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In this paper we consider a class of issues which are central to mod- 
eling social phenomena by continuous-time Markov structures. In 
particular, we discuss (a )  embeddability, or how to determine 
whether observations on an empirical process could have arisen via 
the evolution of a continuous-time Markov structure; and (6 )  iden- 
tification, or what to do if the observations are consistent with more 
than one continuous-time Markov structure. With respect to the 
latter topic, we discuss how to select the specific structure from the 
list of alternatives which should be associated with the empirical 
process. We point out that the issues of embeddability and identifica- 
tion are especially pertinent to modeling empirical processes when 
one has available only fragmentary data and when the observations 
contain "noise" or other sources of error. These characteristics, of 
course, describe the typical work situation of sociologists. Finally, 
we note the type of situation in which a continuous-time model is 
the proper structure to employ and indicate that issues analogous 
to the ones we describe here apply to modeling social processes with 
discrete-time structures. 

1. INTRODUCTION 

Markov models provide a convenient framework for analyzing the struc- 
tural mechanisms which underlie social change and for extrapolating shifts 
in the state distribution of a population. For reviews of applications and 
discussions of some pertinent mathematical issues, the reader is referred 
to Boudon (1 973 ) , Bartholomew (1973)) and Singer and Spilerman 
(1974). Although most commonly employed in the study of mobility, 
Markov models have been applied to diverse substantative topics; they 
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suant to the Economic Opportunity Act of 1964. We also acknowledge computation 
funds from National Institute of Child Health and Human Development (NICHD) 
grant 1-POI-HD05876. Earl Kinmonth aided with the computations. Comments by 
Ken Land and the assistance of Harrison White and Hal Winsborough are gratefully 
acknowledged. 
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have been used, for instance, to study the influence of group norms on 
conformity (Cohen 1963)) to measure distance in social networks (Beshers 
and Laumann 1967)) and to analyze recidivism among delinquent juve- 
niles (Wolfgang, Figlio, and Sellin 1972). The attractiveness of this 
mathematical formulation derives from the fact that it permits a re-
searcher to focus upon the dynamic properties of a social process and 
ascertain the long-range consequences of particular institutional arrange- 
ments. An instructive example of this sort of inquiry is provided by Lieber- 
son and Fuguitt (1967). 

Several technical issues relating to the sensitive use of Markov models 
have begun only recently to receive an amount of attention that is com- 
mensurate with their importance. One matter concerns the phenomenon 
of population heterogeneity. In  the initial attempts a t  modeling mobility 
processes by time-stationary Markov chains, socially heterogeneous pop- 
ulations were treated as though a single transition rule governed the move- 
ments of all individuals. Special kinds of discrepancies observed between 
the empirical data and predictions from these one-type Markov models 
were suggestive about the form of stochastic process which might provide 
a more realistic theoretical framework in which to view mobility (Blumen, 
Kogan, and McCarthy 1955). The main attempts a t  modifying the 
Markov model so it would provide a suitable description of movements 
by a heterogeneous population have involved viewing the population as 
consisting of a mixture of independent Markov processes, one for each 
individual or each distinct social group (McFarland 1970; Ginsberg 
1971; Spilerman 1972a, 19723; Singer and Spilerman 1974). 

A second issue concerns strategies for testing whether empirical observa- 
tions are, in fact, compatible with an assumed class of models, such as 
general finite-state Markov processes, or a subset of them, such as birth 
and death processes. An example of this sort of inquiry is presented in 
Singer and Spilerman (1974, pp. 360-63)) where an observed two-step 
matrix2 b(2)-representing occupational change between grandfathers' 
and respondents' generations-was examined for compatibility with a 
stationary discrete-time Markov structure. Conceptually, the problem is 
to decide whether the empirically determined matrix could have arisen 
via the evolution of the postulated process. Stated technically, i t  is to 
ascertain whether there exists a one-step transition matrix P(1)-which 
would be identified with grandfather-to-fathe; transitions or, equivalently, 
with father-to-son transitions-such that P ( 2 )  = [P(1)I2 .  Where the 
answer is negative, i t  would be incorrect to predict future population dis- 

2 The symbol " A "  over a stochastic matrix or over an element in a matrix will mean 
that the quantity should be thought of as estimated directly from data. Matrices 
without this symbol should be viewed as obtained from a mathematical model. 
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tributions from a Markov modelJ3 such as by raising the observed matrix 
to integer powers. 

The same kind of issue must be faced with respect to compatibility of 
observed data with other model structures, and i t  is this fundamental sort 
of inquiry that we address in the present paper. We will concentrate on 
conditions for compatibility with a finite-state continuous-time Markov 
process, a mathematical structure which holds special interest for two 
reasons. First, although discrete-time formulations have been used in most 
applications of Markov models, the empirical processes under considera- 
tion commonly evolve continuously, and the appropriate technical ap-
paratus would be a continuous-time model (Coleman 1964a, p. 129). 
The reason for the greater popularity of the discrete-time structure stems 
from its simpler mathematical nature, not from considerations of verisi-
militude. Second, continuous-time Markov processes provide the under- 
lying mathematical framework for James S. Coleman's (1964a) influential 
volume in mathematical sociology as well as for a number of more recent 
publications (Coleman 1968 ; Mayer 1972 ; Bartholomew 1973). Because 
of a neglect of the representation considerations that are discussed here, 
serious deficiencies exist with the estimation procedures used in these 
works. An additional reason for concentrating on compatibility with a 
continuous-time Markov framework is that the conceptual issues which 
must be addressed with more complicated mathematical structures, such 
as models of heterogeneous processes, already reveal themselves in this 
comparatively simple setting. 

Representation becomes an issue when we have available only frag- 
mentary data on population movements. Unfortunately, in the study of 
so~ ia l  phenomena, the common situation is to have very incomplete infor- 
mation about the evolution of an empirical process; frequently, observa- 
tions have been taken a t  only two time points, t = 0 and t = tl,  yielding 
a single transition matrix4 b(O,tl). What we wish to determine, then, 
are the conditions which this observed matrix must satisfy in order for 
it to be viewed as an outcome of a continuous-time Markov model. For 
matrices satisfying the requisite criteria, we wish further to recover the 
parameters of the particular Markov structure that underlies the empirical 
process. These issues can be posed most effectively in terms of two se-
quential considerations-embeddability tests and the identification prob- 
lem. In  practice, a single calculation is usually informative on both matters. 

Embeddabi1ity.-This issue refers to whether an observed transition 

31n most applications of Markov models, tests of this sort are not made. Hodge 
(1966) provides an exception. 

Where it is undersrood that the i ~ i t i a l  observation is a t  t =0, we will simplify our 
notation and write P(tl), or even P, in place of P(O,tl). 
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matrix $(tl) could have arisen via the evolution of a stationary continuous- 
time Markov process. I t  is well known that certain stochastic matrices 
arennot compatible with such a formulation; this is the case, for instance, 
if P ( t l )  has an element $.,-(t,) = 0, but some power of the matrix, say 
P(tl)", has a nonzero entry in the same position, that is, $ i j (n)( t l )  # 0 
(Chung 1967, p. 126). Also, according to Coleman (1964a, p. 179; 19646, 
p. 4 ) ,  a stochastic matrix in which some main diagonal element is less than 
another entry in its column could not have been generated by a contin-
uous-time Markov process. We shall show that Coleman's claim is in 
error.5 For the present discussion, however, the essential point is that, 
while it is recognized that certain transition matrices cannot be represented 
by this mathematical structure, there is confusion over the full scope of 
the requirements for embeddability. Our first task, then, is to devise tests 
for ascertaining compatibility of an empirically determined matrix with 
a continuous-time Markov formulation. 

Identification.-If the embeddability tests are passed, then we are 
guaranteed that i)( t l)  could have been generated by a t  least one contin- 
uous-time Markov process. The identification problem refers to the possi- 
bility that the matrix could have originated from the operation of more 
than one Markov process. Consequently, our second task is to delineate 
the conditions under which the solution for the parameters of the Markov 
model will be unique. Also, for instances in which these conditions are not 
satisfied, we will require procedures for recovering the several Markov 
structures that could have produced the observed matrix and identifying 
the particular model from this list which should be associated with the 
data. 

Sampling error and data-collection design.-Overlying the questions 
of embeddability and multiple solutions is the issue of sampling 5rror. 
In  most applications, an empirically determined transition matrix P ( t l )  
will have been constructed from a population sample. Repeated surveys 
of the population would produce somewhat different transition arrays, so 
we would be well advised to investigate the sensitivity of our estimate of 
the underlying Markov structure to sampling error. I n  particular, with 
respect to the matter of embeddability, we might wish to inquire whether 
a nonembeddable i)(tl) is "within error distance" of some embeddable 
matrix p. If i t  is, we could choose to carry out an analysis in which Markov 
methods are employed using the adjusted (embeddable) matrix p instead 
of the observed array i)( t , ) .  

5 We wish to  emphasize at  the outset that our extensive criticism of estimation pro- 
cedures used in Coleman's work in no way detracts from the utility of the mathe- 
matical formulations he employs or from his strategies in translating sociological 
theory into mathematical statements. Indeed, his work has been a source of inspiration 
to  both of us. 
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The question of data error leads to more intriguing considerations with 
respect to the phenomenon of multiple solutions. Even if b ( t , )  is compat- 
ible with a unique Markov process, it is possible that a slightly modified 
matrix p-within error distance of the original array-will produce a very 
different Markov structure from the one that has been identified. As a 
result, if the data derive from a population sample, then because of sam-
pling variability we may have recovered the wrong Markov structure for 
the population-level process! We therefore discuss strategies for treating 
an empirically determined matrix as data containing considerable "noise" 
and identifying from it the particular Markov model to be associated with 
the substantive process. 

Finally, there are crucial considerations regarding when to survey a 
population in order to facilitate model identification and parameter esti- 
mation. I t  is widely known, for instance, that if the interval between 
successive observations is very large (with respect to the rate of evolution 
of the empirical process), b ( t l )  will resemble the equilibrium matrix, 
and the parameters of the continuous-time Markov model which produced 
the observed array cannot be recovered (Coleman 1968, p. 472). Yet the 
issue of data-collection design is considerably more complex than this 
simple remark conveys and involves decisions concerning the number of 
observations to be taken, the spacing between them, and interactions 
between these considerations. 

2. MATHEMATICAL PRELIMINARIES AND EXAMPLES 

Consider a stochastic process with a finite number of states whose transi- 
tion probabilities are governed by the system of ordinary differential 
equations 

where P ( t )  and Q are r X r matrices. I t  is well known (Coleman 1964a, 
pp. 127-30; Chung 1967, pp. 251-57) that if Q has the structure 

q i j  2 0 for i # j, qii < 0, qi j  = 0 for i = 1, . . . ,r, (2.2) 
j=1 


then the functions P ( t ) ,  t > 0, which are solutions of (2.1) comprise the 
transition matrices of continuous-time stationary Markov chains. A typical 
element, pji(t), of P ( t )  has the interpretation: 

pij(t) =	probability that an individual starting in state i at  time 
0 will be in state j at time t. 
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The Q-arrays, which are known as "intensity matrices," provide struc- 
tural information about the population: 

i )  qij/-qdi =probability that an individual in state i will move 
to state j, given the occurrence of a transition. 

ii) I/-qii = expected length of time for an individual in state i 
to remain in that state. 

We will denote the class of intensity matrices (arrays of the form [2.2] ) 
by the symbol Q. 

Solutions of T2.1) are given by the exponential formula 

P ( t )  = eQt, t > 0, (2.3) 

where the matrix exponential eA (A being an arbitrary r X r matrix) is 
defined by 

The problem of finding simple test criteria on the entries of an observed 
stochastic matrix k ( t l ) ,  tl < oo, which will guarantee that it can be 
written in the form (2.3) with Q E Q, was first posed by Elfving (1937). 
I t  has come to be known as the em=bedding problem for continuous-time 
Markov chains. 

