
Sparse functional regression models: minimax
rates and contamination

Wei Xiong

Submitted in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

under the Executive Committee

of the Graduate School of Arts and Sciences

COLUMBIA UNIVERSITY

2012



c©2012

Wei Xiong

All Rights Reserved



ABSTRACT

Sparse functional regression models: minimax
rates and contamination

Wei Xiong

In functional linear regression and functional generalized linear regression models, the effect

of the predictor function is usually assumed to be spread across the index space. In this

dissertation we consider the sparse functional linear model and the sparse functional gen-

eralized linear models (GLM), where the impact of the predictor process on the response

is only via its value at one point in the index space, defined as the sensitive point. We are

particularly interested in estimating the sensitive point. The minimax rate of convergence

for estimating the parameters in sparse functional linear regression is derived. It is shown

that the optimal rate for estimating the sensitive point depends on the roughness of the

predictor function, which is quantified by a “generalized Hurst exponent”. The least squares

estimator (LSE) is shown to attain the optimal rate. Also, a lower bound is given on the

minimax risk of estimating the parameters in sparse functional GLM, which also depends

on the generalized Hurst exponent of the predictor process. The order of the minimax

lower bound is the same as that of the weak convergence rate of the maximum likelihood

estimator (MLE), given that the functional predictor behaves like a Brownian motion.

Another problem we consider in this dissertation is a contaminated sparse functional

generalized model, where the sensitive point is prone to subject-specific random contamina-

tions that are likely to occur in applications. A numerical approach to estimating the sensi-

tive point in this setting was proposed based on the Monte Carlo expectation-maximization

(MCEM) algorithm. It is shown that when contaminations are present, the rate for esti-

mating the sensitive point is reduced to the parametric rate from the faster rate achieved

by the MLE in the contamination-free scenario.
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CHAPTER 1. INTRODUCTION 1

Chapter 1

Introduction

The term “functional data” was coined by Ramsay and Dalzell (1991) for curve and image

data. With the help of advances in technology, especially in accurate instruments, it is

possible for scientists to record measurements in an almost continuous fashion. As a re-

sult, functional data commonly arise in a wide variety of applied contexts in chemometrics,

physical science, and biomedical studies, as described in Ramsay and Silverman (2002).

One example would be the angles in the sagittal plane formed by the hip and by the knee

as children go through a gait cycle (Olshen et al., 1989). Such change in the data collec-

tion technique gives rise to new statistical challenges. At first glance, it seems natural to

consider the analysis of functional data as a multivariate problem. However, due to the

large number of variables recorded, one is faced with “the curse of high-dimensionality”

(Bellman, 1957) that causes intensive computation and numerical instability. Furthermore,

treating functional data as multivariate vectors ignores the correlations between adjacent

measurements, especially if they are recorded in a temporal order. Traditionally, the field

of longitudinal data and correlated data analysis deals with such situation. However, func-

tional data tend to be much more densely measured than common longitudinal data and it

could be difficult to apply typical methodologies employed in longitudinal data analysis, e.g.

generalized estimating equations, to extract meaningful information from functional data.

Time series analysis usually handles measurements that are recorded closely in time. But it

generally requires certain distributional assumptions, such as second moment stationarity,

that may not be satisfied by functional data.
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Consequently, unique functional data analysis techniques have been developed by treat-

ing a functional datum as an element in the continuous functional space, instead of a random

vector in a finite dimensional space. There has been a vast literature on functional data

analysis in which a wide rage of methodologies have been proposed. Some statisticians

treat functional data as realizations of smooth random functions, and the observed data on

discrete points are interpolated (if no measurement error is assumed) or smoothed (if mea-

surement error is present) by various techniques, such as cubic splines, smoothing splines

and kernel smoothers. In other situations, functional data are considered as realizations of

random processes which do not have to be smooth. Time series data that are observed on a

densely grid of time points can be one example. Ramsay and Silverman (2002) described in

extensive detail about smoothing functional data, functional principal components analysis,

and different models involving functional data.

Among these techniques, functional linear regression (FLR) and generalized functional

linear models have received considerable attention due to their simplicity and interpretabil-

ity. Based on the type of dependent variables and independent variables, functional linear

models can be classified into several sub-classes: a functional response and a scalar indepen-

dent variable; a scalar response and a functional independent variable; a functional response

and a functional independent variable. The problem of estimating the slope function when

the response is scalar and the independent variable is functional has received particular

attention. The magnitude of the slope function indicates the amount of impact the func-

tional predictor has on the response. Therefore it is meaningful to develop estimators that

are both accurate and interpretable. The slope function estimation problem for functional

generalized linear models have also been discussed by several authors, which is generally

an extension of the estimation theory for functional linear models. Estimators that achieve

optimal rates have been developed based on functional PCA techniques.

Most of the functional linear regression and functional generalized linear models litera-

ture assume that the impact of the predictor process is spread across the index space. In

certain applications this assumption might not hold, as we will see in the examples pre-

sented below. Meanwhile, a large part of the literature assume smooth functional data

and apply certain types of smoothing techniques to the observed process. The extent of
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smoothing is determined by the smoothing parameter, which is typically chosen to opti-

mize the predictive power of the model rather than for the sake of estimation. In some

cases, the impact of the functional predictor is sparse in the index space and it is of main

interest to estimate the sensitive points at which the values of the functional independent

variable are associated with the response. In this setting, it may be improper to smooth

the functional data as we may lose essential information on the loci of the sensitive points.

Lindquist and McKeague (2009) and McKeague and Sen (2010) proposed sparse functional

linear regression and sparse functional generalized linear models, assuming the functional

predictor is a (fractional) Brownian-like process, and developed a least squares estimator

and a maximum likelihood estimator for the two models, respectively. They showed that

these estimators are consistent and fast-converging. However, it was not clear whether they

are rate-optimal.

Optimal rates of convergence have been an important topic in estimation theories. In

particular, the problem of minimax estimation has been studied extensively in the past, in

that it offers a reasonable criterion to assess the optimality of estimators. From a theoretical

point of view, minimax estimators achieve optimality uniformly across the parameter space

and thus avoid the illusion of super-efficiency. Many maximum likelihood estimators are

shown to be minimax. From an application perspective, the minimax criterion selects

estimators that are both accurate and robust. A large part of this dissertation is dedicated

to establishing the minimax rates for estimating the parameters in the sparse functional

linear regression model and the sparse functional GLM, and showing that the LSE and the

MLE for these two models, respectively, could be rate-optimal.

A complication posed by practical issues is the contamination of the sensitive point by

random errors. Such concern is raised by fMRI studies presented below. We propose the

contaminated sparse functional GLM to accommodate this situation and construct a Monte-

Carlo EM based procedure to estimate the model parameters. Such procedure bypass the

complicated form of the predictor trajectories and the prohibitive computational cost of

direct optimization. It is shown in several simulation studies and a real life data analysis

that the proposed procedure generates desirable results.
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1.1 Motivating examples

Various studies in the biomedical field involve the analysis of functional data. Some of them

are intrinsically smooth curve data. Others are more similar to stochastic processes. We

are mainly motivated by the latter and will present two examples below. One arises from

chromosome-wide gene expression profiles. The other example comes from an fMRI study

that investigates brain responses to anxiety (Lindquist et al., 2007; Lindquist, 2008).

1.1.1 Gene expression

Our first motivation arises from gene expression studies that measure the activity of numer-

ous genes simultaneously. In these studies, it is of interest to identify genes whose expression

behavior is correlated with clinical outcomes. For example, Emilsson et al. (2008) studied

gene expression levels at over 24,000 loci in samples of adipose tissue to detect genes asso-

ciated with body mass index and other obesity-related outcomes. Gruvberger-Saal (2004)

used gene expression profiles from the specimen of breast cancer tumors to predict estrogen

receptor protein concentration, an important prognostic marker for breast tumors; see also

Buness et al. (2007).

In the gene expression literature, statistical methods have been proposed to detect

differentially-expressed genes. Most of them are based on multiple testing procedures, which

may ignore the correlation structure of the predictor process. See, for example, Dudoit and

van der Laan (2008) and Salas-Gonzalez et al. (2009). We might also use the gene expres-

sion profile across an entire chromosome as functional predictors, and the scalar clinical

outcomes as response variables. Lindquist and McKeague (2009) and McKeague and Sen

(2010) proposed the sparse functional regression models, where the functional predictor is

associated with the response only through its value at one point in the index space, called

the sensitive point. Under this setting, the effective genes can be viewed as sensitive points,

and sparse functional regression models can serve as an ideal tool for estimating the location

of the influential gene

It is known that gene expression profiles display fractal behavior, i.e. self-similarity over

a range of scales. In fact, fractals often arise when spatiotemporal patterns at higher levels



CHAPTER 1. INTRODUCTION 5

emerge from localized interactions and selection processes acting at lower levels, as is the

case of gene expression activity. Moreover, recent discovery (Lieberman-Aiden et al., 2009)

shows that chromosomes are folded as “fractal globules” which can easily unfold during

gene activation, which further helps explain the fractal behavior of gene expression profiles.

The fractal behavior implies nice properties of the least squares estimator for the sparse

functional linear model, as pointed out by McKeague and Sen (2010).
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Figure 1.1: Log gene expression at 518 loci along chromosome 17 in tissue from a breast

cancer patient.

1.1.2 fMRI study

Functional data frequently arise in brain imaging studies (Tian, 2010; Aston et al., 2006).

Modern functional brain imaging techniques, such as PET (positron emission tomography),

fMRI (functional magnetic resonance imaging), EEG (electro-encephalography) and MEG

(magneto-encephalography), have been used to measure different aspects of brain activity at

discrete time points during an experiment using different principles. These measurements,
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called time courses, can be treated as functions of time. Functional data analysis has

been applied to brain image data for dimension reduction (or feature extraction), spatial

classification in fMRI studies, and the inverse problem in MEG studies.

It is of special interest to estimate the timing of psychological activity onset. In the fMRI

context, multi-subject change-point estimation has been employed to estimate the onset

times of brain activity (Lindquist et al., 2007; Robinson et al., 2010). But this technique only

makes use of the information contained in the fMRI time courses and does not exploit the

association between the time courses and the clinical outcomes. Sparse functional regression

models are better suited for the estimation to make use of the information contained in both

the clinical outcomes and the time courses, which can be viewed as functional predictors

and the onset time as the sensitive point.

The data set we will use in this dissertation was described in Lindquist et al. (2007).

25 participants were scanned with BOLD fMRI at 3 T (GE, Milwaukee, WI). They were

classified as resilient or non-resilient according to a written test with 13 being resilient and

12 non-resilient. Each of them performed a 7-minute anxiety-provoking speech preparation

task. The design was an off-on-off design, with the anxiety-provoking period occurring be-

tween lower-anxiety resting periods. Participants were informed that they were to be given

2 minutes to prepare a 7-minute speech, topic of which would be revealed to them during

scanning. After the start of fMRI acquisition, there was 2 minutes of resting baseline. At

the end of this period, subjects viewed an instruction slide for 15 seconds that described the

speech topic. After 2 minutes of silent preparation, another instruction screen appeared for

15 seconds that informed subjects that they would not have to give the speech. An addi-

tional 2-minute period of resting baseline followed, completing the functional run. Images

were acquired every 2 seconds throughout the course of the run.

A series of 215 fMRI images were acquired during the 7-minute speech preparation

task. The brain activity may differ from baseline in a short period of time in response to

a stimulus. This onset time point of brain activity is of particular interest since the signal

intensities at this point are mostly associated with the clinical outcomes. When the onset

time is unknown, one may consider using the entire time course on a voxel as a functional

datum to predict anxiety levels. We present in Figure 1.3 the trajectories of the image
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Figure 1.2: A schematic of the experimental task design for the fMRI study, from Lindquist

et al. (2007). The design was an off-on-off design, with the anxiety-provoking period occur-

ring between lower-anxiety resting periods.

signals from the ventromedial prefrontal cortex, a region known to be related to anxiety,

for a resilient and a non-resilient participant.

We can show that the second moment of the increment of the fMRI time courses has

an exponential rate of decay when the increment in time shrinks to zero. This behavior

will be characterized by the generalized Hurst exponent (GHE) defined in (3.2.1). Here, we

calculate the squared differences of the signal processes, for each lag from 1 to 100, of the 25

participants and take the average to approximate the mean squared increments in (3.2.1).

The average squared increments are plotted against the size of the lags, both in log scale,

in Figure 1.4. Half the slope of the fitted line, H = 0.198, can serve as a crude estimate of

the generalized Hurst exponent. The reader is referred to Qian (2004) and Feder (1988) for

more standard estimation methods.

1.2 New questions raised about sparse functional regression

models

The first question we consider in this dissertation is: what is the optimal way of such

estimation using the sparse functional regression models? Are there better estimators than

the MLE and the LSE, proposed in Lindquist and McKeague (2009) and McKeague and

Sen (2010), respectively? It would be of interest to find out the optimal rates for such

estimation. Also the functional predictor X is assume to be a (fractional) Brownian motion,
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at least in the neighborhood of the true sensitive point. This condition is difficult to verify

in application.

The second question is: how do we deal with the situation where the sensitive point

might be contaminated by subject-specific errors? D’Esposito et al. (2003) showed that

fMRI signals may be affected by aging, pathology and other disorders. the sparse functional

regression models assume a fixed sensitive point. We might want to have a model that

accounts for random sensitive points caused by such contamination.

1.3 Our contributions

In the first part of this dissertation, we will address the problem of the optimal rates for

estimating the parameters in the sparse functional linear model. We will relax the conditions

on X and derive the minimax rates under the milder conditions. Specifically, we assume

the existence of a “generalized Hurst exponent” of X that characterizes its local behaviors.

Intuitively, it requires the second moment of an increment of X to converge to zero at

an exponential rate as the increment vanishes. If X has a generalized Hurst exponent

H ∈ (0, 1], and other mild conditions are satisfied, we will show that the least squares

estimator η̂n = (α̂n, β̂n, θ̂n) is the minimax estimator in the mean squared error sense, with

component-wise rates n1/2, n1/2, and n1/(2H) respectively. Since H can be viewed as a

measure of the roughness of X, the convergence rate for estimating θ is determined by the

smoothness of the predictor process.

The second part of the dissertation discusses the optimal rates of convergence for es-

timating the parameters in the sparse functional generalized linear models. By assuming

again the existence of a generalized Hurst exponent, we establish a lower bound on the

minimax risk. We will show that this lower bound is of the same order as that of the

weak convergence rate of the maximum likelihood estimator established in Lindquist and

McKeague (2009) under the assumption that X behaves like a two-sided Brownian motion.

The third part of the dissertation proposes an extension of the sparse functional GLM

to incorporate random contaminations of sensitive points. We propose a Monte Carlo EM

algorithm that computes the maximum likelihood estimator of the mode of the contaminated
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sensitive point’s pdf as well as the regression coefficients. The numerical properties of the

proposed algorithm are tested in several simulations. It is shown that the convergence rate

of the mode estimator is the parametric rate n1/2, when the contamination is present with

a smooth density, in contrast to the faster rate n1/(2H) in the non-contamination setting.

1.4 Structure of this dissertation

Chapter 2 will give a brief review on the functional data analysis literature, especially

on functional linear regression and functional generalized linear regression. We will then

introduce the definition of minimaxity and discuss the common methods and recent work in

the field of minimax estimation. In Chapter 3, we establish the minimax rates for estimating

the parameters in sparse functional linear regression. Sections 3.4 and 3.5 present the main

results on the lower and upper bounds for the minimax risk, respectively. Detailed proof of

the lemmas and theorems is given in Section 3.6. In Chapter 4, we establish a lower bound

on the minimax risk of estimating the parameters in sparse functional generalized linear

regression. It is shown in Section 4.3 that the lower bound is of the same asymptotic order

as that of the lower bound for minimax risk estimating the parameters in sparse functional

linear model. Detailed proof is given in Section 4.4. In Chapter 5, we give the results of five

simulation studies. The first two studies evaluate the performance of the LSE for sparse

functional linear regression and compare its mean squared error (MSE) to that of the lasso

and the FLR estimator. The third and fourth studies perform the similar procedures on

the MLE for spares functional GLM. The last simulation test the performance of the sparse

functional linear model as a working model when the data are generated from a FLR model

with a spike-shaped regression function. In Chapter 6, we consider the situation where the

sensitive point in the sparse functional GLM model is contaminated by random subject-

specific errors. A computational solution to estimating the parameters is derived based on

EM algorithm and Monte Carlo approximations. Section 6.4 describes the details of the

estimation procedure. The asymptotic properties of the proposed estimator are given in

Section 6.3. We present the results of four simulation studies in Chapter 7. Furthermore

an application to the fMRI data is presented in Chapter 8. In Chapter 9 we conclude the
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important findings in previous chapters and discuss directions for future research.
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Figure 1.3: The fMRI signal over the ventromedial prefrontal cortex in reaction to an

anxiety-provoking taske for resilient and non-resilient subjects.



CHAPTER 1. INTRODUCTION 12

0 1 2 3 4

4.
0

4.
5

5.
0

5.
5

6.
0

Lags in log scale

M
ea

n 
sq

ua
re

d 
in

cr
em

en
ts

 in
 lo

g 
sc

al
e

Figure 1.4: Average squared increments of fMRI time courses against time lags, both in

logarithm scale. The red line is the fitted linear regression line.
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Chapter 2

Literature review

2.1 Functional Data Analysis

2.1.1 Smoothing and Regularization

Conceptually, functional data are thought of as sample paths of a continuous-time stochastic

process. A graphic illustration would be a collection of curves over the parameter space of

the stochastic process. Although the observed trajectories are often rough and fluctuating,

in many applications of functional data analysis, there is scientific reason to believe that

the true trajectory is a smooth function and is observed with random errors.

In practice, almost all measurements of continuous-time processes are made on dis-

crete grid of the parameter space. A sample of functional data is typically denoted as

(tij , yij), j = 1, . . . , ni, where tij is usually a time point but can also represent spatial loca-

tion or other parameter space index. To recover the underlying smooth function, various

smoothing techniques have been employed. There is an extensive literature on nonparamet-

ric smoothing; see for example Eubank (1988); Fan and Gijbels (1996); Ruppert and Wand

(1994). In the functional data analysis context, the smooth function is usually represented

by a linear combination of basis functions. Choices of basis systems include Fourier bases

for periodic data, B-spline bases for non-periodic data and wavelet bases where derivatives

are not required Ramsay and Silverman (2002).

When a series of basis functions is selected, the functional data are fitted to the bases
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according to a certain criterion such as the least squares loss

SMSSE(y|c) =
n∑

j=1

[yj −
K∑

k

ckφk(tj)]2.

where φk, k = 1, . . . , K are the basis functions. A matrix expression is SMSSE(y|c) =

(y −Φc)′(y −Φc)). It is often the case that the observations on different time points are

not independent and the above model does not apply. To account for correlation between

measurements, the regression is carried out by weighted least squares SMSSE(y|c) = (y−
Φc)′W(y−Φc)).

Since any continuous function can be arbitrarily approximated by sufficiently many

bases, the number of the bases used is a smoothing parameter controlling the roughness

of the fitted curve. However, this control is discontinuous as we can only tune the degree

of smoothing by adding or removing one basis term. A more powerful option for smooth-

ing discrete functional data would be the roughness penalty. The quantity of a function’s

roughness is typically measured by its integrated squared second derivative

PEN2(x) =
∫

[D2x(s)]2ds,

while more general roughness penalties are proposed in Ramsay and Silverman (2002) by

means of an mth order differential operator L. The penalized residual sum of squares will

then be

PENSSEλ(x|y) = [y− x(t)]′W[y− x(t)] + λ× PEN2(x),

where x is the fitted curve. de Boor (2001) proved that PENSSEλ(x|y) is minimized by

a cubic spline with knots at the data points tj . Thus we can choose to expand x(t) with

respect to a spline basis

x(t) =
K∑

k

ckφk(t) = c′φ(t).

The roughness penalty term can be expressed in matrix form in terms of the inner

products of the derivatives of the basis functions. The estimated coefficient vector c is

then computed by matrix algebra. The tuning parameter is generally chosen by the cross-

validation (CV) or generalized cross-validation (GCV) method.
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2.1.2 Functional Principal Component Analysis

After smoothing the raw functional data, some preliminary steps of registering and display-

ing the curves are usually taken. To further explore their variational patterns and better

understand the the variance-covariance structure, the principal component analysis (PCA)

from classical multivariate statistics is extended to the case of random functions.

