous reports suggest that similar 

mechanisms are at work in our samples.  
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 Topographic defects and grain boundaries are known to produce resonant states near the 

Dirac point in graphene [46-48]. Their effect on adding or withdrawing charge from the graphene 

sheet is less known. STS measurements of differential conductance (dI/dV) spectrum in Fig. 4.11a  

(a) 

 

 
2.5 Å

-1.0Å

6nm

(b) 
(1) (5)(3)

(6)(2) (4)

(1’)

(2’)

Fig. 4.10 Stone-Wales defect structures observed on “tube-doped” graphene films on Cu foils.  

(a) STM image of an 30 × 30n 2 area exhibiting multiple defect forms. Red and green triangles 

indicate the graphitic B dopants in both sublattices. White arrows indicate the complicate defect 

forms composed by SW defect pairs. (b) STM images of different defect forms associated with 

pentagon-heptagon pairs. Inset (1’) and (2’), proposed atomic structures for features in inset 

(1) and (2) respectively. Scanning conditions: 𝑉𝑏𝑖𝑎𝑠 = −0.5𝑒𝑉 and 𝐼𝑠𝑒𝑡 = 0.5𝑛𝐴. 
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and Fig. 4.11b were taken across the features of a “ flower” structure  (Fig 4.10b inset 2) and a 

“zipper” structure (Fig. 4.10b inset 6) respectively. The Dirac point ED is seen to be close to EF for 

both cases, as indicated by the orange arrows. In this area, we also observe almost no graphitic 

dopants. This together with zero Dirac point shift in this area indicates that the SW defect 

structures do not contribute free charge carriers into graphene films. However, the defects do 

introduce resonaces in the local DOS at bias voltages of ~-0.6eV, ~-0.25eV, ~0.1eV and ~0.25eV 

(~0.5eV) as shown in the dI/dV spectra in Fig. 4.11a (b). The resonance energy varies with the 

geometry of the arrangement of SW defects, varying from ~0.25eV for the “flower” structure to 
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Fig. 4.11 Resonances in local density of states of graphene in the presence of SW defects. (a) 

dI/dV spectra taken across the “flower” feature in inset (2) of Fig. 4.10b with the red spectrum 

taken at the center of the feature. (b) dI/dV spectra taken across the “zipper” feature in inset (6) 

of Fig. 4.10b, with red spectrum taken at the center of the feature. Scanning conditions: 

𝑉𝑏𝑖𝑎𝑠 = −0.5𝑒𝑉 and 𝐼𝑠𝑒𝑡 = 0.3𝑛𝐴. 
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~0.5eV for the “zipper” structure. The width of the regions for the resonance is approximately 

~5nm, with the maximum intensity observed at the defect sites. The effect of such defects on 

transport proeprties depends on the details of the structure, and both weak and strong scattering is 

predicted from different defect configurations [49, 50].  

4.3.2 Dopant Distributions between Sublattices 

In discussions of the dopant distribution for both B-doped and N-doped graphene, we limit to the 

graphitic dopants since they are the major ones in both doped samples.  

 As revealed in the last section, the atomic scale interactions between B and Cu substrate are 

much stronger than that between N and Cu. Interestingly, such atomic-scale differences have a 

profound impact on the dopant distribution at larger length scales (~a few tens of nm). In general, 

graphitic substitution can occur in both graphene sublattices as shown in Fig. 4.12a. In each case, 

the nearest neighbors of the dopant atom come from the opposing sublattice, resulting in dopant 

features that have triangular symmetry rotated 180o from one another (as highlighted by the red 

and green triangles in Fig. 4.12a). STM topographic measurements indicate that the graphitic 

dopants distribution between two sublattices is very different in B and N-doped graphene films. Fig. 

4.12b and Fig. 4.12c show typical  0 ×  0n 2 areas of B-doped and N-doped graphene surface 

respectively. In these two images, the dopants exist in both sublattices and their effects on the 

image morphology are highlighted by red and green triangles. In the case of B-doped graphene, the 

dopants are distributed randomly between the two sublattices, while N-doped graphene shows a 

strong tendency for the dopants to cluster locally on the same sublattice (as briefly mentioned in 

Chapter 3 for the N-doped case). This phenomenon is further confirmed in multiple samples and 

across large areas, as shown in Fig. 4.13a and Fig. 4.13b [8]. 
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To quantitatively characterize the spatial distribution of the dopants both within and 

between the two sublattices, we analyze statistically the positions of the dopants from large area 

STM images (30 × 30n 2 in Fig. 4.13a and Fig. 4.13b) We do this by calculating the probability that 

a given STM image is consistent with a random dopant distribution using two test methods. In the 

first test, we simply consider the ratio of the total number of dopants observed in each sublattice 

for a give image, and calculate the likelihood that a random distribution between sublattices of 

dopants will result with this ratio. This test can detect the sublattice segregation when the size of 

the STM image is smaller or comparable to the typical domain size of dopants being in one 

sublattice. For domains smaller than the typical STM image, we use the Moran Index [51] as a test of 

sublattice segregation. Both these tests produce p-values [52] which indicate the probability that a 

given STM image arises from a random dopant distribution between sublattices. A p-value greater 

than 0.05 indicates that the dopant distribution is within two standard deviation of the most 

(a) (b) 

2nm

B-doped (c) N-doped

2nm

Fig. 4.11 Dopant distribution between A-B sublattices of graphene. (a) Cartoon diagrams for 

dopants in both sublattices and the orientations of the triangle pattern formed by the first three 

carbon atoms for the dopant sites. Red and green triangles highlight examples of dopants in 

both sublattices. (b) STM topography of an   .5 ×   .5n 2 area on B-doped graphene on Cu 

foil. Scanning conditions: 𝑉𝑏𝑖𝑎𝑠 = −0.5𝑒𝑉  and 𝐼𝑠𝑒𝑡 = 0.5𝑛𝐴 . (c) STM topography (  .5 ×

  .5n 2) on N-doped graphene film on Cu foils. Scanning conditions: 𝑉𝑏𝑖𝑎𝑠 = 0.5𝑒𝑉 and 

𝐼𝑠𝑒𝑡 = 0.5𝑛𝐴. 
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probable random distribution between two sublattices [52]. In the following, we will give a brief 

description of ratio test, Moran Index test and p-value. 

