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ABSTRACT 

Using Molecular Design to Influence Intermolecular Interactions 

Christine Laura Schenck 

 

 This thesis describes the impact of molecular design on intermolecular interactions. 

Chapter 2 explores tuning the properties of contorted hexabenzocoronene (HBC) derivatives to 

improve photovoltaic performance. First, the interaction between contorted HBC derivatives with 

varying degrees of “bowl” character and fullerenes are explored in solution. Association constants 

were determined by fluorescence quenching experiments with fullerenes C70, C60, and Phenyl-

C61-butyric acid methyl ester (PCBM). NMR titration experiments mimic fluorescence quenching 

results that suggest that association in solution increases with shape-complementarity between 

donor and acceptor. Second, efforts towards the synthesis of azulene HBC, an HBC derivative 

with red-shifted absorption, are discussed. Calculations of this target molecule and a selected 

intermediate are compared to those of the parent contorted HBC. Finally, an azulene HBC 

synthetic intermediate is explored as a potential sensor. Chapter 3 presents a study of the single 

molecule conductance of cobalt chalcogenide clusters. The synthesis of cobalt chalcogenide 

clusters decorated with a variety of conjugated molecular connectors was developed. Single 

molecule conductance of these clusters was shown to take place through the molecular 

connectors, and was tunable by controlling the substitution of the connectors. The tunability of 

cluster conductance that was demonstrated in the single molecule experiments was shown to 

extend to thin film experiments in chapter 4.  Preliminary investigation into the mechanism of 

conductance of these films is discussed. In chapter 5, a family of nickel telluride clusters with a 

variety of ligands is synthesized. The X-ray crystal structures of these clusters are analyzed and 

insight into how ligand sterics and electronics influence the final cluster structure is discussed.  

 

 



	  

i	  

TABLE OF CONTENTS 

Acknowledgements………………………………………………………………………………………iv 

Chapter 1. Introduction 

     1.1 Small Molecules as Electronic Materials………………………………………………………...1 

          1.1.1 Small Molecule Organic Semiconductors………………………………………………….2 

          1.1.2 Molecular Clusters……………………………………………………………………………7 

     1.2 Electronic Measurements...……………………………………………………………………...10 

          1.2.1 Single Molecule Conductance Measurements...………………………………………...11 

          1.2.2 Small Molecule Thin Film Conductance Measurements……..………………………...15 

          1.2.3 Solar Cells...…………………………………………………………………………………19 

     1.3 References...………………………………………………………………………………………22 

Chapter 2. Tuning the Properties of Contorted Hexabenzocoronene for Organic Photovoltaic 

Performance 

     2.1 Introduction...…………………………………………………….………………………………..28 

     2.2 Interaction of Fullerene and Shape-Matched Contorted Hexabenzocoronenes…………...32 

          2.2.1 Results and Discussion...…………………………………………………….…………….32 

          2.2.2 Experimental...…………………………………………………….………………………...37 

           2.2.2.1 General Information……………………………………………………….……………37 

2.2.2.2 Fluorescence Quenching and Quantum Yield Determination Experimental               

Details…………………………………………………………………………………………….38 

 2.2.2.3 NMR Titration Experimental Details………………………………………………….38 

          2.2.3 Conclusions……………………………………………………….…………………………38 

     2.3 Towards the Synthesis and Study of Azulene Hexabenzocoronene………………………..39 

          2.3.1 Results and Discussion...…………………………………………………….…………….39 

          2.3.2 Experimental...…………………………………………………….………………………...42 

 2.3.2.1 General Information……………………………………………………….……………42 

 2.3.2.2 UV-vis Titration Experiment...…………………………………………………….…...44 

 2.3.2.3 Calculations...…………………………………………………….……………………..45 



	  

ii	  

          2.3.3 Conclusions………………………………………………………………………………….45 

     2.4 Acknowledgements……………………………………………………………………………….45 

     2.5 References………………………………………………………………………………………...45 

Chapter 3. Understanding Single Molecule Conductance of Cobalt Chalcogenide Clusters 

