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ABSTRACT

Temporal Processing by Caenorhabditis elegans Sensory Neurons

Saul Kato

Caenorhabditis elegans is a promising organism for trying to understand how nervous

systems generate real-time behavior. Its low neuron count suggests that we may be able to

observe all of the constituents of the computation of sophisticated sensorimotor behavior.

However, its appropriateness as a system for quantitative dynamical study has yet to be

established. We show that C. elegans chemosensory neurons can operate in a highly deter-

ministic and low-noise mode, and they act as reliable linear filters of their input. We then

use dynamical systems analysis in combination with classical genetic perturbation to uncover

cellular and circuit mechanisms of temporal processing. This work should firmly establish

C. elegans as a viable platform for applying quantitative dynamical systems methods to

understanding how a nervous system processes sensory information, integrates it with an

evolving internal state, and produces goal-directed, coordinated behavior.
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Chapter 1

Introduction

1.1 Goals

How does an organism produce real-time behavior as a function of ongoing streams of stimuli

and an evolving internal state? This on-line, or dynamic, computation, is circumscribed by

time and space constraints, in stark contrast to the abstract computation defined by Alan

Turing and his contemporaries.1 The study of unicellular bacterial chemotaxis has yielded

an exquisite understanding of what bacteria compute2 and the mechanism by which they

compute it (Barkai and Leibler, 1997; Yi et al., 2000) and has provided a solid footing for

quantitative exploration of the principles shaping these functions over generational and evo-

lutionary timescales (Clark and Grant, 2005; Celani and Vergassola, 2010). The emergence

of nervous systems, our objects of study here, endowed multi-cellular organisms with the

ability to perform more complex dynamic computations; at the least, they enabled the inte-

gration of more sensory variables and the flexible control of a physical plant with many more

degrees of freedom, and their further evolution led to all of our cherished cognitive abilities.
1The latter definition, privy to infinitudes, surely defines a larger set of possible computations than

the former, as surely as our human brains are descended from nervous systems honed over the millennia
to perform the former kind of computation. How did a space-time limited, quick-and-dirty brain acquire
the Platonic ability to imagine and reason about the theory of computation, much less perform abstract
computations like simple arithmetic at will? We will set aside this conundrum.

2Among other things, they compute a chemotactic response function (Segall et al., 1986).

1
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Among the animals commonly studied by neuroscientists, C. elegans sits at the low

end of the scale of numerical complexity with precisely 302 neurons in the predominant

hermaphroditic form. Taking the approach of starting with “easy” exercises before working

up to the difficult ones, we choose C. elegans to try to understand what and how a nervous

system, as a whole, computes. We follow a reductionist approach to studying a system

by starting with an investigation of its constituents and their interactions. While much

is known about the molecules and specific connectivity of the worm’s nervous system, the

dynamics – their behavior in time – of the neurons and their connections (synapses, gap

junctions, and diffuse messengers3) are relatively uncharacterized. Without a description of

these dynamics and how they are affected by interaction with other components, any model

or simulation of the nervous system is fatally unconstrained. Trying to understand how

and what a neural circuit does from a connectivity map without dynamics is akin to trying

to deduce the function of an electrical circuit by covering up the identities of each circuit

element and looking at only the wires.

Calcium imaging by wide-field optical microscopy of neurons expressing fluorescent cal-

cium sensors has become the predominant method for monitoring the activity of single C.

elegans neurons, and work by several groups is underway to extend the calcium imaging

methodology to image the activity of multiple neurons simultaneously. The process of cal-

cium measurement by a fluorescent sensor imparts its own signal transformation on the

system we seek to measure – an observer effect – and must be accounted for if we are to use

calcium imaging to say something about the dynamics of the neurons themselves.

This thesis represents the beginning of an effort to map out the dynamics of the C.

elegans nervous system, starting at the sensory neurons that receive input from the outside

world. The goal of this work is to:

1. Establish C. elegans as a viable model organism for applying quantitative dynamical

systems methods, in particular, to calcium imaging data.
3And while we’re at it, let’s not forget the action-perception loop (Sperry, 1962) as another “neuronal

connection” from the motor neurons back to the sensory neurons.
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2. Characterize the dynamics of C. elegans sensory neurons under the influence of various

time-varying stimuli.

3. Combine dynamical systems analysis with genetic methods to uncover mechanisms of

temporal processing.

1.2 C. elegans as a model organism for neuroscience

1.2.1 C. elegans practicalities

The one millimeter long free-living nematode Caenorhabditis elegans (the “worm”) was the

first organism to have its cell lineage fully mapped (Sulston et al., 1983), its connectome

fully mapped by electron microscopy (White et al., 1986), its genome fully sequenced (Con-

sortium, 1998), and it continues to be a wonderfully fertile sandbox and proving ground for

genetically engineered probes and perturbative constructs. It is easily maintained on an agar

surface in a petri dish or in liquid, it has a 3.5 day generation time at room temperature,

strains are easily stored over long periods by freezing, and populations of genetically iden-

tical individuals can be easily maintained by virtue of self-fertilization, its primary mode of

reproduction (Stiernagle, 2006). While the behavior exhibited by C. elegans in the lab on

an agar surface is assuredly a limited and biased version of the full behavioral repertoire

in natural environments, it is an apparently quite satisfactory environment for the worm to

exhibit a search for food by chemotaxis, produce viable eggs when well fed, mate when a

rare male makes its appearance (roughly 1 in 700 eggs in lab conditions hatch into a male

(Hodgkin and Doniach, 1997)), and communicate with each other via a large repertoire of

pheromones (Srinivasan et al., 2012). C. elegans can also successfully generate goal-directed

behavior in more structured artificial micro-environments (Albrecht and Bargmann, 2011)

and pure liquid environments, where serpentine crawling becomes swimming.
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1.2.2 C. elegans nervous system

The adult hermaphrodite has exactly 302 neurons out of a total of 959 somatic cells. Ap-

proximately 7000 synapses and 900 gap junctions link these neurons. 20 of the 302 neu-

rons comprise the nervous system of the pharynx, responsible for alimentary pumping, and

connected to the rest of the network by a single gap junction (though demonstrably af-

fected by neuromodulators not associated with particular anatomical connections) (Avery

and Thomas, 1997). Of the 282 somatic neurons, approximately one third are classifiable as

sensory neurons and one third as motor neurons by morphology or functional demonstration.

The remaining third of the neurons have no obvious direct sensory function or direct output

to muscles or secretory glands and are thus called interneurons. By process of elimination,

we guess that their function is purely computational – that is, they interpret a set of signals

carrying abstract information (i.e. with no extrinsic meaning outside of the nervous system)

from other neurons and produce a set of signals carrying abstract information that direct

other neurons to ultimately generate observable behavior. The majority of these interneu-

rons lie in the nerve ring, a ganglion near the head. The role of most interneurons is not well

understood, although five sets of “command” interneurons are required for transitions be-

tween forward or backward movement states and may encode volitional state (Chalfie et al.,

1985; Gray et al., 2005). Perhaps not surprisingly, some non-trivial single-input processing of

sensory information is already performed by the sensory neurons themselves4; characterizing

this first layer of processing is the primary focus of this work.

Each neuron is a member of a class defined by rough morphological symmetry (White

et al., 1986). There are 103 somatic neuron classes: 18 singlets, 63 pairs, 1 triplet, 10

quadruplets, 5 hextuplets, and 1 7-fold, 1 9-fold, 2 11-fold, 1 12-fold and 1 13-fold class.

The large symmetry classes are comprised of motor neurons with highly regular distribution

along the body. Some neurons in pair classes are connected by a gap junction lying on the
4This neglects the many connections from other sensory neurons and interneurons onto sensory neurons

and the multiple-input processing function they suggest.
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axis of symmetry. Each neuron class has a three letter name such as AWC, and each neuron

has a name that consists of two or three letters or digits appended to its class name (e.g.

AWCL).

By several measures, neural connectivity is highly redundant: the mean in-degree (num-

ber of neurons that a neuron receives connections from) and the mean out-degree (number

of neurons that a neuron sends connections to) are both 7.86, the mean path length between

neurons is only 2.87 hops (Varshney et al., 2011), and there are multiple one-hop routes be-

tween most neighboring neurons in addition to their direct connection. This lack of obvious

network segmentation (with the exception of the pharynx) makes the task of inferring local-

ization of function from structure challenging. The number of hops from a sensory neuron

to its closest motor neuron is at the least 2 and at the most 3, suggesting the network is

shallow with respect to feed-forward information flow.

Electrophysiological recordings are challenging due the pressurized cuticle of the worm,

but those that have been performed in C. elegans neurons and the neuromuscular junctions

of the parasitic nematode Ascaris suum have found that neurons are isopotential and lack

action potentials (Liu et al., 2009; Davis and Stretton, 1989). Consistent with this absence,

the C. elegans genome lacks classical voltage-gated sodium channels, although these were

likely to have been lost by nematodes as voltage-gated sodium channels were present in

the last common ancestor of bilaterians (Liebeskind et al., 2011; Bargmann, 1998). The

lack of sodium-based classical action potentials does not rule out other features of nonlinear

excitability used for neural coding such as plateau potentials or spikelets generated by other

voltage-gated ion channels (Lockery and Goodman, 2009; Faumont et al., 2012).

Chemosensation

C. elegans relies on its ability to sense a diverse set of chemicals to collect data about

its environment. Worms will move toward attractive chemicals and away from repulsive

chemicals, and over the course of minutes can locate themselves close to an attractant source

on a plate. Chemical stimuli regulate the worm’s behavior on a wide range of time scales
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from subsecond locomotory responses to lifecycle decisions based on environmental quality

assessed over hours (Golden and Riddle, 1982). At least 13 pairs of chemosensory neurons

provide the worm with sensory information that drives its behavior (Bargmann and Mori,

1997) and its genome codes at least several hundred chemoreceptors (Bargmann, 2006b).

We study two chemosensory neurons that subserve different behaviors.

The AWC neuron

The AWC neuron class consists of a pair of bilaterally symmetric neurons AWCL and AWCR.

It is one of three wing neurons, so named for the wing-like appearance of its non-motile sen-

sory cilia. The predominant behavior subserved by these neurons is attractive chemotaxis.

AWC can detect at least five different volatile odors, including isoamyl alcohol (IAA) and

butanone (BUT) (Bargmann et al., 1993), and we focus on detection of these two odorants

in this work. IAA is also sensed by AWA neurons, but chemotaxis assays suggest that for

the dominant behavioral response to IAA and BUT, sensation by AWC is necessary and suf-

ficient (Bargmann et al., 1993). During development, functional symmetry is stochastically

broken and the specificity for particular odorants between the two neurons partially diverges

based on differential receptor expression (Wes and Bargmann, 2001). While the identities

of specific odorant receptors are still unknown, transduction is known to be G protein and

cGMP mediated. Differential odor detection wthin a single AWC neuron may depend on

different receptors, but genetic analysis suggests they share a common final path (L’Etoile

and Bargmann, 2000). Odorants exhibit different adaptation curves leading to odor discrim-

ination over several minutes, but it is not known if odorant identity is somehow encoded

in signal dynamics on shorter time scales or if that identity is lost. The major components

of the forward path of the AWC signal transduction cascade have been identified based on

genetic, behavioral, and activity imaging evidence (Figure 1.1).

AWC has no direct connections to the command interneurons, which suggests that chemo-

taxis involves some degree of circuit-level computation.
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Figure 1.1: Signal transduction cascade in AWC sensory cilia
Odorant receptors signal through G proteins including ODR-3, which in turn regulates
cGMP-gated transduction channels (adapted from Bargmann, 2006a)

The ASH neuron

The bilateral pair of ASH neurons are polymodal nociceptors that are required for the

avoidance response to noxious chemicals, hyper or hypo-osmolarity, and harsh nose touch

(Bargmann, 2006a). Ablation of ASH does not modulate regular turning behavior during

foraging modes absent of noxious stimuli, supporting its primary role as a detector of noxious

stimuli and not a driver of chemotaxis (Gray et al., 2005). Similar to human nociceptors, ASH

depends on TRPV channels for transduction (Figure 1.2) although primary transduction to

glycerol (GLY), the stimulus we use in this work to probe this neuron, is performed by an

unidentified G protein-coupled receptor.

ASH synapses onto the command interneurons AVA and AVD, which in turn connect to

motor neurons reponsible for driving forward and backward movement, suggesting a more

reflexive pathway as compared to AWC-driven chemotaxis. Activating either ASH or AVA

and AVD causes an immediate reversal.

1.2.3 Worm behavior

We focus on chemotaxis and escape behaviors since they have are subserved by AWC and

ASH respectively.
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Figure 1.2: Signal transduction in ASH sensory cilia

The glycerol receptor signals through the ODR-3 G protein, which in turn regulates TRPV
family transduction channels. (adapted from Bargmann, 2006)

Undirected chemotaxis

In the presence of a shallow concentration gradient of chemoattractant, such as the gradient

that results from spotting the center of an agar plate with liquid chemoattractant, worms will

eventually accumulate at the location of maximum concentration. The paths followed by the

worms have been described as a biased random walk consisting of bouts of forward serpentine

movement (a “run”) interrupted by bouts of stereotyped in-place turn sequences (“pirouettes”)

resulting in abrupt reorientation with low correlation to the worm’s prior direction (Pierce-

Shimomura et al., 1999). This resembles the well-characterized chemotaxis strategy of E.

coli (Berg, 2004). In this undirected mode of chemotaxis, only the probability of turning

in some unspecified direction is modulated by the concentration gradient. Since this form

of chemotaxis can be accomplished by single-cell organisms lacking nervous systems, one

may question if this mode of locomotion is a hallmark of sophisticated computation (putting

aside the complexities of coordinated control of a 95-cell musculature). However, this mode

of stochastic search is modulatable by the worm’s state and constitutes a part of a larger set

of chemotactic strategies (Iino and Yoshida, 2009).
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Directed chemotaxis

Given sharper sensory cues, such as a steep gradient resulting from two adjacent streams

of different odorant concentration under laminar fluid flow through a micofabricated sili-

cone hexagonal post array, the worm can exhibit directionally preferential turning relative

to the gradient location, enabling the worm to surf along the border of an attractant area

(Albrecht and Bargmann, 2011) and to use a “weathervane” strategy to maintain a specific

orientation relative to the gradient field or gradually steer up a strong circularly symmetric

gradient (Iino and Yoshida, 2009). Deterministic locomotion along gently curving thermo-

clines has also been observed and modeled (Hedgecock and Russell, 1975; Luo et al., 2008).

All of these chemotactic strategies indicate an ability for klinotaxis, or directed steering in

response to spatial distribution of stimuli, suggesting that worms must be able to detect

the spatial character of an odor stimulus. It is unlikely that worms smell “in stereo”, despite

having bilaterally symmetric chemosensory neurons, since the distance between the openings

of the two amphid sensory organs is only 8 µm. Furthermore, on a surface, worms crawl

on their side, causing these amphid openings to be vertically aligned and unable to sample

distinct x-y locations on the surface. Thus, the acquisition of spatial information is likely

the result of integration over time or by head bending rather than by sensing a difference in

simultaneous concentration (Ward et al., 1975). In addition to serpentine body turns, the

worm displays frequent, faster non-locomotory articulated head movements on a sub-second

timescale enabled by the hexagonally symmetric neck muscles, suggestive of a spatial sam-

pling procedure. Integration of prioprioceptive and chemosensory information could account

for this spatial odor tracking ability. Alternatively, the detection of increased odor during

one portion of a head bend could simply increase the amount of time spent in that confor-

mation or increase the strength of the bend, obviating the need for a distinct proprioceptive

neural signal.
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Escape

When confronted with a strong noxious stimulus, worms will reliably reverse within a fraction

of a second, but they will integrate weak noxious stimuli over ⇠10 seconds before reversing

(Chao et al., 2004). A long reversal is often followed by an omega turn, causing a reorientation

of direction, followed by a forward run, suggesting a stereotyped sequence of moves.

1.3 Dynamical Systems Modeling

In this work we adopt the perspective that we are detectives or reverse engineers – that

there is an underlying “real” system for which we are trying to discover the hidden rules of

operation. As a first step to discovering these rules, we try to imitate the system by creating

a model that acts like the system we are studying, according to criteria that we choose. We

hope that the functionally important aspects of the system under study are stable in time , or

at least changing slowly enough, so that we may repeat experiments and look for consistent

behavior5, then create a model that is capable of exhibiting nearly the same behavior, and

then zero in on a particular instantiation of the model, as defined by its free parameters,

by trying to minimize some error criterion that compares the output of our model to the

output we measure experimentally. This is not the only way of looking at things: one may

dispense entirely with the notion of a real system and discuss models purely in the context

of their fits to empirical data – a philosophy typically adopted by the engineering discipline

of system identification, from which most of the analytical techniques employed here are

borrowed. However, we find that it facilitates intuition and communication to imagine a

“ground-truth” system that we are seeking to model. By imagining a well-behaved ground

truth, we also feel more justified in studying the subtler qualities of how our models miss

the mark – qualities that are not captured in a scalar error criterion.

Once models are on the table, we may step back and ask meta-questions about our models
5this doesn’t obviate the use of non-deterministic models when appropriate – we just have to relax our

definition of consistent to include, for example, consistent probability distributions
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– how do we select the models out of many possible choices? what other models would work

just as well? how generalizable is our model? How many parameters and hidden variables

should we allow? A purely empirical modeler might suggest that we bake all of these meta-

questions into our error criterion and model family and bring us back down to earth from

meta-land. There are indeed principled ways to answer some of these questions, such as the

various propsed “information criteria” for determining the number of parameters to include

in a model, but justified use of them relies on simplifying assumptions about the character of

experimental noise or system variability, which we often do not know in advance. It is likely

that there is no good way to cast all models into a single megaclass, and model selection will

continue to be guided by human judgment.

1.3.1 Definitions and Basic Properties

A dynamical system receives an input signal u(t) and produces an output signal y(t). A

signal is a scalar-valued or vector-valued function of time. For most of this thesis we will

deal only with single-input/single-output (SISO) systems – they receive a scalar input signal

and produce a scalar output signal. We write the system equation, where S is an operator,

as:

y(t) = S(u(t))

y(t)u(t) S

outputinput

Figure 1.3: A system.
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Experimentally measured signals are composed of a finite, discrete set of measurements

in time, typically at a fixed interval �t (although variation in this interval may occur and

can be treated, as we do later).

The time history of a signal, or informally a trace, is a vector composed of samples, the

value of the signal at successive measurement times, starting from an initial time index i = 1

(corresponding to time t = 0) and ending at i = T samples (corresponding to t = (T�1)�t).

In the limit of �t ! 0, we can think of the time history as a continuous infinite-dimensional

vector. We use the convention that a time history vector is always a column vector which

we can write horizontally in a line of text by using the transpose operator: [x1 x2 x3 ... xT ]
T.

For an integral representation of a system (to be described below), u(t) and y(t) are replaced

by time history vectors u and v, and S can be thought of as a vector-valued function of

a vector input. For brevity, we will use u for both the continuous function and the time

history vector representation of a signal when either can be substituted.

A property of signals important for our needs in this work is stationarity. The classical

definition is not with respect to a single arbitrary signal but to ensembles of random processes.

We use the term here with respect to individual traces as shorthand for the property of weak

self-stationarity, defined as a trace having mean and autocorrelation functions, obtained by

time averaging over a short interval of �T samples:

µ(i) =
1

�T

i+�TX

j=i

xj

�(i, i+ ⌧) =
1

�T

i+�TX

j=i

xjxj+⌧

that do not vary significantly over time (Bendat and Piersol, 1966). We will need this

property for the model estimation techniques described later.