 

 Ratio test – the ratio of the number Nr of dopants in one sublattice out of a total of N 

dopants is defined as  

 =
  

 
 . ( 4.2 ) 

Under the hypothesis of a dopant occurring in both sublattices with equal probability, the ratio p 

follows a normal distribution with mean of 

    = 0.5   
( 4.3 ) 

 

(a) 

 

 

P=40.5%

6nm

B-doped (b) 

P=0.000015%

N-doped

6nm

Fig. 4.13 Dopant distribution between A-B sublattices of graphene at larger scale of 30nm by 

30nm. (a) STM topography of an 30 × 30n 2 area on B-doped graphene on Cu foil, with red and 

green triangles marking the dopants in two sublattices. The ratio and Moran Index tests result 

in a probability of 40.5% for B dopants in this area randomly distributed between two 

sublattices.  Scanning conditions: 𝑉𝑏𝑖𝑎𝑠 = −0.5𝑒𝑉  and 𝐼𝑠𝑒𝑡 = 0.5𝑛𝐴 . (b) STM topography 

(  .5 ×   .5n 2) on N-doped graphene film on Cu foils. The tests give a probability of 

~0.000015% for random distribution of N dopants between two sublattices, indicating a sub- 

lattice cluster effect. Scanning conditions: 𝑉𝑏𝑖𝑎𝑠 = 0.5𝑒𝑉 and 𝐼𝑠𝑒𝑡 = 0.5𝑛𝐴. 
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 and standard deviation of  

    = √
    ×   −      

 
 ( 4.4 ) 

 Moran Index test – in statistics, Moran Index is used to measure spatial autocorrelation, 

which is defined as  

 =
 

∑ ∑      

∑ ∑       −  ̅    −  ̅   

∑    −  ̅ 2 

 . 
( 4.5 ) 

In this formula, N is the number of spatial features which are indexed by i and j;     =      are 

the variables of interest for the     feature;  ̅ is the average of the variables; and     is the spatial 

weight between the     and     features which is usually defined as the inverse of the distance 

between the two features.  

The expected value of Moran Index under the null hypothesis of no spatial autocorrelation 

is defined as  

    =
− 

 −  
 . ( 4.6 ) 

And its variance is  

    =
   −     

  −     −     − 3  ∑ ∑       2
   

( 4.7 ) 

where 
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 p-value – as described above, both the ratio test and Moran Index test of a given set of 

experimental data follow a normal distribution with a mean value of E(p) (E(I)) and a standard 

deviation of  (p) ( (I)), under the null hypothesis of dopants distributing randomly between the 

two sublattices of honeycomb lattice. Therefore, 
      

    
 follows a standard normal distribution, 

which is  

 −     

    
   0   . 

( 4.13 ) 

Here, N(0,1) stands for a standard normal distribution,    0   =
 

√2 
    2⁄ . To measure the 

consistency between experimental observations and the null hypothesis, the p-value is introduced 

as  

 (| |  
  −     

    
)   

( 4.14 ) 

where  =
      

    
   0   . 
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 As an example of the application of these tests, we consider Fig. 4.13a and b for B-doped and 

N-doped cases respectively. In B-doped graphene such as in Fig. 4.13a, the p-value obtained from 

the ratio test is 0.405 and from the Moran Index test is 0.503. In contrast, the N-doped graphene 

(Fig. 4.13b) results in p-values of  .5 ×  0   from the ratio test and 3. ×  0   from the Moran 

Index test. The test thus provide additional confirmation for what appears to be evident to the eye 

from the two figures – B-doped graphene does not show sublattice segregation down to the 

smallest length scales, whereas N-doped grapheen does indeed segregate, with domain size at least 

larger than 30nm. We investigated multiple B and N-doped graphene samples, and took the smaller 

p-value of the two tests to represent the degree of randomness. These values are plotted in Fig. 4.14, 

where the p-values for B dopants for all the images obtained are above 0.1, while those for N 

dopants are all below 10-6.  

 

 In order to understand this, we need to consider two possible interactions relevant to the 

phenomenon. First, in the context of doped, free-standing graphene, there exist small differences 
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Fig. 4.14 Statistics of dopant distribution between two sublattice of graphene. P-values for 10 

areas of B-doped grapheen and 3 areas of N-doped graphene show several orders of magnitude 

difference in probabilities of dopants being random distribution between B-doped and N-doped 

graphene, statistically indicating sublattice segregation for N dopants and randomness for B 

dopants.  
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between the structures of B-C and N-C bonds. Even though we observe significant long range 

electronic interactions [53], they do not affect the total energy significantly at the typical distance 

between dopants [54]. Second, the B, N and C atoms are all bound to surface Cu atoms during the 

growth process, and differences in the B-Cu and N-Cu interactions can cause differences in 

sublattice segregation [34, 55]. Our results shown in Fig. 4.9a and Fig. 4.9b illustrate that this affect 

can be quite different between B and N dopants once they are incorporated. While further studies 

would be required to confirm the exact cause for this behavior, the sublattice correlation that we 

observe in conjunction with different B-Cu versus N-Cu interactions may well reflect the 

hypothesized role of the metal substrate in the growth process [56, 57]. Systematic growth 

experiments on different substrates can potentially give more insights into this issue. Moreover, 

our observation of sublattice segregation in N-doped graphene is important for a number of 

exciting applications. For example, breaking the sublattice symmetry of graphene destroys the 

pseudospin degeneracy and introduces a band gap at Dirac points. Theoretical work has predicted 

that dopants in the same sublattice are most efficient in breaking the sublattice symmetry [58]. We 

have not observed such a band gap in our STM spectroscopy experiments thus far, chiefly because 

we are studying samples with low dopant concentrations. Further spectroscopy and transport 

measurements in heavily doped regime can be employed to elucidate band gap formation.  

4.4 NEXAFS Characterizations on B-doped graphene 

A confirmation that B is present in the structure is provided by near-edge x-ray absorption fine 

structure spectroscopy (NEXAFS) measurements. A NEXAFS spectrum (Fig. 4.15) taken on a “tube-

doped” B-doped graphene/Cu foil at Boron 1s edge shows clear resonances at energies of 192.0 and 

200.0eV. The intensity of the resonances is strongly dependent on the electric field polarization, 
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and both the energy and polarization dependence of the resonances are completely consistent with 

the   and   states of sp2 bonded graphitic boron [11]. 

 

4.5 Brief Discussions on “Flow-doped” Graphene 

So far in this Chapter, we have focused on “tube-doped” graphene films. To make a complete story, 

we devote this section to brief discussions on the results from the “flow-doped” graphene samples. 

Here, the “flow-doped” term refers to inclusion of B2H6 flow during the graphene growth, as 

opposed to the absence of B2H6 flow in “tube-doped” graphene case. Typically, the flow rate of B2H6 

is controlled to be from 1sccm to 5sccm while that for CH4 and H2 are 6sccm and 100sccm 

respectively.  

 Fig. 4.16a displays a large scale STM topographic image taken on the “flow-doped” graphene 

samples. We clearly see a much larger background corrugations and a much higher concentration of 

defect structures over this surface than on the “tube-doped” samples. This indicates that the 

presence of B2H6 flow reacts violently with the Cu substrate and therefore perturbs the 
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Fig. 4.15 NEXAFS of “tube-doped” graphene on Cu foil measured at B1s edge, with E-field 

polarization dependence.   
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environment for graphene growths. A zoom-in image in Fig. 4.16b shows the morphology of these 

defects, some of which show a triangular symmetry (red arrow) just as graphitic Boron dopants 

while others display much more complicate patterns (yellow arrows). All of these suggest a poor 

quality of the graphene films and less control over the dopant structures.  
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Chapter 5  

Nitrogen Dopant Distribution in N-doped Graphene Polycrystal 

5.1 Background of Impurity/Dopant Distribution 

Most materials with sizes at macroscopic scales are inevitable to have grains and defect lines 

between grains (i.e. structural grain boundaries) [1, 2]. When impurities of heteroatoms are 

present in these materials, the interplay between the heteroatoms and intrinsic defects plays an 

important role in determining the electronic and structural properties of the host materials. This 

has been an intensely studied subject in three-dimensional polycrystalline materials [3-11], and 

recently is introduced into materials with lower dimensionality [12, 13] due to the realization of 

atomic thick materials [14].  