     3.1 Introduction………………………………………………………………………………………..48 

     3.2 Results and Discussion…………………………………………………………………………..49 

     3.3 Experimental………………………………………………………………………………………55 

3.3.1 Synthetic Details…………………………………………………………………………….55 

3.3.1.1 General Information…………………………………………………………………….55 

3.3.1.2 Stilbene Synthesis……………………………………………………………………...55 

3.3.1.3 General Synthesis of Phosphine Ligands……………………………………………57 

3.3.1.4 General Synthesis of the Co6Se8L6 Clusters……………………………………...…59 

3.3.2 Instrumentation Details……………………………………………………………………..61 

3.3.3 Conductance Measurements……………………………………………………………...62 

3.3.4 UV-vis Absorption Spectroscopy………………………………………………………….62 

3.3.5 Cyclic Voltammetry………………………………………………………………………….63 

3.3.6 Crystallography……………………………………………………………………………...63 

3.3.7 DFT Calculations…………………………………………………………………………....65 

     3.4 Conclusions………………………………………………………………………………………..65 

     3.5 References………………………………………………………………………………………...66 

Chapter 4. Investigating the Translation from Single Molecule Conductance to Thin Film 

Conductance of Atomically Defined Quantum Dots  

     4.1 Introduction………………………………………………………………………………………..69 

     4.2 Results and Discussion…………………………………………………………………………..71 

     4.3 Experimental………………………………………………………………………………………77 

4.3.1 Synthesis…………………………………………………………………………………….77 

4.3.2 Substrate and Thin Film Preparation……………………………………………………..77 

4.3.3 Conductance Measurements………………………………………………………………78 



	  

iii	  

4.3.4 Atomic Force Microscopy…………………………………………………………………..78 

4.3.5 Optical Microscopy………………………………………………………………………….78 

4.3.6 Grazing Incidence X-Ray Diffraction (GIXD) …………………………………………….78 

4.3.7 UV-vis Spectroscopy………………………………………………………………………..79 

4.3.8 OTS Substrate and Thin Film Preparation………………………………………….……79 

     4.4 Conclusions………………………………………………………………………………………..80 

4.5 Acknowledgements……………………………………………………………………………….80 

     4.6 References………………………………………………………………………………………...80 

Chapter 5. Expanding the Family of Nickel Telluride Molecular Clusters  

     5.1 Introduction………………………………………………………………………………………..82 

     5.2 Results and Discussion…………………………………………………………………………..84 

     5.3 Experimental………………………………………………………………………………...…….93 

           5.3.1 Synthetic Details………………………………………………….………………………..93 

               5.3.1.1 General Information…………………………...……………………………………...93 

               5.3.1.2 Synthetic Procedures…………………………………………………………………94 

           5.3.3 UV-visible Spectroscopy…………………………………………………………...……...95 

      5.4 Acknowledgements…………….………………………………………………………………..96 

      5.5 Conclusions………….…………………………………………………………………………...96 

      5.6 References………………………………………………………………………………………..96 

Appendix A: Chapter 2 Supplemental Information…………………………………………………...97 

Appendix B: Chapter 3 Supplemental Information………………………………………………….115 

Appendix C: Chapter 4 Supplemental Information………………………………………………….124 

Appendix D: Chapter 5 Supplemental Information………………………………………………….132 

 

 

 

 

 



	  

iv	  

ACKNOWLEDGEMENTS 

 

 My experience as a graduate student in the Nuckolls lab has been an unforgettable 

journey, one that I could not have completed without the support of my advisor, professors, peers, 

and loved ones. I would like to express my gratitude to the many people who have been such a 

crucial part of my last four years. I am so grateful to have chosen Colin Nuckolls to be my 

graduate school advisor. He has shown me what it is to be a great scientist and has provided me 

the freedom to explore many subfields of materials chemistry and an environment of amazing 

scientists and tools to research in. His constant encouragement through good and bad research 

results gave me the strength to persevere and I will forever be grateful for his support of my 

choice to pursue a career in secondary education.  

 I would also like to acknowledge my committee members Jim Leighton and Mike 

Steigerwald for being a great support system throughout my time at Columbia. They made my 

second year defense and original research proposal truly valuable and even pleasurable 

experiences. Mike Steigerwald has been an amazing mentor. I have grown so much by 

conversing with him about science and life. I was hesitant to join the cluster project at first 

because of the unpredictable and mysterious nature of the research. Mike patiently taught me to 

embrace inorganic cluster chemistry and the “just try it and see what happens” attitude that the 

field sometimes requires. His scientific curiosity and insight is inspiring and contagious. 