An obvious description of the subclass of stochastic matrices that are 
embeddable is given by 

Z = {P such that log P E Q).-

Attempts to develop practical test criteria or computer programs to deter- 
mine membership in are reported in Coleman (1964a, pp. 177-82)) 
Mayer (1972, pp. 327-28)) and Zahl (1955, p. 97).  However, all these 
investigations suffer from a confusion about the full scope of the embed- 
ding problem, as well as from using an incomplete description of the 
logarithm function of matrix argument. This situation has resulted in a 
number of erroneous statements about the conditions under which an 
empirically determined matrix P ( t l )  is, or is not, compatible with a con- 
tinuous-time Markov process. 

Example 1. Coleman (1964a, p. 179) has asserted that "the most ob- 
vious incompatibility is one in which for some state i, nii/ni. is less than 
some nji/nj. for some state j ."O This statement suggests that a Markov 

enij  = number of persons starting in state i a t  a reference time t =0 who are in 
r 

state j at  a later time t = 1; nd,= Cnii In our notation, nji/nj, =jji Actually, 
j=l 
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structure would not be a suitable model for a large class of mobility 
matrices (e.g., Prais 1955, table 1;  Coleman 1964a, table 14.8) or, indeed, 
for any array in which some off-diagonal element exceeds the main diag- 
onal entry in its column. That this assertion is incorrect can be seen from 
the matrix 

In every column there is a violation of Coleman's necessary criterion, yet 
this matrix can be represented as eQwith 

Example 2.  Elsewhere, Coleman (1973, p. 21) has written, "It is not 
the case that any discrete-time Markov chain can be generated by an 
appropriate continuous-time process. Heuristically, those discrete-time 
chains that cannot be generated by a continuous-time process are those 
in which the equilibriurrl distribution is approached through a damped 
wave, rather than approached a~ymptotically."~ Coleman's statement 
characterizing nonembeddable matrices is incorrect, as the following com- 
putations illustrate. 

By exponentiating the intensity matrix Q from example 1 with t = 1, 
P(l.OO) = el.OOQ,the transition array (2.4) is reproduced. At time t = 
1.41, 

r .231  .233 .261 .2751 

and, a t  time t = 2.24, 

Coleman wrote nj/n,, in place of n,,/n,,.This is obviously in error, and elsewhere 
(Coleman 1964b, p. 4) he makes clear his intention. 


7 From the context, we interpret the word "asymptotically" to mean monotone, rather 

than oscillatory, convergence. 
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Note that each main diagonal entry p,,(t), observed over the three 
matrices, has the property pii( 1.00) > pii( 1.41) < ~ ~ ( ( 2 . 2 4 ) .This means 
that p,,(t) approaches an equilibrium value as t + co through damped 
oscillations and not asymptotically. Yet, because of the manner by which 
the sequence of P-matrices was constructed, they depict the evolution of 
a continuous-time Markov process. 

Example 3. In attempting to represent an observed matrix k ( t )  in the 
form (2.3)) Zahl (1955, p. 97) states that "the estimate of Q is taken to 
be 

provided the series converges." Coleman (1968, p. 472) makes essentially 
the same claim. Yet, although convergence of (2.5) does provide a repre- 
sentation of log F, it does not guarantee thats log k E Q.- In particular, -
consider 

The series representation for log 8converges to 

--.692 .639 

.707 -.I44 -.563 

which is not in Q,- since (log 8)32= -.I44 < 0. -

Example 4. In possibly the most serious of the misunderstandings, Cole- 
man (1968, p. 472) has asserted that, "when [(2.5)] does not converge, 
this means that the data are not compatible with the assumptions of a 
continuous-time Markov process, or that the moves of the panel are too 
widely spaced." Mayer ( 1972, p. 328) makes essentially the same point: 
"The failure of [ (2 .5)]  to converge for all transition matrices P ( t )  reflects 
the fact that not all such matrices can arise from a continuous-time 
stationary Markov chain." These statements are in error. Equation (2.5) 
may fail to converge for matrices P, not resembling the equilibrium ma-
trix, which nonetheless can be represented in the form eQ with Q 6 Q.--
8 In pfferent contexts, we speak of checking whether Q = (l / t) log B EQ or whether 
log P E Q. Because multiplication of a matrix by a real-valued quan&y does not 
alter its-character with respect to satisfying conditions (2.2), the two tests are 
equivalent. 
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Consider 

P =  
.3654 
,3292 
.4040 

.3762 

.3567 

.3 188 

.2584 

.3141 

.2772 1
A [ 

The series representation (2.5) converges if and only if /Xi- 1 / < 1 for 
all eigenvalues Xiof k.  The matrix above has eigenvalues XI= 1, h2= 
.053i, hs = -.053i. Thus IA2- 1I = IXB- 1 I > 1 and (2.5) diverges. 
Nevertheless, b = eQ for 

and it is therefore embeddable. 

The preceding examples highlight the confusions that exist concerning 
which transition matrices can be represented as outcomes of the evolution 
of a continuous-time Markov process. In  particular, we have indicated 
that the standard recipe for estimating Q (the matrix of structural param- 
eters which govern population movements)-via the power-series repre- 
sentation (2.5)-is highly deficient. The series does not provide a com- 
plete description of the logarithm of a matrix; as a result, it  fails to 
converge for transition arrays that are compatible with a Markov formu- 
lation. 

In  fact, the inadequacy of equation (2.5) as a procedure for estimating 
the intensity matrix Q is even more fundamental than the illustrations 
above suggest. While the power series will converge to a t  most one version 
of log 8 E Q,- the equation k = eQ can have multiple solutions Q E Q.-
This is a m z t e r  of great importance in sociological investigations, because 
the conventional strategy in using Markov models for theory construction 
emphasizes decomposing the qij elements of Q among theoretically postu- 
lated effect parameters (Coleman 1964a, chap. 5 ;  19643, chap. 2;  McDill 
and Coleman 1963). Clearly, one can hardly begin this task without ensur- 
ing that the co~rect  Q has been recovered for the substantive process under 
study. Before considering the issues of multiple solutions and model iden- 
tification, we address the conceptually prior question of embeddability 
of k;  that is, we seek to determine which transition matrices are compatible 
with a continuous-time Markov process. 

3. EMBEDDABILITY OF b 

In  the case of 2 X 2 matrices, a complete and practical solution to the 
question of embeddability was given by D. G. Kendall (see Kingman 
1962, p. 15),  who proved that 
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is in Z (or, equivalently, can be represented as eQ, Q r Q)- if and only if -
$11 +-$22 > 1. 

A solution to the embedding problem for stochastic matrices with an 
arbitrary finite number of states was provided by Kingman (1962). In  
particular, he provedAthat !can be written in the form eQ,  with Q r Q, if 
and only if ( i)  det P > 0, and (ii) for every positive integer n, theTe is 
a stochastic matrix P, such that (P,)" =b. Unfortunately, condition (ii) 
does not lead to practical test procedures to be applied to b, and Kingman 
pointed out the impossibility of obtaining general tests as simple as those 
in the 2 X 2 case for matrices of order greater than or equal to 3. A fur- 
ther mathematically interesting solution to the embedding problem has 
recently been given by Johansen (1973, p. 180) ; however, in keeping with 
Kingman's remarks, it too is not useful for practical computation. 

This impasse has led to the development of a considerable number of 
easily applicable necessary conditions for an r X r stochastic matrix k 
to be in 2.These conditions are presented in Section 3.1, with illustrations 
of their use. A common feature of the tests is that they can be used only 
to assert that a particular matrix is not compatible with a Markov model. 
An empirically determined matrix which passes all the tests in Section 3.1 
must still be subject to an examination based on suficiency conditions for 
embeddability, if one hopes to pass on to the stage of model identification. 
With the results of Kingman (1962) and Johansen (1973) a t  hand, our 
only recourse is to d~velop simple computational procedures for obtaining 
all branches of log P compatible with the criteria in Section 3.1 and test 
these versions of the logarithm for membership in Q.- This seemingly 
straightforward program leads to some surprisingly subtle phenomena, 
which are delineated in Section 3.2. General practical recommendations 
for testing an observed matrix 6 for embeddability are outlined in Sec- 
tion 3.3. 

3.1 Necessary Conditions 

Test criteria which empirically determined matrices must satisfy to be 
compatible with a family of mathematical models can be viewed usefully 
as devices for isolating matrices generated by these models from the class 
of all stochastic arrays. The necessary conditions listed below are the 
simplest such tests for distinguishing the subclass of matrices generated 
by continuous-time Markov models. 

Condition 1.-(Austin and Ornstein; see Chung [1967, p. 1261 for de- 
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tails.) If $ij(tl) = 0, then jij(")(t1) =0 for every integer n. If $ij(tl) # 0, 
then ( t ,) # 0 for any integer n. 

Condition 2.-(Kingman 1962) det > 0. 
Condition 3.-(Elfving 1937 )  No eigenvalue hi of can satisfy IAi/ = 1 

other than hi= 1. In addition, any negative eigenvalue must have even 
(algebraic) multiplicity. 

Condition 4.-(Runnenberg 1962) All eigenvalues of b must lie inside 
a heart-shaped region H, in the complex plane whose boundary is the 
curve x(v) + iy(v),  where 

exp + vcos---- r sin r)X ( V )= [ (-v ZB )1COS (v  

(3.1) 

y ( v ) =  [exp (-v+vcos- 2T )] sin (v sin F)
Y 

together with its symmetric image with respect to !he real axis. In this 
parametrized formulation, r = order of the matrix P, and v is restricted 
by 0 < v <~/sin(2?r / r ) .  The regions H3, Hc, and H12 are displayed in 
figures 1, 2, and 3.  The larger cone-shaped zones K3, KG, and K12 show the 

FIG.1.-Eigenvalue regions for 3 X 3 stochastic matrices (K3) and for the subset 
of them which is in P ( H 3 ) . A necessary condition for fi  to be embeddable is that 
all its eigenvalues lie in the shaded zone. 

11 
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1 1 m h 

FIG.2.-Eigenvalue regions for 6 X 6 stochastic m a t r p s  ( K G ) and for the subset 
of them which is in ( H e ) . A necessary condition for P to be embeddable is that all 
its eigenvalues lie in the shaded zone. 

bounds on the eigenvalues of arbitrary 3 X 3, 6 X 6, and 12 X 12 sto- 
chastic matrices. 

The cone-shaped zones arise from the requirement that the eigenvalues 
of an arbitrary stochastic matrix must satisfyQ 

(where the argumentlo is in radians), together with the condition lAl < 1. 
The additional limitation to the heart-shaped set H, contained in K, arises 
from the continuous-time Markov assumptions. This restriction can also 
be described by saying that the eigenvalues of 8must satisfy (3.2) and 

QThese inequalities were established by Karpelewitsch (1951); they represent a con-
siderable strengthening of the well-known restriction that all eigenvalues of a sto-
chastic matrix must lie inside the unit circle. 

10 or a complex number p = a + bi, we define arg(p) = tan-l(b/a). 
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FIG.3.-Eigenvalue regions for 12 X 12 stochastic matrices and for the sub- 
set of them which is in (H,,). A necessary condition for P to be embeddable is 
that all its eigenvalues lie in the shaded zone. 

Examination of H3explains why failure of the series (2.5) to converge in 
example 4 did not rule out compatibility of k with a continuous-time 
Markov process. The region of convergence of (2.5) is lh, - 1 )  < 1, i.e., 
the unit circle centered a t  (1, O), and the complex eigenvalues of the 
matrix in that example, while exterior to this region, are inside Ha. 

Example 5 .  Suppose you observe the matrix 

Since det k = .05 > 0, condition 2 is satisfied. However, 6 has eigenvalues 
A1 = 1, A2 = -.l + .2i, A3 = -.l - .2i which, by (3.2), lie inside the 
cone R3, but they are outside the heart-shaped zone H3.Thus cannot 
be represented as eQ for any Q E Q;- in other words, it is not compatible 
with a continuous-time Markov ;odel. 