There are many ways to define functional principal components. The most common one

is via the Karhunen–Loéve decomposition of a random function. Suppose X is a square-

integrable random function defined on an interval I. Let η = E(X), the mean function

of X. The variance-covariance function of X is a bivariate function K(u, v) = E[{X(u) −
η(u)}{X(v)− η(v)}], which can be viewed as an operator on the space of square-integrable

functions from I to the real line: if ψ ∈ L2(I), then Kψ(u) =
∫
I K(u, v)ψ(v)dv.

Similar to the variance-covariance matrix in multivariate statistics, the variance-covariance

function can be decomposed into its eigenvalues and eigenfunctions

K(u, v) =
∞∑

j=1

θjψj(u)ψj(v),

where θj and ψj are obtained by solving the equation

Kψ(u) = θψ(u).

Then the Karhunen–Loéve expansion of X is given by

X(u) = η(u) +
∞∑

j=1

ξjψj(u),

where the random coefficients ξ1, ξ2, . . . are defined as ξj =
∫
I(X − η)ψj . They have zero

means and are uncorrelated. Their variances are given by θj = E(ξ2
j ).

Given the smoothed observed functional data X , the functional principal components

are obtained via the empirical variance-covariance function

K̂(u, v) =
1
n

n∑

i=1

[Xi(u)− X̄(u)][Xi(v)− X̄(v)],

where X̄ = n−1
∑

i Xi. The approximate eigenvalues and eigenfunctions satisfy

K̂(u, v) =
∞∑

j=1

θ̂jψ̂j(u)ψ̂j(v),
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where θ̂1 ≥ θ̂2 ≥ · · · ≥ 0. So the eigenfunctions are sorted in a descending order according to

the percentage of variability in the data X they can explain. The signs of the approximate

eigenfunctions are chosen so that
∫
I ψjψ̂j ≥ 0.

By discretizing the empirical variance-covariance function and solving the eigen-equations,

we obtain approximate eigenvalues and discrete approximate eigenfunctions. Any conve-

nient interpolation method can then be employed to obtain the continuous approximate

eigenfunctions. The eigenfunctions ψ̂1, ψ̂2, . . . form a complete orthonormal basis of the

square-integrable function space. Therefore, for any give function b ∈ L2(I) we can have

the expansions

Xi − ηi =
∞∑

j=1

ξijψ̂j , (2.1.1)

b =
∞∑

j=1

bjψ̂j (2.1.2)

where ξi1, ξi2, . . . and b1, b2 . . . are random functions of the data X and thus random vari-

ables. When we truncate the expansions to obtain a lower dimensional approximation of

the functional data, it is assured by the order of the order of the principal components that

the majority of variations in Xi, hence most of the information contained in the data, is

preserved in the truncated series.

Functional principal component analysis (FPCA) proves a powerful tool to understand-

ing the features of curve data and has become an important part of functional data analy-

sis. Studies of FPCA include Rice and Silverman (1991), Silverman (1996), Cardot (2000),

James et al. (2000), Hall and Hosseini-Nasab (2006) and Peng and Paul (2009). Yao et al.

(2005) applied FPCA to longitudinal data analysis. Aguilera et al. (1999a) and Aguilera

et al. (1999b) used a weighted FPCA to forecast a continuous time series. Kneip and Utikal

(2001) explored testing differences in a set of density function curves using FPCA. Viviani

et al. (2005) used FPCA to analyze fMRI images of human brain areas scanned along

time. We will talk more about the application of FPCA to functional linear regression and

functional generalized linear regression in subsequent sections.
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2.1.3 Functional Linear Regression

Having explored the variability of a functional variable, we want to further investigate how

its variation explains, or is explained by, variations of other variables. The classical linear

model is the first to be extended to the functional context. Here we only consider the case

with functional predictors and scalar response, i.e. we observe data (X1, Y1), . . . , (Xn, Yn),

where the Xi’s are a random sample of a stochastic process X defined on a compact interval

I, and the Yi’s are copies of a random variable Y that satisfies the functional linear regression

model,

Y = a +
∫

I
b X + ε. (2.1.3)

Here, a is a constant scalar intercept in the linear model, b is the slope function which

belongs to L2(I), and the error ε is also a scalar. Model (2.1.3) has wide applications to

various practical problems. The main interest usually focuses on estimating b. Since b is a

function rather than a scalar, the knowledge of where it takes large or small values can be

very helpful for understanding how the functional explanatory variable interplays with the

outcome variable.

Like obtaining random functions from observed functional data, estimation of the slope

function b is an infinite-dimensional problem. Without any constraint on b, we could choose

â and b̂ to reduce the residual sum of squares to zero and perfectly predict the response vari-

able. The resulting slope function would be very ragged and hard to interpret. Hence certain

smoothing is needed to regulate the slope estimator. Like the ones used to smooth Xi, the

regularization methods usually consist of the truncate basis approach and the roughness

penalty approach.

Another justification of regularization is by viewing the estimation of b as an ill-posed

inverse problem. We can write (2.1.3) as

Yi − µ =
∫

I
b (Xi − x) + εi,

where x = E(Xi) and µ = E(Yi) = a +
∫

bx. Then if we denote g(u) = E[{Y (u) −
µ(u)}{X(u)− x(u)}], it follows from Fubini’s theorem that

Kb = g. (2.1.4)
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Solving the normal equation (2.1.4) involves the inversion of operator K. But since it is a

compact linear operator on the infinite dimensional space L2(I), K does not have a bounded

inverse. This calls for further constraint on b.

The regularization method, like the one used to smooth Xi, generally takes one of two

possible forms. The first method expand b in a series of basis functions and then truncate

the expansion at the pth term, where p is chosen large enough the capture the features in

b but small enough to avoid overfitting. Then the expansion coefficients can be estimated

via ordinary least squares. Typically, the functional predictors and the slope function are

expressed with respect to the functional principal components, as in (2.1.1) and (2.1.2). The

second method uses the roughness penalty on the least squares loss function to shrink the

variability in b. A common choice of roughness penalty is the integrated squared derivative
∫

b(m)(t)2dt and usually m = 2. Then the estimate of b is the function that minimizes

n∑

i=1

(Yi − a−
∫

b(t) Xi(t)dt)2 + λ

∫
b(m)(t)2dt

for a chosen λ > 0.

Hall and Horowitz (2007) considered the principal component method in functional

linear models in detail and gave the minimax convergence rates of estimators for the slope

function. They showed that the minimax rate of convergence for estimating the slope

function β(·) in terms of the mean integrated squared error is determined by the smoothness

of both β and the covariance kernel of the predictor process. We will give a more detailed

review of their work in Section 2.3.

Crambes et al. (2009) took the roughness penalty method and considered smoothing

splines estimators for model (2.1.3). They assume Xi are observed at p equidistant points

t1, . . . , tp ∈ I. Then the estimator for b is determined by minimizing

1
n

n∑

i=1


Yi − Ȳ − 1

p

p∑

j=1

b(tj)(Xi(tj)− X̄(tj))




2

+ ρ


1

p

p∑

j=1

π2
b (tj) +

∫ 1

0
(b(m)(t))2 dt


 ,

where πb(t) is the minimizer of
∑p

j=1(b(tj) − πb(tj))2 among all polynomials with degree

m − 1, i.e. πb(t) = Pmb(t), t = (t1, . . . , tp)′, where Pm is the projection matrix projecting

into the m-dimensional linear space of all (discretized) polynomials of degree m− 1.
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The solution b̂ is a natural spline of order 2m with knots at t1, . . . , tp. The extra

term 1
p

∑p
j=1 π2

b (tj) ensures the existence of a unique solution by adding the nonsingular

projection matrix Pm into the ridge-regression-type estimator of the spline coefficients.

The authors gave a closed form of the solution and considered the convergence rates of the

estimators with respect to L2 semi-norms induced by the covariance operator K, ‖u‖2
K =

〈Ku, u〉 with 〈u, v〉 =
∫
I u(t)v(t) dt. They derived optimal rates of convergence in the sense

that the smoothing spline estimator is minimax with convergence rates

‖b̂− b‖2
Kn,p

= Op(n−(2m+2q+1)/(2m+2q+2)),

assuming b is m-times continuously differentiable and general conditions on X. The value

of q quantifies the rate of decrease
∑∞

j=k+1 θj = O(k−2q) and ‖ · ‖Kn,p is the discretized

empirical semi-norm

‖u‖2
Kn,p

, 1
p
uτ

(
1
np

XτX
)

u.

The purpose of using the L2 semi-norms induced by K is to focus on the convergence

rates of the prediction error rather than estimation error. Cai and Hall (2006) investigated

the rates of convergence on the error a + 〈b, x〉 − â− 〈b̂, x〉 where x is a fixed function. For

a random function Xn+1, Crambes et al. (2009) showed the rates of convergence on the

prediction error is determined by ‖b̂− b‖2
K :

E

[(
â +

∫

I
b̂(t)Xn+1(t) dt− a−

∫

I
b(t)Xn+1(t) dt

)2 ∣∣∣∣â, b̂

]
= ‖b̂− b‖2

K + Op(n−1).

The convergence of b̂ with respect to ‖ · ‖2
K is very different from the convergence under

the usual L2-norm ‖ · ‖2. In fact, under the general conditions on X in Crambes et al.

(2009), it can only be shown that ‖b̂− b‖2 is bounded in probability. Additional conditions,

such as (2.3.4) – (2.3.6), have to be assumed to derive stronger results on ‖b̂− b‖2.

Apart from estimation and prediction, the interpretability of the slope function b is

another challenging issue in functional linear models. The magnitude of the absolute values

of b only provide a vague and qualitative sense of how the functional predictor can influence

the response. To this end, James et al. (2009) proposed a method called “Functional Linear

Regression That’s Interpretable” (FLiRTI). They divide the interval I into a fine grid of

points and assumed one or more of the slope function’s derivatives are sparse, i.e. b(d)(t) = 0
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over large regions of t for one or more values of d = 0, 1, 2, . . . . They then used variable

selection methods such as the LASSO and Dantzig selector to fit the model. By choosing d

appropriately, FLiRTI is flexible enough to deal with a large range of situations and produce

interpretable estimates of b.

2.1.4 Functional Generalized Linear Models

While functional linear models are widely applicable, they may be too restrictive for situ-

ations where Yi are non-Gaussian. In the same spirit as in classical multivariate analysis,

James (2002) gave a functional analogy to generalized linear models (GLM) described in

McCullagh and Nelder (1989). He assumed the distribution of Y belongs to the exponential

family. The linear predictor in GLM is replaced by an integral in the functional generalized

linear model:

g(µ) = a +
∫

X(t)b(t) dt, (2.1.5)

where µ = E(Y ) and g is the link function. X was then expressed by natural cubic

splines with random coefficients: X(t) = s(t)τγ, γ ∼ N(µγ ,Γ). Here s(t) represents the

q-dimensional spline basis at time t, γ the q-dimensional spline coefficients for the predictor,

and µγ and Γ the mean and variance of the γ’s. The observed predictor function x(t) was

further assumed to be x(t) = X(t) + e(t), where e(t) is a zero-mean stationary Gaussian

error process. Let xi and ei be the vectors of observations and measurement errors for

individual i at its observation time points ti1, . . . , tini and let Si = (s(ti1), . . . , s(tini)) be

the corresponding spline basis matrix, then the previous model can be written as

g(µi) = a + b1γi, γ ∼ N(µγ ,Γ)

xi = Siγi + ei, ei ∼ N(0, σ2
xI)

where b1 =
∫

b(t)s(t) dt. Since the spline coefficients can be viewed as missing data, one

can employ the EM algorithm to estimate the model.

Müller and Stadtmüller (2005) proposed an alternative framework for generalized func-

tional linear models. Their model is less an extension of the classical generalized linear model

introduced by McCullagh and Nelder (1989) than and extension of the quasi-likelihood

method of Wedderburn (1974) in that they do not assume the distribution of the response
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need to be a member of the exponential family. They only assume the quasi-likelihood

model

Yi = g

(
a +

∫
b(t)Xi(t)dw(t)

)
+ ei, i = 1, . . . , n,

where e is the random error with zero mean and a variance component structure depending

on η = a+
∫

b(t)Xi(t)dw(t). The authors expanded X and β with respect to an orthonormal

basis of the function space L2(dw) in a similar way to (2.1.1) and (2.1.2), and truncate them

at p. The truncated linear predictor η is then ηi = a+
∑p

j=1 bjξij =
∑p

j=0 bjξij , where b0 = a,

ξi0 = 1, bj are the basis coefficients of b for j ≥ 1, and ξij are the jth basis coefficients of

Xi for j ≥ 1. As p grows to infinity, this quantity approaches η with arbitrary accuracy.

The estimating equation for b̂ is then constructed as

U(b) =
n∑

i=1

(Yi − µi)g′(ηi)ξi/σ2(µi) = 0

where ξT
i = (ξi0, . . . , ξip) and U(b) is the vector-valued score function. The equation is

solved by iterated weighted least squares. The authors gave the asymptotic properties of

the slope estimator with respect to the L2-norm induced by the generalized autocovariance

operator kernel

G(s, t) = E
(

g′(η)2

σ2(µ)
X(s)X(t)

)
.

Assuming some technical conditions on p = pn and the decay speed of the truncated tail,

it was shown that
∫ ∫

(b̂(s)− b(s))(b̂(t)− b(t))G(s, t)dw(s)dw(t)− (pn + 1)√
2(pn + 1)

→d N(0, 1) as n →∞.

Escabias et al. (2005) used a functional PCA approach to generalized linear models.

They approximate the sample paths with a finite number of FPCA’s and use the component

scores as covariates in the logistic model. They address the issue of multicollinearity by

conducting another PCA of the design matrix. Another important article is Cardot and

Sarda (2006), who expressed only the slope function but not the predictor function in

terms of B-splines. They then estimated the spline coefficients using penalized likelihood

function with the usual penalty on the integrated squared derivative of the slope function.

Asymptotic properties of the estimator were also considered under the covariance kernel

induced L2-norm.
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Dou et al. (2010) extended the results of Hall and Horowitz (2007) using the principal

component method in functional generalized linear models and gave the minimax risk of

estimating the slope function. They showed that the minimax rate is again determined by

the smoothness of both β and the covariance kernel of the predictor process. We will give

a more detailed review of their work in Section 2.3.

James and Silverman (2005) made further extension by integrating generalized linear

models, generalized additive models (GAM) and projection pursuit regression (PPR) into

one procedure, “functional adaptive model estimation” (FAME), to handle functional pre-

dictors. The model is given by

g(µi) = a +
r∑

k=1

fk

(∫
Xi(t)bk(t) dt

)
.

Here both fk and bk are unknown functions and estimated in the fitting procedure and r is

arbitrary. The model extends the standard projection pursuit regression by adding a link

function to handle non-Gaussian or categorical response and replace the linear predictor

with an integral of X(t)bk(t). This allows for a great deal of flexibility and is thus more

general than GLM and GAM.

The fitting procedure is carried out by expanding X, bk and fk with respect to cubic

splines and maximizing a penalized log likelihood via an iterative approach. Specifically,

the algorithm starts with r = 1, fixing a and f1, and fits a smooth b1 using the penalty

regularization method. b1 is then fixed and a and f1 are fitted by any GAM package. The

procedure iterates between these steps until the penalized likelihood converges. Then f1 and

b1 are fixed and the procedure is repeated for the r = 2 model subject to zero correlation

between
∫

Xi(t)b1(t) dt and
∫

Xi(t)b2(t) dt. The nested models grow until r reaches the

preset maximum value. The authors proved that the estimates for the intercept and the

expansion coefficients have
√

n-rates of convergence.

2.2 Sparse functional models

All the aforementioned methods assume that the influence of the functional predictors is

spread over the entire time interval I or a continuous region of it. This might not be the

case in some applications. Consider the gene expression case presented in Section 1.1.1,
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for instance. Only a few genes are expected to be associated with the clinical outcome

and thus the impact of the expression profile is sparse across the chromosome. Another

example is the fMRI study mentioned in Section 1.1.2, where the main interest is to find a

time interval that most clearly distinguishes between resilient and non-resilient individuals.

D’Esposito, Deouell and Gazzaley (2003) showed there are scientific reasons to believe there

are only a small number of time points in the fMRI time course, at which the brain activity

is associated with the anxiety levels. In this case the impact of brain activity may not be

captured by the integral used in tradition functional regression.

In fact, in fMRI studies, estimation of the precise timing of the underlying psychological

activity is critical for many data analyses (Lindquist et al., 2007; Robinson et al., 2010) and

is of main interest. Sometimes the onset time is assumed known a priori. However, in many

areas of psychological inquiry, such as Examples include studies of drug uptake, emotional

states or experiments with sustained stimulus, it is hard to specify this information in

advance. In the work of Lindquist et al. (2007) and Lindquist et al. (2008), a Hierarchical

exponentially weighted moving average (HEWMA) method was proposed to estimate the

onset times of psychological activities. A drawback of this estimation procedure is that

the change points were assumed to be fixed across subjects. In Robinson et al. (2010), the

conditions were relaxed to assume that the change points for each subject are random, and

a maximum likelihood procedure was developed for estimating the change points.

However, these methods are both based on multi-subject change point estimation ap-

proaches. For one thing, the sensitive point of interest is not necessarily a change-point in

the random processes, e.g. cancer-related genes in the gene expression profiles. For another,

when a scalar outcome is observed besides the functional data, we would like to exploit the

association between the response variable Y and the functional predictor X and make use of

this information to estimate the sensitive point, i.e. we want to estimate the point at which

the value of X is mostly related to Y . The sparse functional regression models, proposed in

Lindquist and McKeague (2009) and McKeague and Sen (2010), suit this problem very well.

Below we review the sparse functional regression models that were proposed specifically to

capture these point impacts.
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2.2.1 Sparse functional linear regression

Motivated by the gene expression profile data, McKeague and Sen (2010) proposed a sparse

functional linear model

Y = α + βX(θ) + ε. (2.2.1)

to estimate the sensitive points in the index set of the predictor processes and give confidence

intervals to the estimations. The intercept α and the slope β are both scalars and the

sensitive point θ is the parameter of main interest. Y is a continuous response and X =

{X(t), t ∈ [0, 1]} is a continuous stochastic process. ε is a mean-zero error term and is

independent of X.

The authors proposed a least squares estimator (LSE) η̂n = (α̂n, β̂n, θ̂n) defined by

(α̂n, β̂n, θ̂n) = arg min
α,β,θ

n∑

i=1

[Yi − α− βXi(θ)]2. (2.2.2)

McKeague and Sen (2010) made use of the fractal behavior of gene expression profiles

reported in Lieberman-Aiden et al. (2009) by assuming the increments of X are locally

fractional Brownian motion (fBm) with Hurst exponent 0 < H < 1. Under additional

conditions that θ0 is an interior point of [0, 1], β0 is nonzero, and the error ε has finite

moment of order greater than 2, they showed that α̂ and β̂ have the usual parametric

convergence rate,
√

n, and θ̂n has a rate n1/(2H) of convergence. Confidence intervals for θ0

were further constructed using parametric bootstrap, since the limiting distribution of θ̂n

depends on the Hurst exponent H, which is unlikely to be known in practice. The authors

also investigated the misspecified case where the data are generated partially or completely

from a standard functional linear model.

2.2.2 Sparse functional generalized linear regression

To estimate the brain activity onset time in the fMRI study, Lindquist and McKeague

(2009) proposed a point-impact functional logistic model

logit[P (Y = 1|X)] = α + βX(θ). (2.2.3)

Here the Y is a binary outcome, representing the anxiety levels, X = {X(t), t ∈ [0, 1]} is

a continuous stochastic process, representing the image signal process, and θ ∈ [0, 1] is the
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onset time point. Under the assumption that X is a two-sided Brownian motion around θ0,

the authors derived the asymptotic properties of the maximum likelihood estimators (MLE)

of (α, β, θ) for three different cases, i.e. prospective sampling, retrospective sampling and

generalized linear models. Specifically, they showed that the MLE α̂n and β̂n are
√

n-rate

and the MLE θ̂n has rate n. They further derived the explicit limiting distribution of the

MLEs and constructed Wald-type confidence intervals.

To assess the performance of the sparse functional GLM, the authors compared it to

the functional logistic regression model, which the authors refer to as the functional-impact

(FI) model, and the LASSO with simulated and real life data. The sparse functional GLM

was found to produce more accurate and interpretable results, while the functional logistic

regression was shown to have a tendency to over-smooth the estimate of the regression

function when there is a point-impact. The authors attribute this phenomenon to the

roughness penalty on the regression function since the smoothing parameter is usually

chosen by cross-validation in order to optimize the predictive performance of the model.

The sparse functional GLM is also more interpretable than the lasso path diagram since it

provides confidence intervals around sensitive time points selected by lasso.

2.3 Minimax estimation

In this dissertation we will focus on developing the optimal rates for estimating the param-

eters in sparse functional linear regression and sparse functional GLM with the minimax

criterion. In this section, we will give a brief review on the literature of minimax problems,

especially those in the functional data analysis field.

