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ABSTRACT 

 

Addressing Stability Robustness, Period Uncertainties, and Startup of Multiple-

Period Repetitive Control for Jitter Mitigation in Spacecraft 

 

Edwin S. Ahn 

 

Repetitive Control (RC) is a relatively new form of control that seeks to converge to zero 

tracking error when executing a periodic command, or when executing a constant command in 

the presence of a periodic disturbance. The design makes use of knowledge of the period of the 

disturbance or command, and makes use of the error observed in the previous period to update 

the command in the present period. The usual RC approaches address one period, and this means 

that potentially they can simultaneously address DC or constant error, the fundamental frequency 

for that period, and all harmonics up to Nyquist frequency. Spacecraft often have multiple 

sources of periodic excitation. Slight imbalance in reaction wheels used for attitude control 

creates three disturbance periods. A special RC structure was developed to allow one to address 

multiple unrelated periods which is referred to as Multiple-Period Repetitive Control (MPRC). 

MPRC in practice faces three main challenges for hardware implementation. One is 

instability due to model errors or parasitic high frequency modes, the second is degradation of 

the final error level due to period uncertainties or fluctuations, and the third is bad transients due 

to issues in startup. Regarding these three challenges, the thesis develops a series of methods to 

enhance the performance of MPRC or to assist in analyzing its performance for mitigating 



 
 

 

 
 

optical jitter induced by mechanical vibration within the structure of a spacecraft testbed.  

Experimental analysis of MPRC shows contrasting advantages over existing adaptive control 

algorithms, such as Filtered-X LMS, Adaptive Model Predictive Control, and Adaptive Basis 

Method, for mitigating jitter within the transmitting beam of Laser Communication (LaserCom) 

satellites. 
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2.5  Higher Order Repetitive Control……………………………………………….. 21 

2.5.1 Nonstandard Nyquist Criterion for Stability of HORC allowing 

Negative Weights……………………………………………….. 21 

2.6  Figures………………………………………………………………………….. 22 

 

3. Evaluating the Stability Robustness to Model Errors within Multiple-Period 

Repetitive Control 24 

3.1  Introduction…………………………………………………………………….. 24 

3.2  Sufficient and Necessary Condition for all periods in Multiple-Period Repetitive 

Control…………………………………………………………………………... 25 

3.2.1 Sufficient and Necessary Condition for All Periods in Three-Period 

Repetitive Control………………………………………………. 25 

3.2.2 Sufficient and Necessary Condition for All Periods in Two-Period 

Repetitive Control………………………………………………. 28 

3.3  Small Gain Stability Theory for Multiple-Period Repetitive Control………….. 29 

3.4  Numerical Investigation of Stability Robustness of Multiple-Period Repetitive 

Control…………………………………………………………………………... 32 

3.4.1 Robustness Limits for a Range of Periods……………………… 33 

3.4.2 Comparison of Robustness of Single Period and Two Period RC.34 

3.4.3 Understanding Stability With Positive Error in Undamped Natural 

Frequency……………………………………………………….. 35 



 
 

 

iv 
 

3.4.4 The Common Minima and the Decaying Maxima in the Positive 

Error Boundary………………………………………………….. 36 

3.4.5 Understanding Stability With Negative Error in Undamped Natural 

Frequency……………………………………………………….. 36 

3.4.6 Examining Error in the DC Gain of the Mode………………….. 37 

3.4.7 Using a Less Perfect Compensator……………………………… 38 

3.4.8 Improved Robustness By Decreasing Repetitive Control Gain… 38 

3.4.9 The Effect of Introducing a Penalty on Compensator Gain Size.. 39 

3.5 Conclusions……………………………………………………………………... 39 

3.6 Figures…………………………………………………………………………... 40 

 

4. Increasing Robustness to Period Uncertainties or Fluctuations with Multiple-Period 

Repetitive Control 44 

4.1 Introduction…………………………………………………………………. 44 

4.2 The Required Accurateness on the Knowledge of the Disturbance Period 

when Addressing Low Frequency Components Relative to Nyquist 

Frequency…………………………………………………………………… 45 

4.2.1 Implementing HORC for increasing tolerance to 

disturbance period uncertainties………………………… 47 

4.2.2 Issues in synchronizing with CMG period through the Hall 

effect sensor readings in a spacecraft testbed…………… 48 

4.3 Identical Transfer Function Representation for MPRC and HORC………… 48 



 
 

 

v 
 

4.4 Comparison of the Ramification of Decreasing the Gain for MPRCi and 

HORC……………………………………………………………………….. 50 

4.4.1 Stability Robustness to Model Error……………………. 50 

4.4.2 Increasing the RC Gain Above 1………………………... 53 

4.4.3 Sensitivity Transfer Function Frequency Response 

Analysis…………………………………………………. 54 

4.4.4 Reason for side lobes within sensitivity transfer function 

plot of HORC when decreasing the RC gain…………… 59 

4.4.5 Comparison of the final error level for HORC and MPRCi 

due to broadband disturbance when decreasing the RC 

gain……………………………………………………… 60 

4.4.6 Comparison of the final error level for HORC and MPRCi 

due to measurement noise when decreasing the RC gain. 62 

4.4.7 Comparison of frequency error tolerance for MPRCi and 

HORC when decreasing the RC gain…………………… 64 

4.5 Widening the Notch Further without Increasing the Order of RC………….. 67 

4.6 Computational Differences in Low Pass Filter Implementation……………. 69 

4.7 Incorporating MPRCi and HORC into MPRC……………………………… 69 

4.7.1 Nonstandard Nyquist Criterion for Stability for 

incorporated HORC……………………………………... 69 

4.7.2 Nonstandard Nyquist Criterion for Stability for 

incorporated MPRCi…………………………………….. 70 

4.7.3 Instability due to decreasing the RC gain……………….. 71 



 
 

 

vi 
 

4.7.4 Sensitivity transfer function for incorporated HORC…... 72 

4.7.5 Sensitivity transfer function for incorporated MPRCi….. 73 

4.8 Notch Widening Effects for Other Control Laws…………………………... 74 

4.8.1 Notch widening effects in MBFRC……………………... 74 

4.8.2 Notch widening effects in MPC………………………… 77 

4.9 Conclusions…………………………………………………………………. 81 

4.9.1 Stability…………………………………………………. 81 

4.9.2 Sensitivity Transfer Function Profile…………………… 81 

4.9.3 Final Error Level due to Broadband Disturbance and 

Measurement Noise……………………………………... 81 

4.9.4 Frequency Error Tolerance……………………………… 82 

4.9.5 Widening the Notch Further without Increasing the 

Order…………………………………………………….. 82 

4.9.6 Low Pass Filter Implementation………………………… 82 

4.9.7 Incorporating into MPRC……………………………….. 82 

4.9.8 Other Control Algorithms………………………………. 83 

 

5. Addressing Bad Transients within Startup of Multiple-Period Repetitive Control 84 

5.1 Introduction…………………………………………………………………. 84 

5.2 High Peak within the Transients of MPRC when Addressing Identical 

Periods………………………………………………………………………. 84 

5.2.1 Reason for High Peaks within the Transients of MPRCi.. 86 

5.2.2 The Effect of DC Offset within the Error……………….. 87 



 
 

 

vii 
 

5.2.3 Having Multiple High Peaks when Addressing 

Harmonics…………………............................................. 88 

5.3 Addressing the Issue of High Amplitude Transients within MPRC………... 88 

5.3.1 Decreasing the Repetitive Control gain…………………. 89 

5.3.2 Sequential start for each individual RC law…………….. 89 

5.4 Conclusions…………………………………………………………………. 92 

 

6. Evaluation of Five Control Algorithms for Addressing CMG Induced Jitter on a 

Spacecraft Testbed 93 

6.1 Introduction…………………………………………………………………. 93 

6.2 Five Candidate Control Algorithms for Jitter Suppression…………………. 94 

6.2.1 Multiple-Period Repetitive Control and Matched Basis 

Function Repetitive Control…………………………….. 94 

6.2.2 Adaptive Filtered-X LMS Algorithm…………………… 95 

6.2.3 Model Predictive Control……………………………….. 97 

6.2.4 Clear Box Algorithm associated with Adaptive Basis 

Method…………………………………………………... 99 

6.3 Experimental Setup………………………………………………………… 103 

6.3.1 Control Implementation………………………………... 106 

6.4 Attitude Sensing with the Star Tracker…………………………………….. 108 

6.4.1 Using the Camera for Star Vector Calculation………… 109 

6.4.2 QUEST Algorithm……………………………………... 110 

6.4.3 Indoor Star Tracker Algorithm………………………… 111 



 
 

 

viii 
 

6.5 Experimental Results………………………………………………………. 114 

6.5.1 System Identification…………………………………... 114 

6.5.2 Spacecraft Attitude Regulation and Disturbance 

Characteristics………………………………………….. 116 

6.5.3 Disturbance Rejection Experiments without Floating the 

Spacecraft on the Air Bearing………………………….. 118 

6.5.4 Disturbance Rejection with Spacecraft Floated………... 123 

6.6 Conclusions………………………………………………………………… 126 

 

7. Improving Laser Communication Between Formation Flying Satellites Using 

Repetitive Control for Jitter Mitigation  129 

7.1 Introduction………………………………………………………………… 129 

7.2 True Scenario and Modifications to Previous Experimental Setup………... 131 

7.2.1 True Scenario…………………………………………... 131 

7.2.2 Previous Hardware Setup………………………………. 133 

7.2.3 Target Laser Beacon System…………………………... 133 

7.2.4 Target Track Loop……………………………………... 135 

7.3 Target Error Suppression Experiments with New Optical Scheme………... 137 

7.3.1 Sequence of Sub-tasks for Reducing Error in Interplanetary 

Link…………………………………………………….. 137 

7.3.2 Performance Correlation Between Onboard Rejection and 

Target Error…………………………………………….. 138 

7.3.3 The Effectiveness of the Modified Scheme……………. 140 



 
 

 

ix 
 

7.4 Modal Surveying and Identifying Optically Significant Vibration Modes... 142 

7.5 Base Case Comparison Between MPRC and Adaptive Filters…………….. 145 

7.5.1 Nesting a Crudely Designed PI Controller within the Inner 

Loop……………………………………………………. 146 

7.5.2 Nesting a High bandwidth PI Controller within the Inner 

Loop……………………………………………………. 148 

7.5.3 Introducing sudden jerk and fault tolerant behavior…… 150 

7.6 Conclusions………………………………………………………………… 152 

 

8. Conclusions 155 

 

References 157 

 

 

 

 

 

 

 

 

 

 



 
 

 

x 
 

LIST OF FIGURES 

 

Figure 2-1 Block diagram of single-period repetitive control with periodic output disturbance.. 22 

Figure 2-2 Block diagram of three-period repetitive control with periodic output disturbance... 22 

Figure 2-3 Polar plot of the coefficient 
2

A ……………………………………………………. 23 

Figure 2-4 Polar plot of coefficient 
3

A …………………………………………………………. 23 

Figure 3-1 Root locus plot of two-period RC with + 40 % model error in 
n

  when 
1

p =
2

p =20….. 

…………………………………………………………………………………………………... 40 

Figure 3-2 Stability boundary of two-period RC with model error in 
n

  when
1

p =20…………. 40 

Figure 3-3 Stability boundary of two-period RC with model error in 
n

  when
1

p =67…………. 40 

Figure 3-4 Difference in phase error with respect to positive and negative model error……….. 40 

Figure 3-5 Sufficient and necessary stability boundary of two-period RC for all periods……... 41 

Figure 3-6 Polar plot of 2P ,+ 28.65 % error…………………………………………………….. 41 

Figure 3-7 Relative phase of 2P with respect to -1………………………………………………. 41 

Figure 3-8 Polar plot of [ ( ) 1]i TG e   ……………………………………………………………... 41 

Figure 3-9 ( ) 1i TG e    plot………………………………………………………………………. 41 

Figure 3-10 [ ( ) 1]i TG e    plot…………………………………………………………………… 41 



 
 

 

xi 
 

Figure 3-11 The magnitude of 2A  and marker for frequency component that crosses -1……… 41 

Figure 3-12 Enhanced view of the stability boundary and sufficient condition………………... 41 

Figure 3-13 Polar plot of 2P ,- 11.67 % error……………………………………………………. 42 

Figure 3-14 Polar plot of [ ( ) 1]i TG e   ……………………………………………………………. 42 

Figure 3-15 ( ) 1i TG e    plot……………………………………………………………………... 42 

Figure 3-16 [ ( ) 1]i TG e    plot…………………………………………………………………… 42 

Figure 3-17 Various polar plots of [ ( ) 1]i TG e   each associated with positive DC error………… 42 

Figure 3-18 Polar plot of 2P  for two-period RC with 100 % DC error and + 30 % model error. 

…………………………………………………………………………………………………... 42 

Figure 3-19 Stability boundary plots associated with different positive DC errors…………….. 42 

Figure 3-20 Stability boundary plots associated with different negative DC errors……………. 42 

Figure 3-21 Stability boundary plots associated with different number of RC compensator 

gains……………………………………………………………………………………………... 43 

Figure 3-22 Polar plot of 
2
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CHAPTER 1 

 INTRODUCTION 

1.1 MOTIVATION 

The error reduction capabilities of conventional feedback control systems are limited by the 

bandwidth of the closed-loop frequency response of the system. To illustrate this one can 

consider the frequency response of a control system and calculate the change in magnitude and 

the change in phase from command to response. There should be no such change if the 

bandwidth was to be infinitely high or the feedback system was perfect. Repetitive Control (RC) 

is a relatively new form of control that seeks to converge to zero tracking error when executing a 

periodic command, or when executing a constant command in the presence of a periodic 

disturbance. The RC law looks at the error measured in the previous period and adjusts the 

command in the present period. In the past three decades, a considerable body of literature has 

appeared, building theoretical frameworks for the field. While RC theory has flourished in the 

academic world, it is only recent that they are starting to be used in engineering practice. Some 

of the reason for this is the need for developing stability robustness to model error, and there are 

now methods for handling this issue. The main purpose of the proposed research is to 

acknowledge and address issues related to implementation of Multiple-Period Repetitive Control 

(MPRC) in hardware under complex disturbance environments such as optical jitter induced by 

mechanical vibration in spacecraft. 

 

1.2 CONCEPTS OF REPETITIVE CONTROL 

Repetitive Control (RC) is a relatively new field within control theory. The usual RC 

problem handles three situations. The RC modifies a feedback control system with the aim of 
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converging to zero error: (1) When the objective is to track with zero error a periodic command. 

(2) Or when the desired output is a constant but there is a periodic disturbance, and then the aim 

is to cancel the influence of the periodic disturbance and get the desired constant output. (3) Or it 

aims to get zero tracking error to a periodic command in the presence of a periodic disturbance, 

both with same period. This latter situation often occurs because the observed disturbance is 

correlated with commanded periodic trajectory and hence exhibits the same period. In practice, 

one usually must compromise and ask for zero error up to some chosen frequency cutoff. Any 

periodic command can be written as a sum of a fundamental frequency and all harmonics up to 

Nyquist frequency. Anyone who has studied classical control theory knows how to compute the 

steady state frequency response to each of these frequencies, and knows to expect the amplitude 

and the phase to be different than that of the command. RC aims to fix these errors in response to 

commands. And similarly periodic disturbances produces a periodic component to the output, 

and RC aims to modify the command or the error signal going into the controller such that the 

effect on the output is minus that of the effect of the disturbance. 

 

1.3 LITERATURE REVIEW 

People often cite T. Inoue, Nakano, and Iwai [1] at the beginning of the 1980’s as originating 

the field of RC, and these publications were motivated by the desire to eliminate ripple in 

rectified voltage running magnets in a particle accelerator. Early papers in the field include Hara, 

Yamamoto, and Omata, [3], [4], and Tomizuka [5], [6] with research towards applications in 

tracking within hard disk drives. Motivated by robotics, Middleton, Goodwin, and Longman [2] 

submitted in 1984 with independent development in RC. References [8], [9] give a general 

overview of RC. 
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CHAPTER 2 

MATHEMATICAL DEVELOPMENT OF VARIOUS TYPES 

OF REPETITIVE CONTROL ALGORITHMS 

2.1 INTRODUCTION 

Repetitive control (RC) is a relatively new form of control that seeks to converge to zero 

tracking error when executing a periodic command, or when executing a constant command in 

the presence of a periodic disturbance [1-8]. The designs make use of knowledge of the period of 

the disturbance or command, and makes use of the error observed in the previous period to 

update the command in the present period. The usual repetitive control approaches address one 

period, and this means that potentially they can simultaneously address DC or constant error, the 

fundamental frequency for that period, and all harmonics up to Nyquist frequency. Motivated by 

the problem of isolating fine pointing equipment on spacecraft from one dominant disturbance 

source such as a momentum wheel or a cryogenic pump, Reference [9] developed a theory for 

RC for multiple-input, multiple-output systems. Competing methods for active vibration 

isolation on spacecraft include the methods of Reference [10], the multiple error LMS algorithm 

of References [11] and [12], and the matched basis function RC of Reference [13]. Unlike the 

usual RC design, all of these methods require that the fundamental and each harmonic be 

addressed individually.  

Reference [8] presents the author’s preferred approach to designing RC systems. This 

requires the de-sign of a compensator according to Reference [14] or [15], the design of a zero-

phase low-pass filter for stability robustness using the methods of Reference [16] or [17], and the 

design of an interpolator using Reference [18]. 
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Spacecraft often have multiple sources of periodic excitation. Slight imbalance in reaction 

wheels used for attitude control creates three disturbance periods. Slight imbalance in control 

moment gyros introduces four disturbance periods. And these periods might be in addition to a 

cryogenic pump. References [19] and [20] develop a special repetitive control structure that 

allows one to address multiple unrelated periods. References [21] and [22] further develop the 

approach making use of the preferred design approach described above. 

Period uncertainties or fluctuations can degrade the error rejection performance of typical 

RC. Reference [23] addresses this issue by looking multiple periods back at the error history, and 

was studied in detail by two different approaches in [24, 25]. 

2.2 BASIC FORM REPETITIVE CONTROL 

This section gives a quick presentation of the design process for single period repetitive 

control favored by the authors and detailed in Reference [8] and references therein. The 

presentation here is tailored to elucidate the parallel structures of the multiple period repetitive 

control results presented in later sections. The block diagram for the RC system is given in 

Figure 2-1 where ( )G z  represents a closed loop transfer function of a feedback control system, 

and ( ) ( )R z F z  represents the repetitive controller that examines the error ( )E z  and adjusts the 

command to the feedback controller. The ( )DY z  is the desired output given as a command to the 

RC system. Feedback control systems can be subject to deterministic disturbances that enter 

somewhere around the feedback loop. But wherever they occur there is an equivalent disturbance 

to the output of the feedback control system, and this is represented by ( )V z . For single period 

RC, both ( )DY z  and ( )V z  are considered periodic with the same period. Initially this period is 

considered to be p time steps, where p is an integer, and later interpolation is used to handle 

situations where it is not an integer.   
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The simplest form of the repetitive control law is written in the time domain in terms of time 

steps k, then in the z-transform domain, and finally as a z-transfer function as 

( ) ( ) ( 1)

( ) [ ( ) ( )]

( ) [ / ( 1)] ( )

p

p

u k u k p e k p

U z z u z zE z

U z z z E z









    

 

 

                                                   (2.1) 

In words this RC law says, if one period back the output was for example 2 units too low, 

add 2 units times a gain   to the command at the current step. The +1 time step in the error is 

introduced assuming that there is a one time step delay from change in command to the first time 

step a resulting change in the output is observed. The logic of this RC law is appealing, but it is 

too simple.  

2.2.1 General RC Law 

Many feedback control systems can exhibit a 180 deg phase lag from command to response 

at some frequency. If the 2 unit error above was a sample of a signal at this frequency, the phase 

lag would have the effect of changing the sign on the resulting change in the output, resulting in 

increasing the error. Hence we introduce a compensator ( )R z  whose main purpose is to adjust 

the phase of the error signal in anticipation of the phase lag it will experience going through the 

system. Also, at high frequencies it is difficult to have a good model, and hence we introduce a 

zero-phase low-pass filter ( )H z  whose purpose is to stop learning above some frequency cutoff 

for which the model error is sufficiently large that one cannot successfully learn. Finally, because 

the number of time steps in a period may not be an integer number, we introduce ( )I z  that can 

be a linear or cubic interpolation between data taken at time steps in order to compute the signal 
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between time steps at the desired time in the previous period. The resulting RC law can be 

written as 

( ) ( ) ( ) [ ( ) ( ) ( )]pU z H z I z z U z F z E z                                                (2.2) 

( ) [ ( ) ( ) / ( ( ) ( ))] ( ) ( ) [ ( ) ( )] ( )pU z H z I z z H z I z F z E z R z F z E z                           (2.3) 

( ) [ ( ) ( ) / ( ( ) ( ))]pR z H z I z z H z I z                                                (2.4) 

2.2.2 Difference Equation for the Error 

The ( )G z  in the block diagram is the true world feedback control system transfer function. 

For convenience, we define ( ) ( ) ( )G z F z G z . When our model of the feedback control system 

is used instead of the true world model we will denote the corresponding product by ˆ ( )G z . From 

Figure 2-1, the error satisfies the following equation that can be considered a difference equation 

when converted back to the time domain 

[1 ( ) ( )] ( ) ( ) ( )DR z G z E z Y z V z                                                    (2.5) 

[ ( ) ( )(1 ( ))] ( ) [ ( ) ( )][ ( ) ( )]p p
Dz H z I z G z E z z H z I z Y z V z                                (2.6) 

2.2.3 The Design Process 

The ( )H z  filter is likely to be designed after observing behavior of the hardware 

implementation. The cutoff is based on what is wrong with our model and we do not know this 

in the design stage. We also do not want a design that is very specialized to exactly one period, 

so we ignore the interpolator ( )I z  in the initial design stage. We note that it behaves as a low 

pass filter, so ignoring it does not cause trouble. Also we will make an optimized design for the 
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compensator ( )F z  which makes an optimized choice of the DC gain, and hence we will usually 

set the gain   to unity. Then the right hand side of Eq. (2.6) has 1pz   operating on the 

command and disturbance which are of period p time steps. This makes the right hand side zero, 

forming an homogeneous equation. And the characteristic equation of the homogeneous equation 

is [ (1 ( ))] 0pz G z   . This equation suggests that we would like to pick the compensator ( )F z  

to be equal to 1( )G z , but this is usually not possible because the inverse of most z-transfer 

functions is unstable. Instead we design ( )F z  to look like the inverse of the steady state 

frequency response of the system. The connection between this objective and stability is seen 

below. Thus, we pick it as an FIR filter that minimizes a cost function J  

1 2 0 ( 1) ( )
1 2 1( ) m m n m n m

m n nF z a z a z a z a z a z      
                                  (2.7) 

2 2 2
1 2

0

[1 ( ) ( )][1 ( ) ( )]* ( )j j j j

N
i T i T i T i T

n
j

J G e F e G e F e V a a a   



                            (2.8) 

Normally V is set to zero. It can be used to prevent the gains from becoming too large and 

alternating in sign. The summation is taken over a suitably chosen set of frequencies between 

zero and Nyquist, and superscript asterisk indicates complex conjugation. The resulting design 

can be very effective. For the third order system used below for numerical examples, use of 12 

gains made a ˆ ( )G z  that differs from unity only in the 3rd decimal place as shown in References 

[14] and [8]. Design of ( )H z  is similar as an FIR filter with k ka a  and minimizing HJ  

( )
n

k
k

k n

H z a z


                                                            (2.9) 
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1

0

[1 ( )][1 ( )]* [ ( )][ ( )]*
p

j j j j

s

j N
i T i T i T i T

H
j j j

J H e H e H e H e   


 

                          (2.10) 

The first summation is over the passband and the second over the stopband, perhaps with a 

transition band gap between them. A first order interpolator takes to form ( ) (1 )I z az a    

when p is chosen as the nearest integer larger than the true period.  

2.2.4 Characteristic Polynomial 

The characteristic polynomial can be very high degree since it is greater than the number of 

time steps in a period. If it is not too large, one can determine stability by finding the roots. After 

clearing fractions, they are the roots of the numerator of  

1 ( ) ( ) 0R z G z                                                               (2.11) 

2.2.5 Nonstandard Nyquist Criterion for Stability 

Normally one sets the open loop transfer function to -1 when applying the Nyquist stability 

criterion, i.e. ( ) ( ) 1R z G z   . However, the Nyquist contour for a digital system must go around 

the unit circle, and at least when ( ) ( )H z I z  are not included there are p roots on this contour, and 

the contour must be modified to go around every such root. This is not practical. References [7] 

and [8] modify the approach to avoid the problem. The characteristic equation can be rewritten in 

the form 

( ) ( )[ ( ) 1] 1pz H z I z G z                                                       (2.12) 

1( ) ( ) ( )[ ( ) 1] 1A z H z I z G z                                                     (2.13) 
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1( ) 1P z                                                                     (2.14) 

The 1( ) pA z z  is introduced for comparison to multiple period RC results below. There are 

more poles than zeros in 1( )P z  if one does not make the FIR filters too large for the given value 

of p (and if this is a problem, one can use 2p in place of p). Hence, one only needs to let z go 

around the unit circle. If the resulting plot of 1( )P z  does not encircle the point -1, then the RC 

system is asymptotically stable. This is a necessary and sufficient condition for asymptotic 

stability for a given value of period p.  

2.2.6 Sufficient Conditions for Asymptotic Stability 

If the magnitude of the left hand side of Eq. (2.12) is always smaller than one in magnitude 

as z goes around the unit circle, then the image of the Nyquist contour cannot encircle the point -

1 and therefore this is a sufficient condition for asymptotic stability 

1( ) ( ) ( )[ ( ) 1] ( ) ( )[ ( ) 1] 1    i TA z H z I z G z H z I z G z z e                             (2.15) 

This is only a sufficient condition, but for the single period case it is usually very close to the 

necessary and sufficient condition boundary, because p is likely to be a large number. And if 

inequality (2.15) is violated at some frequency, then the pz  term will spin the phase of that 

point and very likely make the point -1 encircled in the image of the Nyquist contour used in Eq. 

(2.14). Unfortunately, the analogous condition for multiple periods will not have this property. 