A model of a dynamical system is denoted by an operator M with an associated vector

✓ of parameters, which produces a simulated output ŷ when fed an input signal:
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ˆ

y = M(u;✓)

In general, the approach of system identification is to probe a system S by driving it with

a test ensemble of D input traces u

1, u2, ... uD and recording corresponding output traces

y

1, y2, ... yD, in the presence of noise, then select a model M and estimate its parameters

✓ such that some measure of dissimilarity C(

ˆ

y

1,y1
;

ˆ

y

2,y2
; ...; ŷD ,yD

) is minimized. A typi-

cal dissimilarity measure appropriate6 for comparing fluctuating, stationary signals is mean

squared error (MSE), which we will see has properties amenable to mathematical analysis.

For a single trace,

MSE(y, ŷ) =
1

T

TX

i=1

(yi � ˆ

yi)
2

Prior to computing MSE, we typically subtract the time-mean of each signal, since it is

required for certain estimation procedures and since a difference in the mean of two signals

that otherwise appear highly similar will dominate the MSE.

A system that is linear on its inputs7 obeys the additivity and homogeneity properties:

if u = v +w then S(u) = S(v) + S(w) (1.3.1)

i↵ u = av then S(u) = aS(v) (1.3.2)

A time invariant system has the property that its output does not depend explicitly on time,

or formally:
6that is to say, one that jibes with what we consider intuitive about how two signals in this class seem

similar or different.
7for brevity, a system that is linear on its inputs is referred to as simply a linear system. A system may

also be linear in other ways, such as linear on a set of parameters, but we will make this distinction when
necessary.
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if y(t) = S(u(t)) then y(t+ ⌧) = S(u(t+ ⌧)) (1.3.3)

for any choice of ⌧ . We may think of a time invariant system as being defined by rules that

are immutable throughout time.

Linear time-invariant systems, described below, are of particular importance as they are

analytically tractable and therefore provide a foothold for analysis of nonlinear, but “near-

linear” systems. Furthermore, there is reason to suspect that the validity of the linear systems

approximation to many systems found in nature is not a fluke.8 By the linearization theorem,

the behavior of a nonlinear system undergoing small perturbations in the neighborhood of

a hyperbolic fixed point (one that has no eigenvalues with real part zero), which commonly

arise in dissipative systems, is qualitatively the same as the linearized version. Furthermore,

it can be shown that for input ensembles with stationary statistics, adapting systems with

the functional goal of maximizing coding efficiency given physical constraints will adapt

themeselves to operate in a linear coding regime9 (Laughlin, 1981).

We divide dynamical systems models into two categories: integral and differential models,

described below. We start with integral systems since we will refer to them when discussing

properties of differential models.

1.3.2 Integral Models

Integral models generate the time history of the output of a system as a transformation

of the time history of the input. We call them “integral” models because the input-output

transformation consists of a composition of functions of the time history of the input, that

will typically involve integrals over time. In the context of biology, these models are typically

considered to be phenomenological, or black-box, in the sense that they are not intended to

mirror specific mechanisms of the system, but are meant to be useful constructs to describe
8although even more universal is the nonlinear property that all natural systems have – a limited dynamic

range, something nicely capturable by the near-linear systems we study here.
9this is analogous to the well-established technique of histogram equalization in image processing
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operation of the system on its input, and are constructed purely from input-output records

with minimal prior assumptions. That being said, the empirical success of certain integral

models such as L-N model has bolstered many to suggest a mapping of the specific cascade

elements to physiological mechanisms. A point of this work is to show that the application

of these phenemenological models can be used as a stepping stone to mechanistic models

that make claims about the inner workings of the system, provided some assumptions about

the space of possible mechanisms are made.

Linear Time-Invariant Models

A continuous input signal can be decomposed into an infinite sum of shifted and scaled Dirac

delta functions:

u(t) =

ˆ 1

�1
u(⌧)�(t� ⌧)d⌧

If S is a linear operator, then by superposition and proportionality,

y(t) = S(u(t)) =

ˆ 1

�1
u(⌧)S(�(t� ⌧))d⌧

Defining the impulse response function h(t) = S(�(t)), we have

y(t) =

ˆ 1

�1
u(⌧)h(t� ⌧)d⌧

which is called the convolution of u(t) and h(t), also written as (u⇤h)(t). With a substitution

of variables we can also write

y(t) =

ˆ 1

�1
u(t� ⌧)h(⌧)d⌧

which shows that convolution is commutative: a⇤ b = b⇤a. It is also associative: a⇤ (b⇤ c) =

(a ⇤ b) ⇤ c which we will make use of later.

The impulse response function h(t) constitutes a complete description of a linear system;
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it completely determines the behavior of the system for any given input signal, via the

convolution operation. If the impulse response is zero for some t > tmax, then we call the

system a finite impulse response (FIR) system with memory tmax.

If h(t) is zero for all t < 0, the upper limit of the convolution can be limited to t:

y(t) =

ˆ t

�1
u(⌧)h(t� ⌧)d⌧

which implies that the current value of the output only depends on current or past values

of the input, and not future values. A linear system with this property is called causal. We

will be mostly concerned with causal FIR systems, as they define linear systems that are

physically realizable and do not show persistent activity (activity that does not eventually

die out when there is no stimulus).10

For discrete signals, we have an analogous impulse response h, based a decomposition

of a discrete signal into a sum of scaled and shifted Kronecker delta functions (�1 = 1, and

�n = 0 for all other integers n), and we use discrete convolution to compute output from

input. For a causal FIR system with memory of Tmax samples:

yi = �t
T
maxX

j=1

ui�jhi

Notice that for values of j less than Tmax, the above expression includes non-positive

indices of u. This is because the current output at these early times will depend on values

before our the start of our experiment designated as t = 0. Therefore, we if we wish to have

our model produce output values earlier than Tmax, we must pad the input – make a guess at

what the system input was before we started recording. For simplicity we often drop the �t

scaling factor, by redefining the discrete impulse response function as the system response

to a scaled Kronecker delta function, (�1 = 1/�t).
10There are practical issues with a finite memory filter model. We will address the limitation of the FIR

assumption in section 1.3.4
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Nonlinear Time-Invariant Models: Wiener/Volterra Expansion

As early as 1883 Volterra (Marmarelis, 2004) observed that, in analogy to the Taylor series

as way to approximate a scalar function, a time-invariant transformation of one function

u(t) into another function y(t) can always be expressed as a series, possibly infinite:

y(t) = Ko +

ˆ 1

�1
K1(⌧)u(t� ⌧)d⌧ +

1̈

�1

K2(⌧1,⌧2)u(t� ⌧1)u(t� ⌧2)d⌧1d⌧2 + ...

Each Kn term is called a kernel and describes the responsiveness of the current output

to values (K1), pairwise correlations (K2), or higher-order correlations (K>2) at specific time

points of the time history of the input. If the zeroth-order kernel (the constant term K0) and

first-order kernel K1 are the only nonzero kernels, this expansion describes a linear system.

Wiener (1958) observed that these kernels are not orthogonal (i.e. zero cross-covariance),

therefore causing problems in estimating higher-order kernels, and determined a procedure

for deriving orthogonalized kernels. Wiener also prescribed the use of spectrally flat random

signals for interrogating nonlinear systems to sample the space of all possible inputs in an

unbiased way, giving birth to the field of white-noise methods.

Kernel-based expansions can be unwieldy and do not necessarily lend themselves to an

intuitive interpretation of system function. Nevertheless, they can be useful as diagnostic

probes of a system, as certain characteristics of higher-order kernels may provide hints as to

which cascade models will do a good job of explaining the data.

Nonlinear Time-Invariant Models: L-N Cascade

A perhaps conceptually simpler departure from linearity is to admit an instantaneous func-

tion applied to the output of a linear transformation. This model neatly separates the

dynamical, memory aspects of the system transformation from the nonlinear aspects into

two sequential operations:
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y(t)u(t) x(t)L N
outputinput intermediate

signal

Figure 1.4: L-N model

The system equation

y = N(L(u))

can be written

y(t) = F (

ˆ
K(t� ⌧)u(⌧)d⌧)

where F is a static function and K is a first-order kernel, or for brevity, filter. In practice, we

must choose a maximum length, in number of samples, for the filter K, and a suitable pa-

rameterized curve family for F , typically polynomials up to a certain order or other function

bases.

The Volterra kernels of a system can provide a hint that a system is L-N-like; axis-

parallel slices of the second-order Volterra kernel of an L-N system will be proportional to

the first-order kernel.

More complex cascade models

It is possible to compose more complex transformations by adding L and N stages at the front

or end of a cascade model. Since two adjacent L stages can be unambiguously collapsed into

one L stage by convolution, as convolution is associative, and since two adjacent N stages

can be collapsed into one N stage by sequential application, without loss of generality we

can consider single-chain cascades of alternating L and N stages - L-N, N-L, L-N-L, N-L-N,

L-N-L-N, and so on. These longer cascade models gain more expressive power than an L-N

model and they may be suggestive of an underlying sequence of physical processes.
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Figure 1.5: Two equivalent serial L-N cascades

Another way to generalize cascade models is to allow the input signal to fan out and follow

separate paths through cascade models, then sum them together for output. Korenberg

showed, using a constructive procedure, that a finite set of parallel L-N cascades can be

constructed to represent any finite-dimensional nonlinear system representable by a Volterra

series (Korenberg, 1991).

The system equation for a parallel L-N cascade is:

y =

nX

i=1

Ni(Li(u))

Recently there has been much interest in a related parallel cascade model for analyzing

spiking systems under the moniker of spike-triggered covariance (Brenner et al., 2000), par-

ticularly for systems with spatiotemporal input (a MISO system), such as complex cells in

visual cortex. This model prescribes a similar model of parallel L cascades, but differs in

that a strict procedure for generating L stages is specified (eigenvector decomposition of

the response covariance matrix, i.e. the second order Wiener kernel) the N stages and final

summation are replaced with a global nonlinear aggregation function F :

y = F (L1(u),L2(u), ...Ln(u))

These models have a great deal of expressiveness, but like Wiener/Volterra series they do
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Figure 1.6: Parallel L-N cascade.

not always lend themselves to easy interpretation, especially for purely temporal input data.

1.3.3 Differential Models

Differential equation models are the prevalent approach to modeling physical processes evolv-

ing in time, particularly autonomous systems, i.e. ones with no input. They describe the

way each of a system’s primitive objects change as a function of the instantaneous state of

all of the system’s primitive objects11. A subset of these models, ordinary differential equa-

tion (ODE) models, limits these primitive objects to be scalar state variables, representing

concrete qualities such as particle position and velocity, concrete quantities such as chemical

concentration, or abstract quantities, such as an internal decision variable in a high-level

cognitive model. State variables are often hidden, inaccessible to direct measurement. One

way to express systems of ODEs is in the state-space representation – a list of equations,
11we do not address delay differential equations since they seem to fall outside the scope of easily realizable

biological mechanisms and can produce fundamentally different behavior.
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one equation for each state variable, specifying the rate of change of the state variable as a

function of some or all of the other state variables, possibly the state variable itself, possibly

the system input, and possibly time itself:

dA

dt
= fA(A,B,C, ..Z, u, t)

dB

dt
= fB(A,B,C, ..Z, u, t)

...
dZ

dt
= fZ(A,B,C, ..Z, u, t)

Since we are modeling input/output systems, we need to define an output, so we also allow a

final non-differential equation to define the output as an instantaneous function of the state

variables and possibly the input:

y(t) = fy(A,B,C, ..Z, u, t)

Alternatively, we could set the output to be one of the state variables, and thus be specified

by a differential equation, but permitting the output to depend instantaneously on state

variables gives us the flexiblity to treat any composition of the state variables as a system

output, and, as it turns out, does not undermine any mathematical results about systems of

differential equations that we will need.

In time-invariant systems, none of the state or output equations can have an explicit

dependence on time, so the right-hand functions’ t argument is disallowed.

It is also possible to write explicit12 ODEs involving higher-order derivatives of each

state variable, but a such a representation can always be converted into a state-space form,

simply by relabeling each higher-order derivative as a new state variable. Here we use only
12we do not address implicit ODEs since the physical notion of separable state variables can be lost, and

if the equations are separable, they can be cast into an explicit form
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the state-space representation of ODEs, and we define the order of an ODE system as the

number of state variables.

To fully specify the behavior of an ODE system in a particular instance, initial conditions

must also be provided, specifying the state of the system at t = 0. With these in hand, ODEs

can be numerically simulated with little difficulty, using Euler’s method which simulates in

discrete, fixed-length time steps and requires only a memory of system state at the last time

step.13 More sophisticated algorithms such as those of the Runge-Kutta family which include

memories of system state over several time steps and adaptive time steps can be employed

to accurately model systems with large magnitude differences in rates (i.e. a “stiff” system)

without having to discretize time more finely through the entire simulation.

ODEs may be considered as a way to compress a description of the behavior of a system,

since even low-order ODEs are capable of generating very complicated output; in this sense

they are like the source code of a program.

Linear ODEs

If an SISO system of ODEs obeys linearity and time invariance, the fn functions must

necessarily be simple linear combinations of their arguments and we can consolidate it into

standard matrix form:

dx(t)

dt

= Mx+ bu(t)

y(t) = c

T
x+ du(t)

13difference equations, a subset of recurrence relations, are the discrete analog of differential equations
formed by replacing the differential operator with a fixed time-step difference operator, and the equations
are only evaluated at discrete time steps. They form the basis of simulating differential equations and
generally display analogous behavior to differential equations, so we do not treat them here. However, the
nature of discrete jumps can admit some behavior unique to difference equations, such as alternation between
two values in a first-order system.
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where x(t) is a column vector of state variables [A B ... Z]T (not to be confused with a

signal’s column time vector), M is a static matrix holding the coefficients of the right-hand

side interaction terms in our state-space equations and b,c,d are static column vectors14. b

describes the weights of the fan-out of the input to all of the state variables. c describes the

how the state variables are weighted before being summed to produce the output. If there is

no direct dependence of the output on the input (i.e. “pass-through” connections that bypass

the state variables of the system altogether), d is zero, which we assume here for simplicity,

although it is not required for the analysis.

The solution to the time evolution of the state variables, and consequently the output, of

a linear system with ongoing input can be computed using matrix exponentials, where x(0)

is a vector of initial conditions of the state variables:

x(t) = etMb

ˆ t

0

e�t0Mu(t0) dt0 + etMx(0)

The impulse response of a differential linear system can be computed via the inverse Laplace

transform of the transfer function:

h(t) =
1

2⇡i

�+i1ˆ
��i1

H(s)estds

where the transfer function is computed by

H(s) = c(sI�M)

�1
b+ d

where � is a real number chosen to be to the right of all of the singularities of H(s).

Equivalently, the impulse response can be computed by solving for the time evolution of

the system with zero input u(t) = 0 given initial conditions of x(0) = b.

In the next sections, we catalog the impulse responses and their parameter dependencies
14For multiple-input multiple-out (MIMO) systems, b,c, and d become matrices and u and y become

vectors but the analysis is similar.
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of certain low-order causal SISO LTI systems. Knowledge of these general behaviors will

guide our model selection. We restrict ourselves to stable systems – in the sense of systems

whose state variables will stay bounded given a bounded input – since this appears to be

a ubiquitous quality of the cellular systems we are studying here. For the same reason we

limit ourselves to systems with no input pass-through. For simplicity, we ignore gain terms

on the input or output, since for linear systems these will simply scale the output.

First-order stable linear system (1FF)

The simplest system within our restricted set of study is given by

dA

dt
= �⌧�1

a A+ u

y = A

Ain out

A
-1

Figure 1.7: First-order ODE system

The filter for this system is a decaying exponential with time constant ⌧A so the system

functions as a low-pass filter. The filter has a jump discontinuity at t = 0.

Second-order linear systems

Two-variable linear systems are the classic example in the study of linear dynamical systems,

since they are simply analyzable but show some diversity of behavior.
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Figure 1.8: Filter of a first-order system

Second-order feedforward (2FF)

Neglecting gain factors on the input or output, a two-state variable feedforward system (aside

from self-feedback) is given by

dA

dt
= �⌧�1

a A+ u

dB

dt
= kABA� ⌧�1

b B

y = B

A
AB

in out

A
-1

B
-1

B

Figure 1.9: Second order feed-forward system

The system filter is a difference of exponentials:

h(t) = kAB
⌧A⌧B

⌧A � ⌧B
(e�t/⌧

A � e�t/⌧
B

)
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Notice the symmetry of the system: there is no change in the value of the expression if the

values of ⌧B and ⌧A are swapped. This implies that we cannot deduce which state variable

is faster and which is slower in this system just by looking at the filter. Also notice that

the interaction constant kAB does not affect the time course of the filter; it acts only as an

overall gain term.

We can rewrite the filter as a product of a rising exponential and a falling exponential

(and a constant positive gain term):

h(t) = kAB
⌧A⌧B

|⌧A � ⌧B|
(1� e�t/⌧

RISE

)e�t/⌧
FALL

where ⌧FALL is equal to the larger of ⌧A and ⌧B and ⌧RISE = ⌧A⌧B/(⌧A � ⌧B). The latter

expression is equivalent to saying that the effective rise rate kRISE = kA + kB, the sum of

the self-feedback rate constants. A plot of this filter, along with the rising and falling single

exponential terms, shows the single exponentials enveloping the filter:
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Figure 1.10: Envelopes of a difference of exponentials.

This demonstrates that the larger time constant mostly determines the decay of the filter,

and the ratio of the product to the sum of the self-feedback time constants mostly

determines the rise of the filter. If ⌧LARGE � ⌧SMALL (a “separation of timescales”

assumption), then ⌧RISE ⇡ ⌧SMALL.
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The peak time of the filter is exactly

tpeak =
⌧A⌧B log(⌧A/⌧B)

⌧A � ⌧B

which of course has the same ⌧A, ⌧B symmetry as the filter. Here is an isocline showing pairs

of ⌧A and ⌧B that produce a tpeak = 2s:
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Figure 1.11: The relationship of time constants producing a particular filter peak time

If we assume the separation of timescales, we have

tpeak ⇡ ⌧FAST (log ⌧SLOW � log ⌧FAST )

To reiterate: we can’t pin down which state variable A or B has which time constant

(the slower or the faster, and consequently the rise or the fall) without further information

or prior assumptions. We can, however, potentially extract two process time constants by

fitting an analytical filter curve to a filter we have measured.

Second-order feedforward degenerate (2FFd)

If ⌧A = ⌧B, we obtain an alpha function for the filter:

h(t) = kABte
�t/⌧

A
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This result is not immediately obvious by substituting the same variable for ⌧1 and ⌧2 into the

2FF filter expression, since the denominator of the fraction term would be zero. However, the

exponentials also cancel so nothing explodes and the filter remains well behaved regardless

of the choice of ⌧ ’s.

We can plot the filters for the 2FF (in black) and 2FFd systems (in red) as we vary one

of the ⌧ ’s:
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Figure 1.12: How a 2FF filter changes as we vary one time constant

This system has the same filter as a critically damped harmonic oscillator (see next

section). A final property: the 2FF and 2FFd filters, along with all feed-forward chains

(nFF), must be monophasic, and therefore, they function as low-pass filters.

Second-order feedback (2FB)

If we allow feedback from the second state variable to the first, we can produce a system with

oscillatory or decaying oscillatory behavior. The lobes of the filter will be close to constant

width.

The stable second order models are equivalent to a damped harmonic oscillator, a model

of a mass-on-a-spring with velocity-proportional friction. This model can exhibit three qual-
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Figure 1.13: Second-order feedback ODE model.
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Figure 1.14: Filters of underdamped second-order systems

itative behaviors: underdamped (leading to a filter with decaying oscillations), overdamped

(leading to a difference of exponentials as seen before), and critically damped (filter with an

alpha function). Designers of passive control or sensor systems try to adjust the physical

parameters of their system (by strengthening or weaking a frictional element, for example)

to be as close to critically damped as possible, since a critically damped system will react to

a transient perturbation by decaying to equilibrium as fast as possible without overshoot.

Third-order linear systems and higher

The space of models expands wildly from here. We cover one tractable example and its

application in chapter 3. With the addition of a third state variable, more flexibility is gained

in the phasic structure of the filter of a stable system. For example, third order models can

produce biphasic filters that are continuous at zero but have different lobe widths, as we
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shall see.