Rates of convergence have always been an essential topic in the asymptotic statistical

literature. Different definitions have been proposed to describe estimators with a “best”

rate of convergence. In many cases it is required that a best estimator not only achieves a

best rate at a fixed model, but also at models close to one particular model of interest. In

other words the estimator not only converges point-wisely to one model, but also converges

uniformly at the same rate in a neighborhood of this model. This requirement is formalized

as the definition of minimax estimators. Intuitively, this definition considers an estimator’s
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worst performance in a neighborhood of a particular parameter value. The reason to re-

quire a rate of convergence to hold uniformly lies in the fact that it excludes superefficient

estimators, which take advantage of only point-wise limit behaviors. See Pollard (2010) for

a more detailed introduction to minimax problems.

Consider a family of statistical models P = {Pη : η ∈ Ξ} defined on some fixed probabil-

ity space (Ω,F). In the parametric estimation setting, the Cramér-Rao inequality gives a

lower bound on the variance of any estimator of η under regularity conditions. An unbiased

estimator in a regular model that achieves the Cramér-Rao lower bound is called Fisher

efficient. It seems that the Fisher efficiency gives a guideline to finding the “best” estima-

tor. Indeed, under regularity conditions, maximum likelihood estimators can be proved to

be asymptotically unbiased and efficient and they are used a wide range of applications.

However, the major pitfall of the Fisher efficiency lies in the superefficient points, at which

the Cramér-Rao lower bound is violated and estimators exist that are asymptotically more

efficient than any asymptotically Fisher efficient estimator. See Korostelev and Korosteleva

(2011) for more details.

To avoid such pitfall, the idea of minimax risk was developed. Given a nonnegative loss

function on Ξ2, L(t, η), the risk of an estimator η̂ is defined by the expected loss PL(η̂, η(P )).

A commonly used loss function is the quadratic loss, L(t, η) = |t− η|2. An estimator η̂∗ is

called minimax if its maximum risk does not exceed that of any other estimator η̂

sup
P∈P

R(η, η̂∗, L) ≤ sup
P∈P

R(η, η̂, L), (2.3.1)

where

R(η, η̂, L) = EηL(η̂, η(P )).

The minimax criterion is closely related to the Bayesian criterion. Assume there is a prior

density of η, π(η), defined on Ξ, which reflects the knowledge about the parameter before

any observation. The Bayes risk of η̂ is

β(η̂, L, π) =
∫

Ξ
R(η, η̂, L) π(η) dη.

An estimator is called the Bayes estimator if it minimizes the Bayes risk. It turns out that if

a Bayes estimator θ̂ has constant risk, i.e. π({η ∈ Ξ : R(η, η̂, L) = supP∈P R(η, η̂, L)}) = 1,
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then it is also a minimax estimator. However, it could be difficult to find a Bayes estimator

with constant risk.

In addition to the Bayes criterion, several alternative approaches are available to derive

minimax convergence rates. One class of methods are based on hypothesis testing argu-

ments, which relate the minimax lower bound to the affinity to the total variation distance

between the null and the alternative hypotheses. Below we will review three of these meth-

ods that are most widely used. We will also summarize some important work on minimax

estimation in the functional data analysis field. In addition, in view of the change point

estimation techniques employed in Lindquist et al. (2007) and Robinson et al. (2010), we

will review the literature on minimax change-point estimation too. We will see that, the

problems of minimax rates for FLR and change-point estimation are mostly nonparametric

problems, and the optimal rates typically depend on the smoothness of the predictor process

(for FLR) and the underlying process (for change-point). However, in the sparse functional

regression case, the parameter space is finite-dimensional and the predictor process may not

be smooth or differentiable. In this case, the approach to deriving the minimax rates might

be very different.

2.3.1 Hypothesis-testing based approaches

In many minimax problems, the upper bound on the minimax risk is given by a specific es-

timator, as can be seen in Section 2.3.1. Some important tools for establishing the minimax

lower bound are hypothesis-testing based approaches, which have been widely employed in

the problem of minimax estimation. Among them, the most popular ones might be Le Cam,

Assouad and Fano’s methods. The first method deals with two sets of hypotheses, while

the Assouad and Fano’s methods deal with multiple hypotheses indexed by the vertices of a

hypercube and those of a simplex, respectively. We will briefly review these three methods.

The reader is referred to Yu (1997) for more details.

Define the total variation affinity between two probability measures P and Q as

‖P ∧Q‖ = inf
f0+f1≥1

{Pf0 +Qf1},

where the infimum runs over nonnegative measurable functions satisfying the inequality

pointwise. Let G be the σ-field on which P and Q are defined. Then the affinity is closely
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related to their total variation distance

‖P−Q‖TV = sup
A∈G

{P(A)−Q(A)}. (2.3.2)

In fact, it can be shown that

‖P ∧Q‖ = 1− ‖P−Q‖TV . (2.3.3)

Le Cam (1973) relates the testing problem of two sets of hypotheses to the total variation

distance between the convex hulls of the two classes of hypotheses (probability measures).

Intuitively, if the testing between these two sets is to be powerful, then their convex hulls

should be well separated. Since estimators also imply tests between subsets of the parameter

space, Le Cam’s bound also provides a lower bound for the accuracy of an estimator.

Lemma 2.3.1. Let P be a family of probability measures and η(P ) is the parameter of

interest taking values in a pseudo-metric space (D, d). Let η̂ be an estimator of η(P ).

Suppose D1 and D2 are two subsets of D and let c = inf{d(s1, s2), s1 ∈ D1, s2 ∈ D2}.
Suppose also P1 and P2 are the subsets of P corresponding to D1 and D2 respectively.

Denote by co(P) the convex hull of P. Then

sup
P∈P

EP d(η̂, η) ≥ 1
2
c sup

Pi∈co(Pi)
‖P1 ∧ P2‖.

In many cases, two simple hypotheses are sufficient for deriving sharp minimax lower

bounds. However, in other situations, it may help obtain better lower bounds to consider

the convex hulls of the P〉, because the supremum of the total variation over the convex

hulls can be much larger than the supremum over the simple hypotheses themselves. See

also Donoho and Liu (1991) for example.

Assouad’s lemma obtain a minimax lower bound based on a class of 2m hypotheses

indexed by vertices of a m-dimensional hypercube. We will present the form of Assouad’s

lemma given by Devroye (1987), which emphasize the decomposability of the (pseudo) dis-

tance d into a sum of m (pseudo) distances, which correspond to m estimation subproblems.

Each subproblem is like testing the hypotheses indexed by neighboring vertices on the hy-

percube along the direction determined by the particular subproblem, and the argument

used in Le Cam’s method can be applied to each of the subproblems.
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Lemma 2.3.2. Let m ≥ 1 be an integer and let Fm = {Pτ : τ ∈ {−1, 1}m} contain 2m

probability measures. Write τ ∼ τ ′ if τ and τ ′ differ in only one coordinate, and write

τ ∼j τ ′ when that coordinate is the jth. Suppose that there are m pseudo-distances on D
such that for any x, y ∈ D

d(x, y) =
m∑

j=1

dj(x, y),

and further that, if τ ∼j τ ′,

dj(η(Pτ ), η(Pτ ′)) ≥ αm.

Then

max
Pτ∈Fm

Eτd(η̂, η(Pτ )) ≥ m · αm

2
min{‖Pτ ∧ Pτ ′‖ : τ ∼ τ ′}.

The relation τ ∼ τ ′ can be written in terms of the Hamming distance W as W (τ, τ ′) = 1,

where

W (τ, τ ′) =
1
2

m∑

j=1

|τj − τ ′j |,

is the number of places where τ and τ ′ differ.

Devroye (1987) also gives a generalized Fano’s lemma in the setting that η(P ) is the

density of P and d is the L1 norm. The lemma presented below is a slightly stronger

version of Fano’s lemma given in Han and Verdú (1994) with less involved proof than those

in the statistics literature, which is based on information theory concepts and Fano’s original

inequality.

Lemma 2.3.3. Let τ ≥ 2 be an integer and let Mτ ⊂ P contain r probability measures

indexed by j = 1, 2, . . . , r such that for all j 6= j′

d(η(Pτ ), η(Pτ ′)) ≥ αr,

and

K(Pj , Pj′) =
∫

log(Pj/Pj′)dPj ≤ βτ .

Then

max
j

Ejd(η̂, η(Pτ )) ≥ αj

2
(1− βr + log 2

log r
).
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As noted in Birgé (1986), “[Fano’s Lemma] is in a sense more general because it applies

in more general situations. It could also replace Assouad’s Lemma in almost any practical

cases ...”. Compared with Le Cam’s method, however, Fano’s method does not deal with

the case of two simple hypotheses since r = 2 the lower bound it gives is non-positive.

The examples in the literature suggest that, Lecam’s method often works well when a

real functional is estimated, but it can be challenging to find the appropriate two sets of

hypotheses it requires. On the other hand, the other two lemmas seem to give the optimal

rates when the entire function is being estimated, with Assouad’s lemma seeming easier to

use and therefore more popular than Fano’s.

2.3.2 Minimax estimation for FLR and functional GLM

In the functional data analysis literature, several authors investigated the minimax estima-

tion problem for the FLR model (2.1.3) (Cardot and Johannes, 2010; Cai and Hall, 2006;

Hall and Horowitz, 2007). In particular, Hall and Horowitz (2007) showed that the minimax

rates of convergence for estimating the slope function under the mean integrated squared

error are determined by the smoothness of both the slope function and the covariance kernel

of the predictor process.

Hall and Horowitz took the principal component approach by solving the normal equa-

tion (2.1.4) using expansions (2.1.1) and (2.1.2). The PCA-based estimator of b is given

by

b̂ =
m∑

j=1

b̂jψ̂j , b̂j = θ̂−1
j ĝj , ĝj =

∫
ĝψ̂j

and ĝ(u) = 1
n

∑n
i=1(Yi − Ȳ ){Xi(u) − X̄(u)}. Here the truncation point m is a smoothing

parameter, and ψ and θ are defined as before.

To give the optimal rates of convergence, Hall and Horowitz make the following assump-

tions: X has finite fourth moment; E(ψ4
j ) ≤ Cθ2

j for all j; and the errors εi are identically

distributed with zero mean and variance not exceeding C;

θj − θj+1 ≥ C−1j−α−1, for j ≥ 1 (2.3.4)
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and

|bj | ≤ Cj−β, (2.3.5)

α > 1,
1
2

α + 1 < β. (2.3.6)

Condition (2.3.4) prevents the spacings between adjacent order statistics from being too

small. It also follows that θj must not be less than a constant multiple of j−α. Conditions

(2.3.5) and (2.3.6) basically require that the target function b is sufficiently smooth relative

to the covariance kernel K and the expansion coefficients bj do not decrease too fast.

By choosing the tuning parameter m such that

m ³ n1/(α+2β), (2.3.7)

the authors gave the minimax convergence rate of estimators for the slope function and

showed that the estimator based on PCA attains this rate under the above assumptions.

Specifically, it was shown that
∫

I
(b̂− b)2 = Op(n−(2β−1)/(α+2β)) (2.3.8)

uniformly on F(C,α, β), the set of distributions F of (X, Y ) that satisfy (2.3.4)–(2.3.6).

The values of α and β basically measure the smoothness of X and b, and condition (2.3.6)

link the smoothness together.

Dou et al. (2010) extended this result to the functional generalized linear model setting

and provided a minimax estimator of the slope function. They made assumptions analogous

to the assumptions made by Hall and Horowitz (2007) and used the same bandwidth choice.

They proposed a finite-dimensional approximation of the maximum likelihood estimator and

proved that it has convergence rate ρn = n(1−2β)/(α+2β). A variation on Assouad’s Lemma

was applied to deriving the minimax lower bound (Yu, 1997; van der Vaart, 1998). The

Assouad’s Lemma gives lower bound for the minimax risk over a class of 2m probability

measures based on testing hypotheses indexed by vertices of a m-dimensional hypercube,

which in turn is a lower bound for the minimax risk over the entire parameter space.

The authors showed that the lower bound is also of order n(1−2β)/(α+2β). Therefore the

approximated MLE achieves the optimal rates.
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An alternative approach to deriving the minimax rates is to establish statistical equiv-

alence between the model of interest and a model whose minimax estimator is already

known, in the sense that Le Cam’s metric (Le Cam, 1986; Le Cam and Yang, 1990) for the

distance between the two models converges to zero as n goes to infinity. Such asymptotic

equivalence will imply that any minimax procedure in one problem will automatically yield

the corresponding procedure in the other with equal optimal rates.

Brown and Low (1996) provided an important result on asymptotic equivalence of non-

parametric regression problems and white noise with drift problems. Specifically, consider

two models

Yni = f(xni) + σ(xni)εni, εni
i.i.d.∼ N(0, 1), i = 1, . . . , n (2.3.9)

and

dZ
(n)
t = f(t)dt + λ(t)dBt/

√
n, (2.3.10)

where Bt is a standard Brownian motion. The parameter space Θ consists of a possibly

large set of choices of f . Here the predictors are given by

xni = H−1(i/(n + 1)), i = 1, . . . , n,

in a deterministic scheme, where H is an increasing c.d.f., and

Xni ∼ H i.i.d.i = 1, . . . , n,

in a random scheme.

Assuming on a compact interval I

∣∣∣∣
∂

∂t
log σ(t)

∣∣∣∣ ≤ C1, t ∈ I

for some C1 < ∞,

sup{|f(t)| : t ∈ I, f ∈ Θ} = B < ∞,

H ′(t) = h(t) > 0 a.e. on I,

and some uniform smoothness condition on f , the authors showed that (2.3.9) and (2.3.10)

are asymptotically equivalent in Le Cam’s sense, under either deterministic or random

scheme, with λ2(t) = σ2(t)/h(t).
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Meister (2011) showed that the functional linear regression model (2.1.3), written as

Y = 〈X, φ〉 + ε where φ is the regression function and 〈·, ·〉 denotes the L2([0, 1])-inner

product, is equivalent to a white noise model with drift

dY (t) = [Γ1/2φ](t)dt + n−1/2σdW (t)

where Γ1/2 is the square root of the covariance operator of X, defined by Γ1/2Γ1/2 = Γ

and Γf =
∫

EX(·)X(t)f(t)dt. Such equivalence, combined with the results in Cavalier and

Tsybakov (2002), gave sharp minimax constants in the FLR model.

2.3.3 Minimax estimation of change points

Change-point and singularity detection is often essential to signal processing in the fields

of economics, medicine and physical science, since they may contain important information

with scientific significance. For example, in pattern recognition, discontinuities of the image

signal intensity function may indicate the location of the edge of an object. Overviews of

the area and references can be found in Carlstein et al. (1994) and Korostelëv and Tsybakov

(1993)

Due to the lack of knowledge of the underlying function, the problem of change-point

estimation is usually considered in a nonparametric framework. The cases where the obser-

vations are direct are extensively studied. The simplest case is that of a single jump of a

function that are assumed to satisfy some smoothness condition otherwise. One approach

to solving this problem is to exploit the the result of Brown and Low (1996) mentioned

earlier, derive minimax estimators from white noise models and then apply it in nonpara-

metric regression setting. Korostelëv (1987) took this approach and showed that, in the

Gaussian white noise model (2.3.10), assuming the mean function f(·) is finite on the [0,1]

interval, has a unique jump at an interior time point, and is Lipschitz elsewhere, then the

optimal rate for estimating the change-point is n−1. Another approach is based on cer-

tain kernel estimators and the analysis of their differences (Yin, 1988; Müller, 1992; Hall

and Titterington, 1992; Wu and Chu, 1993). Wang (1995) gave a closely related result in

wavelets.

Raimondo (1998) extended the problem of estimating a change-point to estimating a

“cusp” of an arbitrary order. Raimondo assumed the underlying signal f is observed at
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discrete time points subject to additive noises. f is smooth except at one point, θ, where f

is “α-discontinuous” in a Hölder sense. He claimed that the asymptotic minimax rate for

estimating θ is rn = n−1/(1+2α).

In addition, change-point problems based on indirect observations have also received

substantial attention. Neumann developed a minimax estimation method in the setting of

ill-posed statistical inverse problems. He assumed that the observations are i.i.d. samples

of (X,Y), which satisfies

Y = X + ξ,

where X is a random variable with unknown probability density f and ξ is the error term

independent of X with known probability density K. It was also assumed that f has a

discontinuous jump at θ and satisfies a Lipschitz condition elsewhere. The author proposed

an estimator based on the difference of one-sided deconvoluting kernel estimators. It was

shown that the minimax rate of this estimator is n−1/(β+3/2) if β ≥ 1/2, and n−1/(1+2β) if

β < 1/2, where β is the degree of ill-posedness of the inverse problem, i.e. the tails of the

characteristic function K̂(ω) of ξ decay at rate |ω|−β, β > 0.

Goldenshluger et al. (2006) took the white noise approach under the indirect and noisy

observation setting

dY (x) = (Kf)(x)dx + n1/2dW (x), x ∈ R, (2.3.11)

where W (·) is the standard two-sided Brownian motion that corresponds to the noise in

data. K is the convolution operator, modeling the indirectness of the observation, that is

defined by

(Kf)(x) =
∫ ∞

−∞
K(x− y)f(y)dy

where K ∈ L1(R) and f ∈ L2(R). It was shown that estimating θ in Raimondo’s model

is equivalent to estimating θ in (2.3.11) when K is the Green’s function of a linear differ-

ential operator of integer β, and there is a discrepancy between the rates of convergence

obtained by Raimondo and by Neumann. Goldenshluger et al. showed that the faster rate

obtained by Neumann, can indeed be attained and they are optimal for the white noise

model (2.3.11). In particular, the authors showed that if f is mth order differentiable ex-

cept at the change-point and bounded for all x, then the minimax rate for estimating θ is
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min{n−(m+1)/(2m+2β+1),−1/(2β+1)}, provided the Fourier transform K̂ of K decreases at the

rate |ω|−β, β > 0.
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Chapter 3

Optimal rates of convergence for

the sparse functional linear model

We have seen in Section 2.3 that a considerable part of the functional data analysis literature

has been focused on the problem of minimax estimation for the functional linear model

(2.1.3), where the slope function β(·) is the parameter of interest. To our knowledge,

however, the problem of minimax estimation for the sparse functional linear model has yet

to be studied. We may not directly use the results from the FLR model because the slope

function β has infinite dimensions, therefore its estimation problem is closely related to

nonparametric minimax estimation, while the sparse functional linear model (2.2.1) is a

parametric model. Therefore, finding the minimax estimators for parameters in the sparse

functional linear regression, particularly the sensitive point θ, is expected to involve different

techniques and arguments. In fact, it has not been studied yet to our knowledge.

In this chapter, we aim to resolve this problem and derive minimax convergence rates

for estimating the parameters in the sparse functional linear regression model. Section 3.1

specifies the model and describes the calculation procedure to obtain the minimax estimator.

We will use milder conditions on the predictor process than those assumed in McKeague

and Sen (2010). In particular, we define a “generalized Hurst exponent” of the functional

predictor and discuss its properties in Section 3.2. Section 3.3 presents the entire list of

conditions and gives an example that meets these requirements. Sections 3.4 and 3.5 present
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the main results on the minimax risk for estimating parameters in sparse functional linear

regression. Section 3.6 gives the complete proofs to the lemmas and theorems.

3.1 Model specification and estimation

We shall assume the data consist of independent, identically distributed pairs {(Xi, Yi), i =

1, . . . , n}, which are i.i.d. replicates of (X, Y ), where Y is a scalar response and X is a

stochastic process. For example in the fMRI study, Xi could be the image signal process

at a particular voxel from the ith patient. In the gene expression study, Xi could be the

chromosome-wise expression profile from the ith patient. Suppose the index space of X is

a compact interval in the real line, which we will take to be [0, 1] without loss of generality.

Recall that the sparse functional linear regression model (2.2.1) is given by

Y = α + βX(θ) + ε.

The intercept α and the slope β are both scalars and the sensitive point θ is the parameter

of main interest. ε is a mean-zero error term and is independent of X. We shall see that

the specification of ε is fairly general and it is unnecessary to assume a parametric model

for it. Therefore, the sparse functional linear regression model is indexed by the parameters

η = (α, β, θ).