During the design process one will aim to satisfy the condition  

( ) 1 1    i TG z z e                                                          (2.16) 



10 
 

 
 

If one ensures this condition is satisfied, then re-introducing the interpolator ( )I z  will not cause 

trouble because it is a low pass filter with magnitude less than or equal to one. And one can 

ensure that the zero-phase low-pass filter ( )H z  does not amplify using Reference [17]. Of 

course in design one can only aim to satisfy Eq. (2.16) using one’s model. Hence, when one 

applies the resulting control law to the real world, model error can make the condition violated. 

Based on data one can then tune the cutoff so that the ( )H z  attenuates enough that the inequality 

(2.15) is satisfied. 

2.2.7 Necessary and Sufficient Conditions for Asymptotic Stability for All Possible 

Periods 

As noted above, if inequality (2.15) is violated for some frequency, then there will always be 

a value of p for which the pz  in Eq. (2.12) will make the point -1 encircled. Therefore, Eq. 

(2.15) can also be considered as a necessary and sufficient condition for asymptotic stability for 

all possible periods p. Furthermore, in the design process when one sets ( ) ( ) 1H z I z  , then 

inequality (2.16) is a necessary and sufficient condition for asymptotic stability for all possible 

periods.  

2.2.8 Heuristic Monotonic Decay Condition 

 Stability is a property of the homogeneous equation. Setting the forcing function to zero, one 

can rewrite Eq. (2.6) as  

( ) [ ( ) ( )(1 ( ))] ( )pz E z H z I z G z E z                                               (2.17) 
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This thinking is heuristic, but the square bracket term appears to be a transfer function from the 

error in one period to the error in the next period. And in that case, satisfying the inequality in 

Eq. (2.15) implies that every frequency component of the error will decay every period.  

2.2.9 The Design Process 

 Normally one sets 1  , and replaces ( ) ( )H z I z  by unity. Then using one’s model of ( )G z  

one seeks to design ( )F z  to satisfy  

ˆ ( ) 1 1 i TG z z e                                                           (2.18) 

Introducing ( )H z  and ( )I z  will only help in the sense that they are low pass filters (using the 

( )H z  design method of Reference [17] ensures that its magnitude never exceeds unity). Then 

one can examine how much model error ˆ ( )G z  one can tolerate and still have stability, by 

examining the inequality 

ˆ ˆ ˆ ˆ( ) ( ) 1 ( ) ( ( ) ( )) 1 1 i TG z G z G z G z G z z e                                     (2.19) 

2.3 THREE-PERIOD REPETITIVE CONTROL 

This section develops the analogous theory for repetitive control that deals with three periods 

simultaneously. By doing so we make it obvious how to generalize to any number of periods. 

The next section treats two independent periods and most of the numerical examples deal with 

this case. Figure 2-2 gives the structure of the repetitive controller following References [19, 20, 

21]. We now need a separate ( )jR z  as in Eq. (2.4) for each period jp . We can allow a different 

gain j  for each period. The zero-phase low-pass filter should use the same cutoff for each 
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period, but the interpolator will be different for each period, and for simplicity we use the 

notation ( ) ( ) ( )j jH z H z I z . Then 

( )
( )

( )j

j j
j p

j

H z
R z

z H z





                                                          (2.20) 

2.3.1 General RC Law for Three Periods 

From the block diagram the transfer function of the RC controller analogous to Eq. (2.3) is 

given by 

ˆ( ) [ ( ) ( )] ( )U z R z F z E z                                                         (2.21) 

2
1 2 3 1 2 2 3 3 1 1 2 3

ˆ ˆˆ( ) [( ) ( ) ( ) ( )]R z R R R R R R R R R G z R R R G z                             (2.22) 

As in the single period case, the ( )F z  is designed making use of our model of the world in ˆ ( )G z

. But this time ˆ ( )R z  is an explicit function of ˆ ( )G z . It will be convenient to also define 

2
1 2 3 1 2 2 3 3 1 1 2 3( ) [( ) ( ) ( ) ( )]R z R R R R R R R R R G z R R R G z                             (2.23) 

2.3.2 The Difference Equation for the Error Time History When There is no Model Error 

The design process must use our model, and hence the design proceeds based on assuming 

that ˆ( ) ( )G z G z . Analogous to Eq. (2.5) we then have  

ˆˆ[1 ( ) ( )] ( ) ( ) ( )DR z G z E z Y z V z                                                   (2.24) 

2.3.3 The Design Process 
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The numerator of the square bracket term gives the characteristic polynomial, and this 

bracket term can be factored as follows 

2 3
1 2 3 1 2 2 3 3 1 1 2 3

1 2 3

ˆ ˆ ˆ ˆˆ[1 ( ) ( )] 1 ( ) ( ) ( ) ( ) ( )

ˆ ˆ ˆ[1 ( )][1 ( )][1 ( )]

R z G z R R R G z R R R R R R G z R R R G z

R G z R G z R G z

        

   

         (2.25) 

Because of the special structure of the RC in Figure 2-2, introduced in References [19] and 

[20], the characteristic polynomial for three periods is just the product of the characteristic 

polynomials for independent RC designs made for single periods. Hence, one can design 

( ), ( ), ( )jF z H z I z  (and set 1j   to use the gain that is optimized when finding ( )F z  from Eq. 

(2.8)) independently for each period, and then combine the results as in Eq. (2.22) to create the 

multi-period repetitive controller. 

2.3.4 The Characteristic Polynomial 

Allowing for error in our model compared to the real world behavior, the characteristic 

polynomial is the numerator of the term in square brackets in the following equations, and this is 

rewritten in forms that show dependence on model error  

1 2 3

2 2
1 2 3 1 2 2 3 3 1 1 2 3

ˆ[1 ( ) ( )] ( ) ( ) ( )

ˆ[(1 ( ))(1 ( ))(1 ( )) ( ( ) ( )) ( )] ( ) ( ) ( )

ˆ ˆ[(1 )(1 )(1 ) ( ) ( ) ( )]

D

D

D

R z G z E z Y z V z

R G z R G z R G z R z R z G z E z Y z V z

R G R G R G R R R R R R G G G R R R G G G E Y V

  

      

          
(2.26) 

The design using Eq. (2.25) will not place the roots quite where they were intended because 

of the difference between ˆ ( )G z  and ( )G z , so the first 3 terms in the square brackets in the last two 



14 
 

 
 

equations do not have the roots quite where the design intended. But the remaining terms in the 

square brackets represent a new way in which model error will disturb the root locations we 

design. And it will be seen that this reduces the robustness to model error when one goes from 

one period to multiple periods.   

2.3.5 The Difference Equation for the Error Time History When There is Model Error 

Substitute ˆ ( )R z  into the first of equations (2.26). Then multiply by three factors that appear 

in its denominator to obtain 

3 31 2 1 2
1 2 3 1 2 3

ˆ( )( )( )[1 ] ( )( )( )[ ]p pp p p p
Dz H z H z H RG E z H z H z H Y V                   (2.27) 

1 2 3 31 2
1 2 3[ ( )] ( )( )( )[ ]p p p pp p

Dz A B C D E z H z H z H Y V                             (2.28) 

3 32 1 1 2

3 1 2

2 3 3 11 2 1 2 2

1 1 2 3 2 2 3 1 3 3 1 2

1 1 2 2 3 2 2 3 3 1 3 3 1 1 2

2
1 1 2 2 3 3

3 1 2 2 3 3 1 1 2

[ ( )( ) ( )( ) ( )( )]

ˆ[ ( ) ( ) ( )]

ˆ[ ]

( ) (

p pp p p p

p p p

p p p pp p p p p

A H z H z H H z H z H H z H z H G

B H H z H H H z H H H z H GG

C H H H G G

D z H z H z H z H H z H H z H H

  

     

  

 

        

     



       1 2 3) H H H

     (2.29) 

When there is no cutoff filter and there is no interpolation, and the command and disturbance 

are periodic with the prescribed periods, the right hand side of the difference equation is zero, 

making a homogeneous difference equation for the error. Otherwise, there is a forcing function, 

and a particular solution response. But stability and decay of the error is governed by the 

homogeneous equation.  

2.3.6 The Heuristic Monotonic Decay Condition for the Error for Three Periods 
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Decay of the error (and asymptotic stability) is a property of the homogeneous difference 

equation. Setting the right hand side to zero, one can write the homogeneous difference equation 

in the form 

1 2 3 [ ]p p pz E A B C D E                                                        (2.30) 

The square bracket term on the right appears to be a transfer function from the error in the 

current “period” to the error in the next “period”, where the period involved is now 1 2 3p p p  . 

This suggests that if the magnitude frequency response of the square bracket term is less than 

unity for all frequencies up to Nyquist, then every frequency component of the error will decay 

every period. This thinking is heuristic. See Reference [8] for a discussion of the assumptions 

and a discussion of how accurately it predicts the decay for the one period case.  

2.3.7 Nonstandard Nyquist Criterion for Stability 

As in the single period RC case, one cannot easily directly apply Nyquist criterion using the 

open loop transfer function ˆ ( ) ( ) 1R z G z   . In the case when the ( ) 1jH z  , there would be 

1 2 3p p p   roots on the unit circle, and one would have to modify the Nyquist contour to go 

around every one of them in order to make stability conclusions. But the above development has 

rearranged the characteristic polynomial into a form for which this problem is gone. We can 

write this polynomial in the form 

1 2 3( )

3

[ ] 1

( ) 1

p p pz A B C D

P z

       

 

                                                  (2.31) 
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Given the periods, a necessary and sufficient condition for asymptotic stability of the three 

period repetitive control design is that the 3( )P z  image of the unit circle i Tz e   not encircle the 

point -1. Note that every term in [ ]A B C D    is at least linear in the cutoff filter ( )H z . 

Therefore, just as in the single period case, we can produce stability by introducing such a cutoff 

of the learning process. Of course we pay for this stability by no longer addressing the periodic 

error components about the cutoff frequency. 

2.3.8 A Sufficient Condition for Asymptotic Stability 

 If the square bracket term has magnitude less than unity for all frequencies, then the plot 

cannot encircle the point -1  

( ) ( ) ( ) ( ) 1 i TA z B z C z D z z e                                              (2.32) 

2.3.9 A Specialized Sufficient Condition for Asymptotic Stability 

 Consider the usual problem during the design process where we consider the ( )jH z  to be 

unity. Also consider that the design of the compensator aims to produce a good approximation of 

the inverse of the frequency response using Eq. (2.8). Recall that this approximation can often be 

very good, so let us consider that the result is to create a ˆ ( ) 1G z  . Then Eq. (2.31) becomes 

3 3( ) ( )( ( ) 1) 1P z A z G z                                                        (2.33) 

3 2 3 3 1 1 2 31 2 1 2 ( ) ( ) ( )( )
3( ) ( ) ( )p p p p p p p pp p p pA z z z z z z z z                                    (2.34) 
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This is a specialized Nyquist criterion for the three period case analogous to Eq. (2.13). In the 

one period case it was easy to find a necessary and sufficient condition for stability for all 

possible periods, Eq. (2.16). The three period case is more complicated.  

2.3.10 A Specialized Sufficient Condition for Stability for All Possible Periods 

But Eq. (2.33) suggests a sufficient condition that  

1 2 3
3

, , ,
( ) 1 1/ max ( )iwT i T

w p p p
G z A e z e                                              (2.35) 

The maximization will produce a number that cannot be larger than 9 which corresponds to 

succeeding in making every term equal +1. But it is clear that one will have to restrict the 

magnitude of ( ) 1G z   to be much less than unity in order to guarantee stability for all possible 

period, whereas in the single period case keeping it less than unity was sufficient. 

2.4 TWO-PERIOD REPETITIVE CONTROL 

This section presents the RC for the two period case which will be used for numerical 

investigations in a later section. Sometimes it is clear how to make the reduction from three to 

two periods, but it is not always obvious. The two period versions of equations (2.21) through 

(2.30) are as follows:  

*ˆ( ) [ ( ) ( )] ( )U z R z F z E z                                               (2.36) 

*
1 2 1 2

ˆˆ ( ) [ ( )]R z R R R R G z                                              (2.37) 

*
1 2 1 2( ) [ ( )]R z R R R R G z                                              (2.38) 

* ˆˆ[1 ( ) ( )] ( ) ( ) ( )DR z G z E z Y z V z                                         (2.39) 
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* 2
1 2 1 2 1 2

ˆ ˆ ˆ ˆ ˆˆ[1 ( ) ( )] 1 ( ) ( ) ( ) [1 ( )][1 ( )]R z G z R R G z R R G z R G z R G z                  (2.40) 

*

1 2

1 2 1 2

ˆ[1 ( ) ( )] ( ) ( ) ( )

ˆ[(1 ( ))(1 ( )) ( ( ) ( )) ( )] ( ) ( ) ( )

ˆ[(1 )(1 ) ( )]

D

D

D

R z G z E z Y z V z

R G z R G z R z R z G z E z Y z V z

R G R G R R G G G E Y V

  

     

     

                (2.41) 

1 2 1 2*
1 2 1 2

ˆ( )( )[1 ] ( )( )[ ]p p p p
Dz H z H R G E z H z H Y V                        (2.42) 

1 2 1 2* * *
1 2[ ( )] ( )( )[ ]p p p p

Dz A C D E z H z H Y V                             (2.43) 

2 1

2 1

*
1 1 2 2 2 1

*
1 1 2 2

*
1 2 1 2

[ ( ) ( )]

ˆ[ ]

p p

p p

A H z H H z H G

C H H GG

D z H z H H H

 

 

   



   

                                     (2.44) 

1 2 * * *[ ]p pz E A C D E                                                     (2.45) 

2.4.1 Nonstandard if and only if Nyquist Criterion for Stability 

The two period RC law Eq. (2.36) produces an asymptotically stable repetitive control 

system if and only if the plot of  

1 2( ) * * *

2

[ ] 1

( ) 1

p pz A C D

P z

     

 

                                                (2.46) 
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as i Tz e   goes around the unit circle, does not encircle the point -1. If one sets 1jH   as 

one normally does in the design process, Eq. (2.46) can be written as 

1 2 1 2( ) 2
2

ˆ( ) ( )[ ( ) 1] ( ){2[ ( ) 1] [ ( ) ( ) 1]} 1p p p pP z z z G z z G z G z G z                      (2.47) 

It can also be written as 

2 2
ˆ( ) ( )[ ( ) 1] 1P z A z G z                                                      (2.48) 

1 2 2
2 2

ˆ ( ) ( ) 1ˆ ( ) ( ) ( ) 1
( ) 1

p p G z G z
A z A z z z

G z



 

                
                          (2.49) 

1 2 1 2 1 2 1 2( ) ( )
2 ( ) [1 ]p p p p p p p pA z z z z z z z                                         (2.50) 

2.4.2 Sufficient Conditions for Stability for All Possible Periods 

The large powers of z involved in the stability conditions creates difficulty performing 

numerical evaluations. One can create a sufficient condition for stability that is independent of 

the periods by asking that for the 2 ( )P z  in Eq. (2.47), 2( ) 1 i TP z z e   , and then using the 

triangle inequality on the two terms. This results in the sufficient condition 

2 ˆ2 ( ) 1 2[ ( ) 1] [ ( ) ( ) 1] 1 i TG z G z G z G z z e                                     (2.51) 

One can specialize further to the case where ( )F z  has been designed by the optimization in 

Eq. (2.8) using 0V  , and done with enough gains in ( )F z  that we can consider that ˆ ( ) 1G z  , 

and that we use the gain obtained by the optimization so that   is set to unity. The sufficient 

condition becomes 
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3 ( ) 1 1 i TG z z e                                                           (2.52) 

Comparing to Eq. (2.16) with 1  , we see the price we may have to pay to go from one 

period to two periods. This is the two period version of Eq. (2.35).  

2.4.3 Sufficient Condition for Given Periods 1 2,p p  and ˆ ( ) 1G z  , 1   

Starting from Eq. (2.48) a sufficient condition for asymptotic stability is  

2 ( )[ ( ) 1] 1 i TA z G z z e                                                      (2.53)    

The corresponding equation for a single period had 1( ) pA z z  whose magnitude is always one. 

The magnitude of 2 ( )A z  can be greater than one or less than one. One expects that one could 

make it equal to zero. The square bracket term in Eq. (2.50) becomes 2 1 2( )1 i T p p i Tpe e     . If 

one can pick 1 2, ,p p  to make the second and third terms conjugates of each other but with 

opposite sign, and make the real part of each equal to -0.5, then the sum is zero. For frequencies 

when 2 ( ) 1i TA e   , condition (2.53) is less restrictive than the single period case, allowing 

( ) 1G z   to go outside the unit circle. On the other hand, a particularly bad case occurs when we 

set 1 2p p  and then the square bracket term equals 2[2 ]i Tpe  . In this case the magnitude never 

gets less than unity, and by choice of 2Tp  the value can reach the upper bound of 3. Figure 2-3 

plots 2 ( )A z  for this case. The common period was set to 1 2 20p p  , in which case the plot 

goes around the contour 10 times. For comparison, Figure 2-4 gives the corresponding plot of 

3( )A z  from Eq. (2.34) setting 1 2 3p p p  . 
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2.5 HIGHER ORDER REPETITIVE CONTROL 

Typical RC adjusts the command to a control system based on the error observed one period 

back in the disturbance. Various publications have suggested using data from multiple previous 

periods when making updates to the command each time step, and this is referred to as higher 

order RC (HORC). HORC considers the error not only one period back, but also includes the 

corresponding errors at multiple periods back. The form for the Nth order HORC is 

1

( ) [ ( ) ( 1)]
N

j
j

u k u k jp e k jp 


                                               (2.54) 

The generalized HORC law of Eq. (2.54) with RC compensator F(z) and zero-phase low-pass 

filter H(z) is 

( 1) ( 2)
1 2

( 1) ( 2)
1 2

( ) ( )[ ]
( )

( )[ ]

N p N p
N

N Np N p N p
N

H z F z z z
R z

z H z z z

   
  

 

 

  


   



                                  (2.55) 

It is also necessary to restrict the choice of the coefficient j  to satisfy 

1 2 1N                                                                 (2.56) 

From previous publications it was determined that when negative weights were allowed the 

control law would display an increase in robustness to period uncertainties.  A popular choice for 

demonstrating such robustness is using a 3rd order HORC law with weights assigned as 3, -3, and 

1 for 1 , 2 , and 3  respectively. The design scheme is the same of the generic structure of RC 

shown in Figure 2-1. We replace ( )R z  with ( )NR z  for the specific case of HORC. 

2.5.1 Nonstandard Nyquist Criterion for Stability of HORC allowing Negative Weights 
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 As it was the case of MPRC the characteristic polynomial must be rearranged so that 

problem of having poles on the unit circle is resolved. We can rewrite the polynomial as 

( 1) ( 2)
1 2

HORC

( )[1 ( ) ( )][ ] 1

( ) 1

Np N p N p
N

N

z H z F z G z z z

P z

         




                           (2.57) 

 The system is asymptotically stable if the HORC( )NP z  image of the unit circle i Tz e   does 

not encircle the point +1. 

2.6 FIGURES 

 

Figure 2-1.  Block diagram of single-period repetitive control with periodic output 

disturbance 

 

 

Figure 2-2.  Block diagram of three-period repetitive control with periodic output 

disturbance 
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Figure 2-3. Polar plot of the coefficient 
2

A  Figure 2-4. Polar plot of coefficient 
3

A  
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CHAPTER 3 

 EVALUATING THE STABILITY ROBUSTNESS TO MODEL ERRORS 

 WITHIN MULTIPLE-PERIOD REPETITIVE CONTROL 

3.1 INTRODUCTION 

Stability of Repetitive Control (RC) is ensured when the RC compensator designed based on 

Eq. (2.7) and Eq. (2.8) represents the inverse of the frequency response of the feedback control 

system or plant. Model errors due to incorrect identification of the feedback control system or 

plant will deteriorate the function of the RC compensator and potentially cause instability within 

the RC system. From a control system perspective system identification relates to estimating the 

poles of the system. Any mismatch between the identified poles and true poles of the systems 

will be referred to as model errors. Poles within the system can be single or complex conjugate 

pairs. The complex conjugate poles consist of an undamped natural frequency mode n  and 

damping ratio  such as 21n nj     . The two terms n  and   equally contribute to the 

conjugate poles of the system. However, from a frequency response perspective it is the 

undamped natural frequency n  that is the initiating point of the decent within the magnitude of 

the frequency response, and gives us more intuition on the system bandwidth. For such reasons 

this chapter will focus on model error due to incorrect identification of the undamped natural 

frequency mode. Enough insight regarding the issue will be provided so that results can be 

generalized to the damping ratio and single pole case as well. 

The main purpose of this chapter is to study the effect on stability robustness of introducing 

additional periods to be addressed by the RC law.  As an addition to the existing method of the 

non-standard Nyquist criterion shown in Chapter 2, a sufficient and necessary condition of 

stability for all periods in Multiple-Period Repetitive Control (MPRC) is introduced as an 
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attempt to provide more convenience and usefulness for using hardware data when determining 

stability. The small gain stability theory for MPRC [26] is introduced to address model errors in 

MPRC by stabilizing the MPRC system with a small gain. The chapter concludes by showing 

numerical results to analyze stability robustness to model error of MPRC and provide insight for 

avoiding instability issue within hardware.  

3.2 SUFFICIENT AND NECESSARY CONDITION FOR ALL PERIOD IN MULTIPLE-

PERIOD REPETITIVE CONTROL 

A sufficient and necessary condition of stability for all periods in Multiple-Period Repetitive 

Control (MPRC) is introduced as an attempt to provide more convenience and usefulness for 

using hardware data when determining stability. Three-period RC will be introduced first, 

followed by the stability condition of two-period RC. 

3.2.1 Sufficient and Necessary Condition for All Periods in Three-Period Repetitive 

Control 

The derivation starts off with the characteristic equation of Eq. (2.26) replace both 1p , 2p , 

and 3p  with p such as  

3 2 2 2 3 3 2 2 2 3ˆ ˆ{3 [ ] 3 [ ] 3 3 } 1p p p p pz H z H G H z H GG H G G z H z H H                 (3.1) 

The equation is packaged into the following equation as 
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3 2

2 2

2 3 2 3

0

3[ 1]

ˆ3{ 2[ 1] [ 1]}

ˆ ˆ{3[ 1] 3[ 1] [ 1]}

p p pz Az Bz C

A G H

B G GG H

C G GG G G H



 

  

   

 

    

     

                                  (3.2) 

where the equation is a cubic polynomial with respect to the parameter pz . We solve for pz  

so that 

3 3 2 2 3 3 2

3

2

3

1 3
[ ] [ ]

3 2 2

2 9 27 3 3 4 4 18 27

3 2

3

9

p

A
R Q

z
A

R Q R Q j

A AB C A B B A C ABC C
R

A B
Q

R

    
    

        


 


                (3.3) 

pz  is now isolated from the other terms and is able to represent the closed-loop roots of the 

RC system raised to thp power. Reference [8] shows that within the root locus plot of an RC 

system the roots stay close to the unit circle for a large enough p value for any RC gain while 

the system is stable. From this we are now able to estimate the root decay rate per period | |p
iz  by 

calculating the frequency response of the right hand side of the top equation in Eq. (3.3) such as 
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( )
( ) ( )

3
| |

( ) 1 3
[ ( ) ( )] [ ( ) ( )]

3 2 2

j T
j T j T

p
i j T

j T j T j T j T

A e
R e Q e

z
A e

R e Q e R e Q e j


 


   


  

 
     


                  (3.4) 

and stability is guaranteed when periods are large and identical for three-period RC by keeping 

Eq. (3.4) smaller than 1. Although it is yet to be shown within this item, later items show that an 

MPRC system is guaranteed to be stable for small periods being identical when stability has been 

determined for large period being identical in MPRC. Furthermore, the analyses will show that if 

MPRC is proved to be stable for identical periods, than any MPRC that includes any of those 

periods can be considered stable as well. Therefore the stability condition can be generalized to a 

necessary and sufficient condition for all periods in Three-Period RC such as  

( )
( ) ( ) 1 &

3

( ) 1 3
[ ( ) ( )] [ ( ) ( )] 1

3 2 2

j T
j T j T

j T
j T j T j T j T

A e
R e Q e

A e
R e Q e R e Q e j


 


   

   

     

                       (3.5) 

The relationship within Eq. (3.6) can be further simplified by setting   = 1, Ĝ  = 1, and H = 1 

such as 

1

3

1

3

1 1 &
1

1 3
1 1

2 2 1

G

G

G
j

G





 
  

  

  
          

                                               (3.6) 
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The condition has been substantially simplified without the RC gain   and cutoff filter H. 

3.2.2 Sufficient and Necessary Condition for All Periods in Two-Period Repetitive 

Control 

The approach is analogous to the three-period case where we start off with the characteristic 

equation for two-period RC and replace both 1p  and 2p  with p. 

2 2 2 ˆ2 [ 1] {2[ 1] [ 1]} 1p pz H G z H G GG                                       (3.7) 

By setting px z  we get 

1 2

2 2

2 1 0

[ 1]

ˆ{2[ 1] [ 1]}

Ax Bx

A H G

B H G GG



 

   

 

   

                                                 (3.8) 

where we can analytically solve for x by solving the quadratic polynomial equation and thus 

find pz  such as 

2pz A B A                                                              (3.9) 

pz  is now isolated from the other terms and is able to represent the closed-loop roots of the 

RC system raised to thp power. By the same logic of the previous case, the root decay rate per 

period | |p
iz  can be estimated by calculating the frequency response of the right hand side of the 

top equation in Eq. (3.9) 

2( ) ( ) ( ) [0 ]p j T j T j T
i Nyquistz A e B e A e                              (3.10) 
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2( ) ( ) ( ) 1 [0 ]j T j T j T
NyquistA e B e A e                                     (3.11) 

The equation above is the sufficient and necessary condition for all periods regarding two-

period RC. For the simple case when   = 1 and Ĝ  = 1, the relationship of Eq. (3.9) can be 

reduced to 

1

1
1

p G
z

G


 

     
                                                          (3.12) 

and the sufficient and necessary condition for all periods is now 

1

1 1 [0 ]
1 Nyquist

G

G
 


 
       

                                     (3.13) 

By mere comparison between Eq. (3.13) and Eq. (3.6), one can see that inversion of the cubic 

root term of Eq. (3.6) will make the overall value larger than the inversion of the square root in 

Eq. (3.13). Thus, three-period RC will be less robust to model errors in terms of stability when 

compared to two-period RC. This statement will be proved in a different way in later items with 

stability boundary analysis. 