5.1.1 Review of Dopant Distribution in Three-dimensional Polycrystals 

Doping and functionalization are common strategies by which the electronic properties of the host 

materials can be tuned. Understanding the spatial homogeneity of the doping or functionalization 

process is key to achieving the control over the material’s electronic properties. In three-

dimensional polycrystalline materials such as ceramics [3, 4], semiconductors [5-8] and so on [15-

18], atomic impurities and dopants are well known to migrate towards surfaces and grain 
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boundaries during the growth/doping processes, resulting in an in homogeneous modification of 

the electronic and structural properties of the host materials.  

 Dating back to 1980s, it was very puzzled that the electrical properties of doped 

polycrystalline silicon are markedly different from those of single crystal silicone. In particular, in 

the low doping level regime, the resistivity of polycrystalline Si is several orders of magnitude 

higher than that of single crystal one and is not sensitive to the variations of dopant concentration. 

To a medium dopant density, a small increase of dopant density results in a dramatic drop in 

resistivity. And finally in the high dopant concentrations, the resistivity approaches that of single 

crystal ones. Massive experiments [8, 19-24] were done trying to solve this mystery and came up 

with two possible models. One is the carrier trapping model [8, 19, 20] and the other is the dopant 

segregation model [23, 24]. The latter one, in which it is stated that the dopant atoms migrate 

towards the structural grain boundaries and become electronically inactive, has been proved to be 

the major factor in determining the electrical properties of doped Si polycrystals [9], especially with 

advanced imaging techniques [7]. In fact, not only Si, other polycrystalline semiconductors and 

ceramics exhibit the same character in terms of dopant segregation.  

 Apart from structural grain boundaries, interfaces between two different materials also 

attract the impurities, for instance, interfaces in quantum well structures [10, 11]. P.M. Petroff et al 

reported in 1978 that the impurities at the interface of GaAs –GaAlAs accumulate from the 

nucleation and growth processes, and roughens the interfaces, depending on the order in which the 

GaAs and GaAlAs layers were deposited [10].  A follow-up study from P.M. Petroff et al proposed 

more possible mechanisms for impurity trapping towards the interfaces, including the impurity 

solubility difference in GaAs and GaAlAs, and the misfit strain between the two materials. The origin 
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of the impurity nucleation towards the interfaces was under investigation, but the phenomenon 

was clearly shown in multiple experiments [11].  

5.1.2 Chances in Chemically Doped Two-dimensional Polycrystals 

The discovery of the atomic thick materials opens a new field of researches in lower dimensionality 

[14, 25]. As we could imagine, a defect line has a much more significant impact in two-dimensional 

materials than that in three-dimensional materials, simply due to the fact that the defect-lines with 

the same length take up much higher “surface to bulk ratio” in lower dimensions. As such, we would 

expect the interplay between impurities and structural grain boundaries in two-dimensional 

systems to be dramatically different from that in the traditional three-dimensional materials.  

 Up to now, successful syntheses of large-area monolayer films have been achieved in a 

couple of systems including graphene [26] and MoS2 [27, 28]. Of particular interest is that nitrogen-

doped monolayer graphene films have been produced by a wide variety of techniques, and 

microscopic measurements of this functionalized material have already revealed the atomic-scale 

doping forms and local electronic properties of this material [29-32]. At the micrometer scale, it is 

well known that chemical vapor deposition (CVD) grown graphene films are polycrystalline [33, 34]. 

However, the macroscopic electronic properties are still not clearly explained [35] partially due to 

the lack of knowledge on the dopant concentration variations within grains and across grains.  

 Therefore, the nitrogen-doped monolayer graphene films are an ideal medium in which to 

study spatial homogeneity of doping within grains and across grain boundaries. This study, in turn, 

also provides us with key information to produce high-quality doped graphene films for electronic 

application.   
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5.1.3 Approaches and Subjects in Our Experiments 

In this chapter, we will present our results on nitrogen dopant distribution in polycrystalline 

nitrogen-doped monolayer graphene films, as well as single crystalline nitrogen doped graphene 

islands. 

Nitrogen doped monolayer graphene films were grown using low-pressure CVD technique 

on Cu foil substrates [26]. To investigate the effect of the growth conditions on the results we 

obtained, we performed growth with two types of precursor gases. The first type is a mixture of H2, 

CH4 and NH3, as described in Chapter 3 [36], and the second one is pyridine vapor, a single source 

for both nitrogen and carbon [37]. Here, we denote the samples prepared in the first recipe as 

NG_Xm, where NG stands for nitrogen doped monolayer graphene sheet and Xm for a growth time 

of X minutes, and the samples grown with the second method by NG_Pyridine. A brief description of 

both recipes is as follows: 

(1) Precursors of H2, CH4 and NH3. The copper foil substrate was cleaned with a flow of 10 

sccm H2 at a pressure of 0.055torr and a temperature of 1000oC for 10 minutes. Doped 

graphene films were then synthesized using a mixure of H2 (10sccm), CH4 (170sccm) 

and NH3 (0.10torr partial pressure) at a total pressure of 1.9torr and temperature of 

1000oC for growths of 5mins (NG_5m), 8mins (NG_8m), 10mins (NG_10m), 14mins 

(NG_14m) and 18mins (NG_18m).  

(2) Precursor of Pyridine. The copper foil substrate was first cleaned in ultra-high-vacuum 

(UHV) by Ar+ ion bombardment and post-annealing cycles to obtain a fresh copper 



 
 

CHAPTER 5. Nitrogen Dopant Distribution in N-doped Graphene Polycrystal         141 
 

surface. Doped graphene films were then grown using Pyridine at a pressure of 1mtorr 

and a temperature of 950oC for 30mins, denoted as NG_Pyridine.  

As we have learnt from the STM and XPS characterizations in Chapter 3 that the typical 

nitrogen dopant concentration is only ~0.2%-0.5% in these NG_Xm samples, conventional element 

analysis techniques are not sufficient here, especially when a reasonable spatial resolution is 

required [38]. Here, we use the high sensitivity of micro-Raman spectroscopy (532nm laser 

excitation) to impurities [39, 40] and free charge carriers [41, 42] in the graphene lattice to map the 

dopant distribution over large areas (         ) of the films with submicron (~0.5µm) spatial 

resolution. We further complete these measurements with atomic-resolution scanning tunneling 

microscopy (STM) measurements near grain boundaries in graphene polycrystals and edges of 

graphene islands, which provides us direct measurements of nitrogen dopant concentrations at the 

nanometer scale.  