Example 6. Consider the matrix 
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.40 
P =  [ 35 .20 

.20:::IA 4 0  

Here, det 13 = .04 > 0, satisfying condition 2. The eigenvalues of k are 
A1 = 1, A2 =A3 = -.2, so that condition 3 applies and is satisfied. 
Nevertheless, A2 and As are outside the zone H3.Thus 13 is not compatible 
with a continuous-time Markov model. 

Example 7. Recall the matrix of example 3, 

.330 .070 
, 1 3 8 1  . 
,580 

This matrix satisfies the necessary conditions 1-4; however, it is still not 
representable as eQ for any Q E Q. This assertion is based on an examina- 
tion of all versions of log k whTch are candidates for membership in Q.-
An understanding of these tests requires a complete description of log ?. 
This is the subject of the next section. 

3.2 The Matrix Equation ? =eQ 

We require a definition of a function of matrix argumentl1 which is 
sufficiently general to include analytic functions such as ex and log x. 
I t  is useful to motivate the definition by an important property of poly- 
nomial functions g ( x ) .  In  particular, if 

and A is an arbitrary square matrix, a natural definition of g(A) is given 

by 

In  addition, A can always be reduced to Jordan form J by some non- 
singular matrix H, that is, 

A =HJH-l. (3.4) 

Finally, i t  is readily verified that 

g(A) =Hg(J)H-I  

Every Jordan matrix J has the following block structure: 

11For a lucid and detailed mathematical exposition, the reader should consult Gant- 
macher (1960, chap. 5).  
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where hi is the ith eigenvalue of matrix A and occurs in Ji with multi- 
plicity v4, the order of Ji. (The hi appearing in different blocks Ji are not 

Ic 


necessarily distinct.) Also, x v ,= r, the order of A. 
1 


The expression (3.5) will be useful in a wider context12 than just poly- 
nomials, provided that we have a representation of g ( J )  for arbitrary 
Jordan matrices J, which generalizes to analytic functions13 f ( J ) .  Then 
our program will be to define f (A)  according to (3.5), with g replaced 
by f, adding appropriate conventions for multiple-valued functions. For 
a polynomial function g(x) ,  we introduce its Taylor series expansion 
about x =ha and write 

12The remainder of this section is more difficult mathematically and can be skipped 
at  a first reading. Continue with Section 3.2a, "Distinct Eigenvalues." 


1 3 A  function is said to be analytic at  x if it has a derivative in a neighborhood con-

taining the point. 


l4 Although the Taylor series expansion has an infinite number of terms, (Ji- Ail )"  = 

0 for all values of n 3 v j .  
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Formula (3.7) has meaning for any function f which is analytic in a 
neighborhood of the eigenvalue Xi. Thus, if f is single valued and analytic 
in a region of the complex plane containing the eigenvalues of A (e.g., 
f (x) = en),  we define 

where f ( J )  is specified by (3.7) with g replaced by f .  
If f is multiple valued (e.g., f (x) = +,or f (x) = log x j ,  we define 

a branch of f (A)  corresponding to the similarity transformation H by 

where 

and fai(x) is any single-valued branch of f (x) .  Notice that different 
branches of f (x )  may be used with distinct Jordan blocks Ji  and that 
each combination of (fa,, fa,, . . . , fa,) will generate a different version 
of f (A ) . Furthermore, the value of f (A) may depend on the choice of H, 
a point to which we will have cause to return.15 This definition was intro- 
duced by Cipolla ( 1932)-see also Rinehart ( 1955)-and represents the 
necessary level of generality for a discussion of solutions of the matrix 
equation eQ = 8 ( 8  is identified with A in the preceding discussion). We 
now specialize to the case where the eigenvalues of A are distinct. The 
repeated eigenvalue condition, while crucial to a complete understanding 
of embeddability, is more involved mathematically and will be considered 
separately. 

3.2a. Distinct Eigenvalues 

In  this case, the Jordan matrix J reduces to a diagonal matrix D,in which 
the nonzero entries are the eigenvalues of A. Analogous to (3.4), we have 

15 This matter is discussed in proposition 2.  
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where 

Also, the eigenvector corresponding to Xi is contained in the ith column 
of H. The foregoing discussion regarding analytic functions of matrix 
argument carries over in its entirety, with the functions of Jordan blocks 
f (J i )  replaced by functions of eigenvalues f (Ai). I n  particular, when f is 
multiple valued, (3.9) reduces to 

fa(A) =Hfa(D)H-l  (3.11) 

where 

A different version of f ( A )  is obtained from each combination of branches 
of (fal, fa2, . . . , far). 

This discussion is relevant in the following way to the determination 
of embeddability. Ascertaining compatibility of an observed matrix b 
with a continuous-time Markov pro:ess requires investigating whether 
there exists an array Q E Q- such that P = eQ.Lacking readily computable 
suficiency conditions forgeneral r X r stochastic matrices, our strategy 
must be to compute log k and examine it for membership in -Q. Now, the -
logarithm function is multiple valued,16 

where z is an arbitrary complex number, z = a + b i ;  lz l  =d m ;  
and 6 = tan-I b/a.  Each value of k generates a different version of log z, 
called a branch of the logarithm. I n  general, an infinity of branches will 
exist. 

l6The simplest way to  appreciate the multiple-valued character of the logarithm is 
to begin with the definition: x = log y if x is a solution of the equation ex= y for 
a given y. Suppose x is such a solution. Then, for any integer k, e x + 2 r k i =  e X e 2 r k i z  

ex = y (since e2rki =cosZ~rk+ isinZn-k =1). Therefore, log y takes on the values 
x, x 2 2z-i, x 2 4ri, etc. 
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From equations (3.1 1 ) and (3.12), we have 

Every combination of values of (IogklAl, logk2A2, . . . , logk,h,) in (3.13) 
will yield a version of log b, so to determine embeddability one must check 
whether a t  least one branch is in Q. An important implication of necessarz 
condition 4 in Section 3.1 is tha7 only finitely many branches of log P 
need be checked for membership in Q. I t  is this feature which makes the 
computational tests described in dez i l  in Section 3.3 feasible. Further- 
more, in many applications, the number of branches which must be com- 
puted is quite small. 

Sylvester's formula.-If A is an r X r matrix with distinct eigenvalues 
A l ,  Az, . . . , A,, and if f is single valued in a neighborhood of each of the 
eigenvalues, then equation (3.8) is equivalent to (Sylvester 1883) 

In  addition, if f is multiple valued, then (3.14), with /(A,) replaced by 
/,$(Xi), defines a version of f (A)  for each combination of branches of 
(fal, fa2, . . . , fa,) ; in other words, this equation is equivalent to (3.1 1).  

Example 8. Consider the matrix 

.3654 .3 762 ,2584 
P = [.;2.2 .3 567 .3141 , 

,4040 .3 188 .2772 1 
which also appeared in example 4, and identify with A in the discussion 
above. In  order to solve the equation b = eQ, observe that P has distinct 
eigenvalues A1 = 1, A2 = .053i, As = -.053i. Setting f (x) = log x in 
Sylvester's formula, we obtain 

17All logarithms are to base e .  The subscript k denotes the branch number of the 
logarithm of a scalar quantity and takes on the values k =0, 2 1, 2 2 ,  . . . . The 
subscript K denotes a version of the logarithm of a matrix and specifies a combina-
tion of branches of the logarithm of the eigenvalues. 
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log f' = log (XI) 
( k  -A ~ Z )  h3z) ( k  - h1z) ( k  -A3z)( k  -
(A1 - A21 (A1 -A3) + log (A2 -A,) (A, -A,) 

-1.805 1.718 0.087 
0.044 -1.784 1.7401 , 2.262 0.017 -2.279 

which satisfies criterion (2.2) for membership in Q.- In this calculation 
we used the principal branches of log A2 and log 13; namely, log A2 = 
log(.053) + i r /2  and log A3 = log(.053) - i r /2 .  Any other branch, e.g., 

log A2 = log(.053) + i(-
n- + 2n-k) for an integer k f 0, would yield a 
2 

version of log b which is not in Q.- For a similar reason, we use the prin- -
cipal branch of log(A1) = log( 1 ) = 0. 

An important feature of this example and of Sylvester's formula in 
general is that the logarithm of a matrix is well defined even when the 
power series (2.5) diverges, as it does here. For matrices with distinct 
eigenvalues Ai satisfying /Ai  - 11 < 1, the series (2.5) is equivalent to 
the principal branch solution of (3.14)-k = 0 in equation (3.12). How- 
ever, Sylvester's formula is more general, in that it will generate all 
branches of log b as k is varied.18 Furthermore, it leads to an evaluation 
of analytic functions of matrix argument as finite polynomials in the 
original matrix j .  The transcendental nature of f ( j )  is incorporated en- 
tirely in the coefficients of this polynomial and involves only functions of 
eigenvalues. In particular, by rearranging terms, Sylvester's formula for 
general r X r matrices (3.14) can be written in the form 

in which the ci's are scalar functions of the eigenvalues of j. 

3.2b. Repeated Eigenvalues 

When b has one or more sets of equal eigenvalues, the computations to 
determine embeddability can be considerably more involved. Unfortu-
nately, even though the occurrence of repeated eigenvalues in an observed 
matrix b would be a rare event, we will have reason to consider adjustment 

18Sylvesteri formula has been effectively employed by Johansen (1974) in a recent 
study of the embedding problem. His results, however, are less general than the ones 
presented here, because Sylvester's formula also provides a less than complete descrip- 
tion of the logarithm of a matrix. This point is elaborated in proposition 2.  
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strategies which make use of this condition. We therefore outline the main 
issues and analytic procedures a t  this point; some elaborations are found 
in Section 4.2 and in the Appendix. 

I t  is useful to categorize matrices with repeated eigenvalues according 
to whether or not their elementary divisorslQre distinct. Elementary 
divisors are said to be distinct if each eigenvalue Ad appears in exactly 
one Jordan block J,(A,) in equation (3.6). They are said to be nondistinct 
if a repeated eigenvalue Xi can serve as the diagonal element in more than 
one Jordan block. The importance of this distinction derives from the 
fact that the eigenvalues in a block are constrained to be on the same 
branch of a multiple-valued function-that is, they must have the same 
value of k in expression (3.12). The presence of nondistinct elementary 
divisors therefore permits different branches of log hi to be present simul- 
taneously in log J, via the presence of A, in more than one Jordan block. 
I t  is this condition which creates exceptional difficulties in the calculation 
of log P. The following propositions and examples outline the computations 
for the two multiple-eigenvalue cases: 

Proposition 1.-If A is an r X r matrix with m different eigenvalues 
Al, . . . , A, having multiplicities rl, . . . , r,, and elementary divisors 
(A -A1)'l, . . . , (A -A,)'-i.e., distinct elementary divisors-and if 
f is a functon that is single valued and analytic in a neighborhood of each 
of the eigenvalues, then f (A)  may be computed via (3.8) or by using the 
equivalent but computationally often simpler formula20 

where the terms c,,, are the coefficients in the partial-fraction expression 

When f is multiple valued, the various branches fa(A) may be found by 
computing (3.1 5) for all combinations of branches of (fa,, fa,, . . . ,far)-
that is, fai(")(Ai) replaces f(")(Ai), v = 0, 1, . . . , s - I ,  in equation 

On computing the elementary divisors of a matrix, consult Gantmacher (1960, 
pp. 139-45). 

20 When rk = 1 for k = 1, . . . , m, then (3.15) reduces to Sylvester's formula (3.14). 
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(3.15) .  With respect to determining embeddability of k, the number of 
versions of log k = f (b)which need to be examined is discussed in Sec- 
tion 3.3. 