Nonlinear ODEs

The expressions on the right-hand side of ODEs do not need to be significantly more compli-

cated than linear combinations for a wide variety of complex behavior to arise. Systems only

need to have three state-space variables to have the potential to display chaotic behavior.15

A single fixed nonlinear form can switch between a wide variety of behaviors depending on

the choice of parameters.

1.3.4 Estimation of Integral Models

Once we have selected a model, we need a procedure to determine what choice of model

parameters generate a model that best fits input/output data, a problem of estimation. All

of the estimation procedures here require that both input and output signals be stationary.

Model Performance Evaluation

To evaluate the performance of a model with respect to a particular input-output record, in

this work we use variance-accounted-for, a measure which scales relative to the variance of

the output signal:

VAF = 100% ⇤
✓
1� var(y � ˆ

y)

var(y)

◆

A 100% VAF indicates that a model has perfect predictive power, whereas a 0% VAF

indicates that a model has no more predictive power than a constant trace set equal to the

mean response, and values can be unboundedly negative.

We want our model to have generality, at least across trials within one class of stimulus

pattern (but hopefully to other stimulus ensembles as well). Since a non-parametric integral

model typically has many degrees of freedom, it has the flexibility to overfit, or capture noise

fluctuations that vary from trial to trial. To prevent overfitting we can use cross-validation,
15The Poincaré-Bendixson theorem eliminates the possibility of chaotic dynamics in continuous second-

order systems.
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by measuring the performance of a choice of model parameters against a set of hold-out

test data not used in the estimation process. For iterative learning processes beyond linear

regression, using probe set error, as opposed to estimation dataset error, at each iteration

becomes important for high degrees of freedom models.

Linear models

Robust estimation of dynamical systems using white noise methods and correlational tech-

niques were developed before the advent of fast digital computers. Ingenious methods were

devised for performing this process in an on-line fashion – in real-time during the process of

data collection – by analog electrical circuits capable of computing a running estimate of the

autocorrelation of an output signal and the cross-correlation of the input and the output.

For a Gaussian white-noise signal run through a linear process with an additive Gaussian

noise process, h is correctly estimated by16

ˆh = �uy/�uu

The explosion of modern computing resources allows large datasets to be recorded and

computations done off-line after the experiment, allowing a more direct and flexible approach.

We consider the free parameters of our model to be the sample values of our impulse response

vector h, then cast it as a minimization problem:

ˆ✓ = argmin

✓
(MSE(y, by))

We solve this problem for our linear integral model. We typically allow our model filters

to have some acausal portion as consistency check. If the estimation procedure produces a

filter with a substantial acausal element, it suggests that we have misapprehended something

about our experimental setup, about the relative timing of our input and output, about a
16In spiking systems, spike-triggered averaging (de Boer and Kuyper, 1968) is equivalent to this calculation,

under the assumption of the output spikes being generated by a Poisson process whose rate is determined
by the output of a linear, or as we shall see, a linear-nonlinear process.
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feedback process that affects our measurement of the input signal, or about the randomness

of our input (a smart enough system could learn to anticipate a test signal with predictable

temporal structure and therefore give the appearance of seeing into the future). So we allow

h to have non-positive indices (h0,h�1,h�2), and we write the discrete convolution as

yi =

N�1X

j=�M

hjui�j

where M is the number of acausal samples and N is the number of causal samples. Thus h

is an N +M component vector.

Then copies of the discrete convolution equation for each time index i can be rewritten

as a matrix equation

y = Uh

where U is a matrix formed by taking each row to be a time-shifted copy of the input:

2

66666666664

u(M) · · · u(2) u(1) 0 · · · 0

u(M + 1) · · · u(3) u(2) u(1) · · · 0

... . . . ...
...

... . . . ...

0 · · · u(T ) u(T � 1) u(T � 2) · · · u(T �N)

0 · · · 0 u(T ) u(T � 1) · · · u(T �N + 1)

3

77777777775

This matrix equation illustrates that our model output is linear with respect to our filter

samples (which we already knew by the commutativity of convolution), and it has the general

form of a linear regression problem. Taking the gradient of the MSE with respect to h and

setting it to zero solves for the minimum MSE and gives our procedure for calculating ˆ

h:

ˆ

h = (U

T
U)

−1
U

T
y

The solution of this matrix equation, easily implementable in any mathematical calcula-
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tion package, depends on a matrix inversion and takes O(TH3
) calculations (Golub and

Van Loan, 1996) where H is the number of samples in h and T is the number of samples

in the traces. This formulation allows us to use different stationary input test ensembles,

provided the inversion of the observation matrix is well-conditioned. As long as the proba-

bility distribution of input values is symmetric about zero, the solution will be unbiased for

a linear model. Note that the input and output must be zero-centered before estimation or

our filter estimate will be biased.

Wiener-Volterra models

The reverse correlation method has been extended to estimate higher-order Wiener kernels

(Lee and Schetzen, 1965) and since a Volterra expansion is linear on kernel samples, even

for higer kernels, it can be treated as a linear regression problem. However, each successive

kernel typically requires exponentially more data to accurately estimate (Marmarelis, 2004),

making them difficult to measure. In practice, it rare to see an attempt at an expansion

beyond the second or third kernel.

L-N models

The cross-correlation of two Gaussian signals is simply proportional to the cross-correlation

of the two signals after one of the signals is passed through an instantaneous nonlinearity,

provided the nonlinearity is not a perfectly even function (such as x2) (Bussgang, 1952).

Excluding systems with perfectly even nonlinearities, this implies that the same estimation

approach can be used to estimate the L stage of an L-N model as if the N function weren’t

there.17

After estimating the L stage and obtaining an estimated ˆK(⌧) function, the input can

be convolved with the kernel to compute an estimate of an intermediate function x̂(t). A

linear regression between x̂(t) and y(t) is then performed to estimate the parameters of the
17Bussgang’s theorem does not guarantee that the best possible fit will be discovered by this approach for

any system; it only guarantees that if the underyling system is an L-N model and the test input is Gaussian,
the procedure will converge to it.
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nonlinear function ˆF (x). If the L-N model is a good qualitative fit to the data, a scatter

plot of y(t) versus x̂(t) should lie close to a single line. In practice, effects due to the finite

size of our experiments may introduce bias in this one-shot estimation procedure; we can use

an iterative procedure to try and correct for this, although convergence properties have not

been proven Hunter and Korenberg (1986). L-N models fall under the statistical framework

of generalized linear models (GLM’s), for which maximum likelihood methods of estimation

have been deveoloped.

Since L-N model estimation is the approach we take for most of our main results, we

provide a flowchart for estimating an L-N model from experimental data in the Appendix.

1.3.5 Estimation of Differential Models

The inference of a low-order18 continuous differential model (i.e. the selection of a model and

estimation of its parameters) directly from input-output data in a system with hidden state

variables is a less straightforward problem, for several reasons. First, the problem of model

selection is under-determined; for a given observed input-output behavior, though it may

be unambiguously characterized, for example, by a linear filter (integral model), there are

infinitely many differential models that will produce the behavior. Thus, to be well posed,

we need to constrain our question by, for example, asking what minimal order model satisfies

a given error criterion given the test data at hand or by restricting our models to a specific

state-variable interaction topology (e.g. ARMAX difference-equation models). Second, once

a putative model is selected, estimating the parameters (in this case, interaction constants)

cannot always be cast as a linear regression; in general, differential model output has a

nonlinear, and often non-monotonic and non-continuous dependence on its parameters (even

for a differential system that is linear on its inputs). Third, in this class of operators, there

is not an obvious expansion basis for successively more accurate approximation, such as

Wiener/Volterra kernel series or parallel L-N models.
18low-order is the key – for example, we can readily construct a high-order difference equation model to

exactly implement the procedure of convolution with a finite length filter – it is called a tapped delay line

and is a general scheme for the implementation of electronic FIR filters.
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Figure 1.15: Our approach to differential model identification

If the state variables are not entirely hidden but partially observable, even indirectly

as noisy mixtures, there are principled procedures for estimating parameters of differen-

tial models given exponential-family noise models, such as those based on expectation-

maximization, although their performance properties are difficult to analyze aside from

special cases (Ghahramani and Hinton, 1996; Ghahramani and Roweis, 1999). Subspace

methods based on matrix factorization (Van Overshee and De Moor, 1996) have emerged as

an effective technique for direct estimation of unconstrained discrete (difference-equation)

linear state space models, provided enough input-output data is available. The inference of

differential models is an active area of machine learning research.

The simple heuristic we follow in this work for estimation of differential models is to first

estimate a (non-parametric) integral model, and then on the basis of qualitative consider-

ations of the results of the integral model, select a (parametric) differential model, then fit

the differential model to the data to determine parameters (Figure 1.15).

1.3.6 Differential versus Integral Models

Integral models have mechanical, often one-shot, methods for estimation, but do not in and

of themselves imply mechanism. We do not imagine a biological mechanism that performs

convolution by operating on a sample by sample basis. Integral models are typically non-

parametric models, in that they are not defined by a chosen parameterization. This can

be beneficial for avoiding prior bias in model selection. When cast into a contemporary

probabilistic framework, these models force us to be very clear about delineating what our

prior assumptions are. In actual implementation, integral models can be considered to
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be very high-parameter models, with parameters being the samples of the kernels and the

coefficients of the nonlinear function expansions. Therefore, overfitting must be carefully

treated and mechanistic interpretations are necessarily limited.

One issue with integral models is that we must set the maximum limit for the memory

of components or the lengths of kernels. There will necessarily be finite-size effects and the

introduction of some estimation bias. Furthermore, we cannot possibly model long-memory

components with a finite-memory system, and the existence of processes with ranges of

timescales across many orders of magnitude seems to be a ubiquitous feature of biological

systems. Research into multi-timescale or scale-free nonparametric dynamical models seems

warranted.

Finally, the integral models described here are incapable of ongoing intrinsic behavior

such as that of a frictionless harmonic oscillator. Treating an oscillation as being caused by

an external input is one way to address the shortcoming analytically, but it does nothing to

explain the phenomenon we presumably seek to understand.

Therefore, there is benefit to attempting to fit a differential model to the results we obtain

from an integral model analysis, that do not suffer from the above issues but in general are

difficult to find effective, robust procedures for estimating.

There are also hybrid models consisting of a mixture of differential and integral elements

motivated by the ease of conceptualization in some cases. For example, a sum over time

history or integral may appear as a right-hand term in a system of differential equations,

or a derivative operator may appear in a block model. However, to analyze them, the

components of the model typically need to be converted into all of one type or another.

With respect to modeling neural activity, we think of integral models as descriptions of

what neurons compute – their signal processing function, and we equate differential models

with putative mechanism, as descriptions of how neural systems compute. Due to the under-

determined nature of the inference of differential models, we cannot necessarily argue that

a particular topology of state variable interactions is correct, even though it provides an
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excellent fit to input/output data with a low number of parameters. However, the existence

of a low-order model can provide a framework for understanding perturbations to the system

that may help uncover underlying simple mechanisms.



Chapter 2

Fourier Analysis of Responses in AWC for

Circuit Dissection1

Before proceeding to dynamical systems modeling, we demonstrate another method of non-

parametric analysis of time series data: the Fourier decomposition of a signal into a sum of

sinusoidal components of different frequencies. This method is useful for revealing oscillatory

behavior in signals without the need for an explicit dynamical model. Here we use it to

analyze the subtle differences in wild type and mutant responses for the purposes of dissecting

a surprising circuit interaction between a sensory neuron and one of its downstream neighbor

interneurons.

2.1 Summary

Many neurons release classical transmitters together with neuropeptide co-transmitters whose

functions are incompletely understood. Here we define the relationship between two trans-

mitters in the olfactory system of C. elegans, showing that a neuropeptide-to-neuropeptide
1Portions of this chapter were previously published as Neuropeptide feedback modifies odor-evoked dy-

namics in Caenorhabditis elegans olfactory neurons, (2010) Nature Neuroscience, co-authored by Sreekanth
Chalasani†, Saul Kato, Dirk Albrecht†, Takao Nakagawa†, L. F. Abbott‡ and Cornelia I. Bargmann†, and
have been reproduced with permission. S. Kato performed signal processing analysis of neural activity data.
†Howard Hughes Medical Institute, The Rockefeller University, New York, New York, USA. ‡Department
of Neuroscience and Department of Physiology and Cellular Biophysics, Columbia University College of
Physicians and Surgeons, New York, New York, USA. Copyright is held by Nature Publishing Group.

38
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feedback loop alters sensory dynamics in primary olfactory neurons. The AWC olfactory

neuron is glutamatergic and also expresses the peptide NLP-1. Worms with nlp-1 muta-

tions show increased AWC-dependent behaviors, suggesting that NLP-1 limits the normal

response. The receptor for NLP-1 is the G protein-coupled receptor NPR-11, which acts

in postsynaptic AIA interneurons. Feedback from AIA interneurons modulates odor-evoked

calcium dynamics in AWC olfactory neurons and requires INS-1, a neuropeptide released

from AIA. The neuropeptide feedback loop dampens behavioral responses to odors on short

and long timescales. Our results point to neuronal dynamics as a site of behavioral regula-

tion and reveal the ability of neuropeptide feedback to remodel sensory networks on multiple

timescales.

2.2 The neuropeptide gene nlp-1 limits local search be-

havior

The AWC neuron releases the neurotransmitter glutamate, which activates AIB interneu-

rons via the glutamate-gated cation channel GLR-1 and inhibits AIY interneurons via the

glutamate-gated chloride channel GLC-3 (Chalasani et al., 2007) (Figure 2.1A). AWC also

expresses genes that encode predicted neuropeptides, including the buccalin-related peptide

NLP-1 (Nathoo et al., 2001). We characterized the function of NLP-1 by examining local

search behavior, in which worms increase their turning rates dur- ing the initial 15 min

after they are removed from food. Local search depends on AWC activity, and the rate of

turning provides a quantitative measurement of AWC signaling (Gray et al., 2005). A null

mutant for nlp-1, generously provided by the C. elegans knockout consortium, had a higher

turning rate than wild-type worms during local search (Figure 2.1B). Like wild type worms,

nlp-1 mutants stopped turning after 15 min off food (data not shown). This behavioral

profile suggests that nlp-1 inhibits AWC-induced turning behavior. NLP-1 reporter genes

are expressed in AWC, ASI, PHB and BDU neurons and in the intestine(Nathoo et al.,

2001). The enhanced turning defect in nlp-1 mutants was rescued by transgenic expression
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of nlp-1 in AWC neurons, but not by expression in ASI neurons (Figure 2.1B and data not

shown). Overexpression of nlp-1 in AWC neurons of wild-type worms reduced the turning

rate during local search (Figure 2.1B). The opposite effects of nlp-1 null mutants and gain-

of-function transgenes suggest that this neuropeptide can be an instructive determinant of

turning rates. AWC-dependent turning behavior is reduced in worms with mutations in the

vesicular glutamate transporter gene eat-4 or in the glutamate receptors glr-1 or glc-3 ; these

defects are the opposite of those in nlp-1 mutants (Chalasani et al., 2007). Double mutants

between nlp-1 and eat-4, glr-1 or glc-3 had reduced turning rates, resembling the worms in

which mutations affected glutamate signaling (Figure 2.1B). This result suggests that NLP-1

functions as a co-transmitter whose effects are apparent only when the classical transmitter

glutamate is also released: glutamate from AWC stimulates turning, and NLP-1 from AWC

decreases the magnitude of this effect.

2.3 NLP-1 acts through the G protein-coupled receptor

NPR-11

The C. elegans genome encodes ⇠100 G protein–coupled receptors (GPCRs) related to char-

acterized neuropeptide receptors (http://www.wormbase.org/). To identify the receptor for

NLP-1, we examined GPCRs that lack known ligands, focusing on those that are expressed

in neurons connected to AWC(Wenick and Hobert, 2004; Etchberger et al., 2007). The or-

phan GPCR NPR-11, whose closest characterized homolog is the Drosophila neuropeptide

F receptor 1, was one candidate. We found that npr-11 null mutants, like nlp-1 mutants,

had increased turning during AWC-dependent local search behavior (Figure 2.1C and data

not shown).

Worms with double nlp-1 npr-11 mutations resembled the single mutants in turning

behavior, as expected for a ligand-receptor pair that acts together and not additively (Figure

2.1C). In addition, the npr-11 mutation fully suppressed the effects of nlp-1 overexpression

on turning behavior (Figure 2.1C). This result indicates that npr-11 is necessary for the
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Figure 2.1: AWC releases NLP-1, which acts on NPR-11 in AIA

(A) AWC sensory neurons, downstream interneurons, and relevant glutamate receptors (from
this work (AIA) and ref. 9). (B, C) Local search behavior 7–12 min after removal from food.
RevOmega, coupled reversal-omega behaviors characteristic of local search. Analysis of nlp-
1 mutants (B) and npr-11 mutants (C). In all figures, WT indicates control N2 strain,
AWC::nlp-1 indicates nlp-1 cDNA under AWC-selective odr-3 promoter, AWC::nlp-1 (OE)
indicates the same plasmid injected at high concentrations, AIA::npr-11 indicates npr-11
cDNA under AIA-selective gcy-28.d promoter. Error bars, s.e.m.; *P < 0.05 by t-test or
t-test with Bonferroni correction, as appropriate; NS, not significant. Complete behavioral
data with all genotypes and time points are in Supplementary Table 1. (D, E) Response
of npr-11 - and G↵16Z-, npr-11 or G↵16Z- transfected HEK 293 cells to an NLP-1 peptide
and a scrambled NLP-1 peptide (sNLP-1). (D) Pseudocolor images of fura2-labeled cells
indicating fluorescent ratio intensities. Scale bar, 100 mm. (e) Average calcium response of
all cells in the window (n = 10 fields for npr-11 and G↵16Z, n = 8 for npr-11 and n = 7 for
G↵16Z). Means and s.e.m. are shown.
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biological activity of nlp-1, as predicted if npr-11 encodes an nlp-1 receptor.

Reporter genes for npr-11 are expressed in two postsynaptic targets of AWC, the AIA

and AIY interneurons, and in other neurons(Wenick and Hobert, 2004) and data not shown).

The npr-11 behavioral defect in local search behavior resembled the defect after AIA in-

terneurons are killed with a laser (Chalasani et al., 2007), and the npr-11 defect was fully

rescued by transgenic npr-11 expression in AIA interneurons under the gcy-28.d promoter

(Figure 2.1C). These results suggest that release of NLP-1 from AWC neurons activates the

NPR-11 GPCR on AIA neurons. In agreement with this hypothesis, the turning behavior

of nlp-1 npr-11 double mutants was rescued only when nlp-1 was expressed in AWC and

npr-11 was expressed in AIA together in the same strain (Figure 2.1C). We obtained a

biochemical confirmation of the genetically inferred ligand-receptor relationship for NLP-1

and NPR-11 by expressing NPR-11 in HEK 293 cells together with the promiscuous G pro-

tein ↵16Z (Mody et al., 2000), and exposing the cells to synthesized MDANAFRMSFamide,

an amidated peptide corresponding to one of four predicted peptides encoded by nlp-1,

MDANAFRMSFamide. NPR-11-expressing cells responded to micromolar concentrations of

the peptide with calcium transients typical for GPCR activation (Figure 2.1D). We observed

no responses to scrambled NLP-1 peptide in untransfected cells or in cells expressing the

receptor or G protein alone (Figure 2.1D, E).