5.2 Micro-Raman Spectroscopy Studies of N Dopant Distribution 

5.2.1 Individual Raman Spectrum and Its Statistics on N-doped Graphene 

Fig. 5.1 shows typical Raman spectra taken from a pristine graphene and a NG_10m sample 

transferred onto SiO2/Si substrates. The Raman spectrum from pristine graphene shows sharp and 

intense well-known G and 2D bands with a 2D/G ratio of ~4 and a negligible D band. These features 

indicate that the quality of the CVD grown pristine graphene is comparable to that of the best 

mechanically exfoliated samples [39, 40, 43]. In contrast to the pristine graphene films, the NG_10m 

sample shows strong D and D’ bands in the Raman spectrum, and the intensity of the 2D band is 
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significantly suppressed. The G band frequency displays a blue-shift compared to that of pristine 

graphene, as shown in the inset of Fig. 5.1. All of these observations indicate the presence of 

nitrogen dopants in the NG_10m graphene film, which act as defects in the graphene lattice and 

contribute free charge carriers to the graphene films [39-43].  

 

 As a confirmation that the transferring process does not introduce the extra features in 

NG_10m sample, we display Raman spectra taken on both as-grown pristine and NG_10m samples 

on Cu foil substrates in Fig. 5.2. The background in both spectra results from the luminescence of Cu 

substrates, and so does the poor signal to noise ratio. Furthermore, the peak shape is distorted and 
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Fig. 5.1 Raman Spectra of pristine graphene (black line) and nitrogen-doped graphene (blue 

line) films transferred on to SiO2/Si substrates, with D, G, D’ and 2D bands highlighted in yellow 

background. The inset shows a zoom-in plot in the range of G and D’ bands. Clear differences are 

observable between Raman spectra of pristine and nitrogen-doped graphene films.  
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the peak frequency is slightly shifted mainly due to the interactions (such as strain) between 

graphene layers and underneath Cu substrate [44]. Except these difficulties brought by the 

presence of Cu substrates, D and D’ bands are clearly seen in NG_10m sample while they are absent 

in the pristine sample. For the convenience in Raman measurements and subsequent explanations, 

we therefore transferred the graphene films on to SiO2/Si substrates for the Raman 

characterizations in the following parts of this chapter. 

 

In order to make the differences between pristine and nitrogen-doped graphene more 

statistically relevant, Raman spectroscopy maps were acquired on both films comprising of 4096 

(     ) data points examined over a          area on each sample.  

Fig. 5.2 Raman spectra taken on as-grown pristine (gray lines) and nitrogen-doped (black lines) 

graphene films on Cu foil substrates. Signature bands, D, G, D’, and 2D are marked with vertical 

gray lines. The appearance of D and D’ bands in NG_10m sample in addition of G and 2D bands 

indicates the presence of nitrogen dopants in NG_10m, despite the background from the Cu 

substrate luminesce.  
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Fig. 5.3a shows the statistical distribution of G band frequencies taken over both samples. 

The statistical mean of the G band position for sample NG_10m (light blue blocks) is at 1589 cm-1 

while the pristine graphene produced by the same mean has an average G band frequency of 1584 

cm-1. This indicates that the NG_10m sample is on average electron doped, with a carrier 

concentration of ~         [41, 42]. Previous STM measurements have shown that the number of 

electron carriers from per nitrogen dopant is approximately constant (~0.42e/N) over a wide 

range of nitrogen concentration [29]. We can thus linearly scale the G peak frequency with the local 

nitrogen dopant concentration.  

We plot the intensity ratios of the signature bands in Raman spectra as a function of G band 

frequency in Fig. 5.3b, both for pristine graphene (left panel with light gray background) and for 

NG_10m sample (right panel with light blue background). From this figure, we see that in the 

pristine graphene, the 2D/G ratio stays high at ~3-4 and all the other ratios (D/G, D’/G, and D/2D) 

are nearly zero, in accord with previous measurement on mechanically exfoliated graphene films on 

SiO2/Si substrate. On the other hand, sample NG_10m shows non-zero values of the D/G, D’/G and 

D/2D ratios, consistent with the presence of nitrogen dopants in the graphene lattice. We note that 

both the D/G and D’/G intensities are linearly proportional to the G band frequency, and thus also 

to the N dopant concentration. Our results are consistent with previous experiments on 

intentionally disordered graphene films [43], indicating that the chief effect of the nitrogen dopants 

on the Raman spectra is to provide atomic-scale defects that make the D and D’ band visible. The 

absolute difference in the D and D’ band intensities is due to the difference in the scattering cross 

sections of D and D’ bands [43, 45]. The effect of nitrogen doping decreases the 2D peak intensity 

due to increasing carrier concentration in the graphene films, as well as the addition of structural 

defects to the graphene lattice. The 2D/G ratio thus displays a non-linear dependence on the G band 
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frequency. Finally, the D/2D ratio combines the opposing trend of the D/G and 2D/G ratios on 

nitrogen dopant concentration, and is thus the most sensitive indicator of nitrogen dopant density 

in the following analysis for investigating the spatial variations of effects of nitrogen dopant density.  

 

5.2.2 Raman Mapping on N-doped Graphene 

As we have shown variations of G peak frequency, D/G, and D’/G and D/2D ratios for both pristine 

graphene and NG_10m sample in the last section, we wonder how these variations situate in real 

(a) 

1582 1586 1590
0

1.0

G Peak Frequency (cm-1)

C
o

u
n

ts
 (

x
1

0
3
)

Pristine

N-doped

(b) 

1582 1586 1590
0

1.0

2.0

3.0

2D/G

D/G

D'/G

D/2D

G Peak Frequency (cm-1)

P
e
a
k
 R

a
ti
o
s
 (

u
n
it
)

Pristine N-doped

Fig. 5.3 Statistics of Raman spectra taken on pristine and nitrogen-doped graphene films.  (a) 

Statistics of G band frequencies on pristine (gray blocks) and nitrogen-doped (light blue blocks) 

graphene samples over          areas (      pixels); (b) Statistical relations between 

peak intensity ratios, including D/G, D’/G, 2D/G and D/2D with respect to G band frequencies.  
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space and whether they have any correlations with the structural features of graphene polycrytals. 

So in the following part of this section, we will first take a look at real space mappings of pristine 

graphene, and then move forwards to the nitrogen doped case.  

 

Grain boundaries and nucleation seeds are the primary sources of structural disorder in 

pristine graphene grown by CVD technique. We can visualize these structural features in an optical 

microscope, as shown in Fig. 5.4a. The two darker regions highlighted by the arrows are the 

nucleation seeds of two domains where multilayer graphene is typically found [46]. We expect a 
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Fig. 5.4 Grain boundaries in pristine graphene imaged by Raman maps. (a) An optical image of a 

CVD grown pristine graphene, with two seeds highlighted by two arrows. (b) Raman map of the 

D/2D intensity ratio at the area highlighted by the rectangular box in (a), with two arrows 

indicating the two seeds (high D/2D ratio of ~0.04). A line with high D/2D ratio of ~0.04 is 

present between the two seeds, indicative of a grain boundary there. (c) 2D width map taken at 

the same area as (b), with wider 2D width highlighted with two arrows, further confirming the 

growth of multilayer graphene at the seeding center of each grain. 
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grain boundary to exsit in the graphene monolayer between these two seeds. Indeed, Raman 

spectral maps show evidence for this as indicated in Fig. 5.4b, which illustrates the D/2D ratio map 

in the same area as highlighted by the black rectangle in Fig. 5.4a. This map shows a line where the 

D/2D ratio is higher than the rest of the map, consistent with the presence of a grain boundary [47]. 