Example 9. Consider the matrix 

and identify k with A in the preceding discussion. The eigenvalues of 8 
are A1 = 1 and A2 = .2 ,  with multiplicities rl = 1 and r2 = 2 ,  respec-
tively. First note that both eigenvalyes lie in H ,  (fig. 1 ) .  I t  is also the 
case that the elementary divisors of P are distinct; they are (A - 1)  and 
(A - .212. We may therefore solve for all solutions to i = eQ by using 
equation (3.1 5) and setting f (Ai) = log A$: 

log # = cll(log 1 )  ( B  -AzZ)~	+ cgl(10g A2) ( b  -Ail) (1- A d ?  
1 

+ C ~ ~ [ ( ~ O ~ A ~ ) Z + - ( P - A ~ Z ) ] ( ~ - ~ ~ ~ ? .  (3.16) 
A2 

Selecting the principal branch of the logarithm for each eigenvalue, the 
first term in expression (3.16) disappears, since log 1 = 0. From the re- 
maining terms, we obtain 

As in the previous example, we could have chosen some other branch of 
the logarithm function, log .2 k Z ~ k i ,  for an integer k # 0. However, 
(3.16) would then produce matrices with complex entries, and these have 
no meaning in the context of Markov models (i.e., they are not in Q) .  --

Proposition 2.21-All solutions of the equation eQ =A are called 
branches of the logarithm function of A ,  and they are given by (Gant- 
macher 1960, pp. 239-41) 

where 
i )  H is any nonsingular matrix which reduces A to Jordan form, 

A =HJH-l .  
ii) B is an arbitrary nonsingular matrix that commutes with J ;  that 

is, BJ - J B  = 0. 

21 The remainder of this section is more difficult mathematically and can be skipped 
at a first reading. Continue with Section 3.3. 
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iii ) 

1% J1 

log J = 

logJ2. log:]) 

where 

-1 1 (-1)"-1
log A j  - - . . . .  

Aj  Aj2 Ajvj-'(vj - 1) ! 
-1 (-1)"j-2

10ghj - . . . .  
Ajvj-2(~j- 2) ! 

0 

0 0 . . .  log Aj  

log Aj  = log lAjl + i(arg Aj  + 27rk), k is an integer, and vj =multiplicity 
of Aj  in the elementary divisor (A -Aj)"j. 

If the elementary divisors of A are distinct, B may be replaced by the 
identity in (3.17)) and log A is independent of the choice of H. I t  is this 
property which permits the simpler representations (3.14) and (3.16). 
When the elementary divisors of A are nondistinct, computation of all 
versions of log A requires a knowledge of the matrices B which satisfy 
BJ -JB =0. These matrices contain a finite number of parameters, 
each of which can be an arbitrary complex number. Every product HB 
represents a similarity transformation which reduces A to Jordan form 
and, a t  the same time, generates a distinct version of log A .  This leads to 
uncountably many versions of log A ;  and there may, in fact, be a con-
tinuum of such matrices, all or part of which is in Q. I t  is precisely these 
matrices with nondistinct elementary divisors whicFprevent the develop-
ment of simple general solutions to the embedding problem.:n any other 
situa?n, a researcher need only compute polynomials in P to evaluate 
log P, and test a finite number of branches of the logarithm for member-
ship in Q.--

Example 10. Consider the matrix 



-- - - 

Representation of Social Processes by Markov Models 

where X = -e-2flr, and identify b with A in the preceding discussion. 
The eigenvalues of 1are A1 = 1, and A2 = A3 = X ;  the elementary divi- 
sors are (A - 1) ,  (A -X ) ,  (A -X),  which are nondistinct. Conse-
quently, the Jordan matrix associated with b is 

0 

I=[! 	 =a ] [A 41. 
Also, a similarity transformation H, such that 1= HJH-l,  is given by 

1 1 	 1 

1 -
1 

- 1  + i -
1 

- 1  - i . (3.19)
2 	 2 I-
1 

(-1 - i f l )  -
1 

(-1 + i f i )
2 	 2 

In  computing log b = Q, choose log J1= log 1 = 0 ;  log J2= log X = 
-2fl7r + in-; and log J3= log X = -2fln- - i7r. Now, formula (3.17) 
with B =I, the identity matrix, yields 

2 	 1 

2 

1 0 g b z 2 T f i [ ;  - - --2-! ; ] > ( 3 . 2 0 )  

2 6 3 
which belongs to Q. 

To manufacture= other versions of log ? which are also in Q, - observe-
that the matrices which commute with J are all of the form 

where {cij) and a are arbitrary ~omplex~numbers subject only to the re- 
striction that B be invertible. For log P to be in Q, - we may limit con--
sideration to matrices B with entries satisfying, 

611 622 + 612 621 + 2621 622 
ii) u is real, where u = 

611 622 - 612 621 

611 622 + 612 621 - 2621 622 (3.22) 
v is real, where v = 

611 622 - 612 621 

and 

iii) jul ,< 2 and Ivl ,< 2. I 




--- 
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Conditions ( i )  and (ii) guarantee that log b will be real valued, while 
(iii) ensures that the entries will satisfy criteria (2.2). Each choice of 
{cij) then yields a version of log b which is a member of Q, - and they are -
all given by 

log # =H B  log J B-lH-I 

1 u 1 u
-+T
3 3 6 1 


The matrix (3.20) arises in the special case where cll = c22 = 1, c12 = 
~ 2 1= 0, and thus u = v = 1. The nonzero constant a in matrix B does 
not enter into the formula for log j, because it can only multiply the first 
row of log J, all of whose entries are 0. 

With this example at hand,22 some remarks concerning the role of such 
matrices in social mobility studies are in order (these comments will be 
elaborated upon in Section 4 ) .  If the primary purpose of an investigation 
is to obtain structural information about the propensity of individuals in 
a population to move between particular states, then our major concern 
must center on the possible values of qij/-gi,i for i # j in branches of 
log j =Q which are in Q. - These ratios have the interpretation "propen- 
sity to move from state h t o  state j when a change in state occurs." The 
continuum of branches of log b which are given by (3.23) represents a 
continuum of propensities to move between states, all compatible with 
the observed matrix b. Focusing on mobility out of state 1 in (3.23), we 
see that 

and 

Thus, on the basis of observations at two time points which give rise to fi  
22The matrix (3.18) was introduced by Cuthbert (1973) in order to exhibit an 
example of a stochastic matrix compatible with a continuum of Markov models. Cuth- 
bert's continuum arises when you choose c, = cZ2= 1 and c12 = cZl, real. Then the 
constraints on u and v entail that I:12J = I c ~ ~ </ 1/3. This choice does not, however, 
lead to all of the branches of log P given in (3.23), which represents an exhaustive 
list in 9.-
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given by (3.18)) we cannot even say whether individuals who start out 
in state 1 tend to favor state 2 or state 3 when they move. Clearly, this 
situation is totally uninformative about the underlying mobility mech- 
anism, and the present example thereby serves to highlight the unusual 
difficulties which can arise in the case of repeated eigenvalues with non-
distinct elementary divisors. 

3.3 Summary of Steps to Determine Embeddability 

3.3a. Distinct Eigenvalues 

The most common eigenvalue configuration for 8,an empirically deter- 
mined stochastic matrix, is one in which the roots are distinct. In testing 
log P for membership in Q, we therefore start with this case. 

Step 1.-Check that th=e necessary conditions (2)  and (3 )  in Section 3.1 
are satisfied. 

Step 2.-Check the eigenvalues of for membership in the heart- 
shaped zone H,  described in Section 3.1. If this test is passed, proceed to 
step 3 or 4. 

St:$ 3.-If the eigenvalues of b are all real and positive, compute 
log P using either the power series (2.5)) Sylvester's formula (3.14)) or 
the diagonalization transformation (3.1 1 ) . Only the principal branch of 
the logarithm ( k  = 0 in equation 13.121) will be realAvalued, and any of 
the procedures will yield the unique version of log P that can possibly 
be in Q. -

Step4.-If b has complex eigenvalues, they must occur in conjugate 
pairs. For each such pair (A, X ) ,  determine all branches of their logarithms 
which satisfy Runnenberg's condition, 

where r =order of matrix f i ,  arg(logk A) = tan-I ( e L g : k ) ,  and k 
- .  

specifies a branch of log, A according to23 

Now select oFe of the branches for each complex conjugate pair, and 
compute log P via (3.1 1) or by using Sylvester's formula (3.14). Check 
the resulting matrix for membership in Q. - Repeat this calculation for all -

"If A = a $ bi, then p = IAJ=d v and 9 = tan-l(b/a). 
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branches satisfying (3.24). Clearly, there are only a finite number of 
such computations to be performed, and they will yield all versions of 
log I; E 9. 

In p ~ t i c u l a r ,  if we represent a pair of complex conjugate eigenvalues 
(A, X) by (peg, ~ e - ~ s ) ,  0 < p <1  and 0 < 8 < T, then t$e number of 
branches of log h which need to be examined in testing log P for member- 
ship in Q- is U(r) +L(r )  + 1, where -

U (r) = integer part of 
277 

(3.26) 

L ( r )  = integer part of 


I 2v 


and r is the order of the matrix.24 Here U(r)  specifies the upper bound 
to +k, and L(Y) the lower bound to -k,  with respect to the multiple- 
valued logarithm function (3.25). Since the computation of U(r) and 
L(;) is to be performed for each p ~ i r  of complex conjugate eigenvalues 
of P, the number of versions of log P that must be examined is 

where v ,  the upper limit, denotes j ' s  number of complex conjugate eigen- 
value pairs. The value of this product will usually be small (frequently 
Uj(r) =Lj(r)  =0 for most j's). In  Section 4.2 we indicate why it  is 
especially rare for a branch other than the principal branch of log to 
be in Q when the matrix is of low order ( r  <3).  In  large; arrays, how- 
ever, oTe might have to examine multiple versions of log P to determine 
embeddability. 

3.3b. Data Noise and Repeated Eigenvalues 

Because our data are commonly contaminated by the effects of sampling 
variability and measuremfnt error, one cannot be certain that an empiri- 
cally determined matrix P is the correct transition matrix for the popula- 
tion onf interest. As a consequence, if the preceding calculations indicate 
that P is not embeddable, but the violations in log f i  are not severe, a 
researcher should consider adjusting the observed matrix to a nearby 
which is embeddable and continuing his analysis with the modified matrix. 

24 These formulas were computed from (3.24) by solving for k (in the arc tangent) 
at  each bound. 
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Strategies for making such an adjustment usually operate on log j, per-
turbing it to a matrix Q, E Q,- and then estimate P", the modified array,-
via e Q o  = F. 

There are several procedures for altering log b so it will satisfy a priori 
chosen conditions, such as membership in Q. Zahl (1955, p. 98) suggests 
setting the offending elements (negative qij'gi # j, in the present context) 
to zero and modifying the main diagonal entries so that the row sum 

condition, q . .-- 0, will be satisfied. Coleman (1964a, pp. 178-80) uses 
j 


an iterative routine yhich forces selected qij elements to zero in the 
computation of log P, thereby smearing the compensatory adjustments 
over the remaining nonzero entries. In example 11, we illustrate the 
adjustment process using yet another proc:dure, one which minimizes 
the sum of squared differences between log P and Q E Q. General recom-
mendations regarding which of the techniques is a&antageous in a 
particular problem are currently being prepared. 