The least squares estimator of η is given in (2.2.2). Since the paths of Xi do not have

a definite functional form, which could be nondifferentiable, the object function in (2.2.2)

could be non-convex and the LSE is obtained via a profile estimate procedure. Specifically,

for each fixed θ, a profile estimate of (α, β) is given by

(α̂n(θ), β̂n(θ)) = arg min
(α,β)

n∑

i=1

[Yi − α− βXi(θ)]2. (3.1.1)

Then an estimate of θ is given by

θ̂n = arg min
θ

n∑

i=1

[Yi − α̂(θ)− β̂(θ)Xi(θ)]2. (3.1.2)

Finally η̂n is obtained from

(α̂n(θ̂n), β̂n(θ̂n), θ̂n). (3.1.3)
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In practice, Xi are observed on discrete points and the profile estimate 3.1.1 has close form

solutions, so this estimate procedure is tractable.

3.2 Generalized Hurst exponent

To derive the minimax rates, we make certain assumptions on the second moment structure

of X. These conditions are more general than assuming that X is a (fractional) Brownian

motion. The most important one among them is that X has a generalized Hurst exponent

H > 0 that satisfies

E|X(θ1)−X(θ2)|2 ³ |θ1 − θ2|2H , ∀θ1, θ2 ∈ [0, 1]. (3.2.1)

The symbol ³ here, and in the sequel, means bounded from above and below up to (positive)

constants, which can depend on the covariance structure of X and the parameter space Ξ.

This condition requires that the second moment of an increment of X converges to zero at

an exponential rate as the increment vanishes. Intuitively, H describes the local smoothness

of the covariance of X. For fixed θ1 and θ2, the smaller H is, the larger the increment is

likely to be, which means X is likely to have stronger fluctuations and its trajectories are

rougher.

Example 3.2.1. (Fractional Brownian motion) A (standard) fractional Brownian motion

(fBm) with Hurst exponent H ∈ (0, 1] is a Gaussian process BH = {BH(t), t ∈ R} having

continuous sample paths, mean zero, and covariance function

Cov{BH(t), BH(s)} =
1
2

(|t|2H + |s|2H − |t− s|2H
)
. (3.2.2)

Based on its mean and covariance functions, it can be seen that E|X(θ1) − X(θ2)|2 =

|θ1 − θ2|2H . Therefore, the generalized Hurst exponent of X reduces to its Hurst exponent.

Some properties of the generalized Hurst exponent are described in the following propo-

sition. The proof of the proposition can be found in Section 3.6.

Proposition 3.2.2. Suppose X has generalized Hurst exponent H, then

(a) H is unique;
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(b) if X is a Gaussian process, then its trajectories are Lipschitz of any order α < H,

in the sense that

|X(t)−X(s)| ≤ ξ|t− s|α ∀t, s ∈ [0, 1] (3.2.3)

almost surely, where ξ has moments of all orders;

(c) H ≤ 1.

Remark 3.2.3. The proposition shows that the generalized Hurst exponent is well-defined.

Also, the existence of a Gaussian process’s generalized Hurst exponent implies Lipschitz

continuity of its trajectories. Note that such property is different from the smooth trajectory

assumptions commonly made in the functional linear regression literature, since the order

of the Lipschitz continuity is limited by H ≤ 1, and thus the trajectories might not be

differentiable.

3.3 Conditions

The sparse functional linear regression model (2.2.1) is indexed by η = (α, β, θ) ∈ Ξ, with

the true parameters denoted as

η0 = (α0, β0, θ0).

We assume the parameter space Ξ = [−b, b ] × {β ∈ R : a ≤ |β| ≤ b} × (0, 1). Here

0 < a < b < ∞ are fixed constants. The boundedness of the parameter space is crucial to

obtaining the minimax bounds. For example, |β0| is bounded away from 0 in order to ensure

identifiability of the parameters and avoid irregularity of the estimators. It is common to

assume bounded parameter spaces in the minimax estimation literature. See Cai et al.

(2010) and Cai and Jin (2010) for example.

In addition, the following assumptions are made. We need the first two conditions to

derive the minimax lower bound and all six conditions for the minimax upper bound. Let

. mean that the left side is bounded above by a (positive) constant times the right side.

Define & similarly.

(A1) X has a generalized Hurst exponent H ∈ (0, 1].
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(A2) E[supθ∈(0,1) |Xp(θ)|] < ∞ for every p ≥ 1, and infθ∈(0,1) E|X(θ)|2 > 0.

(A3) The trajectories of X are Lipschitz, i.e. (3.2.3) holds, for all α < H almost surely.

(A4) For any q > 0, E[sup|t−s|<δ |X(t)−X(s)|q] . δHq for δ > 0.

(A5) |Eη[X(θ)(X(θ1)−X(θ))]| /|θ1−θ|H → 0 uniformly w.r.t. η = (α, β, θ) ∈ Ξ as θ1 → θ.

(A6) E|ε|p < ∞ for all p > 0.

The assumptions on X are milder than assuming it is fBm. In fact, We can verify that a

fBm satisfies conditions (A1) – (A5). (A1) is trivial to prove; (A2) follows from Theorem

2.1 of Berman (1985); from Proposition 3.2.2, we know that condition (A3) holds since X

has Gaussian increments and a Hurst exponent H; the validity of condition (A4) follows

from Theorem 1.1 of Novikov and Valkeila (1999); recalling the covariance function of fBm

we can show that (A5) holds if |θ0| is bounded away from 0. These milder conditions allow

us to consider predictor functions among a broader class of stochastic processes.

3.4 Minimax lower bound for sparse functional linear regres-

sion

In this section, we establish a lower bound on the minimax risk of estimating the parameters

in sparse functional linear regression. As noted in Section 2.3.1, Le Cam’s method is a

widely used technique to derive minimax lower bounds for parametric estimation problems,

by relating the problem of hypothesis testing to the total variation affinity between the null

and the alternative distributions. We will make use of this method in our theory.

One challenge posed by the sparse functional linear model is to calculate the total

variation affinity between two joint distributions of (X, Y ), Pn,1 and Pn,2, since X is infinite-

dimensional. However, noticing that the distribution of X does not involve the unknown

parameters, we are able to adapt Le Cam’s lemma to our case by exploiting the tower

property of conditional expectations. The following lemma is a direct consequence of Le

Cam’s method, which involves calculating the affinity between two conditional distributions

of Y given X, Qn,1 and Qn,2, rather than between two joint distributions of (X, Y ). Let
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Pn,X denote the marginal distribution of (X1, . . . , Xn). A detailed description about the

notation can be found in Section .

Lemma 3.4.1. Let η̃ be any estimator of η based on a sample from a distribution in the

collection {Pη, η ∈ Ξ}. Let L be a loss function and c(η1, η2) = infη∈Ξ{L(η, η1) + L(η, η2)}
then

sup
η∈Ξ

EηL(η̃, η) ≥ 1
2

c(η1, η2)Pn,X ‖Qn,1 ∧Qn,2‖.

We will consider the minimax risk in the mean squared error sense. Theorem 2.1 in

McKeague and Sen (2010) suggests the rates for estimating α, β and θ may differ. Therefore

we apply the squared error loss function to each component of η: define Lθ(η, η0) = |θ−θ0|2

and Lα and Lβ are defined similarly. With the help of the previous lemma, we can choose

η1 and η2 sufficiently close while still bounding the total variational affinity away from zero,

and show that for any estimator η̃n,

sup
η∈Ξ

Eη Lα(η̃n, η) & n−1,

sup
η∈Ξ

Eη Lβ(η̃n, η) & n−1,

sup
η∈Ξ

Eη Lθ(η̃n, η) & n−1/H ,

which immediately implies the following theorem.

Theorem 3.4.2. Suppose conditions (A1) and (A2) hold, then the minimax risk of esti-

mating η over Ξ satisfies

inf
η̃n

sup
η∈Ξ

Eη Lα(η̃n, η) ≥ C1n
−1,

inf
η̃n

sup
η∈Ξ

Eη Lβ(η̃n, η) ≥ C1n
−1, and

inf
η̃n,η

sup
η∈Ξ

Eη Lθ(η̃n, η) ≥ C1n
−1/H ,

where the supremums are taken over the parameter space Ξ and the infimums are taken

over any estimator of the form η̃n = (α̃n, β̃n, θ̃n), of η. C1 > 0 only depends on the second

moment structure of X and the parameter space Ξ.

A detailed proof to Theorem 3.4.2 can be found in Section 3.6.
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3.5 Minimax upper bound for sparse functional linear re-

gression

In this section, we establish the minimax upper bound for the sparse FLR model by deriving

the second moment convergence rate of the least squares estimator. The rate is shown to

be of the same order of the minimax lower bound previously derived. Thus the LSE attains

the optimal rate and the minimax lower bound is rate-sharp.

M-estimation theory is a popular technique to establish the convergence rates and lim-

iting distributions of estimators obtained from optimizing an object function. In fact, if we

denote by Pn the empirical measure, mη(Y, X) = [Y − α− βX(θ)2], and Mn(η) = Pnmη =
1
n

∑n
i=1[Yi − α− βXi(θ)]2, then the LSE

η̂n = arg min
η
Mn(η).

However, the typical strategy stated in Theorem 3.2.5 of van der Vaart and Wellner (1996)

only provides the weak convergence rate of the M-estimator. A recent result from Nishiyama

(2010) extended Theorem 3.2.5 of van der Vaart and Wellner (1996) and offers an approach

to obtaining the moment convergence rate of any order p ≥ 1. However, establishing the

minimax upper bound requires a moment convergence rate that is valid uniformly across

the parameter space. Therefore we further extend the result of Nishiyama (2010) in the

following.

Define

M(η) = Pmη = E[α0 + β0X(θ0) + ε− α− βX(θ)]2

= E[(α0 − α) + (β0X(θ0)− βX(θ))]2 + σ2

= (α0 − α)2 + E[(β0X(θ0)− βX(θ))2] + σ2

= (α0 − α)2 + σ2 + (β0 − β)2E[X2(θ0)] + β2E[X(θ0)−X(θ)]2

+ 2β(β0 − β)E[X(θ0)(X(θ0)−X(θ))].

The third equation follows from the independence between X and ε and the fact that

E(ε) = 0. The fourth equation follows from the fact that E(X(θ)) = 0, ∀θ ∈ [0, 1].

Our result is based on the following lemma, which is a direct consequence of Theorem 1
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in Nishiyama (2010). It gives a moment convergence rate, rn, that is uniform over the

parameter space.

Lemma 3.5.1. Let Mn be stochastic processes indexed by a semimetric space (Ξ, d) and

M : Ξ 7→ R a deterministic function such that for a constant ε > 0,

M(η)−M(η0) ≤ −εd(η, η0)2, ∀η ∈ Ξ. (3.5.1)

Suppose that there exists functions φn such that δ 7→ δ−αφn(δ) is non-increasing for some

α < 2 (not depending on n) and that for every p ≥ 1 there exists a constant Cp > 0 such

that for every δ > 0

(
Eη0

∣∣∣∣∣ sup
d(η,η0)<δ

|(Mn −M)(η)− (Mn −M)(η0)|
∣∣∣∣∣
p)1/p

≤ Cp
φn(δ)√

n
. (3.5.2)

Let r2
nφn(1/rn) ≤ √

n for every n. If ε and Cp are both independent of η0, and the sequence

ηn satisfies Mn(ηn) ≥Mn(η0)− r−2
n , then

sup
η0∈Ξ

sup
n

Eη0 |rnd(ηn, η0)|p < ∞

for every p ≥ 1.

Define d(η, η0) = max{|α − α0|, |β − β0|, |θ − θ0|H}. With the help of conditions (A1)

– (A6), we are able to prove that the ε and Cp in the previous lemma exist and do not

depend on η0. Hence the LSE η̂n = (α̂n, β̂n, θ̂n) satisfies

sup
η0∈Ξ

sup
n

Eη0 |rnd(η̂n, η0)|2 < ∞

which translates to,

sup
η0∈Ξ

Eη0 Lα(η̂n, η) . n−1,

sup
η0∈Ξ

Eη0 Lβ(η̂n, η) . n−1,

sup
η0∈Ξ

Eη0 Lθ(η̂n, η) . n−1/H .

It follows that
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Theorem 3.5.2. If conditions (A1) – (A6) are satisfied, then

inf
η̃n

sup
η0∈Ξ

Eη0 Lα(η̃n, η0) . n−1,

inf
η̃n

sup
η0∈Ξ

Eη0 Lβ(η̃n, η0) . n−1, and

inf
η̃n

sup
η0∈Ξ

Eη0 Lθ(η̃n, η0) . n−1/H ,

where the supremums are taken over the parameter space for η and the infimums are taken

over any estimator of η.

A detailed proof is given in Section 3.6. It can be seen that the minimax upper bound

given by the LSE is of the same order as the minimax lower bound. Therefore the LSE

attains the optimal rates, and we have established the minimax rates for estimating the

parameters in the sparse functional linear model.

Corollary 3.5.3. If conditions (A1) – (A6) are satisfied, then

inf
η̃n

sup
η∈Ξ

Eη Lα(η̃n, η) ³ n−1, (3.5.3)

inf
η̃n

sup
η∈Ξ

Eη Lβ(η̃n, η) ³ n−1, and (3.5.4)

inf
η̃n

sup
η∈Ξ

Eη Lθ(η̃n, η) ³ n−1/H . (3.5.5)

It is implied that the minimax rate for estimating θ0 is at most n1/(2H), which is faster

or equal to the usual parametric rate n1/2. Also the rate for estimating θ0 increases as H

decreases. An intuitive explanation is that a smaller H indicates a rougher X, thus making

it easier to distinguish the sensitive point from the rest of the index space.

This result is in contrast to that of Hall and Horowitz (2007), where the estimator

of the slope function β has faster convergence when β and the covariance function of X is

smoother. This is not surprising because when the impact of the predictor function is spread

across the index space, the smoothness of its paths will enable us to “borrow” information

from the observations in the adjacent neighborhood. On the contrary, when the impact is

sparse in the index space, the roughness of the predictor function’s trajectories makes it

easier to identify the sensitive point.
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3.6 Proofs

3.6.1 Preliminaries

We will view the predictor function X = {X(t), t ∈ [0, 1]} as a random element X :

(Ω,F , P ) → (X ,A ), where (Ω,F , P ) is a probability space, X ≡ R[0,1] is the set of all

real-valued functions on [0, 1], and A is the smallest σ-field on X with respect to which all

the coordinate functions of the form

πt(x) 7→ x(t), ∀x ∈ R[0,1], t ∈ [0, 1]

are measurable. Let the scalar response Y be a random variable Y : (Ω,F , P ) → (R,B),

where B is the Borel σ-field on the real line R. Let PX and PY be the distribution induced

by X and Y on (X ,A ) and (R,B) respectively. Define their joint distribution PXY on

X × R by

PXY (A×B) = P (X−1(A) ∩ Y −1(B)), ∀A ∈ (A), B ∈ B.

It follows from Theorem 33.3 in Durrett (1996) that there exists a regular conditional

distribution PY |X(·, ·): (X ,B) → [0, 1], such that for x ∈ X a.e. PX , PY |X(x, ·) is a

probability measure on B, and for any B ∈ B, PY |X(·, B) is A -measurable and

PXY (A×B) =
∫

A
PY |X(x,B) dPX(x) for all A ∈ A and B ∈ B.

Let the probability space be (Ω,F , P ). We will denote Pη as the probability distribution

of (X, Y ), PX as the marginal distribution of X (a probability measure on X = R[0,1]), and

Qλ as the conditional distribution of Y given X, where λ = α + βX(θ). The existence

of Qλ is guaranteed by the existence of a regular conditional distribution of a random

variable given a random element. Given X, Qλ is the Gaussian measure N(λ, σ2) on R.

Their empirical counterparts are Pn,η = ⊗i≤nPη,i, Pn,X = Pn
X and Qn,η,X1,...,Xn = ⊗i≤nQλi

,

respectively. By the property of regular conditional distributions, Pn,η can be rewritten as

an iterated expectation,

Pn,η = Pn,XQn,η,X1,...,Xn .

We will abbreviate Pn,ηj to Pn,j and Qn,ηj ,X1,...,Xn to Qn,j respectively.
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To avoid measurability problems we will always use outer expectation/probability, and

denote them by E and P . To obtain sharper constants in the minimax bounds, we also

define

Cl = sup {C > 0 : E|X(θ1)−X(θ2)|2 ≥ C|θ1 − θ2|2H ,

for all θ1, θ2 ∈ [0, 1]}, (3.6.1)

Cu = inf {C > 0 : E|X(θ1)−X(θ2)|2 ≤ C|θ1 − θ2|2H ,

for all θ1, θ2 ∈ [0, 1]}, (3.6.2)

and assume they are both attained and nonzero. Finally, let supθ∈(0,1) E|X(θ)|2 ≡ K and

infθ∈(0,1) E|X(θ)|2 ≡ ρ.

3.6.2 Proofs of the properties of GHE and the extended Le Cam’s lemma

Proof of Proposition 3.2.2: (a) If there exist H1,H2 > 0 that both satisfy (3.2.1), then there

exist constants Cl,1, Cl,2, Cu,1, Cu,2 > 0 such that for any θ1, θ2 ∈ [0, 1],

Cl,1|θ1 − θ2|2H1 ≤ E|X(θ1)−X(θ2)|2 ≤ Cu,1|θ1 − θ2|2H1

and

Cl,2|θ1 − θ2|2H2 ≤ E|X(θ1)−X(θ2)|2 ≤ Cu,2|θ1 − θ2|2H2 .

It follows that

|θ1 − θ2|2(H1−H2) ≤ Cu,2/Cl,1, for any θ1, θ2 ∈ [0, 1],

which implies that H1 ≥ H2. Similarly we can show that H1 ≤ H2. Thus H1 = H2.

(b) From the definition of H, there exists L > 0 such that

E|X(t)−X(s)|2 ≤ L|t− s|2H

for all t, s ∈ [0, 1]. Because X has Gaussian increments, for every p > 0, there exists some

Cp such that

E|X(t)−X(s)|2p ≤ CpL|t− s|2Hp ∀t, s ∈ [0, 1].

It follows from Theorem 2.1 in Revuz and Yor (1999) that X has a modification X̃ whose

paths are Hölder continuous of order α < (2Hp − 1)/(2p) = H − 1/(2p). Since p can be
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chosen arbitrarily large, this is true for all α < H.

(c) Let XG be a Gaussian process such that for every 0 ≤ s < t ≤ 1,

E|XG(t)−XG(s)|2 = E|X(t)−X(s)|2.

From (b), we know that there exists 1 < α < H such that the paths of XG are almost surely

Hölder continuous of order α. Since any Hölder continuous function of order greater than

1 must be constant, XG is constant almost surely. Therefore

E|X(t)−X(s)|2 = E|XG(t)−XG(s)|2 = 0,

which contradicts with (3.2.1).

Proof of Lemma 3.4.1: Abbreviate c(η1, η2) to c. Given X, the pair of functions fj =

L(η̃, ηj)/c, j = 1, 2 are included amongst the pairs in (2.3.1) that define the affinity between

Qn,1 and Qn,2. Thus

2 sup
η∈Ξ

EηL(η̃, η) ≥ Eη1L(η̃, η1) + Eη2L(η̃, η2)

= c(Pn,1f1 + Pn,2f2)

= cPn,X(Qn,1f1 +Qn,2f2)

≥ cPn,X ‖Qn,1 ∧Qn,2‖.

