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ABSTRACT

Novel Quantum Monte Carlo Approaches for
Quantum Liquids

Brenda M. Rubenstein

Quantum Monte Carlo methods are a powerful suite of techniques for solving the quantum

many-body problem. By using random numbers to stochastically sample quantum proper-

ties, QMC methods are capable of studying low-temperature quantum systems well beyond

the reach of conventional deterministic techniques. QMC techniques have likewise been

indispensible tools for augmenting our current knowledge of superfluidity and superconduc-

tivity. In this thesis, I present two new quantum Monte Carlo techniques, the Monte Carlo

Power Method and Bose-Fermi Auxiliary-Field Quantum Monte Carlo, and apply previ-

ously developed Path Integral Monte Carlo methods to explore two new phases of quantum

hard spheres and hydrogen. I lay the foundation for a subsequent description of my re-

search by first reviewing the physics of quantum liquids in Chapter 2 and the mathematics

behind Quantum Monte Carlo algorithms in Chapter 3. I then discuss the Monte Carlo

Power Method, a stochastic way of computing the first several extremal eigenvalues of a

matrix too memory-intensive to be stored and therefore diagonalized. As an illustration

of the technique, I demonstrate how it can be used to determine the second eigenvalues of

the transition matrices of several popular Monte Carlo algorithms. This information may

be used to quantify how rapidly a Monte Carlo algorithm is converging to the equilibrium

probability distribution it is sampling. I next present the Bose-Fermi Auxiliary-Field Quan-

tum Monte Carlo algorithm. This algorithm generalizes the well-known Auxiliary-Field

Quantum Monte Carlo algorithm for fermions to bosons and Bose-Fermi mixtures. Despite

some shortcomings, the Bose-Fermi Auxiliary-Field Quantum Monte Carlo algorithm rep-

resents the first exact technique capable of studying Bose-Fermi mixtures of any size in

any dimension. In Chapter 6, I describe a new Constant Stress Path Integral Monte Carlo



algorithm for the study of quantum mechanical systems under high pressures. While the

eventual hope is to apply this algorithm to the exploration of yet unidentified high-pressure,

low-temperature phases of hydrogen, I employ this algorithm to determine whether or not

quantum hard spheres can form a low-temperature bcc solid if exchange is not taken into

account. In the final chapter of this thesis, I use Path Integral Monte Carlo once again to

explore whether glassy para-hydrogen exhibits superfluidity. Physicists have long searched

for ways to coax hydrogen into becoming a superfluid. I present evidence that, while glassy

hydrogen does not crystallize at the temperatures at which hydrogen might become a su-

perfluid, it nevertheless does not exhibit superfluidity. This is because the average binding

energy per p-H2 molecule poses a severe barrier to exchange regardless of whether the sys-

tem is crystalline. All in all, this work extends the reach of Quantum Monte Carlo methods

to new systems and brings the power of existing methods to bear on new problems.

Portions of this work have been published in Rubenstein, PRE (2010) and Rubenstein,

PRA (2012) [167; 169]. Other papers not discussed here published during my Ph.D. include

Rubenstein, BPJ (2008) and Rubenstein, PRL (2012) [166; 168]. The work in Chapters 6

and 7 is currently unpublished.
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Chapter 1

Introduction

Quantum liquids have long served as an important proving ground for many of the funda-

mental ideas of quantum physics. Although all substances are expected to manifest both the

effects of quantum mechanics and quantum statistics at low enough temperatures, quantum

liquids including 4He, 3He, high pressure hydrogen, and ultracold alkali atoms are some of

the few substances that manifest these effects at temperatures that are also experimentally

accessible. Quantum liquids thus play a critical role in quantum physics as some of the rare

substances that allow physicists to directly experiment with quantum phenomena. Indeed, it

was by experimenting with the flow of 4He through capillaries that Kapitza discovered super-

fluidity [97], and it was by trapping alkali atoms at nK temperatures that Cornell, Weiman,

and Ketterle proved Bose and Einstein correct about their namesake condensation [10;

53]. If the past is predictive of the future, it is clear that research into quantum liquids will

continue to reveal unknown quantum phenomena and test our theoretical insights in the

years to come.

One set of essential tools for studying quantum liquids are Quantum Monte Carlo meth-

ods. Developed over the past half century, quantum Monte Carlo methods are a suite of

techniques that estimate quantum properties via stochastic sampling. By using random

numbers, these techniques avoid the “curse of dimensionality” and are able to scale polyno-

mially with system size. As such, they are uniquely capable of exploring large many-body

systems with high levels of accuracy. Because systems of bosons possess Hilbert spaces that

grow especially dramatically with system size, quantum Monte Carlo methods have proven
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particularly indispensible for studying bosons. Accordingly, quantum Monte Carlo methods

were the first computational techniques to identify the superfluid-normal liquid transition

in 4He [157] and have assumed a prominent role in our modern-day understanding of su-

perfluid and high pressure hydrogen [105; 132]. Currently, the range of problems to which

Quantum Monte Carlo techniques can be applied is limited by the fermion sign problem

[115]. If it were not for the sign problem, because of their combination of accuracy and

graceful scaling, Quantum Monte Carlo methods would likely be the techniques of choice

for a wide array of problems in quantum many-body physics [115].

In this thesis, I bring the power of quantum Monte Carlo methods to bear on a number

of phenomena in quantum liquids. During the first half of this thesis, I discuss two new

quantum Monte Carlo methods I developed to respectively obtain the first few eigenvalues

of dense matrices too large to explicitly diagonalize and the thermodynamic properties of

Bose-Fermi mixtures. I then detail my use of the Path Integral Monte Carlo algorithm

to explore the quantum hard sphere phase diagram and superglassy hydrogen. Because

of their general significance and because they form the foundation upon which the rest of

this thesis is built, I begin this thesis, however, with an overview of quantum liquids and

quantum Monte Carlo algorithms.
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Chapter 2

Quantum Liquids

Much of the research presented in subsequent chapters revolves around systems whose

properties cannot be accurately described by the familiar laws of classical mechanics. In fact,

the ultracold alkali atoms, quantum hard spheres, and para-hydrogen molecules discussed

below are at once so light and so cold that their proper description necessitates the use of

quantum mechanics and quantum statistics. Systems such as these, in which both quantum

mechanics and quantum statistics assume a prominent role, are termed quantum liquids.

Before discussing specific research examples, I thus begin this thesis with a general

survey of quantum liquids: what they are, under what conditions they are found, and the

fascinating properties they manifest at low temperatures. Although Fermi-Dirac statistics

are equally, if not more, important, I will mostly focus upon Bose-Einstein statistics and

their manifestation in Bose-Einstein condensates and superfluids. The material presented

in this chapter is not original and echoes that presented in many standard texts. For more

details, please consult Annett [11], Leggett [107], and/or McQuarrie [128].

2.1 Properties of Quantum Liquids

Quantum liquids are many-particle systems in whose behavior the effects of not only quan-

tum mechanics, but also quantum statistics are important [107]. Quantum liquids must

therefore satisfy not one, but two strict criteria.
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2.1.1 Quantum Mechanical Effects

In order to satisfy the first criterion, the effects of quantum mechanics must become evident

in a quantum liquid’s properties, meaning that its particles must clearly manifest wavelike

behavior. Wavelike behavoir manifests when a particle can diffract or interfere with other

particles, much like electromagnetic waves. In general, the larger a particle’s wavelength,

the more apparent these phenomena become [89; 128; 191]. Just how wavelike a particle is

may be quantified by its de Broglie wavelength, λ = h/mv, where h is Planck’s constant, m

is the particle’s mass, and v is the particle’s velocity.1 In the everyday world, we deal with

objects whose masses are comparatively very large, a few to several hundred kilograms,

and whose wavelengths are therefore very small. Such objects can thus be thought of as

classical particles. In stark contrast, the atoms and molecules with which this thesis is

concerned, are very low-mass, just a few a Daltons, or O(10−27) kg, and therefore have a

considerably larger wavelength. These atoms and molecules will begin to manifest wavelike,

“quantum” characteristics such as diffraction when their de Broglie wavelengths exceed

their interparticle distances, d:

λ ≥ d. (2.1)

From the equipartition theorm, in thermal equilibrium at a temperature, T ,

mv ∼ (mkBT )
1/2, (2.2)

with kB denoting Boltzmann’s constant. In condensed systems, the interparticle distance

may be approximated as

d ∼ n−1/3, (2.3)

where n is the number density. Substituting Equations 2.2 and 2.3 into Equation 2.1, one

arrives at the final expression for when quantum effects become significant [107]

1This all assumes we are considering non-relativistic systems whose particles travel well below the speed

of light.



CHAPTER 2. QUANTUM LIQUIDS 6

kBT ≤ n2/3h̄2/m. (2.4)

Equation 2.4 implies that quantum effects are most important when a) a system is very

cold, b) its particles are very light, and/or c) its density is very large. As it turns out,

it is impossible to fulfill Equation 2.4 for gases in equilibrium,2 since their densities decay

exponentially to zero with decreasing temperature [107]. Equation 2.4 may be satisfied in

denser liquid and solid phases, but only at temperatures less than or equal to approximately

20 K/A, where A is a particle’s mass number [107]. Because electrons are so light, they

display quantum characteristics in virtually any realistic liquid or solid. On the other hand,

only the lightest of atoms and molecules can satisfy this condition and manifest quantum

effects.

2.1.2 Quantum Statistical Effects

2.1.2.1 Criterion for Quantum Statistics to Be Significant

On top of manifesting quantum behavior, quantum liquids must also manifest the effects of

quantum statistics. Quantum statistics only become important when particles are indistin-

guishable, meaning that they cannot be told apart from one another. Inmost crystalline and

amorphous solids, particles are effectively localized in one place, which allows one particle

to be distinguished from another particle based upon its position. The canonical partition

function, Q(N,V, T ), for distinguishable particles may be written as [128]

Q(N,V, T ) =
�

S

e−ES/kBT =
�

i,j,k

e−(�ai +�bj+�ck...)/kBT

=
�

i

e−�ai /kBT
�

j

e−�bj/kBT
�

k

e−�ck/kBT ...

= qaqbqc..., (2.5)

where ES is the total energy of the multiparticle state, S = {a, b, c, ...}, �ai is the energy

of the single-particle state i of particle a, and qa is the single-particle partition function,

2As we shall see, gases kept out of equilibrium now routinely satisfy this condition.
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qa(V, T ) =
�

i e
�ai /kBT , of particle a.3 Equation 2.5 demonstrates that the many-particle

partition function for a system of distinguishable particles may simply be written as the

product of the single-particle partition functions. Thus, for N identical particles,

Q(N,V, T ) = q(V, T )N . (2.6)

The separability of the partition function holds for systems of distinguinshable particles,

but of course, not all particles are distinguishable. Unlike particles in solids, particles in

liquids and gases readily change places, or exchange, with one another. As a result, liquid

and gas particles are indistinguishable, meaning that which specific particle is in which

specific energy state can no longer be tracked. This implies that, wheareas one could

previously write the many-particle partition function for distinguishable particles as

Q(N,V, T ) =
�

i,j,k...

e−(�ai +�bj+�ck+...)/kBT , (2.7)

in the case of indistinguishable particles, one can only write

Q(N,V, T ) =
�

i,j,k...

e−(�i+�j+�k+...)/kBT , (2.8)

and one cannot sum over individual particles separately. Instead, one must consider how

the different energy levels depend on one another.

Equation 2.8 may be evaluated in two regimes. In the first regime, there are so many

more energy states than particles that every particle may be considered to be occupying

an independent energy state. This occurs whenever the number of energy states available

at a certain � is greater than N . Taking the particle in a box as an example and setting

� = 3/2kBT , this ensues whenever

ζ =
6N

V π

�
h2

12mkBT

�3/2

� 1. (2.9)

As shown in Table 2.1, this equation holds for most particles at most temperatures.

3Here and throughout the discussion in Subsection 2.1.2, particles are treated as if they were non-

interacting for simplicity. Particles in quantum liquids are often strongly interacting and are therefore not

amenable to such an elementary treatment in the most general case.
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System T (K) ζ

Electrons in sodium 300 1465

Liquid 4He 4 1.6

Gaseous 4He 4 0.11

Gaseous 4He 20 2.0 x 10−3

Gaseous 4He 100 3.5 x 10−5

Liquid Ne 27 1.1 x 10−2

Gaseous Ne 27 8.2 x 10−5

Liquid Ar 86 5.1 x 10−4

Gaseous Ar 86 1.6 x 10−6

Table 2.1: ζ = 6N
V π

�
h2

12mkBT

�3/2
for a few example systems. In order for a system to exhibit

quantum statistics, ζ must be significantly greater than 1. For most systems, this is not

the case.

In particular, the more massive the particle, and the higher the temperature, the more

this inequality holds true. In such cases, the system obeys what are called Boltzmann, or

“classical,” statistics.4 When Boltzmann statistics apply, one may evaluate the partition

function by summing over all single-particle states as in the dinstinguishable particle case.

One need only be careful to divide by the N ! ways the total energy in the exponential may

be overcounted. One can therefore write the canonical partition function using Boltzmann

statistics as

Q(N,V, T ) =
qN

N !
. (2.10)

The second regime in which Equation 2.8 may be evaluated is in the limit that Relation

2.9 does not hold. Because quantum liquids must be light and must be cooled to low

temperatures in order to manifest their quantum properties, it is this second limit that

applies to quantum liquids. In order to evaluate Equation 2.8 in this second regime, one

4Boltzmann statistics are commonly referred to as classical statistics because, in the high temperature

limit, particles no longer manifest quantum behavior regardless of whether they are distinguishable or not.
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must take into consideration the types of particles with which one is dealing.

2.1.2.2 Bosons and Fermions

In general, there are two types of particles: bosons and fermions.5 Bosons are particles with

integral spin (as measured in units of h̄), while fermions are particles with half-integral spin

[89]. Examples of elementary fermions are electrons, protons, and neutrons. An example

of an elementary boson is a photon. As is well-known from chemistry, atoms consist of

a number of fermions bound together by the strong force. In general, atoms comprised

of an even number of fermions act as bosons, whereas molecules comprised of an odd

number of fermions act as fermions [108]. Thus, 4He, which consists of two electrons,

two protons, and two neutrons behaves as if it were a boson, whereas 3He, which consists

of two protons, one neutron, and two electrons behaves as if it were a fermion. This

distinction becomes important when considering which energy states many-particle systems

can occupy. When particles are indistinguishable, switching their locations should not

alter their properties. Thus, taking the simplest two-particle system as an example, the

probability, P , that particle one is at position one, �r1, with spin one, σ1, and particle two

is at position two, �r2, with spin two, σ2, is equal to the probability if the particles swap

P (�r1σ1,�r2σ2) = P (�r2σ2,�r1σ1). (2.11)

Using the quantum mechanical definition of probability [127], this implies that

|Ψ(�r1σ1,�r2σ2)|
2 = |Ψ(�r2σ2,�r1σ1)|

2. (2.12)

Solving for Ψ(�r1σ1,�r2σ2), one finds that

Ψ(�r1σ1,�r2σ2) = eiθΨ(�r2σ2,�r1σ1), (2.13)

where θ may assume any value in the most general case. In three or more dimensions,

the cases of most interest in everyday life, the operation of interchanging any two particles

5For simplicity, I am excluding anyons.
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twice must be equivalent to the identity operation [109]. In such cases, θ must be an integer

multiple of π and

Ψ(�r1σ1,�r2σ2) = ±Ψ(�r2σ2,�r1σ1), (2.14)

Thus, upon switching, or “exchanging,” any two particles in a three-dimensional many-

body system, the overall wavefunction must either remain the same or flip sign. The spin-

statistics theorem of quantum field theory states that the boson wavefunction corresponds

to the wavefunction that remains the same, while the fermion wavefunction corresponds to

the wavefunction that changes sign [107]. Two key consequences follow from Equation 2.14.

First of all, because the wavefunction changes sign upon switching two fermions, no two

fermions can occupy the same combined position-spin state.6 This follows from the fact,

that for two fermions in the same state,

Ψ(�r1σ1,�r1σ1) = −Ψ(�r1σ1,�r1σ1), (2.15)

which implies that the wavefunction must equal zero and therefore that the probability for

two fermions to be in the same state is zero. The second key consequence is that, while no

two fermions may be in the same state, any number of bosons can be in the same state. This

is because the boson wavefunction does not change sign upon exchanging bosons. These

two consequences have profound implications for the way Equation 2.8 is evaluated at the

low temperatures for which there are fewer energy states than particles.

2.1.2.3 Bose-Einstein and Fermi-Dirac Statistics

When Equation 2.8 is evaluated in the low-temperature, low-mass regime for bosons, it

leads to Bose-Einstein statistics; when it is evaluated for fermions, it leads to Fermi-Dirac

statistics [128]. These statistics may be derived by noting that, although we cannot know

which indistinguishable particles are in which particular energy states, we can know how

many indistinguishable particles are in each state. We can therefore write

6A state may be defined by any number of good quantum numbers. Here, I use just position and spin.

If other quantum numbers define the states, they too must be exchanged when the particles are swapped.
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ES =
�

k

�knk (2.16)

and

N =
�

k

nk. (2.17)

Here, ES is the total energy of many-particle state S and the nk are the number of indis-

tinguishable particles in single-particle state k. It turns out that evaluating the canonical

partition function, Q(N,V, T ), using these equations is more difficult than evaluating the

grand canonical partition function, Σ(µ, V, T ). One thus substitutes the two above equa-

tions into the grand canonical partition function

Σ(µ, V, T ) =
∞�

N=0

eµN/kBTQ(N,V, T )

=
∞�

N=0

λN
�

nk

�e−(
�

i �ini)/kBT . (2.18)

In the above, µ denotes the chemical potential and λ = eµ/kBT . The prime designates that

the sum is only over sets of occupation numbers, {nk}, which add up to N . Rearranging

the above equations further, one has

Σ(µ, V, T ) =
∞�

N=0

�

nk

�λ
�

i nie−(
�

i �ini)/kBT

=
∞�

N=0

�

nk

�
�

k

(λe−�k/kBT )nk (2.19)

These equations may be further simplified by realizing that summing over all sets {nk}

for all possible values of N is equivalent to simply summing over all possible values of the

occupation numbers, nk. With this in mind,
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Σ(µ, V, T ) =

nmax
1�

n1=0

nmax
2�

n2=0

...
�

k

(λe−�k/kBT )nk

=

nmax
1�

n1=0

(λe−�1/kBT )n1

nmax
2�

n2=0

(λe−�2/kBT )n2 ...

=
�

k

nmax
k�

nk=0

(λe−�k/kBT )nk . (2.20)

The last of the above equations may be simplified into its final forms by considering how

bosons and fermions occupy different states. As discussed above, any number of bosons can

occupy any state. Thus, for bosons, each of the nk can range from 0 to ∞ and

ΣBosons(µ, V, T ) =
�

k

∞�

nk=0

(λe−�k/kBT )nk =
�

k

(1− λe−�k/kBT )−1. (2.21)

This is the final partition function for low-temperature boson systems which obey Bose-

Einstein statistics. Equation 2.20 may likewise be evaluated for fermions. As previously

mentioned, no two fermions can occupy the same state. Consequently, each of the nk can

only equal 0 or 1, which implies that

ΣFermions(µ, V, T ) =
�

k

1�

nk=0

(λe−�k/kBT )nk =
�

k

(1 + λe−�k/kBT ). (2.22)

This is the partition function obtained for fermions based upon Fermi-Dirac statistics.

These partition functions may be manipulated as in the case of Boltzmann statistics to

obtain average energies, pressures, and other observables [128]. Bose-Einstein and Fermi-

Dirac statistics represent the two types of quantum statistics. Although these two partition

functions converge to the that obtained from Boltzmann statistics at high, “classical” tem-

peratures, these two forms differ dramatically from one another and from the Boltzmann

form as T → 0. These differences imbue bosons and fermions with their strikingly unfamiliar

properties at low temperatures, including superfluidity and superconductivity.
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System Statistics Density (cm−3) Tc (K)

Electrons in Metals Fermi ≈ 1023 1-25

Liquid 4He Bose ≈ 1022 2.17

Liquid 3He Fermi ≈ 1022 2.0 x 10−3

Liquid p-H2 Bose ≈ 1022 6.6 (If Occured)

Bose alkali gases Bose ≈ 1015 10−7-10−5

Fermi alkali gases Fermi ≈ 1012 10−6

Table 2.2: Example quantum liquids and the temperatures and densities at which they

become superfluids. Note that liquid hydrogen does not naturally become a superfluid; the

Tc listed above is that predicted for ideal hydrogen if it did not crystallize.

2.2 Example Quantum Liquids

In order to satisfy both of the above criteria for a quantum liquid, a system must consist

of very cold, lightweight particles that obey either Bose-Einstein or Fermi-Dirac statistics.

Many systems satisfy the first criterion, which is why molecules such as water are com-

monly simulated as fully quantum particles. Satisfying both criteria is a much taller order,

particularly because indistinguishability requires that particles be able to change places as

in a fluid. As alluded to earlier, electrons easily satisfy these criteria in most realistic ma-

terials over a wide temperature range. Neutrons in nebulae or neutron stars may also be

categorized as quantum liquids. However, there are only a handful of terrestrial quantum

liquids: helium, molecular hydrogen, and the ultracold alkali gases are examples (see Table

2.2).

2.2.1 Helium

Helium is the archetypal quantum liquid [11; 60; 107]. Both of helium’s isotopes, the boson,

4He, and the lighter fermion, 3He, remain liquids down to absolute zero, only solidifying

under pressure [107]. Helium remains liquid down to T = 0 because of its large zero-point

motion. Back of the envelope calculations place the thermal energy from zero-point motions

for 4He at 70 K, a value easily large enough to prevent solidification [11]. Because helium
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Figure 2.1: The 3He and 4He phase diagrams. Bcc denotes the body-centered cubic phase.

The 3He-A and 3He-B phases are superfluid 3He phases, the 4He-I phase is the normal

liquid 4He phase, and the 4He-II phase is the superfluid 4He phase. Because of their large

zero-point energies, both helium isotopes remain fluids down to T = 0 K. As a result, both

possess superfluid phases in which exchange is prevalent. Figure is prepared from phase

diagrams given in Enss and Hunklinger [60].

remains a fluid down to zero temperature, its particles are indistinguishable well into the

regime where quantum effects are important. The combined effects of quantum mechanics

and quantum statistics manifest themselves in both helium isotopes as superfluid phases in

which exchange is prevalent (see Figure 2.1).

As usual, 4He transitions from a gas to a liquid in which there is no exchange, the

so-called normal liquid He-I phase, around 5 K. Unlike other materials, however, the He-I

phase undergoes a second transition around 2 K into a liquid in which there is exchange, the

superfluid He-II phase [11]. As I will discuss in greater detail below, superfluid 4He possesses

a reduced moment of inertia and viscosity compared with the normal liquid, which results

in a number of unusual phenomena. 3He similarly possesses three superfluid phases below 3

mK [107]. The properties of these superfluid phases are significantly more complicated than

those of the He-II phase because 3He is a fermion, and in order to manifest superfluidity (a
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manifestation of Bose-Einstein statistics), must pair with other fermions to form composite

bosons, called Cooper pairs. Because of 3He’s additional complexities, superfluid 4He was

the first discovered and remains the best understood of all quantum liquids.

One question that remains unanswered regarding 4He is whether its bcc phase may

be considered a “quantum liquid.” As illustrated in Figure 2.1, He-I, He-II, and solid He

possess a triple point around 2 K at slightly above 2 MPa. The solid 4He near this triple

point is packed as a less dense bcc solid, as opposed to the close-packed fcc or hcp solids.

The reduced density of the bcc solid phase may enable some amount of exchange. Indeed,

it has been shown that exchange ensues in the bcc phase of 3He [43]. In Chapter 6, I take

steps towards answering whether this quantum solid may in fact be a “quantum liquid.”

2.2.2 Hydrogen

Unlike helium, liquid hdyrogen 7 solidifies at higher temperatures than those at which it

would otherwise begin to exchange in an He-II-like phase [11]. Indeed, because its inter-

molecular interactions are roughly four times as strong as those of 4He, H2 crystallizes

at 13.8 K (see Figure 2.2). This is at a temperature over 7 K greater than the tem-

perature at which non-interacting H2 would otherwise be predicted to exhibit superflu-

idity [68]. Regardless, because H2 possesses two electrons and two protons, it is a bo-

son. Thus, while 3D H2 does not exhibit superfluidity, manifestations of superfluidity

have been reported in doped 2D H2 thin films [70; 71] and in small clusters [98; 149;

182].8

H2 exists in two varieties: para-hydrogen (or, p-H2) and ortho-hydrogen (or, o-H2).

What distinguishes them is their rotational state. H2’s overall wavefunction, ψtotal, may be

expressed as a product of its translational, rotational, vibrational, electronic, and nuclear

wavefunctions

ψtotal = ψtransψrotψvibψelecψnuc. (2.23)

7In all of what follows, hydrogen stands for molecular H2. The pressures required to achieve atomic

hydrogen far exceed those with which I am concerned here [125].

8The claim that doped 2D hydrogen thin films exhibit superfluidity has since been refuted [192].
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Figure 2.2: The low-temperature p-H2 phase diagram. Liquid p-H2 crystallizes at 13.8 K

at zero pressure. The superfluid critical temperature, Tc, of ideal p-H2 is predicted to be

∼ 6.6 K, as depicted by the red arrow above [68]. Previous research suggests that the Tc of

interacting p-H2 is ∼ 1 K [182]. p-H2 therefore crystalizes at a temperature several degrees

greater than the temperature at which it might otherwise become a superfluid. Figure is

adapted from the phase diagram given in Annett [11].
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Since H2’s nuclei are spin-1/2 fermions, H2’s ψtotal must remain antisymmetric when it

rotates, which causes its nuclei to exchange. During the exchange process, ψtrans and ψvib

do not change sign because they only respectively depend upon position and bond length.

For simplicity, one can also assume that ψelec is gerade for ground state hydrogen, as it

is for most molecules, and does not change sign as well. Preserving the antisymmetry of

the total wavefunction thus boils down to ψrot having a sign opposite to that of ψnuc. ψrot

possesses an even sign whenever it is in an even J rotational state and an odd sign whenever

it is in an odd J rotational state. The two spin-1/2 nuclei have four total possible nuclear

spin functions, three of which are symmetric and one of which is antisymmetric. To achieve

overall antisymmetry, the even J rotational states must be paired with the antisymmetric

nuclear wavefunction, while the odd J rotational states must be paired with any of the

symmetric nuclear wavefunctions. H2 in the J = 0 even rotational state is termed para-H2,

while H2 in the J = 1 odd rotational state is termed ortho-H2.

Due to their differing rotational states, ortho- and para-H2 have dramatically differ-

ent properties [180]. The J = 1 odd rotational state causes ortho-H2 molecules to have

anisotropic interactions that must be modeled using spherical harmonics. On the other

hand, the J = 0 even rotational state is isotropic, allowing para-H2 molecules to be mod-

eled as if they simply were atoms. I model para-H2 in this fashion in Chapter 7.

2.2.3 Ultracold Alkali Gases

Over the past few decades, atomic physicists have developed a number of tools that now

enable scientists to study a new type of quantum liquid: ultracold alkali gases [52; 108;

153]. By definition, alkali atoms possess one electron in their valence shells. As such, all

alkali atoms possess an even number of electrons plus protons. This means that alkali atoms

are bosons if they also possess an even number of neutrons and are fermions if they possess

an odd number of neutrons [107]. At most temperatures, alkali atoms (with the exception

of 1H) are far too massive to manifest the effects of quantum mechanics or quantum statis-

tics. In concert with Equation 2.4, however, alkali atoms will begin to manifest quantum

properties in the nK to 50 µK temperature range. For many years, achieving such low

temperatures was inconceivable, but striking advances in cooling technologies now enable
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scientists to regularly trap such alkali atoms as 6Li (fermion), 7Li (boson), 23Na (boson),

40K (fermion), and 87Rb (boson) at such temperatures [108]. Ultracold atoms are generally

stored in magnetic traps that trap only a small subset of weak-field seeking atomic spin

states [22]. Magnetic traps lack any periodic structure, however. In order to create optical

lattices that allow physicists to study Hubbard-like models as discussed in Chapter 5, op-

tical dipole traps must also be employed. These traps use an electric field (as potentially

produced by a laser) to induce an oscillating dipole moment in the atoms. The dipole mo-

ments in turn interact with the imposed electric field to produce a trapping potential that

inherits the spatial periodicity of the electric field that produced it [22]. A periodic trap-

ping potential in one dimension may thus be formed by overlapping two counterpropagating

laser waves. By adding more laser beams in multiple dimensions, one can trap atoms in

almost any desired configuration. Because of the way the magnetic and optical traps used

to confine these atoms are configured, the atoms are generally trapped at extremely low

densities, from 1011 − 1015 cm−3. These densities are greater than equilibrium densities,

as typical gas densities at atmospheric pressure are O(1019 cm−3) and typical liquid and

solid densities are O(1022 cm−3) [153]. A comparison of the densities of various quantum

liquids is found in Table 2.2. As one might expect, at such low temperatures, the equi-

librium phase of these atoms is the solid phase. Alkali atoms may be preserved as such a

low density gas because of the time it takes for them to collide and recombine. Three-body

collisions are the dominant recombination process, and at such low densities, these occur

sufficiently rarely that the gases may be maintained for seconds to minutes [107]. Because

alkali atoms may readily exchange in such gases, they constitute a third, albeit laboratory,

example of terrestrial quantum glasses. In Chapter 5, I discuss an algorithm I developed to

study mixtures of boson and fermion alkali atoms at low, yet finite temperatures.

2.3 Bose-Einstein Condensation

As alluded to above, Bose-Einstein statistics can result in a number of unusual phenomena,

chief of which is Bose-Einstein condensation (BEC). Bose-Einstein condensation occurs
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whenever a macroscopic number of bosons enter the same lowest energy state.9 When this

occurs, the bosons all behave coherently, as if they were one macroscopic particle. It is

thought that this macroscopic behavior lies at the heart of superfluidity.

Ideal bosons enter the Bose-Einstein condensate phase whenever they are cooled below

the Bose-Einstein transition temperature [11; 128]. As can be derived from the boson

partition function (see Equation 2.21), the number and pressure of bosons at a temperature,

T , and chemical potential, µ, may be expressed as

N =
�

k

λe−β�k

1− λe−β�k
(2.24)

and

pV = −kBT
�

k

ln(1− λe−β�k), (2.25)

with β = kBT and λ = eβµ. It is clear that, in order for Equation 2.24 to hold,

1 ≥ λe−β�k (2.26)

for all k. This implies that

0 ≤ λ < eβ�0 . (2.27)

In order to simplify Equation 2.24, one can therefore break it up into a ground state term

and a sum over all excited states

N =
λe−β�0

1− λe−β�0
+
�

k �=0

λe−β�k

1− λe−β�k
. (2.28)

Because all excited state energies are greater than the ground state energy (here, I assume

no ground state degeneracies) and therefore the denominator of the excited state terms is

finite, one can transform the sum over excited states into an integral

N =
λe−β�0

1− λe−β�0
+ 2π

�
2m

h2

�3/2

V

� ∞

�>�0

λ�1/2e−β�d�

1− λe−β�
, (2.29)

9This assumes that the BEC is not fragmented.
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where I have substituted the ideal Bose gas density of states in the above. Setting �0 = 0 and

manipulating Equation 2.25 in a similar manner, one arrives at the following two equations

for the ideal Bose gas density and pressure

ρ =
N

V
=

λ

V (1− λ)
+ 2π

�
2m

h2

�3/2 � ∞

�>0

λ�1/2e−β�d�

1− λe−β�
, (2.30)

and

p

kBT
= −

ln(1− λ)

V
− 2π

�
2m

h2

�3/2 � ∞

�>0
�1/2 ln(1− λe−β�)d�. (2.31)

In order to find the ideal Bose gas equation of state, λ must be evaluated in terms of ρ and

substituted into the equation for the pressure. The ground state term may be ignored so

long as λ < 1. At high temperatures, the chemical potential is finite and negative. However,

as T → 0, µ → 0 and consequently λ → 1. It turns out that µ = 0 below Tc ∼ 2.612 K, the

Bose Einstein condensate temperature [11]. If the temperature is significantly greater than

the BEC temperature, λ/(1− λ) is finite and λ/V (1− λ) → 0 in the thermodynamic limit.

In this case, the first term in the two above equations may be dropped and the integrals

may be evaluated as a power series in λ. This process yields,

ρ =
1

Λ3
g3/2(λ), (2.32)

and

p

kBT
=

1

Λ3
g5/2(λ). (2.33)

Here,

gn(λ) =
∞�

l=1

λl

ln
. (2.34)

These equations may then readily be inverted to solve for λ in terms of ρ.