Example 11. Suppose you observe the matrix 

which also appeared in example 3. This matrix has eigenvalues hl = 1, 
Xz = .370 + .O1li, A3 = .370 - .011i. Applying Runnenberg's condition 
in the form (3.26)) we find that U = L = 0;  hence only the principal 
branch of the logarithm needs to be examined for membership in Q.-
Calculating this branch, 

which is not in Q since (log 8)3Z 7-.I44 < 0. This raises the question 
of whether a smal  perturbation of P would yield a logarithm fn Q. To this 
end, we determine the nearest intensity matrix Q. to log P, aTd check 
whether or not e Q o  represents a "small perturbation" of P. The notion 
of "nearest" will be defined by mini /log b-Q1/, where 1 lA -Bll = 

QEQ 

In  the present example, the minimum is obtained for 
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Calculation of eQo =? yields 

? + (small perturbation) = [_iig .334 

= 5 6 8  .547.I04 

and a case might now be made that fi  was not embeddable only because 
of sampling error or other data noise. To conclude that the substantive 
process actually is Markovian with Q, as the governing intensity matrix, 
tests of the sort described in Section 5 ,  based on three or more time points, 
must be passed. 

Repeated eigenvalues.-From a computational point of view, the notion 
of repeated eigenvalues means that they agree to within a prescribed finite 
number of digits. If you take a large random sample of stochastic matrices, 
then those matrices with repeated eigenvalues tend to o:cur with a fre-
quency close to zero. On the other hand, the entries in P which arise in 
mobility investigations are often subject to considerable sampling vari- 
ability and other sources of errof. Our concern, therefore, is to know 
whether a small perturbation in P, call i t  p, would lead to branches of 
log radically different from those of log b. These radical differences can 
occur in passing from a distinct to a repeated eigenvalue matrix, which in 
turn can be viewed as being "within error distance" of the original distinct 
eigenvalue matrix. This suggests that a distinct eigenvalue matrix which 
is compatible with a Markov model and has a pair of eigenvalues within 
a prescribed number of digits of each other should be perturbed to a 
with repeated eigenvalues. Then the structure of the continuum should be 
displayed as in example 10. If the branches of log p which are in Q are 
sufficiently varied, this would lead us to report that our observatirnns P 
based on data collected a t  two time points are uninformative about the 
underlying mobility mechanism. 

d 

The additional tasks to be undertaken, then, in a situation where P 
has eigenvalues which are close to being repeated, consist of carrying out 
the following procedures: 

Step 5.-Adjust the observed stochastic matrix $ so that it will have 
repeated eigenvalues. 

Step 6.-Determine the structure of the continuum using the simulation 
strategy described in the Appendix, and check whether some part of the 
continuum is in Q. 

The task of adjusting ? so that it will have repeated eigenvalues is not 
difficult when the eigenvalues close together are complex conjugates. 
Fortunately, it is this situation which is of primary practical interest. 
If we represent these eigenvalues in polar form, ( A ,  X)= (peis, ~ e - ~ ~ ) ,  
0 < 8 < v ,  where 8 =0 or 8 =T,then the corresponding eigenvalues 
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in log fi are log p t i ( 8  + 2n-k). We now want to alter k so that one of 
the approximate equalities is replaced by an exact equality. For a scalar t, 
t log & =H t  log DH-I  will have among its eigenvalues t log p i ( t8  + 
2n-kt). Therefore, if we choose t = tl = 27rk/(27rk + 8 )  or t = tz = 
(n-+ 2n-k)/(8 + 2n-k), where k is the largest branch numberz5 that sat- 
isfies (3.24)) the matrix ?= et log $ will have repeated real eigenvalues, 

t i?r(2k+l), Pt2e-ia(2k+l)) =either (ptlei2"k, pt1e-i2r7~) = (ptl ,  ptl)  or ( p  ze 
(-pt2, -pt2). This technique is called "riding log 13." I t  was employed 
in example 2, and it is applied again in Section 4.2. 

4. MULTIPLE SOLUTIONS OF f i  = eQ 

4.1 Conceptual Overview 

The tests outlined in the preceding section permit a rensearcher to ascer- 
tain whether or not an empirically determined matrix P ( t l ) ,  constructed 
from observations a t  times t = 0 and t = tl, is compatible with a con-
tinuous-time M a r k y  process. When the answer is affirmative, a t  least 
one version of log P ( t l )  will be in Q. In general, as y e  have observed, it 
may be necessary to examine severaT branches o$ log P( t l )  to resolve the 
question of embeddability. For instance, when P ( t l )  has complex eigen- 
values, each complex conjugate pair will generate U +L + 1 candidates 
for membership in Q.-

In  discussing the tes t s  in Section 3, our objective was to investigate 
embeddability; we sought to determine whether any of the log P(t1) 
candidates was, in fact, a bona fide member of Q. In  the presen; section, 
we shift emphasis and inquire into how many versions of log P(t1) can 
belong to Q. Stated technically, we wish ty compute the number of dif- 
ferent soluzons Q to the equation eQtl = P ( t l )  which have the required 
structure (2.2). I n  the discussion that follows, we shall assume P(t1) is 
embeddable; that is, a t  least one version of the logarithm is in Q. 

Under certain conditions, it is possible to guarantee that this solution 
Q E Q will be unique. In particular, this is so whenever one of the follow- 
ing &.ufficiency conditions is satisfied: 

i) The eigenvalues of b(t1) are distinct, real, and positive. 
ii) min{ji i( t l)} > 1/2, where Bii(tl) is the diagonal element in the 

ith row bf !(tl). 
iii) det b ( t l )  > e-" = .0432. 
The F t  criterion derives from the fact that only the principal branch 

of log P ( t l )  is real valued under the indicated eigenvalue constraints. 

25 k may be positive or negative. The sign is chosen according to whether one wants 
to "move backward" to a repeated eigenvalue situation ( + k )  or "move forward" 
( - k ) .  Note also that k =0 will not generate a continuum at 0 =0. These issues are 
addressed in greater detail in Sections 4.2 and 4.3. 



American Journal of Sociology 

Also, in this circumstance, the assessment that Q = (l / t l) log ?(t,) E Q-
will be unique is independent of the choice of t,, since the eigenvalues 
P ( t )  generated by such a Q retain the specified properties for all times t. 
Additionally, when the eigenvalues satisfy ( i ) ,  the series formula (2.5) 
will converge to the unique version of the logarithm in Q. 

The second and third criteria were established by=cuthbert (1972, 
1973) and refer to the specific times t in the evolution of P ( t )  = eQt a t  
which the solution Q E Q will be unique. For the purpose of model identifi- 
cation, conditions (ii) a<d (iii) reveal that every Markov chain (identified 
by a matrix Q E Q via the relation P ( t )  = eQt) has an interval of time 
[0, TI during whzh only one version of log P( t l ) ,  0 < t ,  < T, is in Q. 
[The location of the uniqueness interval a t  the origin follows from tKe 
fact that L ( t ) ,  the number of branches of log P ( t )  in Q,- is a nondecreas- -
ing function of time-see fig. 6, Section 4.2.1 

These comments suggest that, in planning an observational study where 
Markov models are to be utilized for identifying non-directly observable 
mobility mechanisms (Q-matrices), it is advisable to take the first two 
observations as close together as possible, while still allowing a representa- 
tive amount of movement to occur. The question of what constitutes an 
appropriate time interval is clearly tied to the nature of the particular 
substantive process. The point to be highlighted here is that, because of 
the complications which arise when there are multiple solutions, this sort 
of consideration is consequential in developing sampling strategies for 
situations where the number of time points a t  which data can be collected 
is very restricted. 

Except when one of the special conditions ( i ) ,  ( i i) ,  or (iii) is satisfied, 
i t  is possible for several branches of log b ( t l )  to be in Q.- This nonunique- 
ness phenomenon, illustrated in the examples below,-has received very 
little attention in scientific disciplines (physics, engineering, sociology) 
in which Markov processes are frequently utilized. Nonetheless, the 
existence of multiple solutions Q E Q- to the equation eQtl =b ( t l )  is not -
at  all uncommon. 

Example 12. Consider the empirically determined matrix26 

26The relative closeness of this array to the equilibrium matrix is not a requirement 
for the existence of multiple branches, except for small order arrays such as 3 X 3 
and 4 X 4. See n. 29 below on this point. 
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This array can be represented in the form e"1, Q e Q- and tl = 1, with -
either of the matrices 

From the perspective of uncovering structural mechanisms, the matter 
of identifying the "correct" Q for an empirical process must be a central 
consideration, because the alternative intensity matrices consistent with 
the mathematical formalism $(tl)  = e"1 will lead to different substantive 
conclusions. If only the branch (l / t l) log k ( t l )  = Q1 were recovered, 
one would assert that the most frequent transitions are S1 +S4, :2 +S1, 
S3 +S2, and S4 + 5'3. In contrast, if only the branch ( l / t l )  log P(t1) = 
Q2 were computed, one would contend that the process evolves principally 
through the following pattern of movements: S1+S2, S2 +S3, S3 -+ S4, 
and S4 +S1. Since, in applications of continuous-time Markov processes, 
attention has been directed to the relative magnitudes of the qij entries 
and to apportioning these elements among theoretically specified effect 
parameters (e.g., Coleman 1964a, chap. 6 ;  McDill and Coleman 1963; 
Bartholomew 1973, chap. 5 ) ,  identification of the appropriate intensity 
matrix would appear to be a necessary initial step in this sort of analysis. 

This task may be divided into two component issues: ( a )  recovery of 
?I1 matrices Q E Q that are compatible with the representation eQtl= 
P ( t l )  and ( b )  seGction from this list of alternative Q-matrices the correct 
one for the empirical process a t  hand. Procedures for accomplishing the 
first task are presented in the current section. The second issue can be 
resolved by bringing additional substantive information to bear on the 
nature of the process to aid in choosing among the alternative Q-matrices, 
by collecting data at more than two time points, or by sampling the pop- 
ulation over a briefer time interval (e.g., within the region of uniqueness). 
These matters will be considered in Section 5. 

4.2 How Multiple Versions of log !(t) e Q- Arise-
The simplest way to describe how multiple matrices Q e Q originate is 
to consider the case of a general 3 X 3 stochastic matrix P F )  which has 
complex eigenvalues. Expressing this matrix in diagonal form, we have 
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P ( t )  =HD(t )H- I .  For convenience, we write the complex eigenvalues 
of P ( t )  as exponentials, 

where X(t) denotes the complex conjugate of the eigenvalue h ( t ) .  Then 
log k ( t )  =H log D( t )H- l ,  in which 

We specify b > 0. Also note, for reference, that because jA(t) / < 1 for 
all t, a t  = log Ih(t) 1 < 0. 

Applying Runnenberg's necessary condition for embeddability (3.24), 
we have 

where the inverse tangent specifies arg(1og h ( t )  ) in (3.24). For a fixed 
t, we therefore have a series of tests, one for each integer (branch) k. 
The point to be emphasized here is that, since every branch of log P ( t )  
whose eigenvalues satisfy (4.3) is a candidate for membership in 9, more 
than one version of the logarithm may, in fact, be in Q. I t  is a s o  the 
case that, as t increases and P ( t )  evolves to the equili=brium matrix of 
the process, the number of branches of log P ( t )  that are potentially in Q-
becomes larger. These phenomena are illustrated in figures 4 and 5. 

Figure 4 displays the locations of various branchesz7 of the eigenvalues 
log A ( t )  = (a + bi) t  + 2rk ,  t = 1, in relation to Runnenberg's criterion. 
The wedge-shaped region (solid lines) defines the boundaries of this 
necessary condition for embeddability-all eigenvalues of log P ( t )  must 
lie in the zone. In  this illustration, only the principal branch (k = 0 )  is 
located in the wedge-shaped region; other branches of the logarithm, 
which differ by multiples of 2 7 ~  in their imaginary parts, lie outside the 
wedge. 