3.3 SMALL GAIN STABILITY THEORY FOR MULTIPLE-PERIOD REPETITIVE 

CONTROL 

Establishing the stability of multiple period repetitive control systems is hampered by the fact 

that the periods are usually a large number of time steps, and this can easily create very high 

degree polynomials which can cause trouble to root finding algorithms. For the single period 

repetitive control, the necessary and sufficient condition for all possible periods, Eq. (2.16), is 
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close to being the stability boundary for all periods except ones that only have a few time steps. 

MPRC is not so lucky. The Nyquist based stability conditions developed here helps address the 

difficulty of determining stability, but can be frustrating in that the plots can be complicated 

making it difficult to determine if the point -1 has been encircled or not. Normally we use gain 

1   since the design process optimizes the gain. Following Reference [27], another approach is 

to make use of root locus departure angle thinking. If we can show that as this gain is turned up 

from zero, all of the roots on the unit circle depart with an inward component toward the center 

of the circle, then we know that there exists a range of nonzero gains   for which the multiple 

period repetitive control system is asymptotically stable. We do such an analysis for the three 

period RC with the ( )jH z  set to unity, and we allow three different gains j , one for each 

period. Define numerators and denominators ( ) ( ) / ( )N DG z G z G z  and ˆ ˆ ˆ( ) ( ) / ( )N DG z G z G z . 

Substitute ˆ ( )R z  into ˆ1 ( ) ( ) 0R z G z  , put everything over a common denominator, and then 

examine the characteristic polynomial of the RC system in the numerator. We examine the 

departure angles for the roots of 1 1pz  , but the results for other periods are analogous. The 

characteristic equation can be written as  

1( 1) ( ) ( ) ( ) ( ) 0pz z z z z                                                     (3.14) 

32

3 32 1 1 2

3 1 2

2

2
1 2 3

1 2 2 3 3 1

2
1 2 3

ˆ( ) ( 1)( 1) ( ) ( )

ˆ( ) [ ( 1)( 1) ( 1)( 1) ( 1)( 1)] ( ) ( )

ˆ ˆ( ) [ ( 1) ( 1) ( 1)] ( ) ( ) ( )

ˆ( ) ( ) ( )

pp
D D

p pp p p p
D N

p p p
D N N

N N

z z z G z G z

z z z z z z z G z G z

z z z z G z G z G z

z G z G z



   

     

  

  

        

     



        (3.15) 
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There is explicit dependence on 1 , and of course, the roots are functions of this gain 

1( )z z  . We assume that we are turning up all gains at the same time, but not necessarily at the 

same rate, all starting from zero gain. To find departure direction in the complex plane for the 

roots of 1 1pz   and also the departure velocity, we differentiate the characteristic equation with 

respect to 1 , and evaluate at what we call condition c, i.e. 1 1pz  , 1 2 3 0     . Note, the 

result will be the same, if instead, we were to make all j  equal, and turn them up all at the same 

time.  

The derivatives 1( ) / 0
c

d z d    and 1( ) / 0
c

d z d    are zero after evaluating at c. 

Differentiate the other two terms and evaluate at c, 32 2
1

ˆ( ) / ( 1)( 1) ( ) ( )pp
D Nc c

d z d z z G z G z      

and 1 1 1
1 1 1(( 1) ( )) / / 2 ( ) /p p

c cc c
d z z dz dz d p z z dz d     .  Adding these together, using the 

fact that 1 1pz  , and equating to zero produces  

3 32 2

1 1

( 1)( 1) ( ) ( 1)( 1)p pp p

c c
c c

dz z
z z G z z z

d p
                                 (3.16) 

For any root under consideration for 1 1pz  , if that root is not also a root of either 2 1pz   or 

2 1pz  , then the associated factors can be cancelled on each side of the equation, and the 

complex vector velocity of departure from the roots of 1 1pz   as the gain 1  is increased from 

zero, is 

1 1

( )
c c

dz z
G z

d p
                                                          (3.17)   
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Common roots can occur. For example, all factors have a root at +1. Use of L’Hopital’s rule 

can establish that Eq. (3.17) still holds in this case.  

The z in Eq. (3.17) is the root location of interest, and can be considered as a vector from the 

origin to the root on the unit circle. Then –z is a unit vector in the opposite direction, pointing 

radially inward. If one succeeds in designing the compensator ( )F z  such that ( )G z  is unity, as 

cost function Eq. (2.8) aims to do (when V is zero), then we conclude that all 1p  roots depart 

radially inward, and similarly for the 2p  and 3p  roots. Equation (3.17) then defines the amount 

of model error that can be tolerated and still have a region of convergence for sufficiently small 

gain. Provided the phase angle of the product ( ) ( ) ( )G z F z G z  is not greater than +90 degrees 

nor smaller than -90 degrees at any frequency, then the RC law is stable for sufficiently small 

gain. Finding the root with the largest deviation in departure angle from radially inward can be 

helpful in pointing out what frequency range is most critical in the polar Nyquist plot, when 

trying to determine whether -1 is encircled. 

3.4 NUMERICAL INVESTIGATION OF STABILITY ROBUSTNESS OF MULTIPLE-

PERIOD REPETITIVE CONTROL 

Robustness to model error is investigated numerically in this section for two period repetitive 

control of a third order system that is a reasonably good model of the feedback controllers for 

each link of a Robotics Research Corporation robot 

2

2 2
( )

2
n

n n

a
G s

s a s s


 

         
                                          (3.18) 
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where 8.8a  (1.4 Hz), 37n  (5.9 Hz), and 0.5  . Unless otherwise indicated, the 

compensator is designed using Eqs. (2.7) and (2.8) with 12, 7, 0n m V   , and we set 1  . 

We consider that the input comes through a zero order hold sampling at 100 Hz. We consider 

model error of the form of either a positive change in the value of n  or a negative change, 

prescribed as a percentage change. Changes in a  create similar results but are less sensitive. We 

also consider model error that is a positive or negative change in the DC gain. Figure 3-1 shows 

a detail of the departure of the root locus from poles on the unit circle with a positive model error 

of 40%, with 1 2 20p p   which makes the poles on the unit circle repeated. One of the poles 

departs with largest deviation from radially inward, and then goes unstable when 0.81  . 

3.4.1 Robustness Limits for a Range of Periods 

We consider periods 1p  and 2p  in the range from 12 to 200. These values are small enough 

that we can directly find the roots of the characteristic polynomial as our method of finding the 

stability boundary to model error. But they are big enough to see the behaviors of Nyquist plots. 

The procedure followed first sets 1p  to 12, and incrementally sets 2p  to values from 12 to 200, 

for each combination sampling positive and negative errors in the value of n  to find the 

stability boundaries in each direction. Then the value of 1p  is incremented and the process 

repeated until it reaches 200. The positive and negative stability boundaries for 1 26p   and 67 

for all 2p  are given in Figures 3-2 and 3-3. Phase error is the main driver in producing 

instability, and for error in n  and also a , this suggests that more positive model error than 

negative model error is allowed. The phase Bode plot for a first order term, is approximately 

linear from one decade below to one decade above the break frequency, when plotted on a log 
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frequency scale, and this implies the same amount of phase error magnitude corresponds to a 

much larger percent change in positive break frequency than for negative break frequency. A 

second order factor with critical damping just doubles the effect, and with less damping similar 

behavior is observed. Figure 3-4 plots the phase of a second order system with undamped natural 

frequency at 4 rad/sec, and a damping ratio of 0.5. Also shown are phase plots for +50% model 

error (i.e. the new n  is 1.5 times the old) and for -50% model error. The plot shows that the 

negative change in the undamped natural frequency produces much larger changes in phase than 

the corresponding change in phase for the same percent change in the positive direction. Note 

that the positive error curves in Figures 3-2 and 3-3 have many minima each appearing to reach 

the same minimum value, but this minimum value changes as we change 1p .  

3.4.2 Comparison of Robustness of Single Period and Two Period RC 

 The top curve in Figure 3-5 gives the stability boundary for positive error for a single period p  

(or ip  on the plot), corresponding to satisfying the modified Nyquist condition Eq. (2.14). The 

next curve down is a straight line corresponding to the necessary and sufficient condition for all 

possible p  given by Eq. (2.15). If Eq. (2.15) is not satisfied for an interval of frequencies, then 

multiplying by 1( ) i TpA z e   as in Eq. (2.13) will rotate and amplify the phase difference from 

start to end of the interval. And then for large enough p  the plot will encircle -1. This explains 

the sawtooth nature of the top plot, and the fact that the peaks decay as the period gets larger. 

The negative error limit for the undamped natural frequency for the single period case is the 

bottom most curve. This plot does not vary significantly, but it also has a straight line that goes 

through the minimum error points on the curve. Also on the plot in the middle are positive error 

and negative error curves for the two period case. These are computed as follows. For each value 
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of 1p  (which is now the ip  of the horizontal axis) a plot as in Figures 3-2 and 3-3 is made, and 

the minimum distance to the stability boundary in each direction is determined for all 2p , and 

this is plotted in Figure 3-5. We observe the same properties as in the single period case, but now 

the stability boundary in each direction is significantly tighter. The necessary and sufficient 

condition for asymptotic stability for all periods is then determined to be +28.65% and -11.67% 

error in the undamped natural frequency. Note that the sufficient condition Eq. (2.51) produces 

limits +16.90% and -11.37%. The former is far from the real stability boundary presented here, 

while the negative error limit is similar for both. Equation (2.51) aims to keep the magnitude of 

the Nyquist polar plot less than unity, and it will become clear that unlike the single period case, 

the two period case can very easily be stable with a magnitude going greater than unity.  

3.4.3 Understanding Stability With Positive Error in Undamped Natural Frequency 

Figure 3-6 examines the plot of 2 2( ) ( )[ ( ) 1]P z A z G z   with the model error set at +28.65% 

with z going around the top half of the unit circle ( 1  , ˆ 1G  , 1 2 20p p  ). Figure 3-7 gives 

the phase of the plot relative to the point -1, and we see that there is a very sharp phase change at 

6.16Hz, but it does not produce an encirclement. Hence, this value is very slightly below the 

actual stability boundary. To understand this plot we look at the components. The 2 ( )A z  was 

plotted in Figure 2-3. We can describe this plot as an apple. The indentation of the apple is at 

distance one from the origin, but the opposite end of the apple is three units from the origin. 

Figure 3-8 is a plot of the complex values [ ( ) 1]i TG e   , while Figure 3-9 gives its magnitude and 

Figure 3-10 its phase angle as a function of frequency. Because of the phase approaching 180  

degrees for much of the frequency range, the product of these terms reverses the image of the 

apple making the indentation face the point -1. The fact that the magnitude is about 0.4 for this 
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range of frequencies means that there is no danger of encircling the point -1 at these frequencies. 

The situation is different for negative model error. The plot nearly encircles -1 for a low 

frequency, for which the phase has not yet approached -180 degrees. We see the first of the 10 

images of the indentation of the apple somewhere near -90 degrees. We observe that a large 

percentage of the plot is outside the unit circle for this plot that is essentially on the stability 

boundary. This could not happen in the single period case, and we will see that it does not 

happen in the negative error case either.  

3.4.4 The Common Minima and the Decaying Maxima in the Positive Error Boundary 

Consider a hypothetical case where the marginally stable situation is encountered when 

1 2 4p p   (we use the fact that one can reach minima using repeated frequencies). Figure 3-11 

plots 2 ( )A z  for this value and also for 1 2 10p p  . Also indicated is a point at 8Hz where the 

plot goes through -1. Increasing the value of 1 2p p  will make more and more peaks in the plot, 

and one can find infinitely many periods that give marginal stability. These correspond to 

minima in Figure 3-5. The fact that the peaks in Figure 3-11 become arbitrarily close together 

suggests that the heights of the peaks in the positive error of the stability boundary will decay as 

the period increases. This suggests that one can find the common minimum values of the valleys 

in the positive error plot of Figure 3-5 for two periods by simply using a very large value of 

1 2p p  in Eq. (2.47) with i Tz e  . Figure 3-12 illustrates the decaying property of the peaks 

and the common value of the minima.     

3.4.5 Understanding Stability With Negative Error in Undamped Natural Frequency 
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Figures 3-13, 3-14, 3-15, and 3-16 are plots using -11.67% error in undamped natural 

frequency, analogous to Figures 3-6, 3-8, 3-9, and 3-10 above for positive model error. The 

important property is that the phase angle of [ ( ) 1]G z   tends toward zero instead of -180 

degrees. And the result is that the product with 2 ( )A z  preserves the direction of the indentation 

of the apple. Thus, the side of the apple that reaches radius 3 is facing the point -1. One 

implication is that for stable systems the polar plot does not go far outside the unit circle, unlike 

the positive error case. The smooth curve reaching radius 3 in comparison to having the 

indentation approaching -1, means that there is little fluctuation in the stability boundary as we 

change the periods involved. Furthermore requiring the plot to stay less than unity is much closer 

to the stability boundary for negative error.  

3.4.6 Examining Error in the DC Gain of the Model 

The above analysis examined model error in the value of the undamped natural frequency. 

Equation (2.58) automatically adjusts the DC gain when we change this value, so the approach 

has separated the effects of changing the frequency from the effects of changing the DC gain. 

Now consider that we multiply the transfer function in Eq. (3.18) by a gain that is nominally 

unity, but can be under or over estimated. Figure 3-17 is a polar plot of [ ( ) 1]i TG e    including 

both +28.65% error and -11.64% error in the undamped natural frequency, and considering 

various values of error in this overall DC gain. Smaller gains shrink the plot toward -1. Figure 3-

18 gives the corresponding Nyquist plot with +100% error in the model DC gain. This situation 

is asymptotically stable, whereas 30% error in the undamped natural frequency was unstable 

without the DC error. Hence, overestimating the model error can improve the robustness of the 

repetitive control system. Figures 3-19 and 3-20 present the stability boundaries for positive and 
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negative error of the DC gain, and for positive error it is possible to have the robustness decrease 

if there is too much DC error. The robustification that results from overestimating DC gain is 

similar to decreasing the value of   which is discussed below, but decreasing   should not be 

able to decrease the stability robustness.  

3.4.7 Using a Less Perfect Compensator 

All of the above computations were made using a 12 gain design for the compensator ( )F z . 

Consider what happens when we use fewer gains meaning that ˆ ( )G z  is not as close to being 

equal to one. Figure 3-21 presents the positive and negative stability boundaries when using 12, 

10, and 8 gain designs, computed by finding roots of the characteristic equation. We note that 

there is rather little change in the stability boundaries. One can also set 1   and use Eq. (2.49) 

to study the effects of imperfect ˆ ( )G z . The 2
ˆ ( )A z  of Eq. (2.49) is plotted in Figure 3-22 for an 6 

gain design and +28.65% model error. The plot is fairly strongly affected, and it now goes out 

beyond -3. Note that the extra term on the right in Eq. (2.49) could exhibit ill conditioning 

because use of a good approximation of the model can make the ratio in the round brackets look 

much like zero over zero. Figure 3-23 presents a detailed view of Figure 3-21, and it is 

interesting to note that the 8 gain design is actually the most robust of the 8, 10, and 12 gain 

designs. It may be possible that model error can be in a direction that is helpful to robustness, as 

happened with overestimating DC gain.  

3.4.8 Improved Robustness By Decreasing Repetitive Control Gain 

The small gain stability theory based on departure angle information suggests that one can 

have model phase error approaching 90 degrees. In single period RC this is the maximum 
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possible model phase error as well, and it is also achieved as the repetitive control gain tends to 

zero. The result produced here says that this small gain error tolerance appears to be unaffected 

by how many periods are being addressed. Of course, one pays for this robustness by having 

slow learning rates. Figure 3-24 gives the positive and negative error stability boundaries for the 

undamped natural frequency, using a range of different values of  . The effect is somewhat 

similar to that of overestimating the DC gain discussed above.  

3.4.9 The Effect of Introducing a Penalty on Compensator Gain Size 

The cost function Eq. (2.8) allows one to use a weight factor V penalizing the size of the 

gains in the compensator. This can avoid having successive gains be large and of opposite sign, 

which could be sensitive to noise in data. As one turns on this penalty, the restriction of the size 

of the gains makes learning at high frequencies more difficult, and gives the compensator a low 

pass filter characteristic. And the cost functional no longer aims to make ˆ ( )G z  as close to one as 

possible for all frequencies. Using a perfect model, the plot of [ ( ) 1]i TG e    becomes a straight 

line on the real axis going toward -1 from zero. With a big enough V, the high frequencies can 

become sufficiently ignored that the plot can go past -1 producing instability. Figure 3-25 plots 

the magnitude of [ ( ) 1]i TG e    for different values of V. Figure 3-26 presents the positive and 

negative stability boundaries for error in the undamped natural frequency as a function of the 

value of V. It is not clear that there is any particular trend in the result, but the sudden onset of 

instability of the design is evident when the value of V reaches a critical value.  

3.5 CONCLUSIONS 

This chapter analyzes stability robustness characteristics to investigate how the model error 

can harm stability in MPRC. The results provide intuition to the designer for avoiding instability 
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in MPRC or assessing the cause for a currently unstable MPRC system. Some conclusions are 

provided within the following. Addressing more frequencies in MPRC decreases stability 

robustness to model error. In other words, it is vital to have an accurate model when addressing a 

multiple of frequency components in order to avoid instability. Stability is much more sensitive 

to underestimating the undamped natural frequency than it is to overestimating it. Using a small 

penalty factor in designing the RC compensator can make MPRC unstable. 

The results above show that model error can make MPRC unstable. The issue could be 

addressed by stabilizing the system with a small RC gain complying with the small gain stability 

theory for MPRC. Simpler methods for determining stability of MPRC using hardware data were 

derived using results from stability boundary analysis. 

3.6 FIGURES 
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with model error in 
n

  when
1

p =67 respect to positive and negative model error 

Figure 3-5. Sufficient and necessary stability 
boundary of two-period RC for all periods 

Figure 3-6. Polar plot of 2P ,+ 28.65 % error 

Figure 3-7. Relative phase of 2P with respect to -
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Figure 3-8. Polar plot of [ ( ) 1]i TG e    

Figure 3-9. ( ) 1i TG e    plot Figure 3-10. [ ( ) 1]i TG e    plot 
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Figure 3-13. Polar plot of 2P ,- 11.67 % error Figure 3-14. Polar plot of [ ( ) 1]i TG e    

Figure 3-15. ( ) 1i TG e    plot Figure 3-16. [ ( ) 1]i TG e    plot 

Figure 3-17. Various polar plots of [ ( ) 1]i TG e  

each associated with positive DC error 

Figure 3-18. Polar plot of 2P  for two-period RC 

with 100 % DC error and + 30 % model error 

Figure 3-19. Stability boundary plots associated 
with different positive DC errors 

Figure 3-20. Stability boundary plots associated 
with different negative DC errors 
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Figure 3-21. Stability boundary plots associated 
with different number of RC compensator gains 

Figure 3-22. Polar plot of 
2

Â  with 6 gains for the 

RC compensator, + 28.65 % error 

Figure 3-23. Enhanced view of the stability 
boundaries in Figure 3-21 

Figure 3-24. Stability boundary plots associated 
with different RC gains 
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CHAPTER 4 

INCREASING ROBUSTNESS TO PERIOD UNCERTAINTIES OR 

FLUCTUATIONS WITH MULTIPLE-PERIOD REPETITIVE 

CONTROL 

4.1 INTRODUCTION 

Spacecraft often have multiple rotating parts such as CMG’s, reaction wheels and momentum 

wheels. Slight imbalance within any of these devices will cause vibration of the spacecraft 

structure that can impair the functioning of fine pointing equipment. Imbalances can occur for 

multiple devices and the vibrations can have multiple periods correspondingly. In previous 

studies an improved method for designing repetitive controllers to handle multiple unrelated 

periods was introduced (Refs. [19], [20], [21], [22]) and referred to as Multiple Period Repetitive 

Control (MPRC).  In a more recent paper (Ref. [28]) the theory was tested on the Naval 

Postgraduate School (NPS) Three-Axis Spacecraft Simulator 2 (TAS2) along with four other 

candidate methods that were implemented to address CMG induced optical jitter within a laser 

beam. Among various experimental results that were conducted on the TAS2, MPRC displayed 

capabilities of not only getting rid of the period of interest, but rejecting the neighboring 

frequencies as well when all three control components of the MPRC law were addressing 

identical periods. From the view point of the experiments, this method was very effective for the 

given situation where uncertainties laid within the disturbance period information that was given 

by the CMG Hall Effect sensors due to numeric truncation error of the sampled data. The 

previously existing method to address fluctuations and uncertainty in the disturbance period is 

Higher Order Repetitive Control (HORC) with negative weights. It was originally developed by 

Steinbuch (Ref. [23]), and was studied in detail by two different approaches in (Refs. [24], [25]). 
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It is the purpose of this chapter to investigate the relationship between the two methods while 

comparing various features of each method when adjusting different design parameters. Among 

the two methods, MPRC will be shown to have advantages. 

4.2 THE REQUIRED ACCURATENESS ON THE KNOWLEDGE OF THE 

DISTURBANCE PERIOD WHEN ADDRESSING LOW FREQUENCY 

COMPONENTS RELATIVE TO NYQUIST FREQUENCY 

Accurate identification of the disturbance period is essential for typical RC systems in order 

to completely eliminate the frequency component within the disturbance signal. In RC practice, 

it is possible to have small uncertainties within the disturbance addressed by the RC law. Small 

errors in identifying the disturbance period can drastically degrade the performance of RC.  

Accepting the fact that such uncertainties do exist, another view is taken on the matter with 

respect to the speed of the disturbance frequency relative to Nyquist. Figure 4-1 below shows a 

numeric simulation on how sensitive the single-period repetitive controller is in terms of 

disturbance period accurateness where the goal is to reduce the error by at least a factor of 100. It 

is assumed within the simulation that one can design a perfect RC compensator so that the 

dynamics of the plant can be completely nullified, thus 1G  within the frequency domain. The 

sample rate of the digital system is 100 Hz. 
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Figure 4-1. Frequency error tolerance of 
single period RC for factor of 100 error 

reduction 

Figure 4-2. Sensitivity transfer function for 
2 Hz and 20 Hz at 100 Hz sample rate 

Figure 4-1 describes that more accurateness of the disturbance period is required when the 

frequency component being addressed is low compared to Nyquist frequency. Such accurateness 

can become unfeasible at low frequencies close to DC when practicing RC on hardware. The 

issue gives rise to the need of HORC to completely reject the low frequencies components within 

the disturbance signal despite having these uncertainties or fluctuations. Some intuition on this 

phenomenon is provided within Figure 4-2 where the slope around each notch gets less steep as a 

higher frequency is addressed for a fixed sample rate.  The next simulation is performed by 

increasing the sample rate of the digital system. 

Figure 4-3. Frequency error tolerance for 
different sample rates with single period RC 

Figure 4-4. Frequency error tolerance of (3,-3,1) 
HORC for factor of 10000 error reduction 
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Figure 4-3 shows that the sample rate itself has no effect on the frequency error tolerance of a 

specific frequency component being addressed by single period RC. It can also be seen that the 

frequency error tolerance increases with respect to an increase of the disturbance frequency 

component being addressed. This relationship looks somewhat linear and it is gives basis to the 

thought that the frequency component being addressed will be more tolerate to period 

uncertainties and fluctuations as the addressed frequency becomes higher regardless of the 

sample rate being used. By curve fitting Figure 4-3 into a linear equation one can gain a general 

idea on how accurate the indentified disturbance period has to be in order to achieve at least a 

factor of 100 error reduction for single period RC. A linearized relationship such as Eq. (4.1) can 

be deduced from Figure 4-3 so that one can roughly estimate the frequency tolerance of all 

frequencies at any sample rate for single period RC. 

50.00159 1.75 10tol disturbanceF F                                              (4.1) 

In RC practice this relationship will be less accurate due to model errors when designing the RC 

compensator, in which case deters G  from being equal to 1. Above all, whatever disturbance 

period uncertainties there may be, the need for HORC will become larger as one addresses 

disturbance frequencies that are relatively low compared to Nyquist frequency. 

4.2.1 Implementing HORC for increasing tolerance to disturbance period uncertainties 

 A similar numeric simulation to that of the single period RC case was performed in order to 

determine the frequency error tolerance of a 3rd order (3, -3, 1) HORC law that achieves the goal 

of reducing the error by at least a factor of 10000 shown in Figure 3-4. Despite the increased 

effort of a factor of 10000 error reduction, the frequency error tolerance is substantially larger 

than that of the single period RC case for any frequency component being addressed. Even if 
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model errors were to be taken into account within the simulation, it is still certain that HORC 

will demonstrate superior capabilities of addressing a disturbance period with uncertainties. 

4.2.2 Issues in synchronizing with CMG period through the Hall effect sensor readings in 

a spacecraft testbed 

The NPS TAS2 was able to provide information on the rotor speed of each CMG through 

Hall sensor readings. The Hall sensor will output a pulse signal used for indicating the current 

position of the rotor within the CMG. In order to calculate the period of the CMG rotation, the 

number of time steps is calculated between the pulse signals indicating one complete revolution. 

Since the Hall effect sensor reading is acquired through a sample and hold device, the calculated 

period of the CMG will always be an integer number regardless of the actual speed of the rotor. 

For rotation speeds that correspond to a non-integer number of periods, there will always be a 

deviation error from the actual non-integer disturbance period and the integer period being 

addressed by RC. This issue poses the problem of having period uncertainties in RC. However, 

instead of using HORC to resolve this issue, MPRC was capable of resolving this issue by 

addressing multiple identical periods for the particular case of having the three CMGs of the 

spacecraft testbed rotating at the same speed. 

4.3 IDENTICAL TRANSFER FUNCTION REPRESENTATION FOR MPRC AND 

HORC 

As mentioned previously, experimental results with NPS’s TAS2 testbed showed that MPRC 

had capabilities of increasing the robustness to period uncertainties when addressing multiple 

periods that were identical. This particular configuration for MPRC will be referred to as MPRCi 

from now on. The functionality of MPRC is very similar to that of the 3rd order HORC with 3, -
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3, and 1 as weights. It is developed here to show that when certain conditions are met for both 

methods, MPRCi and HORC will have the same digital transfer function representation. 

The transfer function relationship between error E(z) and the control input U(z) is stated in Eq. 