3.6.3 Proof of the minimax lower bound

Proof of Theorem 3.4.2: Select η1 = (α1, β1, θ1) and η2 = (α2, β2, θ2) such that |α2 − α1| =
cm−1, |β2 − β1| = cm−1 and |θ2 − θ1| = ck−1. Here c > 0 is a constant depending only on

the second moment structure of X and the parameter space Ξ, while m and k go to infinity

as n →∞. Then Lemma 3.4.1 implies

sup
η∈Ξ

EηLα(η̃, η) ≥ 1
4
c2m−2‖Pn,1 ∧ Pn,2‖,

sup
η∈Ξ

EηLβ(η̃, η) ≥ 1
4
c2m−2‖Pn,1 ∧ Pn,2‖, and

sup
η∈Ξ

EηLθ(η̃, η) ≥ 1
4
c2k−2‖Pn,1 ∧ Pn,2‖. (3.6.3)
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We want to show that ‖Pn,1 ∧Pn,2‖ is bounded away from 0 as n goes to infinity. Recalling

(2.3.3), it suffices to show that Pn,X‖Qn,1 − Qn,2‖TV is bounded away from 1. Note that

given X = (X1, . . . , Xn), Qn,j are multivariate Gaussian distributions, thus the subset of

Rn that achieves the supremum in (2.3.2) defining ‖Qn,1 −Qn,2‖TV is

A = {y ∈ Rn : Qn,1(y) ≥ Qn,2(y)}

=
{

y ∈ Rn :
dQn,1

dQn,2
(y) ≥ 1

}

=



y ∈ Rn :

∏n
i=1

{
1√

2πσ2
exp

[− 1
2σ2 (yi − λ1

i )
2
]}

∏n
i=1

{
1√

2πσ2
exp

[− 1
2σ2 (yi − λ2

i )2
]}





=

{
y ∈ Rn : exp

(
− 1

2σ2

[
n∑

i=1

((yi − λ1
i )

2 − (yi − λ2
i )

2)

])
≥ 1

}

=

{
y ∈ Rn :

n∑

i=1

[(yi − λ1
i )

2 − (yi − λ2
i )

2] ≤ 0

}

=

{
y ∈ Rn :

n∑

i=1

[(λ2 − λ1)(yi − λ1
i ) ≤

1
2

n∑

i=1

(λ1
i − λ2

i )
2]

}
,

where λj
i = αj + βjXi(θj). Define Λj = (λj

1, . . . , λ
j
2), υ = (Λ2 − Λ1)/|Λ1 − Λ2| and τ =

|Λ1 − Λ2|/(2σ). Then

A = {y ∈ Rn : (Λ2 − Λ1)′(y − Λ1) ≤ 1
2
|Λ1 − Λ2|2}

= {y ∈ Rn : υ′(y/σ − Λ1/σ) ≤ τ},

and give X, υ′(y/σ − Λ1/σ) follows N(0, 1) under Qn,1 and N(2τ, 1) under Qn,2. Thus

Pn,X‖Qn,1 −Qn,2‖TV = Pn,X(Qn,1A−Qn,2A)

= Pn,X [P (N(0, 1) ≤ τ)− P (N(2τ, 1) ≤ τ)]

= Pn,X [P (|N(0, 1)| ≤ τ)]

= Pn,X [Φ(τ)− 1/2]

≤ 2√
2π
Pn,X [τ ],
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where Φ(·) is the standard normal distribution function. It follows from Cauchy–Schwarz

inequality that

Pn,X‖Qn,1 −Qn,2‖TV ≤ 2√
2π

[
Pn,X

[
τ2

]]1/2

=
[

1
2πσ2

Pn,X |Λ1 − Λ2|2
]1/2

.

Note that

Pn,X |Λ1 − Λ2|2 = Pn,X

n∑

i=1

[
(α1 + β1Xi(θ1)− α2 − β2Xi(θ2))

2
]

≤ Pn,X

n∑

i=1

[2|α1 − α2|2 +

2|β1Xi(θ1)− β2Xi(θ1) + β2Xi(θ1)− β2Xi(θ2)|2]

≤ Pn,X

n∑

i=1

[2|α1 − α2|2 + 4|X2
i (θ1)| · |β1 − β2|2 +

4|β2|2 · |Xi(θ1)−Xi(θ2)|2],

The two inequalities come from the fact that |a + b|2 ≤ 2|a|2 + 2|b|2, for all a, b ∈ R. By

condition (A1), recalling the definition (3.6.2), we have

|Xi(θ1)−Xi(θ2)|2 ≤ Cu|θ1 − θ2|2H .

By condition (A2),

sup
θ∈(0,1)

E|X2(θ)| ≡ K < ∞.

Recalling the upper bound on |β| in the parameter space Ξ, we have

Pn,X |Λ1 − Λ2|2 ≤ n
[
2|α1 − α2|2 + 4K · |β1 − β2|2 + 4b2 · Cu|θ1 − θ2|2H

]

≤ n · (2c2m−2 + 4Kc2m−2 + 4Cub2c2Hk−2H).

If we choose m = n1/2, k = n1/(2H) and 0 < c ≤ min{(πσ2/(2+4K))1/2, (πσ2/(4Cub2))1/(2H)},
then

Pn,X‖Qn,1 ∧Qn,2‖ = 1− Pn,X‖Qn,1 −Qn,2‖TV

≥ 1−
[

1
2πσ2

n · (2c2n−1 + 4Kc2n−1 + 4Cub2c2Hn−1)
]1/2

= 1− [(
(1 + 2K)c2 + 2Cub2c2H

)
/(πσ2)

]1/2
> 0.
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Denoting C1 = c2
(
1− [(

(1 + 2K)c2 + 2Cub2c2H
)
/(πσ2)

]1/2
)

/4 and recalling (3.6.3), we

have proved Theorem 3.4.2.

3.6.4 Proof of the minimax upper bound

We first prove Lemma 3.5.1 which is a consequence of Theorem 1 in Nishiyama (2010).

It is an extension of Theorem 3.2.5 in van der Vaart and Wellner (1996) and, instead of

providing the rate of weak convergence at one point, gives a moment convergence rate that

is uniform over the parameter space.

Proof of Lemma 3.5.1: Choose γ ≥ 1 such that α − 2 + γ−1 < 0. For each n, we set

Sj,n = {η : 2j−1 < rnd(η, η0) ≤ 2j}. Note that

M(η)−M(η0) ≤ −εd(η, η0)2 ≤ −ε
22j−2

r2
n

, ∀η ∈ Sj,n.

Choose j0 such that ε
222j0−2 ≥ 1. Then, for all j ≥ j0 it holds that ε22j−2 − 1 ≥ ε

222j0−2.

Now we have

E|rnd(η̂n, η0)|p ≤ 2(j0−1)pP (rnd(η̂n, η0) ≤ 2j0−1) +
∞∑

j=j0

2jpP (η̂n ∈ Sj,n)

≤ 2(j0−1)p +
∞∑

j=j0

2jpP

(
sup

η∈Sj,n

(M(η)−M(η0)) ≥ −r−2
n

)
.
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We denote Wn =M(η)−M(η0). The second term on the right hand side is bounded by

∞∑

j=j0

2jpP

(
sup

η∈Sj,n

(Wn(η)−Wn(η0)) ≥ −r−2
n + ε

22j−2

r2
n

)

≤
∞∑

j=j0

2jpP

(
sup

η∈Sj,n

(Wn(η)−Wn(η0)) ≥
ε
222j−2

r2
n

)

≤
∞∑

j=j0

2jpP

(
sup

η∈Sj,n

(Wn(η)−Wn(η0)) ≥
∣∣∣∣

ε
222j−2

r2
n

∣∣∣∣
ηp

)

≤
∞∑

j=j0

2jp

∣∣∣∣
r2
n

ε
222j−2

Cpφn(2j/rn)√
n

∣∣∣∣
ηp

≤
∞∑

j=j0

2jp

∣∣∣∣
r2
n

ε
222j−2

Cp2jαφn(1/rn)√
n

∣∣∣∣
ηp

≤
∞∑

j=j0

2jp

∣∣∣∣Cp
2jα

ε
222j−2

∣∣∣∣
ηp

=
∞∑

j=j0

∣∣∣∣∣Cp
2j(α−2+η−1)

ε
8

∣∣∣∣∣
ηp

Since α − 2 + γ−1 < 0, this series is finite. Since j0 only depends on ε, and ε and Cp are

independent of η0, the bound on E|rnd(η̂n, η0)|p is universal with respect to η0 ∈ Ξ.

Proof of Theorem 3.5.2: We are going to establish the minimax upper bound by showing

that the LSE attains the minimax lower bound. The following proof approaches this problem

in two steps: step 1, establish the consistency of the least squares estimator; and step 2,

derive the rate of convergence of the mean squared errors of the LSE.

Consistency. We will show that inequality (3.5.1) holds. By conditions (A1) and

(A5),

M(η)−M(η0) = (α0 − α)2 + (β0 − β)2E[X2(θ0)] + β2E[X(θ0)−X(θ)]2

+ 2β(β0 − β)E[X(θ0)(X(θ0)−X(θ))]

≥ (α0 − α)2 + (β0 − β)2ρ + β2Cl|θ0 − θ|2H

+ 2β(β0 − β)E[X(θ0)(X(θ0)−X(θ))].
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By condition (A5), we can choose ε1 < 1
2 min{ ρ

2b ,
aCl
2 } such that

2β(β0 − β)E[X(θ0)(X(θ0)−X(θ))] ≥ −2|β||β0 − β|ε1|θ0 − θ|H

≥ −|β|ε1{|β0 − β|2 + |θ0 − θ|2H}.

Then (3.5.1) is satisfied with ε = max{1, ρ/2, Clb
2/2}. It follows that M(η) has a unique

and well-separated minimizer at η0.

By Theorem 3.2.3 (i) of van der Vaart and Wellner (1996) it suffices to show that

Mn
P−→M uniformly in Ξ = [−b, b ] × {β ∈ R : a ≤ |β| ≤ b} × (0, 1). For the uniform

convergence, we only need to show that the class F = {mη : η ∈ Ξ} is P -Glivenko Cantelli

(P -GC). Note that almost all trajectories of X are Lipschitz of any order strictly less than

H by condition (A3). It is shown below that mη is also Lipschitz in η. Thus the bracketing

number N[ ](ε,F , L1P ) is finite and F is P -GC, by Theorems 2.7.11 and 2.4.1 of van der

Vaart and Wellner (1996).

Rate of convergence. We will use Lemma 3.5.1 to give a second moment convergence

rate of the LSE that is uniform over the parameter space. It is further shown that the LSE

attains the optimal rates in the mean squared error sense. This establishes the minimax

upper bound.

Since we have already proved (3.5.1), it is enough to prove (3.5.2). LetMδ
.= {mη−mη0 :

d̃(η, η0) < δ}, where δ ∈ (0, 1]. Because

mη(X, Y )−mη0(X, Y ) = [Y − α− βX(θ)]2 − [Y − α0 − β0X(θ0)]2

= (α2 − α2
0) + β2[X2(θ)−X2(θ0)] + (β2 − β2

0)X2(θ0)

− 2Y (α− α0)− 2βY [X(θ)−X(θ0)]− 2(β − β0)Y X(θ0)

+ 2αβ[X(θ)−X(θ0)] + 2α(β − β0)X(θ0)

+ 2β0(α− α0)X(θ0)

≤ |α + α0||α− α0|+ β2|X2(θ)−X2(θ0)|

+ X2(θ0)|β + β0||β − β0|+ 2|Y ||α− α0|

+ 2|Y ||β||X(θ)−X(θ0)|+ 2|Y ||X(θ0)||β − β0|

+ 2|α||β||X(θ)−X(θ0)|+ 2|α||X(θ0)||β − β0|

+ 2|β0||X(θ0)||α− α0|,
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Mδ has envelope

Mδ(X, Y ) ≡ 2bδ + b2 sup
|t−s|H<δ

|X2(t)−X2(s)|

+ 2b sup
θ0

|X2(θ0)|δ + 2 sup
η0

|Y |δ

+ 2b sup
η0

|Y | sup
|t−s|H<δ

|X(t)−X(s)|

+ 2 sup
θ0

|X(θ0)| sup
η0

|Y |δ + 2b2 sup
|t−s|H<δ

|X(t)−X(s)|

+ 2b sup
θ0

|X(θ0)|δ + 2b sup
θ0

|X(θ0)|δ. (3.6.4)

By the boundedness of the parameter space Ξ,

|α + α0| ≤ 2b, |β + β0| ≤ 2b.

By conditions (A2), we have

E sup
θ0

|X(θ0)| < ∞, and E sup
θ0

|X2(θ0)| < ∞.

By condition (A4),

sup
|t−s|H<δ

|X(t)−X(s)| . δ.

By condition (A6),

E sup
η0

|Y | ≤ E sup
η0

(|α0|+ |β0||X(θ0)|+ |ε|) < ∞.

Together with Hölder’s inequality, we can show that all nine terms in (3.6.4) have the pth

moment bounded by δp up to a constant independent of η0, and thus EMp
δ . δp.

Next we prove that mη is “Lipschitz in parameter”. Without loss of generality, for

simplicity of notations, we assume that α = 0 and β = 1. Noting that mθ(X, Y ) =

(Y −X(θ))2, we then have

|mθ1 −mθ2 | = [Y −X(θ1) + Y −X(θ2)][X(θ2)−X(θ1)]

≤ 2(sup
θ
|X(θ)|+ sup

θ0

|Y |)|X(θ1)−X(θ2)|

≤ L|θ1 − θ2|α,

where L = 2(supθ |X(θ)|+ supθ0
|Y |)ξ. The second inequality follows from condition (A3).

By conditions (A2) and (A6), L has moments of all orders. Consequently that the brack-

eting entropy integral J[ ](1,Mδ, L
2(P ) is uniformly bounded as a function of δ ∈ (0, 1],
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see van der Vaart and Wellner (1996), p. 294. Using Theorem 2.14.2 of van der Vaart and

Wellner (1996), we have

‖ ‖Gn‖Mδ
‖P,1 . J[ ](1,Mδ, L

2(P ))(EM2
δ )1/2 . δ

for all δ ∈ (0, 1], where Gn =
√

n(Pn−P ) and the constants in the inequalities are universal.

By Theorem 2.14.5 of van der Vaart and Wellner (1996), for all p > 2 and large n

‖ ‖Gn‖Mδ
‖P,p . ‖ ‖Gn‖Mδ

‖P,1 + n−1/2+1/p ‖Mδ‖P,p

. δ + n−1/2+1/p |EMp
δ |1/p

. δ.

The constants in the inequalities . depend only on the value of p. By Lyapounov’s inequal-

ity, (3.5.2) is also true for 1 ≤ p ≤ 2. It follows from the previous lemma that the LSE

converges in second moment uniformly w.r.t. η0, i.e.

sup
η0∈Ξ

Eη0 Ls(η̂, η0) . n−1, s = α, β, and sup
η0∈Ξ

Eη0 Lθ(η̂, η0) . n−1/H .

It follows that

inf
η̃

sup
η0∈Ξ

Eη0 Lα(η̃, η0) . n−1,

inf
η̃

sup
η0∈Ξ

Eη0 Lβ(η̃, η0) . n−1, and

inf
η̃

sup
η0∈Ξ

Eη0 Lθ(η̃, η0) . n−1/H .
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Chapter 4

Minimax lower bound for the

sparse functional GLM

Generalized linear models provide a powerful tool for relating predictor variables to con-

tinuous or categorical responses McCullagh and Nelder (1989). It has long been a topic of

interest to consider a functional predictor in the generalized linear regression model. Like

functional linear regression models, functional generalized linear regression models are able

to take into account the information contained in an entire curve when predicting a scalar

response, while the latter can cope with situations where the outcome variable is not neces-

sarily continuously distributed. See Chapter 2 for examples of functional generalized linear

regression.

Here we consider the sparse functional generalized linear models. First proposed in

Lindquist and McKeague (2009), the models were shown to have substantial value in prac-

tice. The authors gave two examples of applications using the functional logistic regression

model, a special case of sparse functional GLM with binary outcomes. One example involves

the gene expression profile data introduced in Section 1.1.1, with genome-wise microarray

expression levels as the predictor and diagnosis of breast cancer as the binary outcome. The

other example applies the sparse functional GLM model to the fMRI data introduced in Sec-

tion 1.1.2, where time courses of fMRI signals at one voxel are the predictor functions and

the resilient/non-resilient anxiety status is the binary outcome. It was shown that sparse
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functional GLM is able to detect sensitive points with potential scientific meanings. The au-

thors constructed a maximum likelihood estimator for the model and showed that the MLE

η̂n = (α̂n, β̂n, θ̂n) converges to a non-degenerate limiting distribution at component-wise

rates n1/2, n1/2 and n, under the assumption that X is a two-sided Brownian motion in the

neighborhood of the sensitive point θ0. It remains unclear whether the MLE is rate-optimal.

In this chapter, we extend the result from the previous chapter and establish a lower

bound on the minimax risk for estimating the sensitive point and the regression coefficients

under milder conditions. It is shown that the MLE’s weak convergence rate is of the same

order as that of the minimax lower bound, which suggests the rate-optimality of the MLE.

Section 4.1 specifies the sparse functional GLM and describes the maximum likelihood

estimation procedure. Section 4.2 gives the list of conditions needed for the minimax lower

bound. Section 4.3 presents the main result of this chapter, the minimax lower bound,

and compares it to the weak convergence rate of the MLE. Finally, Section 4.4 gives the

complete proof to the theorem.

4.1 Model specification and estimation

Suppose the data consist of independent, identically distributed pairs {(Xi, Yi), i = 1, . . . , n}
that are replicates of (X, Y ). Again X is a stochastic process indexed by [0,1]. Here Y is a

scalar response that could be non-Gaussian. Specifically we assume that conditional on X,

Y |X ∼ Qλ, (4.1.1)

where {Qλ : λ ∈ R} is an exponential family of probability measures with densities

dQλ/dQ0 = exp(λy − ψ(λ)),

and

λ = α + βX(θ).

Here θ is again the sensitive point at which the value of X is associated with Y . The

intercept α and the slope β are both scalars. The model is indexed by η = (α, β, θ).
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The maximum likelihood estimator of η is given by

η̂n = (α̂n, β̂n, θ̂n) = arg max
η
Pnmη

= argmax
η

n∑

i=1

{Yi[α + βXi(θ)]− ψ[α + βXi(θ)]}, (4.1.2)

where Pn is the empirical measure, and

mη = Y [α + βX(θ)]− ψ[α + βX(θ)]

is the log-likelihood function. Again, the likelihood function is maximized via a profile

estimate procedure. Specifically, for each fixed θ, a profile estimate of (α, β) is given by

(α̂n(θ), β̂n(θ)) = arg max
(α,β)

n∑

i=1

{Yi[α + βXi(θ)]− ψ[α + βXi(θ)]}. (4.1.3)

Then an estimate of θ is given by

θ̂n = arg max
θ

n∑

i=1

{Yi[α + βXi(θ)]− ψ[α + βXi(θ)]}. (4.1.4)

Finally η̂n is obtained from

(α̂n(θ̂n), β̂n(θ̂n), θ̂n). (4.1.5)

In practice, the profile estimate 4.1.3 can be obtained by standard software solving for GLM.

These procedures are usually fast and efficient, so the entire procedure is tractable despite

the large number of points on which observations are made.

4.2 Conditions

The sparse functional generalized linear regression model is indexed by η = (α, β, θ) ∈ Ξ.

Again, we assume the parameter space

Ξ = [−b, b ]× {β ∈ R : a ≤ |β| ≤ b} × (0, 1).

Here 0 < a < b < ∞ are constants. Also, the following assumptions on X are made to

derive the minimax lower bound.

(A1) X has a generalized Hurst exponent H ∈ (0, 1].
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(A2) supθ∈(0,1) E|X2(θ)| ≡ K < ∞.

We also make the following assumptions on ψ:

(B1) There exists an increasing real function G on R+ such that

|ψ(3)(λ + h)| ≤ ψ(2)(λ)G(|h|) ∀λ and h.

Without loss of generality we assume G(0) ≥ 1.

(B2) For each ε > 0 there exists a finite constant Cε for which ψ(2)(λ) ≤ Cε exp(ελ2) for

all λ ∈ R. Equivalently, ψ(2)(λ) ≤ exp(o(λ2)) as |λ| → ∞.

As shown in Dou et al. (2010), conditions (B1) and (B2) on the ψ function imply that

h2(Qλ, Qλ+δ) ≤ δ2ψ(2)(λ)(1 + |δ|)G(|δ|) ∀λ, δ ∈ R. (4.2.1)

Here h(P, Q) denotes the Hellinger distance between two probability measure P and Q. If

both P and Q are dominated by some measure µ, with densities p and q, then h2(P, Q) =

µ(
√

p−√q)2. The total variation distance is bounded by the Hellinger distance,

‖P −Q‖TV ≤ h(P, Q). (4.2.2)

For product measures we use the bound

h2(⊗i≤nPi,⊗i≤nQi) ≤ Σi≤nh2(Pi, Qi). (4.2.3)

4.3 Minimax lower bound for sparse functional GLM

In this section we will derive the lower bound on the minimax risk of estimating the pa-

rameters in sparse functional GLM. We will again use Lemma (3.4.1) to associate the min-

imax lower bound with the total variation affinity between two conditional distributions,

‖Qn,1 ∧ Qn,2‖, that correspond to two simple hypotheses. The generality of exponential

families, in particular the functional form of ψ(·), makes it more complicated to bound the

total variation affinity than the similar procedure in Chapter 3. We approach the prob-

lem by first bounding the affinity by the Hellinger distance between Qn,1 and Qn,2, using
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inequality (4.2.2), and then bounding the Hellinger distance using inequality (4.2.1). The

following theorem gives the minimax lower bound. Details of the proof can be found in

Section 4.4.

Theorem 4.3.1. Suppose conditions (A1),(A2), (B1) and (B2) hold, then the minimax

risk of estimating η over Ξ satisfies

inf
η̃n

sup
η∈Ξ

Eη Lα(η̃n, η) ≥ C2n
−1,

inf
η̃n

sup
η∈Ξ

Eη Lβ(η̃n, η) ≥ C2n
−1, and

inf
η̃n

sup
η∈Ξ

Eη Lθ(η̃n, η) ≥ C2n
−1/H ,

where the supremums are taken over the parameter space Ξ and the infimums are taken

over any estimator of the form η̃n = (α̃n, β̃n, θ̃n), of η. C2 > 0 only depends on the second

moment structure of X and the parameter space Ξ.