 To the post-docs who have come and gone throughout my graduate career, you have 

had a lasting impact on me as scientists and friends. Kyle Plunkett and Brycelyn Boardman were 

the first post-docs to interact with me when I arrived and it truly was a warm welcome. I owe my 

introduction to cluster chemistry to Bryce and a lot of my organic synthesis technique to Kyle. In 

addition, most of chapter two was done in collaboration with Kyle during my first year. Thank you 

to both for the laughs and the ongoing friendships. I appreciate the time Alon Gorodetsky and 

Seok Ju Kang spent teaching me about solar cell device fabrication and Felix Fisher for the 

inspiring conversation. I am fortunate to have interacted with Bekka Klausen, who is a truly 

inspirational woman scientist. I shared desk space, conversation, and scientific ideas with Sujin 



	  

v	  

Wu and Kumar Bharat. I appreciate the editing suggestions given by Brandon Fowler, 

Christopher Bejger, and Bumjung Kim. All of these post-docs have made my graduate school 

experience pleasant and were a vital part of my scientific and personal development over the past 

four years. 

 I owe so much to Xavier Roy, who pulled me out of my research slump after what felt like 

unending disappointment. He believed in me as a scientist when I felt like I was a failure and 

invited me to join him on the cluster project. He spent a lot of time teaching me about proper 

organometallic synthesis techniques during my third and fourth year of graduate school, without 

which I would not have been able to perform most of the research in this thesis. He is an 

incredible scientist and has been a true pleasure to work with. To the rest of team cluster- Jaeeun 

Yu, Ari Turkiewicz, Chulho Lee, and Christopher Bejger- we have made a great team and have 

produced some amazing work. I will miss working with all of you.  

 To the many Nuckolls lab graduate students I was fortunate enough to share my 

experience with; you have all played an important role in my development as a scientist and as a 

person. The Nuckolls lab has to be the most pleasant and least dramatic work environment at 

Columbia because of all of you. I know we are all going to do amazing things, and I will miss you 

all. I would especially like to acknowledge Ying Wu for sharing the daily trials and tribulations of 

graduate school in our lab bay and Dan Paley for his helpful editing suggestions. K.O. Campbell 

and Michael Ewing provided me with administrative support so that I could focus on my research 

as well as non-science distractions when I needed them. They are both extremely intelligent and 

incredibly supportive. I appreciate all that they have done to help me complete my doctorate. In 

addition, I would like to thank Anna Ghurbanyan for her friendship and for the opportunity to be 

involved with the Columbia Science Honors Program. Without this experience, I may not have 

known that my true passion lies in secondary education. To the special friends I have made 

through this program, Paolomi Merchant, Markrete Krikorian, Gregory Chin, and Linda Suen, 

although we met in the context of chemistry, you have enriched my life in all aspects. I feel 

fortunate to call you all my friends. 



	  

vi	  

 I owe everything to my parents. They have been sacrificing for me and supporting me for 

my entire life and I could not have come this far without them. I thank my mom for instilling in me 

a “can do” attitude, the drive to be successful, and for teaching me about organization, 

presentation, and selflessness. I thank my dad for always pushing the limits of my knowledge, for 

the many intellectual conversations that shaped my ability to problem solve, and for providing me 

with a great example of a hard worker and an altruistic person. I love you both so much. 

 To Amedeo, my motivator, my distraction, my best friend, and my love; I could not have 

made it through graduate school without you. Just as we have persevered through the ups and 

downs of graduate school and emerged stronger, I look forward to sharing the ups and downs of 

life with you.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



	  

vii	  

 

 

 

 

 

 

 

 

For My Family 

 

 

“I don’t care how poor a man is; if he has family, he’s rich.” 

-Dan Wilcox and Thad Mumford 

 

 



	  

1 
	  

Chapter 1. Introduction 

  

 In 1965, Intel co-founder Gordon E. Moore wrote a seminal paper describing his 

prediction that “the number of transistors incorporated in a chip will approximately double every 

24 months.”1 This prediction has become a reality, allowing for extremely rapid advancement in a 

host of technologies. Today, technology is integrated into almost every aspect of our lives and 

has dramatically transformed social, political, and economic norms. Continuing the trend of 

“Moore’s law” requires that transistors continue to shrink in size, with the current Intel transistor 

size being 22 nm. In a 1959 lecture, physicist Richard Feynman called for developments of 

bottom-up approaches to nanoscale device fabrication.2 Since this lecture, there has been 

tremendous growth in the field of nanotechnology, which encompasses development of synthetic 

approaches to materials as well as development of nanoscale fabrication and device 

measurement.3-5 This introductory chapter gives an overview of small molecule nanoscale 

electronic materials is provided, as well as a discussion of the types of electrical measurements 

used for small molecule devices.  