(2.21). The idea of MPRCi is to address multiple identical periods so that all periods jp  are 

equal to p accordingly. By setting both the cutoff ( )jH z and RC gain j  to 1, one is able to 

rewrite the equation as  

2 2

3
ˆMPRC , 1

ˆ ˆ ˆ( ) 3 ( 6 3 ( )) (3 3 ( ) ( ))
( )

( ) ( 1)

p p

p
i G

U z z G z z G z G z
F z

E z z

       
   

                  (4.2) 

When assuming one can design a perfect RC compensator so that ˆ 1G  , the equation is 

presented as follows 

2

3
ˆMPRC , 1

( ) 3 3 1
( )

( ) ( 1)

p p

p
i G

U z z z
F z

E z z

   
   

                                          (4.3) 

We now go back to the 3rd order HORC with 3, -3, and 1 as weights, which will now be 

referred to as HORC throughout the paper with these weight configurations. The same conditions 

are used for that of the MPRCi case where both the cutoff ( )H z and RC gain   are set to 1 in 

Eq. (2.55). 

2

3
HORC

( ) 3 3 1
( )

( ) ( 1)

p p

p

U z z z
F z

E z z

   
   

                                            (4.4) 

Eq. (4-4) is exactly identical to Eq. (4-3) despite having a completely different design 

structure provided that ( )H z ,  , and Ĝ  are all set equal to 1. Therefore it is clear that MPRCi 

will function so that it increases the robustness to period uncertainties as it was the intent for 
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HORC. Now it is possible that each method can have different characteristics depending on how 

the fixed conditions are changed. The study will progress by investigating the ramifications of 

altering each design parameter. 

4.4 COMPARISON ON THE RAMIFICATION OF DECREASING THE GAIN FOR 

MPRCi AND HORC 

4.4.1 Stability Robustness to Model Error 

For the typical repetitive controller, decreasing the gain will increase stability robustness to 

model errors. However, this is not always true for the more recently developed repetitive control 

laws, namely HORC. Maintaining the same conditions so that H = 1 and ˆ 1G  , HORC and 

MPRCi will have different stability characteristics when decreasing the RC gain  . The 

following plots display the stability boundaries with model error in n  with respect to different 

RC gains being used.  

Figure 4-5. Stability boundary plots of 
HORC with various RC gains 

Figure 4-6. Stability boundary plots of 
MPRCi with various RC gains 

Oppose to Figure 4-6 of the MPRCi case, Figure 4-5 of HORC does not show an increase in 

stability robustness to model errors when the RC gain is decreased. Instead, HORC decides to 

become unstable beyond a certain point when decreasing the gain. As previous work related to 
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HORC demonstrates stability analysis within the frequency domain and root locus methods, a 

more elaborate explanation is shown here to understand the underlying phenomena of the 

instability for small gains in HORC. 

For better understanding, HORC( )NP z  of Eq. (2.57) with N = 3 is divided into two parts such as 

HORC 33

3 2
3

( ) ( )[1 ( ) ( )]

[3 3 1]

N rdN

p p p
rd

P z A z F z G z

A z z z






 

  

                                          (4.5) 

The polar plot of 3rdA is depicted below in Figure 4-7. 

Figure 4-7. Polar plot of 3rdA with p = 40 Figure 4-8. Polar plot of HORC 3
( )N N

P z


with 
=0.8 

This heart shape plot is maintained for all p’s larger than 2 for HORC. Empirical numeric 

results of the polar plot of 3rdA show that increasing p will merely produce duplicated images of 

the same heart shape shown previously. By using basic triangle inequality relationships we can 

deduce the magnitude range of 3rdA  such as 

31 ( ) 7 i T
rdA z z e                                                           (4.6) 
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where this relationship agrees with Figure 4-7. In order to easily understand the implication of 

reducing the gains of Eq. (4-5), the equation is simplified by making the assumption that the RC 

compensator F(z) is able to nullify the dynamics of  the real world, thus ( ) ( ) 1F z G z   within the 

frequency domain. In this case, Eq. (4-5) is simplified to 

HORC 33, 1
( ) ( )[1 ]N rdN G

P z A z 
 

                                            (4.7) 

which permits a straight forward understanding on how the RC gain influences the stability of 

HORC. Eq. (4.7) shows the RC gain will merely contribute to the size of the polar plot in Figure 

9 while preserving the same heart shape. The idea is demonstrated with a numerical result shown 

above in Figure 4-8. The polar plot of HORC 3
( )N N

P z
 in Eq. (4-5) is depicted with a 12 gain 

compensator F(z), in which case ( ) ( ) 1F z G z  , with   = 0.8 and p = 40. According to the 

simplified Eq. (4-7), the 3 points marked within Figure 4-7 should be mapped onto Figure 10 by 

multiplying 1- , which is 0.2. Despite the fact that the compensator does not exactly produce

( ) ( ) 1F z G z  , the relationship given by Eq. (4.7) still roughly holds. Now that the simplified 

relationship of Eq. (4.7) has been well established, it is easy to estimate that HORC will go 

unstable when the RC gain is decreased below 0.5.  

Figure 4-9. Polar plot of HORC 3
( )N N

P z


with 
=0.49 

Figure 4-10. Relative Phase with  respect to 
+1 
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Figure 4-9 above numerically verifies the results by showing an unstable HORC system with

=0.49 and no model error. The phase angle of the polar plot HORC 3
( )N N

P z
  with respect to +1 in 

Figure 4-10 shows that the phase unravels up to 14400 deg, which means that the polar plot 

makes 40 encirclements around + 1. This further implies that +1 is located within the small loop 

of the heart in Figure 4-9. 

As observed within the stability boundary plot of Figure 4-6, MPRCi increases stability 

robustness to model errors when reducing the RC gain. This was well explained within previous 

work by providing numerical results based on frequency domain analysis and also analytical 

derivation of the small gain stability theory for repetitive control (Ref. [26]). Therefore, it can be 

said that MPRC can be stabilized by using a sufficiently small gain, opposed to the case of 

HORC where one must pay attention on how much the RC gain is being reduced. 

4.4.2 Increasing the RC Gain Above 1 

The previous item investigated stability robust to model error when decreasing the RC gain 

for HORC. The conclusion was that decreasing the RC gain was in favor of MPRCi over HORC 

in terms of stability. However, the analysis did not see what happens when increasing the RC 

gain above 1. For typical RC, increasing the gain above 1 would let the control law 

overcompensate for the error, thus it would not make much sense in doing so. On other hand, this 

idea of overcompensation is not so straight forward for HORC with negative weights. It is 

further studied here to see how the stability of HORC responds to increasing the RC gain above 

1. The same method is used here by evoking Eq. (4-17). When the RC gain   is larger than 1, the 

constant term that is multiplied to 3rdA  in Eq. (4-17) becomes negative. This results in flipping 

the heart shape plot with respect to its imaginary axis. After the plot has been flipped over, the 
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magnitude of the constant term will determine the size of the heart shaped plot. Figure 13 shows 

the polar plot of HORC 3
( )N N

P z
  with   = 1.15 for p = 30. By using the same mapping method as 

the previous item, -7 in Figure 4-7 will be mapped into 1.05 in Figure 4-11, thus encircling +1. 

Figure 4-12 verifies that the polar plot does indeed encircle +1. Increasing the RC gain more will 

ensure instability by making the heart shape plot even larger. Therefore, it can be well 

understood that increasing the RC gain above 1 by only a small amount can make HORC 

unstable and should not be considered for control design purposes. 

Figure 4-11. Polar plot of HORC 3
( )N N

P z


with 
=1.15 

Figure 4-12. Relative Phase with  respect to 
+1 

4.4.3 Sensitivity Transfer Function Frequency Response Analysis 

Previous work show that by reducing the RC gain within the sensitivity transfer function, the 

notches located at each frequency being addressed by the repetitive controller will become 

narrower, thus requiring more accurate information of the period being addressed. On the bright 

side, due to the waterbed effect, this permits less amplification at the frequency components that 

are located between the periods being addressed. This has the effect of making the repetitive 

controller less sensitive to unaddressed frequencies. Previous work shows that the sensitivity 
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transfer functions for HORC and MPRC have similar characteristics of that of a typical repetitive 

controller when adjusting the RC gain. It is shown here to better understand how this occurs 

through frequency response analysis.  

The sensitivity transfer function is the relationship between ( ) ( )DY z V z  and the error E(z), 

which is the inverse of the square-bracketed term of Eq. (2.26) for MPRCi. For the sake of 

simplicity let’s assume that the RC compensator F(z) does a good job in nullifying the dynamics 

of the system so that 1G   and ˆ 1G  . The sensitivity transfer function of MPRCi is simplified as 

3

MPRC 3

( 1)
( )

( [1 ])

p

i p

z
S z

z 



 

                                                        (4.8) 

Notice that the frequency response of Eq. (4.8) will go to zero when   of i Tz e   is equal to 

the disturbance period being addressed due to the numerator term. Figure 4-13 displays the 

magnitude of the frequency response of the numerator term of Eq. (4.8). This is also equivalent 

to the case when   = 1 for Eq. (4.8). It will be shown that this is true for HORC as well later on. 

Now by simply investigating what is left, it is plausible to think that the denominator term should 

be responsible for changing the profile of the sensitivity transfer function when reducing the RC 

gain. When looking at a sensitivity transfer function, it is the magnitude of this term that we are 

interested in since it is the goal to find out how the profile is reduced or magnified depending on 

the frequency. The denominator term is isolated from Eq. (4.8) and the magnitude range of the 

denominator term is determined as  

33 3[1 ] (2 )p i Tz z e                                                 (4.9) 
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Eq. (4.9) shows that for an RC gain   smaller than 1 the denominator term of Eq. (4.8) will 

amplify the magnitude of the sensitivity transfer function when the magnitude gets near the 

lower bound of Eq. (4.9) and will attenuate it near the upper bound. Now, it must be determined 

at what frequency will the sensitivity transfer function get attenuated or amplified by the upper 

bound and lower bound magnitudes of the denominator in Eq. (4.9). We first express the period 

p in terms of frequency, denoted as p , with units of rad/s such as 

2

p

p
T




                                                                 (4.10) 

This is substituted into the denominator term of Eq. (4.8) so that the denominator is 

expressed in terms of frequency. 

2 ( / ) 3( ) ( 1 )pie                                                               (4.11) 

when  is an integer multiple of the disturbance frequency p ,the magnitude of Eq. (4.11), 

( )  , is equivalent to the lower bound 3  of Eq. (4.9). When ( 1 / 2), 1, 2,3...p k k    , 

which is the frequency between each disturbance frequency component that is being addressed 

by MPRCi, ( )   is equivalent to the upper bound 3(2 ) . Therefore when 1  , it can be 

understood that the sensitivity transfer function profile of Eq. (4.8) will get amplified near the 

addressed frequency component, thus degrading the ability of attenuating the error at 

neighboring frequencies located near the disturbance period being addressed. On the other hand, 

in between frequency components of the sensitivity transfer function will be attenuated by the 

upper bound of the denominator, thus providing less amplification of the error at these 

frequencies as shown in Figure 4-14.  
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Figure 4-13. Frequency response 
magnitude of 3( 1)pz   

Figure 4-14. Different RC gains used 
for MPRCi addressing multiple identical 

periods 

The effect of the RC gain on the sensitivity transfer function of HORC will be described 

using a similar approach. The same assumptions are made by setting ( ) ( ) 1F z G z  . The 

sensitivity transfer function of HORC is simplified to 

3

HORC 3
3

2
3

( 1)
( )

[1 ]

3 3 1

p

p
rd

p p
rd

z
S z

z B

B z z





 

  

                                                 (4.12) 

Notice that only the 3rdB term is what makes a difference from the sensitivity transfer 

function of MPRCi in Eq. (4.8). Unfortunately the 3rdB makes it less straight forward to derive 

the magnitude range of the denominator term of Eq. (4.12) using the triangle inequality. From 

that regard, only the upper bound is calculated for the magnitude range of the denominator term 

of Eq. (4.12). 

 3
3 [1 ] 8 7p

rdz B                                                       (4.13) 
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By using the same approach from Eq. (4.10) and Eq. (4.11), the denominator term of Eq. 

(4.12) is equal to   when the frequency is an integer multiple of the disturbance frequency being 

addressed. For frequencies that are located in between the middle of the addressed frequency and 

associated harmonics, the denominator term equals to 8 7 . With this information alone, one 

can understand that for any RC gain that is smaller than 1, the sensitivity transfer function of Eq. 

(4.12) is amplified near the addressed frequencies and attenuated near the frequencies in between 

the addressed ones. However, this information is insufficient for characterizing the entire 

frequency response of the sensitivity transfer function of HORC due to the interconnections of 

the 3rdB  term and the open bound relationship of Eq. (4.13). This issue will be revisited in the 

next item. Figure 4-15 shows high peaking side lobes occurring repetitively throughout the 

frequency response that are a result of the 3rdB  term. Figure 4-16 shows an enlarged view. It is 

still under question whether one would want the decreases the RC gain to reduce sensitivity to 

noise in HORC due to the high peaking side lobes mentioned earlier. This is investigated in later 

items as well. 

Figure 4-15. Different RC gains used for 
HORC 

Figure 4-16. Enlarged view of Figure 4-
15 
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4.4.4 Reason for side lobes within sensitivity transfer function plot of HORC when 

decreasing the RC gain 

Previous simulations showed that when the RC gain is decreased, HORC displays high 

peaking side lobes on each side of the notch of the sensitivity transfer function. A possible cause 

may be due to the instance where the denominator term of Eq. (4.12) becomes equal to zero for a 

certain frequency component. The denominator term of Eq. (4.12) is reexamined by setting it to 

zero such as the following 

  3
3 [1 ] 0p

rdz B                                                          (4.14) 

which is further rearranged as 

3
3 [1 ( ) ( )] 1p

rdz B F z G z                                                   (4.15) 

where the F(z)G(z) has been reinserted into Eq. (4.15) opposed to the case where it was assumed 

equal to 1. The left hand side of Eq. (4.15) is identical to HORC 3
( )N N

P z
 of Eq. (4.15). This implies 

that the peak of the side lobes become maximum when HORC 3
( )N N

P 


 crosses +1 at the 

frequency component   that is between DC and Nyquist frequency within the polar plot. It also 

means that the maximum side lobes can occur for an HORC that is marginally stable or unstable. 

Now let us consider a system with an imperfect compensator where F(z)G(z)  does not equal 1. 

From the stability boundary plot of Figure 4-5, it was shown that regardless of any existing 

model error that may exist, there will always be a RC gain   that makes HORC marginally 

stable or unstable. Therefore, for any model error, HORC will have a sensitivity transfer function 

with high peaking side lobes for a specific RC gain  . 
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4.4.5 Comparison of the final error level for HORC and MPRCi due to broadband 

disturbance when decreasing the RC gain 

Repetitive control can in theory converge to zero error, provided that one has accurate 

information on the disturbance period.  The benefit of using MPRCi and HORC is that the 

repetitive controller can be less sensitive to period accuracy. Although this may seem as an 

immediate benefit, previous items show that the error between addressed frequencies will be 

amplified due to the waterbed effect. One candidate method of trying to reduce this amplification 

is done by decreasing the RC gain. Both MPRC and HORC show flattening effects on the 

amplification between addressed frequencies. However, HORC display high-peaking side lobes 

for each flattened section of the sensitivity transfer function that brings concern with regards to 

amplifying the error of non-addressed frequencies near these peaks. Optical setups that require 

precision pointing of laser beams use very sensitive sensors such a position sensing device 

(PSD). Jitter within a beam can be detected down to the nano-radian level.  Within this range of 

magnitude, broadband disturbance becomes less negligible and can become potential risk for 

degrading the overall disturbance rejection performance if amplified too much.  

( )R z ( )G z( )DY z

( )BV z

 

Figure 4-17. Block diagram of a generic RC system ( )R z  with broadband disturbance and 

measurement noise 

From Figure 4-17 the true error ( ) ( ) ( )T DE z Y z Y z   can be expressed in terms of the 

command, the output disturbance, and the measurement noise such as 
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1
( ) ( )[ ( ) ( ) ] ( ) ( ) ; ( ) ; ( ) 1 ( )

1 ( ) ( )T D B w wE z S z Y z V z V S z W z S z S z S z
R z G z

      


    


(4.16) 

where ( )S z is the generic sensitivity transfer function for a RC system with a generic RC law 

( )R z , ( )wS z  is the complementary sensitivity transfer function, and ( )R z is either ˆ( ) ( )R z F z  for 

MPRCi and 
3

( )N N
R z

  for HORC within this item. For now let us assume that the narrowband 

disturbance V and desired output ( )DY z  is zero, and that there is only broadband disturbance BV  

to consider. The first term on the right of the first equation of Eq. (4.16) gives the true error due 

to broadband disturbance and will be studied here. Ref. [29] gives an elaborate explanation on 

how to calculate the final error level due to disturbance or measurement noise. The formula is 

evoked here as 

                                                   
22 2

0

1
( ) ( )

2
i i

e b S e S e d
    


                                           (4.17) 

where the broadband disturbance is white and Gaussian with variance 2
b which is set to unity 

within the following computation. A numeric simulation is conducted in order to compute the 

variance of the broadband disturbance amplified by the waterbed effect. Perfect model and 

perfect compensator assumptions are made so that 1G   and ˆ 1G  . Computational results of Eq. 

(4.17) show that for an RC gain of 0.7, HORC has a covariance of 9.3547, which is 3 time larger 

than the RMS solely due to the broadband disturbance.  MPRC has a covariance of 7.2529, 

which is slightly smaller than the covariance of HORC using the same RC gain. Despite 

demonstrating larger efforts of flattening the amplification between addressed frequencies, 

HORC has larger overall amplification of broadband disturbance due to the high-peaking side 

lobes as mentioned within previous items.  The investigation goes further as the RC gain is tuned 
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down while calculating the final error level due to broadband disturbance for both HORC and 

MPRC. 

Figure 4-18. Final error due to 
broadband disturbance 

Figure 4-19. Final error due to 
measurement noise 

Figure 4-18 above shows that HORC and MPRC show similar results down to an RC gain of 

0.87. However, the final error level tends to increase drastically beyond a certain RC gain for 

HORC. This is due to the fact that the denominator term of Eq. (4.12) gets close to zero as the 

RC gain approaches 0.5, which is also when HORC gets close to instability as mentioned within 

the previous item. Opposed to MPRCi, reducing the RC gain in HORC in order to reduce 

amplification of broadband disturbance is not preferred due to the peaking phenomenon that 

occurs and the possibility of becoming unstable. 

4.4.6 Comparison of the final error level for HORC and MPRCi due to measurement 

noise when decreasing the RC gain 

Other than concerns about the broadband disturbance being amplified by the waterbed effect, 

one may be concerned about sensitivity to measurement noise. From the second term on the right 

of the first equation of Eq. (4.16), one can calculate the final error level due to measurement 

noise by the following 
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22 2

0

1
( ) ( )

2
i i

e w w wS e S e d
    


                                               (4.18) 

A numerical simulation is performed with ˆ 1G  , 1G  , and p = 30. Figure 4-19 above shows 

that the final error due to measurement noise is not much different from that due to broadband 

disturbance. The results are further analyzed by looking at the complementary sensitivity transfer 

functions for both control laws. With the assumption of ˆ 1G   and 1G  , the complementary 

sensitivity transfer functions for respectively HORC and MPRC are 

3
,HORC 3

3

( )
[1 ]

rd
w p

rd

B
S z

z B





 

                                                 (4.19) 

and 

2 2 3

,MPRC 3

3( 1) 3( 1)
( )

( [1 ])

p p

w i p

z z
S z

z

  


   


 
                                    (4.20) 

By observing both equations one is able to see that a smaller RC gain will reduce the frequency 

response magnitude of the numerator terms for both equations, and therefore it would be 

desirable to reduce the RC gain if one would want to decrease the error due to noise, provided 

that the denominator terms do not go to zero for all ’s. Now it is obvious that the denominator 

terms of both Eq. (4.19) and Eq. (4.20) are no different from their respective sensitivity transfer 

functions. So based on previous analysis of the sensitivity transfer function, the magnitude of the 

complementary sensitivity transfer function of MPRC will get reduced with a small RC gain 

shown in Figure 4-20 while this is detrimental to HORC in which case the magnitude can 

possibly blow up (see Figure 4-21).  
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Figure 4-20. Complimentary sensitivity 
transfer function with various RC gains for 

MPRCi with p = 30 

Figure 4-21. Complimentary sensitivity 
transfer function with various RC gains for 

HORC with p = 30 

  

4.4.7 Comparison of frequency error tolerance for MPRCi and HORC when decreasing 

the RC gain 

In previous items it has been shown that the slopes around each notch within the sensitivity 

transfer function get narrower as the RC gain decreases. One may want to know how each 

method gets less tolerant to deviation errors from the actual disturbance frequency and the 

frequency addressed by each control law when reducing the RC gain. A numeric simulation is 

conducted with ˆ 1G   and 1G  . The frequency error tolerance is calculated to have at least a 

factor of 10000 error reduction. Past experiments on the NPS’s TAS2 addressed optical jitter due 

to CMG induced vibration. The jitter was correlated to the rotor speed of the CMG, which was 

around 33 to 35 Hz. Numeric errors prevailed due to non-integer number of time steps 

corresponding to the true speed of the rotor, in which case resulted in having deviation error 

from the addressed and real disturbance frequency. The simulation here will address a 33.3 Hz 

disturbance signal with a 100 Hz sample rate for simplicity. 
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Figure 4-22. Frequency error tolerance for HORC and MPRCi with respect to decreasing RC gain 

 

Figure 4-22 above shows that HORC can tolerate more frequency error than that of MPRCi 

as the RC gain gets smaller. However, it must be taken into account that HORC will become 

unstable beyond an RC gain of 0.5. Disregarding any error due to the measurement noise and 

broadband disturbance, for an RC gain of 0.5 the HORC is in favor of frequency error tolerance 

over MPRC by a relatively small amount of 0.073 Hz when addressing a 33.3 Hz disturbance 

signal. Nevertheless, the choice of an RC gain of 0.5 is unfeasible for a system where 

measurement noise and broadband disturbance is non-negligible due to massive amplifications of 

these errors, and destroys a major purpose of decreasing the RC gain. Although HORC compared 

to MPRC can cope with more frequency error when reducing the RC gain within the stable 

range, it is somewhat of a tricky task to idealize the performance when one needs to be 

concerned about becoming unstable or increasing the error due to broadband disturbance or 

noise. From a short range of an RC gain of 1 down to 0.87, based on Figure 4-19 HORC can 

tolerate more frequency error and amplify less error due to measurement and broadband 

disturbance, and the designer may be tempted to fine tune the performance within this short 

range. However, the difference of final error level due to noise for the two methods is meager 
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and no method shows significant advantage over the other within this short range. Above all, it is 

important to understand the uncertainties of the disturbance period by trying to define the 

variation range when deciding what controller to use.  

When the frequency uncertainty variation is well-defined and not as large, MPRCi has the 

upper hand by being able to fine tune the performance so that the narrowband frequency is 

within range of the desired reduction and that the final error level due to noise is minimized. 

Figure 4-23 below shows that MPRCi with a RC gain of 0.1 can tolerate more frequency error 

and is able to amplify less error between the addressed frequencies, when compared to single 

period RC with a gain of 1 (see enlarged view in Figure 4-24). It is meaningless to compare with 

the HORC case, as it becomes unstable for a RC gain 0.1. 

Figure 4-23. Sensitivity transfer 
function of RC and MPRCi 

Figure 4-24. Enlarged view of Figure 4-
23 

  

The benefit of MPRCi is that error between the addressed frequencies can be flattened while 

preserving frequency error tolerant features such as Figure 4-24. A bonus to reducing the RC 

gain for MPRCi is that the stability robustness to model errors increases. From that regard 

HORC is not able to provide such capabilities due to instability for small gains. In Figure 4-22 it 
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shows that MPRCi is able to tolerate  0.025 Hz frequency error while via numeric simulation 

the single period RC could only tolerate  5.3e-004 Hz despite having larger amplifications in 

error at unaddressed frequencies. In hardware, MPRCi is capable of achieving ideal performance 

by turning down the RC gain as the error is observed from the data. HORC on the other hand 

would not be preferable for this method due to instabilities that can occur when the RC gain is 

decreased too much. 

4.5 WIDENING THE NOTCH FURTHER WITHOUT INCREASING THE ORDER OF 

RC 

MPRCi and HORC with 3, -3, and 1 as weights aim for zero error at the addressed frequency 

component and a small portion of the neighboring frequencies as well due to the notch widening 

effect of these methods. In order to increase the width of each notch, one may increase the order 

of the repetitive controller such as addressing more identical periods for MPRCi or by increasing 

the order of HORC more than 3. However, this method can increase the computational effort 

significantly and result in making real-time control a challenge. Another issue arises from 

previous studies where it has been shown that introducing more repetitive controllers can 

decrease the stability robustness to model errors substantially. An alternative to this approach is 

introduced here for each respective RC method. By choosing different weights, 3rd order HORC 

has the ability to increase the width of each notch within the sensitivity transfer function by 

paying for less attenuation at the neighboring frequencies. One choice of weights for further 

widening these notches for 3rd order HORC is 2.93, -2.93, and 1. Figure 4-25 shows the 

magnitude of the sensitivity transfer function with the chosen weights where p = 20, F(z)G(z) = 

1,   = 1, and the sample rate is 100 Hz. The fundamental frequency and associated harmonics 

are equally widened and uniformly spaced. Figure 4-26 shows an enlarged view of Figure 4-25 
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to show that HORC with 2.93, -2.93, and 1 weights no longer aims for zero error at the 

neighboring frequencies due to the effort of further widening the notch. The previous (3, -3, 1) 

weight set for HORC is plotted also for comparison. One can play with these weights to adjust 

the width of the notches. However, if widened too much, the error reduction will be less 

aggressive within the neighboring frequencies of the widened notch. MPRC is also able to 

imitate such effects by addressing the fundamental period and two periods that are spaced one 

time step back and forth from the fundamental. Figure 4-25 shows that MPRC has similar 

features to that of HORC where small bumps are formulated on each side of the fundamental 

frequency being addressed. The height of each bump determines the weakened capability of error 

reduction within the widened notch. Despite having similar characteristics occurring at the 

fundamental period, it is easy to see that for the case of MPRC, the notch widening effects 

disappear as the order of the harmonics get higher. This is due to the fact that the period spacing 

becomes larger as the harmonics get higher. Therefore, it can be said that HORC has the upper 

hand over MPRC when further widening the notch without increasing the order of RC. 