Bose-Einstein condensation occurs when T falls below Tc. In this case, 1 − λ → 0 and

the first terms in Equations 2.30 and 2.31 are non-negligible. In general, one can no longer

solve for the equation of state analytically. One can, however, evaluate the integrals in

terms of a series as in the T > Tc case to arrive at
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ρ =
Λ3

V

λ

1− λ
+

1

Λ3
g3/2(λ) (2.35)

and

p

kT
= −

ln(1− λ)

V
+

1

Λ3
g5/2(λ). (2.36)

Progress in closing these equation can be made by assuming that λ = 1−a/V , where a is a

positive constant when T → 0. Substituting this into Equation 2.35 and noting that λ ∼ 1,

yields

a =
Λ3

ρΛ3 − g3/2(1)
. (2.37)

From Equation 2.30, it may be noted that λ/(1 − λ) represents the average number of

particles in the ground state, n̄0. Thus, substituting for λ, one has

n̄0 =
λ

1− λ
=

V

a
=

V

Λ3
(ρΛ3

− g3/2(1)). (2.38)

Defining a temperature, T0, such that

ρΛ3
0 = ρ

�
h2

2πmkBT0

�3/2

= g3/2(1), (2.39)

the key equation for Bose-Einstein condensation may be obtained

n̄0

N
= 1−

�
T

T0

�3/2

. (2.40)

This equation is only valid for T < T0. n̄0/N = 0 for T > T0. These equations imply that

at T0, a statistical phase transition occurs where the number of bosons in the ground state

grows from zero at temperatures greater than T0 to approximately N at temperatures less

than T0. This is the Bose-Einstein phase transition for the ideal Bose gas and the phase

where a macroscopic number, O(N), particles enter the ground state is the Bose-Einstein

condensate. Bose-Einstein condensation is said to occur as the temperature transitions

through T0. Experimental confirmation of BEC was first observed approximately fifteen

years ago using trapped ultracold alkali gases [10; 53]. As mentioned above, such gases
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are extemely dilute and may therefore be thought of as non-interacting. Upon cooling

these gases below their transition temperature, it was observed that they entered into their

lowest-energy momentum states, providing vivid evidence of Bose-Einstein condensation.

The above derivation holds true for the ideal gas, but it turns out that a Bose-Einstein

condensate may similarly form below some critical temperature in an interacting gas [107].

The single particle density matrix, ρ1(�r,�r�), for a many-body quantum system may be

expressed as

ρ1(�r,�r
�) ≡ N

�

s

ps

�
d�r2d�r3...d�rNΨ∗

s(�r,�r2, ...,�rN )Ψs(�r
�
,�r2, ...,�rN )). (2.41)

In the above, Ψs denotes the wavefunction of state s, ps denotes the probability of state s,

and �rk denotes the position of particle k. The single-particle density matrix is Hermitian

and may therefore be diagonalized into a set of eigenvalues, ni, and eigenfunctions, χi(�r),

ρ1(�r,�r
�) =

�

i

niχ
∗
i (�r)χi(�r

�). (2.42)

If all of the eigenvalues of the interacting single particle density matrix are O(1), then the

system is in a normal phase. However, if one or more of the eigenvalues is O(N), the system

is said to exhibit BEC.

In both the ideal Bose gas and any interacting system of bosons, the condensate fraction

may be defined as the ratio of the number of particles in the condensate to the total number

of particles. Condensate fractions in ideal Bose gases tend toward 1 as T → 0 as derived

above. Because of interactions, the condensate fraction is dramatically reduced in real

systems, such as 4He. Typical condensate fractions in 4He are∼ .1 [153]. In fact, because the

derivation for BEC relied upon the ideality of the Bose gas, there is no theorem that states

that interacting Bose systems at T = 0 must condense. Statistical and thermodynamic

arguments may, however, be made in BEC’s favor [107]. The definition of the condensate

fraction will be used again in my work in Chapter 5.
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2.4 Superfluidity

One key manifestation of BEC in interacting systems is thought to be superfluidity. The

superfluid phase is a phase characterized by zero viscosity, infinite thermal conductivity, and

no entropy. It was first observed in the 1930s in experiments performed by Kapitza that

demonstrated that liquid He-II could flow through extremely narrow capillaries without any

resistance [11]. Typically, the pressure through a capillary is given by the Hagen-Poiseuille

law [60],

∆P

L
≈

ηv

R2
, (2.43)

where ∆P is the pressure difference, L is the length of the capillary, ν is the viscosity,

v is the velocity, and R is the radius of the capillary. This equation implies that the

velocity of the fluid should depend upon the pressure difference between the two ends of

the capillary. What Kapitza found for He-II was that regardless of the fluid’s velocity, the

pressure difference remained zero. This implied that He-II flowed without viscosity. Such

flow is termed superflow and fluids that flow without viscosity are termed superfluids.

While Kapitza’s early experiments suggested that all of He-II below the normal liquid-

superfluid phase transition flowed without resistance, further experiments using rotating

discs performed by Andronikashvilli demonstrated that He-II actually consists of two fluids,

a normal fraction that flows like a normal fluid and a superfluid fraction that exhibits

superflow. These experiments led to the two-fluid model for 4He, which states that the

total particle density of 4He can be written as

n = nn + ns. (2.44)

Here, nn denotes the normal fluid density, while ns denotes the superfluid density. The

normal component of He-II possesses viscosity, transfers heat, and carries entropy just like

any normal liquid. In contrast, the superfluid component does not possess viscosity, transfer

heat, or carry entropy. Manifestations of superfluidity thus result from the superfluid com-

ponent’s behavior. Experiments show that above the normal liquid-superfluid transition

temperature, Tc, the superfluid density is zero. However, when the temperature is lowered
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Figure 2.3: The change in the superfluid and normal component densities of 4He as the

temperature is lowered below Tc. Figure is taken from Enss and Hunklinger [60].

below Tc, as shown in Figure 2.3, the superfluid density increases as

ns(T ) ≈ n−AT 4, (2.45)

with A a constant. Thus, at T = 0, the entire fluid behaves as a superfluid. It should

be noted that, even though two “types” of fluids are said to exist for 0 < T ≤ Tc, they

cannot be physically separated from one another; the two-fluid model is simply a theoretical

construct that proves to be useful.

The reason why superfluids flow without resistance is because of their unusual excitation

spectrum. In order for a particle with an initial momentum �pi and energy �i to be elastically

scattered to a final state with momentum �pf and energy �f ,

�f = �i − �v · (�pi − �pf ), (2.46)

where �v is some velocity. For a condensate with �pi = 0 and �i = 0, this implies that
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Figure 2.4: The excitation spectrum of He-II. Because no excitations may be formed if He-II

moves with a velocity less than the critical velocity, cmin, there is no dissipation in He-II

below this speed. Figure is taken from Annett [11]

�(�p) = �v · �p. (2.47)

For particles in a normal liquid,

�(�p) =
|�p|2

2m
, (2.48)

and a �v may be found that will excite a particle to this energy for any �p. The excitation

spectrum, �(�p), for a condensate, however, is more complicated. As shown in Figure 2.4,

�(�p) cannot equal �v · �p unless |�v| is greater than some minimum value cmin. This implies

that, so as long as a superfluid flows with a speed, |�vs|, such that

|�vs| < cmin, (2.49)

no excitations that lead to resistance will be generated in the superfluid and the superfluid

will flow without viscosity.

Originally, it was thought that superfluidity was a direct manifestation of Bose-Einstein

condensation in He-II. Indeed, if one compares the heat capacity of an ideal Bose gas to that
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of He-II, one finds that they both have a discontinuity indicative of their respective BEC and

superfluid transitions between 2 and 4 K [60]. In both cases, upon crossing their respective

critical temperatures, both fluids are characterized by a macroscopic wavefunction where

all of their particles possess the same phase. Nevertheless, BEC and superfluidity are two

distinct phenomena. This is bourne out by the fact that, at T = 0, He-II’s superfluid density

is 1, while its condensate fraction is .1. Since these are unequal, they cannot measure the

same phenomenon. Indeed, BEC is the macroscopic occupation of one single-particle energy

state. Superfluidity, on the other hand, is defined by superflow. Thus, even if particles are

not all in the same single-particle ground state, they may still flow without resistance. This

distinction should be kept in mind throughout my discussion of condensate fractions and

superfluid densities in Chapters 5 and 7.

2.5 Outlook

Now that I have discussed quantum liquids and their properties, the natural next question

is: how does one study quantum liquids? Although a number of computational techniques

have been developed for the study of quantum liquids over the years, perhaps the most

versatile are quantum Monte Carlo techniques, particularly for bosons which lack a sign

problem. In the next chapter, I detail what quantum Monte Carlo techniques are and how

they may be applied to the study of quantum systems.
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Chapter 3

Quantum Monte Carlo

In the following four chapters, I will discuss the development and application of differ-

ent quantum Monte Carlo (QMC) techniques to the study of low-temperature bosons and

fermions. Quantum Monte Carlo refers to a suite of techniques all of which exploit random

sampling to solve for either a system’s ground state wavefunction or finite-temperature par-

tition function. Because of their use of random sampling, quantum Monte Carlo methods

scale only polynomially with system size. Most other competing methods scale exponentially

with system size. Quantum Monte Carlo methods are therefore one of the preferred sets

of techniques for studying large quantum many-body systems. Even so, there is no single

quantum Monte Carlo technique that can be applied to all quantum systems, largely owing

to quantum Monte Carlo’s Achille’s heel: the fermion sign problem. As a result, a plethora

of QMC techniques exist for treating different problems in different circumstances.

In this chapter, I will survey the wide array of quantum Monte Carlo techniques, with

special emphasis upon the Path Integral Monte Carlo (PIMC) and Auxiliary-Field Quantum

Monte Carlo (AFQMC) techniques because of the significance they assume in subsequent

chapters. I begin with an overview of why quantum Monte Carlo algorithms are frequently

the algorithms of choice for simulating quantum many-body systems when accuracy is of

prime importance. I then detail how these algorithms work, starting with a review of the

basics of the Monte Carlo algorithm, which is regularly applied to a variety of classical

problems in statistical physics. I conclude by discussing how Monte Carlo techniques may

be used to solve the Schrödinger Equation and the many quantum Monte Carlo techniques
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Method Scaling Exact? Disadvantages

Exact Diagonalization Exponential Yes Limited to small clusters

Mean Field Theory Polynomial No Does not account for strong correlation

Density Functional Theory N3 No Does not account for strong correlation

Quantum Monte Carlo N3 Yes If sign problem, scales exponentially

Table 3.1: Classes of methods for solving the quantum many-body problem. Some methods,

such as Density Functional Theory and Mean Field Theory, scale favorably with system size,

yet are approximate. Other methods, such as Exact Diagonalization, are exact, yet scale

poorly. Quantum Monte Carlo methods are not only exact, but scale gracefully with system

size making them suitable for studying many body problems for which accuracy is essential.

N denotes the number of states of the Hamiltonian.

that have emerged from applying random sampling to quantum problems. I focus in par-

ticular upon the motivating ideas behind and the mathematical framework for the AFQMC

algorithm, as used in Chapter 5, and the PIMC algorithm, as used in Chapters 6 and 7.

3.1 Why Quantum Monte Carlo

The fundamental equations that govern quantum mechanics have been known for over

eighty years. Nevertheless, as Dirac once famously wrote, these equations are “much too

complicated to be soluble [55].” This is because solving the Schrödinger equation (and

related finite-temperature equations) is tantamount to solving for how N particles interact

in 3N dimensions. Because of the complexity of the Schrödinger equation, a number of

techniques have emerged for solving it, all of which have their own limitations (see Table

3.1). In general, these techniques fall into two categories: algorithms that scale favorably

with system size, yet are inexact and algorithms that are exact, yet scale poorly with system

size.

Examples from the first category of algorithms include Mean Field Theory (MFT) and

Density Functional Theory (DFT). In mean field techniques, such as the Hartree-Fock

technique for electrons and the Gross-Pitaevskii method for bosons, individual particles
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are approximated as interacting with the average densities, or mean fields, of the other

particles [33; 107]. Because the individual interparticle interactions are neglected, mean

field techniques are by definition approximate. DFT may be viewed as a flavor of MFT

tailored to electrons. DFT is a formally exact theory that states that the ground state

properties of many-body systems may be obtained by minimizing an energy functional,

E[n(�r)], with respect to the electron number density, n(�r) [102]. The minimum value of

the functional is the ground state energy and the electron density at the minimum is the

exact ground state energy density. In general, the energy functional is taken to be a sum

of kinetic and Coulomb terms, as well as an approximate exchange-correlation term. DFT

would be exact if the exact form for the exchange-correlation functional was known. In lieu

of an exact form, approximate forms, such as the Local Density (LDA) and Generalized

Gradient (GGA) forms, are employed instead. These forms turn out to be surprisingly

accurate for studying most molecules, but cannot fundamentally account for the effects of

strong electron correlation. The fact that DFT performs so remarkably well coupled with

its N3 scaling has made DFT the technique of choice for large many-body calculations.

Because of their highly favorable scaling, MFT and DFT results are often used to construct

trial wavefunctions and density matrices for more accurate quantum Monte Carlo methods.

I use MFT to produce trial density matrices in Chapter 5.

Examples from the second category of algorithms include diagonalization-based tech-

niques, such as Exact Diagonalization (also known to quantum chemists as Full Configura-

tion Interaction) and the Lanczos algorithm. As the name suggests, diagonalization-based

techniques attempt to find either the ground state energy alone or all of the ground and

excited state energies of a given Hamiltonian by partially or fully diagonalizing it. In Exact

Diagonalization (ED), the Hamiltonian is expressed as a matrix in a selected representation

and diagonalized to yield its eigenvalues and eigenvectors. Its eigenvalues represent the

different energy levels of the system. Because a system’s Hamiltonian is of size N × N ,

where N is the number of states of the system, and because the number of states of a

system grows exponentially with the number of particles in the system, ED scales exponen-

tially with system size. This effectively precludes it from being applied to systems larger

than small clusters. Iterative diagonalization techniques, such as the Lanzcos and Davidson
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algorithms, determine the ground state and first few excited states of a Hamiltonian by

repeatedly projecting the matrix onto a smaller subspace [142]. Once a certain convergence

criterion is met, the matrix in that smaller subspace is diagonalized. Its eigenvalue spec-

trum is not exact, but its first few eigenvalues typically approximate the first few exact

eigenvalues. Since iterative diagonalization techniques do not require diagonalizing the full

matrix, they can generally accommodate systems four to five orders of magnitude larger

than those that can be accommodated by ED [142]. Even so, they often have stability

problems and may yield fake eigenvalues that do not correspond to any eigenvalues of the

exact matrix.

Given these algorithms’ shortcomings, quantum Monte Carlo methods are particularly

alluring because they are at once exact and scale gracefully with system size. Quantum

Monte Carlo algorithms re-express the Schrödinger equation or the partition function in

terms of multidimensional integrals. These multidimensional integrals may then be sampled

stochastically. As discussed below, sampling multidimensional integrals stochastically is

markedly more efficient than calculating them deterministically. The primary cost for com-

puting quantum properties this way is the cost of manipulating the basis vectors, whether

they be coordinates, determinants, or permanents. This cost generally scales as N3, where

N is the number of particles if one is working in the basis of real space coordinates, or

the number of sites if one is working in the site basis (more on this below). Because the

re-expression of the Schrödinger equation or the partition function in terms of multidimen-

sional integrals is exact, QMC is also exact, but within statistical errors. The statistical

errors in QMC, and Monte Carlo techniques more generally, scale as M−1/2, where M is

the number of times the integrals of interest are sampled. This implies that one could never

achieve infinite accuracy using QMC, but could readily achieve a predetermined finite level

of accuracy given enough sampling. Even considering the cost of achieving high levels of

accuracy, QMC still scales much more favorably with system size than competing exact

techniques. It is for this reason that QMC techniques have become the techniques of choice

for studying large many-body problems when accuracy is indispensible.

Despite these glaring advantages, use of QMC remains limited because of the sign prob-

lem. As discussed in Chapter 2, whenever two fermions change places, their wavefunction
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changes sign. This change of sign manifests itself in QMC algorithms as negative probabili-

ties. When averaging over configurations to obtain final results, configurations with negative

probabilities cancel those with positive probabilities. When the number1 of negative prob-

ability configurations roughly equals the number of positive probability configurations, as

is often the case at low temperatures, the probabilities almost exactly cancel each other.

As a result of this cancellation, it has been shown that the signal to noise ratio decreases

exponentially with decreasing temperature [189].2 The problem of trying to glean accu-

rate results amidst the noise arising from QMC simulations of fermions is termed the sign

problem. As of this writing, the sign problem makes computing the exact low temperature

properties of fermions using QMC a virtual impossibility (approximations such as the Fixed-

Node Approximation in Diffusion Monte Carlo and the Constrained Path Approximation

in Auxiliary-Field Quantum Monte Carlo allow one to apply QMC to fermion systems free

of the sign problem, but at the expense of abandoning exactness). The good news is that

the sign problem is confined to fermions. The wavefunctions of bosons, and needless to say,

boltzmannons (effectively classical particles that obey Boltzmann statistics), do not change

sign under any circumstances. These particles therefore cannot have a sign problem. QMC

may thus be applied to bosons and boltzmannons with wondrous efficiency at any tem-

perature. Only fermions remain an impasse. It is in the hope that the sign problem may

someday be tamed, if not fully resolved, so that the advantages of QMC may be brought

to bear on all problems in condensed matter physics, that I and many others continue to

develop QMC techniques.

1Technically, I should say the total weight.

2It should be noted that this proof is still highly controversial within the QMC community. The proof

was based upon a highly frustrated triangular lattice system that may have a more severe sign problem

than is seen in other systems and in other representations. Many believe that the sign problem can still be

surmounted and some believe that they already have a solution to the sign problem [96].
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3.2 Quantum Monte Carlo Methods

3.2.1 The Monte Carlo Method

Understanding QMC methods begins with the understanding of classical Monte Carlo (MC)

methods. The Monte Carlo algorithm is a way of evaluating multidimensional integrals

using random numbers that becomes increasingly efficient as the dimensionality of the

integrals grows. In general, any well-defined integral may be determined using conventional

quadrature techniques, in which an integral is approximated as a sum over values of the

integrand calculated at points along a d-dimensional integration mesh. The accuracy of

conventional quadrature techniques scales with the number of mesh points. Since more mesh

points are needed to integrate over a higher dimensional space, the accuracy of conventional

quadrature with the number of mesh points held constant decreases with the dimensionality

of the integrals. For example, the error from integrating using Simpson’s rule scales as

M−4/d, where M denotes the total number of mesh points [65]. Thus, the greater the

dimensionality, the less efficient conventional techniques become. One can overcome this

curse of dimensionality by exploiting the central limit theorem. The central limit theorem

states that if an integral, I, may be expressed as

I =

�
dxf(x)p(x), (3.1)

where f is an arbitrary, well-behaved function and p(x) is a probability density function

such that

p(x) > 0 (3.2)

and

�
p(x)dx = 1, (3.3)

then the integral may be approximated by an average, Zf , over the function evaluated at

various points, x1, x2, ...xM , sampled according to the probability density function

I ≈ Zf =
f(x1) + f(x2) + ...+ f(xM )

M
. (3.4)
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According to the central limit theorem [191], Zf is normally distributed with mean µf and

standard deviation σf/
√
M , where µf is the mean of f(x)

µf =

�
dxf(x)p(x) (3.5)

and σf is its standard deviation

σf =

�
dx (f(x)− µf )

2 p(x). (3.6)

Monte Carlo evaluates integrals by re-expressing them in terms of a function times a prob-

ability density function and averaging over samples of the function taken according to that

probability distribution, just as the central limit theorem prescribes. For example, one often

encounters integrals of the form

I =

�
g(�R)d�R, (3.7)

where �R is a set of coordinates in a k-dimensional space. As I will discuss further below,

integrals of this form include those involved with calculating the ground state energy of a

T = 0 quantum system or the finite-temperature observables of a T > 0 system. Such an

integral may be sampled using MC by rewriting it in terms of an importance function, p�(�R)

[65],

I =

�
f(�R)p�(�R)d�R, (3.8)

where f(�R) ≡ g(�R)/p�(�R). So long as p�(�R) satisfies the properties of a probability density

function, the integral may be approximated as

I ≈
1

M

M�

m=1

f(�Rm), (3.9)

with error

σf
M

≈
1

M(M − 1)

M�

m=1

�
f(�Rm)−

1

M

M�

m=1

f(�Rm)

�2

. (3.10)
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As such, Monte Carlo can evaluate many integrals of interest to physicists with errors that

scale as M−1/2, making it the technique of choice for high-dimensional integrals.

In order to evaluate integrals using Monte Carlo, one must sample a probability distri-

bution. For most problems, the exact form of the probability distribution that needs to be

sampled is unknown because its normalization cannot be computed. One way of sampling

such distributions is using the Metropolis algorithm [129]. In the Metropolis algorithm, a

Markov chain is constructed among states of the system. This Markov chain is governed

by a set of fixed transition probabilities, P (s → s�), which take a state s to a state s� with

probability P (s → s�). If the transition probability is ergodic, the distribution of states will

eventually converge to the equilibrium distribution one hopes to sample, π(s). Typically,

the transition probability is chosen such that it satisfies detailed balance, which means that

the transition rate from s → s� equals the reverse rate

π(s)P (s → s�) = π(s�)P (s� → s). (3.11)

As long as the transition probability satisfies detailed balance, the Markov chain will con-

verge to the equilibrium distribution in the limit of many samples [40; 66]. Many different

forms may be selected for the transition probability. In the Metropolis algorithm, the tran-

sition probability is expressed as the product of a sampling distribution, T (s → s�), and an

acceptance probability, A(s → s�),

P (s → s�) = T (s → s�)A(s → s�). (3.12)

The transition probability is typically sampled by first attempting MC “moves” according to

the sampling distribution and then accepting or rejecting them according to the acceptance

probability. In classical Monte Carlo simulations, the sampling distribution is often chosen

to be uniform within a cube and zero outside of it, meaning the moves attempted consist

of moving a particle from one position to any position within a cube away from it. In

QMC simulations, the sampling distribution often assumes a more complicated form. As

discussed below, in PIMC, it is typically a Gaussian based upon the kinetic energy term

in the Hamiltonian. If the MC algorithm involves multiple moves, each move is assigned

a constant probability of being selected that multiplies its original sampling probability.
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Once the sampling distribution is selected, the acceptance probability may be determined

by substituting the Metropolis form for the transition probability into the detailed balance

equation

π(s)T (s → s�)A(s → s�) = π(s�)T (s� → s)A(s� → s). (3.13)

Rearranging this equation, one obtains

A(s → s�)

A(s� → s)
=

π(s�)T (s� → s)

π(s)T (s → s�)
. (3.14)

The maximum value the acceptance probability can assume is one. The above may therefore

be simplified into its final form

A(s → s�) = min

�
1,

π(s�)T (s� → s)

π(s)T (s → s�)

�
. (3.15)

Thus, in Metropolis MC, one starts with a walker (a sample configuration) in state s,

makes a trial move according to the sampling distribution, and accepts or rejects the move

according to Equation 3.15. If the move is accepted, the walker’s state is changed to s�. If

it is rejected, the walker’s state remains the same. After many samples, the distribution

of walkers converges to the desired equilibrium distribution of states, π(s). Once this

occurs, observables (values of the functions f(x)) may be collected and averaged to yield the

desired results in accordance with the central limit theorem. Which particular probability

distribution is sampled in what state space depends upon the system, the algorithm, and the

properties desired. In the next sections, I detail how the MC algorithm is used in selected

quantum Monte Carlo algorithms.

3.2.2 Quantum Monte Carlo

Quantum Monte Carlo algorithms are all united by the fact that they use Monte Carlo sam-

pling to estimate quantum observables. There are two primary classes of QMC algorithms,

those that compute ground state properties and those that compute finite-temperature

properties. Ground state QMC techniques primarily aim to calculate the ground state en-

ergy by sampling the ground state wavefunction, while finite-temperature QMC techniques
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Method Temperature? Common Applications

Variational MC T = 0 Ground state 4He

Diffusion MC T = 0 Electron gas, low-Z atoms

Variational Path Integral MC T = 0 Ground state boson energies, structures

Ground State AFQMC T = 0 Molecular energies, Hubbard models

Path Integral MC T >0 H2, 4He, electron gas, water

Auxiliary-Field QMC T >0 Hubbard models, other lattice models

Worm Algorithm T >0 H2, 4He, dipolar bosons

Diagrammatic MC T >0 Non-equilibrium systems, polarons

Table 3.2: A summary of popular ground state and finite-temperature quantum Monte

Carlo methods.

aim to calculate finite-temperature observables by sampling a system’s partition function.

There are two principle types of ground state QMC techniques: Variational Monte Carlo

and Projector Monte Carlo. There are many varieties of finite-temperature QMC tech-

niques. For the sake of brevity, in this work, I will only outline the two finite-temperature

techniques most important to this work, Auxiliary-Field Quantum Monte Carlo and Path

Integral Monte Carlo. Table 3.2 summarizes all of the methods discussed below as well as

other popular or historically-relevant techniques.

3.2.2.1 Variational Monte Carlo

The simplest and original type of QMC algorithm is the Variational Monte Carlo (VMC)

algorithm [126]. In VMC, one attempts to find the ground state energy, E0, of a system

using a combination of the variational principle and the Monte Carlo algorithm. According

to the variational principle, the energy, Ev, obtained using a trial wavefunction, ΨT , is

always an upper bound to the exact ground state energy, E0 [127],

Ev =

�
Ψ∗

T (
�R)ĤΨT (�R)d�R

�
Ψ∗

T (
�R)ΨT (�R)d�R

≥ E0. (3.16)
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Ev approaches E0 when ΨT approaches the ground state wavefunction. The variational

principle implies that the ground state energy may be approximated from above by varying

the form of the trial wavefunction, evaluating its related variational energy, and iterating

this process until the smallest variational energy is found. In VMC, one specifies a form for

the trial wavefunction and determines its variational energy by stochastically sampling the

square of the wavefunction [41; 65]. In order to do so, Equation 3.16 is rewritten as

Ev =

�
|ΨT (�R)|2

�
ΨT (�R)−1ĤΨT (�R)

�
d�R

�
|ΨT (�R)|2d�R

=

�
P (�R)EL(�R)d�R, (3.17)

where P (�R) = |Ψ∗
T (

�R)ΨT (�R)|2/
�
|ΨT (�R)|2d�R is the probability density function and EL(�R) =

ΨT (�R)−1ĤΨT (�R) is the so-called local energy. In this manner, Equation 3.16 is transformed

into an equation like Equation 3.8 that is amenable to MC sampling. VMC then computes

Ev by straightforwardly sampling P (�R). Walkers are first placed at random positions, �R.

Attempts are then made to move the walkers from �R to a new position, �R�. The moves are

accepted/rejected according to P (�R). After equilibration, during which the walkers sample

the probability distribution without measurements being taken, samples of EL(�R) are then

taken and averaged to yield the variational energy. This procedure is repeated for various

trial wavefunctions until the minimum variational energy for a specific form of the trial

function is obtained. VMC is therefore a conceptually simple QMC technique for approxi-

mating ground state energies. VMC is rarely used, however, because the wavefunction you

put in is often what you get out – VMC simply optimizes the trial wavefunction forms it is

given and cannot yield radically different forms from those it is provided [41].

3.2.2.2 Diffusion Monte Carlo

Projector Monte Carlo methods improve upon VMC’s glaring deficiency by providing a

path toward producing ground state wavefunctions radically different from the trial wave-

functions with which they are initially provided. In projector Monte Carlo, one begins

with a trial wavefunction (often one already optimized using VMC) and iteratively projects

out the ground state wavefunction from it. As such, these methods may be thought of as

the quantum mechanical counterparts to the iterative diagonalization techniques discussed
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above or the power method discussed in Chapter 4.

The most popular of these techniques is the Diffusion Monte Carlo (DMC) algorithm [9;

39; 65]. In DMC, as opposed to trying to minimize the variational energy of a trial function,

one instead attempts to explicitly solve the Schrödinger Equation

−∂tΦ(�R, t) = (Ĥ − ET )Φ(�R, t), (3.18)

where t denotes time, ET denotes the trial energy, a guess at the exact ground state energy,

and Φ(�R, t) denotes the time-dependent wavefunction. This equation may be rewritten as

an integral equation [41]

Φ(�R, t+ τ) =

�
G(�R�

→ �R, τ)Φ(�R�, t)d�R�. (3.19)

In the above, G(�R� → �R, τ), is the Green’s function and τ is an imaginary time. The

Green’s function may be expanded in the eigenvalues, {Ei}, and eigenvectors, {Ψi}, of the

Hamiltonian as

G(�R�
→ �R, τ) = ��R|e−τ(Ĥ−ET )

|�R�
� =

�

i

Ψ∗
i (�R)e−τ(Ei−ET )Ψi(�R

�). (3.20)

Putting these two equations together, one finds that

Φ(�R, t+ τ) =
�

i

Ψi(�R)e−τ(Ei−ET )
�

Ψ∗
i (�R

�)Φ(�R�, t)d�R�. (3.21)

Φ(�R, t+τ) is therefore equivalent to a sum over the Hamiltonian’s eigenvectors weighted by

the product of their overlaps with Φ(�R�, t) and a term exponential in their energies. As is

clear from Equation 3.21, the larger that τ becomes, the more heavily weighted are states

with Ei ∼ ET . If ET is adjusted to roughly equal the ground state energy, this implies that,

in the limit of τ → ∞, the most heavily weighted state is the ground state and Φ(�R, t+ τ)

becomes proportional to the ground state wavefunction. Thus, for sufficiently large τ , the

Green’s function serves as a projector, projecting out the ground state from some initial

wavefunction (hence the name “Projector Monte Carlo”).

In Diffusion Monte Carlo, one samples Equation 3.19 by viewing the Green’s function

as a transition probability. Walkers are first initialized to a set of positions, �Rk, where
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k denotes a given walker and are then moved to a new set of positions, �R
�
k, according to

G(�Rk → �R
�
k). Assuming that the Hamiltonian may be written as a sum of kinetic, K̂, and

potential, V̂ , operators, the Green’s function may be approximated (in the limit of small τ)

as

G(�Rk → �R�
k, τ) ≈ (2πτ)−3N/2e−(�Rk−�R

�
k)

2/2τe−τ [V (�Rk+V (�R
�
k)−2ET ]/2, (3.22)

where V (�Rk) denotes the potential energy of configuration �Rk [65].

Thus, the new positions, �R
�
k, are selected from the original positions, �Rk, accord-

ing to a normal distribution and then the walker k is reweighted by the factor P =

e−τ [V (�Rk)+V (�R
�
k)−2ET ]/2. Each walker k subsequently undergoes branching depending upon

the magnitude of the reweighting factor. If the reweighting factor is greater than 1, the

walker is split into P − 1 other walkers; if the reweighting factor is less than 1, the walker

continues without dividing. These steps of sampling then branching are iterated until

the walkers converge to an equilibrium set of configurations, from which the ground state

wavefunction is approximated. Ground state properties may in turn be estimated from

this wavefunction. Diffusion Monte Carlo thus produces wavefunctions that dramatically

improve upon the trial wavefunctions with which it begins.

Unfortunately, the Diffusion Monte Carlo algorithm as described above only works when

wavefunctions remain positive. As discussed above, fermion wavefunctions may become

negative. This results in a sign problem that dramatically increases the errors involved

with DMC. The way the sign problem is circumvented in DMC is via the Fixed-Node

Approximation [9]. In the Fixed-Node Approximation, a trial wavefunction is used to

calculate the 3N − 1-dimensional surface of all points where the trial wavefunction equals

zero. DMC walkers then freely sample the Green’s function as before, but are prevented

from crossing the trial nodal surface via either importance sampling or the outright deletion

of any walkers that traverse the surface. Only walkers that cross this surface change sign,

so preventing any walkers from crossing it cures DMC of a sign problem. In the limit that

the trial nodal surface equals the exact nodal surface, the Fixed-Node Approximation is

exact. Knowing the exact nodal surface is equivalent to knowing the exact ground state

wavefunction in the first place, however, and the Fixed-Node Approximation is therefore

commonly applied with trial wavefunctions that make the technique inexact. Regardless,
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the Fixed-Node approximation has been used with great success to study the free electron

gas and low-Z elements [41; 42].

Many of the ideas behind DMC also apply to other Projector Monte Carlo techniques,

including Green’s Function Monte Carlo (GFMC) and the ground state Auxiliary-Field

Quantum Monte Carlo technique. GFMC, from which DMC descended, samples the ground

state wavefunction exactly as in DMC, except using a different expression for the Green’s

function that eliminates time step errors [95]. The ground state Auxiliary-Field Quantum

Monte Carlo method also projects out the ground state from a trial wavefunction [161;

201]. Unlike DMC, however, AFQMC works in the site basis and its Green’s function is

expressed in terms of auxiliary fields that are sampled over the course of the simulation.

In order to obviate the sign problem, ground state AFQMC uses an approximation, the

Constrained Path Approximation, similar in spirit to, but different in detail from the Fixed-

Node Approximation [198; 201]. Although not explicitly applied to quantum mechanical

problems, the Monte Carlo Power Method described in Chapter 4 provides a useful way

of projecting out an eigenvector from some trial eigenvector when the projection matrix

requires too much memory to be explicitly stored [167].

3.2.2.3 Path Integral Monte Carlo

Path Integral Monte Carlo (PIMC) is a finite-temperature QMC technique most commonly

used to simulate boltzmannons and bosons (the prime example being helium) at low tem-

peratures at which quantum effects become significant. As in all finite-temperature tech-

niques, instead of sampling the ground state wavefunction, one instead samples the finite-

temperature partition function. In Path Integral Monte Carlo, the partition function is

re-expressed in terms of the coordinate basis, in which the task of sampling the partition

function is transformed into the task of sampling configurations of polymers that represent

different quantum particles [40]. For boltzmannons, these polymers close on themselves,

a manifestation of their distinguishability; for bosons and fermions, they become inter-

connected, a manifestation of their indistinguishability. The ability to represent quantum

particles as classical polymers, termed the quantum-classical isomorphism, makes Path In-

tegral Monte Carlo amenable to many of the sampling techniques commonly used to study
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classical polymers and likewise significantly more straightforward than other QMC algo-

rithms [45].