2.4 AWC inhibits AIA interneurons through glutamate

and NLP-1

We investigated the relationship between AWC and AIA interneurons using genetically en-

coded calcium indicators of the GCaMP family, which emit increased fluorescence upon

calcium binding(Tallini et al., 2006; Tian et al., 2009). C. elegans neurons are thought to

lack sodium-based action potentials, but express voltage-gated calcium channels(Lockery and

Goodman, 2009), and calcium signals in these neurons correlate with neuronal depolariza-

tion(Suzuki et al., 2003; Clark et al., 2006; Ramot et al., 2008; Mellem et al., 2002; Chronis
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et al., 2007). Previous results suggest that AWC neurons have basal activity at rest, are

hyperpolarized by addition of odors and are strongly activated by odor removal(Chalasani

et al., 2007). We found that AIA interneurons had the opposite response, showing large tran-

sient calcium increases upon odor addition (Figure 2.2A,B). Odor responses in AIA required

sensory input from AWC, as they were strongly attenuated when AWC neurons were killed

using a laser microbeam (Figure 2.2C,D). These results suggest that AWC forms inhibitory

synapses onto AIA, as suggested for the synapses between AWC and AIY (Figure 2.1A and

(Chalasani et al., 2007)). In the simplest model, basal AWC activity at rest tonically inhibits

AIA; when odor is added, AWC is hyperpolarized, tonic inhibition of AIA is reduced, and

AIA becomes active.

Both glutamate and NLP-1 contributed to odor-evoked calcium responses in AIA. AIA

responses to odor were diminished in eat-4 mutants that lack the vesicular glutamate trans-

porter and in glc-3 mutants that lack a glutamate-gated chloride channel (Figure 2.2E,F).

The involvement of glc-3 is consistent with its known expression in AIA, its molecular iden-

tity as an inhibitory glutamate-gated channel, and the prediction that the AWC-to-AIA

synapse is inhibitory(Wenick and Hobert, 2004; Horoszok et al., 2001). Worms with muta-

tions in nlp-1 also had a diminished response in AIA interneurons, which was partly rescued

by expression of nlp-1 in AWC neurons (Figure 2.2G). The partial rescue of nlp-1 may

be due to variable expression of transgenes or to a combined action of nlp-1 in AWC and

additional neurons.

Although a dual action of glutamate and NLP-1 on AIA calcium signals was consistent

with the behavioral analysis, the relation- ship between the transmitters was unexpected. In

turning behavior, glutamate and NLP-1 had opposite effects, but in AIA calcium imag- ing

experiments, the effects of nlp-1 and glc-3 were congruent. This distinction suggests that

the behavioral effect of NLP-1 cannot be entirely explained by its observed effect on AIA

activity, and prompted further examination of neurons in the AWC circuit.
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Figure 2.2: Calcium responses in AIA interneurons require AWC glutamate and NLP-1

(A, B) Heat maps showing the ratio of change in fluorescence to total fluorescence in AIA
neurons expressing GCaMP2.2b15; addition (A) and removal (B) of odor stimulus at t = 10
s in each recording (n = 18). (C, D) Average GCaMP fluorescence change in AIA neurons in
wild-type (WT; n = 18) and wild-type AWC-ablated worms (n = 12) on addition (C) and
removal (D) of odor. (E–G) Mutant AIA responses. (E) eat-4 (n = 18, WT n = 18). (F)
glc-3 (n = 16, WT n = 16). (G) nlp-1 (n = 18, WT n = 18) and AWC::nlp-1 cell-selective
rescue (n = 18). In all imaging figures, odor is a 10−4 dilution of isoamyl alcohol. Light
gray shading indicates s.e.m. *Significantly different from wild type; **significantly different
from nlp-1 mutant (P < 0.05, t-test with Bonferroni correction).
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2.5 AWC responses are modulated by NLP-1

The activity of sensory neurons such as AWC is thought to be defined primarily by sensory

input and not by network interactions. Unexpectedly, calcium imaging of the odor-evoked

response in AWC neurons revealed alterations in nlp-1 mutants. In both wild type and nlp-1

worms, initial calcium responses to odor removal peaked within 10 s of odor removal (Figure

2.3A–C and Supplementary Figures 2.6 and 2.7). However, in nlp-1 mutants, the first peak

was frequently followed by large secondary calcium transients that continued for at least 2

min after odor removal, the longest duration that was practical for calcium imaging (Figure

2.3B,C). Thus, NLP-1 signaling suppressed AWC calcium transients for a long period after

odor removal. To quantitatively describe the altered activity in nlp-1 mutants, we used a

discrete Fourier transform to analyze the temporal character of the AWC calcium response to

odor removal. Fourier analysis is well suited to reveal oscillatory or repeating signals, which

appeared by inspection to be present in traces from nlp-1 mutants. Indeed, spectral analysis

showed increased power in a mid-frequency domain in nlp-1 mutants, with a significantly

greater contribution than in the wild type from periodic components between 0.033 Hz and 1

Hz (period 1–30 s) (Figure 2.3D). The effects were statistically detectable at all time points

and suggest the presence of irregular slow oscillations with a preferred period near 20 s. Cell-

selective transgenic expression of nlp-1 in AWC resulted in partial but significant rescue of

the defect (Figures 2.3C, D and Supplementary Figure 2.6). The irregular oscillating signal

was not observed in the absence of odor, excluding trivial optical or mechanical artifacts

(Supplementary Figure 2.6), but it was observed to some degree in wild-type traces as well

as nlp-1 traces, indicating that it is a component of the normal AWC response.

We also observed enhanced secondary AWC calcium signals in npr-11 mutants after odor

removal (Figure 2.3E–G and Supplementary Figures 2.6 and 2.7). Normal AWC calcium

signals were restored by transgenic expression of npr-11 in AIA neurons (Figure 2.3G, H

and Supplementary Figure 2.6). The functional effect of a receptor in AIA on odor responses
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Figure 2.3: Altered AWC calcium responses in nlp-1 and npr-11 mutants

(A,B,E,F) Heat maps showing ratio change in fluorescence to total fluorescence in AWC
neurons expressing G-CaMP1.0. Odor was removed at 10 s in each recording. (A) Wild
type (n = 32); (B) nlp-1 (n = 32); (E) wild type (n = 18); (f) npr-11 (n = 18). (C,G)
Representative AWC calcium responses from individual wild-type worms, nlp-1 (C) and
npr-11 mutants (G), and rescued strains. (D,H) Fourier power analysis of AWC calcium
responses in nlp-1 (D) and npr-11 mutants (H). Left, normalized energy density spectrum
averaged across all calcium traces of each genotype; arrows indicate range of the middle
frequency band (color code on right). Right, the average power ratio of the middle frequency
band (0.033–1 Hz) across all calcium traces of each genotype; error bars, s.e.m. *P < 0.05
(t-test with Bonferroni correction).
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in AWC supports the existence of feedback from AIA to AWC. In summary, these results

suggest that release of NLP-1 from AWC, sensed by NPR-11 in AIA, results in feedback

onto AWC that suppresses secondary calcium transients after odor removal. If modulatory

feedback from the circuit contributes to normal AWC activity, other synaptic mutants could

also affect AWC odor responses. Indeed, AWC responses to odor removal were reduced in

eat-4 mutants, which lack glutamatergic transmission from AWC and other neurons, and

prolonged in unc-31 mutants, which have reduced neuropeptide release from all neurons(Lee

et al., 1999; Sieburth et al., 2007) (Supplementary Figure 2.7C,D). These results suggest

that the long-lasting AWC responses to odor removal are affected by synaptic inputs, with

positive inputs from glutamatergic neurons and negative inputs from peptidergic neurons.

2.6 nlp-1 mutants are defective in AWC odor adaptation

The results described above suggest that neuropeptide signaling and feedback influence long-

lasting dynamics in AWC neurons. The 15-min local search behavior is one example of a

sustained AWC-dependent behavior; a second sustained AWC-dependent behavior is olfac-

tory adaptation, a behavioral change in which prolonged exposure to an odor leads to reduced

chemotaxis to that odor(Colbert and Bargmann, 1995) (Figure 2.4A,B). Worms with mu-

tations in nlp-1 or npr-11 failed to adapt to odors after a 60-min exposure (Figure 2.4B),

although they did adapt after a 90-min exposure (Supplementary Figure 2.8A). Like the

defects in local search behavior, the olfactory adaptation defects were rescued by transgenic

expression of nlp-1 in AWC and transgenic expression of npr-11 in AIA, respectively (Figure

2.4B). Signaling components that are required cell-autonomously for olfactory adaptation in

AWC include GPCR regulators, TRPV channels and a cyclic GMP–dependent protein ki-

nase (Colbert et al., 1997; L’Etoile et al., 2002; Palmitessa et al., 2005; Matsuki et al., 2006;

Yamada et al., 2009; Kaye et al., 2009). However, the effects of adaptation on AWC activity

have not been described. We found that wild-type worms that had been adapted to odor
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Figure 2.4: Worms with mutations in nlp-1 and npr-11 are defective in olfactory adaptation.

(A) Schematic diagram of adaptation assay. (B) Adaptation in nlp-1 and npr-11 mutants,
and cell-selective rescue. Error bars, s.e.m. *P < 0.05 (t-test with Bonferroni correction).
(C,D) AWC calcium responses in wild-type, nlp-1 and AWC::nlp-1 transgenic rescued worms
(C) and wild-type, npr-11 and AIA::npr-11 transgenic rescued worms (D) adapted for 60 min
(n = 12 each). Odor pulses are marked. Light gray shading indicates s.e.m. *Significantly
different from wild type (P < 0.05, t-test with Bonferroni correction).

for 60 min failed to respond to odor removal with AWC calcium transients, suggesting that

adaptation blocked an early step of AWC signaling (Figure 2.4C). By contrast, both nlp-1

and npr-11 mutants that had been exposed to odor for 60 min responded with AWC cal-

cium transients after odor removal (Figure 2.4C,D). Transgenic expression of nlp-1 in AWC

and npr-11 in AIA neurons restored the wild-type AWC calcium response (Figure 2.4C,D).

These results indicate that NLP-1 release from AWC, acting on the NPR-11 receptor in AIA,

generates feedback that reduces the primary AWC response to odor removal after adaptation.
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2.7 INS-1 is a candidate feedback signal from AIA

The results described above suggest that AIA releases a signal that suppresses odor-evoked

calcium responses in AWC. The insulin-related neuropeptide INS-1, which is expressed

in AIA, modulates the function of the ASE gustatory neurons in a salt conditioning as-

say(Tomioka et al., 2006), suggesting that INS-1 is a candidate signal from AIA to sensory

neurons. Therefore, we investigated the effects of ins-1 mutations on AWC- regulated be-

haviors. Like nlp-1 and npr-11 mutants, ins-1 mutants showed increased turning in AWC-

dependent local search behavior (Figure 2.5A). Double ins-1 nlp-1 mutants resembled each

single mutant, suggesting that these genes act in a common process (Figure 2.5A). An ins-1

mutation fully suppressed the effects of NLP-1 overexpression on turning behavior, indicating

that ins-1 activity is necessary for the biological effects of nlp-1 (Figure 2.5A). Expression

of ins-1 is found in multiple neurons including AIA, RIC, ASI and AWC(Tomioka et al.,

2006). Transgenic expression of ins-1 from an AIA- selective promoter rescued turning be-

havior in the ins-1 mutant, but expression from AWC-, ASI- or RIC-selective promoters

did not (Figure 2.5A and data not shown). These results suggest that ins-1 is required

in AIA neurons. In double mutant studies, nlp-1 ins-1 mutants were restored to normal

turning behavior only when nlp-1 was expressed in AWC and ins-1 was also expressed in

AIA (Figure 2.5A). Double nlp-1 (overexpressor) ins-1 mutants were restored to the behav-

ior of nlp-1 (overexpressor) strains when ins-1 was expressed in AIA (Figure 2.5A). These

experiments support the idea that ins-1 acts in AIA neurons.

In calcium imaging experiments, ins-1 mutants had secondary AWC transients after odor

removal, with temporal properties similar to nlp-1 and npr-11 mutants (Figure 2.5B and

Supplementary Figure 2.9). AIA-specific expression of ins-1 significantly rescued the altered

odor response in AWC neurons, suggesting that AIA neuropeptides influence AWC activity

(Figure 2.5B and Supplementary Figure 2.9).

AWC-dependent olfactory adaptation also required ins-1. Like nlp-1 and npr-11 mutants,
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Figure 2.5: ins-1 is a component of the nlp-1-npr-11 pathway.

(A) Local search behavior 7–12 min after removal from food. RevOmega, coupled reversal-
omega behaviors characteristic of local search. AIA::ins-1, ins-1 cDNA expressed under
AIA-selective gcy-28.d promoter. Error bars, s.e.m. *P < 0.05, t-test with Bonferroni
correction. (B) Fourier power analysis of AWC calcium responses in ins-1 mutants. Left,
the normalized energy density spectrum averaged across all calcium traces of each genotype;
arrows indicate range of the middle frequency band (color code on right). Right, the average
power ratio of the middle frequency band (0.033–1 Hz) across all calcium traces of each
genotype; error bars, s.e.m. *P < 0.05 (t-test with Bonferroni correction). (C) Adaptation
in ins-1 mutants, and cell-selective rescue. *Different from unadapted control (P < 0.05,
t-test). Error bars, s.e.m. (D) AWC calcium responses in wild type, ins-1 and AIA::ins-1
rescued transgenic worms adapted for 60 min (n = 12 each). Odor pulses are marked. Light
gray shading indicates s.e.m. *Different from wild type at P < 0.05, t-test with Bonferroni
correction.
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ins-1 mutants did not adapt after a 60-min exposure to odor but did adapt partially after

90-min (Figure 2.5C and Supplementary Figure 2.8). Adaptation in nlp-1 ins-1 double

mutants was similar to adaptation in each single mutant, suggesting that these two genes

affect a com- mon pathway (Supplementary Figure 2.8C). Moreover, AWC neurons in ins-1

mutants exposed to odors for 60 min showed a calcium response after odor removal, unlike

wild-type worms in the same conditions (Figure 2.5D). Both the behavioral adaptation and

the neuronal correlate of adaptation observed in calcium imaging were rescued by transgenic

expression of ins-1 in AIA (Figure 2.5C,D and Supplementary Figure 2.8). These results

suggest that INS-1 released from AIA acts directly or indirectly on AWC sensory neurons to

limit their activity.

2.8 Discussion

Many neurons release both classical neurotransmitters and neuropeptides(Marder and Bucher,

2007; Nassel and Homberg, 2006; Burnstock, 2004). Our results suggest that AWC releases

both the classical neurotransmitter glutamate and the neuropeptide NLP-1 to modulate be-

havior (Supplementary Figure 2.9E). The glutamate signaling pathway promotes local search

and odor chemotaxis, whereas the neuropeptide pathway limits local search and promotes

odor adaptation. Glutamate signals are interpreted by multiple glutamate receptors on in-

terneurons(Chalasani et al., 2007), and NLP-1 is sensed by NPR-11 on AIA interneurons.

These interneurons then release INS-1, which directly or indirectly limits AWC activity and

behavior. In one straightforward model, INS-1 is released from active AIA neurons when

odor is present; the INS-1 released during a short odor exposure inhibits repetitive calcium

transients from AWC neurons when odor is removed, and the prolonged INS-1 release during

a long odor exposure has a stronger effect, completely suppressing AWC calcium transients

upon subsequent odor removal. This feedback loop may act as a gain control circuit to

dampen the responses of AWC neurons to strong stimuli, like negative feedback in other

neuronal systems(Demb, 2008). In this interpretation, the increased oscillations in nlp-1
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and other mutants result from ungoverened high-gain signaling in AWC.

A number of inhibitory pathways involving a single neuropeptide are known; this pathway

is unusual in its apparent requirement for two neuropeptides from two neurons, working in a

feedback loop. Several properties of this feedback loop remain to be determined. For exam-

ple, we do not know when NLP-1 and INS-1 are released with respect to food or odor cues,

and with respect to AWC and AIA activity. If the peptides are released when the neurons

are active, NLP-1 would be released in alternation with INS-1 and not simultaneously; the

slow biochemical timescale of G protein signaling may permit temporal integration across

asynchronous activity of AWC and AIA(Stein et al., 2007). Another missing component of

the feedback model is the receptor for INS-1, as mutation of the one characterized C. elegans

insulin receptor gene, daf-2, did not mimic or suppress ins-1 mutations as predicted for an

ins-1 receptor (data not shown). INS-1 antagonizes DAF-2 in the developmental dauer larva

pathway(Pierce et al., 2001), and can act either as an agonist or an antagonist of DAF-2 in

food-regulated thermal learning and salt learning paradigms(Tomioka et al., 2006; Kodama

et al., 2006), but C. elegans has more than 30 insulin-regulated peptides, and DAF-2 may

not be the only receptor for this peptide family. Precedent for alternative insulin receptors

exists in mammals, where GPCRs are receptors for the insulin-related relaxin peptides(Ivell

and Einspanier, 2002).

The behavioral functions of INS-1 in AWC olfactory adaptation are related to its functions

during ASE salt chemotaxis learning, where INS-1 from AIA suppresses chemotaxis after salt

is paired with starvation(Tomioka et al., 2006)33. It will be interesting to investigate whether

NLP-1 or another sensory peptide initiates ASE salt chemotaxis learning, and whether INS-1

signaling alters ASE sensory dynamics. Although we specifically examined the relationship

between AWC and AIA, the AIA interneurons also receive synaptic input from neurons that

sense food, tastants, pheromones and repellents1,33,42. This connectivity might enable AIA

to act as a local integrator of sensory information.

There is increasing evidence that peripheral olfactory signaling in many species is mod-
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ulated by top-down signals, internal states and neuromodulators. State-dependent inputs

affect olfactory signaling in rodents, acting as early as the synapses of the olfactory sensory

neurons(Wachowiak et al., 2009; Gomez et al., 2005). In Drosophila, tachykinin peptides

expressed by local interneurons mediate presynaptic inhibition of olfactory receptor neu-

rons(Ignell et al., 2009). The modulation of primary sensory neurons(Stein et al., 2009) is

a prominent feature of pain-sensing pathways; we suggest that it will also be prominent in

olfactory systems. In C. elegans, the use of specific mutants allows these feedback mech-

anisms to be directly linked to olfactory responses and behaviors, and also reveals their

functional diversity. The neuropeptide feedback loop described here damps AWC output,

whereas a different modulatory pathway involving the receptor guanylate cyclase GCY-28

can regulate an AWC switch from behavioral attraction to repulsion(Tsunozaki et al., 2008).

The C. elegans genome contains about 113 genes that encode more than 250 predicted neu-

ropeptides, a rich potential source of behavioral variability10,47,48. Our experiments reveal

neuropeptide-regulated dynamic properties of C. elegans neurons that correlate with the

dynamics of behavior. The prolonged AWC calcium signals in nlp-1, npr-11 and ins-1 mu-

tants correlate with their increased turning during local search behavior. The reduced AWC

calcium signals after prolonged odor exposure correlate with olfactory adaptation, which is

reduced in nlp-1, npr-11 and ins-1 mutants. Further studies of the AWC circuit should

generate a better understanding of the relationship between behavior and the time-varying

acute responses of AIA, sustained responses of AIB, and repetitive responses of AWC and

AIY(Chalasani et al., 2007). Together with previous findings in C. elegans mechanosensory

neurons (Kindt et al., 2007), these results suggest that circuit input tunes sensory responses

to external stimuli based on sensory history and internal states, generating a rudimentary

form of decision making.
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2.9 Experimental Methods

2.9.1 Calcium imaging

To generate an AIA imaging line, GCaMP2.2b (Tian et al., 2009) was expressed under the

gcy-28.d promoter(Tsunozaki et al., 2008), which is expressed strongly in AIA neurons and

weakly in RIA, ASK, AVJ and other cells. The AWC GCaMP1 imaging line has been

described(Chalasani et al., 2007). The lines were scored quantitatively for AWC local search

behaviors, and those with normal responses were used for calcium imaging. Worms were

trapped in a custom-designed microfluidic device made of the transparent polymer PDMS

in which animals are restrained in a small chamber matching their dimensions, exposed

to odors in liquid streams under laminar flow, and monitored using wide-field fluorescence

microscopy(Chalasani et al., 2007; Chronis et al., 2007). Fluorescence from the cell of interest

was captured after the presentation of isoamyl alcohol (9.2x10−4M) and after odor removal

5 min later.