Figure 4-25. Sensitivity transfer function of 
RC and MPRCi 

Figure 4-26. Enlarged view of Figure 4-25 
with HORC (3,-3,1) 
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4.6 COMPUTATIONAL DIFFERENCES IN LOW PASS FILTER IMPLEMENTATION 

In RC practice a low pass filter implementation is essential for preventing instabilities that 

may be due to unmodeled high frequency dynamics and model errors. One pays for this stability 

by not being able to address frequency components beyond the cutoff of the low pass filter. By 

achieving the same task MPRCi will need to implement five identical low pass filters H while 

HORC only needs to implement one. In other words MPRCi needs five times more 

multiplications and additions than that of the HORC to complete the cutoff of learning. A 

popular choice for H is to use 51 gains. In result MPRCi is required to compute 255 additions 

and multiplications within 1 time step for the low pass filter alone. NPS’s TAS2 was able to 

execute MPRCi in real-time with a sample rate of 5 kHz. In result the cost of computation did 

not give rise to any concerns with regards to this matter.  

4.7 INCORPORATING THE TWO CONTROL LAWS INTO MPRC 

The typical MPRC addresses multiple unrelated periods and their respective harmonics. The 

tolerance for each uncertainty within the period being addressed will be the same of that of a 

single period RC law. Therefore MPRC for its typical use will be able to tolerate very little 

period uncertainty. Inspired by MPRCi, one may incorporate HORC or MPRCi into MPRC so 

that the tolerance of period uncertainty is increased for each unrelated period being addressed. 

The design structure is the same as Figure 2-2 with the exception of replacing jR ’s within the 

block diagram with 
MPRC

ˆ( )
i

R z of Eq. (2.22) for MPRCi and 1

3
[ ( )] ( )N N
F z R z


 for HORC. The 

following will describe how to determine stability for the incorporated methods and then 

compare the sensitivity transfer function profiles resulting from decreasing the RC gain.  

4.7.1 Nonstandard Nyquist Criterion for Stability for incorporated HORC 
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The stability criterion for MPRC has been established in previous items. In order to directly 

utilize this pre-established equation for HORC incorporated into MPRC, Eq. (10) with N = 3 and 

(3, -3, 1) as the weights is expressed as 

2

HORC 3( ) ( ) ( ) , [3 3 1]j j

j

p pj j
j jp

j

B
F z R z F z B H z z

z B


   


                       (4.21) 

where F(z) is pulled out front of the equation. The formality of this equation is similar to that of a 

single period RC law within the first equation of Eq. (2.20). Due to this similarity it is possible to 

replace jH and jpz of Eq. (2.20) respectively with jB and 3 jpz of Eq. (4.21) to obtain the stability 

criterion for HORC incorporated into MPRC. The same rules apply by determining stability 

depending on the encirclement of the point -1 within the polar plot of interest. 

4.7.2 Nonstandard Nyquist Criterion for Stability for incorporated MPRCi 

MPRC does not have the convenience of being packaged into the formality of the single 

period RC design structure. The result of this is that the stability criterion cannot be deduced in a 

simple manner such as the HORC case. The full equation will not be derived here. Instead, one 

will assume ˆ 1G   so that the equation can be simplified.  Taking into account that one has a 

perfect compensator for MPRCi incorporated into MPRC, the discrete representation of the 

control law 
MPRC

ˆ( )
i

R z  is expressed as 

3
MPRC 3 1 2 3[( 1)( 1)( 1)] 1iR R R R                                           (4.21) 

for 3-period MPRCi and 

2
MPRC 2 1 2 3[( 1)( 1)( 1)] 1iR R R R                                           (4.22) 
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for 2-period MPRCi where jR  (j = 1, 2, 3) is defined within the first equation of Eq. (2.22). 

Based on this simplified control law the characteristic polynomial is rearranged into the form 

where the 1 2 33( )p p p   roots on the unit circle of the original equation is removed. We can 

write this polynomial in the form 

 1 2 33( ) 3 2 2 2 3
MPRC MPRC MPRC MPRC MPRC MPRC MPRC MPRC

MPRC 3

( ) 3 ( ) 3( ) 3 3( ) ( ) 1

1

p p p
i i i i i i i i

i

z B A B A B G C C C

P

         

 
    (4.23) 

31 2

3 31 2 2 1

31 2

31 2

MPRC 1 2 3

MPRC 1 2 3 3 2 3 1 1 3 1 2 2

1 2 3 2 3 2 3 1 3 1 3 1 2 1 2 1 2 3 1 2 3

MPRC 1 2 3

( )( )( )

[( )( ) ( )( ) ( )( ) ]

... [( ) ( ) ( ) ]

( )

pp p
i

p pp p p p
i

pp p

pp p
i

A z H z H z H

B z H z H H z H z H H z H z H H

z H H H z H H H z H H H H H H

C z H z H z H

  

      
 

   

        

      

   2 3 3 1 1 2 31 2
1 2 2 3 3 1 1 2 3( )p p p p p p pp pz H H z H H z H H z H H H          

(4.24) 

for 3-period MPRCi incorporated into MPRC and 

 1 2 32( ) 2 2
MPRC MPRC MPRC MPRC MPRC

MPRC 2

( ) 2 2 ( ) 1

1

p p p
i i i i i

i

z B A B G C C

P

       

 
                (4.25) 

for 2-period MPRCi incorporated into MPRC. Given the periods, a necessary and sufficient 

condition for asymptotic stability of each case is that the MPRC 3( )iP z  image or MPRC 2 ( )iP z  image of 

the unit circle i Tz e   does not encircle the point -1. 

4.7.3 Instability due to decreasing the RC gain 

Previous items showed stability analyses of both HORC and MPRCi. The former method 

would become unstable with decreasing the RC gain opposed to the latter case in which the 

model error stability robustness was increased. It is investigated within this item whether this is 

true for the incorporated methods through numeric simulations. 
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Figure 4-27. HORC incorporated into 
MPRC, RC gain = 0.8 

Figure 4-28. HORC incorporated into 
MPRC, RC gain = 0.4 

The nonstandard Nyquist plots of HORC incorporated into MPRC were depicted based on the 

assumption of ˆ 1G   and 1G  , while addressing the periods, 30, 45, and 101. Figure 4-27 and 

Figure 4-28 show similar results to that of the HORC case where the system becomes unstable 

when the RC gain is tuned down beyond a certain value. Although it will not be further 

determined whether this relationship can be proven analytically, it is plausible to think so based 

on the fact that HORC alone has such characteristics. MPRCi incorporated into MPRC is 

essentially MPRC with more periods being addressed. Therefore the incorporated method for 

MPRC will be asymptotically stable for a small enough RC gain  . This can be shown by 

applying the small gain stability theory for RC to the characteristic equation of Eq. (4.23) or Eq. 

(4.25) for the 3-period and 2-period case respectively. The derivation will not be shown here. 

4.7.4 Sensitivity transfer function for incorporated HORC 

The motivation of incorporating HORC into MPRC is to increase the robustness of 

disturbance period uncertainties for each period being addressed by MPRC. As expected, Figure 

4-29 and Figure 4-30 shows that the sensitivity transfer function increases the notch feature of 

each frequency being addressed, which are 0.99, 2.22, and 3.33 Hz. 
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Figure 4-29. Sensitivity transfer function of 
HORC incorporated into MPRC 

Figure 4-30. Enlarged view of Figure 4-29 

One can decrease the RC gain and expect the same result of that of the HORC case where 

sensitivity to unaddressed frequencies and noise can be reduced. However, due to the fact that 

decreasing the RC gain has the possibility of harming the stability of this control law, one may 

be reluctant to reducing the RC gain for any reason. Instead, it may be more intriguing to fine 

tune the gain of MPRCi incorporated into MPRC to be less concerned of stability issues. 

4.7.5 Sensitivity transfer function for incorporated MPRCi 

MPRCi incorporated into MPRC is basically MPRC addressing multiple frequencies where 

some of which are identical to each other. As it is already a given fact that MPRC abides by the 

rules of the small gain stability theorem, MPRC will be asymptotically stable for a small enough 

RC gain chosen by the designer. This gives the advantage of worrying less about stability issues 

while fine tuning the performance in terms of noise and unaddressed frequency amplification 

matters. As shown in both Figure 4-31 and Figure 4-32, the functionality of decreasing the gains 

is straight forward without any concerns of any high peaking phenomenon that may occur. 

0 10 20 30 40 50
0

50

100

150

200

250

300

350

400

Frequency (Hz)

F
re

q.
 R

es
po

ns
e 

of
 m

ag
ni

tu
de

 o
f 

 S
(z

)

0 0.5 1 1.5 2 2.5 3 3.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Frequency (Hz)

F
re

q.
 R

es
po

ns
e 

of
 m

ag
ni

tu
de

 o
f 

 S
(z

)



74 
 

 
 

Figure 4-31. Sensitivity transfer function of 
MPRCi incorporated into MPRC 

Figure 4-32. Enlarged view of Figure 4-31 

 

4.8 NOTCH WIDENING EFFECTS FOR OTHER CONTROL LAWS 

A previous publication evaluated five different candidate control algorithms for addressing 

optical jitter on a spacecraft testbed. One of the five which is called Matched basis function 

repetitive control (MBFRC) showed similar results to that of MPRC when addressing identical 

periods. The notch widening effect within the sensitivity transfer function is investigated here 

with regards to MBFRC when addressing multiple identical disturbance periods. In addition to 

MBFRC, Model predictive control (MPC) is also studied to see if such characteristics exist when 

addressing same periods as well. 

4.8.1 Notch widening effects in MBFRC 

Instead of addressing all frequencies of a given period, MBFRC individually addresses each 

frequency. One form finds the error components at these addressed frequencies using the 

projection algorithm of adaptive control. It uses only frequency response knowledge at addressed 

frequencies to eliminate error at these frequencies. Frequency domain raising produces an 

equivalent time invariant pole/zero model of the control law for each frequency addressed 

0 10 20 30 40 50
0

50

100

150

200

250

300

350

400

Frequency (Hz)

F
re

q.
 R

es
po

ns
e 

of
 m

ag
ni

tu
de

 o
f 

 S
(z

)

 

 

RC gain    = 1
RC gain    = 0.4
RC gain    = 0.1

24 25 26 27 28 29
0

2

4

6

8

10

Frequency (Hz)

F
re

q.
 R

es
po

ns
e 

of
 m

ag
ni

tu
de

 o
f 

 S
(z

)

 

 

RC gain    = 1
RC gain    = 0.4
RC gain    = 0.1



75 
 

 
 

2

2 2

[cos( ) 2cos( ) cos( )]
( ) ( / ) 1,2,3, ,

[ ( 2)cos( ) (1 )][ 2cos( ) 1]
n n n n n

n n n
n n n n

z z z
T z a r n N

z a z a z z
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     
     (4.26) 

Here n  is the angle in the complex plane associated with the frequency being addresses (with 

180 deg corresponding to Nyquist), nr  and n  are the magnitude and phase response at this 

frequency, and na  is a gain chosen between 0 and 2 associated with convergence of the 

projection algorithm. Figure 4-33 gives the structure of the control system for addressing N 

frequencies. The   and the n  are gains, and it can be proved that for sufficiently small gains 

one is guaranteed convergence to zero error (see Ref. [30]). As in MPRC one makes use of 

knowledge of the disturbance period, and this approach avoids either interpolation or 

approximation of the disturbance periods as an integer number of time steps, as needed in 

MPRC.  

( )G z( )DY z 0 ( )T z

1( )T z

( )NT z

0

1

N



 

Figure 4-33. Control scheme for match basis function repetitive control 

Previous experiments on the TAS2 showed that MBFRC would have better disturbance 

rejection capabilities in the presence of disturbance uncertainties when addressing three identical 

periods. In order to verify whether this is true for MBFRC in general, we investigate the notch 

widening effects by analyzing the sensitivity transfer functions of MBFRC. 
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Figure 4-34. Sensitivity transfer function of 
two cases of MBFRC 

Figure 4-35. Enlarged view of Figure 4-34 

A simulation is performed by comparing the sensitivity transfer functions of MBFRC 

addressing 10 evenly spaced frequency components starting from 0 to 9 Hz. Among the two 

sensitivity transfer functions one of which is redundantly addressing the 5 Hz frequency 

component by three times. The gain   is set to 0.01 for both cases. In Figure 3-34 and Figure 3-

35 the sensitivity transfer function displays a widening at the 5Hz-notch where the frequency 

component is being redundantly addressed. The notch is widened in a sense that the narrowness 

of the valley has decreased and therefore permits more error attenuation when the true 

disturbance is slightly deviating from the addressed frequency than that of the typical MBFRC 

case. In order to gain some intuition on how this is possible a mathematical explanation is 

provided within the following. 

For the sake of simplify with regards to the math of the sensitivity transfer function of 

MBFRC, we assume that there are no plant dynamics, thus nr  and n  equal 1. na  = 1 as well and 

there is only one frequency component being addressed. The sensitivity transfer function is now 

expressed as 
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                   (4.27) 

where N refers to the number of times the frequency component   is being redundantly 

addressed. In order to see how N affects the magnitude of Eq. (4.27) near the addressed 

frequency component, we substitute z of Eq. (4.27) with je   to obtain 22 sin ( ) jjN e  , which is 

the resulting denominator term of Eq. (4.27) at the addressed frequency component. The 

magnitude of the denominator of Eq. (4.27) is 22 sin ( )N   at this frequency. This gives some 

information that increasing N will decrease the magnitude of ,MBFRC NS  near the addressed 

frequency component and therefore having a less narrow valley within the sensitivity transfer 

function. 

4.8.2 Notch widening effects in MPC 

Previous publications show that there are several ways of implementing Model predictive 

control (MPC) (see Ref. [31]). Only one of which will be used here to explain the notch 

widening effects of MPC. In the case where one has only disturbance corrupted data, one can 

create a system model 

2 2

0 1

( ) ( )
d dn f n n f n

i i
i i

y k i u k i 
   

 

                                              (4.28) 

with the disturbance information embedded within the equation. In Eq. (4.28) n refers to the 

order of the disturbance free model, f refers to the number of expected frequency components, 

and dn  equals zero when there is no disturbance at DC or at Nyquist frequency. Eq. (4.28) is 

further reformulated into a predictive control model such as the example below. 
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(4.29) 

The above Eq. (4.29) is the predictive control model for a 3rd order disturbance embedded system 

model, where n + 2f + dn  = 3 within Eq. (4.29). The predictive model is formulated so that the u 

input and y output terms are separately packaged with respect to 4 future terms with a subscript 

denoted as F and 3 past terms with a subscript denoted as P. Premultiplying by the inverse of the 

coefficient matrix on the left produces a model of the following form, giving the future output as 

a function of past command inputs, past output, and future command inputs. 
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s = 4 and p = 3 for Eq. (4.29). Linear model predictive control generates the set of inputs from 

the current time to the end of the prediction horizon in order to minimize the quadratic cost 

function over this time interval 

, , , ,( ) ( ) ( ) ( ) ( )
T T

F s F s F s F sJ k y k Qy k u k Ru k                                        (4.33) 

For a recursively adapting scheme only the first time step of this result is applied to the system, 

and the process is then repeated each time step. Substituting Eq. (4.30) into Eq. (4.33) and then 

minimizing with respect to , ( )F su k  yields, 

, 1 , 2 ,

1 1 2 2

( ) ( ) ( )

( )

F s P p P p

T T

u k Au k A y k

A BP A BP B R W QW W Q

 

    

                            (4.34)  

and the + superscript denotes the pseudo-inverse. Since only the first time step of this result is 

applied, the MPC controller is an IIR filter for the control action at time step k that can be written 

as 

1 1

1 0

( ) ( ) ( )
p p

i i
i i

u k G u k i H y k i
 

 

                                             (4.35)  

where the iG  and iH  gains come from the first row of 1A  and 2A  respectively for a single input 

single output system. 

Previous investigations showed that when there the broadband disturbance is large compared 

to the narrowband disturbance that needs to be annihilated, the MPC controller would have 

trouble accurately identifying the disturbance period. If one were to have information of the 

narrowband disturbance frequency prior to this identification procedure, it would be possible to 
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address this issue by artificially embedding the narrowband disturbance redundantly into the 

disturbance embedded system model of Eq. (4.28) such as 

2 2
2 2

1 1
0 1

[ 2cos( ) 1] ( ) [ 2cos( ) 1] ( )
d dn f n n f n

N N
i i

i i

z T z y k i z T z u k i   
   

 

                (4.36) 

where N is the number of times the frequency component of interest is being addressed. After 

Eq. (4.36) is rearranged into the ARX model form such as Eq. (4.28), the MPC IIR filter can be 

produced by sequentially following Eq. (4.29) through Eq. (4.35). A numeric simulation is 

conducted that shows the notch widening effects of MPC when same frequencies are addressed 

multiple times (See Figure 4-36 and Figure 4-37). 10, 25, and 40 Hz are addressed by MPC for 

one case while the other addresses the same periods with the 25 Hz component addressed 3 

times. The plant is a 3rd order model with 100 Hz sampling rate. 

Figure 4-36. Sensitivity transfer function 
MPC showing notch widening effect at 25 

Hz in Log. Scale 

Figure 4-37. Sensitivity transfer function 
MPC showing notch widening effect at 25 

Hz 

Therefore one is able to widen the notch of the sensitivity transfer function of MPC by 

artificially embedding disturbance information into the disturbance embedded system model of 

Eq. (4.28). 
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4.9 CONCLUSIONS 

It was shown that when MPRC was implemented to address multiple periods that were 

identical, the transfer function representation was identical to that of HORC provided that the RC 

gain was set equal 1, there was no cutoff filter used, and a perfect RC compensator was used for 

nullifying the dynamics of the plant model such as ˆ 1G  . This specific configuration of periods 

with MPRC was referred to as MPRCi, which produced robustness to period fluctuations. A 

comparison between the two methods was made changing the fixed condition, namely the RC 

gain  .  Emphasis was given to reducing the final error level. 

4.9.1 Stability 

When decreasing the RC gain HORC would go unstable with a small enough gain. MPRCi 

on the other hand would have an increase in robustness to model error due to the small gain 

stability theory. Increasing the RC gain above 1 would induce instability for both methods. 

4.9.2 Sensitivity Transfer Function Profile 

 When decreasing the RC gain MPRCi would show similar characteristics to that of the 

single-period case where the unaddressed frequencies would get smaller by paying for more 

sensitivity with regards to accurateness of periods being addressed. However, HORC would have 

high peaking side lobes within the range of unaddressed frequencies before becoming unstable. 

These high peaking side lobes can severely amplify errors that are within range of these. 

4.9.3 Final Error Level due to Broadband Disturbance and Measurement Noise 

The final error level of HORC due to broadband disturbance and measurement noise can be 

severely amplified by high peaking side lobes within the sensitivity transfer function for a small 
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enough RC gain. MPRCi on other hand can fully use the capabilities of reducing sensitivity to 

noise and broadband disturbance by fine tuning the RC gain. For short range of decreasing the 

RC gain from 1, HORC is capable of amplifying less error due to measurement noise and 

broadband disturbance when compared to MPRCi. However, this value is not at significant and 

can be considered negligible. 

4.9.4 Frequency Error Tolerance 

For a given RC gain, HORC is slightly more tolerant to period uncertainties than that of 

MPRCi.  Nevertheless, simulation results show that this advantage is not significant. Due to 

stability matters, MPRCi is exclusively capable of fine tuning the RC gain in hardware so that 

ideal performance is achieved by monitoring the error level in data. 

4.9.5 Widening the Notch Further without Increasing the Order 

HORC has the ability to widen the notch further by simply changing the configuration of 

weights and by paying for less attenuation near the neighboring frequencies of the addressed 

ones. MPRC is capable of mimicking such performance by spreading the addressing periods 

apart by a certain amount of time steps. However, MPRC fails to do this for harmonics. 

4.9.6 Low Pass Filter Implementation 

Using a cutoff filter is considered essential for real situations in implementing RC. Due to the 

difference in the design structure for both methods, MPRCi requires five more cutoff filters than 

that of HORC. Nevertheless, previous experiments showed that today’s computers had no 

trouble with processing MPRCi in real time despite having a fast sample rate of 5 kHz.  

4.9.7 Incorporating into MPRC 
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 It was shown that both HORC and MPRCi could be incorporated into MPRC in order to 

address unrelated periods while increasing the robustness to period uncertainties. Simulation 

results showed that the incorporated-HORC would go unstable for a small enough RC gain. 

From that regard, incorporated-MPRCi would be stable due to the small gain stability theory. 

Incorporated- MPRCi is also exclusively capable of fine tuning the RC gain to achieve ideal 

performance. 

4.9.8 Other Control Algorithms 

MBFRC and MPC both showed notch widening characteristics within their respective 

sensitivity transfer function when the periods were addressed redundantly. 
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CHAPTER 5 

ADDRESSING BAD TRANSIENTS WITHIN STARTUP OF  

MULTIPLE-PERIOD REPETITIVE CONTROL 

5.1 INTRODUCTION 

The previous chapter has shown that MPRCi can be used to widen the notch of multiple 

frequencies. This is ideal for situations where there are multitudes of frequency content within 

the disturbance with some degree of period uncertainties. The width of each notch within the 

sensitivity transfer function, which is the transfer function of disturbance to error, can be 

adjusted by the Repetitive controller gain until the designer can find the ideal gain that produces 

the best error mitigation performance. However, experimental results from Reference [28] show 

a sudden jump within the early stage of the transient response when implementing MPRCi 

shown in Figure 5-1. The startup issue observed is different from other startup issues with 

repeating high frequency images within the response of single-period RC (see Ref. [32], [33]). 

The purpose of this chapter is to investigate the cause of bad transients when implementing 

MPRCi, and then find a method to resolve the issue. Further investigation will show similar 

issues can be found in MPRC when addressed periods are close together. 

5.2 HIGH PEAKS WITHIN THE TRANSIENTS OF MPRC WHEN ADDRESSING 

IDENTICAL PERIODS 

MPRCi is a special configuration of MPRC where the Repetitive controller addresses multiple 

identical periods. A hypothesis is made here that the size of the peak would differ depending on 

how these periods are spread apart from each other. An algorithm was developed so that the sum 

of the three periods being addressed would be fixed to the value 120. The periods are then 

randomly distributed within this fixed sum. For each set of randomly distributed periods a 
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numerical simulation was performed by addressing these periods with MPRC. For simplicity we 

assume that the plant has no dynamics. Figure 16 shows the standard deviation of the three 

periods and the associated normalized peak, which is the ratio between the maximum value 

transient peak and the maximum value disturbance peak, within the transients of the response. 

The plot shows a trend that implies that the normalized peak increases as the three periods are 

close together. By paying close attention to Figure 5-2 one can notice that the normalized peak is 

at its maximum when all periods are the same. The investigation goes further by increasing the 

number of periods being addressed by MPRCi via numerical simulation. 

 

Figure 5-1. High amplitude peaks within the 
transient from Reference 4 

Figure 5-2. 10000 samples for the 
normalized peak in 3-period MPRC 

  

Figure 5-3. Normalized peak as a function of 
the number periods being addressed by 

MPRCi 

Figure 5-4. Numerical simulation of 3-period 
MPRCi addressing 1 Hz 
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Figure 5-3 verifies that the peaks get larger as more periods are addressed in MPRCi. This can be 

an issue when the transient peak is larger than the saturating limits of the hardware actuator. The 

MPRC system can go unstable due to the nonlinearities introduced to the system. 

5.2.1 Reason for High Peaks within the Transients of MPRCi 

It is certain that MPRC will have high amplitude peaks within its transient response when 

addressing multiple identical periods. Figure 5-4 shows the response of a numerical simulation of 

MPRCi addressing a 1 Hz disturbance. The plant dynamics are discarded within the simulation 

for simplicity. The plot shows a noticeable peak that is twice the size of the original disturbance. 

The phenomenon is investigated in detail by analyzing the 3-period MPRCi case. 

The block diagram of MPRC is shown in Figure 2-1 where the design parameters have been 

selected so that ( ) 1 / [ 1]np
nR z z  , F(z) = 1, G(z) = 1 and ˆ ( ) ( ) ( )G z F z G z = 1 for simplicity. 

The parameters each represent the Repetitive Control (RC) law for each period being addressed, 

RC compensator, and the true world respectively. These parameters have been specifically 

chosen for a true world with no dynamics or unit transfer function plant. For real applications the 

dynamics of the plant exist and design methods of Reference [8] are needed for MPRC 

implementation. With the selected design parameters, each transfer function block in Figure 2-1 

can assume the basic difference equation form ( ) ( ) ( )u k u k p e k p     . The Repetitive 

controller has to wait at least p time steps before it is turned on. When the controller is initiated 

at time step ik  each transfer function block within the diagram is turned on synchronously. Since 

u  for each block is zero for all samples that exist prior to time step ik , each transfer function 

block will output a signal that is equivalent to ( )e k p   from ik  to ik +p-1 time steps. Due to the 

fact that each control block looks p time steps into the past, the two interconnecting blocks such 
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as 1
ˆR G  and 2

ˆR G will not be able to contribute to the error being fed into 2R F  and 3R F  during 

the first period, which is from ik  to ik +p-1. Therefore only the three control blocks 1R F , 2R F , 

and 3R F  will contribute to the adjusted command U(z) during the first period after the control 

law was turned on. As mentioned previously the three control blocks will output the same signal 

( )e k p   for the first period. Thus, ( ) 3 ( ) 3 ( )u k e k p v k p       where v(k) is the 

disturbance signal. The resulting output during the first period of control action is 

( ) [1 3 ] ( )y k v k p    and 
1

( ) 2 ( )y k v k p


    when   = 1. The result is characterized as an 

overcompensation of the error as each control law tries to address the disturbance independently 

during the first period of control action. This explains the factor of two amplification and 

reversed sign observed in Figure 5-4. One can expect that changing the periods slightly different 

from each other will not drastically change the peak value. Figure 5-2 implies that this is true by 

showing that the peak value is still high when the peaks are close to one another.  In conclusion, 

the MPRC addressing periods that are identical or close to each other have a high possibility of 

saturating the hardware actuator when one wants to increase the number of addressed 

frequencies. 