Now consider the effect of letting t increase. With respect to the prin- 
cipal branch of log A(t) ,  t a r l ( b t / a t )  = tan-](b/a),  and hence the 

27For brevity in the discussion, we focus on positive branches (k  >0 ) .  An anal-
ogous description can be presented for negative branches of the logarithm. 
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FIG.4.-Eigenvalues of log P ( t ) , for t = 1. The pair of crosses closest to the nega- 
tive real axis depicts the principal branch of the logarithm, log A = a 2 bi. The pair 
next further out represents the branch for k = 1, i.e., log A = a 2 i ( b + Z T ) ,  and so 
forth. 

argument of the logarithm is unchanged. With regard to any other branch 
k > 0, since 

(the inequality follows because a < 0)  and since tan-lx is an increasing 
function of x in the second quadrant, we have 

arg(at + i[bt + 2 ~ k ]) = tanp1( [bt + 27rk]/at) 
> tan-]( [b + 27rk]/a) = arg(a + i [ b+ 2 ~ k I ) .  

This calculation shows that the angle made by a branch of the logarithm 
(k  > 0 ) ,  with respect to the positive real axis, enlarges with time. As a 
result, additional branches enter the wedge, and the number of versions 
of log P ( t )  that are candidates for membership in 

=
Q increases. This phe- 

nomenon is illustrated in figure 5. 
If we let L( t )  = {number of branches of log P ( t )  E Qigiven t ) ,  the 

next relevant considerations are: ( i )  L ( t )  itself is a monotrne nondecreas- 
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FIG.5.-Trajectories of the eigenvalues of log P ( t ) ,  as a function of time. The 
dashed lines with arrowheads show the trajectories of the branches of log X ( t ) ,  as 
a function of t .  

ing function of t (except, possibly, for isolated time points), and (ii) if 
L ( t )  > 1 at some time t (other than one of the isolated time points), 
then L(t )  + oo as t + oo (Cuthbert 1972, 1973). The graph of L ( t )  in 
figure 6 is the prototype for the evolution of any Markov chain where Q 

FIG.6.-Number of branches of log P ( t )  in 9, as a function of time -



Representation of Social Processes by Markov Models 

has distinct eigenvalues and a t  least one complex conjugate pair. At times 
t = n/b, 2n/b, 3n/b, . . . , nrr/b, . . . , the complex conjugate eigenvalues 
of P ( t )  will equal exp[ann/b li ( n n  + 2nk) ] ,  n = 1, 2, 3, . . . , and 
k =0, f 1, t2, . . . . This expression reduces to one of the multiple real- 
root conditions, either X2(t) =X3(t) = exp(ann/b) or Xz(t) = h3(t) = 
-exp(ann/b), according to whether n is even or odd. The point to be 
stressed is that, at  these times, P ( t )  = eQt  has repeated eigenvalues with 
nondistinct elementary divisors, which will give rise to a continuum of 
branches of log P (nn /b ) .  

From the point of view of model identification-determining the correct 
Q E Q for a substantive process-these times are a source of diffitulty, 
becarze their locations are a priori unknown. Knowledge of log P ( t , ) ,  
where P ( t l )  has the same structure as P(nrr/b) in the preceding illustra- 
tion, can be useless for making statements about the propensity of indi- 
viduals to move between particular states.28 If many observations in 
time were to be allowed in a particular study, we could prepare sampling 
plans for model identification which would be relatively uninfluenced by 
this phenomenon. With observations a t  only two, three, or four time points 
being a constraint in most studies, however, a single uninformative matrix 
b ( t i )  can make a considerable difference in the available information for 
identifying the Q-matrix underlying a substantive process. 

With general r-state matrices, the preceding discussion is complicated 
by the possible presence of more than one pair of complex conjugate 
eigenvalues. The graph of L ( t )  (fig. 6) would then be altered in two ways: 
first, there would be additional isolated time points a t  which L ( t )  =+ w . 
These correspond to the instants a t  which the added complex eigenvalues 
have zero imaginary parts and become repeated real roots. Second, the 
rise in the step function can be much steeper. This is because the wedge- 
shaped region (fig. 4 ) ,  which determines the number of branches of 
log h ( t )  that can generate candidates for membership in Q, widens as a 
function of r, the order of the matrix. This phenomenon is= illustrated in 
figures 7, 8, and 9. 

Figure 7 displays the wedge-shaped zones for general 3-state and 6- 
state matrices; the respective angles made with the positive real axis are 
determined by the inequgities (4.3). From the illustrative representation 
of an eigenvalue of log P and its complex conjugate, we see that, while 
only the principal branch lies in the wedge for 3 X 3 matrices, two addi- 
tional branches would be candidates for membership in Q if this same 
eigenvalue belonged to the larger array. I t  is this fact, toGther with the 
presence of additional complex conjugate eigenvalues to generate candi- 
dates for membership in Q, -- which prompted our remark in Section 3.3 to 

2sThe same remark holds for a $ which is considered to be within error distance 
of P ( n ~ / b ) .  
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FIG.7.-Runnenberg's wedge criterion, illustrated for 3 X 3 and 6 X 6 matrices, 
for t = 1. 

the effect that the number of branches which must be checked for embed- 

discussion, we emphasize thai the computations are more likely to pro- 
duce multiple versions of log P E Q in large-order arrays. 

Figure 8 presents the same infoTmation as figure 7, but from a different 
perspective. The preceding plot depicted the constraints on the branches 
of the eigenvalues of log k, as they relate to eligibility for membership in 
Q. In  figure 8 we display the conditions on the eigenvalues of fi ,  in 
t=he case of 4 X 4, 6 X 6, 12 X 12 ,  and 20 X 20 matrices, for it to gen- 
erate a t  least two candidates for membership in Q. We thereby see in a 
more direct fashion how the constraints are relaxFd as the matrix size is 
increased.29 Finally, in figure 9 we show the restrictions for different num- 
bers of logarithms to be eligible for membership in Q, in the particular 
instance of a 20 X 20 array. The outer, heart-shaped Tegion, labeled H2:I 
is a graph of Runnenberg's necessary conditions: all eigenvalues of P 

2 V n  connection with this point, we refer the reader to the 4 X 4 matrix F(tl) in 
example 12. The reason why it is reasonably similar to the equilibrium matrix for 
the process can now be appreciated; namely, the complex conjugate eigenvalues are 
close to zero in magnitude. 

I n  the context of the present ;.dability increases directly with the order of 
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FIG.8.-Eigenvalue regions of 8 in which two versions of log 8 are candidates for 
me~bership  in Q, for 4 X 4, 6 X 6, 12 X 12, and 20 X 20 matrices. Each eigenvalue 
of P interior to-the curve relevant to its size will generate at least two logarithm 
candidates for membership in Q.-

must lie in this zone for the matrix to be embeddable. The interior curves 
delineate the reg$ns in which an eigenvalue of 8 will generate multiple 
branches of log P that can be in Q;- for instance, if some eigenvalue h j  
lies interior to the curve labeled "k--1," then each of the two branches 
of its logarithm, 

log A,/= a +  6i and log h / = a + i ( b  - 2n), 

will generate versions of log 6 which must be examined for membership 
in Q. 

The most severe form of nonuniqueness of log + ( t l )occurs for Markov 
chains P ( t ) = eQt having real eigenvalues which remain repeated for all 
t > 0, instead of separating into complex conjugates, as was the case in 
the preceding discussion. The transition mechanisms associated with such 
chains are by no means pathological from a substantive point of view, 
and the prototype of this phenomenon is illustrated in the following 
example.30 

30The remainder of this section is more difficult mathematically and can be skipped 
at a first reading. Continue with Section 4.3. 
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FIG.9.-Eigenvalue regions of P
A 

in which multiple versions pf log P
d 

are candidates 
for membership in Q,for 20 X 20 matrices. A11 eigenvalues of P must lie in the region 
Hz" for P to be eifibeyable. If an eigenvalue is interior to a k-curve, it generates 
Ikl + 1 versions of log P which may be in Q.-

Example 13. Consider the matrix 

where t > 0. P ( t )  has eigenvalues 1, e -3 t /2 ,  e -3 t /2  (which are repeated 
irrespective of the choice of t )  and nondistinct elementary divisors ( A-
I ) ,  ( A  - e - 3 t / 2 ) ,  ( A  - e - 3 t / 2 ) .Note that this is the matrix of example 
10 with X = e-3t/2. 

From the discussion of repeated eigenvalues with nondistinct elementary 
divisors (Section 3 . 2 b ) ,we know that all branches of ( l / t )  log P ( t )  may 
be computed via 

1 1 
-log P ( t )  =-HB log J ( t ) B - l H - l  (4 .5 )t  t  

where H is any similarity transformation that reduces P ( t )  to diagonal 
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form (e.g., eq. [3 .19]  ), B is a matrix with complex entries (3.21) which 
commutes with J ( t ) ,  and log J ( t )  has the form 

in which k = 0, i- 1, 12, . . . specifies branches of the logarithm. 
We now describe how a continuum arises in this eigenvalue condition. 

The first time that the complex eigenvalues in (4.6) satisfy Runnenberg's 
condition (4.3) with k f.0 occurs a t  t* = 47r/fl. Before this time only 
the branch k = 0 of log J ( t )  will be in the wedge-shaped zone (fig. 4). 
I t  can be checked that, when k = 0, B log J ( t )  = log J ( t ) B ,  and there- 
fore equation (4.5) reduces to ( l / t )  H log J ( t )  H-l  for every matrix B. 
This means that a t  most one version of ( l / t )  log P ( t )  can be in Q.- Indeed,-

-47r 

When t > t* = fia second branch of log J ( t )  in (4.6) enters the 
wedge-shaped zone (see fig. 5 ) .  In this circumstance, i t  is no longer the 
case that B log J ( t )  = log J ( t )  B, and a continuum of versions of 
( l / t )  log P ( t )  will be generated, each version corresponding to a choice 
of {c,~) in B (eq. [3.21]). A bit of computation will show that, if {c,,) are 
restricted according to 

i )  C l l C 1 2  - c21c22 =0 
C l l C 2 2  + C12C21 + 2~21~22 

ii) u is real, u = 
C l l C 2 2  - c12c21 

C l l C 2 2  + c12c21 - 2~21~22 
v is real, v = 

C l l C 2 2  - c12c21 
iii) 1 kul < fl t /47r and 1 kv 1 < fl t /47r 
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where k is an integer (the branch number), then all choices of {cij}will 
yield matrices Q E Q,-- and they are summarized by 

4%-
fo r t  > ---
4. 


The graph of L ( t )  versus t for this Markov chain is shown in figure 10. 
From the point of kiew of model identification, the second observation tl 
must be taken before t:" 47i-/fl. After this time, a repeated observation 
will yield the matrix (4.8), which is completely uninformative about the 
propensity to move between different states. The fundamental difficulty 
illustrated by this example is that empirically determined matrices with 
nondistinct elementary divisors in which this property is retained through 
time may be associated with a continuum of intensity matrices for all 
times tl greater than some threshold t'::. To distinguish this "essential" 

FIG.10.-Number of branches of log $(t)6 Q as a function of time, for b(t) in-
example 13. 



Representation of Social Processes by Markov Models 

continuum case from the chance occurrence of an "isolated" continuum 
(viz. the points r /b ,  2r/b,  . . ,nr/b ,  . . ;in Section 4.2), a researcher 
should check whether the eigenvalues of P ( t ,  + At), some At > 0, are 
repeated with nondistinct elementary divisors when his initial matrix 
k ( t l )  has these properties. 

4.3 	 Summary of Correspondence between Eigenvalue Characteristics and 
Number of Matrices Q E --Q 

The number of versions of log k that can possibly be in Q, as this relates 
to the eigenvalue characteristics of #, is summarized in g b l e  1. The left 

TABLE 1 

Eigenvalue Characteristics Embeddable? How Many Q's? 