The existence of multilayer graphene films at the nucleation seeds is further confirmed by an image 

of the 2D band width shown in Fig. 5.4c.  

Having understood the effect of grain boundaries and similar structural features on the 

Raman spectra of pristine graphene films, we are now in a position to study the interactions 

between these structural features and nitrogen dopants in chemically doped graphene sheets. 

Shown in Fig. 5.5a is an optical image of a monolayer NG_10m sample, where we can see these dark 

spots spread over the surface with an averaged distance of ~3-5µm. Just as in the case of pristine 

graphene, these dark features in optical images are associated with the multilayer growth at the 

nucleation centers of the grains. A D/2D ratio map taken at the same area as the optical image is 

shown in Fig. 5.5b. The map shows a clear patchwork structure as might be expected from a 

polycrystal sample. Surprisingly, however, the image shows that the D/2D ratio intensity is much 

smaller on the patch boundaries than that to the interior of the patches (which is relatively 

uniform), in complete contrast to our measurements on pristine graphene films. For the NG_10m 

sample, the average D/2D ratio at the patch boundaries is ~0.1, while it is ~1.2 in the interior of the 

patches. This compares to a D/2D ratio of ~0.04 at the grain boundaries and ~0.0 in the interior for 

pristine graphene. Moreover, when we take a look at the 2D width map in Fig. 5.5c, we found the 

same patch boundaries as in Fig. 5.5b, and higher 2D width dots with in each of the patches, 

signaling the presence of multilayers in the patches. The coincidence of the dark spots in Fig. 5.5a 

with the high 2D with spots in Fig. 5.5c further confirms that these dark sparkles are the 
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multilayers typically growing from the same nucleation seeds as the first layer. Better visualization 

would be gained at longer growth time when the second layers get appreciable sizes. Therefore, the 

surprising conclusion that one can reach from these facts is that the nitrogen dopant concentration 

at the grain boundaries is much lower than that in the interior of the grains, while the interior of 

each grain is fairly uniformly doped.  
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Fig. 5.5 Raman mapping on NG_10m sample. (a) An optical image of a fully covered NG_10m 

sample. (b) and (c) Raman maps of D/2D and 2D width in the area highlighted with black box in 

(a). A clear patchwork structure is observable in both maps, with lower dopant concentration at 

the boundaries of the patches but relative uniform nitrogen dopant distribution inside patches.  
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 Natural questions that arise from our observation of dopant inhomogeneity are whether the 

observed effect of less nitrogen dopants is limited to grain boundaries, and what the possible role of 

the growth conditions are on the observed inhomogeneity.  

 To gain further insight into these questions, we first grew a series of samples using the 

same growth process with varying growth times of 5mins, 8mins, 10mins, and 14mins. Using 

optical microscopy on the samples transferred onto SiO2/Si substrates, we confirm that the 

fabricated samples are in a range from a partial monolayer (NG_5m growth) through a fully formed 

monolayer (NG_8m and NG_10m growths) to a partially formed bilayer (NG_14m growth). We 

obtained Raman spectral maps of each of these samples, as shown in Fig. 5.6a-c (D/2D ratio maps) 

and Fig. 5.6d-f (2D width maps). A clear picture of the evolution of dopant distribution is obtained 

from the D/2D ratio maps. At short times (NG_5m), the areas in the immediate vicinity of the 

nucleation seeds are relatively undoped, while the regions outside the central core are doped. The 

dopant distribution at the very edge of the individual islands is generally not resolved in the Raman 

images (with the exception of the places where low nitrogen concentration is observed at the grain 

boundaries when two grains merges, such as in the white rectangle area as marked in Fig. 5.6a). We 

will take a careful look at these regions in the discussions of the STM measurements. When the 

nitrogen-doped graphene first forms a complete monolayer (NG_8m), both the nucleation seeds and 

the grain boundaries contain less nitrogen dopants than the other regions of the graphene films. As 

time progresses, the doping in the interior of the film becomes more uniform (NG_10m) but the 

grain boundaries remain less doped. For an even longer time (NG_14m), large bilayer patches begin 

to form around the nucleation seeds, but the grain boundaries always stay less doped. Based on the 

fact that the second layers usually grow at the same seeds as the first layers [46], the doping 

domains with the nitrogen depletion boundaries are the same as the structural grain boundaries of 
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the nitrogen-doped graphene polycrystal. This finding actually states the fact that the nitrogen 

dopants avoid the structural grain boundaries in the CVD grown nitrogen-doped graphene 

polycrystals.  
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Fig. 5.6 Raman maps of NG_xm graphene films with difference growth time. (a)-(c) Raman maps 

of D/2D ratios for NG_5m, NG_8m, and NG_14m samples respectively. (d)-(e) Raman maps of 2D 

widths for NG_5m, NG_8m, and NG_14m samples respectively. Through this set of Raman maps, 

a clear picture of graphene film evolution as function of time is observed, with the second layer 

of films grown at the seeds of the first layers, and the grain boundaries remaining nitrogen 

depleted as time progresses.  
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 To confirm that these results are not specific to the use of ammonia as a dopant gas, we 

have used pyridine as a single precursor to grow nitrogen-doped monolayer graphene. Raman 

spectral maps of this sample (NG_Pyridine) are shown in Fig. 5.7a and b for D/2D map and 2D 

width map respectively. These maps clearly exhibit the same basic phenomenology as the ammonia 

doping process that the nitrogen dopants stay away from the grain boundaries although the center 

of each grain is still less doped (similar to the case of NG_8m sample). 

 

 In order to estimate the average widths of the nitrogen depleted boundaries, we adopt a 

simple two-step scheme described as following, under the assumption that  

      
    

             
   

( 5.1 ) 

The first step is to determine the circumference of the grain boundaries. We take the example of 

NG_10m in Fig. 5.5b. The cartoon in Fig. 5.8a outlines the grain boundaries of the patches in Fig. 

5.5b, from which the total length of the boundaries is calculated, ~247µm. The second step is to find 

the area where there are less nitrogen dopants. As discussed above, the nitrogen depleted regions 
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Fig. 5.7 Raman maps of NG_Pyridine samples. (a) Raman map of D/2D intensity ratio over a 

         area on a NG_Pyridine smaple. (b) Raman map of 2D width on the same area as in 

(a). The patchwork structure with nitrogen depleted grain boundaries is still present in this 

sample, indicative of the independence of this phenomenology on the growth conditions.  
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have low D/2D ratio and low 2D width as revealed in the micro-Raman maps. Therefore, we select 

the areas that satisfy (1) the lowest 5% of the D/2D range; (2) 2D width smaller than 45cm-1 in 

order to exclude the bilayer regions in longer growth time. In the case of Fig. 5.5, we select the areas 

which have D/2D<   (       )            and 2D width        . The selected regions 

are shown in Fig. 5.8b with red color, from which we calculated the corresponding area of 186   . 