Finite-Temperature Partition Function in the Coordinate Representation The

starting place for understanding PIMC is with the partition function. In general, the

partition function, Z, and average observable, �Ô�, of any finite-temperature system in the

canonical ensemble may be written as

Z = Tr
�
e−βĤ

�
, (3.23)

and

�Ô� =
1

Z
Tr

�
Ôe−βĤ

�
, (3.24)

where β = 1/kBT , Ĥ is the Hamiltonian, Ô is an operator, and Tr denotes the trace over

all states [40; 103]. If the exact eigenvalues, Ei, and eigenstates, φi, of the Hamiltonian are

known, these expressions may be simplified into

Z =
�

i

�φi|e
−βĤ

|φi� =
�

i

�φi|e
−βEi |φi� =

�

i

e−βEi (3.25)

and

�Ô� =
1

Z

�

i

�φi|Ôe−βĤ
|φi� =

1

Z

�

i

e−βEi�φi|Ô|φi�. (3.26)

Typically, the Hamiltonian of a large many-body problem cannot be diagonalized and there-

fore its exact eigenvalues and eigenvectors are unknown. In this case, it is convenient to

re-express the partition function in the basis of particle coordinates, �R. If there are N par-

ticles in three dimensions, these basis vectors are 3N -dimensional, with �R = {�r1,�r2, ...,�rN},

where the �ri denote the coordinates of the i-th particle. For the moment, I will assume that

the particles are distinguishable and can therefore be labeled as above. In this basis, the

partition function may be reexpressed as

Z = Tr
�
e−βĤ

�
=

�
��R|e−βĤ

|�R�d�R =
�

i

φ∗
i (�R)φi(�R)e−βEi . (3.27)
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This expression may be simplified by noting that the thermal density matrix, ρ(�R, �R�;β),

is defined as

ρ(�R, �R�;β) = ��R|e−βĤ
|�R�

�. (3.28)

Thus,

Z =

�
ρ(�R, �R;β)d�R (3.29)

and

�O� =
1

Z

�
ρ(�R, �R�;β)��R|Ô|�R�

�d�Rd�R�. (3.30)

In order to evaluate the partition function in this basis, one must likewise be able to evaluate

the thermal density matrices. This cannot be done for “long-time” density matrices with

large β. Nevertheless, accurate approximations can be made for “short-time” density ma-

trices with small β. One can therefore evaluate the “long-time” density matrix by breaking

it up into a product of “short-time” density matrices using the identity

e−(β1+β2)Ĥ = e−β1Ĥe−β2Ĥ . (3.31)

Dividng β into M time slices, τ , where τ = β/M , the partition function in Equation 3.29

can thus be written as the convolution

Z =

�
...

�
ρ(�R0, �R1; τ)ρ(�R1, �R2; τ)...ρ(�RM−1, �R0; τ)d�R0d�R1d�R2...d�RM−1. (3.32)

Note that, in the above, the dummy vector, �R, that has been used in previous equations

has been changed to �R0 to simplify notation below. Each of the coordinate vectors in

this convolution may be thought of as coordinates of a path at different times, τ . Since

τ = β/M , these times do not correspond to real times; they are termed “imaginary times”

because they can be Wick-rotated into real times by multiplying them by −i [19]. If M

is a finite number, the path is a discrete-time path. If M is infinite, the path becomes a

continuous path and Equation 3.32 is a continuous-time path integral, as are often seen in
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quantum field theory. If Ĥ is a sum of kinetic and potential terms such that Ĥ = K̂ + V̂ ,

then

e−τ(K̂+V̂ ) = e−τK̂e−τ V̂ +O(τ2). (3.33)

In Path Integral Monte Carlo, one often makes the primitive approximation, in which, for

small τ , the O(τ2) terms are disregarded and

e−τ(K̂+V̂ )
≈ e−τK̂e−τ V̂ . (3.34)

For large β, such as those used at the low temperatures at which superfluidity may occur,

small systematic errors can only be achieved using the primitive approximation with large

M . This often results in time-consuming calculations. Smaller values of M may be used by

employing higher order approximations than the second-order primitive approximation [47;

51; 103]. Assuming for simplicity that the primitive approximation is sufficient, each thermal

density matrix may now be written as

ρ(�Ri, �Ri+2; τ) ≈

�
��Ri|e

−τK̂
|�Ri+1��

�Ri+1|e
−τ V̂

|�Ri+2�d�Ri+1. (3.35)

Typically, V̂ is diagonal in the position basis and thus

��Ri+1|e
−τ V̂

|�Ri+2� = e−τV (�Ri+1)δ(�Ri+1 −
�Ri+2). (3.36)

The kinetic operator is not diagonal in the position basis, but may be expressed as [40]

��Ri|e
−τK̂

|�Ri+1� = (4πλτ)−3N/2e−(�Ri−�Ri+1)2/4λτ . (3.37)

Substituting Equations 3.36 and 3.37 into Equations 3.35 and 3.32, one arrives at the final

expression for the many-body partition function in PIMC

Z =

�
...

�
(4πλτ)−3NM/2e−

�M
m=1[(

�Rm−1−�Rm)2/4λτ+τV (�Rm)]d�R0d�R1...d�RM−1. (3.38)

The equation for the average of an observable may be evaluated similarly, yielding
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�O� =
1

Z

�
...

�
(4πλτ)−3NM/2e−

�M
m=1[(

�Rm−1−�Rm)2/4λτ+τV (�Rm)]
��R0|Ô|�RM �d�R0d�R1...d�RM−1d�RM .

(3.39)

It should be noted that, in the above, �R0 = �RM , meaning that the path closes on itself. The

exponent in Equation 3.38, the system’s action, resembles the Hamiltonian of a polymer.

The quadratic term stemming from the kinetic portion of the Hamiltonian resembles the

interaction between stretched springs; the potential term resembles the potential terms in

classical simulations. The final partition function therefore describes a system of particles

that consist of chains of M beads connected by springs. The only difference between this

system of polymers and a typical classical polymer is that the beads at each imaginary time

only interact with other beads at the same imaginary time (see Figure 3.1). In contrast, the

molecules in a classical polymer interact with all other molecules in all other polymers in

the simulation. Despite this subtle difference, evaluating observables by sampling Equation

3.38 in PIMC proceeds much the same as it would in a classical polymer simulation [66].

Sampling Without Exchange In order to determine the properties of distinguishable

boltzmannons, one simply samples configurations according to Equation 3.38 and evaluates

properties as a function of those configurations. If one views the ratio of the long-time

density matrix to the partition function as a probability, p(�R0, �R1, ..., �RM ), and ��R0|Ô|�RM �

as a function, f(�R0, �RM ), it is clear that Equation 3.39 may be readily sampled using Monte

Carlo techniques.3 As such, one can evaluate observables simply by sampling the thermal

density matrix. This can be accomplished using Equation 3.15. If the full path of a polymer

is denoted as �P = {�R0, �R1, ...�RM−1} and an attempted new polymer path as �P �, Equation

3.15 may be expressed as [23]

A(�P → �P �) = min

�
1,

ρ(�P �)T (�P � → �P )

ρ(�P )T (�P → �P �)

�
. (3.40)

Substituting the expression for the thermal density matrices into Equation 3.40, this be-

comes

3Obviously, one does not know the value of the partition function ahead of time, however, the partition

function cancels out when considering ratios of probabilities.
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Figure 3.1: Comparison of interactions between classical and quantum polymers. Beads

on quantum polymers (top) only interact with beads on other quantum polymers at the

same time slice. Atoms in classical polymers (bottom) interact with all other atoms in other

classical polymers. Note that, in the bottom panel, I only illustrate the interactions between

one bead on the first polymer and all other beads on the other polymer for clarity. The

remaining beads of the first classical polymer interact similarly. Colored circles represent

polymer beads at different time slices. The black lines represent the interbead polymer

springs.
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A(�P → �P �) = min

�
1,

e−
�M

m=1[(
�R
�
m−1−�R

�
m)2/4λτ+τV (�R

�
m)]T (�P � → �P )

e−
�M

m=1[(
�Rm−1−�Rm)2/4λτ+τV (�Rm)]T (�P → �P �)

�
. (3.41)

As previously mentioned, one is free to choose the transition probability any way one likes so

long as Equation 3.41 is satisfied. In PIMC, one typically chooses the transition probability,

T (�P
�
→ �P ), so as to cancel the kinetic portions of the density matrices in the above equation

T (�P → �P
�
) ∝ e−

�M
m=1(

�R
�
m−1−�R

�
m)2/4λτ . (3.42)

This leads to a highly simplified version of Equation 3.41

A(�P → �P
�
) = min[1, e−τ

�M
m=1 V (�R

�
m)−V (�Rm)]. (3.43)

The PIMC transition probability may be sampled in a variety of ways. Perhaps the

conceptually simplest way of sampling the transition probability is by moving individual

beads at single imaginary time slices. It may be shown that the average mean square

displacement of the center of mass of the polymers using this technique scales as M−3.

Thus, as one lowers the temperature and M becomes larger, the overall movement of the

polymers dramatically slows. This is largely because the springs become very stiff for

small τ , preventing beads from freely sampling configuration space. In PIMC, one therefore

employs multislice moves in which chunks of polymers across multiple time slices are sampled

all at once. There are many such multislice techniques, including Levy construction-based

techniques [103], normal-mode sampling methods [56; 103], and the staging algorithm [183].4

Because it eases permutation space sampling (as discussed in the next section), I employed

the bisection algorithm [23; 40]. In this algorithm, sampling the transition probability is

broken up into a number of stages. As illustrated in Figure 3.2, first, the time slices at the

beginning and ends of the chunk of the polymer to be replaced are sampled and accepted

with probability 1. Then, the configuration of the polymer at a time slice between these

two ends is sampled and accepted/rejected. If the midpoint configuration is accepted, the

4The bisection algorithm I discuss is also considered a staging algorithm because it breaks sampling up

into a number of stages. Sprik’s staging algorithm is technically different from the bisection algorithm,

however.
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Figure 3.2: An illustration of the bisection algorithm. In the bisection algorithm, a segment

of a quantum polymer is regrown in stages (2). During the first stage (3), the position of a

bead is sampled at the midpoint time slice between the two end time slices of the segment.

If that new position is accepted, the algorithm then samples bead positions between each

end and the new midpoint (4). This sampling process is continued until the full segment

is regrown (5). In the above, the red circles denote polymer beads at different time slices.

The black lines denote the interbead polymer springs.

algorithm continues by sampling and accepting/rejecting the time slices between the first

end of the polymer and the new midpoint time slice, and between the midpoint time slice

and the opposite end of the polymer. The algorithm continues to sample midpoints of

midpoints until a configuration is rejected. If a move is rejected at any point, the entire

polymer is returned to its initial configuration. If all of the moves are accepted at all time

slices, the polymer assumes its newly sampled form. In the bisection algorithm, the new

polymer positions are thus sampled in stages, where the first stage consists of sampling a

single midpoint, the second consists of sampling two more midpoints, the fourth of sampling

four midpoints and so on and so forth (see Figure 3.2). This algorithm stems from the fact

that Equation 3.42 may be rewritten as a product of exponentials at each stage. If s is the

number of beads of the polymer that will be replaced and s = 2m where m is the number

of stages, then Equation 3.42 may be rewritten for one particle whose time slices are being

resampled starting at time slice k as [23]
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T (�P → �P
�
) ∝ e−(�r

�
k−�r

�
k+s)

2/4sλτe−(�r
�
k+s/2−�̄rk,k+s)2/sλτ

e−2(�r
�
k+s/4−�̄rk,k+s/2)

2/sλτe−2(�r
�
k+3s/4−�̄rk,k+s)2/sλτ ..., (3.44)

with �̄r
�
a,b ≡ (�r

�
a − �r

�
b)/2 and λ = h̄2/2µ (here, µ denotes the particle mass). The first stage

of the algorithm consists of sampling the first exponential, the second stage consists of

sampling the second exponential, the third stage consists of sampling the third and fourth

exponentials, and so on and so forth. What this algorithm practically implies is that,

in order to sample new positions, you first sample the end points. You then compute the

average of these end points and sample the new midpoint configuration by adding a Gaussian

random variable times the width of the first Gaussian to this average. This is repeated for

the midpoints at each stage. The moves are finally accepted/rejected based upon the ratio of

the potential energy of the new configuration to that of the old configuration as in Equation

3.43. The potentials may assume any form so long as they operate in coordinate space. A

clear strength of PIMC is that nearly any classical potential may be readily incorporated

into its formalism.

The advantage of the bisection algorithm is that it enables one to build a new path

between two fixed points with the ability to reject the path at any stage before the entire

path is constructed. Generally, the configurations least likely to be accepted are those at

the first midpoint between the two fixed ends since this is the time slice at which the new

configurations most differ from the old configurations. Configurations at each successive

stage become increasingly more likely to be accepted. As such, the bisection algorithm

is highly efficient, as it can reject the least likely configurations first before continuing to

sample the whole path.

Although bisection moves may readily sample all of polymer configuration space, in the

work presented in Chapters 6 and 7, I supplement bisection moves with centroid moves.

The centroid of a path, �Rc, is its mean position averaged over all of its beads

�Rc =
1

M

M�

i=1

�Ri. (3.45)

Centroid moves displace the centroids of sampled beads by a fixed distance within a cube,
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much as classical particles are displaced, and then acceptance or rejection is based upon

the new potential of the entire path. Centroid moves are more costly, but speed sampling

of configuration space at high temperatures at which these moves are more likely to be

accepted. In the PIMC simulations in this thesis, centroid moves are sampled with some

small frequency (once every N moves) and bisection moves the remainder of the time. I

choose both the size of the centroid displacement and the number of time slices, s, used in

my bisection moves so as to achieve acceptances of between 20 and 70%.5 Choosing s so as

to satisfy this criterion may be challenging because s must be less than the length of the

chain itself and a power of two. At high temperatures, for small M , virtually any s will

yield a high acceptance rate. At low temperatures, for large M , one often finds that only

one value of s will yield reasonable acceptance rates (this is particularly the case when s

should also yield a high permutation move acceptance rate).

In the above, I have only discussed PIMC, yet Path Integral Molecular Dynamics

(PIMD) is equally applicable to boltzmannons [19]. In PIMD, particles are given ficti-

tious masses and a dynamics that samples Equation 3.38. I do not make extensive use of

this approach (except to equilibrate high temperature trajectories in Chapter 7) because

it suffers from ergodicity problems at low temperatures [79]. As such, applying PIMD be-

tween 1 and 5 K must be done with care. Furthermore, there currently is no rigorous way

of incorporating particle statistics into PIMD. In contrast, particle statistics may be readily

incorporated into PIMC simulations.

Sampling With Exchange In order to include the effects of quantum statistics in PIMC

simulations, one must sample the symmetrized version of the partition function. Equation

3.38 is the quantum partition function for distinguishable boltzmannons. At low temper-

atures, when particles must be treated as indistinguishable, Equation 3.38 must be sym-

metrized. As discussed by Krauth [103], the symmetrized form of the thermal density

matrix may be expressed in terms of the unsymmetrized form

5I use this criterion because of its simplicity. As discussed in Chapter 4, there are more accurate criteria

for selecting move “sizes.”
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ρB/F (�R0, �R1;β) =
1

N !

�

P

(±1)Pρ(�R0, P �R1;β), (3.46)

where P stands for the permutation operator, which re-orders particle labels such that

P �R = {�rP1 ,�rP2 , ...,�rPN }. The boson thermal density matrix corresponds to the positive

sum of unsymmetrized thermal density matrices, while the fermion thermal density matrix

corresponds to a sum of unsymmetrized thermal density matrices that alternate in sign.

Because the boson thermal density matrix is always positive, it may readily be sampled using

Monte Carlo techniques. In contrast, the fermion density matrix may become negative,

resulting in a sign problem that has not yet been resolved.6 Because of the sign problem,

and because I treat bosons in Chapter 7, I will restrict my subsequent discussion to the

sampling of the boson partition function.

According to Equation 3.46, sampling the boson thermal density matrix requires not

only sampling polymer configurations, but the N ! permutations among particles. These

permutations may be viewed as creating cycles of interconnected particles that are indis-

tinguishable from one another. For example, if N = 3, possible cycles of particles include

(1 → 1; 2 → 2; 3 → 3), (1 → 2 → 3 → 1), and (1 → 2 → 1; 3 → 3). The first example

cycle is the identity cycle, the cycle that always holds for boltzmannons, in which paths of

particles close on themselves. The second cycle consists of three interconnected particles,

where the end of the first connects to the beginning of the second, the end of the second to

the beginning of the third, and the end of the third back to the beginning of the first in one

long multi-particle polymer. The third cycle consists of two interconnected particles and

one that closes on itself. The boson density matrix may be viewed as an average over all

such permutations connecting N particles in different ways. Sampling the boson partition

function is thus a two step process. One must first sample permutation space for different

cycle lengths and then sample the coordinates that correspond to those cycle lengths.

The algorithm typically used to sample the boson partition function is the permutation-

bisection algorithm. The permutation-bisection algorithm may be viewed as a multistage

algorithm in which the first stage consists of permutation sampling and the second stage

6Although attempts are being made. See Dubois [58] or Van Houcke [87].
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Figure 3.3: An illustration of the permutation-bisection algorithm. In the permutation-

bisection algorithm, permutations of a set of quantum polymers are sampled (1). First,

a permutation of the particle labels is sampled (2). Then, segments are regrown between

time slices k and k+ s among the particles according to the permutation sampled (3). The

bisection algorithm is employed to sample the positions of the connecting segments. If both

the permutation and the bisection moves are accepted, the permutation-bisection move is

accepted and the original set of polymers are now interconnected in a new a fashion (4).

Here, the numbers 1, 2, and 3 denote the particle numbers. The red circles designate the

different particles, while the black lines denote the interbead springs.

consists of bisection moves (see Figure 3.3).

Unlike coordinate space, permutation space is discrete. Permutation sampling is there-

fore commonly performed using the heat bath algorithm. In the heat bath algorithm, the

transition probability of a move is

T (s → s�) =
π�
s

C(s)
, (3.47)

where C(s) is the sum of the probabilities of all moves capable of being sampled from state

s. Likewise, the heat bath acceptance probability is
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A(s → s�) = min

�
1,

C(s)

C(s�)

�
. (3.48)

In the simplest form of the permutation-bisection algorithm, the transition probabilities

of all sufficiently probable cycles are computed and stored in a table [40]. The transition

probability of a two-particle permutation in which a chain is grown from particle i starting

at timeslice k to a particle Pi at timeslice k+ s, where s = 2m is the length of the chain to

be regrown, is

T (P ) ∝ e−(�ri,k−�rPi,k+s)2/4mλsτ . (3.49)

The transition probability is therefore only a function of the kinetic portion of the density

matrix. This is because, during permutation sampling, the only thing that changes is

how the particles are connected, not their positions. As a result, their potential energies

remain the same and do not contribute to the transition probability. Along the same lines,

the transition probability of a three-particle cycle connecting particle i to particle Pi and

particle Pi to particle PPi from timeslice k to k + s is

T (P ) ∝ e−(�ri,k−�rPi,k+s)2/4mλsτe−(�rPi,k−�rPPi,k+s)2/4mλsτ . (3.50)

The probabilities of longer cycles may be computed similarly. The probabilities of all per-

mutation cycles are calculated and placed in a table, assuming that their probabilities

surpass some selected threshhold value.7 Before sampling the table, each of the proba-

bilities is normalized by the sum of the probabilities in the table, such that the largest

possible probability is 1. The table is then randomly sampled. Constructing a table in this

manner often becomes inefficient when the length of cycles to be sampled becomes large.

In such cases, the probabilities of many permutations are computed, yet few are tabulated

and eventually sampled. An alternative to explicitly constructing permutation tables is to

instead implicitly construct cycles by randomly walking through particle labels [23]. This

is the approach used in Chapter 7. In this approach, one first selects a random particle, i,

and a random bead on that particle, k. One then samples whether a new particle should

7This mildly biases your sampling, assuming that the threshhold is sufficiently small.
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be added to particle i’s cycle. If so, a new particle is randomly sampled from the table of

N pair permutations that particle i can undergo. This process of sampling whether to add

a particle to the cycle and then selecting which particle to add is continued until a move to

add a new particle is rejected. More specifically, one begins by constructing a table, K(1)
i,P i,

of all pair permutations between particle i at timeslice k and all other particles at timeslice

k + s where

K(1)
i,P i = e−(�ri,k−�rPi,k+s)2/4mλsτ (1− δi,P i). (3.51)

Note that, unlike the permutation tables above, this table excludes the identity permutation.

The probability of adding a new particle to the cycle, C(1), is then computed

C(1) =
Q1

Q1 + e−(�ri,k−�ri,k+s)2/4mλsτ
. (3.52)

Here Q1 =
�

PiK
(1)
i,P i. If this acceptance test fails, the move is rejected. If the move is

accepted, one subsequently selects a new permutation partner from K(1)
i,P i with probability

K(1)
i,P i/Q1. Supposing that the selected particle Pi = j, one then constructs a table of all

pair permutations between j and all other particles, K(2)
j,P j , where

K(2)
j,P j = e−(�rj,k−�rPj,k+s)2/4mλsτ (1− δj,P j). (3.53)

As before, C(2) is computed and the move to add another particle is accepted or rejected.

If the move is accepted and particle j permutes with particle i, the cycle closes on itself

and the move is completed. If j permutes with a new particle, l, however, permutation

sampling continues. This time, particle l is forbidden from permuting with itself and the

previously-selected particle j. If particle l was allowed to exchange with particle j, the

cycle would incorrectly close on itself. Thus, the permutation table for particle l assumes

the form

K(3)
l,P l = e−(�rl,k−�rPl,k+s)2/4mλsτ (1− δl,P l − δj,P l). (3.54)

The probability to add a new particle Pl is likewise
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C(3) =
Q3

Q3 + e−(�rl,k−�rl,k+s)2/4mλsτ + e−(�rl,k−�rj,k+s)2/4mλsτ
. (3.55)

This process continues as before, but excluding particles, other than the first, from being

added to the chain a second time. The entire move is accepted once the cycle closes on itself.

This formulation of the permutation-bisection algorithm successfully samples short cycles.

In order to sample longer permutation cycles, as are found in 4He below 2 K, however,

one must increase the acceptance probability of three-cycles over that of two-cycles and

four-cycles over that of three-cycles [24]. Making three-cycles six or more times and four-

cycles twelve or more times as likely as two-cycles was found to be sufficient for reproducing

previously published 4He cycle distributions for the work discussed in Chapter 7. Once a

new permutation is sampled, the newly connected particles are joined using the bisection

algorithm, as shown in Figure 3.3. Since multiple particles may be involved in a new cycle,

unlike in the single-particle bisection algorithm, one must sample midpoints for all particles

involved in the cycle at once at each stage.

In the implementation of the permutation-bisection algorithm in Chapter 7, permutation-

bisection moves are sampled 10% of the time and centroid and bisection moves are sampled

the remainder of the time. Because one must construct tables of potential moves and

paths among multiple particles if any moves are accepted, permutation-bisection moves are

computationally expensive. This is exacerbated by the fact that permutation moves are

typically accepted only a fraction of a percent of the time. In order to amortize the cost of

permutation-bisection moves, one constructs a single transition probability table and con-

tinually samples it until a permutation move is accepted. In Chapter 7, a single transition

probability table is sampled 50000-75000 times before sampling a new move.

Long exchange cycles are indicative of superfluidity. As discussed in Chapter 2, the

superfluid-normal liquid transition ensues at 2.18 K in 4He. Multiparticle permutation

cycles begin to be observed a few Kelvin above the superfluid transition [44]. Long cycles

(greater than four particles) only begin to be observed below the superfluid transition. In

PIMC, the superfluid phase is characterized by the appearance of cycles that traverse the

full simulation box (see Figure 3.4).

The superfluid density, ρs, of a system may be quantified by counting how many cycles
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Figure 3.4: A comparison between particle paths in normal liquids above the superfluid

transition and superfluids below the transition. In the normal liquid (left), permutations

are rare and particle paths close on themselves. In the superfluid (right), long permutation

cycles are common and particle paths are interconnected. Paths that contribute to calcula-

tions of the superfluid density wind around the full box like the bold path on the right. The

depicted systems are assumed to be two-dimensional and the paths’ extent in imaginary

time at a single time slice is projected onto an x-y plane.
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“wind,” or wrap, around the box [40]

ρs
ρ

=
�W 2�

2λβN
. (3.56)

In this equation, ρ denotes the particle density and �W denotes the winding number, the

number of times the particle paths wrap around the simulation box. In Chapter 7, the wind-

ing number is computed by counting the flux of paths through an arbitrary surface in each

direction. Paths that contribute to the superfluid density cross the surface an odd number

of times, whereas those that do not contribute cross an even number of times. Other more

involved techniques may also be employed to determine the superfluid density [157]. As

noted in Chapter 2, the superfluid density differs from the condensate fraction. Estimating

the condensate fraction from a PIMC simulation is more involved than determining the

superfluid density since the condensate fraction is proportional to the off-diagonal compo-

nents of the single-particle density matrix [40]. This boils down to simulating not only closed

chain polymers, but open chain polymers whose ends are free as well. Future extensions of

the work in Chapters 6 and 7 may measure condensate fractions in this manner.

An alternative QMC technique for measuring the superfluidity of systems of bosons

is the worm algorithm [26; 27]. By design, this algorithm is more efficient for simulating

exchange among polymers than the permutation-bisection algorithm discussed above. We

did not use this algorithm in Chapter 7 not only because our exchange code was adapated

from a previous PIMC code without exchange, but because estimating diffusion in the worm

algorithm may be less straightforward than in PIMC.

3.2.2.4 Auxiliary-Field Quantum Monte Carlo

Like PIMC, Auxiliary-Field Quantum Monte Carlo (AFQMC) is a finite-temperature QMC

technique. AFQMC therefore also samples the many-particle partition function, however,

unlike PIMC, AFQMC works in the site basis and is best suited for second-quantized Hamil-

tonians of lattice models, such as the fermion Hubbard Hamiltonian [20; 172; 173]. These

disparities lead to dramatic differences in how the short-time density matrix in AFQMC

is evaluated. Namely, whereas the potential operator, V̂ , is diagonal in PIMC’s position

basis, it is not diagonal in AFQMC’s site basis. In order to evaluate the short-time density
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Figure 3.5: A depiction of the AFQMC algorithm. In the AFQMC algorithm, the partition

function may be expressed as an integral over auxiliary fields at each lattice site and time

slice. These auxiliary fields may be thought of as a set of Gaussian-distributed constants.

During the course of an AFQMC simulation, they are repeatedly sampled until averages

converge.

matrix, one must therefore convert the potential operator into a suitable form. This is done

by re-expressing exponentials of two-body interactions into integrals over exponentials of

one-body interactions and a set of auxiliary fields. As depicted in Figure 3.5, each site and

each time slice has its own auxiliary field. The auxiliary fields at different time slices may

therefore be thought of as paths in auxiliary field space. The partition function and related

observables are evaluated by sampling the auxiliary field paths using Monte Carlo.

As in PIMC, the finite temperature expectation value of an observable, Ô, may be

written as

�Ô� ≡

Tr
�
Ôe−βĤ

�

Tr
�
e−βĤ

� , (3.57)
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where Ĥ is the Hamiltonian of the system and β = 1/kBT . One may rewrite the partition

function, Z, in terms of a product of M short-time propagators

Z = Tr
�
e−βĤ

�
= Tr

�
e−τĤe−τĤ ...e−τĤ

�
. (3.58)

Here, τ ≡ β/M is the time slice in imaginary time.

AFQMC was originally designed to accomodate fermions, only being generalized to treat

bosons and Bose-Fermi mixtures by Rubenstein et al. [169]. In what follows, I will likewise

confine my discussion to the paradigmatic fermion Hamiltonian, the Hubbard Hamiltonian.

As usual, the Hamiltonian, Ĥf , may be written as a sum of kinetic, K̂f , and potential, V̂f ,

contributions. In the Hubbard Model,

K̂f = −tf
�

�ij�,σ

�
f̂ †
iσf̂jσ +H.c.

�
+

�

i,σ

�fi,σm̂i,σ (3.59)

and

V̂f = Uf

�

i

m̂i↑m̂i↓. (3.60)

These terms are written in second-quantized notation [63], where f̂ †
iσ and f̂iσ respectively

create and destroy a fermion with spin σ on site i. tf denotes the hopping parameter and the

kinetic term describes the hopping, or movement, of electrons from site to site on a lattice.

�fi,σ designates the energy for a fermion to be located at a site i from such contributions as the

external or chemical potentials. The potential term describes the interaction between two

fermions of opposite spins interacting on a single site. Uf is the two-body fermion-fermion

repulsion. As in PIMC, the short-time propagators may be simplified by performing a

Trotter-Suzuki factorization [185; 188]. At second order this yields

e−τ(K̂f+V̂f ) = e−(1/2)τK̂f e−τ V̂f e−(1/2)τK̂f +O(τ3), (3.61)

which becomes exact in the limit τ → 0. Each short-time propagator is thus a product of

two one-body propagators and one two-body propagator. In the Hubbard Hamiltonian,
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V̂f = Uf

�

i

m̂i↑m̂i↓ (3.62)

= −
Uf

2

�

i

(m̂i↑ − m̂i↓)
2 +

Uf

2

�

i

(m̂i↑ + m̂i↓) .

This form allows the two-body propagators to be re-expressed in terms of an integral

over a product of one-body propagators and a set of auxiliary fields using the Hubbard-

Stratonovich (HS) Transformation [35; 85]

e(1/2)τ v̂
2
=

1
√
2π

� ∞

−∞
dφe−(1/2)φ2

eφ
√
τ v̂, (3.63)

where φ is an auxiliary field (AF). Note that, while there are discrete versions of the HS

transformation for the form of V̂f in the Hubbard Model, Equation 3.63 is a continuous

version that formally resemebles the transformations that will be used in Chapter 5.

This expression for the short-time propagator may be further simplified by viewing the

collection of fields at each time slice as a vector of fields, �φ ≡ {φ1,φ2, ...,φN}, and the

normalized Gaussians at each site as probabilities, p(φi). Here, N denotes the number of

lattice sites. Collecting all one-body operators into B̂f (�φ), one has [200]

e−
1
2 τK̂f e−τ V̂f e−

1
2 τK̂f =

� ∞

−∞
d�φp(�φ)B̂f (�φ), (3.64)

where

B̂f (�φ) = e−
1
2 τK̂f

�
�

i

eφi

√
Uf τ(m̂i↑−m̂i↓)

�
e−

1
2 τK̂f , (3.65)

and the one-body term in Equation 3.62 can be absorbed by replacing �fi,σ with (�fi,σ+Uf/2)

in Equation 3.59.

Substituting Equation 3.64 into the expression for Z in Equation 3.58, one arrives at

the central AFQMC equation

Zf =

� ∞

−∞
d�Φp(�Φ)Tr

�
B̂f (�φl)...B̂f (�φ1)

�
, (3.66)

where �Φ denotes the full collection of auxiliary fields at each time slice and site and p(�Φ) is

the corresponding probability of selecting those fields.
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The partition function may therefore be viewed as an integral over all fields of the Gaus-

sian probability of selecting a set of fields multiplied by the trace of single-body operators

evaluated as a function of the fields. The set of fields at each time slice and site constitutes

a path in AF space. Thus, in AFQMC, one calculates the multi-dimensional partition func-

tion by stochastically sampling not a set of paths in coordinate space, but a set of paths in

AF space and evaluating the weighted average of the trace along those paths.

It turns out that the fermion trace over one-body propagators can be evaluated analyt-

ically and expressed as a determinant [86]

Trf
�
B̂f (�φl)...B̂f (�φ1)

�
= Det

�
I +Bf (�φl)...Bf (�φ1)

�

σ=↑
Det

�
I +Bf (�φl)...Bf (�φ1)

�

σ=↓
.

(3.67)

If the size of the single-particle basis (in this case the number of lattice sites) is N , Bf ( �φk)

is the N × N matrix corresponding to the propagator B̂f ( �φk), and I is the corresponding

unit matrix. Inserting this expression into that for the partition function, one arrives at

Zf =

� ∞

−∞
d�Φp(�Φ)Det

�
I +Bf (�φl)...Bf (�φ1)

�

σ=↑
Det

�
I +Bf (�φl)...Bf (�φ1)

�

σ=↓
. (3.68)

In a similar vein, tracing over fermionic operators yields the fermion Green’s function

Gf
ij ≡

Trf
�
f̂if̂

†
j B̂f (�φl)...B̂f (�φ1)

�

Trf
�
B̂f (�φl)...B̂f (�φ1)

� (3.69)

=

�
I

I +Bf (�φl)...Bf (�φ1)

�

ij

, (3.70)

where the subscripts on the right denote the (i, j)-th element of the matrix. Most observ-

ables of interest may be easily expressed in terms of the single-particle Green’s function

using Wick’s theorem [63].

With Equations 3.68 and 3.70 in hand, one can evaluate nearly any observable by

sampling paths according to the partition function and calculating the Green’s function

(and hence any related observable) as a function of those paths. In particular, this may be

done by setting the transition probability for sampling a new set of fields, �Φ�, as

T (�Φ → �Φ�) = p(�Φ�). (3.71)

The acceptance probability is then



CHAPTER 3. QUANTUM MONTE CARLO 61

A(�Φ → �Φ�) = min



1,
Det

�
I +Bf (�φ

�
l)...Bf (�φ

�
1)
�

σ=↑
Det

�
I +Bf (�φ

�
l)...Bf (�φ

�
1)
�

σ=↓

Det
�
I +Bf (�φl)...Bf (�φ1)

�

σ=↑
Det

�
I +Bf (�φl)...Bf (�φ1)

�

σ=↓



 .

(3.72)

Accordingly, one starts with a set of randomly initialized fields at each time slice and site

and then samples a new set of fields �Φ
�
from a Gaussian. These fields are accepted/rejected

based upon the ratio of the new to the old determinants. If the new fields are accepted, those

fields are kept and new fields are sampled in turn until the desired observables evaluated as a

function of the fields have converged. The AFQMC algorithm thus bears many similarities to

the way the Monte Carlo algorithm is used to study the Ising Model (see Figure 3.6). In the

work presented in Chapter 5, I use a slightly more sophisticated birth/death algorithm where

walkers automatically accept the fields they sample, but are weighted by the probabilities of

those fields. Much as in Diffusion Monte Carlo, the walkers undergo branching depending

upon their weights. The walkers that survive are used to calculate final observables.