The theorem shows that the minimax rate for estimating θ0 is at most n1/(2H), which is

faster or equal to the usual parametric rate n1/2. The rougher the trajectories of X are, the

quicker can θ̂n converge to θ0. This result is in consistency with the minimax lower bound

for sparse functional linear regression derived in Section 3.4, but in contrast to the result

in Dou et al. (2010), where the convergence rate of the estimator of the slope function β is

faster when the covariance function of X and β is smoother. This is not surprising because

when the impact of the predictor function is spread across the index space, the smoothness

of its paths will enable us to “borrow” information from the observations in the adjacent

neighborhood. On the contrary, when the impact is sparse in the index space, the roughness

of the predictor function’s trajectories makes it easier to identify the sensitive point.

4.4 Proof

We use the same notations as in Section 3.6, except that here Qλ stands for a density

from an exponential family rather than a Gaussian distribution. In addition, when we want

to indicate that a bound involving constants c, C, C1, . . . holds uniformly over all models

indexed by a set of parameters Ξ, we write c(Ξ), C(Ξ), C1(Ξ), . . . .
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4.4.1 Proof of the minimax lower bound

Proof of Theorem 4.3.1: Select η1 = (α1, β1, θ1) and η2 = (α2, β2, θ2) such that |α2 − α1| =
cm−1, |β2 − β1| = cm−1 and |θ2 − θ1| = ck−1. Here c > 0 is a constant while m and k go to

infinity as n →∞. Then Lemma 3.4.1 implies that

sup
η∈Ξ

EηLθ(η̃, η) ≥ 1
4
c2k−2Pn,X‖Qn,1 ∧Qn,2‖, and

sup
η∈Ξ

EηLs(η̃, η) ≥ 1
4
c2m−2Pn,X‖Qn,1 ∧Qn,2‖, s = α, β. (4.4.1)

We want to show that Pn,X‖Qn,1 ∧ Qn,2‖ is bounded away from 0 as n goes to infinity.

It suffices to show that Pn,X‖Qn,1 − Qn,2‖TV is bounded away from 1. Define λj
i = αj +

βjXi(θj), i = 1, . . . , n, j = 1, 2. Then we have

Pn,X‖Qn,1 −Qn,2‖TV ≤ Pn,X

[
Σi≤nh2(Qλ1

i
, Qλ2

i
)
]1/2

≤
[
Pn,XΣi≤nh2(Qλ1

i
, Qλ2

i
)
]1/2

.

The first inequality follows from (4.2.2) and (4.2.3). The second one uses the Cauchy–

Schwarz inequality. By inequality (4.2.1),

h2(Qλ1
i
, Qλ2

i
) ≤ C(Ξ)|λ1

i − λ2
i |2.

Therefore,

[Pn,X‖Qn,1 −Qn,2‖TV ]2 ≤ C(Ξ)Pn,XΣi≤n

[
(α1 + β1Xi(θ1)− α2 − β2Xi(θ2))

2
]

≤ C(Ξ)Pn,XΣi≤n[2|α1 − α2|2 + 4|Xi(θ1)|2 · |β1 − β2|2 +

+ 4|β2|2 · |Xi(θ1)−Xi(θ2)|2]

≤ C(Ξ)n
[
2|α1 − α2|2 + 4K · |β1 − β2|2 + 4b2 · Cu|θ1 − θ2|2H

]

≤ C(Ξ)n · (2c2m−2 + 4Kc2m−2 + 4Cub2c2Hk−2H).

The second inequality uses twice the fact that |a + b|2 ≤ 2|a|2 + 2|b|2, for all a, b ∈ R. The

third inequality follows from conditions (A1) and (A2), and the upper bound on |β| in the

parameter space Ξ. If we choose m = n1/2, k = n1/(2H) and 0 < c ≤ min{(πσ2/(2+4K))1/2,
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(πσ2/(4Cub2))1/(2H)}/C(Ξ), then

Pn,X‖Qn,1 ∧Qn,2‖ = 1− Pn,X‖Qn,1 −Qn,2‖TV

≥ 1− [
C(Ξ) n · (2c2n−1 + 4Kc2n−1 + 4Cub2c2Hn−1)

]1/2

= 1− [
C(Ξ)

(
(1 + 2K)c2 + 2Cub2c2H

)
/(πσ2)

]1/2
> 0.

Denoting C1 = c2
(
1− [

C(Ξ)
(
(1 + 2K)c2 + 2Cub2c2H

)
/(πσ2)

]1/2
)

/4 and recalling (4.4.1),

we have proved Theorem 3.4.2.
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Chapter 5

Simulation studies for sparse

functional regression models

In this chapter we report the results of five simulation studies. They assess the finite-sample

performance of the least squares estimator and the maximum likelihood estimator for sparse

functional linear regression and sparse functional GLM, respectively, and compare them to

other estimators in terms of the mean squared errors. The first simulation illustrates the

behavior of the LSE for sparse functional linear regression with different sample sizes and

different values of H. We want to see if the lower bound derived in Theorem 3.4.2 is of

the same order as the upper bound given by the LSE. The second simulation compares

the performance of the least squares estimator with two other estimators, using different

sample sizes and different values of H. One of the other estimators is derived from the

lasso and the other from the commonly used functional linear regression model (2.1.3). The

third and fourth simulations examines the MSE of the MLE for sparse functional GLM and

compare it to that of the lasso based estimator and the functional GLM-based estimator,

respectively. The last one considers the case where the data are generated from a functional

linear model with spike-shaped regression functions, and compares the performance of the

LSE to that of the lasso- and FLR-based estimators
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5.1 LSE for the sparse functional linear model

In this simulation we generate pairs (Xi, Yi), i = 1, . . . , n from the sparse functional linear

regression model (2.2.1) and evaluate the performance of the LSEs, β̂n and θ̂n, with varying

sample sizes and different values of H. We want to see if their MSEs indeed converge at

rate n and n1/H , i.e.

n · E|β̂n − β0|2 = Op(1) and (5.1.1)

n1/H · E|θ̂n − θ0|2 = Op(1). (5.1.2)

Because a fBm is convenient to simulate and it satisfies all the conditions in Chapter 3,

we generate fBms as predictor processes Xi, using the R 2.11.1 function fbmSim in the library

fArma, on a uniform grid of 200 points over the [0,1] interval. To capture the asymptotic

behavior of η̂n, three different sample sizes n = 30, 50, and 100 are considered. Because the

minimax rates for θ̂n depend on the Hurst exponent H, we also consider 50 values of the

Hurst exponent H, equally spaced in (0,1). The scalar responses Yi are generated from the

sparse functional linear regression model (2.2.1) with α0 = 0, β0 = 1, θ0 = 0.5 and σ = 0.3.

Least squares estimators are fitted for each of the 1000 simulated samples. The MSEs

of β̂ and θ̂ are approximated by an average of the squared error loss. To evaluate the con-

vergence rates of the estimators, the MSEs are multiplied by n and n1/H , respectively, and

plotted against H (Figures 5.1 and 5.2). To remove the Monte Carlo errors, we smoothed

the curves using the lowess method (span = 1/3). When H gets very small, the resolution

of the simulated trajectories may not be adequate, so only the results for H > 0.2 are dis-

played. The dashed line is the constant C1 defined in Section 3.6.3, as a function of H, with

b = β0 = 1 and c = min{(πσ2/(2+4K))1/2, (πσ2/(4Cub2))1/(2H)}. The variance-covariance

structure of fBMs implies that Cl = Cu = K = 1. A closer look at C1, given in Figure 5.3,

shows that it is positive.

It can be seen first that the MSEs of β̂ and θ̂ are indeed above the given lower bound,

which verifies the validity of our result. Secondly, the estimators converge quickly as n

reaches 100, indicated by the fact that the MSE curves corresponding to n = 50 and

n = 100 are already very close. The third observation is that, as H approaches 1, the MSEs

increase substantially. This is not surprising since the larger the H, the smoother the paths
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of X, and the harder it is to identify θ0 and estimate β0. The increasing rescaled MSE

of θ̂n as H gets very small is caused by the rescaling, rather than inadequate resolution,

as we have also tried doubling the number of grid points for generating X and obtained

similar results. Finally, we see that the constant C1 is of a much smaller scale than the

MSEs. This may be caused by the choice of X being fBM, which is a very special case

compared to the general class of random functions we allow in the theorem. Also the choice

of c ≤ min{(πσ2/(2 + 4K))1/2, (πσ2/(4Cub2))1/(2H)} might be a strict requirement. It may

be possible to find a bigger c that still makes C1 positive.
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Figure 5.1: Empirical MSEs of β̂n for sparse functional linear model, multiplied by n. The

dashed line is C1 changing with H. The MSEs are greater than the constant, indicating

the minimax lower bound is valid.
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Figure 5.2: Empirical MSEs of θ̂n for sparse functional linear model, multiplied by n1/H .

The dashed line is C1 changing with H. The MSEs are greater than the constant, indicating

the minimax lower bound is valid.

5.2 Comparison of the LSE to the lasso and the FLR esti-

mators

We next compare the LSE with two other estimators derived from the lasso and the es-

timator of the slope function in the FLR model. Since there has not been any estimator

proposed for the sparse functional linear model other than the LSE, to our knowledge, we

choose to compare it with two alternatives that most naturally come to mind. The lasso has

been used for variable selection extensively. Since in reality the functional predictor X is

observed on discrete points, estimating the sensitive point is similar to a variable selection

problem. The functional linear regression model, as we have introduced in Chapter 2, is

commonly used to associate functional predictors to scalar responses. We want to see if it
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Figure 5.3: C1 given in Theorem 3.4.2, as a function of H, in units of 10−3. The constant is

indeed positive but not sharp enough, compared to the MSEs of the estimates, which could

be the result of the choice of X or the choice of c.

still works well in the situation where the impact of the functional explanatory variable is

via its value at a sensitive point.

The data are generated in the same way as in Section 5.1. For the lasso, we view the

values of X at the discrete 200 points as 200 predictor variables. The initial selection of the

lasso is used as the estimate of θ. If there are multiple initial selections, the smallest point

in (0,1) is used. For the FLR estimator, we use (2.1.3) as the working model and use the

maximizer of the estimated β(·) as the estimate of θ.

To fit the lasso, we use the coordinate descent algorithm implemented in the R package

glmnet (Friedman et al., 2010). For the FLR estimator, we use the R 2.11.1 function fglm

in the MFDF package, which implements the procedure proposed by Dou et al. (2010). The

predictor function X(·) is expressed with a B-spline basis of order 4 (piecewise cubic), with

the uniform grid of observation times used as the knots. β is estimated using functional

principle component analysis, and its roughness is controlled by how many functional PCAs

are used, chosen to minimize the integrated squared error loss. Three sample sizes, n =

30, 50, 100 are again considered. The MSE of the three estimators are multiplied by n1/H ,

lowess-smoothed (span = 1/3) and plotted against H (Figures 5.4, 5.5, and 5.6). In the

labels we use “sparse FLR” to stand for the sparse functional linear model and ”FLR” for

the functional linear regression.



CHAPTER 5. SIMULATION STUDIES FOR SPARSE FUNCTIONAL REGRESSION
MODELS 67

We can see from the graphs that the MSEs of the lasso-based estimators are almost

identical with the least squares estimates in terms of their mean squared errors, while the

MSE of the maximizer of β(·) is much higher as expected, since the data are generated

from the sparse functional linear model and the functional linear model is misspecified.

This does not contradict with the result of Hall and Horowitz (2007), since the minimax

rate in (2.3.8) was given in the squared integral loss function, which reflects the risk of

estimating the entire curve of the slope function instead of a sensitive point. The results

show that, by assuming the impact of the functional predictor is spread across the interval,

the classic FLR model cannot well estimate the sensitive point if the data were generated

from the sparse functional GLM. Another implication is that, although the lasso is a variable

selection procedure by design, it can be used to estimate the sensitive point in practice,

where the continuous predictor process is almost always measured at discrete points. Since

the coordinate descent algorithm is fast and efficient, it could be a much cheaper alternative

to the LSE in terms of computational cost. On the other hand, the sparse functional linear

model can be used for doing inference on θ0 with its theoretical properties.

5.3 MLE for the sparse functional GLM

In this simulation we generate pairs (Xi, Yi), i = 1, . . . , n from the sparse functional logistic

model (2.2.3) and evaluate the performance of the MLEs, β̂n and θ̂n, with varying sample

sizes and different values of H. Here we want to see if the lower bound in Theorem 4.3.1 is

valid, i.e.

n · E|β̂n − β0|2 ≥ C2 and (5.3.1)

n1/H · E|θ̂n − θ0|2 ≥ C2. (5.3.2)

For the logistic distribution,

ψ(λ) = log(1 + eλ),

and

ψ(2)(λ) =
eλ

(1 + eλ)2
< 1.

So we can take C2 to be a positive constant. We choose C2 = 0.01.
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Figure 5.4: Empirical MSEs of θ̂n from the sparse functional linear model, the lasso and

the functional GLM, multiplied by n1/H , n = 30. The lasso and the sparse functional GLM

have similar performance, but the functional linear model has higher MSEs.

Again fBms are used as predictor processes Xi, generated on a uniform grid of 200

points over the [0,1] interval for three different sample sizes n = 30, 50, and 100. 50 values

of the Hurst exponent H equally spaced in (0,1) are considered. The scalar responses Yi

are generated from the sparse functional logistic model (2.2.3) with α0 = 0, β0 = 1, and

θ0 = 0.5.

Maximum likelihood estimators are fitted for each of the 1000 simulated samples. The

MSEs of β̂ and θ̂ are approximated by the average of the squared error loss, multiplied by

n and n1/H , respectively, and plotted against H (Figure 5.7). To remove the Monte Carlo

errors, we smoothed the MSE plots using the lowess method (span = 1/3). When H gets

close to 0 or 1, the behavior of the estimators may become irregular, so only the results for

0.2 < H < 0.8 are displayed.
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Figure 5.5: Empirical MSEs of θ̂n from the sparse functional linear model, the lasso and

the functional GLM, multiplied by n1/H , n = 50. The lasso and the sparse functional linear

model have similar performance, but the functional linear model has higher MSEs.

It can be seen that the MSEs of β̂ and θ̂ are indeed above the lower bound (dashed lines),

therefore the asymptotic order of the minimax lower bound is valid. Also can be seen is

that the MLEs converge slower than the LSEs for the sparse functional linear regression

model, since there is a much larger difference in the re-scaled MSEs when the sample size is

50 and 100 than in the sparse functional linear regression case. Furthermore, the magnitude

of the re-scaled MSEs is much larger than that in the sparse functional linear regression

case, which also indicates a slower convergence of the MLEs. Finally, as H gets larger, the

rescaled MSE of β̂n increases as in the sparse functional linear model case, but the rescaled

MSE of θ̂n is decreasing, which is again caused by the rescaling.
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Figure 5.6: Empirical MSEs of θ̂n from the sparse functional linear model, the lasso and the

functional GLM, multiplied by n1/H , n = 100. The lasso and the sparse functional linear

model have similar performance, but the functional linear model has higher MSEs.

5.4 Comparison of the MLE to the lasso and the functional

GLM estimators

We next compare the MLE with two other estimators derived from the lasso and the func-

tional logistic regression, which is a special case of the functional generalized linear regres-

sion estimator proposed by Dou et al. (2010). The lasso-based and functional GLM-based

estimators are obtained in a similar way to the approach in Section 5.2. Only here we

use the logit link function and the binomial outcome distribution. Three sample sizes,

n = 30, 50, 100 are again considered. The MSE of the three estimators are re-scaled, lowess-

smoothed (span = 1/3) and plotted against H (Figures 5.8 and 5.9). In the labels we use

“sparse FGLR” to stand for the sparse functional GLM and ”FGLR” for the functional
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GLM.

Our results show that, just like the sparse functional linear model, the estimates based on

the lasso is almost identical with the least squares estimates in terms of their mean squared

errors, while the functional GLM estimate is outperformed by the others. This is more

obvious when n becomes larger. The functional GLM cannot well estimate the sensitive

point if the data were generated from the sparse functional GLM. It is also suggested

that the lasso-based estimator is a reasonable alternative to the MLE when estimating the

parameters in sparse functional GLM.

5.5 Misspecification by a functional linear model

In this simulation, we generate data from the functional linear model (2.1.3) with a spike-

shaped regression function, and treat the sparse functional linear model (2.2.1) as the work-

ing model. We will compare the performance of the LSE to that of the lasso- and FLR-based

estimators. The spike-shaped regression function β(t) is taken as a Gaussian pdf centered

at t = 0.5. We consider two separate standard deviations for the spike function, σ = 0.01

and 0.03, respectively. In each case, we specify the sample size n = 40, α0 = 0, and the

error standard deviation σ0 = 0.3. Again, functional Brownian motions are generated as

the functional predictors, with a series of Hurst exponents equally spaced in (0,1).

Figure 5.10 shows the results of fitting the sparse functional model, along with the lasso-

and FLR-based estimators. It can be seen that if the slope function is more spread out, the

error of estimating β0 in the sparse functional linear model is higher, since the assumption

of the sparse functional linear model is more violated. In each case, the estimates based on

the sparse functional linear model and the lasso still outperform the ones based on the FLR

model. This suggests that, although the sparse functional model is misspecified, it may still

be a better choice to capture the spike-shaped feature of β(t). As shown in the simulation

from Lindquist and McKeague (2009), the functional linear model wrongly suggests that

the influence of the predictor is substantial over the whole time course, thus might lose

information when estimating the center of the spike.



CHAPTER 5. SIMULATION STUDIES FOR SPARSE FUNCTIONAL REGRESSION
MODELS 72

0.2 0.3 0.4 0.5 0.6 0.7 0.8

0
20

0
40

0
60

0
80

0
10

00

H

R
e−

sc
al

ed
 M

S
E

 o
f β̂

n=30
n=50
n=100

0.2 0.3 0.4 0.5 0.6 0.7 0.8

0
20

0
40

0
60

0
80

0
10

00

H

R
e−

sc
al

ed
 M

S
E

 o
f θ̂

n=30
n=50
n=100

Figure 5.7: Empirical MSEs of β̂n and θ̂ for sparse functional GLM, multiplied by n and

n1/H , respectively.
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Figure 5.8: Empirical MSEs of θ̂n from sparse functional GLM, the lasso and functional

GLM, multiplied by n1/H , n = 30 and 50. The lasso and the sparse functional linear model

have similar performance, but the functional GLM has higher MSEs.
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Figure 5.9: Empirical MSEs of θ̂n from sparse functional GLM, the lasso and functional

GLM, multiplied by n1/H , n = 100. The lasso and the sparse functional GLM have similar

performance, but the functional GLM has higher MSEs.
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Figure 5.10: The regression function β(t) is taken as two separate Gaussian pdfs centered at

t = 0.5, with standard deviations 0.01 and 0.03, respectively (first column). The smoothed

MSEs of the estimated scalar slope β̂n in the sparse functional linear model (second column),

multiplied by n. The smoothed MSEs of the estimated θ̂n, based on the LSE (green), the

lasso-based estimates (red), and the FLR-based estimates (blue), multiplied by n1/H (third

column). The panels can be compared to Figures 5.3 and 5.4.
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Chapter 6

Contaminated sparse functional

GLM

We have seen in Chapter 4 that sparse functional GLM is a convenient tool to estimate

sensitive points at which functional predictors impact non-Gaussian scalar outcomes. One

limitation of the sparse functional GLM, however, is that it assumes a fixed sensitive point.

In reality this might not be the case and the sensitive point could be random and prone

to contamination. For example, the timing of psychological activities reflected by fMRI

signals might be affected by personal aging, disorders and pathology, such as cerebrovascular

diseases (D’Esposito et al., 2003).

In face of this complication, we extend the sparse functional GLM to a contaminated

sparse functional GLM in this chapter to allow for random sensitive time point. We will

construct an estimating procedure based on a Monte Carlo EM algorithm. We will evaluate

the performance of the proposed estimator in several simulation studies and a real data

analysis. It is also shown that the maximum marginal likelihood estimator converges at the

parametric rate, n1/2, if the contamination distribution is smooth, in contrast to the faster

n1/(2H) rate of the MLE for the sparse functional GLM.