Simply putting the numbers in Eq. 5.1 gives an averaged width of 0.75µm.  

 

 Using this scheme, we get the averaged width for each of the growths and plot the results in 

Fig. 5.9. The estimated averaged widths of the nitrogen depleted boundaries for the samples grown 

with ammonia for different times are similar, about 0.6-0.8µm wide. Meanwhile, the nitrogen doped 

graphene films grown with pyridine have a narrower width of the dopant depleted reiogns, which 

is less than 0.5µm. Despite the difference in the absolute values of the widths, all of our results 

consistently exhibit lower nitrogen concentration at the boundaries of the doping patches.  

(a) 

5µm

(b) 

5µm

Fig. 5.8 Cartoon diagram for calculating the width of the nitrogen depleted boundaries. (a) A 

cartoon outlines the circumference of the grain boundaries for the Raman map in Fig. 5.5. (b) A 

selection of depleted nitrogen regions in Fig. 5.5b and Fig. 5.5c shows the area of these regions. 

The averaged width of these regions is further obtained by area in (b) divided by the 

circumference in (a) 
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5.3 Scanning Tunneling Microscopy Studies on N Dopant Distribution 

While Raman spectra give us detailed information on defect and doping concentration in graphene 

films, it does not directly measure the nature of the defects giving rise to the D and D’ bands, and 

the technique is limited in spatial resolution of ~0.5µm by the wave length and the spot size of the 

laser. To complement Raman spectroscopic measurements, we use atomically-resolved STM 

measurements that in the past have been employed to successfully image nitrogen dopants in 

graphene [29, 31, 32]. Here we use the STM to identify nitrogen dopants in graphene and to study 

the interaction between the dopants and the edges/grain boundaries in the graphene films. The 

STM measurements are performed on as-grown nitrogen doped graphene films on Cu foil and in-

situ grown nitrogen doped graphene islands in UHV chamber.  

5.3.1 STM of N Dopant Distribution in Polycrystalline N-doped Graphene 
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Fig. 5.9 Calculated width of nitrogen depleted grain boundaries for NG_5m, NG_8m, NG_10m, 

NG_14m, and NG_Pyridine. The labeled number next to each plot indicates the averaged grain 

size of the corresponding sample.  

 All the Raman measurements were taken in collaborations with Rui He in Pinczuk group at 

Columbia U. 
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Shown in Fig. 5.10a is a STM topographic image (displayed in derivative mode) of a            

area on a NG_10m sample. The overall background variations arise from the polycrystalline nature 

of the Cu foil substrate. The graphene monolayer forms a continuous film across this rough terrain 

When the grains of graphene with different rotational angles or translational shifts merge together, 

a defect line is usually formed at the grain boundaries [33, 34, 48]. One of such grain boundary is 

observed in Fig. 5.10a, as highlighted by the black dashed line. The crystal orientations of the 

graphene grains on the two sides of the dashed line are rotated ~18o relative to each other as 

shown in Fig. 5.10b and c, further confirming the existence of the grain boundary in between. 

Having located the grain boundary, we can use STM to directly image the dopant concentration as a 

function of the distance from the boundary. Fig. 5.10d shows such an example. In this STM 

topography, nitrogen dopants appear as bright features due to an enhancement of local density of 

states at the nearest neighboring carbon sites around nitrogen dopants, as shown in previous 

chapters. Fig. 5.10d also clearly shows a depletion of nitrogen dopants near the grain boundary, 

consistent with the Raman results discussed above. We then calculated the nitrogen dopant density 

as a function of distance away from the grain boundary in Fig. 5.10e. A linear gradient of nitrogen 

concentration is observed, starting from almost zero at the grain boundary and gradually increasing 

to the density interior of the grain. Given the bulk value of nitrogen concentration of ~0.2% for this 

particular sample as measured by STM, we estimate the width of the nitrogen depleted region near 

the grain boundary to be ~0.7µm. This depletion region width is in good agreement with the Raman 

spectroscopic measurements on the same sample (NG_10m) described in last section.  
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Fig. 5.10 STM topographic measurements of the nitrogen dopant distribution on as grown 

nitrogen-doped graphene films on Cu foil (NG_10m). (a) Differential STM image (          , 

1.5V, 0.1nA) of an as-grown NG_10m sample. The black dashed line shows the location of a grain 

boundary; (b) and (c) Atomic resolution STM images of the corresponding areas highlighted in 

(a); scale bar = 1nm. (b’) and (c’) FFT of STM images shown in (b) and (c), respectively; (d) STM 

image across a grain boundary as highlighted in (a); (e) nitrogen concentration as a function of 

distance from the grain boundary. The red solid line is a linear fit to the data, and dashed one is 

the bulk limit of nitrogen dopant concentration in this sample.  
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5.3.2 STM of N Dopant Distribution in N-doped Graphene Islands 

To study the effect of the growth conditions, such as temperature and pressure, on the observed 

dopant inhomogeneity, we fabricated nitrogen-doped graphene under completely different growth 

conditions. We used Pyridine vapor as a single precursor under UHV conditions (pyridine pressure 

of 0.1mtorr and base pressure of 10-10 torr) on a single crystal Cu(111) at a temperature of ~800-

950oC, following the procedure for pristine graphene growth [49]. We can tune the graphene 

coverage from isolated islands to complete monolayers depending on the growth time, and study 

the dopant concentration near edges and boundaries as well. As an example, we show in Fig. 5.11a a 

STM topographic image of            nitrogen-doped graphene island on the stepped surface 

of Cu(111). The graphene is identified by its apparent height on the Cu(111) substrate in STM 

image. We carefully studied the distribution of dopants in this island by taking high-resolution STM 

images across the island. Fig. 5.11b shows one such STM image obtained across one edge of this 

island. By taking a sequence of such images, we quantified the nitrogen dopant density over the 

entire island and plot the results in Fig. 5.11c. We can clearly see that the nitrogen dopants avoid 

the edges of the island from this image. The nitrogen concentration as a function of distance from 

the closest edge is plotted in Fig. 5.11d. In this sample, a linear gradient of nitrogen concentration is 

observed up to ~60nm away from the edge of the island, after which the nitrogen concentration 

reaches a plateau at the bulk value of ~0.4%. In addition to this nitrogen depletion at the graphene 

island edges, Fig. 5.11c also shows a nitrogen depleted region in the nucleation region at the center 

of the graphene island, which is also observed in the Raman results in Fig. 5.6 a and b. Our STM 

results indicate that the basic phenomenology of dopants avoiding structural defects in graphene is 

independent of the details of the growth conditions such as temperature, pressure and the 
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precursor gases used. We however note that the length scale over which the dopants avoid edges 

and boundaries is not a universal number, but depends on the size of the grain, with larger 

depletion widths observed for the large grains.  
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Fig. 5.11 STM topographic measurements on nitrogen-doped graphene island on Cu(111). (a) 

Differential STM image (          ) of graphene island. False colors: orange – graphene 

island, gray –Cu(111) substrate; (b) Zoom-in image (        ) taken across one edge of the 

graphene island at the area highlighted in (a); (c) Map of nitrogen distribution across the 

graphene island. Shaded boxes are areas where data is missing; (d) nitrogen concentration as a 

function of distance from the graphene edge. Red solid line are the linear fit to the data.  