It should be noted that the version of the AFQMC algorithm described above is the

finite temperature version. AFQMC may also be reformulated to work at zero temperature.

In this algorithm, one acts the short-time propagators on a trial wavefunction, thereby

projecting out the ground state wavefunction. Ground state AFQMC is similarly suited to

second-quantized Hamiltonians and thus differs from Diffusion Monte Carlo in the basis used

and how the related short-time propagators are evaluated. Ground state AFQMC has been

successfully employed to study ultracold Bose gases [161; 162] and molecular structure [1;

2].

The primary weakness of the AFQMC algorithm as described above is that it may

suffer from the sign problem. The probability of sampling a set of fields in AFQMC is

proportional to a set of exponentials times a product of determinants. Away from half-

filling, the values of the two determinants are unequal and one may become negative. As

a result, one winds up sampling negative probabilities that cancel positive probabilities,

leading to an exponentially reduced signal-to-noise ratio [115]. One way of eliminating the

sign problem in AFQMC is by using the Constrained Path Approximation [199; 201]. In the

Constrained Path Approximation, as soon as a walker samples a negative determinant, it
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Figure 3.6: A comparison between the classical Monte Carlo algorithm as applied to the

Ising model and AFQMC. In the Ising Model (left), interacting electronic or nuclear spins

are represented as up or down spins on a lattice. Average energies and magnetizations

may be computed for the Ising model using Monte Carlo by flipping the spins one-by-one

iteratively and accepting/rejecting moves based upon the difference in the related configu-

rations’ energies. In AFQMC (right), spins are also flipped on a lattice, except these spins

are Gaussian-distributed and are present not only at each site, but at each time slice as

well. A newly sampled spin in AFQMC is accepted/rejected based upon the ratio of the

new configuration’s determinant to the old configuration’s determinant.
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is eliminated. By only including walkers with positive determinants, walker weights remain

strictly positive. This approximation has been shown to yield accurate results for Hubbard

model and molecular energies, but is known to yield qualitatively inaccurate correlation

functions. In Chapter 5, I use a generalization of the Constrained Path Approximation, the

Phaseless Approximation [202], to mitigate the sign and phase problems in my Bose-Fermi

mixture simulations.

3.3 Outlook

In this chapter, I have reviewed a number of QMC techniques placing a special emphasis

upon the Path Integral and Auxiliary-Field Quantum Monte Carlo algorithms. The algo-

rithms discussed in this chapter will be frequently referenced in the remaining chapters.

In Chapter 4, I develop a new projector QMC technique that bears some similarity to the

Diffusion Monte Carlo algorithm outlined above. In Chapter 5, I extend the AFQMC al-

gorithm for fermions discussed here to bosons and Bose-Fermi mixtures. I lastly apply the

PIMC algorithm to quantum hard spheres in Chapter 6 and to superglassy hydrogen in

Chapter 7. The material in this chapter thus serves as the foundation upon the rest of this

thesis is built.
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Chapter 4

The Monte Carlo Power Method

In this chapter, I describe a modified power method for computing the subdominant eigen-

value, λ2, of a matrix or continuous operator. While useful both deterministically and

stochastically, I focus on defining simple Monte Carlo methods for its application. The

methods presented use random walkers of mixed signs to represent the subdominant eigen-

function. Accordingly, the methods must cancel these signs properly in order to sample

this eigenfunction faithfully. I present a simple procedure to solve this sign problem and

then test my Monte Carlo methods by computing the λ2 of various Markov chain transition

matrices. As the |λ2| of this matrix controls the rate at which Monte Carlo sampling re-

laxes to a stationary condition, its computation also enables the comparison of efficiencies

of several Monte Carlo algorithms as applied to two quite different types of problems. I first

compute λ2 for several one- and two-dimensional Ising models, which have a discrete phase

space, and compare the relative efficiencies of the Metropolis and heat bath algorithms as a

function of temperature and applied magnetic field. Next, I compute λ2 for a model of an

interacting gas trapped by a harmonic potential, which has a mutidimensional continuous

phase space, and study the efficiency of the Metropolis algorithm as a function of tempera-

ture and the maximum allowable step size, ∆. Based on the λ2 criterion, I find that small

lattices appear to give an adequate picture of comparative efficiency for the Ising models

and that the heat bath algorithm is more efficient than the Metropolis algorithm only at

low temperatures where both algorithms are inefficient. For the harmonic trap problem,

I find that the traditional rule-of-thumb of adjusting ∆ so the Metropolis acceptance rate
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is around 50% range is often sub-optimal. In general, as a function of temperature or ∆,

λ2 for this model displays trends defining optimal efficiency that the acceptance ratio does

not. The cases studied also suggest that Monte Carlo simulations for a continuum model

are likely more efficient than those for a discretized version of the model.

4.1 Introduction

When designing a Monte Carlo simulation, the computational scientist often must decide

which of several algorithmic options is the most efficient or how to optimize a particular

algorithm. Besides experience, few rules of guidance exist.

For detailed balance algorithms, the class I assume, likely the most rigorous rule is based

on the work of Peskun [152]. He showed analytically that if P 1 and P 2 are two transition

matrices (as defined in Chapter 3) that satisfy detailed balance and asymptote to the same

limiting distribution, then for jumps from state j to state i, algorithm 1 is more efficient

than algorithm 2 if

P 1
ij > P 2

ij , for all i �= j. (4.1)

While he used this relation to establish the greater efficiency of the Metropolis-Hastings

algorithm over several other generalized Metropolis algorithms, establishing this relation on

a case by case basis is generally difficult for large phase spaces.

The theory of Markov chains says that the magnitude of the transition matrix’s sub-

dominant eigenvalue, λ2, controls the rate at which the sampling relaxes to a stationary

condition [114]. Doll et al. call this eigenvalue the asymptotic convergence parameter [57].1

Because its magnitude must be less than one, its closeness to zero indicates a high degree

of efficiency, and closeness to 1, poor efficiency. Statisticians in particular have derived a

number of upper and lower bounds for this eigenvalue [114]. Again, making use of this

rigorous information is sometimes difficult.

Common experience says that efficient sampling occurs when the acceptance ratio is

around 50%. The acceptance ratio is the number of jumps to a different state divided by

1Here, my definition of the second eigenvalue as λ2 differs from the choice of Doll et al. which is 1− λ2

[57].
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the total number of jumps attempted. In some sense, this rule of thumb is consistent with

Peskun. Because the transition matrix satisfies
�

j Pi→j = 1, moving transition probability

off of the diagonal generally increases the acceptance. However, the more relevant impli-

cation of Peskun’s result is the need for jumps among areas distantly separated in phase

space. Acceptance ratios are particularly misleading in cases where phase space separates

into several relatively localized regions of large Boltzmann weight separated by an energy

activation barrier larger than thermal fluctuations. In this circumstance, sampling is quasi-

non-ergodically confined to one region, and within this region the acceptance ratio may be,

or may have been adjusted to be, the canonical 50%.

A direct approach to assessing the second eigenvalue is computing it numerically. The

size of the transition matrix (or, in many cases, the transition operator) restricts a direct

deterministic approach to small systems because of the amount of computer memory re-

quired. Recently, Doll et al. used the deterministic approach on the Metropolis algorithm’s

transition matrix for single quadratic, quartic, double well, and triple well oscillator poten-

tial energies [57]. They discretized the one-dimensional phase space and prohibited very

large displacements to create a finite matrix representation of the asymmetric transition

matrix. They then used standard eigensystem software to compute the subdominant eigen-

value as a function of temperature and the Metropolis box size. The Metropolis box size is

the maximum size of the proposed move from the current position in phase space.

Doll et al. found several interesting results. The results for the quadratic and quartic

wells were similar: adjusting the box size so the acceptance rate is around 50% resulted in

the second eigenvalue being reasonably removed from unity. For the double and triple wells,

the competition between intra- and inter-well sampling made box size optimization more

difficult. In some cases, an acceptance rate around 50% corresponded to an unfavorable

second eigenvalue. Most interestingly, apparent activation energies in the behavior of the

second eigenvalue existed and depended on the box size. Further, as a function of box size,

they found structure in the second eigenvalue reflecting the expected phase space structure.

The acceptance ratio, however, featured little of the informative structure seen in the second

eigenvalue. In short, the sampling dynamics, in particular the length scale dependence of

the apparent activation energies, contained information about the underlying structure of
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the potential energy surface, like the width of the barrier region, for example.

Extending this type of deterministic analysis to higher dimensional phase spaces, how-

ever, is rapidly checked by inadequate computer memory. Accordingly, I propose a shift to

a new Monte Carlo method to make this extension possible. I will illustrate the usefulness

of this new method by comparing the second eigenvalue for several Monte Carlo algorithms

applied to the one- and two-dimensional Ising models and for the Metropolis algorithm

applied to a gas of N interacting particles in a harmonic trap.

Computing the subdominant eigenpair {λ2, |ψ2�} is a significant shift beyond conven-

tional Monte Carlo eigenanalysis. Monte Carlo methods based on the power method, such

as the Diffusion Monte Carlo, Green’s Function Monte Carlo, and Ground State Auxiliary-

Field Quantum Monte Carlo methods described in Chapter 3, have long computed just the

dominant eigenpair {λ1, |ψ1�} of very large matrices. For the Monte Carlo transition ma-

trices, the dominant eigenvalue is known and must be one. Further, the left and right hand

dominant eigenvectors are also known. If P is column stochastic, that is,
�

j Pi→j = 1,

the right eigenvector is the limiting distribution. The left eigenvector’s components are all

positive and equal. My method, which is based on a modified power method, uses this

information about the dominant eigenpair to focus on obtaining the first subdominant pair.

It starts with the recent very large matrix multiple eigenvalue Monte Carlo work of Booth

and Gubernatis [29; 30; 31; 74] and adds to it an algorithm proposed by Yamamoto [197].

My approach is significantly different from the one proposed by Nightingale and Blote

[139; 140; 141] who adapted the variational quantumMonte Carlo method [81] for computing

a few excited states to the calculation of subdominant eigenvalues. In their modificaton of

this variational approach, they utilized knowledge of the dominant eigenpair, and with a

multi-parameter trial wavefunction, accomplished high precision estimates of the dynamical

exponent for a Metropolis simulation of the two-dimensional Ising model at the bulk critical

point. Important to this method is the quality of the trial wavefunction. Recently, Casey

et al. applied this method to a multi-variate Gaussian [38].

In Section 2, I will introduce my method and in Section 3 define my models and discuss

the details of my simulations. Section 4 contains my results for the Ising and harmonic trap

models. Because Ising model simulations have no Metropolis box size, I instead varied the
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algorithm, using the standard single spin-reversal Metropolis method, plus the single- and

multi-site heat bath algorithms. In the last section, Section 5, I summarize my results and

discuss future work.

4.2 Background

Most commonly used Monte Carlo eigenvalue methods are based on the power method.

The power method projects some starting state to the eigenpair of some matrix or operator

A associated with the eigenvalue of largest absolute value. For a Markov chain transition

matrix, P , this eigenvalue must always be real, positive, and unity. With an initial state,

|ψ�, the power method iterates

1. |φ� = A|ψ�

2. |ψ� = |φ�/�φ� (4.2)

until some convergence criterion is met. Upon convergence, the eigenstate of the dominant

eigenpair is |φ� and the eigenvalue is �φ�. Any norm may be used. In this chapter, I will

use the infinity norm, �φ� = maxi |φi|, where φi are the components of |φ� in some basis.

To find two eigenpairs, I need two starting states, |φ�� and |φ���. If I were to apply

the power method to them independently, each would independently converge to the same

dominant eigenpair. To couple the iteration, I modify the updating step of the power

method to be

|ψ�
� = |φ�

�+ η1|φ
��
�

|ψ��
� = |φ�

�+ η2|φ
��
�, (4.3)

with the intent of converging |ψ�� to the dominate state |ψ1� and |ψ��� to the subdominant

state |ψ2�.

To fix values for the η’s, I start with the matrix-vector form of the defining equation for

an eigenpair

λψi =
�

j

Aijψj (4.4)
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and note that for any ψi �= 0 an exact estimator for the eigenvalue is

λ =

�
j Aijψj

ψi
. (4.5)

Related exact estimators exist for sums of these components grouped in any number of

overlapping or non-overlapping ways

λ =

�
i∈R1

�
j Aijψj�

i∈R1
ψi

=

�
i∈R2

�
j Aijψj�

i∈R2
ψi

= · · · =

�
i∈RN

�
j Aijψj�

i∈RN
ψi

. (4.6)

This observation puts a constraint on the allowed values of η for which the sum ψi =

φ�
i + ηφ��

i is an eigenvector. If I substitute ψi into Equation 4.6 and cross-muliply the

equalities involving R1 and R2, a quadratic equation for η results. One root of this equation,

η1, makes the eigenvalue estimate λ1 associated with φ�
i + ηφ��

i larger than the other. As

shown by Gubernatis and Booth, these choices converge |ψ�� and |ψ��� to |ψ1� and |ψ2� [74;

29]. It is straightforward to generalize this method to compute more that two eigenpairs.

Following Yamamoto, I modified this method to converge to the subdominant eigenpair

using knowledge of the first eigenpair. I define

P1 =
�
i∈R1

φi P2 =
�
i∈R2

φi

P �
1 =

�
i∈R1

�
j
Aijφj P �

2 =
�
i∈R2

�
j
Aijφj .

After a sufficient number of iterations

|ψ�
� ∼ a1|φ1�+ a2|φ2� ∼ a1|ψ1�+ a2|ψ2� (4.7)

|ψ��
� ∼ a1λ1|φ1�+ a2λ2|φ2� ∼ a1λ1|ψ1�+ a2λ2|ψ2�. (4.8)

Accordingly, I can write

P1 ∼ a1α1 + a2β1 P �
1 ∼ a1α1λ1 + a2β1λ2

P2 ∼ a1α2 + a2β2 P �
2 ∼ a1α2λ1 + a2β2λ2,

(4.9)

where

α1,2 =
�

i∈R1,2

φ1,i β1,2 =
�

i∈R1,2

φ2,i. (4.10)

I can now solve Equation 4.9 for

λ2 =
α1P �

2 − α2P �
1

α1P2 − α2P1
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and

a1 =
λ2P1 − P �

α1 (λ2 − λ1)
.

The P ’s and α’s are easily computed sums. In computing α1, I use exact knowledge of |ψ1�,

and in computing P �, I use the exact value of λ1 which is unity. The new power method

iterates

1. |ψ� = A|φ�

2. Calculate a1 and λ2

3. |ψ� ← |ψ� − ηa1|ψ1�

4. |φ� = |ψ�/�ψ�. (4.11)

Yamamoto shows that his procedure converges to λ2 and |ψ2� provided

(λ1 − λ2)/λ1 < η < (λ1 + λ2)/λ1. (4.12)

In what follows, I chose η to be close to the lower bound.

Both deterministic and Monte Carlo use of this modified power method are possible. In

the following section, I will detail my Monte Carlo implementation. In this implementation,

I use the left dominant eigenvector of A, that is, the one with uniform positive components.

This choice trivializes the computation of several sums.

4.3 Models and Methods

I consider two models. The Ising model provided a discrete transition matrix with a finite

number of transition elements, while a gas in a harmonic trap model provided a continuous

transition kernel with an infinite number of transition elements. The core of my Monte

Carlo eigenpair method is the same in both cases.

4.3.1 Ising Models

I consider both the L-site one-dimensional model

E = −

L�

i=1

(Jsisi+1 +Hsi) (4.13)
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and the L× L-site two-dimensional model

E = −

L�

i=1

L�

j=1

(si,jsi+1,j + si,jsi,j+1 +Hsi,j) (4.14)

in an external field H. Here, E is the energy and the si = ±1 are the Ising spins. I assume

periodic boundary conditions; that is, si+L = si in one dimension, and si+L,j = si,j+L =

si,j = si+L,j+L in two dimensions.

For these models, I compute the second eigenvalue of the transition matrices of multiple

Monte Carlo algorithms: the single-site, spin-reversal Metropolis algorithm, a single-site

heat bath algorithm, and the two- and three-site heat bath algorithms. The algorithms are

defined by the transition probability matrix, PS→S� , which in turn defines the probability

of jumping from state |S� to |S��. A state, |S�, is given by

|S� = |s1, s2, . . . , sN �, (4.15)

with N equal to L or L2. According to the Metropolis algorithm, flipping an Ising spin at

one site to produce state |S�� is accepted or rejected according to

PS→S� = min
�
1, exp(−E(S�)/kT )/ exp(−E(S)/kT )

�
. (4.16)

The single-site heat bath algorithm transitions the state to itself or to one with the spin

reversed at one site. If E(S̄) is the energy of the state with the single spin reversed and

all remaining spins fixed and Z = exp(−E(S)/kT ) + exp(−E(S̄)/kT ), then the non-zero

elements of P are

PS→S = exp(−E(S)/kT )/Z

PS→S̄ = exp(−E(S̄)/kT )/Z. (4.17)

A multiple-site heat bath algorithm is a natural extension of the above. The single-site

heat bath algorithm samples one of the two spin states from the conditional Boltzmann

distribution of a single spin with all the other spin values fixed. A multiple-site heat bath

algorithm samples the state of several neighboring spins with the rest fixed. For an n-site

algorithm one of 2n states is selected.
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For each of these algorithms, I compute the second eigenvalue deterministically using

standard eigensystem software for small lattices, deterministically using Equation 4.11 for

slightly larger lattices, and stochastically using Equation 4.11 for still larger lattices. I will

now present the details of the Monte Carlo approach.

The Monte Carlo method implements the modified power method by using a collection

of M random walkers, each specified by a weight, wS , and a spin configuration state, |S�.

The number of these states is 2N . I represent a spin configuration by an integer S in the

range 0 to 2N−1, where each bit of this integer corresponds to a lattice site and a plus

Ising spin maps to a set bit and a minus spin maps to an unset one. The weight represents

the component of the subdominant eigenstate in the spin-configuration basis. Monte Carlo

becomes necessary when this number is too large for a deterministic calculation. The Monte

Carlo method is most powerful when M � 2N .

The algorithm estimates the eigenvalue by using the walkers in the exact estimators

defined by Equations 4.5 and 4.6, not by using them in a variational estimator [140; 141].

This use needs two regions. In general, the choice of regions is not critical,2 as long as they

are populated by a sufficient number of walkers so that the walkers are representative of the

eigenstate in that region. Regions therefore do not necessarily have to be exclusive and can

overlap. For the zero-field Ising model, my regions were all states with an up-spin majority

and all states with a down-spin majority. I note this means states with equal numbers of

up and down spins do not contribute to the estimation. This choice accommodated the fact

that, as the lattice size increases, most of the walkers at low temperature are either in the all

spins-up or all spins-down state. In the non-zero-field simulations, one region was the one

state with all spins aligned with the magnetic field and several adjacent nearly all-aligned

states (the number of adjacent states that needed to be included with the all-aligned state

scaled with system size); the other region was all other states.

In contrast to the dominant eigenstate, which must have only non-negative components,

2As a guide to the choice of regions, I comment that left and right eigenstates corresponding to different

eigenvalues are orthogonal. The subdominant state I seek is thus orthogonal to the dominant right-hand state

which is the Boltzmann distribution. Likely good choice of regions will reflect regions with high Boltzmann

weight.
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the subdominant eigenstate must have some negative components. While not essential, it is

helpful if the initial walker weights mix plus and minus signs. While use of starting states

whose variational energy is a significantly better approximate to the answer is possible,

their use was unnecessary for the present study.

For each walker in state |S�, I need to sample PS→S� to produce a walker in the state |S��.

To do this, I used two lists, one for the current walkers and one for the new ones produced

by a Monte Carlo method that samples a state |S�� from the cumulative probability function

of PS→S� , that is, from
�S�

S��=0 PS→S�� . With this procedure, I produce one new walker for

every old one.

The third step in the algorithm, which updates the discrete components ψS of |ψ�

after adding or removing a contribution from the corresponding component of the known

dominant eigenstate, can mix oppositely signed walkers contributing to the same state

|S�. It is essential for a correct solution to have oppositely-signed walkers cancel properly.

Instead of using the weight cancellation methods developed by Booth [29; 30; 32], I tried

a simpler method: After the generation of the new list of walkers is complete, I scan it,

identify all walkers in the same state (that is, identified by the same positive integer), and

replace them with one walker whose weight is the sum of contributing walkers’ weights.

This list compression procedure was found to be effective.

As the iteration progresses, the repeated matrix-vector multiplication creates some very

large-weighted walkers and some very small-weighted ones. It is inefficient to process the

small-weighted ones. Accordingly, after list compression, I eliminated the small-weighted

ones by a weight cut-off procedure: I scan the list, and if a |wS | fell below �, then I draw

a random number, ξ. If ξ is larger than |wS |/�, I keep this walker, but would increase its

weight to wS/�. Otherwise, I remove it from the list. � = 10−3 was used. The weight

cut-off procedure reduces the number of walkers. If reduced too much, say by a half,

the walker population size is replenished by replacing the largest-weighted walkers with

m = integer(wS + ξ) walkers with weight wS/m until the list size is approximately restored

to its original size.
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4.3.2 Harmonic Trap

For models in the continuum, I consider a gas of N interacting classical particles in a

harmonic trap. I intend this to be a simple model of a “cold atom” system, as discussed in

more detail in Chapter 5. The potential energy is

VTrap(X) =
1

2

N�

i=1



Kx2i +
N�

j( �=i)=1

v(xi − xj)



 . (4.18)

Here, X denotes a position in phase space, that is, X = (x1, x2, . . . , xN ). The xi are the

particle displacements from the trap center. I chose v(xi − xj) = C(|xi − xj |− d)2, a rather

artificial interaction, but one staging a competition between the tendency of particles to

roam freely and independently within the externally-generated harmonic trapping potential

and the tendency to position themselves within a distance of d of each other to accommodate

their mutual interactions. d = 1 is used in all examples.

For this model, I compute the second eigenvalue for the Metropolis algorithm. Here,

the transition probability for jumping from position X to X � is

P (X → X �) = T (X → X �)min[1, exp(−V (X �)/kT )/ exp(−V (X)/kT )]. (4.19)

The Metropolis algorithm proposes a phase space position change one particle at a time,

say changing xi to x�i. The proposal samples an x�i from T (X → X �) =
�N

i=1 t(xi →

x�i), where t(xi → x�i) = 0 unless |x�i| = |xi + ∆| ≤ Γ and Γ is a cutoff appropriate

to the potential. The random number, ξ, is chosen uniformly in the interval (−∆,∆).

The parameter ∆ is called the Metropolis box size. The proposed change is accepted

if exp(−V (X �)/kT )/ exp(−V (X)/kT ) is greater than another random number ξ chosen

uniformly in [0, 1]. The parameters Γ and ∆ may be varied widely. Their ratio is what

principally affects the second eigenvalues obtained.

My Monte Carlo strategy is analogous to the one I use for the Ising model, but some de-

tails are adjusted to move from discrete to continuous states. In short, I map the continuum

problem onto a discrete one. I represented each walker by a weight, wX , and phase space

position, X, divided phase space into cells, and formed cell lists grouping walkers into the

cells. Components for the various |ψ� and |φ� states are defined by mapping a combination

of cell numbers and particle numbers onto a positive integer. I thus defined discrete states,
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but ones typically containing many walkers. Finally, the weights of the walkers in each state

were replaced by their average weight. Except where otherwise noted, the cell width in each

phase space dimension is taken to be 0.05. The needed number of walkers could be reduced

by varying the widths. The number of walkers expected to occupy cells at the extreme ends

of the trap, for example, is much smaller than the number expected to occupy cells at the

bottom of the trap. Therefore, enlarging the cell widths above 0.05 units at the far ends of

the trap enabled a reduction in the number of walkers. The optimal size of the cells at the

far ends of the trap varied with the temperature, but could be optimized by increasing the

size of these cells to the maximum size before convergence could no longer be achieved. I

found these sizes ranged from 0.05 to 0.5 times the core cell width. The infinity norm of

the eigenvector needed in step 5 of the algorithm was now taken to be the largest absolute

value of the cell weights.

One needs to define regions to calculate the parameters needed in the updating step 3.

My definitions were simple: The first region included all walkers with all xi < 0, while the

second region included all walkers with all xi > 0. Other choices of regions are possible,

but were not thoroughly explored. My weight control and population resizing procedures

were the same as those used in the Ising simulations. Assigning each walker in the same

cell their average weight was my only weight cancellation procedure.

4.4 Results

4.4.1 Ising Models

Figure 4.1 is representative of the excellent fidelity of the Monte Carlo eigenvalue pre-

dictions. Here, as a function of the reduced temperature, I compare the Metropolis and

single-site heat bath algorithms’ subdominant eigenvalues for a zero-field, 10-site lattice,

computed by both deterministic (using standard eigenvalue software) and Monte Carlo

approaches. The results for other lattice sizes and for two-site and three-site heat bath

algorithms display similar accuracy. All the deterministic calculations I present were per-

formed using standard software. Computing the eigenvalue by Equation 4.11 gave the same

result.
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Figure 4.1: Comparison of the deterministic and Monte Carlo calculations of the second

eigenvalues of the Metropolis and single-site heat bath transition matrices for a zero field

one-dimensional Ising model on a 10-site lattice.
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Figure 4.2: Second eigenvalues for the Metropolis (left) and single-site heat bath (right)

transition matrices for one-dimensional Ising lattices in zero magnetic field computed de-

terministically and by the proposed Monte Carlo method.
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Figure 4.3: Comparisons of the deterministic calculations of the second eigenvalues (left)

and acceptance ratios (right) for the Metropolis, single-site heat bath, and two-site heat

bath algorithms for a one-dimensional, 10-site Ising model in zero magnetic field.

In Figure 4.2a, I show the second eigenvalue for the Metropolis algorithm computed for

short lattices deterministically and longer lattices stochastically, and in Figure 4.2b, I show

the same for the single-site heat bath algorithm. As in Figure 4.1, the Metropolis algo-

rithm’s eigenvalue for reduced temperatures greater than 1 is always less than that of the

heat bath algorithm for a given lattice size. For a given length and any algorithm, the mag-

nitudes of the eigenvalues always decrease monotonically with increasing temperature. For

reduced temperatures less than one, the eigenvalues closely approach unity. The Metropolis

algorithm approaches unity faster than the heat bath algorithm. While not shown, I remark

that the second eigenvalue of all algorithms increases with lattice size, pushing the approach

to unity to higher reduced temperatures. The difference in the temperature dependences of

the eigenvalues and acceptance ratios for the Metropolis, singe-site heat bath, and two-site

heat bath algorithms is shown in Figure 4.3. I note the high temperature crossover in the

behaviors of the Metropolis and heat bath algorithms.

When the external field becomes non-zero, the high temperature lattice size trends

are similar to the high temperature trends of the zero-field case. The low temperature

behavior changes, however. In Figure 4.4, we see that for both the Metropolis and heat

bath algorithms the eigenvalue no longer approaches unity for sufficiently large fields at low
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Figure 4.4: Deterministic calculations of the second eigenvalues and acceptance ratios of

the Metropolis (top) and heat bath (bottom) algorithms for the 10-site Ising model as a

function of reduced temperature and magnetic field.
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Figure 4.5: The behavior of the second eigenvalues (left) and acceptance ratios (right) of

the transition matrix for the Metropolis algorithm as a function of the reduced temperature

when applied to 2× 2, 3× 3, and 4× 4 Ising models in a zero magnetic field.

temperatures. Further, the magnitude of the eigenvalue loses its monotonic decline as a

function of temperature.

In Figure 4.5, I show results for 2 × 2, 3 × 3, and 4 × 4 zero-field Ising models for the

Metropolis algorithm. The markers denote the eigenvalue results, and the solid lines, those

for the acceptance ratios. The behavior of the second eigenvalue here is quite consistent with

the behavior observed in the one-dimesional case. As the reduced temperature is lowered,

the second eigenvalue approaches unity. As the system size increases, the approach occurs at

higher and higher reduced temperatures. In the thermodynamic limit, the two-dimensional

Ising model has a well known critical temperature at T ∗
c = 2.2692. For the 4×4 lattice, the

second eigenvalue is effectively unity well above this temperature. The loss of efficiency in

sampling for Ising models by the Metropolis (and heat bath) algorithms as temperature is

lowered is more a consequence of the increasing inefficiency of the algorithms than that of

approaching a critical point. Results for the non-zero field case are qualitatively similar to

those for the non-zero field, one-dimensional Ising model.

In the Ising simulations, the accuracy of my results is principally controlled by the

number of walkers used. Typical numbers ranged from 10,000 to 50,000, as the number of

sites was varied from 9 to 25. The number of walkers was held constant over the range of
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Figure 4.6: The scaling of the second eigenvalue for the Metropolis transition matrix as a

function of ∆2/T for N = 1 (left) and N = 3 (right) non-interacting particles in a harmonic

trap. K = 1 in the above.

temperatures simulated for a given lattice size and field.

4.4.2 Harmonic Trap

I start by considering one particle in a harmonic trap to benchmark my basic Monte Carlo

procedures against the deterministic single harmonic oscillator results of Doll et al., an

equivalent problem approached with the use of standard eigenvalue software [57]. In terms

of Equation 4.18, I take N = 1 and C = 0. I discretize the one-dimensional space, following

the prescription of Doll et al., select a Metropolis box size and potential-dependent cutoffs,

and compute the transition matrix, PX→X� . Both the distance, δ, proposed for the walker

to move and the Metropolis box size, ∆, are taken to be discrete multiples of an underlying

cell width, which was 0.05. In units of the cell width, my cut-off distance is taken to be

Γ = 400, which was more than sufficient for most temperatures. I again diagonalize the

transition matrix using standard eigensystem software and find excellent agreement between

my Monte Carlo determination, performed with the same Monte Carlo techniques used for

the Ising model, and my deterministic results.

To test my continuum Monte Carlo method, I exploit the observation of Doll et al.,

proven in Appendix A, that for a power law potential, |x|n, all the eigenvalues of the
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Figure 4.7: The second eigenvalues and acceptance ratios for the Metropolis algorithm as a

function of Metropolis box size, ∆, for two particles in a harmonic trap for various values of

the coupling constant, C. Down the left column T ∗ = 2; down the right, T ∗ = 10. Across

the top row K = 0.5, the middle row, K = 1, and the bottom row, K = 2.



CHAPTER 4. THE MONTE CARLO POWER METHOD 83

Metropolis PX→X� are a function solely of ∆n/T . As illustrated in Figure 4.6, I achieve

excellent scaling over a wide range of reduced temperatures with N = 1 (the Doll case) and

N = 3 with C = 0 and K = 1. I note a characteristic feature of the second eigenvalue of the

single oscillator is a minimum value. In going from the discretized case to the continuum,

this value decreases. As one can see from Figure 4.6, adding more non-interacting particles

to the trap increases the continuum value.

In Figure 4.7, I present a summary of the behavior of the second eigenvalue and accep-

tance ratio as a function of box size for a two-particle trap at low and high temperatures

for several values of the trap curvature, K, and various values of the coupling, C, between

particles. In all cases, the acceptance ratio uniformly decreases as a function of box size.

Its sensitivity to the coupling, C, depends on K. It increases as C increases, less so for the

larger values of K. At T ∗, the sensitivity of the second eigenvalue on C anti-correlates with

the sensitivity of the acceptance ratio, showing more sensitivity at the smaller values of K

and decreasing with increasing C. At T ∗ = 2, many of the eigenvalue trends are the same

as those for T ∗. The key difference is the absence of a minimum value of the eigenvalue for

K = 0.5 and its presence at the other two K values. The minimum value location shifts

toward smaller box sizes as K increases. A minimum occurs for K = 0.5, but is located at

a box size larger than I simulated.

My final results are shown in Figure 4.8. Here, I take N = 3 and a single value of the

curvature, K = 2. The results show the same trends as the N = 2 and K = 2 case in

Figure 4.7. The minimum in the eigenvalue, however, shifted towards smaller box size.

Figures 4.6-4.8 suggest that at high temperature, the box size should be as large as

possible.3 I note the acceptance ratio will then be below 40%. At low temperatures, there

is typically an optimal box size. For the cases presented, the acceptance ratio is around

40%.

Besides the number of walkers, the accuracy of the results also depends on the cell

width. The value of 0.05 was found by experimentation to be convenient both with respect

to accuracy and efficiency. Typical numbers of walkers range from 50,000 to 200,000 as the

3Because the eigenvalues depend on box size, it is very possible that there are minima in these graphs at

very large box sizes. So, it is likely that one should not increase the box size without limit.
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Figure 4.8: The second eigenvalue for the Metropolis transition matrix for three particles in

a harmonic trap for various values of their coupling constant C as a function of Metropolis

box size. K = 2. On the left, T ∗ = 2, while on the right, T ∗ = 10.

number of particles is increased from one to three. Fewer walkers could be used for higher

temperatures than for lower ones for the same system.

4.5 Concluding Remarks

I proposed and benchmarked a numerical method for computing the subdominant eigen-

value, λ2, of a matrix or continuous operator. Based on the work of Booth and Yamamoto,

this method can be implemented deterministically and stochastically, and requires knowl-

edge of just the dominant eigenpair. For Markov chain transition matrices, this pair is known

analytically, so I used the method to compute the λ2 of various transition matrices. For such

matrices, 0 < |λ2| < 1, with small |λ2| implying large Monte Carlo efficiency. Specifically,

I computed the λ2 of the transition matrices for several one- and two-dimensional Ising

models, which have a discrete phase space, and compared the relative efficiencies of the

Metropolis and heat bath algorithms as a function of temperature and applied magnetic

field. Based on the λ2 criterion, I found that small lattices appear to give an adequate

picture of comparative efficiency and that the heat bath algorithm is more efficient than

the Metropolis algorithm only at low temperatures where both algorithms are inefficient.
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I also computed the λ2 of the transition matrix of a model of an interacting gas trapped

by a harmonic potential, which has a mutidimensional continuous phase space, and studied

the efficiency of the Metropolis algorithm as a function of temperature and the maximum

allowable step size, ∆. I found that the traditional rule-of-thumb of adjusting ∆ so the

Metropolis acceptance rate is around 50% range is often sub-optimal. In general, as a func-

tion of temperature or ∆, λ2 for this model displays trends defining optimal efficiency that

the acceptance ratio does not. The cases studied also suggest that Monte Carlo simula-

tions for a continuum model in the continuum are likely more efficienct than those for a

discretized version of the model.