We used MetaMorph and a Coolsnap HQ (Photometrics) camera to capture stacks of

TIFF images at 10 frames s−1 during the addition and removal of odor stimulus. A region

of interest encompassing the cell was identified in all frames and the average fluorescence

intensity recorded. A Matlab (7.0R14, MathWorks) script used the data generated by Meta-

Morph to plot the imaging responses. The average fluorescence of the region of interest was

generated by subtracting the recorded value from the average intensity of the background

region of a similar area. The average fluorescence in a 3 s window (t = 1–4 s) was set as F0.

The percent change in the fluorescence intensity for the region of interest relative to Fo was

plotted for all stacks, and these data were used for further analysis. Raw traces were cor-

rected for fluorescence bleaching by subtracting a fixed correction function obtained by fitting

an exponential curve to wild-type control traces using the equation y(t) = 100% ⇤ (e−t/⌧−1)

where t is time and ⌧ is the time constant. As bleaching rates varied among neurons, separate

time constants were obtained for AWC (⌧ = 330.7 s; 95% confidence interval, 327.1–334.4 s;
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R2 = 0.91) and AIA (t = 615.5 s; 95% confidence interval, 607.2–623.8 s; R2 = 0.86).

Because the irregular secondary calcium transients in AWC were not visible in averaged

traces, we plotted the ratio of change in fluorescence to total fluorescence for individual

traces in heat maps in Figure 2.3 and Supplementary Figures 2.6 and 2.9. The wild-type

controls for each figure were interleaved with mutants tested over the same time period.

2.9.2 Local search behavior

Individual worms were scored for exploratory behavior in the presence of food (5 min),

immediately after removal from food (1–12 min) and after long times off food (35–40 min)6,

9. All turns and reversals were scored by eye, by an investigator blind to the genotype

of the worm. Reversals and turns were identified as described6. Results in Figures 2.1

and 2.5 show turning rates scored 7–12 min after removal from food, and are reported as

RevOmega values, which represent reversals coupled to omegas. Qualitatively similar results

were obtained when large reversals or omega turns were scored individually (data not shown).

Data were analyzed using Perl scripts to calculate reversal and omega frequencies.

2.9.3 Adaptation assays

Adaptation assays were performed as described26. Worms were washed and plated on 3%

assay agar plates. We placed 16 ml of isoamyl alcohol on agar plugs on the plate lid and sealed

the plates with Parafilm to create the conditioning plate. After 60 min or 90 min, worms were

washed and tested for chemotaxis on fresh plates. Controls were treated identically except

that isoamyl alcohol was omitted from the conditioning plate. For imaging experiments,

worms were conditioned for 60 min with or without isoamyl alcohol and then loaded into

the device for calcium imaging.

2.9.4 Discrete Fourier transform

The plots in Figures 2.3D,H and 2.5B and Supplementary Figures 2.6 and 2.9D were gen-

erated by transforming data in the time domain (the raw fluorescence trace y(t)) into the
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frequency domain (Y (f)), using the Matlab function fft (discrete Fourier transform), which

computes

Y (fk) =
N�1X

j=0

y(tj)e
�2⇡i

N

kj

where k = 0 ... N – 1, N = 1,200 and i =
p
�1

at 1,200 equally spaced frequencies from f0 = 0 to f1199 = 10 Hz, the sampling rate. Alias-

ing, or contribution from oscillatory components at higher than the Nyquist frequency (5 Hz),

is negligible based on the rapid drop-off of the Fourier transform with increasing frequency

because the dynamics of calcium fluorescent indicators is slower than the sampling rate. The

normalized energy spectral density was then calculated for each trace and averaged across

each group of traces at each fk sample point to give
D
|Y (f

k

)|2/P
f1f

k

f

N/2
|Y (f

k

)|2
E

trials
versus fk

(Figures 2.3D,H and 2.5B). The value |Y (f0)| represents the mean of the entire time-domain

vector y(t) and was excluded from the calculation of energy spectral density normalization

and band power ratio (described below), although including the value in the calculations did

not significantly affect results. Values off > fN/2 were also excluded from calculations owing

to the redundancy of the magnitude of the second half of the discrete Fourier spectrum when

performed on real-valued signals. For simplicity, no smoothing or windowing was applied to

the energy spectral density. Applying various windowing schemes did not significantly affect

quantifications (data not shown).

This representation of calcium signal data was chosen for two reasons. First, because

calcium events were not registered in time, transients after the initial peak response were

typically lost when averaging traces from multiple worms (Supplementary Figure 2.7A,B). By

contrast, the frequency-domain representation separates magnitude and phase information

and secondary transients are preserved when averaging over many experiments. Second,

this representation allows the identification and separation of signal components in various

frequency bands. Low frequencies capture the magnitude of the primary response, high



57

frequencies capture signal measurement noise, and middle frequencies capture secondary

transients.

As an estimate of the portion of the total signal contributed by oscillatory components

in a band bounded by two frequencies fmin and fmax, we compute the band power ratio as

BPR(fmin, fmax) =

P
f
min

f
k

f
max

|Y (fk)|2
P

f1f
k

f
N/2

|Y (fk)|2

The complete time domain trace y(t) can be exactly reconstructed from its complex

Fourier spectrum using the inverse discrete Fourier transform (Matlab function ifft), which

computes:

y(tj) =
1

N

N�1X

k=0

Y (fk)e
2⇡i

N

kj

where j = 0 ... N – 1, N = 1,200.

To visualize signal contributions from each frequency band, we divided Fourier spectra

into three frequency bands, and reconstructed time-domain signals represented by the contri-

butions from a single frequency band using the inverse discrete Fourier transform (equation

(3)) of the complex Fourier spectrum clipped to zero everywhere outside of the particular

frequency band. Middle band reconstructions are shown in Supplementary Figures 2.61 and

2.9D. By mathematical identity, the sum of the low, middle and high-frequency trace re-

constructions equals the full time-domain fluorescence trace. As reconstructions based on

sharply clipped samples can result in ringing effects (continued oscillations during a time

period when the original trace is not oscillating), we also performed reconstructions using

sloped frequency windows. No important changes in the appearance of trace reconstructions

during the 30–120-s period were observed (not shown).

The choice of middle frequency band range was made by separating the Fourier spectra

into many bands (10 cutoffs, at 0.001, 0.01, 0.02, 0.033, 0.1, 0.2, 0.5, 1, 2 and 5 Hz) and

selecting the bands that significantly distinguished wild type from nlp-1 responses (data not
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shown). We found that most nlp-1 secondary transients are captured in a narrower, f =

0.033–0.2 Hz band, but nlp-1 traces also show increased oscillation in the f = 0.2–1 Hz

range; hence, we selected the combination of these bands (f = 0.033–1 Hz) as the region

of interest for Supplementary Figures 2.6 and 2.9D. This frequency range corresponds to

periodic oscillations with periods between 1 and 30 s. The different genotypes did not show

significant differences in the frequency domains <0.033 Hz or >1 Hz, suggesting little effect

on the primary response or signal noise.

Three of the genotypes (nlp-1, npr-11 and ins-1 ) showed strong secondary calcium tran-

sients. The nlp-1 energy spectral density shows a broad peak in frequency-domain amplitude

at f = 0.0583 Hz (Figure 2.3D), corresponding to a period of 17 s; this period is similar to

the time period between large calcium transients determined by a manual measurement of

nlp-1 traces (19.5 ± 2.2 s (mean ± s.d.); Figure 2.3B). Similarly, npr-11 and ins-1 worms

show increased amplitude at frequencies corresponding to a period between 10 and 20 s

(Figure 2.3F,H and Supplementary Figure 2.9B,D). These transients were not observed dur-

ing imaging of wild type or nlp-1 worms during buffer exchange protocols (Supplementary

Figure 2.6). All calculations were performed with Matlab.

2.9.5 Cell culture and calcium imaging

Two peptides, one corresponding to the NLP-1 sequence (MDANAFRMSFamide) and the

second with a scrambled sequence (MSMRFANADFamide), were synthesized by the Pro-

teomics resource center at The Rockefeller University. Human embryonic kidney 293 cells

(HEK293) were cultured in DMEM supplemented with 10% FBS at 37 °C in a humidified

atmosphere containing 5% CO2. Cells 50–60% confluent were transfected with a 1:1 ratio of

pME18s-npr-11 and pcDNA3-a16Z (encoding a promiscuous G protein13, a gift from Y.H.

Wang) using Lipofectamine 2000 and incubated for at least 24 h; the transient transfection

efficiency was ~70%, estimated by cotransfecting b2-adrenergic receptor and Ga15 plasmids

and counting the fraction of cells responsive to isoproterenol. In control experiments, the



59

receptor or G protein was transfected alone. Experiments were conducted on three plates

for each condition on three different days. The transfected cells were loaded with 2.5 mM

fura-2/AM for 20 min at 37 °C, peptide solution was applied sequentially to the cells for

15 s with a peristaltic pump, and fluorescence at 510 nm by excitation at 340/380 nm was

monitored using a MetaFluor calcium imaging system. The calcium response trace was cal-

culated using all cells in randomly chosen fields. For receptor and G protein transfections,

ten fields were analyzed, for G protein alone, seven fields, and for receptor alone, eight fields.

2.9.6 Laser ablations

In transgenic worms expressing GCaMP2.2b under an AIA-specific promoter, AWC neurons

were identified based on their position and morphology using Nomarski optics, and killed

with a Micropoint laser system. Operated worms were tested in parallel with controls from

the same strain on the same day.

2.9.7 Molecular biology and transgenesis

cDNA or genomic regions corresponding to the entire coding sequences of nlp-1, npr-11 and

ins-1 were amplified by PCR from mRNA or genomic DNA and expressed under cell-specific

promoters as indicated. For behavioral experiments in transgenic lines, a splice leader (SL2)

fused to a gfp transgene was used to confirm cell-specific expression of the gene of interest,

and only worms expressing GFP were scored. Selective expression in AWC, ASI, AIA or AIY

was achieved using the promoters odr-3 (AWC>AWB), str-3 (ASI alone), gcy-28.d (AIA)

and ttx-3 (AIY alone). Germline transformations were carried out my microinjection of

plasmids at concentrations between 10 and 50 ng ml−1. Strains were grown and maintained

under standard conditions50.

2.10 Supplementary Figures
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Figure 2.6: AWC calcium responses

(A, B) Individual band reconstructions from the middle frequency band (0.033 Hz -1 Hz) for
AWC responses in different genotypes, arranged in order of increasing signaling magnitude.
(C, D) Heat maps showing the ratio of change in fluorescence to total fluorescence in AWC
neurons expressing GCaMP 1.0, as buffer was exchanged around the nose, (C) wild type
(n=16) and (D) nlp-1 (n=12). (E) Individual signal reconstructions from the middle fre-
quency band for traces in (C) and (D). Heat maps showing the ratio change in fluorescence to
total fluorescence in GCaMP 1.0 expressing AWC neurons when odor was removed from the
nose at 10 s in each recording in (F) nlp-1 ;AWC::nlp-1 (n=14) and (G) npr-11 ;AIA::npr-11
(n=18).
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Figure 2.7: AWC calcium responses in neurotransmitter mutants

(A) Average AWC responses to odor removal of at t = 10 s in wild-type (n=14), nlp-1 (n=14)
and nlp-1 ;AWC::nlp-1 (n=14). (B) Average responses to odor removal at t = 10 s in wild-
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at t = 10 s in wild-type (n=18) and eat-4 (n=18). (D) Average responses to odor removal
at t = 10 s in wild-type (n=18) and unc-31 (n=18). Dark shade indicates the presence of
odor. Light grey shading around each trace is s.e.m.
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Figure 2.8: Adaptation defects in neuropeptide mutants

Chemotaxis to isoamyl alcohol, with and without prior odor adaptation. (A) nlp-1, npr-11,
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Chapter 3

Integral and Differential Modeling of AWC

and ASH1

We now take the plunge into full-blown dynamical systems modeling, using a combination

of integral modeling (specifically, L-N models) and differential modeling (low-order ODE

systems). One noticeable change from the experiments in the last chapter is the cleanliness

of the traces; much of the signal noise in the wild type has been eliminated, primarily due

to the use of a paralytic and a newer, higher signal-to-noise indicator, GCaMP3. We also

make the move from administering simple step stimuli to more complex, rapidly fluctuating

temporal stimuli, allowing us to accurately characterize the reponse properties of the system

on short timescales and build more general system models of temporal processing.

3.1 Summary

Natural olfactory behaviors require animals to track fluctuating stimuli over times ranging

from milliseconds to hours. To define neural mechanisms that support these computations,

we characterized neuronal calcium responses to rapidly fluctuating odor sequences. We found
1This chapter consists of extracts from a preliminary version of the paper Temporal multiplexing by

biphasic filters in C. elegans chemosensory neurons, co-authored by Saul Kato, Yifan Xu†, Christine E. Cho†,
L. F. Abbott‡ and Cornelia I. Bargmann†. †Howard Hughes Medical Institute, The Rockefeller University,
New York, New York, USA. ‡Department of Neuroscience and Department of Physiology and Cellular
Biophysics, Columbia University College of Physicians and Surgeons, New York, New York, USA.
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that individual sensory neurons reliably track stimulus fluctuations at timescales relevant

to behavior: the AWC olfactory neuron responds to odors with the sub-second precision

required for directed chemotaxis, whereas the ASH nociceptive neuron integrates noxious

cues over several seconds to reach a threshold for escape behavior. Each neuron’s response

to fluctuating stimuli is largely linear, and can be described by a biphasic temporal filter

and dynamical model. The model predicts neuronal responses to novel stimuli, describes

long-lasting responses to changes in mean stimulus strength, and explains effects of sensory

signal transduction mutants. With modified parameters, the model captures the different

calcium response properties of additional C. elegans sensory neurons. Biphasic filters of this

form represent a general strategy for encoding sensory information on multiple timescales.

3.2 Introduction

Olfactory, gustatory, and pheromone cues provide essential information about an animal’s

environment. Because these cues are chemically diverse, most studies of the chemical senses

ask how animals detect and distinguish the chemical quality of a stimulus. However, the

temporal properties of stimuli are also important in guiding behavior. The time history of a

stimulus as an animal monitors and moves through its environment can convey information

about the distribution of food, mates, competitors, and predators. Accordingly, the olfactory

system should detect temporal features of chemical stimuli, just as neurons in the visual and

auditory systems are tuned to temporal features of stimuli (DeAngelis et al., 1995; Calabrese

et al., 2011).

In the worm, chemosensation and chemosensory behaviors can be functionally mapped

to individual neurons, a unique advantage for dissecting the coding of odor quality and dy-

namics. A few dozen chemosensory neurons regulate virtually every aspect of the behavior

and life history of C. elegans (Bargmann, 2006a). Each sensory neuron detects particu-

lar environmental chemicals through its cell type-specific repertoire of G protein-coupled

receptors and signaling molecules. Each sensory neuron then controls characteristic behav-
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iors such as chemotaxis, avoidance, aggregation, or exploration. These behaviors require

the integration of chemical cues over a range of timescales. For example, during gradient

climbing animals track odor concentration changes within 2 seconds to regulate their head

orientation, but they also track concentration changes over 20-90 seconds to regulate turning

frequency (Pierce-Shimomura et al., 1999; Iino and Yoshida, 2009; Izquierdo and Lockery,

2010; Albrecht and Bargmann, 2011). In avoidance behaviors, animals reverse immediately

to a strong noxious stimulus, but integrate weak noxious stimuli over ⇠10 seconds (Chao

et al., 2004). For foraging, animals evaluate environmental quality over tens of minutes

(Gray et al., 2005).

Sensory neurons are tuned to chemical quality by their receptor gene expression, but

little is known about how they are tuned to temporal information. Direct examination of

chemosensory signaling using genetically-encoded calcium indicators has shown that C. ele-

gans sensory neurons respond to relevant chemical stimuli with a slow calcium transient that

rises for several seconds and decays partially or completely over ⇠60s of stimulus presenta-

tion (Hilliard et al., 2005; Chalasani et al., 2007; Suzuki et al., 2008; Zimmer et al., 2009;

Busch et al., 2012). The stronger initial activity and weaker tonic activity of sensory neurons

correlates with these neurons’ ability to trigger both immediate and prolonged behavioral

responses (Chalasani et al., 2007; Zimmer et al., 2009; Busch et al., 2012), but beyond that,

the nature of temporal encoding is a mystery.

Here, we develop methods to present rapidly fluctuating chemical stimuli to C. elegans,

and use them to characterize temporal coding in two classes of C. elegans chemosensory

neurons: AWC neurons that sense attractive odorants and ASH neurons that sense noxious

chemical and mechanical stimuli. We show that these neurons respond reliably and robustly

to rapidly fluctuating stimuli at speeds that are well-matched to the behavioral functions they

support. Applying system identification methods that have been employed in other sensory

systems (Dayan and Abbott, 2001; Westwick and Kearney, 2003), we analyze fluorescence

signals to define linear temporal filters that describe the calcium responses of each neuron.
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To determine the intrinsic neuronal filters, we use analytical methods to correct for the effects

of the genetically encoded calcium indicator. The filters of both neurons can be modeled

by a system of three first-order differential equations, and predict responses to patterns of

stimuli not used in their construction. Sensory signal transduction mutations affect specific

components of the filters. With simple parameter changes, the model can fit the responses of

other sensory neurons, suggesting that neurons with diverse response properties may share

general strategies for encoding stimulus dynamics and history.

3.3 Reliable responses to rapid stimulus fluctuations

We developed and validated a system for rapid odor delivery by adapting a microfluidic

imaging chip previously used to deliver step stimuli (Chronis et al., 2007). In this chip,

sensory cues are delivered in a liquid environment, which increases the speed and reliability

of odor delivery and removal; C. elegans responds normally to chemical stimuli in all-liquid

environments (Luo et al., 2008; Albrecht and Bargmann, 2011). Chemical stimuli were

delivered by switching between two laminar fluid streams that flowed across the nose of an

adult hermaphrodite confined in the microfluidic chip (Figure 3.7A,B). Control experiments

with fluorescein dye in the stimulus stream showed that the system could reliably deliver

sequences of ON/OFF pulses at frequencies of up to 5 Hz (Figure S3.7C). To accurately

model the input-output transformation given the ⇠30 ms variability in switching time of the

delivery system, fluorescein dye was included in the stimulus stream, and its intensity near

the animal’s nose was used as a surrogate for odor concentration during recordings (Figure

3.7D).

The activity of C. elegans sensory neurons was monitored using the genetically encoded

calcium indicator GCaMP3 (Tian et al., 2009), which has high sensitivity (660 nM apparent

affinity), a ⇠10-fold dynamic range, and rapid dynamics (52 ms t1/2 rise time, 384 ms t1/2

decay time). Calcium imaging misses the fastest elements of the neuronal response (Geffeney

et al., 2011), but in other respects it is well-suited to C. elegans neurons, which typically
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have graded responses, lack sodium-based action potentials, and use voltage-gated calcium

channels to amplify neuronal inputs and regulate neurotransmitter release (Goodman et al.,

1998; Liu et al., 2009). We observed similar GCaMP3 signals in cell bodies and axons of AWC

and ASH, suggesting that the observed response correlates with the presynaptic calcium that

regulates neurotransmission.

AWC olfactory neurons are inhibited by attractive odors and activated by their removal

(Chalasani et al., 2007). Removing the attractive odor isoamyl alcohol after a five-minute

exposure results in a calcium increase in AWC, the OFF response, that peaks within 5 s

and decays to a steady-state level over 30-60 s (Figure 3.1A). To ask whether AWC could

track rapid odor fluctuations, we began with the same five-minute odor pulse, but alternated

between 1 s pulses of odor and buffer instead of removing the odor entirely. AWC responded

to this flickering stimulus with regular, sustained calcium oscillations at 1 Hz superimposed

on the slowly decaying OFF response (Figure 3.1B). The oscillating response continued after

the OFF response reached a steady state (Figure 3.1B, inset), but stopped immediately when

stimulus oscillations ceased.