5.2.2 The Effect of DC Offset within the Error 

Analogous to having high peaks within the transient response, the DC bias within the error 

can be overcompensated as well due to the structure of MPRC. In order to understand the 

phenomenon we isolate the DC component from the error within the difference equation of the 

three control blocks 1R F , 2R F , and 3R F  such as ( ) ( ) ( ) ( )s DCu k p u k e k e k      where ( )se k  

and ( )DCe k  are the periodic error and DC bias respectively. It can be well understood that the 
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( )DCe k  component will be overcompensated by the same logic as the previous case. Figure 5-5 

shows overcompensation due to both the sinusoidal component and DC component of the error. 

Due to this phenomenon it would be reasonable to have a closed-loop feedback law that 

addresses bias within the error before applying an MPRC law addressing multiple identical 

periods. 

 

Figure 5-5.  MPRCi with DC bias of 1 Figure 5-6.  MPRCi addressing 2nd 
harmonic 

  

5.2.3 Having Multiple High Peaks when Addressing Harmonics 

From the previous items it was determined that overcompensation of the error would occur 

during the time the MPRC law was first turned on until p time steps after. In cases where 

harmonics exist within the disturbance signal, the error recorded by each individual controller of 

the MPRC law would contain multiple peaks depending on the order of the harmonics. As the 

adjusted command is outputted these peaks will be overcompensated as well causing multiple 

high peaking within the transient response. The number of peaks is equal to the order of the 

harmonic + 1. Figure 5-6 shows MPRCi addressing the 2nd harmonic of 1 Hz. 

5.3 ADDRESSING THE ISSUE OF HIGH AMPLITUDE TRANSIENTS WITHIN MPRC 
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High peaks within the beginning of Repetitive control action can saturate the actuator limit of 

the hardware causing instabilities. The following item will discuss how this issue can be avoided 

when implementing MPRCi. 

5.3.1 Decreasing the Repetitive control gain 

The simplest approach is to decrease the Repetitive control (RC) gain within the MPRC law. 

The decreased gain will scale down the error so that the adjusted command during the first 

period ( ) 3 ( )u k v k p    will not overcompensate for the error. The tradeoff is that one must 

pay for a slower learning rate to get rid of the peak. The results addressing a 1 Hz disturbance 

signal is shown in Figure 5-7. Although this might be a bit discouraging in terms of achieving 

maximum convergence rate, real world applications are prone to have model errors which 

warrant the need for decreasing the RC gain to stabilize the controller (Ref. [26]). Another good 

reason for decreasing the RC gain is for reducing the amplification of unaddressed frequencies 

due to the waterbed effect in presence of broadband disturbance. 

 

Figure 5-7. Decreasing the RC gain to get rid 
of the peak 

Figure 5-8. Sequentially turning on each 
individual RC law within MPRCi 

  

5.3.2 Sequential start for each individual RC law 
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The previous item explains how the control blocks within Figure 2-2 overcompensate for the 

error. Instead of implementing each control block on first attempt, the individual RC laws can be 

turned on ip , which is the period of previously implemented control law, time steps after the 

previous RC law was turned on. This will indeed prevent overcompensation of error, but there is 

concern that this may extend the time required to converge when compared to implementing all 

individual RC laws on first attempt.  Figure 5-8 shows deadbeat like response when sequentially 

turning on each individual RC law. Since the error is already addressed when the first RC law is 

turned on, the convergence time is not delayed at all and actually faster than starting on first 

attempt. The investigation is progressed by slightly changing the periods being addressed to 93, 

90, and 87 with RC gain equal to 1.  

  

Figure 5-9. Sequential start up for periods 
93, 90, and 87 with   = 1 

Figure 5-10. Sequential start up for 3-period 
MPRC addressing 35.5 Hz CMG induced 

jitter 

  

Figure 5-9 shows a comparison of turning on the individual RC laws on first attempt and the 

new sequential method. The sequential method addresses the period starting from the largest to 

smallest. According to the results the method of sequentially turning on each individual RC law 

is very effective when periods are close to each other. The time delay due to the sequential turn 
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on process is almost negligible. Although it is not shown here there is no need to employ the 

sequential method when periods are spread far apart since the high amplitude peak naturally 

diminishes. Figure 5-10 shows experimental results with the TAS2 using 3-period MPRCi while 

the CMG’s are turned on, but without the testbed floating. The sequential method eliminates the 

overcompensation that occurred when starting at first attempt. Going back to the previous 

example shown in Figure 5-9, it is important that the periods should be addressed starting from 

the highest period to the lowest period. The reason for this originates from the basic concept that 

each individual RC block during the first period will output a signal that is equal to the error one 

period back or ( )e k p . If the previous RC block was addressing a shorter period than that of 

the current RC block, the error that is learned by the current RC block will contain jump 

discontinuities that was created when the output signal of the previous RC block was applied to 

the adjusted command U(z).  

 

Figure 5-11. Mitigating jump discontinuities by delaying start up of each RC law 
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at 1 2max( , )ik p p . The third RC law is turned on at 1 2 1 2, 3max( , ) max( , )ik p p p p p  . This 

method reduces jump discontinuities within the output signal by avoiding learning during the 

adjustments made by the previous individual RC laws within the design structure. Figure 5-11 

shows a more detailed view addressing the same disturbance given within Figure 5-9. 

5.4 CONCLUSIONS 

MPRC shows high peaks within its transient response when addressing identical periods and 

periods that are close together. This phenomenon occurs when each individual RC law within the 

MPRC structure is turned on at first attempt. In order to remedy the issue a sequential method of 

turning on each individual RC law was introduced and was shown to be very effective by 

completely eliminating the high peak within the transient response. 
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CHAPTER 6 

EVALUATION OF FIVE CONTROL ALGORITHMS FOR 

ADDRESSING CONTROL MOMENT GYROSCOPE INDUCED 

JITTER ON A SPACECRAFT TESTBED 

6.1 INTRODUCTION 

Spacecraft very often experience problems with jitter. It is usually produced by reaction 

wheels or control moment gyros (CMGs) that serve as actuators for the attitude control systems, 

but can be due to other sources such as a momentum wheel, or a cryogenic pump. Jitter can 

compromise the performance of fine pointing equipment on board, and one can try to use passive 

vibration isolation techniques to address this problem. Active control methods specifically 

designed to use knowledge of the periodic nature of the disturbance can produce better 

performance. In some applications one mounts the fine pointing equipment on an active isolation 

mount such as a Stewart platform to apply active control methods, as treated in Ref. [34]. A new 

class of applications relates to the new communications technology of laser communications 

relay (LCR) that has substantial advantages over radio frequency (RF) systems. The precise laser 

pointing requirements challenges the acquisition, tracking, and pointing (ATP) technologies. But 

the jitter suppression can replace the complexity of a 6 degree-of-freedom Stewart platform with 

a much simpler pan and tilt control of a fast steering mirror (FSM). It is the purpose of this paper 

to perform experimental implementations of 5 different candidate control methods for addressing 

the jitter rejection problem, in order to obtain insight into the characteristics, issues, and 

performance of each method in hardware applications.   
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The Adaptive Optics Center of Excellence of Naval Postgraduate School (NPS) Three-Axis 

Simulator 2 (TAS2) testbed is a spacecraft simulator designed for developing and validating 

ATP technologies for the Bifocal Relay Mirror Spacecraft (BRMS) whose concept is shown in 

Figure 6-1 (Refs. [35], [36], [37], [38], [39], [40]). Two optically coupled telescopes on the 

spacecraft are used to relay a laser source from the ground/air/space to a target point on the earth 

or in space. CMGs are the primary source of jitter, and experiments are performed with the 

CMGs running but without floating the testbed on its air bearing, and also with it floated. An 

active attitude control system is then in operation to maintain the spacecraft attitude, making use 

of the CMG actuators. Attitude sensing makes use of a star tracker, and special techniques are 

needed to adjust the star tracker information to account for the short distance of the spacecraft to 

the star images appearing on the ceiling of the laboratory. The following sections will briefly 

describes each of the 5 candidate jitter control algorithms. 

 

Figure 6-1. Concept of BRMS 

6.2 FIVE CANDIDATE CONTROL ALGORITHMS FOR JITTER SUPPRESSION 

6.2.1 Multiple-Period Repetitive Control and Matched Basis Function Repetitive Control 
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Multiple-Period Repetitive Control (MPRC) was explained in detail in chapter 2. Matched 

Basis Function Repetitive Control (MBFRC) was briefly explained in section 4.7.1 of chapter 4. 

In terms of the end result of each algorithm, MBFRC can selectively address a frequency 

component that does not necessarily have to be an integer number in terms of samples (Refs 

[41], [42]). MPRC on other hand requires that the period being addressed to be an integer 

number of samples without an interpolator and addresses all harmonics of the fundamental until 

the learning is cutoff by a low pass filter.  

6.2.2 Adaptive Filtered-X LMS Algorithm 

Figure 6-2 presents the block diagram structure (Refs. [11], [28], [34], [43]). A feedback 

approach to Filtered-X LMS (XLMS) estimates the correlated disturbance source signal from 

feedback information by subtracting the estimated plant output from the measured error. The 

filtered-X method gets its name by passing the reference signal through an IIR filter plant model 

in order to adjust the phase of the compensating command signal in anticipation of the phase lag 

it will experience going through the true world plant. The LMS (Least Mean Square) algorithm 

uses a stochastic gradient-descent approach, to successively minimize a cost function 

representing the mean square error such as the following. 

2

2

2 1 1 1

Independant of weights Quadratic functi

( ) [ ( )] [( ( ) ( ) ( )) ( ( ) ( ) ( ))]

[( ( )] 2 ( ) ( ) ( ) ( ) ( )

[( ( )] ( ) ( ) ( ) ( ( ) ( ) ( )) ( )( ( ) ( ) ( ))

T T T

T T

T T

J k E e k E d k k k d k k k

E d k k k k k k

E d k k k k k k k k k k k  

   

  

    
w

w x w x

p w w R w

p R p w R p R w R p
on of weights w



      (6.1) 
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where ( ) [ ( ) ( )]k E d k kp x  is the cross-correlation vector and ( ) [ ( ) ( )]Tk E k kR x x  is the auto 

correlation matrix. The stochastic approach calculates the gradient of the cost as an attempt to 

minimize it with respect to the weights ( )kw  

( ) 2 ( ) 2 ( ) ( )J k k k k  p R w                                                     (6.2) 

The two terms ( ) ( ) ( )Tk k kR x x  and ( ) ( ) ( )k k d kp x  are estimated by using the current time step 

values. 

( ) 2 ( ) ( ) 2 ( ) ( ) ( )

2 ( )[ ( ) ( ) ( )]

2 ( ) ( )

TJ k k d k k k k

k d k k k

k e k

  

 



x x x w

x x w

x

                                         (6.3) 

This results in updating the weights of an FIR filer according to  

( 1) ( ) ( ) ( )k k k e k  w w x                                                   (6.4) 

where the  w  is the weight vector, x  is the reference signal vector with length equal to 

number of weights, and   is the adaptive step gain. In order to produce the ARX plant model, 

system identification of the plant is required. XLMS does not require any information of the 

disturbance prior to implementing the control algorithm. This can be an advantage when the 

disturbance is poorly known or varies, but when there is good knowledge there is a potential for 

improved performance when this knowledge is incorporated in the algorithm. 
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( )x k

( )r k
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Figure 6-2. Feedback type Filtered-X LMS Algorithm control scheme 

6.2.3 Model Predictive Control 

Linear model predictive control uses a system model of the form (Ref. 13-15)  

1 2( ) ( ) ( ) ( )s p p s qy k q Pu k p P y k p Wu k                                            (6.5) 

Such a model can be produced from a state space model, or an ARX model (with a vector 

solution variable in the case of multiple outputs), or one can use input/output data to directly 

identify coefficients in the model of Eq. (6.5) to fit the data. The y
s
, y

p
,u

sq
,u

p
 are super vectors, 

for example, 
  
y

s
(k  q)  contains all outputs at time steps from the beginning of the prediction 

horizon for the current step k, that is step k  q , to the end of the prediction horizon, for a total of 

s time steps of output. The y refer to output, the u to inputs, and the subscript p refers to vectors 

associated with past time steps. Linear model predictive control (MPC) plans the set of inputs 

from the current time to the end of the prediction horizon in order to minimize the quadratic cost 

function over this time interval 
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 ( ) ( ) ( ) ( ) ( )
TT

s s s q s qJ k y k q Qy k q u k Ru k                                      (6.6) 

Then only the first time step of this result is applied to the system, and the process is then 

repeated each time step. Substituting Eq. (6.5) into Eq. (6.6) and then minimizing with respect to 

  
u

sq
(k)  yields, 

1 2

1 1 2 2

( ) ( ) ( )

( )

s q p p

T T

u k Au k q A y k q

A BP A BP B R W QW W Q





   

    

                                 (6.7)  

and the + superscript denotes the pseudo-inverse. Since only the first time step of this result is 

applied the MPC controller is an IIR filter for the control action at time step k that can be written 

as 

1 1

( ) ( ) ( )
p p

i i
i i

u k G u k i H y k i
 

                                                    (6.8)  

where the 
 
G

i
 and 

 
H

i
 gains come from the first r rows of A

1
 and A

2
 respectively for an r-input, 

m-output MIMO system. The implementation used here uses a real time adaptation of the 

coefficients in Eq. (6.5) using an LMS descent. Equation (6.6) requires a pseudo inverse whose 

size depends on the prediction horizon. If needed, one can update the coefficients in Eq. (6.5) 

less frequently than every time step. To start the control, one needs to produce rich input data for 

the initial identification. MPC can produce high order control laws, and it is possible that the 

controller transfer function fails to be stable while the feedback system is stable. Figure 6-3 

presents the block diagram structure of an adaptive scheme for MPC. 
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Figure 6-3. Real-time adaptive MPC scheme 

6.2.4 Clear Box Algorithm associated with Adaptive Basis Method 

The Clearbox algorithm of Refs. [47], [48], and [34] models the input/output dynamics as a 

pth order MIMO ARX (Auto-Regressive eXogenous inputs) model  

1 1

( ) ( ) ( )
p p

i i
i i

y k y k i u k i 
 

                                                    (6.9) 

that includes the influence of periodic disturbances following the internal model principle, i.e. 

instead of an explicit disturbance forcing function, the periodic disturbance is absorbed into the 

dynamics of the homogeneous equation by having poles on the stability boundary that produce 

result in oscillations at the disturbance frequencies. Hence, y(k)  is a disturbance corrupted 

output, and 
 


i
 and 

 


i
 are the coefficients of the difference equation including the disturbance 

frequencies. This model can be identified using disturbance corrupted data using a model order 
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satisfying   p  (n  2 f 1) / m , where n is the order of the system, f is the number of frequencies in 

the disturbance, and the added one handles any constant disturbance if present. To obtain a 

disturbance free system model with coefficients 
i
 and 

i
, one can convert to a state space 

model, diagonalize the model, and eliminate the state variables associated with eigenvalues on 

the unit circle and return to an ARX model. Form this model one can calculate the disturbance 

forcing function   (k)  from   

1 1

( ) ( ) ( ) ( )
p p

i i
i i

k y k y k i u k i  
 

                                          (6.10) 

If the disturbance is to be eliminated from the output after transients have disappeared, 

producing zero output, the feedforward signal u
f
(k)  needed to cancel the disturbance satisfies 

1

( ) ( )
p

i f
i

u k i k 


                                                         (6.11) 

Given a periodic signal of a given frequency, one can produce this signal as a linear 

combination of the sine and the cosine function for that frequency. More generally one can 

produce it by any two functions of that frequency that have a different phase. If   (k)  is a sum of 

periodic disturbance functions, then the Adaptive Basis Method of Refs. [48], [34], generates a 

corrective control action as a superposition time shifted values of the (k)  function  

1 1 2 2( ) ( ) ( ) ( )f N Nu k k k k                                               (6.12) 

where   N  2 f 1 , and the 
 


i
 (i = 1,…,N) are the time (or phase) shifts need to span the space. 

Their choice should satisfy 
  


i
 1 for causality, 

i
 

j
 for all i and j to avoid duplication of time 

shifts, and 
 


i
 

j
 

j
 

k  for all i, j, and k to help prevent linear dependence of the basis 
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functions. The control coefficients 
i
 in Eq. (6.12) are recursively estimated using algorithms 

such as LMS and RLS. Also, the adaptive basis method may use past time steps of   (k)  more 

efficiently than that of a typical tapped-delay filter. Figure 6-4 presents a block diagram for this 

control algorithm. 

( )k

( )k

( )fu k

 1 2

T

N  

 

Figure 6-4. Adaptive Basis Method incorporated with the Clear box algorithm 

The following will show how to derive a MIMO ARX model from a MIMO state space 

equation. Consider the state space equation  

( 1) ( ) ( )

( ) ( )

x k Ax k Bu k

y k Cx k

  



                                                   (6.13) 

where the system matrices A, B, and C are n × n, n × r, and m × n respectively for an r-input, 

m-output, n-state system. A z-transformation is applied and then rearranged with respect to the 

output Y(z) as follows 
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 1( ) ( ) ( )Y z C zI A BU z                                                       (6.14) 

The inversion term can be equivalently expressed in terms of an adjugate and determinant 

such as the following   

adj( )
( ) ( )

det( )

zI A
Y z C BU z

zI A





                                                    (6.15) 

The determinant term is multiplied on both side of the equation to yield 

det( ) ( ) adj( ) ( )zI A Y z C zI A BU z                                         (6.16) 

where the determinant term is a n-dimensional polynomial of z and the adjugate term is a  n × 

n matrix in which each element will be a (n-1)-dimensional polynomial at the most. The 

corresponding polynomials are denoted below 

1 0
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21 22 2

1 2

1 2 0
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 

    
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 
 
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




   




                                        (6.17) 

The adjugate matrix term can further be decomposed into the following 

11, 1 12, 1 1 , 111 12 1

21, 1 22, 1 2 , 121 22 2 1

1

1, 1 2, 1 , 11 2

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

i i r ir

n
i i r ir i

i

m i m i mr im m mr

a a ap z p z p z

a a ap z p z p z
z

a a ap z p z p z

  

   



  

  
  
   
  
  

   






      


               (6.18) 
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where the z-power term is now isolated from the matrices. Substituting the determinant and 

adjugate term in Eq. (6.15) with Eq. (6.17) and Eq. (6.18) respectively will yield 

11, 1 12, 1 1 , 1

21, 1 22, 1 2 , 11 1

1 1

1, 1 2, 1 , 1

( ) ( ) ( )

i i r i

n n
i i r in i i

i
i i
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which can conveniently be converted into an ARX model by applying an inverse z-transform 

such as the following 
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                                              (6.21) 

We now have a MIMO ARX model. 

6.3 EXPERIMENTAL SETUP 

The TAS2 spacecraft simulator allows us to test the above jitter control algorithms in 

hardware with realistic disturbances produced by 3 CMGs operating for the attitude control 

system. An artificially generated disturbance source was used in hardware experiments of some 

nonconventional control algorithms in Ref. [49], [50]. The TAS2 is floated on an air bearing with 

the attitude control system operating for some of the experiments, while other experiments do 
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not float the simulator. Figure 6-5 shows the TAS2 experimental setup, while Figure 8 shows the 

actual hardware. The receiving telescope receives laser light from a laser source, which is 

reflected off of the control fast steering mirror (FSM) and then off of the beam splitter, and sent 

out through the transmitting telescope directed to the desired destination on the target position 

sensing device (PSD). Ideally, one wishes to keep the laser centered on this device in spite of 

jitter of the testbed. Of course in applications one does not have access to such feedback 

information at the receiving location, and one would like to have a sensor on the output of the 

transmitting telescope that measures inertial motion of the output laser relative to inertial space. 

For purposes of these experiments we seek to eliminate all jitter as sensed at the location of the 

beam splitter, aiming to keep the signal centered on the jitter detection PSD. The characteristics 

of this control problem should be very similar to that of the actual problem, so that the 

experiments do represent an appropriate test of the effectiveness of the methods.    

Figure 6-6 shows the hardware. The optical payload consists of an upper optical deck with a 

receiver telescope, a lower optical deck with a transmitter telescope, and they are connected 

though a rotational stage with a hollow shaft to provide the gimbaled motion and the optical path 

of the beam. The transmitter telescope on the lower deck is connected to the spacecraft bus 

through passive vibration isolators. The beam splitter transmits 50% of the light to the jitter 

detection sensor, an ON-TRAC Photonics Inc. PSD. This signal is used by the candidate control 

algorithms to adjust the pan and tilt of the FSM on the lower deck.  

The attitude control system uses CMGs, which are preferred over reaction wheels due to their 

higher torque levels for agile spacecraft control. Four CMGs are mounted on the spacecraft bus, 

with rated angular momentum of 22.5 N-m-s at 2500 RPM and a maximum torque of 12 N-m. 

Attitude sensing is done with the camera shown located on the upper deck, which senses 3 stars 
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displayed on the LCD screen on the ceiling. It is connected to a dedicated computer through a 

frame grabber, and this computer communicates to the spacecraft bus computer to transfer 

attitude information. The simulator electronics is an integration of power control switch box, 

power switching and control electronics, and an industrial PC. The power control switch box has 

a main power switch and individual switches for CMGs, IMU, top deck control, and the mass 

balancing system. It also has an interface with an external power supply. Power switching and 

control electronics interface CMG controllers, IMU, IR sensor, and inclinometers. A PC104 

industrial PC has an analog input and output ports as well as digital out ports to send the 

commands and receive various data from control electronics and sensors. The main control 

program is coded in the host computer using Matlab/Simulink. Real-time control software is 

communicating between the host computer and target PC104 industrial PC via wireless Ethernet 

connection. 
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Laser Source
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Jitter 
Control 

Computer
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Computer
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Figure 6-5. TAS2 Experiment Setup 
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Figure 6-6. Image of EARL and TAS2 relaying a laser beam 

6.3.1 Control Implementation 

Two host computers and three target computers run simultaneously, but not synchronously, 

for attitude pointing and beam stabilization. All target PC’s run in a real-time operating system 

environment called xPC Target by Mathworks. The target computers are dedicated to separate 

tasks of jitter control, star tracker, and the spacecraft bus. The code is programmed in 

Matlab/Simulink, compiled into C, and then downloaded onto its respective target computer 

through a wireless router on the testbed. 

The SVS-Vistek 340 camera transmits a 640 x 480 12 bit digital sequence to the frame 

grabber which interprets the digital sequence as an image that is processed by the target 

computer at a sample rate of 80 Hz. The sample rate is selected to be 2 times faster than the bus 

computer due to the asynchronous operation between the two computers. The calculated 
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quaternion components are transmitted through the NI PCI-6733 output board toward the 

Diamond-MM-32-AT data acquisition board where the signal is acquired located at the bus 

sector. 

The bus sector computer runs a quaternion feedback control scheme based on the acquired 

quaternion components from the star tracker at a sample rate of 40 Hz. The IMU provides rate 

information used for the derivative action of the attitude control law and for the steering logic to 

drive the gimbals through a RS-232 serial port connection. The desired rotation rate is also 

transmitted through the serial connection. Hall effect sensor data from the CMG’s are transmitted 

to the jitter control computer through the data acquisition board in order to provide information 

of the rotating speed of the CMG’s. 

The PSD outputs two analog signals that range from -10 to 10 V where 0 V refers to the case 

when the beam hits the center of the sensor for both x and y axes. The analog signal is acquired 

by the NI PCI-6259 data acquisition board (DAQ) and then processed by the jitter control target 

computer at a sample rate of 5 kHz. A compensating command signal is calculated from the 

chosen control algorithm. This signal is transmitted through the DAC of the DAQ toward the 

FSM where the jitter within the beam is corrected. Figure 6-7 below shows a schematic of the 

interconnection between the several experimental components.  

Table 6-1. Software/Hardware specifications for TAS2 

Software/Hardware Specifications 

Matlab 
2011b, xPC Target 5.1, 2007b, xPC Target 3.3,OKID 

Toolbox 

Star tracker Computer AMD Athlon 64 X2 5200+ 2.7 GHz 

Jitter Control Computer Intel® Core™ i7-2600K Processor 3.4 GHz 
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Bus Computer Intel Pentium III 750MHz 

 

 

Figure 6-7. Control Implementation 

6.4 ATTITUDE SENSING WITH THE STAR TRACKER 

The attitude sensor is a star tracker. The camera processes the acquired image of the stars so 

that the vector starting from the origin of the camera coordinate frame to each star on the LCD 

screen is calculated. A reference vector of the stars that are acquired within the reference 
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coordinate frame is calculated a priori. Afterwards the star tracker calculates the star vectors 

associated with the most current orientation each time step. During the duration of the most 

recent time step, the QUEST algorithm (Ref. [51], [52]) estimates the current orientation by 

using both the reference and current-time star vectors. Because the star images are near to the 

camera and not at infinity, additional computation must be made as detailed below. One must 

modify the star vectors originating from the camera coordinate frame by recalculating the star 

vectors to start from the origin of the spacecraft coordinate frame instead. 

6.4.1 Using the Camera for Star Vector Calculation 

A method proposed by Carl Christian Liebe (Ref. [53]) shows how a camera can be used to 

compute the unit vectors pointing toward each star from the origin of the camera coordinate 

frame. The actual position of each star that is imaged on the charged-coupled-device (CCD) of 

the camera can be directly measured in terms of physical units, and this takes care of the x and y 

coordinates of the current star of interest on the CCD. The magnitude of the z coordinate, which 

is the distance between the origin of the camera frame and CCD sensor, is considered to be 

equivalent to the focal length of the lens, provided that the distance of the object is at least 10 

times larger than the focal length. Therefore one is able to calculate the unit vector of each star 

on the CCD from the origin of the camera coordinate frame. The unit vectors of stars on the LCD 

screen is computed by flipping the sign of the previous vectors according to  

1
( ) ( )

norm ( ) ( )
x c o c o

y c o c o

z

S X X X X

S Y Y Y Y

S f f


          
                

             

                                   (6.22) 
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where xS , yS , and zS  correspond to the x, y, and z components respectively, of the unit star 

vector with respect to the camera coordinate frame, ( , )c cX Y  are the coordinates of the stars 

located on the CCD sensor or focal plane, ( , )o oX Y  is the intersection of the optical axis and the 

focal plane, and f is the focal length of the lens. See Figure 6-8. When acquiring the image from 

the camera it is important that the image is rearranged so that it appears as it would if it were to 

be seen on the CCD sensor. Also, the coordinate frame of the acquired image must be equivalent 

to the selected camera coordinate frame. Only then will the star tracker provide the correct star 

vectors. 