Many of my results and conclusions, of course, could be limited to these specific cases;

however, the results presented here suggest establishing their degree of generality would

be advantageous. For example, I quantified situations where focusing on acceptance ratios

is ill-advised. Clearly, computing λ2 is more justified and gives more specific information

about which of several algorithmic approaches or adjustments is likely preferable. More

interestingly, if one can always capture efficiency trends for small system sizes, this is a

significant simplification.

The Monte Carlo techniques used here were simple. In treating more complicated prob-

lems, one might need some of the methods used by Booth and Gubernatis plus others. My

techniques and approach were also quite different than those of Nightingale and Blote. For

example, my starting functions were considerably simpler to construct, and I did not need

to use these functions as an importance function guiding the random walkers. Addition-

ally, I used exact estimators for the eigenvalue estimates instead of variational ones. On

the other hand, one must be concerned with the cancellation of positively and negatively

signed walkers. My procedures for doing so, however, are quite simple and effective, and,

in principle, constructively solve a type of sign problem. I do not expect the eigenvalues

produced by my algorithm to be as precise as those produced using Nightingale and Blote’s

variational methods. Nevertheless, my eigenvalue errors were smaller than marker sizes in

most cases. For my present purposes, high precision in these estimates is therefore unneces-

sary. Increased precision could easily be obtained by starting with more advantageous trial

eigenfunctions if the need presented itself.
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The most substantive issue for future work is more fully understanding the utility of λ2 as

a metric for comparative algorithmic efficiency. Focusing on this quantity has the advantage

of it being well defined and backed by some rigorous results. From a practical point of view,

however, the most efficient algorithm is the one that produces a key measurement with a

required accuracy in the least amount of computer time. Using λ2 does not address this or

the time it takes to perform a Monte Carlo step. It only says something about the relative

number of steps needed to achieve convergence.

Assessing the time per step is easy to do by a trial simulation. Achieving a prescribed

accuracy for a specific measurable is more challenging as it requires reducing the variance

of the measurable to this accuracy. The effort required to reduce the variance varies from

measurable to measurable, but in general a variance varies asymptotically as 1/N where N

is the number of statistically independent measurements. λ2 specifically addresses the de-

termination of a point at which one should begin collecting these measurements; that is, it

measures the relaxation rate (τ ∼ −1/ log λ2) of the algorithm. Once relaxed, how to calcu-

late variances is a topic discussed in standard texts [106; 138]. In this context, a variance is

often estimated from the integrated autocorrelation time associated with the measurement.

Clearly, the concepts of autocorrelation, relaxation, and convergence rates are related [114].

Indeed, experience shows that fast or slow relaxation is generally accompanied by short

or long autocorrelation times, that is, fast or slow generation of statistically independent

measurements. References [114] and [152] in fact prove that this experience is rigorous for

certain Metropolis-like algorithms. In general, the eigenvalues of a measurable-dependent

matrix controls the variance [114]. Determining these eigenvalues and correlating them with

λ2 is a significant task appropriate for future study.
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Chapter 5

Bose-Fermi Auxiliary-Field

Quantum Monte Carlo

In this chapter, I present a quantum Monte Carlo (QMC) technique for calculating the

exact finite-temperature properties of Bose-Fermi mixtures. The Bose-Fermi Auxiliary-

Field Quantum Monte Carlo (BF-AFQMC) algorithm combines two methods, a finite-

temperature AFQMC algorithm for bosons and a variant of the standard AFQMC algo-

rithm for fermions described in Chapter 3, into one algorithm for mixtures. I demonstrate

the accuracy of the method by comparing its results for the Bose-Hubbard and Bose-Fermi-

Hubbard models against those produced using exact diagonalization for small systems.

Comparisons are also made with mean-field theory and the worm algorithm for larger sys-

tems. As is the case with most fermion Hamiltonians, a sign or phase problem is present

in BF-AFQMC. I discuss the nature of these problems in this framework and describe how

they can be controlled with well-studied approximations to expand BF-AFQMC’s reach.

The new algorithm can serve as an essential tool for answering many unresolved questions

about many-body physics in mixed Bose-Fermi systems.

5.1 Introduction: Bose-Fermi Mixtures in Optical Lattices

Ultracold atomic gases loaded into optical traps offer the unique possibility of experimentally

simulating many of the fundamental models of condensed matter physics [22; 111]. These
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systems are clean, and owing to remarkable advances in trapping, cooling, and the manip-

ulation of inter- and intraparticle interactions, may be studied with an unprecedented level

of experimental control. One of the field’s landmark achievements has been the observation

of the superfluid-Mott insulator transition in Bose gases [73]. Analogous successes with

fermions have led to the direct observation of such phenomena as Fermi pressure and anti-

bunching [165; 190]. Focus has now shifted to ultracold mixtures of bosons and fermions [69;

76; 92; 145; 146; 147; 148]. At the most practical level, bosons may be used to sympatheti-

cally cool trapped fermions [78; 176]. Much more tantalizing, however, is the prospect that

bosons may be able to mediate a BCS superfluid transition in ultracold Fermi gases [59;

84; 91], or emulate many-body Hamiltonians of mixture systems predicted to exhibit a

plethora of exotic phases [62; 112]. Equally intriguing is the possibility of using newly

created “Bose-Fermi molecules” with permanent dipole moments as qubits for quantum

computers or as probes of the permanent electric dipole moment of the electron [54; 144;

145; 203]. These possibilities have galvanized both experimentalists and theorists to develop

new tools capable of exploring the full range of mixture phenomenology.

From a theoretical standpoint, delineating the exact finite-temperature Bose-Fermi

phase diagram represents a formidable challenge. Mean-field and perturbation theory cal-

culations suggest that Bose-Fermi mixtures may exhibit a wide variety of behaviors, rang-

ing from Bose-Fermi “molecule” spin and charge density waves to phase segregation [3;

34; 50; 62; 104; 112; 122]. Nevertheless, these techniques are approximate by definition,

which raises concerns about the phase diagrams they yield. A reliable description of Bose-

Fermi mixture phenomenology requires an exact framework capable of accurately account-

ing for strong correlation among particles. Accurate results can be obtained for small

clusters whose limited Hilbert spaces are amenable to exact diagonalization (ED), and lin-

ear chains for which quantum Monte Carlo (QMC) techniques free of the sign problem

or density matrix renormalization group methods may be applied [82; 83; 156; 175; 193;

204]. Techniques for large systems in two and higher dimensions, however, are scarce.

The most promising and flexible technique for mixtures to date uses the framework

of Dynamical Mean Field Theory (DMFT) [67]. While initial applications of DMFT to

mixtures paired well-established DMFT methods for fermions with approximate treatments
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of bosons [36; 186; 187], the first rigorous Bose-Fermi DMFT algorithm has recently been

proposed, which weds fermion DMFT with a newly-derived DMFT approach for bosons [5; 6;

7]. As with all DMFT approaches, this technique is only expected to be accurate in the limit

of large dimensionality or coordination number. Indeed, recent Boson-DMFT (BDMFT)

calculations on the Bose-Hubbard model demonstrate that, while DMFT is remarkably

accurate in three dimensions, it is less so in two dimensions [6]. Furthermore, because

DMFT is most useful for systems with short-range correlations, inhomogeneous phases and

long-wavelength collective modes may present challenges.

In contrast, QMC techniques offer the promise of being exact regardless of system size,

dimensionality, and homogeneity. QMC techniques differ widely in detail from algorithm

to algorithm, but all employ stochastic sampling to solve the Schrödinger equation at zero

temperature or determine partition and correlation functions at finite temperatures. Be-

cause of their accuracy and modest computational cost, QMC methods such as the worldline

and worm algorithms have become the techniques of choice for boson lattice models [16; 17;

160; 159]. Auxiliary-field and diagrammatic QMC techniques also exist for fermions [20; 88;

158; 172; 173; 202]. Unlike techniques for bosons, however, fermion QMC in two or more

dimensions is generally plagued by the sign problem, resulting in an exponential scaling of

computational cost with inverse temperature to achieve a fixed accuracy [115]. Developing

a widely-applicable QMC technique for mixtures thus requires not only marrying two con-

siderably different fermion and boson techniques together, but finding a way to tame the

sign problem within that combined formalism.

Widely employed in condensed matter and nuclear physics, the Auxiliary-Field Quantum

Monte Carlo (AFQMC) method [20; 184; 200] is a field theoretical method where many-body

propagators resulting from two-body interactions are transformed into many-dimensional

integrals over one-body propagators using the Hubbard-Stratonovich Transformation [35;

85]. The resulting integrals are then computed using Monte Carlo sampling. In recent

years, AFQMC has predominantly been used to study the equilibrium properties of the

Hubbard model both at finite temperatures and in the ground state. Like all fermion QMC

techniques, conventional AFQMC suffers from the sign problem in most parameter regimes.

However, an alternative formulation, in which walkers are pruned using population control
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techniques as they sample AFs in imaginary time, has allowed a general, efficient approach to

treat both local and extended interactions. This framework allows the constrained path and

phaseless approximations to be easily incorporated to control the sign and phase problems

[198; 199; 202]. In recent years, these approximations have been tested on a variety of

systems including the Hubbard model [46; 199; 202] and the electronic structure of solids

and molecules [1; 2], and has been shown to yield accurate energies and correlation functions.

Thus, Constrained Path AFQMC (CPMC) is well-equipped to explore phases beyond the

scope of other fermion QMC methods. The formalism of AFQMC has also previously been

generalized to treat bosons in the ground state [161; 162]. This suggests that AFQMC

would be perfectly suited for studying mixtures via a combination of boson and fermion

Monte Carlo techniques if the formalism could be further expanded to treat bosons at finite

temperatures.

In this work, I present an exact QMC methodology that can be used to determine the

thermodynamic properties of Bose-Fermi mixtures in any dimension over a wide range of

parameters. My method, Bose-Fermi Auxiliary Field Quantum Monte Carlo (BF-AFQMC),

generalizes finite-temperature AFQMC for fermions to bosons and Bose-Fermi mixtures. By

casting the boson portion of the problem in terms of auxiliary fields, I can extend deter-

minantal QMC techniques to bosons and sample the boson partition function by sampling

determinants just as one would for fermions. I arrive at an exact technique for mixtures

by combining my approach for bosons with previous AFQMC techniques for fermions (see

Table 5.1). I then discuss how the constrained path and phaseless approximations can be

imposed to remove the sign and phase problems in my method. As a benchmark, I compare

my algorithm’s results for Bose-Hubbard and spin-polarized Bose-Fermi-Hubbard clusters

to those obtained using ED. I also contrast my results with those from mean-field theory

(MFT) and the worm algorithm.

This chapter is organized as follows: In Section 5.2, I establish the definitions used

throughout this chapter. I then present the formalism for my new boson and Bose-Fermi

algorithms in Section 5.3, including importance sampling schemes. I also outline the im-

plementation of the constrained path and phaseless approximations, which can respectively

control the sign and phase problems. In Section 5.4, I compare my algorithm’s results for
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Ground State Finite Temperature

Fermions Ground State Constrained Path MC Finite-Temperature Constrained Path MC

Bosons Boson Projector AFQMC Bose-Fermi AFQMC (This Work)

Table 5.1: Flavors of Auxiliary-Field Quantum Monte Carlo techniques. Previous AFQMC

approaches have been developed for ground state bosons (Projector AFQMC) and fermions

(Ground State Constrained Path Monte Carlo), as well as for finite-temperature fermions

(the Finite-Temperature Constrained Path Monte Carlo method discussed in Chapter 3). In

this work, I developed the first finite-temperature AFQMC technique for bosons and married

it with the related technique for fermions to create the Bose-Fermi AFQMC algorithm.

the Bose-Hubbard and spin-polarized Bose-Fermi Hubbard models against those produced

using alternative methods in an effort to demonstrate the accuracy of my technique. I

finally conclude in Section 5.5, leaving the derivation of the expression relating the boson

partition function to a determinant and other details to Appendices B and C.

5.2 Preliminaries

5.2.1 Generic Mixture Hamiltonian and Definitions

To facilitate the subsequent discussion, I use the following form of the Bose-Fermi-Hubbard

Hamiltonian as a concrete example

Ĥbf = K̂b + K̂f + V̂b + V̂f + V̂c, (5.1)

where K̂b contains all one-body boson terms

K̂b = −tb
�

�ij�

�
b̂†i b̂j +H.c.

�
+
�

i

�bi n̂i, (5.2)

K̂f contains all one-body fermion terms

K̂f = −tf
�

�ij�,σ

�
f̂ †
iσf̂jσ +H.c.

�
+

�

i,σ

�fi,σm̂i,σ, (5.3)

V̂b contains two-body boson terms

V̂b =
Ub

2

�

i

n̂2
i , (5.4)
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V̂f contains two-body fermion terms

V̂f = Uf

�

i

m̂i↑m̂i↓, (5.5)

and V̂c represents the Bose-Fermi coupling term

V̂c = C
�

i

n̂im̂i. (5.6)

In the above, b̂†i , b̂i denote the boson creation and annihilation operators and f̂ †
iσ, f̂iσ the

fermion creation and annihilation operators with spin σ (=↑ or ↓) at site i. I define the

boson density at site i as n̂i ≡ b̂†i b̂i and the fermion densities as m̂iσ ≡ f̂ †
iσf̂iσ. The

total fermion density at each site is denoted by m̂i ≡ m̂i,↑ + m̂i,↓. tb and tf represent

the respective boson and fermion hopping parameters. Ub is the two-body boson-boson

potential, Uf is the two-body fermion-fermion potential, and C is the Bose-Fermi coupling.

�bi and �fi,σ represent coefficients of one-body terms that may include contributions from

chemical potentials, external traps, or disorder. Depending upon the values of the various

parameters, this Hamiltonian can exhibit the full range of Bose-Fermi phenomenology. More

general Hamiltonians may be handled by the approach outlined below.

5.3 Methods

5.3.1 Finite-Temperature AFQMC for Bosons

Following the same steps outlined for the fermion Hamiltonian, Ĥf , in Chapter 3, one

can similarly derive an expression relating the boson partition function to integrals over

one-body boson propagators, Bb(�ψk), and auxiliary fields �ψk ≡ {ψ1k,ψ2k, ...,ψNk}:

Zb = Trb
�
e−βĤb

�
(5.7)

=

� ∞

−∞
d�Φp(�Ψ)Trb

�
B̂b(�ψl)...B̂b(�ψ1)

�
.

As I show in Appendix B, the trace over bosons may also be expressed as a determinant

(which has been noted in other contexts before [15; 75; 99]):

Trb
�
B̂b(�ψl)...B̂b(�ψ1)

�
= Det

�
I

I −Bb(�ψl)...Bb(�ψ1)

�
, (5.8)
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allowing the partition function to be expressed as

Zb =

� ∞

−∞
d�Ψp(�Ψ)Det

�
I

I −Bb(�ψl)...Bb(�ψ1)

�
. (5.9)

Further manipulations yield the boson single-particle Green’s function

Gb
ij ≡

Tr
�
b̂ib̂

†
jB̂b(�ψl)...B̂b(�ψ1)

�

Tr
�
B̂b(�ψl)...B̂b(�ψ1)

� (5.10)

=

�
I

I −Bb(�ψl)...Bb(�ψ1)

�

ij

.

In a boson Auxiliary-Field QuantumMonte Carlo (B-AFQMC) algorithm, one can there-

fore calculate boson observables by sampling paths according to the boson partition function

in Equation 5.9 and evaluating the weighted average of observables determined from the

boson Green’s function in Equation 5.10. There are only two formal differences between

B-AFQMC and standard fermion AFQMC: the minus sign in front of the product of the

one-body propagators, and the inverse in the determinant. These differences, however,

have a large impact on how the B-AFQMC algorithm is implemented compared to stan-

dard AFQMC. As discussed in detail in Appendix C, the new form of the Green’s function

requires that adjustments be made to the way one stabilizes products of one-body matrices

at low temperatures, while the new form of the determinant requires that adjustments be

made to the way local updates to the Green’s function are computed and weights are ac-

cumulated as fields are selected at each time slice and site. Except for these adjustments,

B-AFQMC maps formally and directly onto previous AFQMC algorithms.

5.3.2 Bose-Fermi AFQMC

To combine AFQMC and B-AFQMC into a procedure for mixtures, one needs to decouple

the Bose-Fermi coupling term in Equation 5.1. This can be done by re-expressing Equa-

tion 5.6 in a form suitable for the HS Transformation:

V̂c =
C

2

�

i

�
(n̂i + m̂i)

2
− n̂2

i − m̂i

�
, (5.11)

where for brevity I have assumed spin-polarized fermions (σ =↑ only). The more general

case can be handled similarly by combining the resulting fermion interaction term with
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V̂f . One may now apply the HS Transformation of Equation 3.63 to write each square into

linear forms as shown in Chapter 3. Note that the resulting n̂2
i terms can be absorbed into

the two-body boson term, V̂b, in Equation 5.4.

An important way to improve the efficiency of BF-AFQMC simulations is to subtract

any background terms prior to the HS Transformation. In both boson and fermion ground-

state calculations, this was shown to greatly reduce the QMC statistical fluctuations and

the severity of the sign and phase problems [1; 162]. For example, in Equation 5.11 one

would rewrite (n̂i + m̂i)2 ≡ v̂2 as

v̂2 = (v̂ − �v̂�)2 + 2v̂�v̂� − �v̂�2

= v̂�
2
+ 2�v̂� v̂ − �v̂�2, (5.12)

for each site i, where �v̂� ≡ �n̂i + m̂i� = �n̂i� + �m̂i�, with �n̂i� and �m̂i� the average (or

desired) boson and fermion site densities, e.g., from MFT or exact symmetry properties.

The HS Transformation is then applied to v̂�
2
instead of v̂2, and the one-body and constant

terms in Equation 5.12 can be easily combined with other one-body terms in the Hamiltonian

and absorbed into the resulting one-body propagators, B̂.

The background subtraction is intimately connected with the mean-field formalism [162].

The idea is to use a form of the HS Transformation to decouple v̂�
2
terms which are zero in

some mean-field framework. That is, setting the AF value to zero in the HS decomposition

would give the corresponding mean-field result. The background subtraction is applied to

all V̂b and V̂c terms; no background subtraction is applied to V̂f because I have used a

spin-decomposition (as opposed to charge) in Equation 3.62 for fermions. The values of

�n̂i� and �m̂i� are set prior to the simulation. It should be emphasized that the formalism is

exact independent of the choice of mean-field values; only the statistical errors are affected.

The combined partition function is

Zbf = Trb
�
Trf

�
e−βĤbf

��
. (5.13)

After the HS Transformation, the fermion and boson propagators are decoupled at each

time slice and site. Because all fermion operators commute with all boson operators, the

propagators may be separated into completely independent products of one-body boson and
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fermion propagators. One may then evaluate the traces over these products individually to

obtain

Zbf =

� ∞

−∞
d�Ψd�Φp(�Ψ, �Φ) (5.14)

Det

�
I

I −Bb(�ψl)...Bb(�ψ1)

�
Det

�
I +Bf (�φl)...Bf (�φ1)

�
,

Because Equation 5.1 contains three terms quadratic in the boson and fermion densities,

three HS Transformations must be used at each time slice and site to reduce these terms

to one-body operators. The boson and fermion Green’s functions may analogously be

written as above, but with one-body matrices that now contain their respective contributions

from the coupling terms. Thus, in BF-AFQMC, a generic Bose-Fermi Hamiltonian may be

simulated by first rewriting all coupling terms such that they can be transformed into

independent boson and fermion propagators. Once the propagators are repartitioned, the

individual boson and fermion Green’s functions may then be evaluated as if there were no

coupling term, so long as paths are sampled from the full Bose-Fermi partition function.

5.3.3 Importance Sampling

Determinants are computed using a set of walkers whose weights and Green’s functions are

determined as each field is sampled sequentially in imaginary time. At the beginning of my

simulations, I initialize the weights, W (�Φ, �Ψ), of a collection of walkers to 1. I similarly

initialize each walker’s Green’s function to that corresponding to a trial Hamiltonian, such

that

Gb
ij =

�
I

I −BT
b ...B

T
b

�

ij

, (5.15)

and

Gf
ij =

�
I

I +BT
f ...B

T
f

�

ij

, (5.16)

where BT is a trial one-body matrix at each time slice. In the work that follows, the trial

Hamiltonian is typically the exact Hamiltonian minus any terms quadratic in the density

(v̂�2 terms, after background subtraction). Since the chemical potential corresponding to
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some desired filling differs between the trial and exact Hamiltonians, care must be taken

to determine the appropriate chemical potential for the trial Hamiltonian before sampling

proceeds so as to prevent additional statistical fluctuations.

As each field (or fields, if multiple HS Transformations are performed) is selected at

site i and time slice k, the weights of the walkers are multiplied by a factor, W (φik,ψik).

In the absence of importance sampling (see below), W (φik,ψik) is the ratio of the product

of the newly-updated determinants to the old determinants. Let P f
ik denote the fermion

determinant constructed of fields sampled up to the i-th site and k-th time slice

P f
ik = Det

�
I +

�
l−k�

m=1

BT
f

�
Bf (φik...φ1k)...Bf (�φ1)

�
(5.17)

and P b
ik define the corresponding boson determinant

P b
ik = Det



 I

I −
��l−k

m=1B
T
b

�
Bb(ψik...ψ1k)...Bb(�ψ1)



 , (5.18)

where the yet unspecified AF’s in the k-th time slice (for sites i through N) can be thought

of as having value zero. Then, the weight may be defined as

W (φik,ψik) =
P f
ikP

b
ik

P f
(i−1)kP

b
(i−1)k

. (5.19)

The final product of these factors over all sampled fields is proportional to the product of

boson and fermion determinants for the full path that we wish to sample. As each field is

sampled, the Green’s functions are also updated by replacing the trial one-body matrices

with the exact one-body matrices based upon the fields. The corresponding Green’s function

matrix, after sampling field i at time slice k, would therefore be

Gb =
I

I −BT
b ...B

T
b Bb(ψik...ψ1k)...Bb(�ψ1)

(5.20)

and

Gf =
I

I +BT
f ...B

T
f Bf (φik...φ1k)...Bf (�φ1)

. (5.21)

All trial matrices are replaced until all fields are sampled and the Green’s functions corre-

spond to those for the exact Hamiltonian. After all fields are sampled, average observables
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are computed. The weights and Green’s functions are then reinitialized to their starting

values and fields are sampled again until the desired number of samples have been collected.

Of course, if the fields are drawn randomly according to p(�Φ, �Ψ), the ratios in Equa-

tion 5.19 will cancel in successive steps, and my sampling procedure above will be identical

to simply sampling entire paths of AFs randomly and then calculating the determinants in

Equation 5.14 as weights of the paths. The advantage of the sampling scheme above is that

it allows importance sampling to be done efficiently and, as I discuss in the next subsection,

constrained path and phaseless approximations to be easily incorporated to control sign

and phase problems [199; 200].

Importance sampling uses an estimated contribution based on a trial wave function or

density matrix to guide the sampling of AFs [161; 199; 202]. Just as gains in efficiency

may be obtained by subtracting the average density from the exact density in each HS-

transformed propagator, even further gains may be obtained by subtracting a site-dependent

shift, ψ̄i, from the auxiliary-field, ψi. This shift, called a force bias, effectively modifies the

probability p(�Ψ) for sampling ψik, to take into account the AF paths that have been built

up so far, i.e., the prior ψ values (from ψ11 to ψ(i−1)k). The shift is added by performing a

change of variable in the usual HS Transformation. For example, the boson two-body term,

after absorbing the contribution from V̂c and background subtraction, can be written as

e−∆τ/2(Ub−C)(n̂i−�n̂i�)2 (5.22)

=
1

√
2π

� ∞

−∞
dψie

−ψ2
i /2e−ψ̄2

i /2

eψiψ̄ie(ψi−ψ̄i)
√

−∆τ(Ub−C)(n̂i−�n̂i�),

=

� ∞

−∞
dψip(ψi)W

�
(ψi, ψ̄i)B̂(ψi − ψ̄i)

where shift- and field-related constants may be regrouped into an additional weighting term,

W
�
(ψi, ψ̄i), that contributes to Equation 5.19. The one-body operator is now also a function

of the shift.

Optimal importance sampling is achieved when the shift is chosen such that the fluctu-

ations in the weights of the walkers are minimized. At finite temperatures (see the ground
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state derivation in Purwanto and Zhang [161]), the optimal shift may be shown to be

ψ̄i = −

Tr
�
v̂iB̂(�ψl)...B̂(�ψ1)

�

Tr
�
B̂(�ψl)...B̂(�ψ1)

� = −�v̂i�, (5.23)

where v̂i represents the coefficient of the field in the HS-transformed propagator. In the

case of Equation 5.22, v̂i =
�
−∆τ(Ub − C)(n̂i−�n̂i�). Shifts may be calculated in this way

for each HS Transformation. This importance sampling technique enables us to simulate

well into the moderate-coupling regime with high-efficiency, free of any approximations.

5.3.4 The Constrained Path and Phaseless Approximations

As alluded to earlier, a phase problem develops whenever complex propagators produce

complex determinants. When sampled by walkers, these complex determinants in turn yield

complex walker weights. Although background subtraction and importance sampling, as

discussed above, can help reduce statistical fluctuations, the phase problem will eventually

overwhelm any simulation at sufficiently low temperatures or sufficiently large repulsive

interactions. The signature of the sign or phase problem is that the weights will populate

both positive and negative values on the real axis (sign problem) or arbitrary phase angles

in the complex plane, resulting in dramatic cancellation and large fluctuations. The phase

problem may be avoided with the phaseless approximation, an approximation that renders

the weights of complex walkers real via a gauge transformation using a trial wave function

or density matrix [161; 202].

In the phaseless approximation, one first uses importance sampling to minimize the

phase of the weighting factor at each step (time slice and site). Without importance sam-

pling, the weighting factor is given by Equation 5.19. With importance sampling, it becomes

W (φik,ψik) =
P f
ikP

b
ik

P f
(i−1)kP

b
(i−1)k

W
�
(φik, φ̄ik,ψik, ψ̄ik). (5.24)

With the optimal choice of force bias, as I discussed in Equation 5.23, it can be shown

that the overall phase accumulation is proportional to ∆τ Im(EL), where EL is the so-called

local energy [161; 202]. In the case of the exact trial wave function or density matrix,

the imaginary part of EL vanishes. Once the phase is optimally reduced, the phaseless
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approximation omits the overall phase. It then projects the random walk to the real axis

to constrain the overall phase to one gauge choice. In the finite-temperature phaseless

approximation, we define the phase rotation angle ∆θ as

∆θ ≡ Im ln

�
P b
ik

P b
(i−1)k

�
. (5.25)

The phase angle may more generally be defined in terms of the ratios of both the boson and

fermion determinants, however we find that the phase problem may typically be attributed

to boson fluctuations in the Hamiltonians studied here. We then multiply the modulus of

the weighting factor, |W (φik,ψik)|, by 0 if |∆θ| > π/2 and cos(∆θ) otherwise. This keeps

the walker weights real, preventing the mass cancellation of weights symptomatic of a bad

phase problem. Therefore, whereas the phase problem leads to exponential scaling, the

phaseless approximation recovers the O(LN3) scaling typical of finite-temperature fermion

AFQMC algorithms.

In addition to the phase problem from bosons, a mixture simulation may also encounter

the sign problem for fermions at low temperatures [115], which is a special case of the phase

problem. The phaseless approximation in the case of a real HS Transformation and real

determinants reduces to the constrained path approximation [199]. I use this approximation

to curb the sign problem in this situation. As soon as a walker’s fermion determinant

becomes negative, its weight is set to zero. I thus sample only those paths such that

Det

�
I +

�
l−k�

m=1

BT
f

�
Bf (�φk)...Bf (�φ1)

�
> 0 (5.26)

for all k from 0 to l. As previously discussed in the literature, this prevents corrupted paths

whose determinants have changed sign from contributing to observable averages.

5.4 Results

In this section, I present illustrative results from my Bose-Fermi AFQMC method. Re-

sults are compared to those obtained from ED, MFT, and the boson worm algorithm [160;

159]. Except where indicated, my B-AFQMC and BF-AFQMC calculations were done with-

out imposing the phaseless or constrained path approximations; some were done without
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importance sampling for benchmarking or testing purposes. No optimization was performed

on the choice of the parameters such as the Trotter step and the intervals with which popula-

tion control [200] or stabilization procedures are applied, except to ensure that the resulting

bias is well within statistical errors.

ED is a method in which exact expectation values are calculated from eigenvalues ob-

tained by diagonalizing the system Hamiltonian [194]. In the grand canonical ensemble,

one must determine these eigenvalues for all fermion and boson particle numbers. Since a

system may in principle be occupied by an infinite number of bosons, an exact ED answer

would require diagonalizing an infinite number of canonical ensemble Hamiltonians. In the

results that follow, I only include a truncated number of bosons sufficient to converge my

results to within three decimal places. Where the system does not collapse, this is suffi-

cient. Near collapse, however, the truncation error was visible when compared with the

BF-AFQMC results and it was necessary to increase the number of bosons included in the

ED. In my simple implementation, only small clusters of up to about five lattice sites could

be converged to the desired filling with this accuracy.

For larger systems for which ED fails, I compare to MFT. MFT results are expected to

be accurate only in the weak-coupling regime. Nevertheless, they provide a check on my

results and demonstrate for which parameters my exact approach should be particularly

valuable. In my mean field calculations, I use the general Hamiltonian

ĤMF = K̂b + K̂f

+
Ub

2

�

i

�
2n̂i�n̂i� − n̂i − �n̂i�

2
�

+ Uf

�

i

(�m̂i↓�m̂i↑ + �m̂i↑�m̂i↓ − �m̂i↑��m̂i↓�)

+ C
�

i

(n̂i�m̂i�+ m̂i�n̂i� − �n̂i��m̂i�) , (5.27)

keeping only the appropriate terms for the given model. In these calculations, I self-

consistently solve for the exact boson and fermion densities at each site until my answer is

converged to within three decimal places.

Outside of the weak-coupling regime, results for the Bose-Hubbard Model are compared

to those obtained from the ALPS Projects’ implementation of the worm algorithm [18]. The
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worm algorithm yields exact results for bosons for any system size, in any coupling regime

[160; 159]. In all worm calculations, I capped the number of bosons at each lattice site at

a value sufficient to achieve convergence in the energies and densities.

5.4.1 Bose-Hubbard Model

I begin by benchmarking my results for the Bose-Hubbard model. The Bose-Hubbard model

has long been the model of choice for studying condensed 4He in porous media [64]. It has

recently been revived to model ultracold bosons in optical lattices [73]. The Hamiltonian is

a special case of Equation 5.1, with K̂f , V̂f , and V̂c all set to 0. For Ub < 0 in Equation 5.4

and sufficiently low temperatures and high densities, the Bose-Hubbard model is expected

to exhibit collapse [161; 162]. In the examples that follow, I therefore only present results

for repulsive Ub. My results are equally accurate for Ub < 0 before the collapse point,

however. Since using Ub > 0 results in a phase problem, all of the results that follow are

averaged over complex phases, without the phaseless approximation. The QMC results are

thus expected to be exact.

As a first check, I consider a 3 × 1 lattice, with tb = 0.01, and �nb� = 1. In Fig-

ures 5.1 and 5.2, I compare my results to those from ED for the energies and conden-

sate fractions for varying Ub down to temperatures T/t ≈ .3. Condensate fractions mea-

sure the fraction of the system lying in the lowest eigenstate of the Hamiltonian [161;

162]. As seen in both Figures 5.1 and 5.2, QMC is exact within error bars well beyond

where the condensate fraction asymptotes to one. This suggests that my technique can

calculate correct expectation values from high temperatures corresponding to the Mott in-

sulating regime to low temperatures corresponding to the finite-size version of a superfluid.

In Figure 5.2, I also plot the MFT results for the condensate fractions to illustrate the

effects of fluctuations. Only one curve is shown for the MFT condensate fractions because

they are independent of Ub/t. It is evident from this figure that MFT yields poor ap-

proximations to the true condensate fractions even at relatively high temperatures and low

coupling strengths. Indeed, it only reproduces the exact condensate fractions throughout

this limited temperature range for Ub/t = .5. As illustrated below in Figure 5.4, even in

situations where mean-field condensate fractions are nearly exact, energies produced using
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MFT may be unreliable. This underscores the importance of using exact methods where

possible.

The data in Figures 5.1 and 5.2 are calculated without importance sampling or the

phaseless approximation. In Figure 5.3, I show that I obtain the same results with im-

proved statistics using these techniques for Ub/t = .5. Using importance sampling and

the phaseless approximation, the error bars on the number of bosons for the same num-

ber of samples are at least halved compared to those obtained without importance sam-

pling. In previous works, importance sampling was observed to greatly reduce the er-

ror bars in finite-temperature fermion calculations [199]. Similarly, in ground state bo-

son calculations, an order of magnitude or more improvement in efficiency is seen [161;

162]. The phaseless calculations for finite-temperature bosons therefore do not see the dra-

matic error bar reductions seen in other applications. There are several reasons for this.