ASH nociceptive neurons respond to noxious chemicals and touch with an increase in

calcium, the ON response (Hilliard et al., 2005). The ASH calcium response to a high-

osmolarity 1 M glycerol step stimulus peaks within 10 s and decays to a steady-state level in

60 s (Figure 3.1C). Replacing the glycerol step stimulus with a flickering 1 s stimulus resulted

in regular oscillations of the calcium signal at 1 Hz superimposed on the ON response (Figure

3.1D). The oscillating responses persisted after the decay of the initial ON response (Figure

3.1D, inset). These results reveal a new property of the AWC and ASH neurons: the ability

to track flickering stimuli at a sub-second resolution.

To characterize the temporal features of the AWC and ASH responses more precisely,

we used a system identification approach that constructs phenomenological models from

neuronal responses to randomly fluctuating stimuli. To approximate a spectrally unbiased

stimulus pattern, transitions between full and zero odor concentration were controlled by
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Figure 3.1: AWC and ASH track flickering odor stimuli.

Representative GCaMP3 responses (black) to stimulus input sequences (red). (A and B)
AWC responses after a five minute pre-exposure to 9.2x10-4 M isoamyl alcohol, followed by
(A) odor removal, and (B) a flickering on/off isoamyl alcohol stimulus with a 1 s pulse length,
fluctuating between the original concentration and zero. (C and D) ASH responses. (C) 1 M
glycerol stimulus and (D) A flickering on/off 1 M glycerol stimulus with a 1 s pulse length.
Insets, zoomed views of 10s intervals after the response reaches steady-state, stimulus in red.
Gray vertical lines divide the inset graphs into 2 s epochs aligned to stimulus transitions.
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a fixed pseudo-random m-sequence (Figure 3.2A,B, 3.7D, Experimental Procedures), which

has a sharply peaked autocorrelation similar to that of an infinite-length random sequence.

Both AWC and ASH responded to the m-sequence stimuli with a fluctuating calcium signal

superimposed on the slowly decaying response to stimulus onset or offset (Figure 3.2A,B).

These rapid responses continued for several minutes after the initial ON or OFF response

reached steady state.

AWC and ASH calcium responses to a fixed m-sequence stimulus were strikingly stereo-

typed across different animals and across trials for a given animal (Figure 3.2C,D, Experi-

mental Procedures, and data not shown). The use of the same particular temporal sequence

for both neurons permitted a direct comparison between them. Their overall peaks of activ-

ity were similar, but AWC responses had a finer temporal resolution than ASH (Figure 3.2).

Thus, in addition to their known ON and OFF responses to step stimuli, both AWC and

ASH neurons can reliably track more rapid, complex stimulus fluctuations, but with slightly

different properties.

3.4 Linear temporal filters describing AWC and ASH

sensory neurons

The steady-state responses to m-sequence stimuli provided a basis for modeling the input-

output transformations of AWC and ASH neurons as linear-nonlinear (L-N) cascades, a

standard procedure for describing sensory-driven responses (Dayan and Abbott, 2001; West-

wick and Kearney, 2003). In this approach, the input-output transformation is broken down

into two operations on the input stream: convolution with a linear temporal filter followed

by the application of a static nonlinearity (Figure 3.8A). The linear filter K(⌧) accounts for

the contribution of the stimulus at time t � ⌧ to the fluorescence response at time t, with

⌧ defined as the lag. The static nonlinearity F (x) describes how this filtered response, x, is

converted into the measured fluorescence change. Both K and F were extracted from the

data by standard techniques (Experimental Procedures). Contributions of GCaMP3 calcium
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Figure 3.2: AWC and ASH respond reliably to complex odor patterns

(A) Representative AWC response to a pseudo-random on/off sequence of 9.2x10-4 M isoamyl
alcohol (pulse length 200 ms, 9-bit sequence, two repetitions), following a five minute pre-
exposure to 9.2x10-4 M isoamyl alcohol. Bracket marks the second repetition of the m-
sequence, the region shown for additional AWC neurons in (C) and used to construct and
analyze the L-N model. (B) Representative ASH response to pseudo-random off/on pseudo-
random pattern of 1 M glycerol (pulse length 200 ms, 9-bit sequence, two repetitions).
Bracket marks the second repetition of the m-sequence, the region shown for additional ASH
neurons in (D) and used to construct and analyze the L-N model. (A) and (B) are similar m-
sequence stimulus input patterns but with inverted sign; note the similar overall shape of the
AWC and ASH neuronal responses but the sharper temporal resolution in AWC traces. (C)
Responses of additional AWC neurons to the same m-sequence as in (A). Brackets indicate
two trials of a single animal, separated by ~10 minutes. Individual traces were normalized
to the peak magnitude within each trace. (D) Responses of additional ASH neurons to the
same m-sequence as in (B). Each trace represents a different animal. Individual traces were
normalized to the peak magnitude within each trace.
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binding and kinetics to this signal will be addressed later.

Analysis was performed on neuronal responses in the time period after they settled into a

quasi-steady state (Figure 3.2A,B, brackets). We extracted linear filters for AWC and ASH

from single trials (gray traces in Figure 3.3A) and from trial-averaged data (black traces

in Figure 3.3A). The similarity of linear filters extracted from single neurons echoed the

striking reliability observed in neuronal calcium traces (Figure 3.2C,D). The trial-averaged

linear filter for AWC has an initial component that peaks rapidly at 0.9 s and decays with a

t1/2 of 1.5 s (n=11, range tpeak= 0.6 - 1.15 s, t1/2 = 0.8 - 2.1 s) (Figure 3.3A). The AWC filter

is indicated as negative (an inverting filter) to reflect the fact that AWC activity decreases as

isoamyl alcohol concentrations increase. The linear filter for ASH is shown with the opposite

sign to that of AWC, to reflect the fact that ASH activity increases when glycerol increases.

The trial-averaged linear filter for ASH has an initial component that peaks at 3.4 s and

decays with a t1/2 of 4.3 s (n=13, tpeak= 2.9 - 3.6 s, t1/2 = 2.8 - 6.1 s) (Figure 3.3A). Close

inspection of AWC and ASH filters after 10-12 s suggested the existence of a smaller, slower

component with an inverted sign; modeling and responses to step stimuli described below

support the existence of these slow components.

AWC and ASH each yielded a similar, characteristic linear filter in response to a second

m-sequence with a different detailed structure (Figure 3.3B, Figure 3.9B), indicating that

the filters are robust to different particular temporal patterns within this class of fluctuating

stimuli. Similar filters were observed in animals whose GCaMP3 expression levels varied by

⇠5 fold (data not shown), and in an AWC strain expressing a different calcium indicator,

GCaMP5 (Figure 3.3B). These results suggest that the temporal filter is robust to the specific

reporter protein, protein level, or strain.

Neuronal tuning can be altered by stimulus intensity: for example, avian auditory neurons

can be more frequency selective or temporally selective at high sound intensities (Nagel and

Doupe, 2008). The effects of stimulus intensity on temporal features of AWC and ASH were

explored by varying stimulus concentrations while maintaining the temporal properties of
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Figure 3.3: Linear filters capture the dynamics of AWC and ASH responses

(A) Linear filters inferred from individual input-output records for AWC and ASH neurons
(gray) and from trial-averaged input-output records (black). (B) The AWC linear filter
is robust to odor concentration, GCaMP indicator, and m-sequence design. For related
analysis of ASH filters, see Figure 3.9. (C) Segment of wild-type and odr-3(n2150) responses
to m-sequence of 9.2x10-4 M isoamyl alcohol (IAA) and 1.11x10-5 M butanone (BUT). The
pseudo-random stimulus sequence is shown at bottom in red. Note the coarser temporal
resolution of the odr-3 IAA response, suggesting that this neuron does not follow stimuli as
quickly. (D) Trial-averaged AWC linear filters for wild type and odr-3(n2150) responses to
IAA and BUT, normalized to area under the first phase of the filter. Colors match traces
in (C). (E) Peak times of individual trial filters for wild type and odr-3(n2150) responses to
IAA and BUT. Colors match traces in (C). Peak times corrected for GCaMP kinetics are
shown in Figure 3.9D. For C-E, n=14 for IAA-wt, n=12 for IAA-odr-3(n2150), n= 27 for
BUT-wt, n= 11 for BUT-odr-3(n2150). In E, WT IAA differs from BUT (P<0.001), WT
IAA differs from odr-3 IAA (P<0.001), and WT BT differs from odr-3 BUT (P=0.0013) by
Welsh’s two-tailed t-test.
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the stimulus. AWC responded reliably to the m-sequence of isoamyl alcohol over a 100-fold

range of concentrations, in each case yielding the same temporal filter (Figure 3.3B). ASH

responses to osmotic glycerol stimuli were observed over an 8-fold concentration range, in

each case yielding similar temporal filters (Figure 3.9B). These results suggest that temporal

filtering in AWC and ASH is independent of stimulus intensity across a relatively broad

range.

The analysis described above implies that AWC can process isoamyl alcohol fluctuations

in less than a second, much more rapidly than was expected from previous calcium imaging

experiments. To determine whether AWC response properties generalize across odors, we

examined the odorant butanone, which is sensed by AWC but has genetic and behavioral

requirements that indicate that it is detected through different receptor(s) than isoamyl

alcohol (Bargmann, 2006a; Wes and Bargmann, 2001). AWC responds strongly and reliably

to an m-sequence of butanone (Figure 3.3C), yielding an average linear filter for butanone

responses that was at least as fast as the average filter for isoamyl alcohol (Figure 3.3D,E).

This similarity suggests that rapid linear sensory processing may be a general feature of

AWC.

Insight into the rate-determining molecules for the AWC filter came from the analysis of

a G protein alpha subunit mutant, odr-3 (Roayaie et al., 1998). A heterotrimeric G protein

that contains ODR-3 is localized to AWC and ASH sensory cilia, where it acts in sensory

transduction downstream from chemosensory G protein-coupled receptors (Figure 3.9A). odr-

3 mutants are partially defective in their ability to chemotax to isoamyl alcohol, showing a

reduced accumulation index on an agar plate, but retain the ability to chemotax to butanone

(Roayaie et al., 1998). When challenged with rapid odor fluctuations, odr-3 mutants showed

reliable AWC responses to both isoamyl alcohol and butanone (Figure 3.3C). However, the

odr-3 isoamyl alcohol filter was two-fold slower than the wild type, peaking at 2 s (Figure

3.3D,E). This result suggests that an ODR-3-containing G protein is required in the rate-

limiting process for rapid AWC responses to isoamyl alcohol. The odr-3 butanone filter
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was less affected, resembling the wild-type isoamyl alcohol filter (Figure 3.3D,E). The more

subtle effect of odr-3 on rapid butanone responses matches its more subtle effect on butanone

chemotaxis.

3.5 An ODE model for sensory filters

To gain further insight into the possible mechanisms of sensory encoding, we developed a

model based on ordinary differential equations (ODEs) that reproduces the phenomenological

filters we observed. Both the AWC and ASH filters were best described by two components

with different temporal widths, a feature that is not achievable with two first-order ODEs.

Therefore, we developed a model for the AWC and ASH linear filters consisting of a system

of three first-order linear ordinary differential equations, the “ODE model” (Figure 3.4B,

Experimental Procedures). After parameter optimization, the sensory filters given by this

model closely matched the trial-averaged filters extracted from the data (Figure 3.4C). The

model consists of two parallel feedforward paths with fast and slow dynamics (F and S).

The ODE model describes the sensory filters in terms of three exponential functions,

one representing the response latency and the others the durations of shorter and longer

time components of opposite sign (Figure 3.4B,D). The relative timescales of these two

components are primarily set by the relaxation time constants 1/kf and 1/ks of the parallel

path variables, and their relative strengths are set by the interaction rate constants kaf and

kas (Figure 3.4B, Table S1).

The linear filters extracted directly from input-output records reflect the response prop-

erties of the neurons as well as the dynamics of the conversion of intracellular calcium levels

into fluorescence signals by the GCaMP indicator (Figure 3.4A). To estimate the intrinsic

neuronal filters, which are not directly observable, we modeled the effects of GCaMP as an

L-N cascade that captures the known calcium binding and unbinding properties of GCaMP3

(Tian et al., 2009) (Experimental Procedures), and then deconvolved the observed sensory

filter with the linear GCaMP element. In doing this, it was important to use the analytically
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Figure 3.4: A three-variable ODE model produces a biphasic filter with two timescales

(A) Schematic of the overall linear-nonlinear model and putative mapping to elements of
the signaling-to-GCaMP transformation. Lmeas is a convolution of the intrinsic neuronal
filter Lneuron and the GCaMP filter LGCaMP , and the nonlinearity Nmeas probably arises
predominantly from the GCaMP nonlinearity NGCaMP . (B) Diagram and equations of a
three-variable ODE model that produces a biphasic filter with distinct timescales for each
phase, corresponding to the Lneuron operator in (A). (C) Overall ODE model filter (in black)
fit to the filter extracted from trial-averaged input-output records (in gray) for AWC and
ASH. Technical issues limited the maximum lag of the estimated filters to 24 s, but the
ODE model filters are extrapolated to 48 s. (D) Decomposition of ODE model filter into
fast and slow components corresponding to transformations between the input and outputs
of variable F and S in (B). The sum of these component filters produces the full ODE filter
in (C). (E) In black, the first six seconds of overall model filters for AWC and ASH. In red,
the intrinsic neuronal filter Lneuron analytically deconvolved from the overall filter Lmeas
to remove the dynamical effect of GCaMP3 (Tian et al., 2009). (F) Normalized power-law
nonlinearities for AWC and ASH obtained from individual input-output records (gray) and
from from trial-averaged input-output records (black).
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smooth filters described by the ODE model, because the required deconvolution amplifies

high-frequency noise in sampled data, whereas the deconvolution of the ODE model filter

can be done exactly (Experimental Procedures). The results of this deconvolution suggested

that the intrinsic AWC filter peaks very rapidly: the first component peaks within 0.25 s

of stimulus onset (Figure 3.4E). Similar calculations suggested that the intrinsic ASH filter

peaks at 2.9 s (Figure 3.4E).

3.6 The static nonlinearity matches properties of GCaMP3

The next step in the system identification approach is determining the nonlinearity that con-

verts the filtered signal into the observed fluorescence changes (Figure 3.4A). Both the AWC

and ASH traces yielded a consistent, monotonic relationship between the signal generated

by the linear filter and the observed neuronal response (Figure 3.4F, 3.8B-E, 3.9B). This

nonlinear relationship did not saturate, and appeared concave throughout its range (Figure

3.4F, 3.9B). The mean exponent of a power-law function fit to this nonlinearity is 2.3 for

AWC and 1.8 for ASH (Experimental Procedures, Figure 3.8B-E). These values are similar

to the Hill coefficient of 2.3 describing the cooperative dependence of GCaMP3 fluorescence

intensity on calcium binding (Tian et al., 2009). This match suggests that a substantial

component of the observed nonlinear response function is due to the calcium-to-fluorescence

transformation of GCaMP3. In turn, this implies that the intrinsic calcium responses of

AWC and ASH are close to linear over the tested range.

3.7 L-N models accurately predict neuronal responses

The empirically derived temporal filters (Figure 3.3A) and the filters described by the ODE

model (Figure 3.4C) were validated by using them to predict neuronal responses to experi-

mental stimuli. We did this in three different ways for both types of filters: fitting individual

trials, fitting to trial-averaged results, and using a cross-validation procedure in which differ-

ent trials were used for extracting and testing the filters. First, for each individual recording,
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we derived an individual L-N model for the neuronal output (grey traces in Figure 3.3A),

and used this model to generate a simulated response. Second, for each individual recording,

we used the trial-averaged L-N model for AWC or ASH (black traces in Figure 3.3A) to

generate a simulated response. In all cases the simulation closely matched the true neu-

ronal response (Figure 3.5A,B), suggesting that the neuronal input-output transformation

is well characterized by the L-N model. Individual L-N models accounted for 70-98% of the

response variance for each neuron, and trial-averaged L-N models accounted for 62-97% of

the response variance, indicating that trial-by-trial fitting was not required for good model

predictions (Figure 3.5B). Third, we cross-validated the trial-averaged L-N models on an

independent set of trials that were not used for filter estimation. The trial-averaged filters

accounted for 69-95% of the response variance for each neuron in the validation set, the

same accuracy as for the original data (Figure 3.5B). These results compare favorably to

L-N model fitting in other experimental systems.

The ODE filter model is described by seven free parameters, four describing the normal-

ized linear temporal response and three describing the (GCaMP) power law nonlinearity.

Using the same approach described above, we derived a model for each individual trace and

the trial-averaged trace, and used these models to simulate responses to inputs. The aver-

age variance accounted for by the ODE filters for each neuron was 69-98% (individualized

model) or 61-96% (trial-averaged model) (Figure 3.5B). The ODE model generated from

trial-averaged data performed equally well at explaining variance when cross-validated with

independent experimental trials (Figure 3.5B). The success of these ODE models indicates

that the good performance of the empirically derived filters for the L-N models did not arise

from overfitting.
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Figure 3.5: Performance and prediction of the L-N models.

(A) Actual (black) and simulated (red, blue) responses of representative AWC and ASH
neurons to fluctuating stimuli. Simulations used a full-parameter L-N model with filters
estimated from trial averaged input-output records (blue) or the ODE filter model (red).
(B) Performance (% variance accounted for) of simulating individual trial responses using:
(1) full-parameter L-N models estimated from individual trials (2) an L-N model estimated
from trial-averaged input-output records, (3) a trial-averaged L-N model applied to a cross
validation set, (4) an ODE filter L-N model estimated from individual trials, (5) an ODE
filter L-N model estimated from trial-averaged input-output records, and (6) an ODE filter
L-N model estimated from trial-averaged input-output records applied to a cross validation
set. Bars indicate average performance. n=14 for AWC, n=10 for ASH, and n=7 for both
cross validation sets. (C) In green, simulated responses to trial-averaged 1 s ON/OFF square
pulse input records using the mean ODE filter L-N model for AWC and ASH. Actual trial-
averaged output records are in black (n=12 for each neuron). Brackets indicate time period
excerpted in (D). (D) Excerpt of predicted (green) and actual (black) responses in (C) from
25-35 seconds. Gray vertical lines divide the inset graphs into 2 s epochs aligned to stimulus
transitions.
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3.8 The ODE models predict many features of AWC and

ASH responses

Even though our LN-ODE models were constructed from m-sequence data, they should

describe responses to other types of stimuli as well. To test their generality, we returned to

the 1 s flicker stimulus and used the LN-ODE model to simulate the entire time course of

the calcium response in AWC and ASH neurons (Figure 3.5C,D), using the measured trial-

averaged input stimulus from 1 s flicker trials as input (Figure 3.1B,D). The model accurately

predicts the magnitude and phase of both AWC and ASH responses to 1 s flickers, showing a

larger magnitude oscillatory response in AWC than in ASH and a distinct phase lag (Figure

3.5D).

Remarkably, the simulated traces also provide a good description of the initial OFF and

ON responses in AWC and ASH (Figure 3.5C), even though the models were constructed

solely from data taken during the later steady-state period of the response. The model

predictions are fairly accurate for the first 40 s (ASH) to 60 s (AWC) of the response and then

describe the response oscillations due to the flicker, but for both neurons they overestimate

the baseline level of the steady-state response (Figure 3.5C). This discrepancy is likely due

to additional adaptation mechanisms that are not accounted for by the LN-ODE model;

multiple adaptation mechanisms are a common feature of sensory responses (e.g. Fairhall et

al., 2001). In addition, the model underestimates the initial slope (<5s) of the OFF and ON

responses for both AWC and ASH. These two discrepancies may be related, because sensory

responses are larger and faster before adaptation.

The fact that the LN-ODE model can describe the large initial responses to stimulus

offset or onset, the timing of the response peak, the decay of the response, and the sustained

response fluctuations (Figure 3.5C) suggest that similar mechanisms drive both rapid and

sustained responses in AWC and ASH. The success of the models is due to the biphasic

structure of their linear filters, with components of different sign and width. The initial
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OFF or ON response is mainly determined by the fast component (component F in Figure

3.4B), and the delayed decay by the slower second component of opposite sign (component

S).