6.4.2 QUEST Algorithm 

Let the ib  denote the star unit vectors associated with the most current time-step orientation 

of the spacecraft where i depends on the number of stars that are acquired from the image. The 

reference unit vectors, denoted as ir , are calculated offline and serve as a set of reference vectors 

for the stars when the spacecraft is aligned with the R reference coordinate frame. We wish to 

find the orthonormal 3 x 3 direction cosine matrix A by solving iAib r . The Wahba problem 

asks to find matrix A to minimize  

2

1

1
( )

2

k

i
i

L A A


  ib r                                                       (6.23) 

Alternatively, one may want to find the quaternion representation q  to minimize 

2

1

1
( ) ( )

2

k

i i
i

J a A


  iq b q r                                                  (6.24) 
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where the ia  are positive weights assigned to each measurement. Instead of minimizing J, we 

can maximize g defined as 

1
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( ) 1 ( ) /
k

i
i

g J a
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It can be shown that ( )g q  can be written as ( ) Tg Kq q q  where 
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and I is the 3 by 3 identity matrix. It can be shown that the q  of unity length that maximizes 

( )g q  satisfies the eigenvector equation K  q = q  where   is a Lagrange multiplier. 

Substitution into T Kq q  shows that it is maximized by the largest eigenvalue max( )g  q , and 

q  is the corresponding eigenvector. Once max  is found, there is no need to solve for the 

eigenvector of K, because the optimal vector of Rodrigues parameters y  and the optimal 

quaternion can be found from  

1
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6.4.3 Indoor Star Tracker Algorithm 

The star vectors originating from any point on the spacecraft will be the same when the stars 

are at infinity. Corrections must be made when the star tracker is indoors (Ref. [54]). When the 
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stars are close to the camera and when there is a discrepancy between the origin of the camera 

body coordinate frame, denoted as CO  in Figure 6-9, and the origin of the spacecraft body 

coordinate frame, denoted as SO . From Figure 6-9 one observes the difference between star 

vectors ib  and star vectors îb . Therefore the vector measured from the camera body coordinate 

frame cannot be used as a correct measurement for the spacecraft attitude with a coordinate 

frame originating at SO . The vectors from SO  to each star on the screen is calculated directly 

using basic vector calculations  

ˆ
o i i i iR   b b                                                          (6.28) 

where i  and i  are the distances from the stars to the origins CO  and SO  respectively, and oR  

is the vector from SO  to CO .  
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Figure 6-8. Star Vectors detected by 
star tracker 

Figure 6-9. The indoor star tracker problem 
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The inertial reference frame of the spacecraft is defined as the R coordinate. The direction 

cosine matrix A is equal to the three-by-three identity matrix when the spacecraft body 

coordinates are aligned with this coordinate frame. In our special case, this is the orientation that 

permits the laser beam to traverse through the entire optical path. In order to solve Eq. (6.28) we 

must project the two vector terms on the left side onto the z-axis provided that the distance 

between SO  and the LCD screen, denoted as h, can be measured accurately. Define a vector 

  p  [0 0 1]T  that is coaxial with the negative z-axis in the inertial coordinate frame R. Then i  

is calculated by the vector relationship 

   'ˆ/T B T B
i o ih p A R p A      b                                               (6.29)  

where the superscript B in both B
oR  and 'ˆ B

ib  indicate that the vectors are represented with 

respect to the moving body coordinate frame. Equation (6.29) shows that i  is dependent of A 

making ib  of Eq. (6.28) dependent of A as well. Thus Aib r  becomes ( )i iA Ab r  which is a 

nonlinear problem. The indoor star tracker algorithm developed in Ref. [54] addresses the 

nonlinear problem using a sequence of iterations solving linear equations as presented in the 

following Algorithm. Simulation results from previous work show that the orientation A will 

converge to its true value with only a few iterations provided that the initial error in A is smaller 

than 3 degrees. 

Algorithm 6-1. Indoor Star Tracker Algorithm with QUEST 
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6.5 EXPERIMENTAL RESULTS 

6.5.1 System Identification 

Both the MPRC and the XLMS algorithms want a mathematical model for the relationship of 

actuator inputs to the (Baker Adaptive Optics Light Force one) FSM to the resulting output 

measured by the ON-TRAK PSD (Figure 6-10). Such a model is helpful for MBFRC if it is to 

adaptively update the information about the disturbance frequency 
n
 and the associated gain and 

phase responses 
 
r

n
 and 

 


n
. The Clearbox algorithm allows one to create and use a disturbance 

corrupted model for the situation where it is not possible to turn off the disturbance. For the 

testbed we are able to create a model with the CMGs off in order to obtain a disturbance free 

model directly.  

Figure 6-11 separately investigates the behavior of the FSM. They commonly have a limited 

linear operating range. Uniformly distributed white Gaussian noise at the different amplitudes 

indicated result in the output frequency responses shown in the figure, and we see that the 

responses do not completely scale with the input amplitudes at higher frequencies suggesting 

nonlinear behavior for higher amplitude inputs at higher frequencies. 
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Figure 6-10. Baker FSM and ON-TRAK 
PSD 

Figure 6-11. Possible nonlinear FSM behavior 

 

To obtain the model from actuator to output, a sine sweep input from 0.1 Hz to Nyquist 

frequency was applied to the FSM at a sample rate of 5 kHz, collecting four sets of input-output 

data for the x and y axis, including any dynamic coupling between the two axes. The results are 

shown in Figures 6-12 and 6-13. The cross coupling terms in Figure 6-12 have a substantially 

reduced output and hence we neglect the coupling.  Then 14th order ARX models were generated 

for the uncoupled x and y axes using the Observer Kalman-Filter Identification (OKID) package 

(Ref. [55]) designed for identification from frequency response data.  
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Figure 6-12. Magnitude of Freq. Response Figure 6-13. Phase of Freq. Response 

6.5.2 Spacecraft Attitude Regulation and Disturbance Characteristics 

The TAS2 spacecraft bus has an upside-down pyramid mounting of four single gimbal 

control moment gyros, only three of which are used in the experiments. The skew angle is setup 

as 90 degrees, and the pseudoinverse steering logic from Bong Wei (Ref. [56]) is applied. The 

attitude regulation of the spacecraft bus uses a quaternion PID feedback control law employing 

quaternion feedback from the star tracker unit, and rate information for steering and PID control 

comes from the onboard IMU. The spacecraft regulates with respect to the desired quaternion [0 

0 0 1], which allows the laser beam to go through the receiving telescope and be relayed toward 

the designated target. The rotor speed of the CMGs is around 35.5 Hz, or 2130 rpm, and the 

sample rate of the spacecraft attitude control system runs at 40 Hz. 

From Figures 6-14 and the detail in Figure 6-15 showing the fourth quaternion component, the 

spacecraft maintains 0.01 degree accuracy during the period starting from 45 seconds to the end 

of the experiment. This accuracy allows the beam to always traverse the full optical train. After 

the quaternion feedback control law manages to maintain the beam within range of the PSD, the 
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PSD begins to collect data displaying the characteristics of the CMG induced jitter, as shown in 

Figures 6-16 and 6-17.  

Figure 6-14. Quaternion components during 
spacecraft regulation 

Figure 6-15. Enhanced view of quaternion 
components for spacecraft regulation 

Figure 6-16. Disturbance characteristics 
during spacecraft regulation 

Figure 6-17. DFT magnitude of disturbance 
environment 

 

Figure 6-16 demonstrates low frequency variations of the beam position on the PSD despite 

the active attitude control system. The Discrete Fourier Transform (DFT) of the error data in 

Figure 6-17 exhibits a tall peak at 35.5 Hz corresponding approximately to the Hall effect sensor 

information, which fluctuates between 140 and 141 time steps per revolution. The CMG speed is 
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calculated from this number of time steps between pulses, and this limits the accuracy of the 

information. Nevertheless, the dominant frequency component of the jitter corresponds closely to 

once per revolution of the CMGs. The ON-TRAK PSD uses a 10.0 x 10.0 mm duolateral silicon 

sensor for centroiding the beam. The peak to peak amplitude of the jitter corresponds to 0.43 V, 

which represents 400 micro meters on the sensor. Using the length of the optical path from the 

receiving telescope to the PSD we can approximately compute the mean amplitude of the optical 

beam angular jitter onboard of the spacecraft to be 184 micro radians. A similar attempt can be 

made to compute the angular jitter of the transmitting beam coming from the spacecraft. 

6.5.3 Disturbance Rejection Experiments without Floating the Spacecraft on the Air 

Bearing 

 In the preliminary set of experiment to understanding the characteristics of each control 

algorithm for jitter suppression, the TAS2 is not floated but simply sits on top of the air bearing. 

The CMG’s are turned on to produce the CMG induced optical jitter but the attitude control 

system is off. The control algorithms are turned on at 4 seconds. 

Figure 6-18. MPRC controlling jitter with 
CMG speeds at 21.1, 28, 34.75 Hz 

Figure 6-19. DFT magnitude of jitter from 
Figure 6-18 
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Figure 6-20. MPRC controlling jitter with 
all three CMG speeds at 35.67 Hz 

Figure 6-21. DFT magnitude of jitter from 
Figure 6-20 

 

Figures 6-18 through 6-21 display the disturbance rejection capabilities of MPRC. A 51-gain 

filter H cuts off the learning at 300 Hz, and the RC gain is reduced to 0.8 to reduce noise 

sensitivity. The compensator uses 40 gains with V set to zero in Eq. (2). Experiments are 

performed using three different periods, one for each CMG (Figures 6-18 and 6-19), and using 

the same commanded period for all CMGs (Figures 6-20 and 6-21). When addressing multiple 

unrelated periods, MPRC attenuates the dominant frequency components, but it fails to 

completely nullify the disturbance peak at 34.75 Hz due to limitations in accurately 

synchronizing with the CMG rotation speed. This peak corresponds to 143.88 samples per 

period. The rotor speed calculated by counting the number of time steps between impulses from 

the Hall effect sensor is not able to provide an accurate period when it is not an integer number 

of time steps. One could increase the sample rate separately for just the CMG algorithm, and 

then use an interpolator for the repetitive controller. Note from Figure 6-21 that MPRC 

completely nullifies the dominant frequency component and all its harmonics up to the cutoff 

when all three speeds are made to coincide, i.e. MPRC becomes robust to period uncertainties 
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when addressing multiple identical periods. This represents a new method of addressing the issue 

of sensitivity of RC to uncertainty or fluctuations in the period, and is a competitor to the higher 

order RC methods of Refs. [24] and [25]. The waterbed effect is also observed in the figure, 

where significant attenuation at some frequencies must be compensated by amplification at some 

other frequencies. More detail within this phenomenon was explained within chapter 4 and 

Reference [57]. 

Figure 6-22. MBFRC controlling jitter with 
all three CMG speeds at 35.75 Hz 

Figure 6-23. DFT magnitude of jitter from 
Figure 6-22 

 

Figures 6-22 and 6-23 show results using MBFRC with control gain 0.0002 and na  set to 1. 

The three CMGs of the TAS2 will be rotating at the same speed. MBFRC also decreases 

sensitivity to accurate knowledge of the period when it addresses multiple identical periods. The 

theory guarantees stability for sufficiently small gain (Ref. [30]), but the size of the gain was 

limited, and produced the slow convergence in Figure 6-22. The small gain limited the 

amplification from the waterbed effect. Note that for MBFRC if one wants to attenuate a 
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harmonic, one has to individually address this frequency as well as the fundamental. This was 

not done in these experiments.  

Figure 6-24. XLMS controlling jitter with 
CMG speeds at 21.3, 28, 35 Hz 

Figure 6-25. DFT magnitude of jitter from 
Figure 6-24 

 

Figures 6-24 and 6-25 study XLMS showing good disturbance rejection for not just the 

dominant frequency components but also a substantial portion of the broadband low frequency 

disturbance as well. It does not address the harmonics. Note that the DFT was taken from 70 to 

90 seconds, where the XLMS algorithm has fully converged. Although it has not displayed, the 

dominant frequency components are not completely nullified during the earlier part of the 

experimental run. Therefore much time is required to get such good results using XLMS. The 

gain required for maintaining stability is 0.03, and a large number of weights, 1500, were used 

for the tapped-delayed FIR filter. This was necessary to achieve this performance. 
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Figure 6-26. MPC controlling jitter with 
CMG speeds at 21.3, 28, 35 Hz 

Figure 6-27. DFT magnitude of jitter from 
Figure 6-26 

Figure 6-28. Adaptive Basis Method 
controlling jitter with CMG speeds at 21.3, 

28, 35 Hz 

Figure 6-29. DFT magnitude of jitter from 
Figure 6-28 

 

Figures 6-26 and 6-27 show results for the MPC approach. White Gaussian noise is applied 

for 4 seconds at the beginning of the run for initial identification with an LMS algorithm, and 

thereafter the IIR filter weights are updated every time step.  Figure 6-27 shows decent 

disturbance rejection at the dominant peaks and good broadband disturbance rejection in the low 

frequency range. This design used 80 past time steps, and 10 future steps, starting two steps 
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within the future. The adaptive step gain for the LMS algorithm is 0.000000001 in order to 

maintain stability. The MPC law here decides to act as a broadband controller. 

Adaptive Basis Method results are given in Figures 6-28 and 6-29. Note the similarity to 

XLMS. However, ABM used only 30 weights for the adaptive FIR filter compared to 1500. This 

is possible due to fact that ABM eliminates redundancies when utilizing the delayed information 

of the reference signal. The step gain is 0.03 for the LMS algorithm. However, a 300th order 

ARX model of Eq. (6.10) was used for accurately identifying the undamped natural frequencies 

due to the presence of large noise. Simulation results not shown here suggest that a lower order 

model could be successfully used. 

6.5.4 Disturbance Rejection with Spacecraft Floated 

The following results float the TAS2 on its air bearing to simulate a non-gravity 

environment. The three CMGs of the TAS2 will be rotating all at the same speed. The star 

tracker will maintain the attitude within the tolerance needed for the beam to traverse the full 

optical path. The jitter control algorithms are initiated once the spacecraft attitude controller has 

settled. The control action for each algorithm will begin after 4 seconds. It is interesting to note 

that there is a new frequency peak introduced when we float the testbed, and algorithms that do 

not address this frequency can amplify it. 



124 
 

 
 

Figure 6-30. MPRC controlling jitter with 
spacecraft floating with attitude controller 

Figure 6-31. DFT magnitude of jitter from 
Figure 6-30 

 

Figure 6-32. MBFRC controlling jitter with 
enhanced view at 4 ~ 5 seconds 

Figure 6-33. DFT magnitude from Figure 6-
32 

 

Figures 6-30 and 6-31 give results for MPRC with good disturbance rejection at the dominant 

peak using the same design parameters as previously. The waterbed effect produces 

amplification of neighboring frequencies, including amplification of the new peak. Concerning 

MBFRC, Figures 6-32 shows it is not able to stabilize the beam toward the center of the PSD, 
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although the enhanced view in the lower half of the Figure demonstrates that the high frequency 

jitter is slowly attenuating after 4 seconds. Figure 6-33 verifies that the dominant peak has been 

accurately nullified despite being unable to center at the PSD. The MBFRC results without 

floating had slow convergence due to the small gain value needed for stability. This gain 

limitation with its slow convergence may prevent the method from addressing the large 

amplitude variations encountered here. MBFRC fails to address the large-amplitude-low-

frequency-components, but succeeds in addressing the small amplitude jitter.  

Figure 6-34. XLMS controlling jitter with 
spacecraft floating with attitude controller 

Figure 6-35. DFT magnitude from Figure 6-
34 

 

In Figures 6-34 and 6-35, XLMS accurately suppresses the dominant frequency component 

using 1000 filter weights and a 0.001 adaptive step gain. Although XLMS serves its initial 

purpose by rejecting the dominant frequency term, it fails to suppress the additional 15 Hz 

component that appeared when floated. It may be that after a sufficient amount of time for 

convergence of the weights, the XLMS algorithm will be able to successively reject this 15 Hz 

component as well.  
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Figure 6-36. MPC controlling jitter Figure 6-37. DFT magnitude of Figure 6-36 

MPC in Figure 6-36 and 6-37 creates a notch feature around the dominant frequency component 

displaying perfect disturbance rejection for the frequency component of interest. MPC uses 200 

past time steps and 10 time steps for the length of the prediction horizon that starts after 2 steps 

of the current time step. ABM in Figures 6-38 and 6-39 perfectly addresses the dominant peak, 

and also a large portion of the broadband disturbance as well. ABM uses the same design 

parameters of that of the preliminary case. 

Figure 6-38. ABM controlling jitter Figure 6-39. DFT magnitude of Figure 6-38 

 

6.6 CONCLUSIONS 
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To successfully relay the beam coming from the source device to the desired target, 0.01 

degree accuracy is required by the spacecraft attitude control system of the TAS2 testbed. Once 

this has been achieved, the dominant error frequency component within the optical jitter is 

closely correlated to the speed of each CMG, but other unrelated error frequency components are 

present. The CMG induced optical jitter within the beam is around 184 micro radians, which 

may vary depending on the gimbal orientation of the CMG’s. 

MPRC requires accurate period information in order to completely reject jitter. The paper 

establishes that when all CMGs are running at the same speed, using three identical frequencies 

MPRC produces decreased sensitivity to accurate knowledge of the period, and is then a 

competitor to high order RC used for this purpose. In both cases insensitivity to period error or 

variation is accompanied by additional error amplification at other frequencies due to the 

waterbed effect. The MBFRC algorithm is shown to require low gain for stability, and this 

resulted in a failure to stabilize the beam due to attitude variations. Nevertheless, MBFRC 

manages to reject the dominant frequency component within the optical jitter.  

XLMS does a very good job for rejecting all narrowband disturbance frequencies provided 

that the weights have enough time to fully converge. More weights will provide better 

performance for the testbed’s particularly rich disturbance environment. MPC and ABM both 

show superior disturbance rejection capabilities for the dominant frequency component. XLMS, 

MPC, and ABM all have trouble addressing the lower frequency peak that appeared when the 

testbed was floated. It is possible that all three methods need more time to accurately 

characterize is low frequency due to the relatively high sample rate. If the disturbance period for 

the low frequency component that is uncorrelated to the CMG rotation can be determined prior 

to each experimental run, MPRC would be able to address this frequency with little time needed. 
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The best disturbance rejection result, which is with ABM, achieved on the AOCoE of NPS 

TAS2 reduces the jitter to 67 micro radians, about a 66 % overall amplitude reduction.  
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CHAPTER 7 

IMPROVING LASER COMMUNICATION BETWEEN FORMATION 

FLYING SATELLITES USING REPETITIVE CONTROL FOR JITTER 

MITIGATION 

7.1 INTRODUCTION 

Much attention has been triggered towards Mars missions within the spacecraft community 

after the successful decent and landing of the Mars rover Curiosity. The Curiosity uses its state-

of-the-art equipment to collect and process multitudes of data while surveying the planet. Current 

camera technology allows us to increase the resolution of the image or video taken from the 

Curiosity. This high definition imagery requires a large data transmission rate, but is currently 

limited due to the radio frequency (RF) systems being relied upon in space. The example NASA 

gives is the Mars Reconnaissance Orbiter which is capable of transmitting data up to 6 Mbps. 

Laser communication systems (or LaserCom) would increase this rate to 100 Mbps and therefore 

making it possible to transmit HD video. 

Opposed to RF where pointing accuracy of the transmitting signal is less crucial, LaserCom 

requires a combination of accurate performance in both formation flying between satellites that 

compose the communication link and acquisition, tracking, and pointing (ATP) technologies for 

spacecraft as well. Spacecraft often have multiple rotating parts such as CMG’s, reaction wheels 

and momentum wheels. Slight imbalance within any of these devices will cause vibration of the 

spacecraft structure that can be transmitted to the payload where optical elements are mounted 

for purpose of LaserCom. The vibration will cause the optical elements to shake, thus creating an 
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angular deviation in the propagating beam known as optical jitter which can potentially disrupt 

the communication link. 

The Naval Postgraduate School (NPS) Three-Axis Spacecraft Simulator (TAS2) is designed 

for developing and validating ATP technologies for the Bifocal Relaying Mirror Spacecraft 

(BRMS), which has a similar concept to that of LCR. A previous paper (Ref. [28]) written by the 

authors show experiments correcting jitter that was naturally induced by the imbalance within 

the CMG’s of the TAS2 tested while floating on top of a pressurized air bearing. The goal of the 

experiments was to suppress jitter within the beam on board of the spacecraft starting from the 

receiving telescope up to the beam splitter within the optical path. Five control algorithms were 

evaluated where the two non-adaptive control laws only had information on the primary 

frequency component of the disturbance. Under the given conditions of the testbed it was shown 

that the Clear box algorithm incorporated with the Adaptive Basis Method was able to produce 

the best results for jitter suppression on the TAS2 testbed. 

Despite providing intuition on how each control method would address the given disturbance 

situation, the experimental setup was incapable of addressing the true problem of LCR in the 

absence of line-of-sight (LOS) tracking. This paper will show modifications to the existing 

optical scheme of the TAS2 that was motivated by a lunar Lasercom setup presented by NASA 

(Ref. [58]). The paper demonstrates the effectiveness of the modifications made on the testbed 

by showing experimental results of significantly reducing target error. 

As an additional effort to the previous paper mentioned above, the sub-peaks of the 

frequency spectrum within optical jitter are investigated in detail through modal surveying 

analysis as an attempt to indentify reoccurring vibration modes. The determined frequencies will 

be supplied to a recently developed method of Multiple-Period Repetitive Control (MPRC) 
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where the width of each notch could be adjusted according to the amount of period uncertainty 

that exists (Ref. [57]). High peaking transients tend to exist when implementing this method and 

a new technique is introduced here to avoid such detrimental occurring. MPRC will serve as a 

representative of non-adaptive control laws here and will be compared to adaptive control laws 

such as adaptive Filtered-X LMS/RLS through a spectrum of different cases. The different cases 

are provided so that it is understood what the limitations and advantages are for each control law 

when addressing optical jitter. The best control algorithm for a specific situation can be chosen 

by relating to the cases discussed here. 

7.2 TRUE SCENARIO AND MODIFICATIONS TO PREVIOUS EXPERIMENTAL 

SETUP 

7.2.1 True Scenario 

An LCR operation may consist of several satellites depending on the specific mission. In this 

paper we arrange a scenario such as Figure 7-1 showed below.  

 

Figure 7-1. LCR between Mars and Earth 
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Two laser communication links are established between the communication towers and their 

respective satellites orbiting around Mars and Earth. A long distance interplanetary 

communication link exists between the two satellites and can easily be disrupted by even the 

smallest angular deviation within the transmitting beam. Rotating devices such as CMG’s and 

reaction wheels can induce vibration onto the spacecraft which makes optical jitter a common 

problem in LCR. In this paper the TAS2 testbed is tailored in the direction of improving pointing 

accuracy within the interplanetary communication link of the current LCR operation scenario. 

Although formation flying between the two satellites plays a key role in this operation, we 

replace this with a simpler spacecraft attitude regulation problem for the experiments. 

 

Figure 7-2. Source tower, target laser beacon, and TAS2 tesbed 

The experimental setup is shown above in Figure 7-2. The TAS2 represents Spacecraft #1 of 

Figure 1, which is shown in the middle of Figure 7-2. The source tower represents the one on 

Mars shown in the left picture with the telescope in Figure 7-2. The target located near the source 

tower in Figure 2 will represent Spacecraft #2, and the objective of the testbed is to mitigate 

errors measured at this target so that disruption within the interplanetary communication link is 

avoided. 
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7.2.2 Previous Hardware Setup 

Reference [28] shows that the TAS2 can successively relay a beam coming from a source 

towards a target by using attitude control through CMG’s. Information on what direction the 

spacecraft should point to for relaying was provided by an onboard star tracker unit. In a sense, 

LOS tracking of the target was coarsely achieved limited by the accuracy of the star tracker and 

bandwidth of the CMG actuators. Control algorithms were capable of suppressing jitter and any 

error left from coarse tracking with a tip/tilt Fast steering mirror (FSM) based on measurement 

readings of a Position sensing device (PSD). Unfortunately from an optical perspective the 

previous optical scheme does not pay attention to line-of-sight (LOS) error from the target in 

which case the error reduction performance is significantly degraded compared to the jitter 

suppression on board of the spacecraft platform. In addition to not having LOS tracking abilities, 

the control loop of the previous setup would not be able to correct for jitter occurring within the 

optical path beyond a certain optical element, which is referred to as a common and uncommon 

path problem in optics. Modifications are made here as an attempt to resolve these issues and 

will be described within the following. 

7.2.3 Target Laser Beacon System 

In order to provide information to the optics of TAS2 regarding the desired LOS of the 

target, a laser beacon system was newly constructed at the target or Spacecraft #2. The optical 

scheme of the laser beacon is shown below in Figure 7-3 along with the actual setup. 
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Figure 7-3. Optical scheme and actual setup for the laser beacon system at target 
(Spacecraft #2) 

Instead of directly measuring target error from the beam transmitting from the spacecraft, a 

beam splitter is placed in front of the target PSD so that the laser beacon beam is able to 

propagate through the path of the transmitting beam in the opposite direction. The laser beacon is 

a diverging beam which allows the beam to enter the transmitting telescope of the TAS2 with 

less required pointing accuracy. After diverging from a point source the size of the beacon beam 

upon arrival well exceeds the size of the transmitting telescope’s aperture and therefore makes 

the desired LOS insensitive to jitter occurring within the laser beacon system. The laser beacon 

within the true scenario is shown below in Figure 7-4.  





 

Figure 7-4. The laser beacon in the true application scenario 
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7.2.4 Target Track Loop 

 Now that the desired LOS of the target has been provided to the optical system of the TAS2, 

an additional control loop must be introduced to the existing optical scheme to correct for any 

LOS error. This new optical scheme rearranges the position of the beam splitter and introduces 

an additional FSM - PSD pair to the system which composes the target track loop shown in 

Figure 7-5. Although it will not be dealt here in detail, two lenses are integrated to the setup for 

relaying the pupil plane of the receiving telescope’s primary mirror to FSM #13 in Figure 7-5. 

The target track loop was motivated by a setup proposed by NASA shown in Figure 7-6. Instead 

of using an Inertial Reference Unit (IRU) such as the NASA scheme (Ref. [58]), the TAS2 will 

rely on a bright beacon source as mentioned previously. The laser communication satellite shown 

in Figure 7-6 does not relay the beam, yet transmits the beam from its own onboard laser source 

making the setup relatively simple. 