The system size is small, such that the variations in the sampled space are much reduced

compared to larger systems, where the effect of importance sampling is expected to increase

significantly. The present boson finite-temperature calculations are performed in the grand

canonical ensemble, which could contribute to increased fluctuations. The main contri-

bution to the statistical fluctuations in the boson calculations is likely from the so-called

“rogue eigenvalue” problem which I discuss in the next section.

For larger lattices, I compare to the worm algorithm. Figure 5.4 demonstrates that

B-AFQMC energies are consistent with worm energies for 2D systems of varying sizes for

several Ub. Interestingly, as shown in Figure 5.5, QMC and MFT energies differ dramatically

at all but the highest of temperatures. This is even so when the energies are normalized to

account for the fact that the QMC and MFT algorithms require different chemical potentials

to achieve the same fixed boson number. The QMC calculations in Figure 5.4 may readily

be extended to larger lattices and boson-boson repulsions, but at the price of the increased

sampling needed to surmount the phase problem.

5.4.2 Spin-Polarized Bose-Fermi-Hubbard Model

In order to illustrate my Bose-Fermi AFQMC method, I similarly apply my technique to

the Bose-Fermi-Hubbard model, the standard model for studying ultracold mixture phe-
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Figure 5.1: The total, kinetic (KE), and potential (PE) energies of a three-site Bose-

Hubbard Model simulated for several values of Ub, tb = 0.01, and �nb� = 1 using both

ED and QMC. Energies are given in units of tb. β denotes the inverse temperature and is

in units of inverse energy. Agreement is within error bars for all points depicted.
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Figure 5.2: Three-site Bose-Hubbard Model simulated for several values of Ub, tb = 0.01,

and �nb� = 1 using ED, QMC, and MFT. Because MFT yields the same non-interacting

value of the condensate fraction regardless of Ub, only one mean-field curve is shown above.

β denotes the inverse temperature and is in units of inverse energy. Agreement between ED

and QMC is exact within error bars. MFT is only accurate for small Ub/t.
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Figure 5.3: Number of bosons, total energies, and condensate fractions using ED, exact

QMC, and the phaseless (PH) approximation for a three-site Bose-Hubbard model with

Ub/t = 0.5, tb = 0.01, and �nb� = 1. Energies are given in units of tb. β denotes the inverse

temperature and is in units of inverse energy. All points were produced with a time slice of

∆τ = .025 and 50000 samples. The phaseless approximation reduces the size of the error

bars on the number of bosons by at least half with respect to the exact QMC error bars.
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Figure 5.4: QMC versus worm algorithm total energies for 2D Bose-Hubbard models with

tb = 0.01 and �nb� = 1. Energies are given in units of tb. β denotes the inverse temperature

and is in units of inverse energy. Top: Total energies minus chemical potential contributions

from the worm and B-AFQMC algorithms with decreasing temperature for a 3 × 3 Bose-

Hubbard model for several Ub. Bottom: Total energies with decreasing temperature for

2D models of varying size for Ub/t = 0.5. B-AFQMC can accurately reproduce energies for

varying systems sizes and interaction strengths as seen by comparing to the worm algorithm.

The B-AFQMC’s reach is only limited by the phase problem.
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Figure 5.5: Total energies minus chemical potential contributions from B-AFQMC and

MFT with decreasing temperature for a 3 × 3 Bose-Hubbard model for several Ub. The

QMC data is the same as used in Figure 5.4. Total energy minus chemical potential contri-

butions is plotted above in order to remove any discrepancies resulting from the fact that

B-AFQMC and MFT require different chemical potentials to achieve the same boson den-

sities. Worm and B-AFQMC energies dramatically differ from those obtained using MFT

at lower temperatures.
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nomenology. As mentioned before, here, I limit myself to the spin-polarized Hamiltonian,

namely Equation 5.1 with m̂i↓ = 0.

As with the Bose-Hubbard model, collapse is anticipated for Ub < 0 and any value of

C for densities sufficiently large that the boson-boson attraction term dominates the linear

coupling term. If Ub = 0 and the boson-boson interaction does not dominate, collapse may

also be observed for a sufficiently large and negative C. The phase problem is observed

whenever C > 0 or Ub > C. I thus again simulate amidst the phase problem so as to at

once avoid collapse and demonstrate the accuracy of our algorithm despite complex phases.

As a first example, I consider a two-site Bose-Fermi-Hubbard model with varying Ub =

C, tb = tf = 0.01, and �nb� = �mf↑� = 1. I find that results for the potential energies,

kinetic energies, condensate fractions, and double occupancies per site agree with ED to

within small error bars for Ub/t = C/t values up to 13. Ub/t = C/t ratios up to 7 are

shown in Figure 5.6 for the sake of clarity. These results demonstrate the correctness of

the algorithm and implementation, and that exact computations are feasible for moderate

coupling strengths amidst an appreciable phase problem. It is expected that the ability

to calculate observables amidst such large phase problems will diminish with larger system

sizes where fewer samples may be taken within a fixed time. More sophisticated sampling

techniques, better handling of the “rogue eigenvalue problem” (see below), and the use of

the phaseless approximation will drastically improve the statistical accuracy.

Lastly, as a check on my mixture algorithm for larger systems sizes, I compare to results

from MFT in the limit of small Ub and C. My results in Figure 5.7 are in concurrence with

those from MFT for up to 8 × 8 systems (larger sizes are not pictured here). A similar

comparison, not presented here, was made for the Bose-Hubbard Hamiltonian and yielded

analogous results. In both cases, MFT results compare well with QMC results until the two

begin to deviate at lower temperatures, as expected. Because there are a limited number of

exact methods for multidimensional mixtures to which one can compare, I reserve further

mixture examples and applications for a future publication.
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Figure 5.6: Two-site Bose-Fermi-Hubbard model kinetic energies (KE), potential energies

(PE), condensate fractions, and double occupancies per site for varying Ub = C, tb = tf =

0.01, and �nb� = �nf � = 1 using both ED and BF-AFQMC. Energies are given in units of

tb. β denotes the inverse temperature and is in units of inverse energy. BF-AFQMC results

are in exact agreement with those from ED.
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Figure 5.7: QMC and MFT condensate fractions for the 2D Bose-Fermi-Hubbard model at

Ub/t = C/t = 0.5, tb = tf = 0.01, and �nb� = �nf � = 1. β denotes the inverse temperature

and is in units of inverse energy. Good agreement is found between QMC and MFT at high

temperatures.
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5.5 Discussion

5.5.1 Challenges

As the results presented in this chapter demonstrate, the algorithm outlined here is an

exact method for simulating the thermodynamic behavior of an essentially arbitrary lattice

system composed of interacting bosons and fermions. Nevertheless, its performance is still

hindered by several practical challenges.

One of the more benign challenges relates to the estimation of the correct chemical

potentials for desired fillings. In order to simulate a mixture with the desired fillings in

the grand canonical ensemble, one must estimate not only the correct fermion chemical

potential, but the correct boson chemical potential as well. This task is particularly labo-

rious for bosons since their fillings may change especially rapidly with chemical potential.

When fillings change more gradually with chemical potential, such as in the Mott insulator

or normal liquid regimes, iterative methods may be employed. Outside of such regimes,

particularly near or in superfluid phases, such methods fail because incorrect or unphysical

chemical potentials may yield seemingly correct fillings within error bars.

A second challenge to the algorithm is posed by the phase problem. As discussed in

Section 5.3.4, whenever propagators become complex, walker weights and Green’s functions

acquire a complex phase. When this phase grows particularly large, controlling statistical

fluctuations becomes a computational challenge. The severity of the phase problem de-

pends upon the model and simulation parameters. For the Bose-Hubbard model, the phase

problem develops for positive Ub; for the Bose-Fermi-Hubbard model it is present when-

ever C > 0 or Ub > C. As with the related sign problem in fermion QMC, the severity

of the phase problem grows exponentially with system size or inverse temperature. This

means that for large systems and at low temperatures, one needs to properly impose con-

straints that systematically bias the results. The performance of the constraint in ground

state calculations should provide a “lower bound” to the quality of the approximation in

these finite-temperature calculations. As was previously discussed, importance sampling

can significantly reduce statistical fluctuations, and where importance sampling fails, the

phaseless approximation may be invoked. However, how the approximation performs across
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a phase transition, especially when the constraining trial density matrix is poor, remains to

be studied.

Perhaps the biggest issue in the present formulation relates to the fact that in the grand

canonical ensemble boson numbers may fluctuate in an unbounded manner. In the auxiliary-

field formalism, the many-body problem is turned into multiple independent-particle prob-

lems in external fields. By fluctuation of the external fields, the target chemical potential

may be too high for a particular independent-particle path, which would result in a con-

densate with an infinite number of particles. We have termed this the “rogue eigenvalue

problem.”

As seen in Equation 5.8, the boson partition function is expressed as a determinant of

a matrix whose denominator may approach or fall below zero. This happens whenever the

largest eigenvalue of the product of one-body boson matrices approaches or surpasses unity.

Although it is unphysical for the leading eigenvalue to surpass one – and indeed, it never does

in the completely deterministic mean-field calculations – walkers may stochastically sample

such unphysical paths and their related “rogue eigenvalues.” Walkers whose eigenvalues

have surpassed one at any point in imaginary time possess corrupted paths that develop

appreciable phase problems more severe than those seen in fermion systems and unique to

simulations of bosons in the grand canonical ensemble. This is the leading challenge which

impacts the effectiveness of the algorithm even in the presence of importance sampling

and the phaseless approximation. In order to obtain sensible results well into condensed

phases where eigenvalues may approach one on physical grounds, one must therefore prevent

walkers from sampling rogue paths. One facile method for suppressing rogue paths used to

produce many of the figures in this paper involved using larger �v̂i� values than the mean-

field values. Instead of setting �v̂i� in Equation 5.12 to the sum of the mean-field densities

at a given site, I set it to larger values that increase the effective chemical potential seen

by the Green’s functions. This reduces the risk of a rogue eigenvalue problem at the cost

of increased phase fluctuations, which can be surmounted by increased averaging. Further

details about this approach and more sophisticated ones will be presented in an upcoming

publication.
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5.5.2 Conclusions

In this chapter, I have outlined a new algorithm that enables the exact calculation of

the thermodynamic properties of BF mixtures in multiple dimensions over a wide range

of parameters. This algorithm enables one to sample the boson partition function and

calculate boson expectation values much as one would sample the fermion partition function

and calculate fermion expectation values using conventional fermion AFQMC. The method

is, in principle, exact and I have demonstrated its accuracy by comparing our results to

those obtained via ED and MFT for the Bose-Hubbard and spin-polarized Bose-Fermi

Hubbard models. Approximations need only be invoked when stochastic errors stemming

from the sign and phase problems become uncontrollable. Because my algorithm is at once

exact and computationally tractable, I believe it is uniquely positioned to answer many

open questions about the Bose-Fermi phase diagram and recent mixture experiments. The

algorithm is particularly well-suited for the study of inhomogenous phases with long-range

correlations, which cannot be reliably captured by mean-field approaches. I plan upon

applying this algorithm to the study of both mixtures of trapped cold atomic gases and

mixed Bose-Fermi systems in optical lattices.
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Chapter 6

Constant Stress Quantum Monte

Carlo and the BCC Phase of

Quantum Hard Spheres

The ability to accurately predict the crystal structures of quantum many-body systems

without prior information is crucial to understanding the properties of many stars and

the gas giants, as well as to finding the long-sought metallic phase of hydrogen. Currently,

few quantum algorithms exist for determining the crystal structures of quantum many-body

systems. In this chapter, I outline a new technique, Constant Stress Quantum Monte Carlo,

which is capable of determining the crystal structures of quantum systems at any pressure

and temperature given only a substance’s interatomic/intermolecular potential as input.

The Constant Stress Quantum Monte Carlo technique weds the Constant Stress Molecular

Dynamics method of Parrinello and Rahman with the Path Integral Monte Carlo technique.

I demonstrate the utility of this technique by considering whether quantum hard spheres

form a low temperature bcc phase like 4He. I find that Constant Stress Quantum Monte

Carlo can readily delineate the quantum hard sphere phase diagram. Preliminary results

suggest that quantum hard spheres do not form a bcc phase when exchange is not taken into

account. Future studies will focus upon whether Constant Stress Quantum Monte Carlo is

equally capable of predicting the more complicated crystal structures formed by hydrogen
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at high pressures.

6.1 Introduction

Quantum Monte Carlo techniques have long been used to study the properties of quantum

many-body systems in the isobaric-isothermal (NVT) ensemble [40; 65]. In such simulations,

some number, N , of quantum particles are typically placed in a cubic box with periodic

boundary conditions and sample configurations consistent with their simulation box’s ge-

ometry. In cases where the particles are expected to form crystal structures inconsistent

with a cubic geometry, they are placed in a box with a more accommodating geometry that

is nevertheless still rigid. This procedure successfully predicts the properties of solids with

either simple or previously-known crystal structures, yet leaves much to be desired when a

substance’s crystal structure is unknown.

The crystal structures of many quantum materials are currently unknown at high pres-

sures. Two key quantum substances whose crystal structures at high pressures have yet

to be determined are hydrogen and helium.1 Many stars and the gas giants, Jupiter and

Saturn, are composed of hydrogen and helium at Mbar pressures [125]. Understanding the

structure and properties of many extraterrestrial bodies is thus predicated upon correctly

predicting hydrogen and helium crystal structures at these pressures. Hydrogen’s high pres-

sure structures are also of great interest in light of Wigner and Ashcroft’s predictions that it

may become a metallic superconductor at extreme pressures [12; 196]. Since Wigner’s orig-

inal conjecture, many physicists have searched for metallic hydrogen. Both static diamond

anvil and dynamic shock experiments, however, are limited to only certain regions of the

hydrogen P-T phase diagram [137; 181]. Currently, the only way to study wide swaths of

the hydrogen phase diagram and to resolve whether hydrogen can in fact become a metallic

superconductor is via simulation.

Despite the widespread use of Andersen’s constant pressure and Parrinello’s constant

stress molecular dynamics algorithms to predict the crystal structures of classical systems,

1Here, hydrogen refers to either elemental or molecular hydrogen, depending on the pressures and temper-

atures involved. At extremely high pressures and temperatures, molecular hydrogen is expected to dissociate

into atomic hydrogen [132]. At all other pressures, hydrogen is in its molecular form.



CHAPTER 6. CONSTANT STRESS QUANTUM MONTE CARLO AND THE BCC
PHASE OF QUANTUM HARD SPHERES 117

these algorithms have not been widely adopted to predict the crystal structures of quan-

tum systems [8; 150]. The use of constant pressure Path Integral Monte Carlo and Path

Integral Molecular Dynamics techniques has largely been restricted to mapping the pressure-

temperature phase diagram of the low temperature, low pressure liquid and hcp solid phases

of hydrogen [94; 116; 121; 174; 191]. Studies of more complicated, higher-pressure quantum

crystal structures have proceeded along two main routes. Initial studies of hydrogen at

high pressures predicted ground state structures by comparing the enthalpies of selected

structures at different pressures [135; 136]. This route requires previous knowledge to in-

form structural guesses, however. More recently, genetic algorithms and random structure

searches that seek lowest enthalpy structures from many random structures have become

popular [143; 154; 155]. These methods typically use Density Functional Theory (DFT) to

compute ground state enthalpies. DFT affords these techniques the speed they require at

the expense of accuracy. A great need therefore exists for a highly accurate technique capa-

ble of predicting crystal structures based solely upon their underlying physics for quantum

many-body systems.

In this chapter, I describe the Constant Stress Quantum Monte Carlo algorithm, a Path

Integral Monte Carlo algorithm capable of predicting the crystal structures of quantum

many-body systems. Constant Stress Quantum Monte Carlo is a marriage of Parrinello’s

Constant Stress Molecular Dynamics method [150] with Path Integral Monte Carlo [40].

Using just four simple Monte Carlo moves, it allows one to study a substance’s full range of

crystal structures at any pressure and temperature. As a demonstration of the technique,

I use it to study the phase diagram of quantum hard spheres. The quantum hard sphere

potential has long been used to approximate 4He’s more complicated Aziz potential [95]. It

is well-known that 4He possesses a bcc phase in addition to its normal liquid, superfluid,

and fcc solid phases [60]. The few studies performed on quantum hard spheres, however,

suggest that they only possess a fcc solid phase [170; 177; 178]. In what follows, Constant

Stress Quantum Monte Carlo is used to determine whether quantum hard spheres similarly

possess a bcc solid phase in the absence of exchange. Preliminary results suggest that

quantum hard spheres do not form a bcc phase, implying that either quantum statistics or

a potential with an attractive tail is key to this phase’s stability.
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I begin this chapter by summarizing the Constant Stress Quantum Monte Carlo al-

gorithm’s formalism in Section 6.2. I discuss Parrinello and Rahman’s original Constant

Stress Molecular Dynamics algorithm for classical systems and then outline how it can be

integrated into Path Integral Monte Carlo’s formalism. In Section 6.3, I discuss the par-

ticular parameters and propagators I used to model quantum hard spheres. I next present

benchmarks illustrating the accuracy of my technique and follow with my results on the

bcc phase of quantum hard spheres in Section 6.4. I conclude this chapter in Section 6.5 by

summarizing my results and discussing the prospects of using the Constant Stress Quan-

tum Monte Carlo algorithm to refine the high pressure hydrogen phase diagram, as is my

eventual intent.

6.2 Constant Stress Quantum Monte Carlo

Constant Stress Quantum Monte Carlo is a combination of Parrinello-Rahman Molecular

Dynamics and Path Integral Monte Carlo. I thus begin with a discussion of the classical

Parrinello-Rahman Molecular Dynamics algorithm and analogous classical constant stress

Monte Carlo techniques. I then illustrate how a quantum constant stress algorithm may be

constructed by implementing the Parrinello-Rahman Hamiltonian within the framework of

Path Integral Monte Carlo.

6.2.1 Classical Parrinello-Rahman Molecular Dynamics Algorithm

In Parrinello-Rahman molecular dynamics, one samples lattice configurations by not only

moving particles, but also by changing the magnitudes and directions of the simulation

box’s axes [150; 151]. In general, a three-dimensional simulation box may be described by

its three axes, �a, �b, and �c. From these vectors, a tensor,
←→
h , may be formed

←→
h =





a1 b1 c1

a2 b2 c2

a3 b3 c3




. (6.1)

←→
h fully describes the shape and size of the simulation box. The simulation box’s volume,

V , is given by the determinant of the tensor
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V = det
�
←→
h
�
. (6.2)

If the scaled coordinates of a particle i in a cubic box with sides of unit length are �si, its

real coordinates, �ri, in a box described by
←→
h are

�ri =
←→
h �si = s1,i�a+ s2,i�b+ s3,i�c. (6.3)

Thus, by changing
←→
h , one changes the simulation box axes and the real-space coordinates

of the particles in turn.

Following logic similar to that used by Andersen in his seminal work on isobaric-

isothermal ensemble molecular dynamics [8], Parrinello and Rahman likewise proposed that

one could sample different lattice structures at a constant pressure by treating the tensor

elements just like particles with their own mass, W , and related dynamics [150]. In this

spirit, one can write down a Lagrangian for a system of N particles with 3N + 9 variables

L =
1

2

N�

i

µi�̇si
←→
G �̇si −

N�

i<j

φ(rij) +
1

2
WTr

�
←̇→
h

T ←̇→
h

�
− pdet

�
←→
h
�
, (6.4)

where
←→
G =

←→
h T ←→

h , µi denotes the mass of particle i, φ(rij) is the potential, and p is the

external pressure. The system Hamiltonian, H, may be obtained by taking the Legendre

transform of the Lagrangian, which yields,

H =
1

2

N�

i

µi�v
2
i +

N�

i<j

φ(rij) +
1

2
WTr

�
←̇→
h

T ←̇→
h

�
+ pdet

�
←→
h
�
. (6.5)

The enthalpy of the system is given by H = E + pV . The above Hamiltonian therefore

approximates the enthalpy if

E =
1

2

N�

i

µi�v
2
i +

N�

i<j

φ(rij), (6.6)

and the kinetic energy of the tensor is viewed as a slight error. In equilibrium, at a temper-

ature, T , the tensor dynamics contributes 9/2kBT to the total enthalpy, while the particle

dynamics contributes 3/2NkBT . As such, Parrinello-Rahman dynamics approximates the

pHN ensemble with a 3 : N error.
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In using Parrinello-Rahman, one must take heed of a few subtle points. First of all, the

Lagrangian written above is postulated, its validity only being established by the reason-

able results it yields. As discussed by Andersen, this Lagrangian clearly neglects cross-terms

between the box axes and the particle positions, yet nevertheless samples the desired dis-

tribution correctly [8]. The above equations also beg the question of what the mass of

the tensor matrix elements, W , should be. If one is interested in static averages, W does

not play a role in the final results and may be set to whatever value is computationally

convenient. However, if one is interested in realistic calculations, W should be of the same

order of magnitude as the time, L/c, where L is the length of a side of the box and c is

the speed of sound through the material [8]. This follows from the fact that W controls

the relaxation time of the axes after being distorted by an external pressure-internal stress

imbalance. The fastest such a response can occur in a given simulation cell is of the order

of the length of the cell divided by the sound velocity of the material.

These equations may be further generalized to a system upon which an anisotropic

external stress is applied. In such a case, the pV term must be replaced by a general elastic

energy term, Vel, where

Vel ≈ V Tr [←→s ←→� ] (6.7)

in the small strain limit. In the above, ←→s denotes the stress tensor and ←→� is the strain

tensor, where

←→� =
1

2

��
←→
h T

0

�−1 ←→
G

←→
h −1

0 −
←→
I

�
. (6.8)

←→
h 0 is the reference tensor at zero applied stress at a fixed temperature for a given potential.

The generalized enthalpy may then be derived to be

HS = E + Vel =
1

2

N�

i

µi�v
2
i +

N�

i<j

φ(rij) + V Tr [←→s ←→� ] , (6.9)

along the same lines as in the case of isotropic stress.
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6.2.2 Classical Monte Carlo Algorithm

If one is interested in static properties, one can achieve the same ends as a Parrinello-

Rahman molecular dynamics simulation by simply sampling the enthalpies given above [61].

In the most general case of a constant anisotropic stress, one samples the enthalpy given by

Equation 6.9 by randomly sampling the tensor matrix elements and particle coordinates.

Both may be sampled using the Metropolis algorithm descirbed in Chapter 3. New matrix

elements, h
�
ij , may be genererated by adding a random displacment to the old elements, hij ,

h
�
ij = hij +∆hmax (2ξij − 1) . (6.10)

Here, ∆hmax denotes the maximum permitted change to a single tensor matrix element

and
←→
ξ is a matrix of random numbers ranging from zero to one. In order to prevent

rotations of the simulation box, it is customary to let ξij = ξji, which prevents
←→
ξ from

becoming asymmetric. Upon changing the particle and/or tensor coordinates, the enthalpy

of Equation 6.9 changes as

∆H = ∆U + VrefTr [
←→s ←→� ]−NkBT log

�
Vnew

Vold

�
, (6.11)

where ∆U is the change in potential energy, Vref is the average reference volume when

the external pressure is 0, and Vnew and Vold are the respective new and old volumes. As

discussed above, the volume is the determinant of the
←→
h tensor. The strain, ←→� , is given

by Equation 6.8. System configurations are accepted according to

A(�S,
←→
h → �S�,

←→
h

�
) = min

�
1, e−∆H/(kBT )

�
. (6.12)

The NPT ensemble may be sampled by adjusting the stress tensor elements to reflect a

constant isotropic pressure and sampling tensor displacements such that they are all equal

and zero off of the diagonal.

6.2.3 Constant Stress Quantum Monte Carlo

In order to translate classical Parrinello-Rahman into a quantum algorithm, one must first

translate Equations 6.5 and 6.9 for the enthalpy into their quantum mechanical analogs.
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Substituting particle and matrix element velocities with momentum operators, Equation

6.5 becomes

Ĥ = −λr

N�

i

∇
2
ri + U(�R)− λh

3�

α=1

3�

β=1

∂2

∂h2αβ
+ pdet

�
←→
h
�
, (6.13)

where λr = h̄2/2µ and λh = h̄2/2W . Here, a kinetic matrix term corresponding to the

movements of the box matrix,
←→
h , is included. This term is a direct translation of the

1
2WTr

�
←̇→
h

T ←̇→
h

�
term that appears in Equation 6.5. Although movements of the box ma-

trix have no physical correspondence, this term is kept in the formalism that follows, as box

fluctuations may speed convergence to the equilibrium distribution of particle and box con-

figurations. Equation 6.13 may be sampled via a variational [171; 51] or finite-temperature

[40] path integral simulation.

The Path Integral Monte Carlo (PIMC) technique was described in Chapter 3 and

again briefly in Chapter 7. The Variational Path Integral (VPI) technique is a ground state

version of PIMC detailed in Appendix D. Within either formalism, the long-time propagator

based upon the Hamiltonians in Equations 6.5 or 6.9 is re-expressed as a convolution over

short-time propagators. The short-time propagators are subsequently evaluated using the

primitive or other higher order approximations [51]. In the primitive approximation, the

action corresponding to Equation 6.13 may be written as

S = −

M�

m=1



(�Rm−1 −
�Rm)2/4λrτ + τU(�Rm) +

�

αβ

(hα,β,m−1 − hα,β,m)2/4λhτ + τpdet
�
←→
h
�


 .

(6.14)

The action corresponding to Equation 6.9 may be expressed similarly, however I limit myself

to the constant pressure case because of its particular importance in the work that follows.

At finite temperatures, observables are computed by sampling the partition function

Z ∝

�
d�R0...d�RM−1d

←→
h 0...d

←→
h M−1

�
det

�
←→
h
��−2

M�

m=1

e
−(�Rm−1−�Rm)2/4λrτ−τU(�Rm)−

�
αβ(hα,β,m−1−hα,β,m)2/4λhτ−τpdet

�←→
h
�

, (6.15)
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with �R0 = �RM ,
←→
h 0 =

←→
h M [121; 191]. Because the Constant Stress Quantum Monte Carlo

algorithm works in the constant stress ensemble, as opposed to the constant volume ensem-

ble, integrals over the box matrices now also appear in Equation 6.15. Particle coordinates

may be sampled based upon this partition function through either bisection or centroid

moves as in Chapter 3. Matrix coordinates may be sampled similarly by viewing the matrix

elements as polymers in matrix element space. During matrix-bisection moves, one thus re-

grows stretches of matrix elements over multiple time slices. During matrix centroid moves,

one changes the matrix elements at all time slices at once. In the variational path integral

(VPI) method, average ground state observables are determined by sampling the square of

the approximate ground state wavefunction

�ΨT |e
−βĤ

|ΨT � =

�
d�R1...d�RM−1Ψ

∗
T (�R0)ρ(�R0, �R1)...ρ(�RM−1, �RM )ΨT (�RM ). (6.16)

Substituting Equation 6.14 into the above, one has

�ΨT |e
−βĤ

|ΨT � ≈

�
d�R1...d�RM−1Ψ

∗
T (�R0)ΨT (�RM )d

←→
h 0...d

←→
h M−1

�
det

�
←→
h
��−2

(6.17)

M−1�

m=1

e
−(�Rm−1−�Rm)2/4λrτ−τU(�Rm)−

�
αβ(hα,β,m−1−hα,β,m)2/4λhτ−τpdet

�←→
h
�

.

Equation 6.17, may be sampled just like the finite-temperature Path Integral Monte Carlo

partition function, with two primary caveats. Firstly, in the variational path integral

method, �R0 �= �RM ,
←→
h 0 �=

←→
h M . VPI polymers therefore do not close on themselves;

they are open chains. The VPI action is furthermore modified by the Ψ∗
T (

�R0) and ΨT (�RM )

terms that multiply the propagators. One must therefore add − ln(Ψ∗
T (

�R0) + ln(Ψ∗
T (

�RM ))

to the action during all calculations.

The Constant Stress Quantum Monte Carlo technique thus constitutes sampling either

Equation 6.15 or Equation 6.17 by performing four primary types of moves: particle centroid

moves, particle bisection moves, matrix centroid moves, or matrix bisection moves.2

2Exchange may also be sampled using permutation-bisection moves as described in Chapter 3. How

exchange may affect the ergodicity of this algorithm remains an open question.
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Parameter � σ Particle Mass, µ Matrix Mass, W

Atomic Units 3.2372× 10−5 4.1580 7344.6 68.006

Table 6.1: Quantum hard sphere simulation parameters. These parameters roughly ap-

proximate the Aziz potential for 4He and are the same as those used by Runge and Chester

[170]. � was used to convert units for comparisons against other simulations.

6.3 Computational Details

6.3.1 Potential

As a test of the Constant Stress Quantum Monte Carlo algorithm, I have applied it to

the study of the quantum hard sphere phase diagram. Besides the fact that the quantum

hard sphere phase diagram has not been well-studied, quantum hard spheres additionally

represent a stringent test of my algorithm, since hard spheres are more difficult to re-arrange

into different crystal structures than particles described by softer interparticle potentials.3

Quantum hard spheres are quantum particles composed of polymers of beads that interact

with one another only at the same time slice according to the hard sphere potential

V (rij) =






0, if rij ≥ σ

∞, if rij < σ,
(6.18)

where rij denotes the distance between particles i and j and σ the hard sphere diameter.

As I was interested in studying the bcc phase of quantum hard spheres, I chose the hard

sphere diameter so that it approximates the repulsive portion of the Aziz potential for 4He

[13]. The hard sphere parameters that best fit this potential are given in Table 6.1.

3Hard spheres are well-known to jam at certain densities or under certain pressures. A thorough study

of whether quantum hard spheres jam during Constant Stress Quantum Monte Carlo simulations remains

to be performed.
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6.3.2 Propagator

Because the hard sphere potential is infinitely repulsive, the primitive approximation to the

action converges very slowly to the exact action for hard spheres [37; 177]. The Jacucci and

Omerti image propagator was therefore employed [93]. This propagator adds an additional

set of terms, SJO, to the action to compensate for the otherwise abrupt change in the

action with interparticle distance due to the form of the hard sphere potential. Thus, if the

primitive approximation to the action in the constant stress ensemble may be written as

SPrim = −

M�

m=1

�
(�Rm−1 −

�Rm)2/4λrτ + τU(�Rm)
�

+ −

M�

m=1




�

αβ

(hα,β,m−1 − hα,β,m)2/4λhτ + τpdet
�
←→
h
�


 , (6.19)

the total action action may be expressed as

STotal = SPrim + SJO, (6.20)

where

SJO = − ln




�

i<j

M�

m=1

�
1− e

− µM
βh̄2

(rmij−σ)(rm+1
ij −σ)

�

. (6.21)

In the above equation, rmij denotes the distance between particles i and j at time slice m. It

is furthermore assumed that the polymers are closed and thus that �R0 = �RM ,
←→
h 0 =

←→
h M .

Although it converges more slowly than the Cao and Berne propagator [37], the Jacucci

and Omerti propagator was deemed adequate for the purposes of this work.

6.3.3 Simulations

All simulations of quantum hard spheres were performed by sampling the four basic Con-

stant Stress Monte Carlo moves: bisection moves, centroid moves, matrix bisection moves,

and matrix centroid moves. Matrix bisection, matrix centroid, and centroid moves were

each sampled every 1/N moves. Bisection moves were sampled the remainder of the time.

As alluded to in Section 6.2, in order to sample matrix bisection moves, one must ascribe a
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weight, W , to the simulation box. W should not affect the final results of the calculations,

but is expected to affect the algorithm’s convergence [8]. In the following calculations,

W = 1/(2Nµ). All of the results presented below seemed to be minimally affected by the

use of the matrix bisection moves. Further examination of these moves will be left to future

work.

6.4 Results

6.4.1 Benchmarks

As a test of the Constant Stress Quantum Monte Carlo algorithm, its results for the ener-

gies and volumes of quantum hard spheres were first compared against those produced by

Runge and Chester employing the same parameters and propagators as this work, but in

the NVT ensemble [170]. In order to perform the comparisons, pressures determined from

the NVT ensemble simulations were used in the Constant Stress Quantum Monte Carlo

simulations. The volumes and energies that resulted from the constant stress calculations

were then compared to the volumes used to produce the original NVT pressures. As illus-

trated in Tables 6.2 and 6.3, the average constant stress volumes for N = 108 particles were

comparable, but not equal within statistical uncertainty, to the NVT volumes at a number

of densities both at T ∗ = 1.6, or T = 4 K, and T ∗ = 8.0, or T = 20 K. For all of the

densities and temperatures listed in these tables, particles were initialized on an fcc lattice

at a density of ρ∗ = .5 and allowed to melt into their final configurations.

The slight differences between my volumes and Runge and Chester’s volumes likely

stemmed from a combination of the number of time slices I used and errors in Runge and

Chester’s reported pressures. As noted above, I used the bisection algorithm to sample my

particles’ configurations. In contrast, Runge and Chester used a normal-mode sampling

technique [170]. It is therefore possible that Runge and Chester achieved a higher level

of convergence than did I using the same number of time slices, resulting in slight volume

discrepancies. It is furthermore possible that Runge and Chester’s reported pressures for

a given number of time slices were inaccurate. It is evident from their paper that they

were unable to converge their pressures with M , despite converging their energies [170]. It
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ρ∗ T* P* RC P RC Volume BR P BR Volume

.015 1.6 0.0279 ± 0.0002 10 517963.6 10 502294.8 ± 839.0

.05 1.6 0.1292 ± 0.0009 10 155389.1 10 148741.0 ± 160.9

.15 1.6 1.031 ± 0.004 20 51796.4 10 45304.7 ± 16.6

.35 1.6 12.47 ± 0.003 20 22198.4 20 22006.8 ± 29.1

.46 1.6 29.74 ± 0.12 40 16890.1 64 16946.9 ± 21.1

Table 6.2: Volumes attained by the current constant pressure algorithm using pressures

obtained from constant volume simulations performed by Runge and Chester at T ∗ =

1.6. Constant pressure volumes are in good agreement with those from constant volume

simulations, as expected. RC denotes Runge and Chester results, while BR denotes my

results.