1. Positive, distinct . . . . . . . . . . . . . . . . . . . . . . .  Possibly One 

2 .  	 Positive, repeated, distinct elementary 


divisors . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  Possibly One 

3 .  	Positive, repeated, nondistinct 


elementary divisors . . . . . . . . . . . . . . . . . . .  Possibly One or continuum 

4. Negative, distinct . . . . . . . . . . . . . . . . . . . . . . .  Never . . .  

5. Negative, repeated, odd multiplicity . . . . . .  Never . . .  
6. Negative, repeated, even multiplicity . . . . .  Possibly Continuum 
7. 	 Complex, distinct, member of a conjugate 


pair . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  Possibly One or multiple 

8. 	 Complex conjugate, repeated . . . . . . . . . . . .  Possibly One, multiple, or con-

tinuum 
9. 	 Mixture of the types above . . . . . . . . . . . . .  Possibly The most extreme form 

of nonuniqueness 
present in any com- 
ponent of the mixture 

tab of the table refers to a single eigenvalue of # or to a set of eigenvalues 
sharing a common property (e.g., complex conjugates). The evaluation 
in the farthest right column assumes that embeddability is met; in other 
words, that a t  least one version of log # is in Q. In  making this evaluation, 
it is also presumed that the remaining eigenyalues of b do not satisfy a 
condition which is compatible with a greater number of candidates for 
membership in Q; for instance, all eigenvalues must belong to categories 
( 1) and (2)  in Frder to conclude, on the basis of an examination of eigen- 
values alone, that a t  most one version of log b is in Q. 

A second point to be noted in connection with The table is that the 
eigenvalue conditions which rule out embeddtbility do so by no: being 
compatible with a real-valued version of log P. For example, if P has a 
unique negative eigenvalue, X = -a (a > O), its logarithm will be log a + 
ikn, k = 0, + 1, & 2, . . . , which always has a nonzero imaginary part. 
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The corresponding eigenvector h in the similarity transformation k' = 
HJHAP1 will be real valued (since X = -a is distinct and real), and 
log P =H log JH-I will have the identical eigenvecyr corresponding to 
its complex eigenvalue. There is no way in which log P can be real valued 
in this circumstance. What alters the situation in the case of repeated 
negative eigenvalues with even multiplicity is that, when the elementary 
divisors are not distinct, the eigenvectors corresponding to the repfated 
eigenvalues will be complex conjugates, and real versions of log P can 
result. In  particular, this will occur when different branches of the loga- 
rithm of -a are present simultaneously in log D. 

Finally, we emphasize that the eigenvalue configurations most com-
monly found in empirically determined matrices involve combinations of 
distinct positive and distinct complex conjugates (categories [ I ]  and 

~ 7 1 ) .  

5. TESTING STRATEGIES 

5.1 Identification of Structural Parameters 

We assume first that the process under observation is time stationary, 
that the data are free of measurement and classification error, and that 
the entire population has been surveyed, so sampling variability is not a 
concern. These assumptions have also been made, though without being 
noted explicitly, in the preceding sections. In this environment, the identi- 
fication problem arises when observations are taken at only two time 
points (t  =0, t = t l) ,  and the matrix b(tl). constructed from these 
observations can be represented in the form P ( t l )  = eQtl for multiple 
arrays Q E Q. A researcher then has the following options: 

i )  He mFy bring to Rear other information about the substantive pro- 
cess. For instance, if P ( t l )  were the matrix in example 12, a researcher 
might have reason to believe that q12 > q14 and therefore Q2, not Q1, 
governs the evolution of the process. Clearly, such a choice can be made 
only when there is a finite list of intensity matrices, and not when a 
continuum is present. 

ii) If an opportunity exists to collect data a t  a third time point, it 
should be selected so as not to be an integer multiple of the initial interval 
(0, t,). The reason is that, a t  multiples of an observation interval, the 
same list of Q-matrices can reappear; this was the case, for instance, with 
the times ?r/b, 2?r/b, etc. in figure 6. If, however, the third observation 
is taken a t  t2 # ktl, k an integer,31 then even in the presence of multiple 

31This recommendation assumes that we have observed the first appearance of a 
continuum, which will be the most common situation. If we have observed the second 

k t1  
occurrence, the times tp  =-should be avoided. If i t  is a third occurrence, omit the 

2 
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branches of log B(t,, t2) E -Q, only one version of the logarithm, Qo, will-
have the property 

This correspondence will identify the unique Q that can be associated 
with the empirical process. 

There is an additional virtue in collecting data a t  three or more time 
points. The embeddability problem coFcerns only the question of com-
patibility of a single stochastic matrix P(tl)-that is, observations a t  two 
time points-with a continuous-time Markov process. We have seen that, 
on the basis of this information alone, it is frequently possible to rule out 
a Markov structure. However, when data are available from more than 
two time points, a direct test can also be made of the fundamental dynamic 
assumption of a first-order Markov process, namely that the future state 
of the system depends only on current state, not on its history. These 
additional necessary conditions are specified by tests of the sort 

b(ti)  tk) =b(tl) tj) b( t j ,  tk), 0 < ti < t j  < tk. (5.2) 

The availability of data at three time points provides the most rudimen- 
tary opportunity to check this assumption. Formal statistical tests of the 
validity of the Markov property are described in Anderson and Goodman 
( 1957) and Billingsley ( 1961) . 

Study design considerations.-The potential for nonuniqueness can be 
minimized at the study design stage. If the use of Markov models is con- 
templated, the survey times should be chosen close together in time, while 
still permitting a representative amount of movement to take place. When 
the number of states is small (saylAr < S),  i t  should be possible to select 
tl so that min{$ii(tl)} > 1/2. If P(t1) is embeddable, this condition on 

2 

the diagonal elements ensures that log b ( t l )  E Q will be unique (see Sec- 
tion 4.1). When the number of system states i?large, it may not be pos- 
sible to satisfy this condition and still retain an adequate amount of 
population movement to estimate log b(t1) accurately. Even in this cir- 
cumstance, however, tl should be selected reasonably close in time to the 
initial observation, since the degree of nonuniqueness of Q E Q is a mono- 
tone increasing function of time (fig. 6),  except for isolated Estants such 
as {k.rr /b} .  

In  most data-gathering situations, one has neither a priori information 
concerning the rate of movement (to assist in selecting the second observa- 
tion) nor an opportunity to schedule the second wave of a survey accord- 

k t 1
times t 2  =-, etc. As a practical guide, if a researcher avoids the two sets of time 

.3 
points cited in this footnote, he is unlikely to encounter a second continuum. 
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ing to these considerations. A more pragmatic suggestion would be to 
collect detailed retrospective information about the process. Ideally, this 
should consist of "sample path" data;  that is, complete information about 
a respondent's duration in each system state over the time interval of 
interest. When such data are deemed too costly to collect, a respondent 
should be queried regarding his system state a t  several prechosen time 
points in the past (e.g., one year ago, two years ago, etc.). Having gath- 
ered such information, the researcher may utilize the estimation procedures 
and model tests that require more than two observations in time. 

5.2 Sampling Error and Data Noise 

The data available to researchers are commonly contaminated by errors 
of various sorts. While we may wish to make statements about a popu- 
lation-level process, information is usually collected for a population 
sample. Similarly, errors of measurement can result in the misclassification 
of individuals with respect to system state. 

Ordinarily, these are not very serious problems. In  many sampling 
situations, the inference made about a population parameter, using 
standard statistical procedures, tends to be incorrect to a degree that 
varies continuously with the magnitude of the measurement error. By 
using distributional statistics, one can put confidence bounds around an 
estimate and describe the interval in which the population-level parameter 
lies. However, measurement error and sampling variability carry greater 
consequence when we seek to identify the non-directly observable struc- 
tural mechanisms (Q-matrices) that underlie Markov processes. I n  par- 
ticular, when an empirically determined matrix @ ( t l )  is in the vicinity of 

N 

a second stochastic matrix p which can be expressed in the form P = eQ 
for multiple versions of log p E Q, then a small error in the estimate of 
8 ( t l )  can result in the recovery zf a matrix Q E Q which, while unique, is 
the wrong intensity matrix for the substantive pr7cess. 

Example 14. Suppose you observe 

.232 ,249 .266 

= .236 .228 .244 ..258 .242[::$: 
.2 74 .250 .23 1 ::::I

This matrix can be written in the form eQtl, tl = 1, for a unique version 
of log & t l )  E Q,--

-3.216 0.129 0.064 3.023 
0.138 0.029 

.I =[ 3.007 -3.174 10.034 3.104 -3.260 0.122 . 
0.132 0.032 3.023 -3.186 
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If one believed j l ( t l )  to be error free, it would be reasonable to con- 
clude that Q1 describes the evolution of the dynamic process. However, 
in a fallible environment, a second survey of the same population would 
produce a slightly different observed matrix. Consider 

No element of this matrix differs from its counterpart in b l ( t l )  by an 
amount in excess of .006in magnitude, so i t  is not unreasonable to sug- 
gest that the two matrices represent different samples from a single parent 
population. However, while it is the case that jz(t1) is also compatible 
with a continuous-time Markov process for a unique Q E Q,-- this intensity 
matrix is given by 

Matrices Q1 and Qp represent very different structural mechanisms and 
would lead to contrary conclusions about th; nature of :he substantive 
process. What has happened is that, while P l ( t l )  and P z ( t l )  are each 
compatible with the representation eQtl and have unique logarithms in Q, 
the two empirically determined P-matrices lie in the vicinity of a thirz, 
p, which in turn can be represented as a Markov process for multiple 
matrices Q E Q.-- Indeed, 

and this common P-array is the same one presented in example 12 to 
illustrate the phenomenon of multiple intensity matrices.32 

Specific error structures.-In the context of sampling variability or 
measurement error, then, a researcher cannot assume that, because 
j ( t 1 )  = eQtl  for a unique Q E Q, this intensity matrix describes the 
evolution of the substantive proTess. He  must either remove the error 
from the observed matrix and use the "purged" array for estimating 
structural parameters or examine the intensity matrices of other P's 
that are within "error distance'' of his empirically determined matrix. 

32 The Q-matrices in example 1 2  are the ones in this illustration multiplied by t = 1.05. 
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Misclassification error can be incorporated formally in a description 
of observed transition matrices by introducing the representation 

where b(ti,tj) is an empirically determined r X r matrix of transition 
probabilities based on observations a t  times ti and t j ;  p(t6,tj) is a fitted 
r X r matrix of transition probabilities representing the error-free or 
purged mobility structure; E(t i , t j )  is an r X r matrix of residuals inter- 
preted as errors due to misclassification; and the symbol o denotes either 
addition or multiplication. Motivating the representation (5.3) is the 
view that matrix P, rather than P, should be tested for compatibility with 
a Markov process and Q should be estimated from the equation P = eQ. 

Calculation of H and E must be based on an assumed model of the error 
structure, together with independent estimates of the parameters. For 
example, if the states are occupational categories and there is a natural 
ordering among them (e.g., on the basis of a prestige scale), an individual 
who actually moves from state i a t  time t1 to state j a t  time tp may have 
probability cl of being recorded in state j-1 a t  time t2, probability cz 
of being recorded in state j+l  a t  time t2, and probability 1-cl-62 of 
being recorded correctly. If this kind of measurement error is believed 
to operate, it implies a representation of the form 

where 

Given cl and c2 based on independent misclassification estimates, we could 
solve the matrix equation (5.4) for P(tl,t2). See Coleman (19643) for 
approaches of this sort to the study of change in a fallible environment. 

Random error.-In general, a formal model of the error structure will 
not be available, yet we may wish to make allowa,nce for the effect of 
"noise" in the data. We recoymend a strategy of "exploring" a neighbor- 
hood of the observed matrix P ( t l ) ,  to ascertain whether nearby P-arrays 
are compatible with intensity matrices that are very different from the 
initial Q-matrix. 