 

Figure 7-5. Optical setup for TAS2 
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Figure 7-6. Optical setup for NASA 

Owing to its relatively long optical path and beam relaying capabilities, the TAS2 has two 

control loops within its optical scheme. The source path jitter correction loop and the target track 

loop. The former loop is closed by FSM #3 and PSD #12 in Figure 7-5. The objective of this 

control loop is to transmit the beam from FSM #13 in the direction normal to the aperture plane 

of the telescope free of jitter. However, optical jitter occurring between FSM #13 and the 

transmitting telescope cannot be corrected by the source path jitter correction loop, which leaves 

a blind spot for jitter correction. Another issue takes place as a result of spacecraft attitude 

control error or coarse-LOS tracking error. Since the former loop only focuses on transmitting 

the beam normal to the aperture plane of the telescope, the transmitting beam would not be able 

to point towards the target if the spacecraft were to oscillate about the desired spacecraft 

orientation or have coarse-LOS error as shown in the scenario of Figure 7-4. PSD #17 of Figure 

7-5 is aligned so that the beam is centered when the incoming beam is normal to the aperture 

plane of the transmitting telescope. Any LOS error will be detected by PSD #17 and FSM #13 
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will be able to provide the correct amount of tip/tilt necessary for LOS tracking of the target. 

Nonlinearities were detected within the FSM of the previous paper. The two FSM’s are replaced 

with Optics in Motion FSM’s for linear performance.  

7.3 TARGET ERROR SUPPRESSION EXPERIMENTS WITH NEW OPTICAL 

SCHEME 

The previous item focused on explaining the modifications and how they comply with the true 

application scenario. The following section will evaluate the effectiveness of the modifications 

by performing two types of experiments. The first experiment is performed for the purpose of 

evaluating the correlation between the onboard jitter rejection performance and the target 

performance. The second experiment takes the evaluations from the previous case into account 

and provides the best results conducted. 

7.3.1 Sequence of Sub-tasks for Reducing Error in Interplanetary Link 

 In order to establish the interplanetary communication link shown in Figure 7-1, a series of 

sub-tasks must be executed in sequential order. The rotors of the CMG’s in the TAS2 are spun 

up to its ideal speed of 35.5 Hz. The TAS2 is floated on its air bearing and the spacecraft attitude 

controller is turned on with a sample rate of 40 Hz. The star tracker unit estimates the current-

time-step orientation of spacecraft by implementing the QUEST algorithm (Ref. [51]) for coarse-

LOS target tracking. Figure 7-7 shows the four quaternion components converging to [0000]T , 

which is the desired orientation for the spacecraft for coarse-LOS target tracking. Once the 

attitude controller settles at 50 seconds the two telescopes of the TAS2 roughly lock on to the 

source tower and target spacecraft respectively so that the beam is relayed. As an alternative of 

referring to the quaternion components of the star tracker, the alignment of the beam can be 
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roughly verified by observing the beam of the transmitting telescope shown in Figure 7-8. Once 

the pupil of each telescope matches up, the transmitting beam assumes the shape of a donut 

shaped image. The progression of the beam aligning by the attitude control law is shown at the 

bottom of Figure 7-8. Both source path correction loop and target track loop are turned on 

simultaneously mitigating error at the target. The target is located 29 ft from the TAS2. One the 

beam is relayed the target PSD is able to calculate the error due to jitter. Based on the readings of 

target PSD and physical size of sensor the angular jitter is calculated to be 68 micro radians. The 

target spacecraft were to be 1000 km away, the transmitting beam would be jittering 68 meters 

from the center of the target. 

 

Figure 7-7. Quaternion components from star 
tracker 

Figure 7-8. Matching the 2 pupils of the 
receiving and transmitting telescope for 

beam alignment 

  

7.3.2 Performance Correlation Between Onboard Rejection and Target Error 

 Reference [28] conducts jitter suppression experiments for several different control 

algorithms such as MPRC, Adaptive Filtered-X LMS, and the Clear box algorithm associated 
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with Adaptive Basis Method (ABM). The reader may refer to the previous paper for more detail 

about these algorithms. In order to evaluate the performance correlation between onboard 

rejection and target error, we aim for aggressive annihilation of the primary peak within the 

disturbance spectrum and compare results between the target and onboard readings.  

Figure 7-9. Error [V] in the time domain 
(MPRCi) 

Figure 7-10. DFT magnitude (dB) of Figure 
7-9 

Among the algorithms that were previously implemented we select MPRC that addresses the 

primary peak by three times. This special configuration was referred to as MPRCi from 

Reference [57], and was selected due to its capability of suppressing the designated frequency 

component and the neighboring frequencies which makes the performance observation more 

convenient. More detailed explanation on the implementation of MPRCi will be mentioned 

within later sections. Figure 7-9 shows the PSD readings of the source path correction loop, 

target track loop, and the target starting from top to bottom. Both control loops are turned on at 4 

seconds and the target starts to log data a second later. The target error readings show small low 

frequency variation even after control. This is likely to occur even for small inaccuracies that 

exist in pupil plane relaying within the target track loop or due to non-common path and 
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common path issues. Figure 7-10 shows the respective Discrete Fourier Transform (DFT) 

magnitude of the error from Figure 7-9. Deep notches are formed at the primary peak of 35.5 Hz 

for both source path and target track loop. Classic example of the waterbed effect is displayed as 

the unaddressed frequencies are amplified. The target PSD however shows a small peak at the 

primary frequency within the notch despite having aggressive suppression done by both onboard 

control loops. A possible cause for this phenomenon is when there is overcompensation done by 

the FSM’s due to common and non-common path issues within the optical setup. To be more 

specific, there can be a situation where the detected jitter is induced by an optical component that 

does not lie within primary path of the transmitting beam. Correcting for this jitter would 

actually induce jitter on to the transmitting beam of the primary path by overcompensation. 

Overcompensation of jitter can occur when components #9, #10, #11, and #12 vibrate within the 

source correction path in Figure 7-5. It also occurs within the target loop when #9, #16, and #17 

tend to vibrate as well. Although the non-common path issue is inevitable for most optical 

schemes, it is important to passively damp these components as much as possible to avoid 

overcompensation of jitter.  

7.3.3 The Effectiveness of the Modified Scheme 

The previous performance evaluation provides insight about possible overcompensation of 

jitter. From a control perspective it may be better performance-wise to be less aggressive in 

control action within the target track loop so that there can be less jitter overcompensation due to 

the non-common path issue of the optical setup. Although this is not necessarily true it is shown 

here that significant error reduction can be achieved by somewhat agreeing to this logic. Figure 

7-11 shows ABM applied to the source path correction loop at 4 seconds, and FXLMS applied to 

the target track loop at 4 seconds as well. The second subplot of Figure 7-12 shows that FXLMS 



141 
 

 
 

has not fully addressed the primary peak within the target track loop opposed to the source path 

loop where ABM was capable of thoroughly annihilating this peak. Nevertheless the third 

subplot of Figure 7-12 shows that the primary peak and secondary peak of 15.5 Hz of the target 

error has been significantly rejected. The most bottom subplot of Figure 7-11 overlays both 

results of jitter mitigation with and without the laser beacon. The contrast is significant and 

shows much improvement by using the laser beacon and target track loop. In this particular case 

the resulting control action taken onboard the spacecraft was in favor of the current non-common 

path issue within the optical setup of the TAS2.  

Figure 7-11. Error [V] in the time domain Figure 7-12. DFT magnitude (dB) of Figure 
7-11 

The second and third plot of Figure 7-12 both show a flattening profile within the low frequency 

range which implies that the target track loop has achieved its primary goal of addressing LOS 

error due to spacecraft attitude pointing inaccuracies. However, as shown within the correlation 

performance analysis of the previous item, the target track loop is reluctant to correcting for jitter 

within its path due to overcompensation of control action. It is possible that jitter mitigating 

capabilities of the target track loop can improve when components #9, #16, and #17 are better 
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isolated from mechanical vibration of the spacecraft so that jitter correction is less effected by 

the non-common path issue. 

7.4 MODAL SURVEYING AND IDENTIFYING OPTICALLY SIGNIFICANT 

VIBRATION MODES 

Reference [28] shows how five control algorithms address the primary peak of the disturbance 

that is correlated to the rotor speed of the CMG’s. However, the frequency spectrum of the 

disturbance signal consists of multiple sub-peaks that cannot be addressed by non-adaptive 

control laws without prior information of these peaks. It is the purpose of this item to investigate 

these sub-peaks in detail as an attempt to identify reoccurring optically significant vibration 

modes. The identified vibration modes can be applied to non-adaptive control laws so that the 

disturbance rejection performance can be maximized. 

 

Figure 7-13. PULSE Multi-analyzer 
system type 3560D and impulse 

hammer for modal surveying analysis 

Figure 7-14. Modal analysis frequency response 
2( / ) /m s N  results of TAS2 structure 
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Figure 7- 15. Reoccurring modes within averaged-DFT magnitude (dB) of jitter from source 
path PSD 

The PULSE Multi-analyzer system type 3560D was used for identifying structural vibration 

modes of the TAS2 testbed shown in Figure 7-13. The analyzer device itself with the impact 

hammer is located on the right top corner of Figure 7-13. Our interest is in the structural 

vibration modes that induce jitter to the beam. Therefore, the probes or accelerometers of the 

analyzer were positioned on the optical path near each optical component in order to examine 

structural modes that excite or shake these components. 24 channels consisting of 23 

accelerometer readings and 1 impulse hammer reading were used within the PULSE Multi-

analyzer system when performing an impulse response test with the PULSE 15.1 software. The 

TAS2 was floated with the CMG’s turned off when conducting the impulse test. The PULSE 

software would calculate the frequency response 2( / ) /m s N  of the TAS2’s structural dynamics 

after every impact of the impulse hammer. The frequency response was averaged after a total 

number of five impacts. Two accelerometer readings respectively located on the upper and lower 

deck of the TAS2 were selected, and the frequency response for each unit was shown in Figure 

7-14. The 15.13 Hz peak within this plot identifies the undetermined 15.5 Hz second most 

dominant peak within jitter that was questioned by the former paper from reference 4. The small 
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discrepancy between the frequency detected within jitter and frequency from modal surveying 

can be due to the accelerometer itself adding up to the dynamics of the structure. The 63.25 Hz 

peak was identified and it will be shown later to be one of the reoccurring modes within jitter 

with considerable amplitude. One can pay attention to the fact that the 63.25 Hz modes appears 

within the lower deck but not the upper deck. Nevertheless the 63.5 Hz peak will appear within 

the PSD reading due to the optical jitter’s nature of accumulating within the beam propagating 

throughout the entire optical path. Despite the effort of determining the 15.5 Hz vibration mode, 

modal surveying is not considered the best way for determining optically significant vibration 

modes. Modes located between 33 and 48 Hz within Figure 7-14 do not manifest themselves 

within jitter of the transmitting beam. In most cases optical components such as lenses are very 

sensitive and cannot adhere directly to foreign objects. Even if the probe could be attached to 

optical components, the extra dynamics added to these components may dominate the response 

giving false information about the system. Instead, a more accurate option would be a Laser 

Doppler vibrometer for surveying vibration modes that exist within large and sensitive optics. 

A more direct approach was taken for determining the reoccurring modes within jitter. The 

TAS2 was floated while the attitude controller was turned on. After the attitude settles the beam 

would align itself and data would be collected for 10 seconds from the source path PSD. This 

process would be iterated ten times. The DFT magnitude of each data set was averaged and 

shown in Figure 7-15. One curve displays raw DFT data that includes jitter and the low 

frequency variation due to attitude control error. The other eliminates the bias by implementing a 

crudely designed Proportional Integral (PI) control law through the source path jitter correction 

FSM. More attention is paid to the second curve as upcoming sections will show experimental 

results performed with control algorithms that are implemented with a PI controller. According 
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to Figure 7-15, starting from the most dominant to least dominant, the reoccurring modes within 

the disturbance are 35.5, 15.5, 63.5, 4.25, 71.25, 106.8, 119.8, and 50.5 Hz where 71.25 and 

106.8 are harmonics of the primary peak 35.5 Hz. These modes will be considered as prior 

knowledge of the disturbance environment and applied to MPRC which serves a representative 

for non-adaptive control laws. 

7.5 BASE CASE COMPARISON BETWEEN MPRC AND ADAPTIVE FILTERS 

Reference [28] focuses on rejecting the primary frequency component in jitter while no 

particular action was taken for the sub-components within the disturbance. Adaptive control laws 

such as Filtered-X LMS (XLMS), Model Predictive Control (MPC), and the Clear box algorithm 

associated with the Adaptive Basis Method (ABM) show significant disturbance rejection 

performance at the primary peak, but display less aggressiveness towards the sub-peaks. 

Nevertheless, the overall error is reduced substantially. MPRC on the other hand shows 

amplification at unaddressed frequencies due to the waterbed effect which degrades the overall 

error reduction performance. A previous paper (Ref. [57]) provides a method for implementing 

MPRCi for multiple periods and demonstrates the ability to minimize amplification at 

unaddressed frequencies by tuning the RC gain. Since the identified optically significant modes 

by modal surveying were in fact averaged from multiple data sets, there lies an uncertainty 

within the majority of the modes which makes the proposed method ideal for the given situation. 

Three case comparisons will be made between non-adaptive and adaptive control laws to 

determine the extent of each control law’s capability. MPRC is chosen to represent the former, 

while XLMS is chosen for the later. The reader can refer to Reference [28] for more detail. 

Experiments will be conducted within the source path jitter correction loop of the TAS2 while 
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the attitude control law is turned on for coarse target tracking. Jitter control begins after 

alignment settles. 

7.5.1 Nesting a Crudely Designed PI Controller within the Inner Loop 

The first class of comparisons is based on having a crudely designed PI controller nested 

within the inner loop of each control algorithm. The purpose of the PI controller is to merely 

eliminate bias within the error so that the beam is stabilized from low frequency variations due to 

attitude control error of the spacecraft. This example should make the disturbance peaks more 

distinguished as shown within Figure 7-15 and makes it convenient for observing the reduction 

rate of each peak within the frequency spectrum. 

Figure 7-16. Magnitude and phase 
response of crudely designed PI and high 

bandwidth PI 

Figure 7-17. MPRCi addressing 
frequency components identified by modal 

surveying 

Figure 7-16 shows the frequency response of the FSM to PSD plant with a crudely designed 

PI controller. The 3 dB bandwidth is 12 Hz which implies that the PI controller will function 

more or less as a bias eliminator for the given situation. The PI feedback loop is turned on 

immediately once data is collected from the source path PSD. Figure 7-17 shows results of 

MPRCi turned on at 5 seconds addressing the optically significant vibration modes. The MPRC 
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implements 13 individual RC laws in total where the primary peak is addressed with a 3-period 

MPRCi law to provide more robustness to the period fluctuation and all other components are 

addressed with 2-period MPRCi laws. According to Figure 7-17 we can see that the overall error 

is significantly reduced. However, the primary peak has not been aggressively notched out due to 

the small RC gain of 0.08 used for avoiding sever amplification at unaddressed frequencies. 

More detail is provided in Table 7-1 to show the reduction rate of each component being 

addressed. The RMS error for the last 2 seconds is 0.0211.  

Figure 7-18. Reduction rate of each 
frequency component when implementing 

MPRC 

Figure 7-20. FXLMS with different rejection 
characteristics 

Figure 7-19. FXLMS with 1000 weights 

Figure 7-19 shows jitter control results of FXLMS implemented with the crudely designed PI 

controller. In theory an FIR filter has the capability of rejecting one sinusoidal signal per two 

weighted tapped delays. The number of weights chosen here for XLMS is 1000, which means 

the adaptive FIR filter can theoretically produce a compensating signal containing up to 500 
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sinusoidal signals. The high order was chosen due to the richness of the frequency components 

within jitter detected by the PSD. A step gain of 0.001 was chosen to stabilize FXLMS. 

Although the stochastic gradient algorithm of FXLMS is not designed to eliminate specific peaks 

within the frequency spectrum of the disturbance, the middle plot of Figure 7-18 shows that 

FXLMS significantly rejects the two most dominant peaks, which are 35.5 and 15.5 Hz. 

Rejection at other secondary-peaks are hard to notice despite the fact that the bottom plot of 

Figure 7-19 shows nearly converged weights. The RMS of the weights is plotted to avoid 

complication of showing a 1000 weights. As mentioned before FXLMS adapts weights in the 

direction of reducing the overall error and does not explicitly aim for specific frequencies. Figure 

7-20 shows rejection results for a slightly different disturbance environment regarding the size of 

each peak. The 15.5 Hz before applying FXLMS is not as substantial as the previous case, and 

FXLMS does not decide to reject this specific frequency component. Nevertheless the RMS 

errors for the former and later examples are 0.0220 and 0.0207 respectively, which show that the 

overall rejection performance difference is unnoticeable despite the different frequency 

components reduction behaviors. 

Both MPRC and FXLMS show significant disturbance rejection capabilities. There was no 

noticeable error mitigation performance difference between the two algorithms based on the 

RMS computations of the final error. To add a comment, MPRC required an iterative process of 

tuning the RC gain and then observing the results to obtain this ideal performance. 

Implementation of FXLMS was relatively less complicated where the only concern was to 

stabilize the controller by decreasing the step gain. 

7.5.2 Nesting a High bandwidth PI Controller within the Inner Loop 



149 
 

 
 

This item puts more effort into the design process of the PI controller. The bandwidth is 

increased as much as possible while avoiding a high resonant peak before the cutoff as shown in 

Figure 7-16. The -3 dB bandwidth is around 194 Hz, which implies better error reduction 

capabilities at higher frequencies than the previous PI law. This item will show performance 

comparisons between the well designed high bandwidth PI controller and the two augmented 

control laws, MPRC and FXLMS. 

Figure 7-21. MPRCi with a high bandwidth PI 
controller addressing jitter 

Figure 7-22. Reduction rate of each 
component in MPRC with high 

bandwidth PI 

Figure 7-21 shows results for implementing MPRC with a high bandwidth PI controller. 

Despite having a well designed PI controller, MPRC tends to show significant error mitigation 

capabilities over the conventional feedback control law. Nevertheless the high bandwidth PI does 

a better job than the former crudely designed PI as one can verify this by comparing the bar 

charts from Figure 7-18 and Figure 7-22. This particular MPRC design consists of 15 individual 

RC laws. A 3-period MPRCi law was dedicated to addressing 35.5 Hz and associated harmonics, 

71 and 106.8 Hz. The disturbance rejection rates of these components are indicated within Figure 

7-22. The rest are addressed by 6 sets of two-period MPRCi laws. The RC gain used here is 0.09 
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for maximizing the error reduction performance with an RMS of 0.0136 which shows 

improvement over the previous case of implementing MPRC with a crudely designed PI 

controller. 

Figure 7-23. XLMS with a high 
bandwidth PI controller addressing jitter 

Figure 7-24. XLMS jerk introduced to the 
disturbance causing instability 

Figure 7-23 shows significant jitter mitigation results when implementing FXLMS with 1000 

weights. The previous experiments with FXLMS showed disturbance rejection of two peaks, 

15.5 and 35.5 Hz. In this case FXLMS decides to address 35.5 and 119.8 Hz, which are the most 

dominating peaks within the disturbance frequency spectrum shown within the middle plot of 

Figure 7-23. Although it is as not as rapid as the beginning, the weights of the adaptive filter are 

still slowly ascending in Figure 7-23. The stochastic gradient method tends to be less rapid in 

adaptation when error approaches its final value. Therefore it would be possible for more 

improvement within error mitigation performance if more time was available. The RMS error of 

FXLMS is 0.0110. 

7.5.3 Introducing sudden jerk and fault tolerant behavior 
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Faults or malfunctioning of mechanical components in spacecraft can introduce an abrupt 

impulse of jerk to the system. The sudden impulse introduced may cause complex control 

algorithms to become unstable. The following section will apply an impulse hammer to the 

optical platform of the TAS2 to evaluate jerk tolerant characteristics. 

Figure 7-24 shows results of introducing impulses to the optical platform of the TAS2 

addressing FXLMS with 1000 weights and a step gain of 0.003. Two impacts were made and 

FXLMS goes unstable after the second impulse. The impulse introduced is about five times the 

size of the disturbance after applying the PI control law. The bottom plot of Figure 7-24 shows 

that the weights go to infinity after the second impulse showing instability. Stability of the LMS 

algorithm is defined as 

max

2
0 


                                                         (7.1) 

where   is the step gain and max  is the maximum eigenvalue of the autocorrelation matrix of 

the reference signal (Ref. [43]). The impact hammer introduces a larger signal to the system and 

results in increasing the maximum eigenvalue max  for that instance. This decreases the upper 

bound of Eq. (7.1) and can cause instability when the step gain is big enough to violate the 

stability condition. In order to be tolerant to such impulses we choose a smaller step gain by 

setting it as 0.0005. Figure 7-25 shows results of FXLMS with the same impulse tests. FXLMS 

with a small enough gain is able to maintain stability for the given impulse that was applied. The 

weights tend to shift higher after each impulse. It is possible that if the impulse being applied 

was larger, FXLMS with the selected gain of 0.0005 could become unstable yet again. 
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Figure 7-26 shows results of MPRC with the same impulse tests. Unless the impulse is large 

enough to saturate the actuator, MPRC will be stable for any type of impulse introduced to the 

system. The bottom of Figure 7-26 shows the DFT magnitude of the error after the second 

impulse and demonstrates that MPRC can maintain good disturbance rejection capabilities after 

jerk has been introduced. 

Figure 7-25. XLMS stability robustness to 
jerk increased by decreasing step gain to 

0.0005 

Figure 7-26. MPRC stable against jerk 

 

7.6 CONCLUSIONS 

The chapter demonstrates the effectiveness of the modifications made on the hardware which 

comply with a laser communication satellite scenario [59]. The target track loop successively 

provides means for target LOS-tracking within the optical scheme. The TAS2’s optical scheme 

demonstrates significant error reduction at the target PSD which represents angular jitter 

correction within the interplanetary communication link of LCR. 
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Modal surveying was performed as an attempt to identify reoccurring optically significant 

vibration modes with the PULSE Multi-analyzer system type 3560D. The purpose of this was to 

treat the reoccurring modes as prior information for MPRCi addressing multiple periods that 

served as a representative case for non-adaptive type control laws. 

 A sequential start up method was newly introduced to eliminate high amplitude peaks within 

the transient response of MPRCi. The method was shown to be effective for MPRCi 

implementation in hardware. 

Base case comparisons were made for MPRC and FXLMS with respect to jitter mitigation 

capabilities where the RMS error is displayed for both control laws in Table 7-1. 

RMS 
Error 

Crudely designed PI 
controller 

High bandwidth 
PI controller 

Stability against jerk 

MPRC 0.0211 0.0136 Stable regardless of jerk

FXLMS 0.0220 0.0110 Use a smaller step gain 

 

Table 7-1. Comparison of final RMS error between MPRC and XLMS 

FXLMS is relatively simple to implement and shows substantial error mitigation performance. 

Although FXLMS does not explicitly aim for any particular peaks within the frequency spectrum 

of the disturbance, the error is reduced regardless. MPRC after prior identification of the 

frequency modes can be fine tuned to match the jitter mitigation performance of FXLMS by 

employing newly developed methods (Ref. [57]) within the complex environment of optical jitter 

induced by the mechanical vibration of the spacecraft. This newly developed method of MPRC 

was experimentally validated through these results. 
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FXLMS can become unstable when an abrupt impulse is introduced to the system, which is a 

concern for most adaptive-type control laws. The stability robustness to jerk can be increased by 

decreasing the step gain of FXLMS. However, this does not guarantee stability for a larger 

impulse applied to the system. MPRC on the other hand does not any significant issues with jerk. 
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CHAPTER 8 

 CONCLUSIONS 

Multiple-Period Repetitive Control (MPRC) is ideal for situations where the disturbance 

within the system contains multiple unrelated frequencies and their associated harmonics. Such 

disturbances can exist in mechanical systems that consist of multiple rotating devices.  Chapter 2 

explains the underlying mathematics of Repetitive Control (RC) theory including MPRC and 

Higher Order Repetitive Control (HORC). Basic explanations were given for the design 

procedure of each RC algorithm as well as respective stability determination methods. The thesis 

work was progressed based on these mathematical foundations of RC. Chapter 3 analyzes 

stability robustness characteristics to investigate how model error can harm stability in MPRC. 

The results provide intuition to the designer for avoiding instability in MPRC or assessing the 

cause for a currently unstable MPRC system. Newly developed methods address the issue of 

model error by stabilizing the system with a small RC gain complying with the small gain 

stability theory for MPRC. Simpler methods were derived for determining stability of MPRC 

making the use of hardware data for stability determination more reasonable in RC practice. 

Chapter 4 shows a completely new performance feature within MPRC that produces robustness 

to period fluctuations or uncertainties when used to address identical periods (MPRCi). This 

feature is similar to that of the existing method of HORC, but is shown to have benefits over it. It 

was shown that the main advantage of MPRCi was that the width of the notch within the 

sensitivity transfer function could be adjusted by tuning the RC gain. This makes it more 

practical for producing robustness to period fluctuations when implementing RC within the 

presence of broadband disturbance. Chapter 5 acknowledges the issue of high peaking 

amplitudes within the transients of MPRC when addressing identical periods or periods that are 
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close together. After determining the cause of such anomaly a sequential start up method was 

introduced to remedy the problem. The method was shown to be very effective by experimental 

verification. Chapter 6 evaluates five control algorithms by addressing CMG induced jitter on the 

Naval Postgraduate School’s (NPS) Three-Axis Simulator 2 (TAS2) testbed. All five algorithms 

successively rejected the primary frequency component within the disturbance. However the 

non-adaptive control laws showed sign of amplification at the unaddressed frequency 

components due to the waterbed effect. The adaptive control laws on the other hand were not 

able to completely reject the secondary peaks. The Adaptive Basis Method showed the best 

results for overall jitter mitigation for the TAS2 testbed. Chapter 7 demonstrates the 

effectiveness of the modifications made on the TAS2 testbed which comply with a laser 

communication satellite scenario. Reoccurring modes were identified by modal surveying 

analysis and DFT averaging. The identified modes were used as prior information for MPRC, 

and thorough comparison was made between jitter mitigation results of XLMS. All attributes of 

the theoretical developments made within this thesis were utilized to fully address the complex 

environment of optically jitter induced by mechanical vibration within the structure of the TAS2 

testbed. 
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