3.9 A calcium channel mutant provides mechanistic in-

sight into the biphasic model

The relationship between the models and underlying molecules was probed by analyzing sig-

naling mutants that affect ASH neurons. ASH detects repellents through unknown receptors

that activate several heterotrimeric G proteins, which in turn regulate channels of the TRPV

family, whose opening secondarily activates the voltage-gated calcium channel EGL-19 (Fig-

ure 3.9A). In general, sensory transduction genes required for ASH behavioral responses are

required both for the calcium transients to long (10 s) stimuli, and for ASH tracking of flick-

ering m-sequence stimuli. For example, the sensory G protein odr-3 is required for avoidance

of high osmolarity stimuli, and ASH neurons in an odr-3 mutant do not respond reliably to

10 s pulses of 1 M glycerol or to the fluctuating m-sequence (Figure 3.10, data not shown,

and Hilliard et al., 2005). Similarly, the TRPV channel double mutant osm-9 ocr-2 lacks

behavioral responses to glycerol, and also lacks calcium responses to 10 s pulses of glycerol

or fluctuating stimuli (Figure 3.10 and data not shown). A different G protein expressed in

ASH, gpa-3, is not required either for behavioral responses or for calcium transients to 10

s pulses or m-sequences of glycerol (Figure 3.9B, 3.10). These results suggest that a com-

mon sensory transduction cascade initiates ASH calcium responses to both sustained and

flickering glycerol stimuli.

The L-type voltage-gated Ca2+ channel encoded by egl-19 amplifies sensory responses in

some C. elegans neurons, and is a potential source for calcium signals measured in the ASH

cell body (Waggoner et al., 1998; Hilliard et al., 2005). However, ASH calcium responses to 1

M glycerol were only slightly decreased by an egl-19(n582) reduction-of-function mutation or

by the egl-19 antagonist nemadipine (Figure 3.6A, 3.10 and data not shown). Although these
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results indicate that egl-19 is not essential for ASH responses to glycerol, there were subtle

differences between egl-19 and the wild-type: calcium responses in egl-19 rose to peak more

slowly, and decayed less than wild-type during either prolonged or sequential presentations

of the glycerol stimulus (Figure 3.6A, Figure 3.10). These defects suggest a change in the

underlying dynamics of the ASH calcium response.

Indeed, although the ASH neurons in egl-19 mutants were able to track fluctuating

glycerol stimuli presented in the m-sequence (Figure 3.6B), analysis using the L-N method

revealed a slowing of the linear filter, which corresponded to changes in a specific compo-

nent of the ODE model (Figure 3.6C,D). In particular, egl-19 reduction-of-function mutants

appeared to lack the inverted, slow component that attenuates the response over time (Com-

ponent S in Figure 3.4B). The absence of this component delayed the peak calcium response

and extended the positive phase of the response (Figure 3.6D), accounting for the sustained

responses to 10 s or 60 s pulses observed in egl-19 mutants. Conversely, the egl-19(ad695gf)

gain-of-function mutant had an enhanced slow component, leading to an opposite effect on

the temporal filter. These results suggest that the dynamical properties of ASH neurons

can be ascribed to discrete molecules, and implicate calcium entry through the EGL-19

voltage-gated Ca2+ channel in the attenuation of sensory responses.

3.10 A general model for sensory neuron dynamics

We next investigated the generality of the LN-ODE model by asking whether it could describe

the responses of other sensory neurons. Unfortunately, not all neurons are amenable to

analysis with rapidly fluctuating stimuli, but an approximate way to estimate a neuron’s

linear filter is by taking the derivative of its response to a step stimulus, corrected for

any response nonlinearity such as the nonlinearity of GCaMP3. Approximating the linear

filters for AWC and ASH using the derivative of the nonlinearity-corrected step responses

yielded estimated filters related to, but somewhat narrower than, those obtained from the

m-sequence data (Figure 3.11A). This difference may reflect additional adaptation of the
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Figure 3.6: Filter analysis reveals a role for egl-19 in ASH and generality of biphasic model

(A) Trial-averaged responses of ASH wild type (n=7) and egl-19(n582) (n=23) mutants to 60
s on/off pulses of 1 M Gly, with stimulus shown below in red. (B) Excerpt of trial-averaged
responses to 200 ms glycerol m-sequences of ASH wild type (n=10), egl-19(n582) reduction
of function mutants (n=7), and egl-19(ad695gf) gain of function mutants (n=7), stimulus
shown below in red. (C) Upper panel: linear filter measured from trial-averaged input-
output records (red line) and filters from individual input-output records for ASH neurons
of egl-19(n582) mutants (thin lines), compared to wild-type filter (black). Lower panel:
linear filter measured from trial-averaged input-output records (blue line) and filters from
individual input-output records for ASH neurons of egl-19(ad695gf) gain of function mutants
(thin lines), compared to wild-type filter (black). (D) Upper panel: ODE model filter from
trial-averaged input-output records for ASH egl-19(n582) compared to the wild type ODE
filter. The egl-19(n582) ODE filter (red) closely matches the ASH wild type fast component
filter from Figure 3.4D, shown here in green. Lower panel: ODE model filter from trial-
averaged input-output records for ASH egl-19(ad695gf) (blue) compared to the wild type
ODE filter (black). (E) Responses to step stimuli suggest underlying temporal filters for
URX (using GCaMP1), BAG (using GCaMP3), and ADL (using GCaMP3) neurons. Figure
shows derivatives of the square root of trial-averaged step responses, smoothed with a 10
sample (1 s) box filter (black, see Figure 3.11A for AWC and ASH). And fit to ODE models
(red, Table 3.1). The square root approximately corrects for GCaMP cooperativity.
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neural responses, as discussed above. Similarly, the derivative of the ASH response in egl-

19(n582) mutants yielded a slower filter with an attenuated and delayed inverted component,

approximating the result obtained by the more rigorous m-sequence analysis (Figure 3.11A).

We extended this estimation method to two classes of oxygen-sensing neurons, BAG and

URX. It is not easy to deliver fluctuating oxygen stimuli to these neurons, but analysis

of their step responses suggested that they have slightly faster filters than ASH, with a

larger inverted component driving a faster decay in URX than in BAG (Figure 3.6E, 3.11B).

Another neuron, the pheromone-sensing ADL neuron, appeared to have a rapid and large

inverted component that drives a rapid calcium decay (Figure 3.6E, 3.11B).

The ODE model we have used can fit all of the filters shown in Figures 3.6E and 3.11.

Because the ODE model appears to be general, we investigated the range of filters it could

generate through parameter variation and examined the resulting predictions for neural

responses to step stimuli, flickers, or more complex stimulus patterns (Figure 3.12). A

monophasic filter produces a stable, non-adapting response to a step stimulus (Figure 3.12A).

Biphasic filters with a fast component and a slow component yield the slowly decaying

response typical of ASH and AWC neurons, with plateau values determined by the relative

area of the second, inverted component compared to the first component (Figure 3.12D,E).

3.11 Discussion

The highly reliable responses of AWC and ASH sensory neurons to rapidly fluctuating stimuli

suggest that C. elegans sensory neurons can operate in a deterministic, low-noise mode

with a near-linear transformation of sensory information into calcium signals. These two

neurons have distinct temporal properties, but both can encode information on at least two

behaviorally relevant timescales: rapid, precise signal processing functions over less than a

second (AWC) or a few seconds (ASH), and a decay to a steady-state over tens of seconds.

The rapid responses and a significant component of the decay can be described by a single

filter expressed in terms of three decaying exponentials through a simple kinetic scheme.
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Biphasic filters of this general form are found in sensory systems ranging from bacterial

chemotaxis to human psychophysics; in C. elegans, it is possible to relate the filters downward

to the molecular signaling pathways that generate them and upward to the behaviors that

they support.

3.11.1 Properties of individual sensory neurons are matched to be-

haviors

Each C. elegans chemosensory neuron has a temporal selectivity that suggests a relationship

to the behaviors it subserves. AWC regulates chemotaxis through a biased random walk

characterized in turns per minute (Gray et al., 2005; Pierce-Shimomura et al., 1999), but in

addition AWC chemotaxis has a deterministic component in which animals orient themselves

in a gradient by detecting small local differences in attractant concentrations as their heads

move in sinusoidal patterns Albrecht and Bargmann (2011); Iino and Yoshida (2009). Mod-

eling suggests that the optimal neuronal strategy for the head orientation behavior requires

neuronal activity modulated on the timescale of individual headswings, a duration of under a

second (Izquierdo and Lockery, 2010; Cronin et al., 2005). The rapid first phase of the filter

observed here for AWC is well tuned to support this function. The inferred fast timescale of

AWC due to the first phase of the filter, with a peak response at ⇠250 ms and a decay to

half-max of 1.5 s, is similar to the voltage response of vertebrate olfactory neurons, which

respond to single odor-binding events with a peak at 400 ms and a total response time of 1 s

(Bhandawat et al., 2005). As the conversion of depolarization into calcium signals could also

delay signals, these adjusted values may still be slower than the neuronal voltage responses.

ASH initiates a nociceptive escape behavior with a latency of up to 10 s, depending on

the strength of the repellent stimulus (Hilliard et al., 2002; Mellem et al., 2002; Chao et al.,

2004). Its peak response at ⇠3 s and ⇠10 s integration time provide a potential neural

correlate of the behavioral integration time for nociception. These values appear slow for an

escape circuit, but it is important to note that the temporal filter does not determine how
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quickly a neuron can respond (this can be much faster). Instead, it defines the temporal

frequency at which the neural response to a stimulus is strongest, and the interval over which

the signal is integrated.

Although our work is the first report of C. elegans sensory responses to rapidly fluctuating

stimuli, other studies support the hypothesis that its sensory neurons can perform rapid

computations. Notably, a temperature shift generates an AFD current that peaks at ⇠500 ms

(Ramot et al., 2008), a similar time frame as the rapid AWC calcium response inferred here.

Some forms of C. elegans neural activity are faster than the AWC and ASH temporal filters

for chemical stimuli, even in the same neurons: ASH and other mechanosensory neurons

typically responds to touch within a few milliseconds (Geffeney et al., 2011). We suggest that

the chemosensory neurons use relatively slower temporal filters because following signals over

time is an essential element of their function, and relatively slow filtering permits chemical

stimuli to be evaluated for strength, duration, and rate of change.

3.11.2 Monitoring fast neuronal signals with genetically-encoded

indicators

System identification is widely used in electrophysiological studies, but to our knowledge this

is the first application of it to calcium imaging data. Ultimately, all neurons regulate neu-

rotransmitter release via presynaptic calcium, so this parameter is a physiologically relevant

aspect of neuronal activity. Nonetheless, there are many reasons that this approach could

have failed: GCaMP signals could have been too slow to follow neural activity, for example.

Many C. elegans neurons function using slow graded potentials (Goodman et al., 1998; Liu

et al., 2009), which may make them particularly suitable for calcium imaging as an activity

measurement. At this point, GCaMP5 and other calcium indicators are close to realistically

following single action potential spikes, which would make this experimental and analyti-

cal approach possible for faster (mammalian) neurons as well. Clearly, the method is best

suited for cells that have substantial stimulus driven, time-invariant components, like those
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that were empirically defined here for AWC and ASH. In neurons whose calcium responses

are poorly correlated to acute signaling, or in neurons that display significant spontaneous

dynamics, this will probably not be a suitable method for analysis.

3.11.3 Signaling mutants affect specific features of the model

The ability to map mutations onto specific model features supports the value of these models

as a way to describe sensory responses. Animals mutant for the G-alpha protein odr-3 are

defective in AWC chemotaxis to isoamyl alcohol, but less defective in chemotaxis to bu-

tanone, and our analysis showed that odr-3 AWC neurons are selectively impaired in their

fast responses to isoamyl alcohol. These odorant-selective changes suggest that the time

course of rapid AWC signaling is determined by a specific receptor-G protein interaction,

not by a shared downstream process or cell-wide property such as excitability. The match

between behavioral and temporal defects for two AWC odors further suggests that rapid

AWC temporal dynamics may be important for efficient chemotaxis in gradients. Indeed,

the 1.5 s integration time for isoamyl alcohol in odr-3 mutants would disrupt their ability

to evaluate odor gradients with respect to head position during chemotaxis (Izquierdo and

Lockery, 2010; Cronin et al., 2005). The G-alpha family in C. elegans has expanded in recent

evolution, and many members of the family are specifically expressed in small numbers of

chemosensory neurons (Jansen et al., 1999). These various G-alpha proteins may be func-

tionally differentiated by the ability to interact with different receptors to generate temporal

properties essential for chemosensation.

A role of the egl-19 voltage-activated calcium channel in the slower, inverted compo-

nent of the ASH glycerol response also emerged from the model. We expected egl-19 to

amplify sensory signaling or add a nonlinearity to the ASH glycerol response. Instead, the

results and model indicate that the strongest effect of egl-19 on ASH glycerol responses is

on response decay. Calcium is a signal for adaptation in many sensory systems, so this con-

clusion is biologically plausible. To provide a potentially relevant mechanistic example, the
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signal transduction pathway for glycerol sensation in ASH depends on TRPV channels, and

calcium-calmodulin binding to mammalian TRPV channels strongly decreases their open

probability (Lau et al., 2012). Alternatively or in addition, egl-19 may activate a Ca2+-

dependent K+ current. Our results do indicate a small role of EGL-19 in the amplification

of the signal, in agreement with other work, and there may be other cells and conditions in

which EGL-19 is more important for the primary signal. From a more general and practical

perspective, the work reported here provides a framework for interpreting the magnitude

and dynamics of Ca2+ signals in both wild-type and mutant neurons, in C. elegans and in

other systems in which genetically-encoded calcium indicators are increasingly used.

Olfactory neurons in various animals have predominantly been probed with step stim-

uli and not fluctuating stimuli because it is difficult to control odor vapor concentrations

and switch them rapidly, and odorant equilibration between volatile (air) and liquid (tissue)

phases is inherently slow. Despite these challenges, several groups have studied responses

to fluctuating stimuli of sensory and second-order neurons in insects (Vickers et al., 2001;

Geffen et al., 2009; Nagel and Wilson, 2011; Su et al., 2011; Kim et al., 2011; French et al.,

2011; Riffell et al., 2008). In contrast with the results presented here for C. elegans, most

studies in insects have suggested that sensory neurons primarily encode odor quality, not

odor dynamics. A single Drosophila olfactory neuron responds to different odors with differ-

ent temporal patterns of spikes (Nagel and Wilson, 2011), and the brain can decode these

patterns, as flies can behaviorally discriminate two odors that activate the same receptor

with different dynamics (DasGupta and Waddell, 2008). Similarly, optogenetic studies have

shown that mice can discriminate two patterns of temporal activation of the same primary

olfactory sensory neurons (Smear et al., 2011). How these animals encode temporal features

of the odor stimuli remains elusive, although several studies indicate that second-order neu-

rons in the insect olfactory system filter the sensory signal to encode odor dynamics (Geffen

et al., 2009; Vickers et al., 2001).

An additional contrast between C. elegans neurons and other sensory systems is the
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preservation of a temporal filter in AWC over a 100-fold range of odor concentrations; in other

systems, filtering often becomes slower as a stimulus becomes weaker (Nagel and Doupe,

2006; Benardete and Kaplan, 1999). The compact nervous system of C. elegans is forced

to use fewer channels of information transmission compared to other nervous systems. It

may be that C. elegans sacrifices maximal discrimination of odor identity for the advantages

provided by immediate temporal coding. Nonetheless, temporal specialization of sensory

neurons is not unique to nematodes. For example, vertebrate somatosensory neurons are

characterized by strikingly different temporal responses to mechanical stimuli, with classes

that are slowly adapting, rapidly adapting, or non-adapting (Johnson and Hsiao, 1992).

Different temporal properties also distinguish the various classes of vertebrate olfactory,

vomeronasal, and taste cells that use different G protein-coupled transduction pathways

(Kaupp, 2010). Exploring variations of temporal coding in these systems could provide a

fruitful avenue for understanding functional diversity. A general model for sensory temporal

filtering The function of a biphasic filter depends on the relative durations and integrated

areas of its phases. Analysis of responses to step inputs offers an intuitive way to understand

a filter’s effect (Figure 3.12). A purely monophasic filter reports the strength of a stimulus,

a biphasic filter with phases of equal area can generate perfect adaptation, and a partially

biphasic filter provides information about both intensity and change. One way to reconcile

different task requirements is to perform parallel computations over different timescales;

here, one filtering mechanism effectively maps both stimulus onset or offset, and features of

the internal structure of the stimulus.

The biphasic filter with disparate phase widths has been reported in many other settings,

with various proposed functions. In the context of chemotactic behavioral response of bac-

teria, this filter shape (Segall et al., 1986) has been proposed as an optimal fitness balance

between the goals of reaching locations of maximum attractant and the speed of gradient

climbing (Clark and Grant, 2005). As a temporal receptive field in mammalian vision, this

shape has been proposed as a balance between the decorrelation of stimulus redundancy and
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filtering of noise for the purpose of efficient neural coding (Atick and Redlich, 1990). In

the context of the C. elegans sensory network, we propose that the disparate phase width

biphasic filter has a temporal multiplexing function: it allows a single neuron to carry a

memory trace about a past large shift in stimulus statistics while simultaneously tracking

ongoing stimulus fluctuations.

3.12 Experimental Procedures

3.12.1 Calcium Imaging

Calcium imaging lines in the AWC and ASH neurons were created expressing the genetically

encoded calcium indicator GCaMP3 (Tian et al., 2009) under the sra-6 and str-2 promoters,

respectively. One-day old adult worms were trapped in a custom-designed microfluidic device

made of transparent PDMS polymer, where their noses were exposed to liquid streams un-

der laminar flow (Chronis et al., 2007). Switching between odor streams was accomplished

by controlling flow to two adjacent laminar side-streams, a protocol that minimized fluid

pressure changes during odor delivery (Figure 3.7). Movement artifacts were minimized by

adding a cholinergic agonist, 1mM tetramisole, to the worm-loading channel. Tetramisole

had no apparent effect on chemosensory responses in AWC or ASH neurons. Wide-field mi-

croscopy was used to monitor fluorescence from the cell of interest as stimuli were presented,

as well as the fluorescein dye in the stimulus channel. Measured dye fluorescence in each

frame was used as a surrogate for odor concentration for modeling.

3.12.2 Stimulus Delivery

Stimuli were 1 M glycerol (ASH), and 9.2x10-4 M isoamyl alcohol (AWC), diluted in and

alternating with S basal buffer. ASH imaging was preceded by a 90 s exposure to blue light

to reduce its intrinsic light response (Hilliard et al., 2005). AWC imaging began after a

5-minute exposure to isoamyl alcohol or butanone. Stimulus presentation was automated

using ValveBank (AutoMate Scientific) and LabJack interfaces to control a solenoid valve
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(LFAA1201610H, The Lee Company) with a pre-generated sequence. Switch time limitations

were initially evaluated using 100 ms, 200 ms, 500 ms, 1 s, and 2 s flicker presentations

for 5 minutes per trial to worms expressing GCaMP3 in ASH under the Psra-6 promoter.

Protocols using S basal buffer as background and either 1M glycerol (with fluorescein) or S

Basal buffer (with fluorescein) as the stimulus were used at each timescale to compare ASH

calcium activity with stimulus onset. Measurement of fluorescein dye in the liquid stream

near the worm’s nose showed reliable square waves of dye fluorescence at 200ms switch times.

Insignificant changes in ASH calcium signals were observed when the flickering stimulus

switched between S basal and S basal with 1:250,000 dilution of fluorescein, allowing the

use of fluorescein dye as a surrogate for odor concentration. Subsequent control experiments

indicated that AWC and ASH calcium signals were insensitive to fluorescein inclusion with

odor.