The rest of the chapter is organized as follows. Section 6.1 describes the motivation

to proposing the contaminated sparse functional GLM in detail. Section 6.2 specifies the

model structure and assumptions. We also discuss the connection between this model and
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the latent variable models, especially generalized linear mixed models (GLMM). Section 6.4

describes the proposed Monte-Carlo EM estimation procedure and discusses the numerical

issues that could occur in reality. Section 6.3 presents the asymptotic properties of the

MLE. Section 6.5 gives the detailed proofs to the theory. In Chapter 7, we will present the

results of four simulation studies that illustrate the finite-sample behaviors of the MCEM

estimator. The proposed method is applied to a real data analysis in Chapter 8.

6.1 Motivation

Functional magnetic resonance imaging (fMRI) measures neuronal activity indirectly, through

the blood-oxygen-level-dependent (BOLD) signal. The BOLD signal depends on neurovas-

cular coupling – the processes by which neural activity influences the haemodynamic prop-

erties of the surrounding vasculature. As pointed out by D’Esposito et al. (2003), there is

empirical evidence that these mechanisms might be altered in normal ageing and disease.

So, interpretation of BOLD fMRI studies of individuals with different ages or pathology

might be more challenging than is commonly acknowledged.

For example, in one fMRI study, the severe extra-cranial carotid stenosis in a patient

without MRI evidence of an infarct led to neurovascular uncoupling that presented as a

negative BOLD signal response during performance of a simple motor task. Both the level

and the onset time of the BOLD sinal in response to a finger-tapping task in motor cortex

on the side carotid stenosis have been altered by the effect of cerebrovascular pathology.

Therefore, the onset time of brain activity indicated by the BOLD signal in the fMRI study

presented in Section 1.1.2 could be susceptible to subject-specific effects. It is necessary to

consider a model that incorporates random sensitive points.

6.2 Model specification

To meet the previously mentioned practical need and deal with randomly distributed sen-

sitive points, we propose the contaminated sparse functional GLM. We assume the data

consist of independent, identically distributed pairs (Xi, Yi), i = 1, . . . , n, which are i.i.d.

replicates of (X, Y ), where Y is a scalar response that could be non-Gaussian, and X is
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a stochastic process on [0,1]. The contaminated sparse functional GLM is structured as

follows.

Y |X ∼ Qλ, λ = α + βX(τ), (6.2.1)

τ ∼ θ + W, given θ + W ∈ [0, 1]. (6.2.2)

Here Y is a scalar response, X is a functional predictor, and Qλ is a distribution from the

exponential family defined as before. θ is the contamination-free sensitive point that we

want to estimate. W is a random contamination that is independent of X, with a known

density pW (·) that is smooth, unimodal and symmetric at 0. An example of such density

would be the Gaussian density. Since the contaminated sensitive point τ cannot be outside

of [0,1], we assume its distribution is the same as θ + W truncated to [0,1]. Thus the

conditional density of Y given X and τ only depends on α and β, denoted as pα,β(Y |X, τ),

and the density of τ only depends on θ, denoted as pθ(τ), and the contaminated sparse

functional GLM is indexed by η = (α, β, θ). From the previous assumptions, we have

pα,β(y|X, τ) = exp(λy − ψ(λ)), (6.2.3)

pθ(x) =
pW (x− θ) · 1[0,1](x)∫ 1

0 pW (x− θ) dx
. (6.2.4)

Inspired by the estimation procedure for the sparse functional GLM, we propose the

maximum likelihood estimator of η in the contaminated sparse functional GLM, given by

η̂n = (α̂n, β̂n, θ̂n) = arg max
η
Mn(α, β, θ), (6.2.5)

where the log likelihood Mn(α, β, θ) = Pnm(α, β, θ),

m(α, β, θ) = log
∫ 1

0
pα,β(Y |X, τ)pθ(τ)dτ, (6.2.6)

and Pn is the empirical distribution of the data on (X, Y ).

6.2.1 Connection to generalized latent variable models

We notice that the contaminated sparse functional GLM has some similarity to latent

variable models, since the contaminated sensitive points τi, i = 1, . . . , n are unobservable in

reality. In fact, generalized latent variable models have long been established and applied
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to multiple aspects of health sciences, for example repeated measures, measurement error

and multilevel modeling (Skrondal and Rabe-Hesketh, 2003; Huber et al., 2004; Stefanski,

2000). A comprehensive survey can be found in Skrondal and Rabe-Hesketh (2004).

Depending on the context, latent variables can be defined in different ways. In general,

they are random variables whose realizations are hidden from us. As Skrondal and Rabe-

Hesketh (2004) presented, latent variables can be used to describe multiple phenomena, such

as ‘true’ variables measured with error, hypothetical constructs, unobserved heterogeneity,

missing data, counterfactuals or potential outcomes, and latent responses underlying cate-

gorical variables. In particular, measurement error models combined with regression models

can be used to avoid diluted regression effects when a covariate has been measured with

error. It is well-known that the naive approach to estimate the slope in a simple linear

regression when the predictor is measured with error produces biased estimates Stefanski

(2000).

Another class of widely used models is mixed effects models or multilevel regression

models. Multilevel data arise when units are nested in clusters, for example siblings in the

same family. Repeated measurements taken on the same subject can be viewed as clustered

data too. The units belonging to the same cluster share the same cluster-specific influences,

but these influences cannot all be modeled as covariates in that we often have limited

knowledge regarding relevant covariates and our data set may furthermore lack information

on these covariates. As a result there is cluster-level unobserved heterogeneity leading to

correlation between responses for units in the same cluster, after conditioning on covariates.

Unobserved heterogeneity is modeled by including random effects in a multilevel regression

model.

In addition to linear regression models, where the outcome variable is assumed to be

continuous and often Gaussian, generalized latent variable models have been employed

to cope with non-Gaussian variables, including dichotomous, grouped, censored, ordinal,

unordered polytomous or nominal, pairwise comparisons, rankings or permutations, counts,

and durations or survival responses. For example, generalized linear mixed models combines
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mixed effects models with generalized linear models to incorporate non-Gaussian responses:

E(Y |ν) = µ,

g(µ) = ν = X ′β +
L∑

l=2

z′lζl,

where g(·) is a link function, β is the vector of fixed effects, and z(l)′ is an Ml-dimensional

vector of explanatory variables with random coefficients ζ(l) at level l.

It is easy to see the similarity between the generalized linear mixed model to our pro-

posed model (6.2.1), since they are both derived from the GLM framework and have random

variables in the linear predictor part. However, in our case the latent variable is an argu-

ment of a random function, while in the latent variable literature, the relation between the

response and the latent variable is characterized by a fixed functional form. This compli-

cates the theoretical and numerical studies of the contaminated sparse functional GLM.

For example, we may not be able to directly use the Newton-Raphson type of optimization

scheme to obtain the maximum likelihood, since we do not know the functional form of the

predictor trajectories.

6.3 Asymptotics

Ideally we would want to derive the asymptotic distribution of the MCEM estimators.

However, it is not straightforward to deal with such an approximate MLE in a multi-

level model. In fact, Hall et al. (2011) obtained, for the first time, the precise asymptotic

distribution of Gaussian variational approximation estimators for a simple Poisson mixed

model. Therefore, in this section we consider the asymptotics of the exact MLE, given in

(6.2.5), which the MCEM algorithm is supposed to converge to.

For the sake of simplicity, we will fix α and β, and treat m and M = Pm as functions

of just θ. It can be shown that α̂n and β̂n converge at
√

n-rate. To derive the asymptotics

of θ̂n, we assume that the contamination density satisfies the following conditions

(C1) pW (·) is smooth, unimodal and symmetric at 0.

(C2) supx∈(0,1)

∣∣ d
dxpW (x)

∣∣ < ∞, and infx∈(0,1) |pW (x)| > 0.
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An example that satisfies the above conditions is N(θ, σ2) truncated to [0,1]. The following

theorem gives the large-sample distribution of θ̂n. Here θ0 denotes the true value of θ.

Theorem 6.3.1. If (6.2.1) and (6.2.2) hold, 0 < θ0 < 1, β 6= 0, and conditions (C1) and

(C2) are valid, then
√

n(θ̂n − θ0)
D−→N(0, I−1

θ0
).

Here Iθ0 = Pθ0ṁθ0ṁ
′
θ0

is the Fisher information and ṁθ0 is the score function.

Remark 6.3.2. In the proof we will see that, it only requires conditions (C1) and (C2) to

establish the consistency and the convergence rate of the MLE. Only the limiting distribution

involves the density of W . This indicates that using a Gaussian contamination as the

working model will still give a consistent estimator that converges at rate n1/2.

The convergence rate of the MLE does not depend on X and is slower than the MLE of

θ in the sparse functional GLM. An intuitive explanation would be that the contamination

“smooths out” the local irregularities of the predictor process and makes the estimation

problem a regular maximum likelihood estimation problem.

6.4 Numerical procedure

In this section, we devise a numerical algorithm to obtain the MLE given in (6.2.5). From

the previous section we know that the choice of pW (·) does not affect the consistency and

the convergence rate of the MLE. Therefore, we will assume that W ∼ N(0, σ2
c ) with know

variance σ2
c for computational purposes. This implies that τ ∼ N(θ, σ2

c ) truncated to [0, 1]

and

pθ(τ) =
1
σc

φ( τ−θ
σc

)

Φ(1−θ
σc

)− Φ(−θ
σc

)
, (6.4.1)

with φ(·) and Φ(·) being the density and cumulative distribution function of standard nor-

mal, respectively.

Since model (6.2.1) contains unobservable random variables τ , we need to maximize the

marginal likelihood that involves integration over the τi’s,

L(η|Y,X) =
∫∫ n∏

i=1

pα,β(Yi|Xi, τi)pθ(τi) dτ1 . . .dτn. (6.4.2)
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Direct maximization of (6.4.2) in close form seems prohibitive. A possible method is stochas-

tic optimization. Specifically, we replace the marginal likelihood (6.4.2) with

L(α, β, θ|Y, X) =
∫∫ n∏

i=1

p(Yi|Xi, τi)p(τi|Xi) dτ1 . . .dτn

≈ 1/M

M∑

j=1

n∏

i=1

p(Yi|Xi, τ
(j)
i ), (6.4.3)

where τ
(j)
i are generated from pθ(·). However, the derivatives of this function with respect to

η might still be difficult to calculate and the gradient-descent type of optimization method

might be unstable. We might also maximize over θ by profiling out (α, β) but this method

is computationally intensive.

A common technique to bypass the integrals and fit the hierarchical model is the

Expectation–Maximization algorithm. It has been implemented in various studies involv-

ing latent variables and missing data (Dempster et al., 1977; Sammel et al., 1997). The

algorithm consists of two steps: the expectation step (E-step), where the conditional ex-

pectation of the full log-likelihood given the observed data and the current estimate is

calculated, and the maximization step (M-step), where the conditional expectation is opti-

mized and the maximizer is used as the updated estimate. The conditional expectation of

the full log-likelihood given (Xi, Yi) and the current estimate η(t) is given by

Q(η|η(t)) ≡ E[log L(η)|Y,X, η(t)]

= E

[
n∑

i=1

[log p(Yi|Xi, τi) + log p(τi|Xi)]
∣∣∣∣Y,X, η(t)

]

= E

[
n∑

i=1

[Yiλi − ψ(λi) + log pθ(τi)]
∣∣∣∣Y,X, η(t)

]

=
n∑

i=1

{Yi[α + βE[Xi(τi)|Xi, Yi, η
(t)]]− E[ψ(α + βXi(τi))|Xi, Yi, η

(t)]}

+ E
n∑

i=1

[log(pθ(τi))|Xi, Yi, η
(t)] (6.4.4)

Since we do not have the explicit functional form of the realized trajectories of X,

the computation of the above expectations is analytically intractable. McCulloch (1997)

proposed a Monte Carlo EM algorithm for estimating the parameters in generalized linear
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mixed models, where the conditional expectation was replaced with a Monte Carlo average.

This method was proposed to overcome the nonlinearity of ψ, but it can also be employed

in our case. Specifically, Monte Carlo samples of the missing data are generated from the

conditional distribution of τi given (Xi, Yi), and the conditional expectation of the log-

likelihood Q(η|η(t)) is approximated by

Q̃M (η|η(t)) =
1
M

n∑

i=1

M∑

j=1

{Yi[α + βXi(τ
(j)
i )]− ψ(α + βXi(τ

(j)
i ))}

+
1
M

n∑

i=1

M∑

j=1

{log[pθ(τ
(j)
i )]}. (6.4.5)

By Bayes theorem, the conditional density of τ can be written as

p(τ ∈ dt|Y = y, X, η(t)) ∝ p(Y = y|τ ∈ dt,X, η(t))p(τ ∈ dt|X, η(t)), (6.4.6)

where η(t) is the parameters estimated from the tth EM iteration. The two conditional den-

sities on the right side of (6.4.6) can be obtained from assumptions (6.2.1) and (6.2.2). This

enables us to construct a Metropolis-Hastings (M-H) algorithm and generate M samples

τ
(1)
i , . . . , τ

(M)
i given the ith observation (Xi, Yi) and the current estimate η(t).

Note that we can maximize the first term on the right side of (6.4.5) over (α, β), and

the second term over θ separately. The first term is up to a multiplicative constant the log-

likelihood function as if we observed data (X(j)
i , Y

(j)
i ), where X

(j)
i = Xi(τ

(j)
i ) and Y

(j)
i = Yi,

and (X(j)
i , Y

(j)
i ) were related via the working model: p(Y |X) = exp((α+βX)Y −ψ(α+βX)).

Then we can use any standard software for fitting logistic models. The second term can be

maximized using a Newton-Raphson type of algorithm. And the maximizer of Q̃M (η|η(t))

is the updated estimate η(t+1) = (α(t+1), β(t+1), θ(t+1)).

In summary, the proposed MCEM estimating procedure consists of the following steps.

1. Select initial estimates η(0) = (α(0), β(0), θ(0)).

2. Generate Monte-Carlo samples τ
(1)
i , . . . , τ

(M)
i from the conditional distribution (6.4.6)

for each i = 1, . . . , n using Metropolis–Hastings algorithm.

3. E-step: calculate the approximate conditional distribution (6.4.5).
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4. M-step: maximize (6.4.5) over η and take the maximizer as the updated estimate of

η. Repeat steps 2 to 4 until convergence.

6.4.1 Practical issues in implementation

In this procedure we use the Gaussian distribution N(0, σ2
c ) as the working model for the

contamination W . In fact we can use any distribution that has a smooth density with mode

zero. We will show in Section 6.3 that the choice is irrelevant to the consistency and the

convergence rate of the proposed estimator.

It is well-known that the MCEM estimator is not deterministic due to the Monte-Carlo

errors, and the Monte-Carlo sample size should be automatically increased after iterations

in the MCEM algorithm, otherwise the updated estimates do not converge but fluctuate

around the truth. Booth and Hobert (1999) constructed a sandwich variance estimate for

the maximizer at each approximate E-step. Various methods have been proposed to reduce

the burden of increasing Monte-Carlo sample sizes. See for example Levine and Casella

(2001), Caffo et al. (2005) and Zipunnikov and Booth (2006). In our simulation studies

presented in Chapter 7, we find the fluctuation tolerable without increasing the Monte

Carlo sample size. So we skip this procedure to save computation time.

6.5 Proofs

Proof to Theorem 6.3.1: We will use the strategy based on M-estimation theory (see Chap-

ter 3.2 in van der Vaart and Wellner (1996)). We will first establish the identifiability of

model (6.2.1) and the consistency of θ̂n, and then derive its convergence rate and limiting

distribution.

Consistency. From (6.2.4) and conditions (C1) and (C2), we can show that

1. pθ(·) is a smooth, unimodal (with mode θ) density supported by [0, 1].

2. supθ,τ∈(0,1)

∣∣ ∂
∂θpθ(τ)

∣∣ .= U < ∞, and infθ,τ∈(0,1) |pθ(τ)| .= L > 0.

First we prove that M(θ) has a unique maximum at θ0. Since

∂pθ

∂θ
|θ0 = 0,
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and | ∂
∂θpθ| is bounded, it follows from Dominated Convergence Theorem that

M′(θ)|θ0 = P
∂mθ

∂θ
|θ0

= P

∫ 1
0 p(Y |X, τ) ∂

∂θpθ(τ)|θ0dτ∫ 1
0 p(Y |X, τ)pθ(τ)|θ0dτ

= 0.

Similarly, since
∂2pθ

∂θ2
< 0,

for all θ ∈ (0, 1) such that θ 6= θ0,

M′′(θ) = P
∂2mθ

∂θ2

= P

∫ 1
0 p(Y |X, τ) ∂2

∂θ2 pθ(τ)dτ
∫ 1
0 p(Y |X, τ)pθ(τ)dτ − [

∫ 1
0 p(Y |X, τ) ∂

∂θpθ(τ)dτ ]2

[
∫ 1
0 p(Y |X, τ)pθ(τ)dτ ]2

< 0.

Therefore θ0 is the unique maximizer of M(θ) and model (6.2.1) is identifiable. It also

follows that θ0 is well-separated in the sense that

M(θ0) > sup
θ 6∈G

M(θ),

for every open set G that contains θ0.

By condition (C2),

ṁ(X, Y ) ≡ sup
θ∈(0,1)

∣∣∣∣∣

∫ 1
0 p(Y |X, τ) ∂

∂θpθ(τ)dτ∫ 1
0 p(Y |X, τ)pθ(τ)dτ

∣∣∣∣∣ < U/L < ∞. (6.5.1)

Therefore mθ is Lipschitz in (0,1):

|mθ1(X, Y )−mθ2(X, Y )| ≤ ṁ(X, Y )|θ1 − θ2|, (6.5.2)

with P |ṁ| < ∞. Hence F ≡ {mθ(X, Y ) : θ ∈ (0, 1)} is P -Glivenko-Cantelli, according to

Example 19.7 in van der Vaart (1998). So we have Mn = Pnmθ −→ M uniformly on (0, 1)

a.s. and by Theorem 3.2.3 of van der Vaart and Wellner (1996), θ̂n −→ θ0 in probability.

Rate of convergence and limiting distribution. Define d(·, ·) as the Euclidean

distance. Note that M′(θ0) = 0 and M′′(θ0) < 0, so

M(θ)−M(θ0) . d2(θ, θ0)
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for all θ in (0,1). The class of functions Mδ = {mθ −mθ0 : d(θ, θ0) < δ} is Lipschitz based

on (6.5.2), and ṁ(X, Y ) has a finite second moment based on (6.5.1). From Example 3.2.22

in van der Vaart and Wellner (1996),

√
n(θ̂n − θ0) = −V −1Gnṁθ0 + op(1). (6.5.3)

Here −V = −M′′(θ0) = Iθ0 is the Fisher information, ṁθ0 is the score function, and Gnṁθ0

is asymptotically zero-mean normal with variance I−1
θ0

. It follows that

√
n(θ̂n − θ0)

D−→N(0, I−1
θ0

).
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Chapter 7

Simulation studies for the

contaminated sparse functional

GLM

In this chapter we present the results of four simulation studies. They assess the perfor-

mance of the MCEM algorithm, the finite-sample behavior of the MLE for contaminated

sparse functional GLM, and compare it to the sparse functional GLM estimator under

various scenarios. We will restrict attention to contaminated sparse functional logistic re-

gression. The first simulation evaluates the convergence of the MCEM algorithm. The

second simulation illustrates the behavior of the estimators of α0, β0 and θ0 in repeated

application of the proposed method. The third simulation studies the relationship between

the contaminated sparse functional GLM and the sparse functional GLM. The fourth one

is designed to explore the impact of H on the estimates.

7.1 Simulation model description

This section describes the simulation model we use for the investigations of finite-sample

performance of the proposed estimator. In application we frequently encounter random

samples (Xi, Yi), i = 1, . . . , n, where Yi are binary outcomes and Xi are functional predictors.

Take the gene expression study and the fMRI study, described in Sections 1.1.1 and 1.1.2
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respectively, for example. Therefore, we will use a contaminated sparse functional logistic

model as illustration throughout the simulations, which is given by

logit[P (Y = 1|X, τ)] = α + βX(τ),

P (τ ≤ t) = P (θ + W ≤ t|θ + W ∈ [0, 1]), and

W ∼ N(0, σ2
c ). (7.1.1)

Here θ is the sensitive point of main interest, α and β are scalar intercept and slope,

respectively, and W is a Gaussian contamination. In our simulations, we directly generate

τ from a truncated normal distribution with the corresponding mean, standard deviation

and cut-off points.

7.2 Convergence of MCEM

The first simulation concerns the convergence of the MCEM algorithm. A sample of size

n = 40 are generated from the contaminated sparse functional logistic model with α0 = 1,

β0 = 3, θ0 = 0.7 and σc = 0.05. The predictor processes Xi are generated as Brownian

motions over a uniform grid of 201 using the R 2.11.1 function fbmSim in the library fArma.