ρ∗ T* P* RC P RC Volume BR P BR Volume

.025 8.0 0.226 ± 0.003 6 310778.2 6 313594.0 ± 821.2

.05 8.0 0.505 ± 0.004 6 155389.0 6 153449.0 ± 388.3

.09 8.0 1.104 ± 0.007 6 86327.3 6 84897.5 ± 155.4

.16 8.0 2.83 ± 0.02 10 48559.1 10 48760.4 ± 80.1

.25 8.0 7.13 ± 0.04 10 31077.8 16 30584.8 ± 10.7

.39 8.0 24.5 ± 0.15 10 19921.7 32 19978.0 ± 27.1

.46 8.0 42.5 ± 0.15 20 16890.1 16 16686.4 ± 5.7

Table 6.3: Volumes attained by the current constant pressure algorithm using pressures

obtained from constant volume simulations performed by Runge and Chester at T ∗ =

8.0. Constant pressure volumes are in good agreement with those from constant volume

simulations, as expected. RC denotes Runge and Chester results, while BR denotes my

results.
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is possible that using converged pressures would increase the overlap between our results.

Future Constant Stress Monte Carlo simulations will also compute pressure to allow for more

direct comparisons. Regardless, Tables 6.2 and 6.3 demonstrate that my implementation of

the Constant Stress Quantum Monte Carlo algorithm yields results in concert with those

previously published.

All of the above simulations tested whether Constant Stress Monte Carlo can achieve the

correct lower density liquid and solid structures starting from higher density crystal struc-

tures. A more exacting test of the algorithm is whether it can yield the correct higher density

crystal structures from lower density structures. One can, for instance, readily imagine situ-

ations in which, upon applying a significant pressure, quantum hard spheres form randomly

close-packed structures instead of their expected equilibrium structures because they are

unable to fully sample their configuration space. I therefore tested whether quantum hard

spheres can transition from liquid structures to fcc solid structures during the course of a

Constant Stress Quantum Monte Carlo simulation. Quantum hard spheres were first equili-

brated into a liquid structure at P = .5 KBar and then re-equilibrated to P = 3 and P = 5

KBar, higher pressures at which they are expected to become fcc solids. As illustrated by

the radial distribution functions in Figure 6.1, after compression, quantum hard spheres

attain the same final crystal structures as they do when equilibrated from higher density

structures. Similar tests have demonstrated that quantum hard spheres can transition from

bcc crystal structures to fcc crystal structures and vice-versa during constant stress simu-

lations. Altogether, these results suggest that the Constant Stress Quantum Monte Carlo

algorithm can successfully transform a system in one phase into another phase, at least

at the pressures and temperatures considered in this chapter. Future work will attempt

to establish whether this also holds for higher pressures, lower temperatures, and different

potentials.

6.4.2 BCC Phase of Quantum Hard Spheres

Given the Constant Stress Quantum Monte Carlo algorithm’s success converting systems

among different phases, the algorithm was then employed to explore whether quantum hard

spheres exhibit a bcc phase. As discussed in Chapter 2, 4He is well-known to exhibit a bcc
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Figure 6.1: Radial distribution functions after compression of quantum hard spheres from

the liquid into the fcc solid phase. As a test of whether Constant Stress Quantum Monte

Carlo can compress a liquid into its proper solid phase at a given pressure, N = 108 quantum

hard spheres at T = 30 K were first equilibrated from an fcc structure into the liquid phase

at P = .5 KBar and then further equilibrated at either P = 3 or P = 5 KBar. The

radial distribution functions obtained after the second equilibrations were then compared

to those produced by performing one equilibration to those same pressures starting from

an fcc structure. The solid black line delineates the radial distribution function for the

quantum hard spheres after their first equilibration into the P = 0.5 KBar liquid phase.

The solid red and blue lines respectively delineate the radial distribution functions obtained

after the second equilibration to P = 3 and P = 5 KBar. The dotted red and blue lines

respectively delineate the radial distribution functions produced after direct equilibration

to P = 3 and P = 5 KBar from an fcc structure. The agreement between the solid and

dotted lines indicates that the Constant Stress Quantum Monte Carlo algorithm is capable

of transforming a liquid into its correct solid crystal structure using only the pressure as an

input. M = 20 was used to produce all of the above curves.
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phase between 2 and 5 K from approximately 25 to 30 Bar [60]. This bcc phase inhabits a

small region of the 4He phase diagram, suggesting that its stability is predicated upon an

intricate balance among repulsive forces, attractive forces, and exchange.

In order to better understand this balance and to determine whether quantum hard

spheres modeled without attractive forces or exchange may also form a bcc phase, the

Constant Stress Monte Carlo algorithm was used to determine the structures of quantum

hard spheres over a range of pressures between 2 and 5 K. The quantum hard spheres were

endowed with 4He’s radius and initialized on an fcc lattice at ρ∗ = .5. They were then

allowed to equilibrate to their final structures at varying pressures.

The final crystal structures attained by the quantum hard spheres were determined

based upon the systems’ radial distribution functions. Although one could also ascertain

a system’s crystal structure using order parameters [110], given the similarity between the

number of nearest-neighbor atoms in bcc and fcc crystal structures, this approach was found

to be unreliable. As a result, which crystal structures the quantum hard spheres formed was

determined based upon their radial distribution functions. As illustrated in Figure 6.2, bcc

crystal structures may be discriminated from fcc crystal structures based upon the form of

their radial distribution functions between their first and second shells. While bcc crystal

structures possess a clear dip in their radial distribution functions between their first and

second shells, fcc structures possess a small hump consisting of a global minimum followed

by a more local minimum between these two shells.

Using this distinguishing feature, one can readily determine that a bcc phase does not

manifest itself at any of the pressures or temperatures simulated in Figures 6.3, 6.4, and

6.5. The radial distribution functions depicted in these figures all either possess a clear fcc

hump-like structure or liquid features in their radial distribution functions. It is unlikely

that bcc features emerge at pressures between those simulated here.

The absence of bcc features in the radial distribution functions depicted above suggests

that quantum hard spheres do not form a bcc phase. In order to ascertain whether this is

in fact the case, further simulations should be performed starting from structures initialized

on a bcc lattice. If such structures also transition into fcc structures, this would firmly

support the absence of a bcc phase. Preliminary simulations starting from bcc structures
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Figure 6.2: Example fcc and bcc radial distribution functions for quantum hard spheres.

Note that the fcc radial distribution function possesses a local maximum between its first

and second shells, whereas the bcc radial distribution function possesses a pronounced

minimum. The above radial distribution functions were produced using N = 256 quantum

hard spheres with M = 70 at T = 4 K, P ∗ = 50.
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Figure 6.3: Radial distribution functions of quantum hard spheres at varying pressures for

T = 4 K. The above radial distribution functions were produced using N = 256 quantum

hard spheres with M = 70. As can be seen from the top plot, a transition between the

liquid and fcc phases occurs between P ∗ = 20 and P ∗ = 30. No clear bcc character can be

gleaned from the bottom plots.
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Figure 6.4: Radial distribution functions of quantum hard spheres at varying pressures for

T = 3 K. The above radial distribution functions were produced using N = 256 quantum

hard spheres with M = 70. As can be seen from the top plot, a transition between the

liquid and fcc phases occurs between P ∗ = 15 and P ∗ = 22.5. No clear bcc character can

be gleaned from the bottom plots.
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Figure 6.5: Radial distribution functions of quantum hard spheres at varying pressures for

T = 2 K. The above radial distribution functions were produced using N = 256 quantum

hard spheres with M = 70. As can be seen from the top plot, a transition between the

liquid and fcc phases occurs between P ∗ = 10 and P ∗ = 20. No clear bcc character can be

gleaned from the bottom plots.
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do indeed support this hypothesis, in turn implying that an attractive potential or exchange

is crucial to the stability of the bcc phase of quantum hard spheres.

6.5 Conclusions

6.5.1 Summary

In this chapter, I have outlined the Constant Stress Quantum Monte Carlo method and

used it to study the phase diagram of quantum hard spheres. The Constant Stress Quan-

tum Monte Carlo method combines the Constant Stress Molecular Dynamics method of

Parrinello and Rahman with Path Integral Monte Carlo yielding a technique capable of

predicting the crystal structures of quantum many-body systems. This technique is equally

applicable at finite temperatures and in the ground state. In this work, the Constant Stress

Quantum Monte Carlo algorithm was applied to quantum hard spheres. The algorithm was

first benchmarked against previous NVT-ensemble results for quantum hard spheres to test

its accuracy. It was then employed to determine whether quantum hard spheres parame-

terized to model 4He form a bcc phase, much like 4He does in the laboratory. Preliminary

results suggest that quantum hard spheres do not form such a bcc phase and hence that, in

order for this phase to be stable, particles must be modeled with an attractive tail and/or

exchange.

6.5.2 Future Work

Much of the work presented above on quantum hard spheres is still quite exploratory.

As such, a number of fundamental questions may be raised about using Constant Stress

Quantum Monte Carlo on quantum hard spheres. First and foremost, classical hard spheres

are well-known to form randomly-packed structures if compressed too quickly or to pressures

greater than their equilibrium fcc phase pressures at a given temperature [133]. Is Constant

Stress Quantum Monte Carlo capable of avoiding such randomly-packed structures? Does

it naturally yield only equilibrium structures, as one might hope? A careful study of which

structures are formed during a Constant Stress Quantum Monte Carlo simulation and how

the structures formed have to do with how frequently matrix moves are sampled is crucial
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to understanding Constant Stress Quantum Monte Carlo’s utility. In the above examples,

I furthermore only applied Constant Stress Quantum Monte Carlo at constant pressures.

Is the algorithm equally accurate when a constant stress with off-diagonal stress tensor

components is applied? Being able to study quantum particles under a constant stress

would be of use to those interested in materials design. Lastly, one might also wonder how

the Constant Stress Quantum Monte Carlo algorithm works when permutation moves are

also sampled. Although exchange is not relevant in solids, it is relevant when delineating

the phase boundary between a solid and a superfluid phase, such as between the bcc solid

and He-II phases of 4He [40]. This algorithm’s accuracy and efficiency amidst exchange has

yet to be explored.

The Constant Stress Quantum Monte Carlo algorithm was originally developed with

the idea of delineating the high-pressure hydrogen phase diagram in mind. Currently, much

of the hydrogen phase diagram is in dispute. Recent studies have focused on delineating

the phase diagram of hydrogen at pressures ranging from 500 GPa to 3.5 TPa. Above

1 TPa, hydrogen show signs of being metallic and potentially superconducting [123; 124;

132]. Many of these calculations were performed using DFT with various corrections, which

are known to be inaccurate at high pressures where strong correlation becomes important.

A quantum Monte Carlo technique capable of simulating high pressure hydrogen would be

useful for checking the accuracy of, and potentially, correcting such earlier calculations.

Constant Stress Monte Carlo would also be particularly well-suited for delineating the low-

temperature hydrogen phase diagram between 100 and 300 GPa. Spectroscopic evidence

suggests that Phase III hydrogen forms above 150 GPa at T = 0 [181]. The exact structure

and extent of this phase in the phase diagram remain unknown. A direct application of the

Constant Stress Quantum Monte Carlo method described above using the Silvera-Goldman

potential and potentially supplemented with rotational moves should be able to shine light

upon this portion of the phase diagram [179].
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Chapter 7

(Super?)glassy Hydrogen

Despite being so lightweight, p-H2 has no naturally occuring superfluid phase because it

crystallizes at temperatures well above those at which the effects of quantum statistics are

significant. Key to producing superfluid hydrogen is therefore finding a way to postpone

its solidification to lower temperatures by mitigating the effects of its strongly attractive

binding potential. Previous computational studies have illustrated that one potential way

of accomplishing this is by doping p-H2 with alkali atoms [70]. In this work, I carry this idea

one step further and explore whether binary mixtures of p-H2 with smaller “B” particles, can

exhibit superfluidity. Such mixtures have been shown classically to frustrate crystallization

and remain in a quasi-equilibrium supercooled state [100; 101]. I find that, while binary p-H2

mixtures may be supercooled to only a few K without solidifying, large energetic barriers

preclude the formation of the many-particle permutation cycles that are responsible for

superfluidity. This work likewise demonstrates that producing superfluid p-H2 amounts to

more than simply preventing p-H2 from crystallizing, as many have previously claimed, and

that future attempts to produce superfluid p-H2 should focus even further upon reducing

p-H2’s coordination number.

7.1 Introduction

A superfluid is a fluid of bosons that flows without resistance. To be a superfluid, a sub-

stance’s particles must remain mobile enough to exchange places with one another at the low
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temperatures at which boson statistics are important [107]. Because of its large zero-point

energy, 4He is well-known to exhibit superfluidity below its critical temperature of 2.18 K [4;

97]. In general, a substance’s superfluid critical temperature scales inversely with its mass

[68]. One may therefore ask, if 4He exhibits superfluidity, can para-hydrogen (p-H2) – a

boson half as massive as 4He – also exhibit superfluidity?

Despite its low mass, it turns out that bulk p-H2 forms an hcp solid, not a superfluid at

low temperatures [11]. This is because p-H2’s interparticle potential is over three times as

attractive as 4He’s interparticle potential. As a result, bulk p-H2 crystallizes at 13.8 K at

zero pressure, a temperature far above 6 K, the maximum estimate of its superfluid critical

temperature [68]. Thus far, attempts to produce superfluid hydrogen by supercooling it

below 13.8 K have not been successful [117; 118].

The crystallization of bulk p-H2 does not, however, preclude superfluidity in other forms

of p-H2. Ginzburg first suggested that crystallization may potentially be delayed to below

6 K in two-dimensional H2 thin films, H2 under negative pressure, and doped H2 [68]. Long

exchange cycles have since been experimentally observed in p-H2 clusters of 14-16 molecules

embedded in 4He droplets below 1 K [72]. Related simulations have shown that, while most

of the p-H2 molecules in these clusters form a crystalline core, superfluidity stems from a

few loosely-bound surface molecules. [98; 105; 130; 182]. Because of their positions on the

surface, these molecules interact with fewer neighboring p-H2 molecules, which allows them

to exchange freely. Superfluidity has also been reported in simulations of Cs- or K-doped

thin films below 1.5 K [70].1 Although pure H2 thin films crystallize at or above 5.8 K

[113], doping them again reduces the number of neighbors with which each p-H2 molecule

interacts. Past experience thus suggests that superfluidity may be successfully achieved by

reducing p-H2’s coordination number.

One potential way of producing bulk superfluid H2 by reducing its coordination number

may be by forming a glassy mixture. In classical systems, it has been demonstrated that

intermixing larger, “A,” particles with a fraction of smaller, “B,” particles prevents the “A”

particles from crystallizing [100; 101]. If the “A” and “B” particles are mixed in an 80:20

1More recent work refutes these claims, however, attributing the observation of a superfluid response in

these systems to finite-size effects [192].
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ratio, the system forms a glass instead [100; 101]. It has recently been demonstrated that

KALJ binary mixutres may similarly form quantum glasses [119; 120]. Previous treatments

of KALJ quantum glasses, however, did not account for quantum statistics. Bosons have

long been known to possess a Bose glass phase, a phase characterized by diagonal disorder

and gapless excitations [64]. Only recently has it been shown that Bose glasses can also

exhibit superfluidity [25]. Somewhat paradoxically, such superglasses are at once diagonally

disordered and off-diagonally ordered. In fact, it has been claimed that quantum statistics

inhibit crystallization in superglasses, by enhancing, not reducing, the superglass phase’s

stability [28]. Thus far, simulations of superglasses have largely been restricted to 4He and

lattice bosons [28]. One might naturally wonder: if 4He can form a superglass, can bulk

p-H2 similarly evade crystallization by forming a superglass?

In this work, I explore whether Kob-Andersen Lennard-Jones (KALJ) p-H2 mixtures are

capable of forming superglasses. A p-H2 superglass would constitute the first known example

of a bulk p-H2 superfluid. One of the key findings of this work is that KALJ mixtures of

p-H2 may readily be supercooled to well below the pure p-H2 melting point. In fact, mixture

particles remain highly mobile well below 13.8 K, only beginning to exhibit signs of glassiness

below 3 K at many densities. Even so, our findings at this time illustrate that mixture

particles do not undergo exchange. Although permutation cycles begin to be sampled at 13

K, such cycles are virtually never accepted in the standard 80:20 KALJ mixtures. Only few-

particle cycles are observed in 70:30, 60:40, and 50:50 mixtures. These permutation cycles

are too short to wrap around the full simulation box and therefore do not contribute to any

measurable superfluidity in the binary systems studied. Superfluidity is thwarted in these

systems by p-H2’s strongly attractive potential, which creates substantial energetic barriers

that must be surmounted before any two particles can exchange. My results illustrate that

these ideas hold true not only in three dimensions, but in two dimensions as well. Future

attempts to produce bulk superfluid hydrogen should therefore focus as much upon reducing

such energetic burdens as upon preventing crystallization.

This chapter is organized as follows: In Section 7.2, I review the Ring Polymer Molecular

Dynamics (RPMD) and Path Integral Monte Carlo (PIMC) methods used to study p-H2.

I then discuss the details of my simulations, including the parameters employed to model
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binary Kob-Andersen Lennard-Jones p-H2 mixtures, in Section 7.3. In Section 7.4, I present

results on the diffusion and exchange of Kob-Andersen Lennard-Jones mixtures below 14

K. I conclude with a discussion of the impact of these findings upon future studies of bulk

superfluid p-H2 in Section 7.5.

7.2 Methods

A careful study of the superglass phase of p-H2 necessitates a technique capable of capturing

not only p-H2’s statistics, but its dynamics as well. Path Integral Monte Carlo (PIMC)

is well-suited for investigating the equilibrium properties of low-temperature bosons [157;

40]. Extracting dynamical information from PIMC’s imaginary time correlation functions,

however, remains a challenge. Analytic continuation of PIMC’s imaginary time correlation

functions often yields approximate, if not unreliable results [164]. In contrast, Ring Polymer

Molecular Dynamics (RPMD) is an approximate technique designed to capture the short-

time dynamics of quantum systems [48; 77]. While attempts have been made to incorporate

quantum statistics into other dynamical methods [21; 134], how to properly incorporate

quantum statistics into RPMD is still an open question. There is likewise no clear path

toward capturing the dynamical properties of bosons.

In the absence of such a path, my approach was two-fold. I first equilibrated KALJ

p-H2 binary mixtures from temperatures above the pure p-H2 melting point to just a few

Kelvin using RPMD. During this equilibration process, I also calculated the mean square

displacements of the p-H2 molecules with time as an estimate of their diffusion. Exchange in

p-H2 is anticipated to occur below 2 K. Using RPMD that does not take quantum statistics

into account above this temperature is therefore expected to be a mild approximation. After

equilibration down to a few Kelvin, I subsequently used constant-volume PIMC simulations

with permutation space sampling to determine whether the molecules in the equilibrated

configurations exchange. Because I discussed aspects of the RPMD and PIMC algorithms

in Chapter 3, I only briefly review the two techniques used in this process below.



CHAPTER 7. (SUPER?)GLASSY HYDROGEN 141

7.2.1 Path Integral Monte Carlo

PIMC is an exact method that uses the Monte Carlo algorithm to sample the finite-

temperature partition function of systems of quantum particles [40]. PIMC is best-suited

for treating first-quantized Hamiltonians, Ĥ, of non-relativistic systems of the form

Ĥ = −λ∇2 + V̂ . (7.1)

Here λ = h̄2/2µ where µ denotes the particles’ mass (here, I assume that all particles possess

the same mass for simplicity) and V̂ is the potential. Finite temperature observables may be

computed based upon configurations sampled from the finite temperature boson partition

function

ZB =

�
d�R0d�RMρB(�R0, �RM ;β) =

1

N !

�
d�R0d�RM

�

P

ρ(�R0, P �RM ;β), (7.2)

where ZB is the boson partition function, �Rk denotes the 3N coordinates of N particles at

time slice k, and P denotes a permutation over particle labels. ρ(�R0, P �R1;β) is the long-

time thermal density matrix, which may be re-expressed as a convolution of short-time

thermal density matrices

ρ(�R0, P �RM ;β) =

�
...

�
ρ(�R0, �R1; τ)ρ(�R1, �R2; τ)...ρ(�RM−1, P �RM ; τ)d�R1...d�RM−1

=

�
...

�
(4πλτ)−3NM/2e−(�RM−1−P �RM )2/4λτ+τV (P �RM )

M−1�

m=1

e−(�Rm−1−�Rm)2/4λτ+τV (�Rm)d�R1...d�RM−1. (7.3)

In the above, β = 1/kBT and τ = β/M is an imaginary time where M is the number of

imaginary time slices. The exponent of the density matrices, the PIMC action, is simi-

lar to the action of interacting polymers consisting of M beads connected to one another

by springs. According to the quantum-classical isomorphism, sampling Equation 7.2 thus

amounts to sampling the coordinates of long polymers [45]. In the case of bosons, one must

also sample over all possible permutations over particles. This is done by sampling all pos-

sible ways of interconnecting the polymers in exchange cycles [157]. In this work, I sampled
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both particle coordinates and permutations using the permutation-bisection algorithm [23].

This algorithm has been successfully employed to study such bosons as superfluid 4He [157],

and p-H2 clusters and thin films [70; 182].

7.2.2 Ring Polymer Molecular Dynamics

Ring Polymer Molecular Dynamics (RPMD) is a quantum dynamics algorithm that approx-

imates quantum correlation functions by evolving polymer paths using classical dynamics

[48]. Much as in PIMC, quantum particles are approximated as polymers of M inter-

connected beads. The particles sample their partition function based upon the dynamics

prescribed by their Hamiltonian. The Hamiltonian describing N ring polymers of M beads

may be written as

HM (�R, �P ) =
M�

m=1

�
(�Pm)2

2µ
+

1

2
µω2

M (�Rm−1 −
�Rm)2 + V (�Rm)

�
. (7.4)

As in Chapter 3, �Rm denotes the 3N positions of the particles at time slice m and �Pm

the 3N momenta. ωM = M/(βh̄) denotes the spring frequency for an M -bead polymer.

Hamiltonian mechanics then dictates that the particles move according to the equations

d�P

dt
= −

∂HM (�R, �P )

∂ �R
,

d�R

dt
=

∂HM (�R, �P )

∂ �P
. (7.5)

RPMD thus samples the partition function in the same fashion as Path Integral Molecular

Dynamics (PIMD) [19]. Where RPMD differs from PIMD is in its estimation of correlation

functions. Because calculating exact quantum real-time correlation functions of many-body

systems is currently beyond our reach, RPMD approximates Kubo-transformed correlation

functions, c̃AB(t), by their classical equivalents

c̃AB(t) ≈
1

(2πh̄)MZM

�
d�R(0)

�
d�P (0)e−βHM (�R(0),�P (0))AM (�R(0))BM (�R(t)), (7.6)

where ZM is the M -time slice partition function

ZM ≈
1

(2πh̄)M

�
d�R

�
d�P0e

−βHM (�R,�P ). (7.7)
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Parameter α δ γ C6 C8 C9 C10 rc

Value 1.713 1.567 0.00993 12.14 215.2 143.1 4813.9 8.321

Table 7.1: Silvera-Goldman parameters used to model p-H2 in this work. All parameters

are reported in atomic units.

�R(0), �P (0) and �R(t), �P (t) respectively denote the system’s 3NM particle coordinates and

momenta at times 0 and t. A and B are operators evaluated in the position basis. Thus, in

RPMD, one evaluates quantum correlation functions by moving the polymers according to

Hamiltonian dynamics and computing observables at different points during the particles’

trajectories. RPMD does not take into account any real-time quantum coherence and is

only exact in the high-temperature, t → 0, and harmonic oscillator limits [77]. Nevertheless,

RPMD has previously provided insights into the dynamics of water [131], KALJ mixtures

[119], and p-H2 [49; 90].

7.3 Computational Details

7.3.1 Intermolecular Potential

Because the electron density of the J = 0 ground rotational state of p-H2 is spherically sym-

metric [180], I modeled pure H2-H2 interactions using the semi-empirical Silvera-Goldman

potential [179]

VSG(�R) =
�

i<j

�
eα−δrij−γr2ij −

�
C6

r6ij
+

C8

r8ij
+

C10

r10ij
−

C9

r9ij

�
fc

�
. (7.8)

In this potential, r is the interparticle distance and fc is a dampening function,

fc(rij) = e−(rc/rij−1)2θ(rc − rij) + θ(rij − rc). (7.9)

The first term in the potential accounts for short-range repulsive interactions, while the

second set of terms accounts for long-range attractive dispersion interactions. The 1/r9ij

term is an effective three-body correction. The Silvera-Goldman parameters used in this

work are given in Table 7.1.
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In this work, I am primarily concerned with binary mixtures of Kob-Andersen Lennard-

Jones p-H2 particles [100; 101]. The Kob-Andersen Lennard-Jones potential models inter-

actions between larger “A” particles and smaller “B” particles. The larger “A” particles

are typically prone toward crystallization and interspersing the “B” particles among the

“A” particles either slows or prevents the “A” particles from crystallizing. The standard

Kob-Andersen Lennard-Jones potential is given by

VKALJ(�R) =
N�

i<j, i∈A, j∈A
4�AA

�
σ12
AA

r12ij
−

σ6
AA

r6ij

�
+

N�

i<j, i∈B, j∈B
4�BB

�
σ12
BB

r12ij
−

σ6
BB

r6ij

�

+
N�

i<j, i∈A, j∈B
4�AB

�
σ12
AB

r12ij
−

σ6
AB

r6ij

�
. (7.10)

In general, the Kob-Andersen model is parameterized by fitting σAA and �AA to some

desired potential and then setting σBB = 0.88σAA, σAB = 0.8σAA, �BB = 0.5�AA, and

�AB = 1.5�AA [100; 101].

In this chapter, I modeled p-H2 using a hybrid of the Silvera-Goldman and Kob-Andersen

Lennard-Jones potentials

VSG−KALJ(�R) =
N�

i<j, i∈A, j∈A
eα−δrij−γr2ij −

�
C6

r6ij
+

C8

r8ij
+

C10

r10ij
−

C9

r9ij

�
fc

+
N�

i<j, i∈B, j∈B
4�BB

�
σ12
BB

r12ij
−

σ6
BB

r6ij

�

+
N�

i<j, i∈A, j∈B
4�AB

�
σ12
AB

r12ij
−

σ6
AB

r6ij

�
. (7.11)

The A-A particle interactions were thus modeled using the standard Silvera-Goldman po-

tential. The A-B and B-B interaction parameters were obtained by first fitting �AA and

σAA to the Silvera-Goldman potential. The A-A parameters were then rescaled as above to

yield the KALJ A-B and B-B parameters. The parameters for the KALJ potential fit to the

Silvera-Goldman potential are given in Table 7.2. p-H2 binary mixtures could be modeled

equally well by describing the A-A interactions via a Lennard-Jones potential. Modeling

them via the Silvera-Goldman potential more accurately captures p-H2’s dispersive inter-

actions, however.
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Parameter �AA �BB �AB σAA σBB σAB

LJ Units 1 0.5 1.5 1 0.88 0.8

Atomic Units 9.817× 10−5 4.909× 10−5 1.473× 10−4 5.701 4.562 5.017

Table 7.2: Kob-Andersen Lennard-Jones parameters used to model superglassy hydrogen

in this work. Parameters are reported in Lennard-Jones (LJ) and atomic units.

7.3.2 Implementation Specifics

As discussed above, my p-H2 systems were equilibrated using RPMD and subsequently

tested for exchange using PIMC. The RPMD code used in this work was the same as that

used by Markland et al. [119], while the PIMC code was a custom program developed to

accommodate exchange from that originally used by Rabani et al. [164]. 3D simulations

consisted of 216 total particles in 60:40, 70:30, or 80:20 particle ratios in a periodic box. All

particles were given the mass of p-H2, or 3672.3×me ≈ 3.3452×10−27 kg. The zero-pressure

reduced densities, ρ∗, of quantum p-H2 in three dimensions range from ρ∗ ≈ .59 at T = 20

K to ρ∗ ≈ .72 at T = 4 K [174]. In order to avoid phase separation, I therefore equilibrated

a number of systems at densities greater than or equal to ρ∗ = .725. Even though the

hybrid KALJ-SG system differs from the pure SG system, one would expect that its zero-

pressure densities should be similar. As discussed below, because of the presence of smaller

“B” particles, it turns out that mixtures phase separate at slightly higher densities than

ρ∗ = .725. Simulations were therefore regularly visualized to ensure that phase separation

did not occur. I began the equilibration process by initializing my mixture on a cubic

lattice at T = 15 K, a temperature at which p-H2 is a liquid and its particles should readily

diffuse. I then decreased the temperature in units of .5 K to 10 K if I was checking for

crystallization, or in units of 1 K if I was equlibrating to 3 K or below to observe exchange.

Before changing the temperature, simulations were performed for approximately 10 ps at

each fixed temperature. The RPMD time step used to integrate the equations of motion

was .005 in Lennard-Jones (LJ) units. Previous studies of superfluid 4He demonstrate

that several hundred beads are often needed to converge PIMC calculations that use the

primitive or fourth-order propagator approximations to the action (more below) at a few
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K [23]. Simulations at all equilibration temperatures were likewise performed on polymers

of M = 600 beads. At higher temperatures, this is far more than needed, however, tests

on shorter chains yield the same results. Thorough convergence tests would have to be

performed to ascertain whether M = 600 beads is sufficient at the lowest temperatures

studied here. I simply assume that M = 600 will yield qualitatively correct results for

the purposes of this thesis. Simulations in 2D were performed along similar lines. In

2D, simulations consisted of 100 total particles in varying particle ratios initialized on a

triangular (an fcc lattice in 2D) lattice. The zero-pressure, T = 0, density of p-H2 was

previously reported to be ρ∗ = .587 [192]. 2D simulations were therefore performed well

above this density to prevent phase separation.

Once equilibrated, configurations produced using RPMD were used as input into PIMC

calculations that sampled permutation space. Even though the pair-product form of the

action has been successfully employed to accelerate low-temperature 4He calculations, here

the primitive approximation for the action is employed instead (see Chapter 3). Use of

the primitive approximation requires significantly larger values of M than the pair-product

action would necessitate, but previous experience suggests that the pair-product action

develops singularities when applied to dense p-H2 [163]. I likewise avoid such singularities

and simplify my calculations by using the primitive approximation at this stage of this study.

During the PIMC simulations, a mix of bisection, centroid, and permutation-bisection moves

are performed. Bisection moves are sampled 90% of the time, centroid moves 1% of the

time, and permutation-bisection moves the remainder of the time. The centroid move size is

set such that approximately 50% of centroid moves are accepted. Below a few K, centroid

moves become prohibitively expensive and I therefore relax my acceptance constraint at

these temperatures. I generally found that regrowing s = 64 or s = 128 time slices yielded

reasonable acceptance rates for my bisection moves. Except where otherwise indicated, the

same s was used in my permutation-bisection moves. During each permutation-bisection

move, a table of all possible pair-permutations was constructed and then sampled 70000

times until either a move was accepted or all 70000 attempts were rejected. Tests on 4He and

p-H2 clusters demonstrated that this parameterization of PIMC moves yielded published

energies, cycle probabilities, and superfluid densities.
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7.4 Results

7.4.1 Diffusion in Three Dimensions

As an initial step toward understanding if p-H2 binary mixtures exhibit superfluidity, it

was first explored whether such mixtures evade crystallization below the pure p-H2 melting

point in 3D. At zero pressure, pure 3D p-H2 is expected to crystallize at 13.8 K. As illus-

trated in Figures 7.1 and 7.2, pure p-H2 crystallizes at approximately 12 K as indicated

by a steep drop in its potential energy and mean square displacement curves. Calculations

using other equlibration schemes manifest similar drops at 12 K. Although the crystal-

lization temperature observed differs from the experimental crystallization temperature, it

is in concert with the results of previous simulations [163]. In stark contrast, the 80:20

Silvera-Goldman/Kob-Anderson Lennard-Jones mixtures manifest no such drops. Mixture

potential energies and mean square displacements only gently decrease as the mixtures are

cooled below the melting temperature. As indicated by their mean square displacements,

mixture particles only show signs of slowing down below 6 K (see Figure 7.3). Above 6 K,

the mixture mean square displacements are linear, as they would be in a liquid. Below 6 K,

they begin to assume non-linear forms, manifestations of caging effects commonly observed

in glasses [101]. Results not presented here furthermore illustrate that the smaller the “A”

to “B” particle ratio, the more diffusive KALJ systems become.

One potential explanation for the diffusive behavior seen in these figures is that the “A”

and “B” particles may have phase separated during the simulations and that the mean-

square displacements reflect particle movement either at the phase boundary or in the

“B” particle phase. Snapshots of the systems like Figure 7.4 show no evidence of phase

separation at densities above ρ∗ = .725, however. The “A” and “B” particles appear to

be fully interspersed among one another during the entire equilibration period. As shown

in Figure 7.5, phase separation only begins to occur below ρ∗ = .6. As the density is

decreased, bubbles first begin to emerge and then a vacuum begins to encompass larger and

larger portions of the simulation box.