A reasonable procedure for exploring a neighborhood of / ( t l )  would 
be to "ride" its associated intensity matrix Q,. By this is meant computing 
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P ( t )  from the representation P ( t )  = eQot, using for t the values tl -At, 
tl - 2At, . . . , tl - hAt, and tl +At, tl + 2At, . . . , tl + kAt, where 
the termination points h and k are the last times that P( t1  - jAt) and 
P( t l  + lAt) can be considered "within sampling or measurement error" 
of the observed matrix. Next, examine the eigenvalues in the sequence of 
matrices : 

a )  If there is a complex conjugate pair (A,  1)= ( a  t bi) whose 
imaginary part passes through zero, then $(t l)  is in a neighborhood of 
some matrix ? which has repeated real eigenvalues. Associated w$h this 
array, a continuum of matrices Q E Q will satisfy the relation P = eQ. 
Strategies for exploring the structure Gf a continuum are discussed in the 
Appendix. 

b) If a continuum does not occur within error distance, recover all 
matrices Q E Q- that are compatible with the representation P( t1  + kAt) 
= e Q ~ ( ~ l  where k was chosen as the forward stopping point of the + k ~ t T ,  
sequence of P-matrices.33 The complete solution to the problems of deter- 
mining the number of candidates for membership in Q and computing all -
versions of log P E Q was presyted in Section 3. 

If it is the case=that log P E Q is unique under the perturbations of 
i)(tl), this intensity matrix can b=e viewed as the sole mobility structure 
compatible with a Markov formulation of the substantive process. Stated 
more transparently, additional samples from the same population can be 
expected to produce similar Q-matrices. In  contrast, if multiple mobility 
mechanisms Q E Q-- are found for matrices within error distance of the 

observed array b ( t l ) ,  one of the procedures described in Section 5.1 for 
selecting among alternative intensity matrices must be utilized. 

In  an environment containing error, the advantages of collecting data 
a t  three or more points in time are especially apparent. We noted earlier 
(Section 5.1) that three time points are the minimum number for a direct 
test of the dynamic assumption underlying a first-order Markov process, 
that is, for checking that 

&o,t2) =h(o, t l )  !(tl,t2), o < tl < t2. (5.5) 

I n  practice, this entails evaluating whether 1 lj(0,tZ) - b(0, t l )  B(t1,tz) / 1 
< E, for E > 0, and some suitably chosen norm (e.g., A 1 ={E).

t , j  

When (5.5) is satisfied and i t  is also the case that 

1 A 1 1 A 
-log P(O, t l )  =-log !(tl, t2) =-log P (0 ,  La), (5.6)

t l  tz - tl t2 


33 Because L( t )  = {the number of branches of log P ( t )  E Q) is a nondecreasing func- 
tion of time (except for isolated occurrences of continua), it is not necessary to 
examine points earlier than tl. 
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we would define Q, the common intensity matrix for the process, as an 
average of these three estimates. In  the presence of sampling or measure- 
ment error, then, collection of data a t  three or more timc points permits 
a test of the fundamental Markov assumption and also facilitates an 
accurate calculation of Q, through the pooling of several estimates. 

I n  an instance where (5.5) is satisfied but equation (5.6) is not, the 
process will still be Markovian, though it is no longer time stationary. 
This leads to the problem of testing observed matrices for compatibility 
with a time-homogeneous Markov model ( the null hypothesis) against 
special non-time-homogeneous alternatives. We hope to discuss this im- 
portant issue in a future publication. 

As a final comment on analytic strategy in the context of data noise, 
we emphasize that, while the occurrence of multiple matrices Q E Q- may 
not be very common in an error-free environment, i t  characterizes the 
normal work situation when data are fallible. This is because we advise a 
researcher to examine a neighborhood of an observed 8 ( t l )  for the pres- 
ence of additional intensity matrices and to consider each recovered 
Q E Q as possibly governing the evolution of the empirical process. Due 
to d i t a  noise, then, we suggest creating a multiple Q E Q situation when 
an observed transition matrix has associated with it a ynique logarithm 
in Q. For this reason, collection of data a t  three or more time points 
shoGld be a routine requirement when the use of Markov models is 
contemplated. 

6. CONCLUSIONS 

The point of departure for this study was the gross misunderstanding 
among researchers concerning which stochastic matrices are compatible 
with a continuous-time Markov process having stationary transition 
probabilities. 'CVe noted that the power-series representation of the loga- 
rithm of a matrix (eq. [2.5] )-the principal formula used in estimating 
the structural parameters that govern the evolution of a Markov process 
-permits an intensity matrix to be recovered only for a subset of this 
class of stochastic models. By resorting, instead, to the spectral-decomposi- 
tion representation, we were able to estimate intensity matrices for Markov 
models in instances where (2.5) does not converge; that is, in cases of 
transition arrays which Coleman and others have considered not to be 
compatible with this mathematical structure. In  the course of the investi- 
gation, we also raised new issues which a researcher must consider; these 
include, principally, the possibility that multiple intensity matrices may 
be compatible with an empirically determined transition array and the 
fact that, as a result of data "noise," recovery of a unique Q E Q- does 
not preclude the possibility that the observed process is governed-by an 
entirely different intensity matrix. 
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In  subsequent papers, we intend to address two additional issues which 
a researcher desiring to use Markov models in a flexible and creative 
manner must entertain: ( a )  How should a priori restrictions be placed 
on the elements of a Q-matrix, and (b )  how can a researcher discriminate 
among the alternative mathematical models which, on substantive grounds, 
provide reasonable descriptions of his data? The first topic was mentioned, 
in pnassing, in Section 3.3, when we sought to adjust a nonembeddable 
log P to a neighboring Q E Q. More generally, we may wish to estimate the 
parameters of a sociologicg theory which specifies that certain instanta- 
neous transitions are prohibited (see Coleman 1964a, chaps. 4 and 5, for 
examples). The second topic refers to testing data for compatibility with 
a subset of Markov models (such as birth and death processes) versus 
general finite-state Markov processes and to comparing the fit of Markov 
models with that of other mathematical structures, such as mixtures of 
Markov processes or semi-Markov processes. 

As a final point, we emphasize that the problems addressed in this paper 
cannot be avoided by employing a discrete-time Markov framework in 
place of a continuous-time formulation. I n  the discrete-time model, the 
counterpart to the task of estimating Q E Q entails recovering the one-step 
transition matrix for an empirical processT that is, taking the appropriate 
root of the observed matrix b. Like a logarithm, a root is a multiple-
valued function, so the problem of nonuniqueness which we have discussed 
here arises also in that formulation. Conceptually, the discrete-time model 
embodies a further difficulty: because most social processes evolve con-
tinuously, there usually isn't a compelling reason for preferring one spec- 
ification of the unit time interval to another. (For instance, in studying 
intragenerational occupational mobility, should the unit time interval be 
five years or three years or six months?) Yet this is a question of great 
consequence, because an empirically determined matrix (estimated, let 
us say for this illustration, from observations ten years apart) may be 
consistent with a discrete-time Markov structure for some choices of the 
unit time interval but not for other choices (see Singer and Spilerman 
1974, pp. 360-63, for an example). Where no substantive meaning can be 
attached to a particular interval this does not imply that the 
unit time interval can be specified at  the convenience of the researcher or 
that tests of the sort described here can be ignored. Rather, it suggests 
that the appropriate mathematical structure is a continuous-time formula- 
tion, the procedures for which have been discussed in this paper. 

34 Examples of instances where a substantive meaning can be attached to an interval 
length and for which discrete-time Markov chains provide an appropriate analytic 
structure are (i) the popular preference in presidential elections-interval length equals 
four years-and (ii) school grades for a cohort or an individual-interval length 
equals one semester. 
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APPENDIX 

Exploring a C o n t i n u ~ m ~ ~  

In the case where !has repeated eigenvalues and nondistinct elementary 
divisors, the value of log b depends on the choice of similarity transforma- 
tion that is used to reduce b to Jordan form. A computer-based strategy to 
test a representative collection of branches of log fi for membership in Q 
is the most direct approach we can currently recommend for deciding on 
compatibility of b with a continuous-time Markov model. If a branch of 
log b which belongs to Q is discovered during the computer tests, then it 
can be shown that there 7s in fact a continuum of branches which are in Q. 
The testing strategy outlined below and illustrated in a simple example Ts 
also designed to give some indication of the extent of the continuum of 
branches which are in Q. 

Step 1.-Compute on? similarity transformation H which reduces b to 
Jordan form. The method of computation is entirely a t  the discretion of 
the researcher (see Gantmacher 1960, chap. 6, for suggestions). 

Step 2.-Take a random sample of points in an 8-dimensional square 
region with center a t  the origin.36 For each sample of 8 numbers, use them 
as the real and imag ina r~~par t s  of the parameters in the matrices B which 
commute with J =H-l P H .  Then evaluate 

where 

1 
B = [ 0  

0 

0 
ell 
C 2 l  

:;], 
c22 

log J 
0 

= [ o  
0 

0 
log A2 

0 log A2 

the {cij)are given by 

{xQ),{yi j )are the 8 numbers associated with each sample point, and 
log Xg F o t e s  the complex conjugate of log X2. Note whether this branch 
of log P is in Q. Several hundred such evaluations may be necessary in 
qrder to identify those matrices B, if any, which yield versions of log 
P E Q. 

35 The Appendix is more difficult mathematically and can be skipped a t  a first reading. 

36 We recommend beginning this search in the 2-dimensional subspace defined by the 
conditions cll  = cZ2, c I 2  = cZ1, real. Then extend the search to the 4-dimensional 
space defined by the restriction that {ci j}  be real, and finally introduce complex num- 
bers in the full 8-dimensional space. Improved strategies for exploring this kind of 
continuum are currently in the preliminary development stage. 
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The preceding computations do not increase in complexity for r X Y 
matrices having a single pair of repeated real roots, which is the situation 
most likely to arise. I n  this general case, B will have the form 

0 -

a,.,.-
However, since only the { c i j )  generate a continuum, the same simulation 
as before is involved. In  carrying out these computations, the reader is 
reminded that, if ha is a repeated negative root, the simulation must be 
performed for all branches of log h2= log Ih2/+ i(ri2 r k )  which 
satisfy Runnenberg's necessary condition for embeddability (eq. [4.3] ) . 
If X2 is a repeated positive root, the calculations must be carried out for 
all branches, except k = 0, of log h2= log /A21a 2 r k i  which satisfy 
Runnenberg:~ condition. (The case k = 0 can produce a t  most one ver- 
sion of log P E Q-see-- example 13 .) 

Example 15. Recall the matrix of example 10, 

with x = - e - ~ f i ~ .This array is reduced to Jordan form by the similarity 
transformation 

Our problem is to indicate how a random sampling scheme of the type 
mentioned above could give some insight into the variety of branches of 
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log $ which are in Q. To  illustrate the ideas, we restrict our consideration 
to the subset of maTrices B of the form 

1 0 
B 0 Pa .I,

P 
where a and P are arbitrary real numbers. 

A coyputing strategy designed to identify matrices B yielding branches 
of log P c Q- would begin by generating uniformly distributed ( a ,  P )  
values withTn a square centered a t  the origin-the boundaries la1 = lPI 
= 10 are chosen here for illustrative purposes. Each generated value 
represents a point on the a-/3 plane for which log b =HB log J B-lHP1 
is to be computed. If the resulting matrix is in Q, a "+" is recorded a t  
the point; otherwise, a dot is recorded. In  the pr;sent example, the flared 
pattern shown in figure 11, known as the "Iron Cross of the Red Baron 
(2d class)," would result. 

FIG.11.-Restrictiops on matrix B to generate branches of log b Q.The (a ,  P )  
values for which log P _Q are indicated by the symbol "+."The contours of constant-
values of log b are the straight lines P = (-:+:) a, where 1/2 $ 1x1 < 2. 
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The restrictions on a and P can be summarized by the inequality 

1.< < 2. What is more to the point, the structure of the con- 

tinuum is identical to the one reported in equation (3.23). (This may be 
verified by replacing { c i , )  in [3.21] with the appropriate a and P values 
and computing the restrictions [3.22] .) I n  general, however, by limiting 
{ c i , )  to real values, only a portion of the continuum will be produced. 
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