 The STM part was done in collaboration with Amir Zabet in Flynn group at Columbia U. 
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5.4 Monte Carlo Simulations on N Dopant Distribution   

To gain further insight into the dopant homogeneity, we use Monte Carlo (MC) techniques to 

simulate the kinetics of dopants in a finite-sized graphene piece, seeking possible explanation for 

the observed interactions between the dopants and the edges of the graphene islands.  

 The snapshot in Fig. 5.12a shows a typical configuration of dopant atoms throughout the 

simulation. We compile all the snapshots of the dopant atom distributions taken during the 

equilibrium stage of the simulations and generate an average density of nitrogen atoms in the sheet 

as shown in Fig. 5.12b. This figure clearly shows that the density of nitrogen atoms is reduced near 

the edge of the sheet, while it is relatively constant in the interior of the sheet. To quantify this, we 

calculate the distance of all the dopant atoms from their nearest edges during the equilibrium stage 

of the simulations, and plot the density of the dopants as a function of the distance from the nearest 

edge in Fig. 5.12c. We can see from this figure that the dopant density is indeed strongly reduced at 

the edge, and the length scale of this density reduction increases as a function of increasing system 

size. We extract a skin depth for each system size by fitting an exponential function to the MC data. 

The extracted skin depth as a function of inverse system size is shown in Fig. 5.12d. We not that the 

largest system we have considered is about two orders of magnitude smaller than the typical grain 

sizes see in our experiments. Thus, we would not expect our skin depths to be directly comparable 

to experimental values. However, it is encouraging that the skin depth trend seen in our simulations 

is consistent with experiment values. We not that the results from the static and relaxed lattices are 

almost indistinguishable, indicating that strain is playing a negligible role in the dopant 

inhomogeneity. Our simulations do not address the effect of the substrate or the raction kinetics of 

the true growth process where nitrogen and carbon atoms are present both on the surface and in 
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the gas phase. The fact that our simulations are able to capture the essential quantitative behavior 

observed in the experiments without involving these additional complications indicates that the 

bonding and coordination energies of the nitrogen dopants in the graphene lattice plays a key role 

in the observed phenomena. These general energetic considerations are expected to hold in any 

two-dimensional systems, and they present a challenge as well as an opportunity for creating new 

functionalized two dimensional materials.  
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Fig. 5.12 Monte Carlo simulations of nitrogen dopant distribution in finite size graphene sheet. 

(a) Snap shot of simulated nitrogen distribution in an island of      8      ; (b) Nitrogen 

dopant density map (     8      ) averaged over time. The vertical scale bar shows the 

nitrogen density calibrated to the maximum value of 1; (c) Dopant density profiles for different 

graphene island sizes of             ,        8    ,      8       and              ; 

(d) Skin depths extracted from data in (c).  

 This theory part was done by Michael Roth at University of Northern Iowa. 
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Chapter 6  

Summary and Future Experiments 

6.1 Summary 

As demonstrated in the last four chapters, we have achieved to grow large-area high-quality 

pristine, N-doped and B-doped monolayer graphene films on Cu substrates by CVD techniques, and 

we have mainly focused on characterizing these graphene films by STM/S and Raman spectroscopy, 

in conjunction with DFT calculations and NEXAFS measurements.  

We found the crucial role that Cu substrate crystalinity plays in the quality of CVD grown 

graphene films, Cu(111) surface with the same crystal symmetry as graphene being most suitable 

for the CVD growths of high quality graphene films. Moreover, we used spectroscopic mapping 

technique to understand the interactions between graphene monolayer and Cu(111) substrate, and 

learnt that these electronic interactions modulate the band structure of Cu(111) surface states 

while charge transfer between graphene and Cu(111) is negligible.  

With the knowledge of pristine graphene, we extended our scope to chemically doped 

graphene films, in particular, N-doped and B-doped graphene in this thesis. STM/S demonstrates 

that, as confirmed by NEXFAS in parallel, both nitrogen and boron dopants incorporate into 

graphene lattice mainly (>90% for N and >80% for B) via substitutional/graphitic doping form, and 

contribute charge carriers at a rate of approximately 0.5 carriers/dopants (0.5e/N and 0.5h/B). By 
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tuning the N/B dopant concentrations in the doped graphene films, we can well control the free 

charge carrier density, as well as the Fermi level position. Apart from this similarity between N- and 

B-doped graphene, subtle differences in atomic configuration between the two kinds of dopants 

lead to strikingly different dopant distribution between two sublattice of honeycomb structure in a 

large scale of a few hundreds nanometers. To be specific, B dopants interact with Cu substrates 

more than N dopants do, leading to an out-of-plane deformation of ~0.4Å for B dopant structures. 

As a result, the B dopants distribute randomly between two sublattices of graphene lattice while N 

dopants have sublattice segregations and form large domains (more than 100nm) of N dopants 

being in the same sublattice.  Such sublattice clustering effect is the most efficient way to break 

sublattice symmetry in graphene, and possibly is another freedom that we can engineer with.  

Besides looking at the properties of doped graphene films at nano-scales, we applied Micro-

Raman spectroscopy mapping to expand our view up to micro-meter scale, so that we could learn 

the properties across and within grains of the CVD grown graphene polycrystal. Here, we focused 

on N-doped graphene, and found that N dopants avoid the grain boundaries for a few hundreds 

nanometers but stay uniform in the interior of each grain. This provides a piece of important 

information on the interplay between impurities/dopants and structural grain boundaries in two-

dimensional polycrystals, which is different from traditional three dimensional case. Moreover, it 

also provides insights to explain the un-consistent transport properties reported in CVD grown N-

doped graphene films. 

Overall, we learnt about CVD grown pristine and N-/B-doped graphene from nano-scale up 

to micro-meter scale. Ongoing projects, considering probing the electronic properties of graphene 
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on other substrates and expanding the grain size of graphene polycrystals, will be discussed more 

in the following section, together with some preliminary results.  

6.2 Future Experiments 

Most of our measurements were performed on the as-grown samples where Cu substrates are in 

presence. Although Cu substrates do not affect the intrinsic electronic properties of pristine and 

chemically-doped graphene films strongly, they either do not have the flexibility as the dielectric 

substrates do.  