These calculations thus suggest that binary mixtures of p-H2 readily evade crystalliza-

tion, remaining liquids down to several degrees below the pure p-H2 melting point. Even
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Figure 7.1: Potential energies versus time for pure (top) and 80:20 Kob-Andersen Lennard-

Jones mixture (bottom) p-H2 across the solid-liquid phase boundary at ρ∗ = .725. Pure

p-H2 is expected to solidify at approximately 14 K. The pure p-H2 potential energy suddenly

drops at 12 K, indicating that the system has crystallized, as expected. No such drop is

observed in the Kob-Andersen Lennard-Jones mixture system. The potential energies above

were obtained using RPMD with N = 216 particles, each with M = 64 beads.
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Figure 7.2: Mean square displacement (MSD) versus time for pure (top) and 80:20 Kob-

Andersen Lennard-Jones mixture (bottom) p-H2 across the solid-liquid phase boundary

at ρ∗ = .725. The pure p-H2 is far less motile than the Kob-Andersen Lennard-Jones

mixture across all temperatures depicted. At 12 K, the temperature at which the pure

p-H2 crystallizes, the p-H2 molecules are effectively stationary. The MSDs above were

obtained using RPMD with N = 216 particles, each with M = 64 beads.
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Figure 7.3: Mean square displacement (MSD) versus time for 80:20 Kob-Andersen Lennard-

Jones mixtures at ρ∗ = .725 and ρ∗ = .8 for varying temperatures. In both systems,

the particles are clearly motile and have not crystallized at temperatures far below the

crystallization temperature for pure p-H2. The MSDs above were obtained using RPMD

with N = 216 particles, each with M = 64 beads.
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Figure 7.4: Example images of 80:20 Kob-Andersen Lennard-Jones mixtures at ρ∗ = .725

(left) and ρ∗ = .8 (right) at T = 6.0 K. Each of the 216 spheres represents one quantum

particle, consisting of M = 64 beads. Red spheres represent “A” particles and yellow

spheres “B” particles. Periodic boundary conditions have been applied. No signs of either

phase separation or crystallization are evident in these and other visualizations. Images

were obtained from RPMD simulations.
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Figure 7.5: Example images of 80:20 Kob-Andersen Lennard-Jones mixtures at ρ∗ = .4

(left), ρ∗ = .5 (center), and ρ∗ = .6 (right) at T = 6.0 K. Each of the 216 spheres represents

one quantum particle, consisting of M = 64 beads. Red spheres represent “A” particles

and blue spheres “B” particles. Periodic boundary conditions have been applied. Phase

separation clearly begins to manifest below ρ∗ = .6, first as bubbles, as in the center image,

and then as a vacuum that occupies much of the simulation box, as in the right-most image.

Images were obtained from RPMD simulations.
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below 6 K where the first signs of glassiness are observed, mixture particles continue to

move significantly more than if they were crystallized (see Figure 7.1).

7.4.2 Exchange

Given that p-H2 binary mixture particles are so motile at just a few Kelvin, it is worthwhile

asking whether they also exchange at such low temperatures. To answer this question, the

acceptance probabilities of attempted permutation-bisection moves were examined. These

probabilities quantify the probability of accepting a permutation cycle of a given length out

of all possible lengths. As discussed above, permutation-bisection moves first sample and

accept/reject permutation cycles of varying lengths and then sample and accept/reject the

regrowth of the polymers necessary to create those permutation cycles. Somewhat surpris-

ingly, permutation cycles begin to be sampled in the binary mixtures at temperatures as

high as T = 13 K. In contrast, 4He only begins to sample such cycles around 4 K. Even

so, Tables 7.3 and 7.4 illustrate that sampled permutation cycles of all lengths are almost

never accepted in 80:20 mixtures, even when they are accepted in 4He at similar tempera-

tures. Permutations are more often accepted in 70:30 and 60:40 mixtures. Nonetheless, few

exchange cycles long enough to contribute to a superfluid response last for more than a few

MC moves in such systems.

These results suggest that what inhibits superfluidity in p-H2 mixtures is p-H2’s poten-

tial. The ability to sample permutation cycles depends on the de Broglie wavelength of p-H2

and the structure of the Bose glasses formed at these temperatures. The fact that permu-

tation cycles are sampled implies that the structure of the glasses is favorable for exchange.

The ability to accept permutation cycles is predicated upon the energetics of constructing

interconnected polymers. As shown in Table 7.5, the potential energy per particle for a 3D

80:20 KALJ mixture is ∼ −136 K. This is more than twice the kinetic energy per particle.

As a result, 3D mixture particles do not possess enough energy to exchange freely once

they are cooled into disordered structures. Bulk 4He and cluster p-H2 particles both ex-

change, and their potential energies are signficantly less negative and of the same magnitude

as their kinetic energies. It is thus the strength of the Silvera-Goldman potential in a bulk

3D mixture that precludes exchange despite the particles’ mobility. Indeed, tests show that
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4He, T=2 K

Cycle Permutation Cycle # Cycles Regrowth Acceptance # Regrown Chains

Length Acceptance Frequency Accepted Frequency Accepted

2 0.998321 32377 1.0 91

3 0.000617 20 0.0 0

4 0.000062 2 0.0 0

> 4 0.0 0 0.0 0

p-H2, T=2 K

Cycle Permutation Cycle # Cycles Regrowth Acceptance # Regrown Chains

Length Acceptance Frequency Accepted Frequency Accepted

2 0.861390 433535 0.0 0

3 0.091344 45973 0.0 0

4 0.043585 21936 0.0 0

> 4 0.003682 1853 0.0 0

Table 7.3: A comparison of acceptance frequencies of permutations of varying lengths for

4He at ρ∗ ∼ .233 and p-H2 at ρ∗ = .725. Accepting a permutation move in the permutation-

bisection algorithm requires accepting a permutation over particle labels and the regrowth

of polymer chains to properly form the accepted permutation cycle. In the above, I compare

the acceptance frequencies for 4He and p-H2. Because of its smaller de Broglie wavelength,

4He samples shorter permutation cycles than p-H2 at T = 2 K, yet accepts them at a

significantly higher rate. In both cases, the results above were produced using PIMC by

simulating N = 216 particles with M = 600.
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T = 5 K

Cycle Permutation Cycle # Cycles Regrowth Acceptance # Regrown Chains

Length Acceptance Frequency Accepted Frequency Accepted

2 0.996548 32619 0.0 0

3 0.002933 96 0.0 0

4 0.000519 17 0.0 0

> 4 0.0 0 0.0 0

T = 3 K

Cycle Permutation Cycle # Cycles Regrowth Acceptance # Regrown Chains

Length Acceptance Frequency Accepted Frequency Accepted

2 0.943238 264169 0.0 0

3 0.038109 10673 0.0 0

4 0.018203 5098 0.0 0

> 4 0.000450 126 0.0 0

T = 1 K

Cycle Permutation Cycle # Cycles Regrowth Acceptance # Regrown Chains

Length Acceptance Frequency Accepted Frequency Accepted

2 0.533682 2977677 0.0 0

3 0.214231 1195298 0.0 0

4 0.118002 658392 0.0 0

> 4 0.134085 748125 0.0 0

Table 7.4: Acceptance frequencies of permutations of varying lengths for p-H2 at ρ∗ = .725.

Accepting a permutation move in the permutation-bisection algorithm requires accepting a

permutation over particle labels and the regrowth of polymer chains to properly form the

accepted permutation cycle. Here, I tabulate the acceptance frequencies for both portions

of the permutation-bisection move at varying temperatures for p-H2 over 5000 MC moves.

In all cases, the chain regrowth length is s = 64 beads. For p-H2, permutations over particle

labels are readily accepted, yet the related regrowth of polymers is not. At all temperatures,

the results above were produced using PIMC with N = 216 particles and M = 600 beads.
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if the same p-H2 mixture particle configurations are used, but the particles are imbued with

4He’s Aziz potential, they immediately begin to exchange.

The data in Table 7.5 suggested that, whereas 3D mixtures do not exchange because of

their extremely negative potential energies per particle, 2D mixtures may exchange because

of their significantly reduced potential energies. Simulations were likewise performed on

65:35, 80:20, and 90:10 binary mixtures in two dimensions. These mixtures were found to

phase separate at the pure p-H2 density. As such, simulations were performed at substan-

tially larger densities at which the systems did not manifest any phase separation. Although

research on these systems is ongoing, results so far demonstrate that 2D mixtures also do

not exhibit superfluidity. These mixtures’ large and negative potential energies therefore

pose a substantial barrier to exchange in any dimension.

7.5 Conclusions

In this work, I have explored whether binary mixtures of p-H2 exhibit superfluidity. The

results presented in this chapter demonstrate that while such mixtures may be supercooled

down to only a few degrees Kelvin, mixture particles still cannot exchange at these tempera-

tures owing to energetic considerations. p-H2’s large de Broglie wavelength makes sampling

permutation space highly favorable, yet p-H2’s strongly attractive intermolecular potential

makes accepting sampled permutations highly unlikely.

These results highlight two key points about p-H2. First and foremost, preventing p-

H2 from crystallizing is not sufficient for realizing a p-H2 superfluid. Ginzburg and many

others have proposed that all one needs to do to form a p-H2 superfluid is to suppress

crystallization to sufficiently low temperatures. This work illustrates that doing so is not

enough. The p-H2 potential is still often too strong to allow for exchange. It is only by

further reducing the effects of the intermolecular potential – by reducing the dimensionality

of the system or by forming clusters – that one may be able to form a superfluid. The

observation of bulk superfluid hydrogen is thus highly unlikely in three, and perhaps, two,

dimensions. Similar conclusions about potential energy barriers were reached in Turnbull

et al.’s study of 2D doped p-H2 thin films [192]. This work moreover highlights the extent
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of the ability of impurities to prevent crystallization. The Silvera-Goldman potential has

a very strong binding energy. If adding “B” particles to H2 prevents its crystallization, it

should readily prevent crystallization in many other quantum systems.

This work still leaves open the possibility that superfluidity may be observed in mixtures

with different particle ratios. As alluded to above, lowering the ratio of “A” to “B” particles

increases the mobility of the p-H2 molecules by lowering the overall system binding energy.

Perhaps the addition of more “B” particles will lower the binding energy enough to permit

exchange. It is furthermore possible that binary mixtures of different types of particles

may exhibit superfluidity. Potential energies per particle for binary systems would likely be

substantially reduced in mixtures of p-H2 and 4He or p-H2 and a theoretical particle with a

smaller Lennard-Jones �. It may even be possible to form a two-component superfluid if the

p-H2 � is replaced by a smaller �. Future studies will explore these and other possibilities.
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3D 80:20 Mixtures, ρ∗ = .725 (No Exchange Observed)

T (K) PE (K) KE(K)

3 -136.48 48.39

2 -136.61 44.67

1 -136.58 42.31

2D 80:20 Mixtures, ρ∗ = .848 (No Exchange Observed)

T (K) PE (K) KE (K)

3 -64.08 55.35

2 -63.71 60.29

1 -64.25 59.28

N=13 p-H2 Clusters (Exchange Observed)

T (K) PE (K) KE (K)

3 -40.46 24.15

2 -41.66 26.33

1 -42.81 20.39

3D 4He, ρ∗ = .233 (Exchange Observed)

T (K) PE (K) KE (K)

3 -20.97 16.77

2 -20.93 15.78

1 -20.66 14.46

Table 7.5: A comparison of the potential and kinetic energies of various quantum liquids

from T = 1 − 3 K. Exchange occurs in both p-H2 clusters and bulk 4He. I do not observe

any exchange in either 3D or 2D p-H2 binary mixtures. The data suggest that the lack

of exchange in binary mixtures may be because each of the mixture particles possesses a

large and negative potential energy. Results for all of the systems were obtained using a

custom PIMC code and are consistent with those from previous studies. Note that figures

were generated from short simulations in most cases and are therefore not meant to be

quantitative.
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Chapter 8

Conclusions

8.1 Overview

In this thesis, I have described my recent work developing and applying novel quantum

Monte Carlo algorithms. In Chapter 4, the Monte Carlo Power Method, a new stochastic

technique for computing the second eigenvalues and eigenvectors of matrices too large to

diagonalize using deterministic methods, was outlined. I demonstrated how this technique

works by using it to compute the second eigenvalues of various Markov chain transition

matrices, which allowed me to compare the efficiencies of different Monte Carlo algorithms.

The Bose-Fermi Auxiliary-Field Quantum Monte Carlo (BF-AFQMC) method was next

reviewed in Chapter 5. BF-AFQMC is a generalization of the finite-temperature fermion

AFQMC algorithm (also known as the BSS algorithm) to bosons and Bose-Fermi mixtures.

I demonstrated the algorithm’s accuracy by comparing its results to exact results obtained

using Exact Diagonalization and the worm algorithm. Even though its formalism is more

general, practical applications of this algorithm are currently limited to small system sizes

because of the rogue eigenvalue problem.

In Chapter 6, I detailed a novel Constant Stress Quantum Monte Carlo algorithm for

both finite-temperature and ground state Path Integral Monte Carlo simulations. This

algorithm enables one to determine the potentially complex crystal structures of quantum

systems without any previous information. The Constant Stress Quantum Monte Carlo

algorithm was used to study whether quantum hard spheres possess a low temperature bcc
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phase.

I lastly summarized my latest research attempting to form a 3D bulk superfluid phase

from a binary mixture of p-H2 in Chapter 7. Although the binary mixtures studied evaded

crystallization, they nevertheless did not exhibit superfluidity in my Path Integral Monte

Carlo simulations. These findings suggest that H2’s binding energy is a severe hindrance to

exchange in the bulk.

Altogether, the research detailed in this thesis broadens QMC’s range of applicability

to Bose-Fermi mixtures and crystal structure prediction, while also answering compelling

questions about the low-temperature properties of quantum hard spheres and p-H2. I expect

that many of the ideas, such as those about superglassy p-H2, and much of the formalism,

such as that used to derive my boson partition and Green’s functions, presented here will

find use outside of the QMC community as well.

8.2 Future Directions

This research naturally raises a number of questions that merit future consideration. Firstly,

the Monte Carlo Power Method detailed in Chapter 4 was only used to determine second

eigenvalues. May the Monte Carlo Power Method be modified to use the second eigenvalues

it obtains to determine third eigenvalues, and third eigenvalues to obtain fourth eigenvalues,

and so on and so forth? In other words, how many eigenvalues can the Monte Carlo Power

Method acquire? The more eigenvalues it can compute, the more valuable information it

can yield about the excitation spectra of many model Hamiltonians in condensed matter

physics and the better it can compete with prominent iterative diagonalization techniques.

One glaring problem raised by the work in Chapter 5 is the “rogue eigenvalue problem.”

When expressed in terms of determinants, the boson partition function in Boson Auxiliary-

Field Quantum Monte Carlo possesses a singularity. When walkers sample this singularity,

they develop a phase problem that is not amenable to standard phase cancellation techniques

or the phaseless approximation. Developing ways to mitigate, if not eliminate, the phase

problem is therefore crucial to the widespread adoption of the BF-AFQMC algorithm.

The “rogue eigenvalue problem” may potentially be solved by analytically removing this
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singularity, much as the corresponding singularity is removed from the Bose gas partition

function in textbook derivations [128]. If the singularity cannot be analytically removed, in

the spirit of the Diffusion Monte Carlo technique described in Chapter 3, it may be possible

to guide walkers away from the singularity using a guiding function, improved interacting

trial density matrices, and/or importance sampling.

In Chapter 6, I demonstrated how the Constant Stress Quantum Monte Carlo algorithm

may be used to predict the crystal structures of quantum hard spheres. Because of hard

spheres’ trivial interatomic potential, their crystal structures possess comparatively simple

unit cells. A key question is whether Constant Stress Quantum Monte Carlo will be able

to predict more sophisticated crystal structures with significantly more complex unit cells.

Will this method be able to resolve the crystal structures of Phase III or Phase IV p-H2, for

instance? If it is able, it could be used as a check on popular DFT-based genetic algorithms

for structure prediction that compromise accuracy for speed.

Although the results in Chapter 7, caste doubt on the ability of binary p-H2 mixtures

modeled using a combination of the Silvera-Goldman and Kob-Andersen Lennard-Jones po-

tentials to form bulk superfluids, it is still possible that binary p-H2 mixtures modeled using

different potentials may exhibit superfluidity. For instance, it is worth exploring whether

Kob-Andersen Lennard-Jones potentials with different �AB and/or �BB parameters or p-

H2-4He mixtures can form superfluids. Even if binary mixtures of p-H2 molecules cannot

form bulk superfluids, regardless of the potentials used, much still remains unknown about

the properties of superglasses more generally. Previous research suggests that quantum

statistics slow the diffusion of bosons [28]. How does this manifest itself in mean square dis-

placements and diffusion coefficients? Simulations of quantum KALJ mixtures with smaller

� parameters than those used to model p-H2 should readily be able to answer such questions.

This work likewise lends itself to a number of interesting future explorations. I look

forward in particular to using the Constant Stress Quantum Monte Carlo algorithm to

refine the low-temperature H2 phase diagram and the Path Integral Monte Carlo machinery

I designed to study p-H2 to explore the dynamics of superglasses in the very near future.
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Appendix A

Scaling of Transition Matrix

Eigenvalues

The basic equation for a Markov chain is

p(x) =

�
dy P (y → x)p(y). (A.1)

Here, p is the stationary probability density of the chain and P is the transition probability

density defining the chain. These probability densities satisfy the equations

�
dx p (x) = 1, (A.2)

and

�
dxP (y → x) = 1. (A.3)

As discussed in Chapter 3, the Metropolis algorithm makes a specific choice for the transition

probability density [129]

P (y → x) = T (y → x)min
�
1, e−β(V (x)−V (y))

�
. (A.4)

In the Metropolis algorithm, the proposal, or sampling, density, T (y → x), assumes the

form
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T (y → x) =






1/∆, if y ∈ [y −∆/2, y +∆/2]

0, otherwise ,
(A.5)

and

�
dxT (y → x) = 1. (A.6)

In the following, I show that for potentials of the form, V (x) ∝ |x|n, the product of this

choice of the proposal probability density and the standard Metropolis acceptance density,

A(y → x) = min
�
1, e−β(V (x)−V (y))

�
, (A.7)

leads to a scaling of P (y → x) that implies that all of its eigenvalues scale as a function of

∆n/T .

First, let A(y → x) = A(y → x;T ) to make the T dependence in the acceptance function

explicit. Next, note that for potentials of the type V (x) ∝ |x|n,

A (y → x;T ) = min

�
1, exp

�
−
|y|n

T

�
/exp

�
−
|x|n

T

��

= min

�
1, exp

�
−
|y|n/∆n

T/∆n

�
/exp

�
−
|x|n/∆n

T/∆n

��

= A

�
y

∆
→

x

∆
;
T

∆n

�
. (A.8)

Thus, from the point of view of the acceptance, going from y to x at temperature T is the

same as going from y/∆ to x/∆ at T/∆n. Proceeding similarly for the sampling function,

one can write T (y → x) = T (y → x;∆), which distributes x uniformly over an interval

centered at y and of width ∆. That is,

x ∈

�
y −

∆

2
≤ y ≤ y +

∆

2

�
. (A.9)

Over this interval, T (y → x)’s amplitude is 1/∆. Next, let

x

∆
∈

�
y

∆
−

1

2
≤

y

∆
≤

y

∆
+

1

2
.

�
. (A.10)
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A function that distributes x/∆ uniformly over this unit interval and has a unit amplitude

will make an acceptable proposal probability. Such a function is

∆ T
� y

∆
→

x

∆
; 1
�
. (A.11)

Thus, for the scaled system

P

�
y

∆
→

x

∆
; 1,

T

∆n

�
= ∆ T

� y

∆
→

x

∆
; 1
�
A

�
y

∆
→

x

∆
;
T

∆n

�

= T (y → x;∆)A (y → x;T )

= P (y → x;∆, T ) , (A.12)

which establishes the scaling of all the eigenvalues of P (y → x;∆, T ).
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Appendix B

Derivation of the Boson Partition

Function

In this Appendix, expressions for the boson partition and Green’s functions are derived that

are essential to my boson and Bose-Fermi mixture AFQMC algorithms. These expressions

have appeared in other contexts elsewhere [15; 75; 99]. These are derived in detail below,

drawing from References [80] and [86].

The fundamental relationship I aim to prove relates the trace of a product of one-body

operators to a determinant

Trb
�
e−b†iAijbje−b†iBijbj

�
= Det

�
I

I − e−Ae−B

�
, (B.1)

where b†i , bi are boson creation and annihilation operators at site i and A and B are arbitrary

matrices of coefficients. Let b̂† denote a row vector of boson creation operators:

b̂† ≡ {b†1, b
†
2, · · · , b

†
N}, (B.2)

where N is the size of the one-particle basis. Correspondingly, let b̂ denote a column vector

of annihilation operators. A general one-body operator Â is then

Â = b̂†Ab̂ =
�

ij

b†iAijbj , (B.3)

which is a scalar and is defined by the matrix A whose matrix elements are given by Aij .
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To prove Equation B.1, I first prove the following identity

e−Âe−B̂ = e−Ĉ , (B.4)

where the matrix C defining the one-body operator Ĉ is given by e−C ≡ e−Ae−B. Once

Equation B.4 is proven, one can easily move to the diagonal basis to obtain Equation B.1.

Let U †CU = Diag[ci], where ci are the eigenvalues of the matrix C, and b̂�i = U †
ijbj . Then,

Trb
�
e−b†iCijbj

�
= Trb

�
e−

�
i b̂

�†
i cib̂�i

�

=
�

i

∞�

ni=0

e−nici

=
�

i

�
1− e−ci

�−1

= Det
��
I − e−C

�−1
�
. (B.5)

To prove Equation B.4, consider the operation Âb̂†. Using the boson commutation

relation: bjb
†
k = δjk + b†kbj ,

Âb†k =
�

ij

b†iAijbj b
†
k =

�

i

b†iAik + b†k
�

ij

b†iAijbj , (B.6)

which gives

Âb̂† = b̂† · (A + IÂ), (B.7)

where I is an N×N unit matrix. Note the left-hand side is a scalar times a row vector while

the right-hand side is a row vector times a matrix. Repeated application of this equation

yields

Âmb̂† = b̂† · (A + IÂ)m, (B.8)

for any positive integer m. Thus

e−Â b̂† = b̂† · e−(A+IÂ) = b̂† · e−A e−Â, (B.9)

where in the last step the exponential can be broken up as the two parts commute. This is

similar to the equation for fermions [80].

Now consider an arbitrary single-boson state

|φ� ≡ φ̂†
|0� ≡ b̂† · φ|0� =

�

n

φnb
†
n |0�, (B.10)
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where φ is a column vector containing the orbital coefficients φi. The operation of the

one-body propagator e−Â on the state leads to

e−Â
|φ� = e−Â b̂† · φ|0� = b̂† · e−A

· φ |0�, (B.11)

where in the last step, e−Â|0� = |0�. Similarly, for a two-boson state

|ψ,φ� ≡ ψ̂†φ̂†
|0� = (b̂† · ψ)(b̂† · φ)|0�, (B.12)

and

e−Â
|ψ,φ� = (b̂† · e−A

· ψ)(b̂† · e−A
· φ) |0�. (B.13)

Proceeding inductively, it is clear that the effect of any single-particle propagator e−Â on any

n-particle state (including states in which some orbitals are identical, i.e., multiple bosons

occupying the same 1-particle orbital) is simply to modify each orbital by the matrix e−A.

Applying this twice leads to the proof of Equation B.4.

With an expression for the trace in hand, one can evaluate the related boson Green’s

function. The Green’s function may be written as

Gb
ij =

Trb
�
bib

†
je

−B̂e−Â
�

Trb
�
e−B̂e−Â

� =
Trb

�
bib

†
je

−Ĉ
�

Trb
�
e−Ĉ

� , (B.14)

where e−Â and e−B̂ are used to represent the product of one-boson propagators for the

time slices m ≤ k and m > k, respectively, with the equal-time Green’s function measured

at time slice k, and e−Ĉ = e−Âe−B̂. Transforming to the one-particle basis {|ν�} that

diagonalizes Ĉ, as in Equation B.5:

Gb
ij =

Trb
�
(δij + b†jbi)

�
ν e

−b̂†νcν b̂ν
�

Trb
�−b̂†νcν b̂ν

ν

= δij +
�

ν�

�ν �|j��i|ν ��
Trb

�
b†ν� b̂ν�

�
ν e

−b̂†νcν b̂ν
�

Trb
�−b̂†νcν b̂ν

ν

= δij −
�

ν�

�ν �|j��i|ν ��
d

dcν�
lnTrb

�
�

ν�

e−b̂†
ν�cν� b̂ν�

�

= δij + �i|

�
�

ν�

|ν ��
e−cν�

1− e−cν�
�ν �|

�
|j�

=

�
I

I − e−Ĉ

�

ij

. (B.15)
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In equilibrium AFQMC simulations, e−Ĉ represents the decomposition of the density matrix

e−βĤ as the product of time-sliced exponentials of quadratic operators, B̂(�φl)...B̂(�φ1), with

the corresponding time-ordering as defined by k, where the Green’s function is measured.

With these equations, one can readily extend fermion AFQMC techniques to bosons.
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Appendix C

Working with Boson Green’s

Functions

The form of the boson Green’s function necessitates three changes to the usual fermion

AFQMC algorithm. The first two changes pertain to the equations for calculating the ratio

of determinants and the updated boson Green’s function after each selection of a new field.

The last pertains to the computational stability and conditioning of boson Green’s functions

at low temperatures.

While the boson Green’s function may be recalculated from scratch each time it is

altered, it is numerically cheaper to use the Sherman-Morrison-Woodbury formula, which

yields the inverse of an invertible matrix plus a dyadic product. The formulas for performing

rank-one updates on the fermion Green’s function are well-known [14; 195]. Following Bai’s

derivation for fermions [14], here I derive the related formulas for boson Green’s functions,

I/(I − e−Ĉ), as given in Equation B.15.

Let M1 be the inverse of a boson Green’s function before the selection of a field and M2

be that after the selection of a field. From Equation B.15, these can be written as

M1 = I − FV1 (C.1)

and

M2 = I − FV2. (C.2)
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F represents a matrix appropriate for the corresponding Ĉ. V1 and V2 are diagonal matrices,

only differing at the ith element. With no loss of generality, let i = 1. Then

V −1
1 V2 = I + αe1e

T
1 , (C.3)

where

α ≡
V2(1, 1)

V1(1, 1)
− 1. (C.4)

As usual, e1 represents the first column of the identity matrix. M2 may then be reexpressed

in terms of M1

M2 = I − FV1 − FV1(V
−1
1 V2 − I)

= M1 − αFV1e1e
T
1

= M1
�
I + α(I −M−1

1 )e1e
T
1

�
. (C.5)

Expressing M2 in terms of M1 in this form allows one to readily determine the ratio of

determinants, rb, of the respective matrices. As discussed in Chapters 3 and 5, rb must be

included in the weighting factor that multiplies the overall walker weight after each field

selection. For bosons, the ratio of interest is

rb ≡
Det[I/M2]

Det[I/M1]
=

Det[M1]

Det[M2]
. (C.6)

Based upon Equations C.5 and C.6,

1/rb = Det[M2]/Det[M1]

= Det[I + α(I −M−1
1 )e1e

T
1 ]

= 1 + α(1− eT1 M
−1
1 e1). (C.7)

Thus,

rb =
1

1 + α(1− eT1 M
−1
1 e1)

. (C.8)

If one were to sample boson determinants using the Metropolis algorithm, it is rb that would

be used in the acceptance criterion.
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The updated Green’s function may furthermore be obtained by inverting Equation C.5.

Taking the inverse,

M−1
2 =

�
I + α(I −M−1

1 )e1e
T
1

�−1
M−1

1 . (C.9)

Using the Sherman-Morrison-Woodbury formula,

(A+ uvT )−1 = A−1
−

A−1uvTA−1

1 + vTA−1u
, (C.10)

and letting A = I, u = α(I −M−1
1 )e1, and vT = eT1 ,

M−1
2 =

�
I −

α(I −M−1
1 )e1eT1

1 + αeT1 (I −M−1
1 )e1

�
M−1

1

= M−1
1 −

α

rb
(I −M−1

1 )e1e
T
1 M

−1
1 . (C.11)

Since M−1
1 is simply the previous boson Green’s function and α and rb have been calculated,

this equation represents a facile way of updating the boson Green’s function. Analogous

equations may be derived for other diagonal sites.

In addition to these adjustments to the local updating scheme, a slight change must

also be made to the way one inverts the boson Green’s function. Just as special care must

be taken to invert the ill-conditioned denominator of the fermion Green’s function at low

temperatures, care must similarly be taken to invert the denominator of the boson Green’s

function. One should therefore perform the same UDV -decomposition used for fermions

[195] on bosons, but with a sign change reflecting the opposite sign that appears in the

denominator of the boson Green’s function:

Gb = [I − UDV ]−1 = V −1[U−1V −1
−D]−1U−1

= V −1[U
�
D

�
V

�
]−1U−1. (C.12)

In the above, U,U
�
are orthonormal matrices, D,D� are diagonal matrices, and V, V � are

upper-triangular.
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Appendix D

Variational Path Integral Monte

Carlo

In Chapter 6, I developed a new Constant Stress Quantum Monte Carlo technique and used

it to study the quantum hard sphere phase diagram. Although I used a finite-temperature

version of this algorithm based upon the Path Integral Monte Carlo algorithm in Chapter

6, it is equally applicable at T = 0. The ground state version of Constant Stress Quantm

Monte Carlo is based upon the Variational Path Integral (VPI) Monte Carlo method. In

this appendix, I summarize the VPI method, the ground state analog of the Path Integral

Monte Carlo method. Just like in Path Integral Monte Carlo, the VPI method represents

particles as polymers. However, unlike in PIMC, these polymers are open polymers that do

not close on themselves. VPI and related ground state Constant Stress Quantum Monte

Carlo calculations thus proceed exactly like their finite-temperature counterparts with a

few exceptions pertaining to the polymer boundary conditions.

In specific, Variational Path Integral Monte Carlo is a projector Monte Carlo technique

(see Chapter 3) that exploits the fact that

φ(β) = e−βĤΨT , (D.1)

where ΨT is a trial wavefunction. In the limit that β → ∞, φ(β) is equivalent to the

ground state wavefunction. In VPI, one uses φ(β) as an approximation for the ground
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state wavefunction to obtain ground state observables [40]. If β = 0, VPI simply yields

variational results. However, as β is increased, results converge to the exact results.

Where VPI differs from other projector Monte Carlo methods, such as Diffusion Monte

Carlo, is in how it approximates e−βĤ . If one rewrites Equation D.1 in terms of the

coordinate basis, one then has

φ(�R0,β) =

�
��R0|e

−βĤ
|�RM �ΨT (�RM )d�RM

=

�
ρ(�R0, �RM ,β)ΨT (�RM )d�RM (D.2)

with ρ(�R0, �RM ,β) the long-time density matrix. Much as in PIMC, the long-time density

matrix may be written as a convolution over a product of short-time density matrices

ρ(�R0, �RM ,β) ≡

�
d�R1...d�Rm−1ρ(�R0, �R1, τ)ρ(�R1, �R2, τ)...ρ(�RM−1, �RM , τ). (D.3)

As before, τ = β/M . Assuming that the Hamiltonian is a sum of the usual kinetic and

potential terms for N molecules, the primitive approximation may be used and the short-

time propagators may expressed as (see Chapter 3)

ρ(�R0, �R1, τ) ≡ (4πλτ)−3NM/2
M�

i=1

e−
(�Ri−1−�Ri)

2

4λτ e−1/2τ [V (�Ri−1)+V (�Ri)]. (D.4)

The average value of an observable, Ô, may be evaluated using the equation

�Ô� =
�ΨT |ρ(β − τ �)Ôρ(τ �)|ΨT �

�ΨT |ρ(β)|ΨT �
. (D.5)

If τ � = 0, this equation yields the mixed estimate of the observable. If τ � = β/2 and β

is sufficiently large, this equation yields the exact ground state estimate of the observable.

Irrespective of the value of τ �, Equation D.4 may be substituted into the Equation D.5 to

yield

�Ô� =

�
d�R1...d�RM−1O(�Rk)Ψ∗

T (
�R0)ΨT (�RM )ρ(�R0, �R1, τ)...ρ(�RM−1, �RM , τ)

�
d�R1...d�RM−1Ψ∗

T (
�R0)ΨT (�RM )ρ(�R0, �R1, τ)...ρ(�RM−1, �RM , τ)

(D.6)

=

�
d�R1...d�RM−1O(�Rk)Ψ∗

T (
�R0)ΨT (�RM )

�M
i=1 e

− (�Ri−1−�Ri)
2

4λτ e−1/2τ [V (�Ri−1)+V (�Ri)]

�
d�R1...d�RM−1Ψ∗

T (
�R0)ΨT (�RM )

�M
i=1 e

− (�Ri−1−�Ri)
2

4λτ e−1/2τ [V (�Ri−1)+V (�Ri)]

,
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where O is evaluated at time slice k, the value of which depends upon the value of τ �.

Observables may therefore be computed by sampling the denominator in the above equation,

which is equivalent to the square of the ground state wavefunction. As in PIMC, the

coordinates at various imaginary times constitute a polymer path. Unlike in PIMC, however,

this path is open since �R0 �= �RM . During a simulation, one therefore simply moves the

beads in the open polymers. Middle beads may be moved using the bisection algorithm

(see Chapter 3), while the end beads may be moved using Levy constructions [103]. Also

unlike in PIMC, the action in the denominator is modified by the presence of the ΨT ’s

at both ends of the path. When evaluating observables, one thus calculates estimates of

the observables at different points during the simulation and weights them by the factor

Ψ∗
T (

�R0)ΨT (�RM ) in the final average.

The chief advantage of the VPI algorithm over the Diffusion Monte Carlo algorithm is

that it does not rely upon branching schemes [51]. This dramatically reduces the possible

errors involved. Previous research has moreover suggested that VPI is less influenced by the

trial wavefunction than Diffusion Monte Carlo. The fact that the VPI polymers are already

open chains additionally makes the algorithm more amenable to calculating off-diagonal

properties.

As alluded to in Chapter 6, the Constant Stress version of VPI simply amounts to

sampling the denominator of Equation D.7 rewritten with a modified action.
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