We restrict θ to this grid. The randome sensitive points τi are generated from a truncated

normal distribution using the R 2.11.1 function rtnorm in the library msm. We assume

σc = 0.05 is known.

E-step. The conditional expectation of the log-likelihood is approximated by an average

over Monte-Carlo samples of the unobserved τi (6.4.4). To generated τi from its conditional

distribution given (Xi, Yi), we use a Metropolis-Hastings algorithm, which is a Markov

Chain Monte Carlo (MCMC) sampling technique. It first draws a random sample from a

proposal distribution, and then update the current Markov chain with the random sample

by a probability based on a likelihood ratio. It is shown that the Markov chain’s equilibrium

distribution is the desired distribution we want to draw samples from (Hastings, 1970).

We choose N(0, 0.1) as the proposal distribution in the M-H algorithm. The MCMC

chain is run for 500 iterations and the first 200 samples are used as burn-in. Figure 7.2 is the

graph of the Gelman-Rubin’s R statistic based on five independent Markov chains. The blue
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dotted line is the critical value for convergence. It suggests that the chains converge after

the 200-step burn-in. Therefore, in the MCEM algorithm, we will run the M-H algorithm

for 500 iterations and use the last 300 steps as the Monte Carlo sample.
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1.
00

1.
05

1.
10

1.
15

Gelman−Rubin convergence monitor

(Iterations − burn−in)/ 5

R
 s

ta
tis

tic
s

Figure 7.1: Convergence of the Metropolis-Hastings algorithm, evaluated by Gelman-

Rubin’s R statistic, which is s based a comparison of within-chain and between-chain

variances, similar to a classical analysis of variance. The blue dotted line is the critical

value.

M-step. To maximize the target function (6.4.5), we use the “L-BFGS-B” method in

the R function optim to maximize the second term on the right side of (6.4.5) and update

the estimate of θ, and use the R function glm to maximize the first term and update the

estimates of α and β.

We set the initial values of the estimates as α1 = 1.5, β1 = 2 and θ1 = 0.5 and run

the MCEM algorithm for 1000 steps. Figure 7.2 shows the updated α̂, β̂ and θ̂ in each

step. As we previously mentioned, the MCEM estimates do not converge to a deterministic
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limit, but rather fluctuate randomly about some stationary point with Monte Carlo noise.

It can be seen that the algorithm reaches an equilibrium after 200 steps. In the following

we will always run 500 steps, which takes about 220 seconds, and take the average of the

last 100 steps as the final estimation. Table 7.2 lists the means and standard deviations

of the last 100 updates for different values of α, β and θ. We find the randomness of the

MCEM estimates under tolerance.
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Convergence of MCEM
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0.
4
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8

Iteration

θ̂

Figure 7.2: Convergence of the MCEM algorithm. The MCEM estimate updates (black

solid lines) fluctuates about the MLEs, which should be close to the true parameters (red

dotted lines).

7.3 Distribution of the MLE

In this simulation, we investigates the finite-sample distributions of the MLE. We generate

1000 samples from the contaminated sparse functional logistic model, with n = 40, α0 = 1,
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Table 7.1: Means and standard deviations of the last 100 updates in

a 500-iteration MCEM algorithm under different true parameters.

True parameters† Mean (Std)

α0 β0 θ0 α̂n β̂n θ̂n

0 1.5 0.5 0.609 (0.016) 3.226 (0.081) 0.427 (0.002)

0.7 -0.282 (0.018) 2.023 (0.025) 0.713 (0.027)

0 3 0.5 0.492 (0.020) 3.769 (0.075) 0.477 (0.002)

0.7 0.443 (0.024) 4.625 (0.136) 0.533 (0.004)

1 1.5 0.5 0.501 (0.003) 0.853 (0.011) 0.523 (0.003)

0.7 0.721 (0.002) 0.467 (0.018) 0.546 (0.004)

1 3 0.5 0.600 (0.012) 2.892 (0.038) 0.529 (0.006)

0.7 0.356 (0.013) 2.823 (0.045) 0.664 (0.003)

†: We assume σc = 0.05 is known.

β0 = 3, θ0 = 0.7 and σc = 0.05. The MCEM procedure is applied to these simulated data

sets and maximum likelihood estimates are generated. We removed 21 cases where β̂n is

greater than 15, considering them the results of non-convergence or local maximum.
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Figure 7.3: Histograms of estimates of θ̂n (left), α̂n (center), β̂n (right) from 1000 replica-

tions, with truth θ0 = 0.7, α0 = 1, and β0 = 3.
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The histograms of α̂n, β̂n and θ̂n are displayed in Figure 7.3. Their means (standard

deviations) are 1.188 (0.741), 3.922 (1.874) and 0.660 (0.100), respectively. Our simulation

results indicate that the MLEs are consistent and efficient. Note that the convergence rate

of θ̂n is comparable to those of α̂n and β̂n, which is in contrast to the faster convergence

orate of θ̂n, as described in Lindquist and McKeague (2009). This is not surprising, as

we have shown in Chapter 6 that the maximum likelihood estimator of θ converges at the

parametric rate n1/2, the same rate as those of α̂n and β̂n, as a result of the contamination’s

smoothing effect.

7.4 Compare MCEM to the sparse functional GLM

In this simulation, we explore the relationship between the sparse functional GLM and

the contaminated sparse functional GLM. The data are generated from the contaminated

sparse logistic model with α0 = 1, β0 = 3, θ0 = 0.7 and σc = 0.01. Different sample sizes are

considered. We apply both the MCEM method and the sparse functional GLM as working

models to 1000 replications. Again we remove those cases where β̂n > 15. The results are

summarized in Table 7.2.

The first observation is that, as the sample size increases, the means of both estimators

approach the truth, suggesting that both estimators are consistent. Another observation

is that, the estimates of θ0 have smaller standard deviation in the contaminated sparse

functional GLM than the sparse functional GLM, suggesting the former could be more

efficient. Finally, although the data are generated with contamination, the sparse functional

GLM still has decent performance, indicating that it is robust against contamination.

7.5 Dependence on the Hurst exponent

In the previous simulations, we have assumed the predictor X to be a Brownian motion.

The contaminated sparse functional GLM, however, did not make this restriction. In fact,

as shown in Section 6.3, the consistency and rate of convergence of the MLEs do not

depend on X. In this simulation, we want to test the validity of this conclusion. Therefore,

we generate fractional Brownian motions with three different Hurst exponent values, H =
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0.3, 0.5 (corresponding to Brownian motions) and 0.7, as the predictor process, and evaluate

the performance of the propose maximum likelihood estimators. The true parameters are

again taken as α0 = 1, β0 = 3, θ0 = 0.7 and σc = 0.05. The histograms of θ̂n and β̂n based

on 500 samples are given in Figure 7.4.
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Figure 7.4: Histograms and scatter plots of θ̂n and β̂n for H = 0.3 (top row), H = 0.5

(middle row), and H = 0.7 (bottom row), based on 500 samples of size n = 40. The

estimation accuracy does not depend on the Hurst exponent H.

The histograms show that, the distribution of θ̂n and β̂n are independent of the Hurst

exponent of X. We again see that the convergence rate of θ̂n is comparable to that of β̂n,

supporting the theory that they both converge at
√

n-rate. Also presented in Figure 7.4 are
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scatter plots of β̂n against θ̂n, which show that θ̂n and β̂n are asymptotically independent.
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Chapter 8

Application to the fMRI data

In this chapter, we will apply the contaminated sparse functional GLM, proposed in Chapter

6, to the fMRI data introduced in Section 1.1.2 to illustrate the proposed MCEM method.

We will not apply it to the gene expression data since it may be ungrounded to assume

random positions of the genes that are mostly related to the outcome. There are scientific

reasons, however, to believe that the onset time point of brain activity in fMRI studies

can be random and prone to subject-specific errors. Below we will first describe the data

set, and then provide the model information and the estimation procedure employed in the

analysis of this data set. Finally, we present the interpretation and discussion of the results.

8.1 Description of the fMRI data

In fMRI studies, estimation of the precise timing of the underlying psychological activity is

critical for many data analyses (Lindquist et al., 2007; Robinson et al., 2010). In Robinson

et al. (2010), particularly, a multi-subject change point estimation procedure was proposed

to allow for random onset times of psychological activities. However, this method cannot

incorporate additional information contained in the observed response variables that are

associated with the functional predictors via the onset time points. The contaminated

sparse functional GLM proposed in this article overcomes this problem.

Here we will consider the data set described in Lindquist et al. (2007). In this study,

25 participants were scanned with BOLD fMRI at 3 T (GE, Milwaukee, WI), of whom 13
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were classified as resilient and 12 were classified as non-resilient according to a written test.

Each of them performed a 7-minute anxiety-provoking speech preparation task. The design

was an off-on-off design, with the anxiety-provoking period occurring between lower-anxiety

resting periods. During the task, 215 fMRI images were acquired. For calibration purposes,

we further edit the data set by taking off the individual mean over the first resting period

from the entire time course, as it is only the relative change in signal that is important.

We re-scale the time period to [0,1], in which the 215 observation time points are equally

spaced.
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Figure 8.1: The fMRI signal over the ventromedial prefrontal cortex in reaction to an

anxiety-provoking taske for resilient (left) and non-resilient (right) subjects.

Our main interest is to estimate the onset time of brain activity at which the intensity of

the fMRI signal best differentiates the resilient and the nonresilient participants. As pointed

out by D’Esposito et al. (2003), there is empirical evidence that the BOLD fMRI signals

might be altered in normal ageing and disease. Therefore, the onset time of brain activity

indicated by the BOLD signal in this fMRI study could be susceptible to subject-specific

effects.
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8.2 Model specification and parameter estimation

We apply the contaminated sparse logistic model (7.1.1) to the data from the fMRI study

for anxiety-levels. Here Y represents the anxiety level with Y = 1 standing for resilient and

Y = 0 for nonresilient. X represents the fMRI signal time course from the ventromedial

prefrontal cortex, a region known to be related to anxiety. The sensitive point θ represents

the mean time point at which the human brain respond to stimulus. The contamination

error W represents the advance and delay of such time point due to personal reasons.

We will estimate the onset time as well as the regression coefficients, under various as-

sumptions about the contamination. Specifically, when there is no contamination assumed,

we will use the sparse functional GLM for estimation. And when we assume the existence

of contamination, we use the contaminated sparse functional GLM and specify different

values of the standard deviation of the contamination, since in the MCEM algorithm it is

assumed known. The starting values of the MCEM procedures are taken as the estimates

from the sparse functional GLM approach, which assumes no contamination. The MCEM

algorithm is run for 100 steps with visual checking of convergence. The average over the

last 10 steps is taken to be the final estimate. We used three different values of σc: 0.02,

0.05 and 0.1.

8.3 Results

Table 8.3 summarizes the results. The sensitive time point estimated when σc = 0.02 is

the 85th time point, which is 30 seconds into the anxiety-provoking period of the task.

This is slightly different from the result when assuming no contamination and using the

sparse functional logistic model. Also, the sparse functional logistic model is fairly robust

to contamination, with a 5% noise level leading to a 0.5% shift in the estimate of θ0.

We can see from the table that the absolute values of α̂n and β̂n decrease as σc increases.

In other words, the estimated effect is attenuated when higher contamination levels are

assumed. An analogous situation in the measurement error literature is the attenuation
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Table 8.1: Application to fMRI data: the maximum likelihood esti-

mates of (α, β, θ) in the contaminated sparse functional logistic model

using the MCEM procedure.

MCEM estimates

Err. σc † α̂n β̂n θ̂n

0 4.335 -0.425 0.391

0.02 3.983 -0.378 0.392

0.05 3.448 -0.320 0.396

0.1 2.794 -0.271 0.422

†: The error standard deviation σc controls the magnitude of the

contamination. Since it is unknown in reality, we repeat the estimate

procedure for different σc’s.

bias in the simple linear regression:

Y = α + βX∗ + ε,

X = X∗ + η,

where X is the observed scalar predictor and η is the measurement error. When the mea-

surement error η is ignored and the regression coefficients are estimated using the original

approach, the absolute value of the estimated β tends to be smaller than the truth, i.e.

there is an “attenuation bias”. This is in contrast to the bias we have seen in the above

example. An intuitive explanation to this phenomenon is that, when no contamination is

assumed, the sparse functional logistic regression essentially selects the θ on which X is

mostly associated with Y , reflected by a larger β̂n, and when contamination is assumed,

the estimate β̂n represents the association between Y and a mixture of the values of X on

a neighborhood of θ0, which is very likely to be weaker than the former.
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Chapter 9

Conclusions

In this chapter, we make conclusions and discuss the advantages of the proposed method

as well as some of its limitations. In the first section, we summarize the results obtained

in the previous chapters, comment on the derived minimax bounds for sparse functional

regression models, and discuss the theoretical and computational features of the proposed

MCEM estimator for contaminated sparse functional GLM. In the second section, we point

out a few possible directions for future work on these topics.

9.1 Key findings

This dissertation addresses two questions. One is the optimal rates for estimating the

parameters in the sparse functional linear regression model and the sparse functional gen-

eralized linear regression model, proposed in McKeague and Sen (2010) and Lindquist and

McKeague (2009), respectively. We have established a minimax lower bound for the sparse

functional linear model, by applying a variation of Le Cam’s method and bounding the total

variation affinity between two simple hypotheses. We also derived a minimax upper bound

for the sparse functional linear model, exploiting a result from Nishiyama (2010) on the

moment convergence of M-estimators and establishing the second moment convergence rate

of the least squares estimator. It was shown that the minimax upper bound is of the same

asymptotic order as that of the minimax lower bound, which implies that the least squares

estimator attains the optimal rate for estimating the parameters in the sparse functional



CHAPTER 9. CONCLUSIONS 101

linear regression model. It was also shown that the estimators for the regression coeffi-

cients converge at the parametric rate, while the estimator for the sensitive point converges

at a possibly faster rate that depends on the roughness of the predictor process, which is

quantified by a “generalized Hurst exponent” that we proposed.

In a similar way, we obtained a minimax lower bound for the sparse functional GLM,

bounding the affinity between two simple hypotheses by their Hellinger distance, and then

using an inequality that linearizes this distance. It was seen that this lower bound has

the same asymptotic rate as the minimax rate for the sparse functional linear regression

model. It can also be seen that this rate is the same as the weak convergence rate of

the maximum likelihood estimator for the sparse functional GLM derived in Lindquist and

McKeague (2009). One limitation to our study is that it is not straightforward to replicate

the argument in the sparse functional linear regression case and derive a second moment

convergence rate of the MLE that hold uniformly over the parameter space. Thus the

minimax upper bound for the sparse functional GLM remains to be established.

Another problem we addressed is to extend the sparse functional GLM to the contami-

nated sensitive point settings. This extension is motivated by a complication in fMRI stud-

ies, where the BOLD signals tend to be affected by personal aging, disorders and pathology

(D’Esposito et al., 2003). In this scenario, the sensitive point is likely to be contaminated by

random errors and the sparse functional GLM fails to formulate such situation by assuming

a universal θ. We proposed a contaminated sparse functional GLM to allow for random

sensitive points, and constructed a numerical estimating procedure for the parameters in

the model. The procedure is based on a Monte Carlo EM algorithm, which calculates the

conditional expectation in the E-step by Monte Carlo approximation. It was shown that

the proposed estimator is consistent and converges to the truth at rate n1/2. The MCEM

was tested in several simulation studies and a real fMRI study. The results show that the

estimation procedure has reasonable performance for practical use.

A drawback of the contaminated sparse functional GLM is its intensive computation.

While directly maximizing the likelihood function is time consuming, the MCEM algorithm

is also costly because of its slow convergence. A possible solution might be to combine the

two methods, i.e. to run the MCEM algorithm for a few iterations and use the results as
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starting points of direct optimization. Another limitation of the estimating procedure is

the specification of the contamination variance. Although we have shown that the maxi-

mum likelihood estimators are consistent asymptotically in spite of the magnitude of the

contamination, in the simulations we can see that the regression coefficient estimators still

decrease as the error variance increases. One possible solution is a data-driven procedure

that estimates the variance in advance, and then plug it into the MCEM procedure. A good

starting point is the multi-subject change point estimation technique described in Robinson

et al. (2010). Another possibility is to obtain the variance of the contamination from other

sources in scientific research, for example Handwerker et al. (2004) and Menz et al. (2006).

9.2 Topics for future research

It is of interest to derive a minimax upper bound for the sparse functional GLM. Although

the maximum likelihood estimator has been shown to have a weak convergence rate of the

same order as the lower bound, the upper bound on the convergence rate in the minimax

sense has yet to be established. If we want to replicate the approach used in the spares func-

tional linear regression case, one difficulty might be to establish the quadratic approximation

(3.5.1), since if we Taylor expand the target function M(η) around η0, the non-linearity of

ψ(2)(·) might complicate the situation and make it difficult to obtain a universal constant ε

in (3.5.1).

An alternative approach to deriving the minimax rates might be to establish statistical

equivalence between the sparse functional regression models and white noise models, in

the sense that Le Cam’s metric (Le Cam, 1986; Le Cam and Yang, 1990) for the distance

between the two models converges to zero as n goes to infinity. It is implied from the asymp-

totic equivalence that any minimax procedure in one problem will automatically yield the

corresponding procedure in the other with equal optimal rates. Such equivalence has been

established for deriving the optimal rates for linear functional estimation, nonparametric

regression and functional linear regression. See for example, Brown and Low (1996), Cai

and Low (2004) and Meister (2011).

In particular, Meister (2011) showed that the functional linear regression model (2.1.3),
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written as Y = 〈X, φ〉+ ε where φ is the regression function and 〈·, ·〉 denotes the L2([0, 1])-

inner product, is equivalent to a white noise model with drift

dY (t) = [Γ1/2φ](t)dt + n−1/2σdW (t)

where W (t) denotes a standard Wiener process defined on the interval [0,1] and Γ1/2 is

the unique positive definite symmetric square root of the covariance operator of X, defined

by Γ1/2Γ1/2 = Γ and Γf =
∫

EX(·)X(t)f(t)dt for any f ∈ L2[0, 1]. Such equivalence,

combined with the results in Cavalier and Tsybakov (2002), gave sharp minimax constants

in the FLR model. It would be of interest to investigate the equivalence between the sparse

functional linear model and a white noise model.

We may also consider the equivalence between the sparse functional GLM and a white

noise model. Grama and Nussbaum (1998) extended the work of Brown and Low (1996)

and established the equivalence between nonparametric generalized models and white noise

models. Specifically, suppose at points ti = i/n, i = 1, . . . , n, we observe independent r.v.’s

Yi, which follow a distribution from an exponential family Qλ with parameters λi = f(ti) ∈
Λ, where f : [0, 1] → Λ is an unknown function belonging to a smoothness class Σ, then it

was shown that this model is equivalent to a white noise model

dY n
t = Γ(f(t)) +

1√
n

dWt, t ∈ [0, 1],

where Γ(λ) : Λ → R is a function such that Γ′(λ) = I(λ)1/2 and I(λ) is the Fisher informa-

tion in the local exponential family Qλ. It would be of interest to extend this result to the

sparse functional GLM case and establish an equivalence to a white noise model.

From the application example described in Chapter 8, we can see that the estimation of

parameters in the sparse functional GLM is moderately sensitive to the choice of the con-

tamination level σc. So it may be helpful to estimate σc in advance. One way is to estimate

it from other sources of scientific research. In fact, estimation of hemodynamic response

functions (HRF) is often an integral part of event-related fMRI analyses, and variations of

HRFs across individuals and brain regions have been recently studied (Handwerker et al.,

2004; Menz et al., 2006). From these results, we might be able to know the variance of the

onset times a priori. Alternatively, we may also use multi-subject change point estimation
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technique described in Robinson et al. (2010) to estimate the standard deviation of the

change points in the fMRI time courses and use is as a substitute for σc.



BIBLIOGRAPHY 105

Bibliography

Aguilera, A. M., F. A. Ocaña, and M. J. Valderrama (1999a). Forecasting time series

by functional PCA. Discussion of several weighted approaches. Comput. Statist. 14 (3),

443–467.

Aguilera, A. M., F. A. Ocaña, and M. J. Valderrama (1999b). Forecasting with unequally

spaced data by a functional principal component approach. Test 8 (1), 233–253.

Aston, J. A. D., F. E. Turkheimer, and M. Brett (2006). Hbm functional imaging analysis

contest data analysis in wavelet space. Human Brain Mapping 27 (5), 372–379.

Bellman, R. (1957). Dynamic Programming. Princeton, NJ: Princeton University Press.

Berman, S. M. (1985). The maximum of a Gaussian process with nonconstant variance.
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