The m-sequence pulse length was limited to a minimum of 200 ms because of the mechan-

ical limit of the microfluidic switch, assessed by tracking fluorescein. ASH calcium activity

in response to 1 M glycerol (with fluorescein) had a near-fusion response to 200 ms flicker,

indicating that the cell or sensor was close to its limit for tracking the stimulus; AWC re-

sponses were faster. Pseudo-random sequences were 2x (AWC) or 3x (ASH) repeats of 9-bit

m-sequences.

3.12.3 Analysis of Cell Activation

A Coolsnap HQ (Photometrics) camera controlled by Metamorph (Molecular Devices) soft-

ware was used to capture stacks of TIFF images at 20 frames/sec (AWC and ASH) during

the odor presentation sequence. The average fluorescence intensity for each cell body was

generated for each frame by averaging the pixel intensity of the top 100 pixels within a

fixed bounding box surrounding the cell throughout the movie, then subtracting the average

intensity of a 25 pixel background region adjacent to the bounding box. MATLAB (The

Mathworks) was used for subsequent trace processing. Change in fluorescence intensity for
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the region of interest relative to F0 was plotted for each trial individually, where F0 was

defined to be the average fluorescence in a 3 s window (t=1-4 s).

3.12.4 Trace Pre-Processing and Bleach Correction

Prior to model estimation, we pre-processed the traces to account for jitter in frame acquisi-

tion times and photobleaching. Jitter was corrected for by resampling each input and output

record at regular time intervals at the intended frame rate of 0.05 s

�1 using linear interpola-

tion. When trial averaging was required, records were first time registered by shifting each

record to have the same stimulus onset.

Bleach-corrected fluorescence traces were computed by transforming the measured fluo-

rescence F (t):

Fcorr(t) =
F (t)

[Fmin(0)/Fmin(T )]t/T
� Fmin(0)

where Fmin(0) is the mean baseline fluorescence in the 2 s just before (set to be t = 0) and

Fmin(T ) is the mean baseline fluorescence in the 2 s just after a stimulus sequence (t = T ).

To derive the bleach correction equation, we model photobleaching as a decay of sensitivity

over time which affects all fluorescence levels as a multiplicative factor B(t) = Ae�t/⌧ . The

function parameters A and ⌧ are determined by fitting B(t) through the points(Fmin(0), 0)

and(Fmin(T ), T ). This model of photobleaching has the net effect of reducing both the

baseline fluorescence and its dynamic range over time, an effect not incorporated into purely

subtractive fluorescence bleach correction procedures such as that used in the last chapter.

As a final step prior to estimation, input-output records were trimmed to begin 45 s after

initiation of the m-sequence stimulus to avoid non-stationarity due to the slowly adapting

response to the large mean stimulus shift at the onset of the m-sequence.
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3.12.5 Linear-Nonlinear Model Estimation

Fully sampled linear filters K were estimated from pre-processed input-output records us-

ing least-squares regression. Filters were restricted to be 520 samples long, consisting of

acausal and causal samples. Trial-averaged filters were estimated by first trial-averaging

pre-processed input and output records after jitter correction and time registration. Regres-

sion was performed as described in the introduciton.

Singular value decomposition was used to denoise K, using 100 components. Once an

initial estimate of the linear filter K(⌧) was obtained, the associated instantaneous non-

linear function F (x) was estimated by least-squares fitting a power-law curve of the form

to a scatter plot of intermediate signal values versus output values y(t). The Nelder-Mead

simplex method for nonlinear optimization was used to find the parameters a, p, and c.

An iterative scheme was used to generate improved estimates of K and F by reducing bias

error (Hunter and Korenberg, 1986). Model parameters did not change significantly after

the second iteration.

3.12.6 Dynamical Model Estimation and Correction for GCaMP

Response Dynamics

We generated analytical versions of each filter with five free parameters by defining them to

be the result of convolution of the putative GCaMP filter (Dombeck et al., 2010) and the

impulse response of a third-order linear system (Figure 4A) given by the following equations,

where u(t) is input and y(t) is output:

dA

dt
= �kAA+ u(t)

dF

dt
= �kfF + kafA
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dS

dt
= �ksS � kasA

y(t) = F + S

The linear filter arising from these equations is the impulse response, which is the solution

for an input given by a �-function and the initial condition A(0) = B(0) = C(0) = 0, and is

h(t) =
kafkakf
ka � kf

e�k
f

t � kas
ka � ks

e�k
s

t
+

✓
kas

ka � ks
� kaf

ka � kf

◆
e�k

a

t

The optimal parameters of these filters were found by replacing linear regression with

least squares Nelder-Mead optimization of the dynamical model parameters.

We model the filter describing the GCaMP response as the difference of two exponentials

(Dombeck et al., 2010): where k1 = 1/(.2734)s�1 and k2 = 1/(.1877)s�1. The convolution of

the GCaMP and neuronal impulse can be computed in a straightforward manner to obtain an

expression for the full filter. To analytically deconvolve the intrinsic neural impulse response,

we fit this computed full filter expression to the observed data using linear regression as

described in Experimental Procedures. We then use the resulting optimized parameters in

the expression for the neural filter Kneuron(t).

3.12.7 Worm Cultivation and Strains

Strains were cultivated on agar plates seeded with E. coli strain OP50 at room temperature

(⇠22°C). Standard methods for molecular biology were used. Strains used in this study

are:

CX10979 kyEx2865 [Psra-6::GCaMP3.0+ Pofm-1::gfp]

CX13131 gpa-3(pk35) V; kyEx2865 [Psra-6::GCaMP3.0+ Pofm-1::gfp]

CX13128 egl-19(ad695gf) IV; kyEx2865 [Psra-6::GCaMP3.0+ Pofm-1::gfp]
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Table 3.1: Parameter values of the ODE filter model (Figure 3.4B) fit to trial averaged
input-output records for various neurons and mutants.

neuron 1/ka(s) 1/kf (s) 1/ks(s) kas/kaf
AWC 2.99 0.04 10.88 2.40E-03
ASH 3.59 4.10 5.92 5.56E-01

ASH egl-19(n582) 4.79 4.21 7.51 1.89E-01
ASH egl-19(ad695gf) 3.23 2.93 3.67 6.86E-01

BAG 1.13 1.13 18.21 4.98E-02
URX 1.37 1.37 18.21 1.29E-01
ADL 1.79 1.17 1.80 6.56E-01

CX13129 egl-19(n582) IV; kyEx2865 [Psra-6::GCaMP3.0+ Pofm-1::gfp]

CX11935 kyEx3252 [Pstr-2::GCaMP3.0+ Pofm-1::gfp]

CX13838 odr-3(n2150) V; kyEx3252 [Pstr-2::GCaMP3.0 + Pofm-1::gfp]

CX13132 gpa-3(pk35) odr-3(n1605) V; kyEx2865 [Psra-6::GCaMP3.0+ Pofm-1::gfp]

CX12739 osm-9 (ky10) ocr-2 (ak47) IV; kyEx2865 [Psra-6::GCaMP3.0+ Pofm-1::gfp]

3.13 Supplementary Figures
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Figure 3.7: Precise control of stimulus delivery

(A, B) Schematic of laminar fluid control by switching flow between side channels in a
microfluidic chip during imaging. (A) Stimulus ON state showing stream of stimulus and
fluorescein dye (green) flowing across worm nose. (B) Stimulus OFF state showing stream of
buffer (white) flowing across worm nose. (C) Superposition of 50 consecutive time segments
of normalized dye intensity for a 200 ms on/off square wave stimulus pattern, recorded at a
frame rate of 50 Hz. Individual segments shown in grey and mean intensity in black. Both off-
on and on-off transitions were typically completed in ~50 ms. (D) Representative normalized
dye intensity during delivery of pseudo-random stimulus patterns of 1 M glycerol (blue) and
9.2x10-4 M isoamyl alcohol (red), superimposed over the electronic valve control signal. The
reliability and transition time of the stimulus switching sequence were independent of the
stimulus.
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Figure 3.8: The static nonlinearity of AWC and ASH responses approximates the nonlinearity
of GCaMP3

(A) Schematic of the L-N model. (B-E) Scatter plots of intermediate filtered signal x(t)
versus output y(t) for L-N models composed from trial-averaged input-output records of
AWC (B) and ASH (D), or representative individual m-sequence trials of AWC (C) and
ASH (E), after linear filters and x(t) were estimated from input-output records. Black lines
indicate the N power-law function least-squares fit to the scatter data. For comparison, blue
curves indicate a power-law function fit to the scatter data with the power constrained to
be 2.3, the Hill coefficient value for GCaMP3 reported in Tian et al., 2009.
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Figure 3.9: Robustness of ASH wild type filters to concentration and m-sequence structure,
and effects of signal transduction mutants.

(A) Linear filters and nonlinear functions of L-N models extracted from m-sequence trials
of wild type at different glycerol concentrations, and in mutants, showing individual trial
filters (gray) and trial-averaged filters (black). (B) Performance (% variance of accounted
for) of individual trial L-N (denoted I) and trial average L-N models (denoted M). (WT 1M
Gly, n=10; gpa-3, n=6, egl-19(n582), n=7; egl-19(ad695gf), n=7; WT 250mM, n=3; WT
2M, n=4; WT m-sequence seed 2, n=9). (C) Time to peak response in wild type and odr-3
AWC neurons, as in Figure 3.3E, corrected for slowing due to GCaMP kinetics, as in Figure
3.4E.
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Figure 3.10: ASH signal transduction mutant responses to 10 s glycerol pulses

(A) Left column: ASH responses to six 10 s on/off pulses of 1 M glycerol in wild type and
signal transduction mutants. Right column: slope of the onset of each pulse response versus
pulse number (measured between x and x s after stimulus switch), solid black dots showing
trial-average onset slope for each pulse. (wild type, n=12; gpa-3(n1605), n=10; gpa-3 odr-3,
n=10; osm-9 ocr-2, n=14; egl-19(n582), n=14; egl-19(ad695gf), n=10) (B) Dynamic range
and signal-to-noise ratio of responses in (A). Dynamic range is calculated as peak fluorescence
minus baseline fluorescence. Signal-to-noise ratio is calculated as in Sahani and Linden, 2003.
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(A) Responses to step stimuli suggest underlying temporal filters. Left column: square-root
of trial-averaged responses to steps of various lengths of AWC, ASH wild type, and ASH egl-
19(n582) mutant neurons, with stimulus at bottom in red. The square root approximately
corrects for GCaMP cooperativity. Right column: derivatives of square-root trial-averaged
responses. Derivatives were smoothed with a 10 sample (1 s) box filter. In a fully linear
system, the derivative of a step response should correspond to the linear filter. For the
first three traces, green curves show ODE filters estimated from m-sequence experiments at
pseudo-steady state; these filters are related to, but slower than, the derivative of the step
response. (AWC, n=2; ASH WT, n=7; ASH egl-19(n582), n=23; BAG, n=40; URX n=42).
(B) Step responses of BAG, URX, and ADL filters used to generate derivatives in Figure
3.6E (presented as in panel (A), left).
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biphasic filter with unbalanced area and balanced width generated by halving the magnitude
of the second phase of model in (B). (D) Model biphasic filter with balanced phase area and
unbalanced phase width created by adjusting the AWC ODE parameters of kaf and kas to
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width corresponding to the AWC ODE model. Middle column: responses of each model
filter to 60 s pulse trains. Right column: responses of each model filter to 1 s pulse trains.



Chapter 4

Conclusion

4.1 Future work: locating and modeling sensory integra-

tion

We hypothesize that one function of interneurons that would have to occur after the sen-

sation of individual sensory streams but before generation of motor commands would be

the integration of sensory modalities and possibly internal state to perform some behavioral

logic. We may suppose that the behavioral logic computation would be localized at or near

a point where the sensory inputs converge. Since all sensory neurons have connections from

other sensory neurons, some of these multi-sensory integration sites may be in the sensory

neurons themselves. This may seem surprising, since if a neuron with sensory-driven activity

A is synapsing onto a neuron with sensory-driven activity B and affecting it, it would seem

to imply that the rest of the nervous system would only have access to the outcome of the

computation F (A,B) and not the full, raw sensory information in the B signal, effectively

losing some opportunity for fitness-improving flexible behavior unless the transformation

B ! F (A,B) is perfectly information preserving (Cover and Thomas, 2006). However,

there is growing evidence that in some C. elegans neurons, calcium activity is compartmen-

talized, effectively dividing the neuron into two or more functionally distinct, but coupled,
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units (Hendricks et al., 2012). This would allow F (A,B) to be carried out in one compart-

ment and the information of B to be preserved in another. It also cannot be ruled out that

there are other activity signal carriers that operate within a neuron in parallel to calcium,

potentially allowing both B and F (A,B) to be transmitted. In any case, information must

be discarded at some point in order to produce discrete, holistic behavior, and ultimately,

this kind of seemingly premature signal logic may simply be happening in biological systems

despite our intuitions.

In any case, we can consider a potential sensory integration neuron as a MISO system that

should be treatable by integral approaches, analogous to a two or few-pixel retina. White

noise experiments, with multiple input streams, would be a good starting point for testing

this hypothesis. Since interneurons have many inputs and tend to display activity not appar-

ently related to the stimulus under experimental control, the capturing of an interpretable

response may require partial silencing of an interneuron’s neighbor neurons not driven by

known stimulus responses, for example by using a genetically encoded pharmacologically

gated ion channel under intersectional control of expression.

4.2 Future work: inference of nonlinear differential mod-

els

We appear to have gotten lucky: we were able to proceed from a phenomenological integral

model to a mechanistic differential model so easily due to the strong linear character and

relatively simple behavior of our neurons. There is evidence that in other C. elegans neurons,

intrinsically nonlinear responses occur even for input signals that stay within behaviorally

relevant concentration regimes (Larsch, 2013). These nonlinearities include paired pulse in-

activation and concentration-dependent changes in the shape of step responses. Therefore,

it behooves us to consider a broader strategy. There is likely to be no general procedure

for the inference of nonlinear differential equation models in all situations. Nevertheless,

with the availability of modern computing resources, search-based strategies for model selec-
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tion may be feasible (Koza, 1992). One such approach searches for invariant mathematical

relationships between measured variables, which in turn can suggest simple systems of dif-

ferential equations, i.e. equations of motion (Schmidt and Lipson, 2009). However, for

non-conservative systems involving hidden variables, invariances may be hard to discover.

A related approach attempts to search for nonlinear but algebraically simple right-hand

side functions using an evolutionary algorithm in combination with active probing of the

system using modifications of input data to distinguish candidate models (Bongard and Lip-

son, 2007). We suggest another approach: first, catalogue the repertoire of behavior for

certain restricted classes of nonlinear functions and parameter regimes by producing multi-

dimensional parameter landscapes similar to the well-known parameter landscape diagram of

second-order linear time-invariant systems. Then match the catalogue to qualitative proper-

ties of input-output data, guiding model selection. Parameter search could then be pursued

in a principled way with convergence guarantees (Girolami, 2008).

One class of right-hand side functions to investigate would be those generally available

in cells, including mass-action laws, which produce functions consisting of sums of product

terms of only a few state variables. If reactants are limited to two for each reaction, an

example function would be:

dA

dt
= kAAA+ kAABAB + kADBDB + ...+ kAAuAu+ kAuu

Work as already been done to analyze specific low-order systems of equations built from

mass-action laws (Connors, 1990), but a systematic set of portraits of dynamical behavior in

this class has not been produced. It could potentially be accomplished using a combination

of basic analysis and computer search. While this class is a modest departure in definitional

complexity from linear ODEs, with the admission of only three state space variables it already

includes systems with chaotic attractors such as the celebrated Lorenz attractor or Rössler

attractor with only a single product term added to a third-order linear sytem (Robinson,

2004). Once built, the catalog could be used as a basis for automated model selection.
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4.3 What might a total circuit model look like?

Do we need to describe the dynamics of each and every last neuron in extreme detail in order

to build a model that will give a satisfactory explanation of how non-reflexive1 behavior arises

out of neural circuits? We hope not, and in fact, we suspect that without some general

principles of organization and part interaction built into the dynamics, a “kitchen-sink”2

simulation will fail to yield a robust functioning nervous system. Furthermore, due to the

high dimensionality of inputs to even C. elegans neurons, it will be hard to exhaustively

probe a large enough amount of the input space to consider a neuron sufficiently captured;

we will, as in other systems, need to make educated and iterative decisions about the input

spaces to probe and the level of detail of the models we use. We hope that after studying

more neurons, we will be able induce general principles of architecture that are necessary

and sufficient to produce flexible platforms for sophisticated behavior. A discovery of these

principles should greatly inform the related search for the “neural rule set” encoded into the

genome that drives nervous systems to robustly wire up and tune during development to

produce the behavioral platform that we consistently observe from animal to animal.

Let us take a wildly uninformed stab at what a general architecture for flexible behavior

might look like. We hypothesize a three-layer architecture. We suppose that the sensory

layer is mostly for transducing sensory input into a usable internal signal, taking care of

signal amplification, dynamic range adjustment, and histogram equalization. Its dynamics

are strongly driven by input. We suppose that there is an intermediate logic layer responsible

for multisensory integration and decision making by the evolution of active intrinsic dynamics

under the influence of perturbations coming from the sensory layer. This layer maintains

internal behavioral state variables encoded by bistable neurons, stable attractors arising

from assemblies of neurons, and slowly changing neuromodulator concentrations. Finally,
1We suspect that the distinction between reflexive and non-reflexive action that may seem sharp for our

own behavior may blur into a continuum of simple, localized to complex, distributed computation in the
worm.

2As in, everything but the kitchen sink.
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we suppose that there is a motor neuron layer that is responsible for converting internal state

modes into initiations of sequences of motor commands executed by neuromuscular chains.

The connectivity between each layer is mostly feedforward, while there is high recurrent

connectivity within each layer. It should be noted that there is fairly weak evidence from

the connectome for an obviously layered architecture.

INTERNAL
STATE EVOLUTION
LAYER

SENSORY
FILTER
LAYER

MOTOR
SEQUENCING 
LAYER

LOW
INTRACONNECTIVITY

SENSORY DRIVEN
DYNAMICS

MOTOR DRIVING
DYNAMICS

LOW
INTRACONNECTIVITY

HIGH
INTRACONNECTIVITY

SENSORIMOTOR-INDEPENDENT
MULTISTABLE DYNAMICS

MOSTLY FEED-FORWARD

MOSTLY FEED-FORWARD

Figure 4.1: A wild guess at a general architecture for worm behavior
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It is a topic of future work to sharpen this picture and whittle down a set of testable

hypotheses of what such an architecture can and can’t do well versus other potential general

architectures.

4.4 Final thoughts

We have found that C. elegans sensory neurons can operate in a highly reliable, deterministic

mode. A linear model does an excellent job of describing the temporal response of these

neurons to a fluctuating, stationary stimulus, and also predicts the response to non-stationary

stimuli to a good degree. Other efforts at mapping out the dynamics of the worm nervous

system have begun to work their way in from the other side, the motor system. Much

of the initial quanitative work has been to describe the dynamics of the worm’s movements

themselves (Stephens et al., 2011; Brown et al., 2013). From there, researchers are beginning

to understand how these organized movements are created by muscles and motor neurons

(Wen et al., 2012). Ultimately, these efforts will meet in the middle and make sense of

the activities of the networks of interneurons that are, by virtue of their lack of direct

connection to the outside world, computing on abstract representations embodied in the

neural activity of their neighbors. Some researchers aren’t waiting for this convergence and

are taking a stab directly at interneurons that show correlations to both sensory input and

motor state (Hendricks et al., 2012), although descriptions of dynamics have been limited

thus far to broad correlations, since it has been difficult to make sense of the activity data

which display large and frequent fluctuations of unknown origin. We simply don’t know the

dynamical rules at play inside the network and careful, controlled experiments will have to be

done to yield them. Once we chase the homunculus out of all the dark shadows, perhaps we

will come to an understanding of how apparently holistic, robust, and intentional behavior

emerges from a collection of squishy, dynamical information processing units.
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Appendix: L-N Estimation Flowchart
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Figure 4.2: Flowchart for iterative L-N estimation