 Therefore, one possible future experiment could be STM/S studies of chemically doped 

graphene films on dielectric substrates, such as hexagonal BN. Hexagonal BN is a layered material 

just as graphite. Down to atomic structure, it resembles that of graphite as well, but replaces one 

sublattice of carbon atoms with boron atoms and the other sublattice of carbons with nitrogen 

atoms, which naturally breaks the sublattice symmetry. As such, BN is a wide band-gap material, 

with a uniform chemical potential across the surface. Due to the fact that it is bonded by weak Van 

de Waals forces between layers, BN can be exfoliated into thin layers and get deposited onto other 

substrates. It has been shown that pristine graphene sandwiched between two BN flakes has the 

highest mobility and most stability.  With BN as the substrate for chemically doped graphene, we 

can not only explore the most intrinsic properties of such doped graphene films, but also own the 

ability to tune the carrier concentrations (chemical potential) of the doped graphene films by back 

gate the dielectric substrate, typically BN on SiO2/Si (the geometry of which is shown in Fig. 6.1) [1]. 

The tunable carrier concentration in a chemically doped graphene film enables the studies of 

charge screening around a coulomb impurity (i.e. B or N dopant) in massless Dirac fermions as a 

function of carrier density, which has long been of great theoretical interest [2-4].   
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 We have performed preliminary STM studies of exfoliated graphene on BN/SiO2/Si, and 

displayed the results in Fig. 6.2a and b. The transfer process of such sample is described by a dry- 

micro-stage transfer technique in Ref. [5]. We found that the interface between graphene and BN is 

almost absent of impurities which is evident by the flatness of the topography (Fig. 6.2a with red 

arrows marking trapped impurities over the area) as well as the Moiré pattern formed between 

graphene and BN (Fig. 6.2b). However, similar transfer technique does not work well for CVD 

grown chemically doped graphene films, mainly because dopant sites tend to accumulate a lot of 

PMMA residues just as the grain boundaries in pristine graphene does [6, 7]. Moreover, the etchant 

of FeCl3 nanoparticles gets trapped between graphene and substrates, making the interface 

between graphene and BN substrate dirty. Currently, efforts are made to solve these transfer issues, 

so that we could probe the intrinsic properties of the doped sample even after the “dirty” transfer 

process. Other than transferring CVD grown N-doped graphene onto BN, we can also try to post-

A

backgate

doped-graphene

doped Si

STM tip
BN

Au pad

bias voltage

Fig. 6.1 Diagram of STM/S measurements of backgated doped graphene film on BN on SiO2/Si 

substrates.   
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dope clean pristine graphene/BN by N ion bombardment or reaction with ammonia gas [8], and 

study their properties in-situ.    

 

 One main purpose of introducing free charge carriers into graphene is to increase the 

conductivity of the graphene film which depends on the product of free charge carrier density and 

carrier mobility. As we have shown in Chapter 3 and Chapter 4, both B and N dopants induce both 

inter-valley and intra-valley scattering in graphene, which will lower down the mobility of the film. 

Therefore, it is essential to check the mobility of the graphene system in the presence of dopants. 

Therefore, a second future experiment could be transport measurements of the chemically doped 

graphene films on BN substrates.  

 However, as we have demonstrated in the last chapter, the N dopants in N-doped graphene 

polycrystal distribute in-homogeneously over the surface, which avoid the structural grain 

boundaries in the graphene films but stay uniform in the interior of the grains. Considering the 

(a)   

 

 

50nm

(b)   

5.0nm 1.0nm

Fig. 6.2 STM topography of graphene on hexagonal BN flakes; (a) Large scale STM image of 

graphene/BN, with red arrows highlighting the impurities trapped between graphene and BN. 

(b) Zoom-in STM image of graphene/BN, displaying the atomic resolution (lower inset) and the 

superstructure (upper inset).  
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irregular shape of the graphene grains and their small grain sizes (~3-5µm in diameter), it is not 

easy to measure the transport properties just within one grain of the graphene film. Therefore, a 

third possible project is to produce large-grain size doped graphene films. Along this direction, we 

have tried the pita-pocket recipe [9] at a low growth pressure. Our preliminary results are shown in 

Fig. 6.3, with the growth conditions of pita-pocket geometry, 10sccm CH4 flow, 50sccm H2 flow and 

0.01torr of NH3. The optical image in Fig. 6.3a shows a single grain size of ~40µm in diameter which 

is much larger than that in Chapter 5. Similarly, we measured Raman spectroscopy map over a 

single grain of such N-doped graphene flake and found the N distribution in each flake forms 

dendritic structure (shown in Fig. 6.3b), rather than a uniform one.  

 

 To investigate the role of H2 flow in the N dopant distribution, we performed more growth 

with higher H2:CH4 ratios at same NH3 partial pressure. Fig. 6.4(a) shows D/2D Raman map of a N-

doped graphene flake grown with 300sccm H2 flow. The N dopants tend to accumulate at the main 

axis of each lobe while the shape of the graphene flake is similar as that in Fig. 6.3. Moreover, we 

tried to grow N-doped graphene with two layer of pita-pocket geometry but same gas flows as in 

Fig. 6.4(a), and presented the result of D/2D map in Fig. 6.4(b). The shape of graphene islands is 
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Fig. 6.3 Optical and Raman map images of large grain size N-doped graphene; (a) Optical image. 

(b) D/2D Raman map. 
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cultivated into hexagons while the N dopants remain high concentration along the axis.  Up to this 

stage, we are still working on growing large-grain size N-doped graphene films with uniform N 

distribution inside the grains.  

 

 

6.3 Reference 

1. Decker, R., et al., Local electronic properties of graphene on a BN substrate via scanning 
tunneling microscopy. Nano letters, 2011. 11(6): p. 2291-2295. 

2. Cheianov, V.V. and V.I. Fal’ko, Friedel oscillations, impurity scattering, and temperature 
dependence of resistivity in graphene. Physical review letters, 2006. 97(22): p. 226801. 

3. Pereira, V.M., J. Nilsson, and A.C. Neto, Coulomb impurity problem in graphene. Physical review 
letters, 2007. 99(16): p. 166802. 

4. Biswas, R.R., S. Sachdev, and D.T. Son, Coulomb impurity in graphene. Physical Review B, 2007. 
76(20): p. 205122. 

5. Dean, C., et al., Boron nitride substrates for high-quality graphene electronics. Nature 
nanotechnology, 2010. 5(10): p. 722-726. 

6. Huang, P.Y., et al., Grains and grain boundaries in single-layer graphene atomic patchwork quilts. 
Nature, 2011. 469(7330): p. 389-392. 

7. Kim, K., et al., Grain boundary mapping in polycrystalline graphene. ACS nano, 2011. 5(3): p. 
2142-2146. 

(a)   

 

 

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

 

 

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.0

0.5

8.0µm

(b)   

 

 

0

0.05

0.1

0.15

0.2

0.25

0.3

 

 

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.0

0.3

5.0µm

Fig. 6.4 Influence of H2 flow on the N dopant distribution and island shape; (a) D/2D Raman 

map of N-doped graphene grown with H2:CH4 ratio of 300:10sccm; (b) D/2D map of N-doped 

graphene with double layer pita-pocket geometry.  
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