  

1.1 Small Molecules as Electronic Materials 

The first electronic materials were solid state compounds.5 These solid state materials 

are generally metals or ionic solids formed by heating precursor materials to form the bulk, with 

little control over the fine structure. An alternative approach uses rational chemical synthesis to 

make electronic materials from the bottom-up. This relatively young field has explored polymers, 

organic small molecules,7 inorganic complexes,8 dendrimers,9 molecular clusters,10 and quantum 

dots11 as materials for electronic and optoelectronic applications. This thesis focuses on the 

development and understanding of novel organic small molecules and molecular clusters as 

electronic materials. In this section, an overview of small molecule organic semiconductors and 

molecular clusters will be explored. Some of the mechanisms through which these molecules are 

known to electronically communicate will be discussed.  
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1.1.1 Small Molecule Organic Semiconductors 

 Organic semiconductors possess the ability to transport charge carriers. These 

molecules exist in the form of polymers or small molecules, and for the purpose of this thesis, 

only the latter will be discussed. It should be noted that small molecules offer the advantages of 

solubility, precise chemical structure, and reproducibility over their polymer counterparts.7 π-

conjugated molecules provide a delocalization pathway for carriers to flow. In addition, π-

conjugated small molecules can form highly ordered stacks of two-dimensional sheets. These π- 

π interactions present a conduit for carrier delocalization across many molecules.12 Recently, the 

number of small molecule organic semiconductors has expanded rapidly.7,13 It is useful to 

categorize these molecules as electron donors (p-type semiconductors) or electron acceptors (n-

type semiconductors), as this determines which applications the molecule is suitable for.  

 As the name implies, electron donors give up electrons in the presence of an appropriate 

electron acceptor. In order for this to happen, the donor’s highest occupied molecular orbitals 

(HOMOs) must be high in energy relative to the electron acceptor’s lowest unoccupied molecular 

orbital (LUMO). The resulting oxidized donor must exist as a stable species. Polycyclic aromatic 

hydrocarbons (PAH) represent one of the largest classes of electron donors, and this class of 

molecules is most relevant to this thesis.14-16  Acenes, which can be characterized as linearly 

fused aromatic hydrocarbons, are the simplest set of molecules within this class.17 Acenes have 

been isolated in sizes ranging from the smallest two-unit system, naphthalene, to the largest nine-

unit system, nonacene (Figure 1.1a).18 Pentacene and rubrene are the most well studied acenes 

in the class, and are the paragon for small-molecule organic field-effect transistors (OFETs) 

(Figure 1.1a).19,20 

 Larger PAHs extend in two dimensions, compared to the one-dimensional extension of 

acenes, and have been investigated for their superior light absorption and stability relative to 

acenes.16 Their structure and properties can be tuned by varying the number and connectivity of 

aromatic rings. For example, placement of five benzene rings around a central cyclopentane ring  
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Figure 1.1. Examples of small molecule organic electron donors. a) Acenes b) Polycyclic 
aromatic hydrocarbons. 
 
 
gives corannulene, a bowl-shaped structure, while placement of six benzene rings around a 

central cyclohexane ring gives coronene, a completely planar structure (Figure 1.1b). The 

electronic properties of PAHs are principally dependent on the size and external functionality of 

the molecules. Larger PAHs have wider windows of absorption and lower energy absorption due 

to extended π-conjugation.21 However, larger PAHs suffer from limited solubility due to stronger 

π-stacking interactions.21 Solubilizing alkyl chains are sometimes installed on the periphery to 

remedy this.21 In addition, functionalization of PAHs by incorporating heteroatoms into the 

backbone or with peripheral electron-donating or -withdrawing groups can have a large impact on 

the functionality and packing structure of PAHs. Recently, Anthony and co-workers tuned the 

electronics of pentacene by incorporating cyano and trifluoromethyl groups to shift the HOMO 

and lowest occupied molecular orbital (LUMO) of pentacene from p-type to n-type (Figure 1.2a).22 

These n-type pentacene derivatives were shown to act as acceptors in solar cells with P3HT.23 

Installation of thiophene units into a contorted hexabenzocoronene structure has been shown to 

napthalene pentacene 

rubrene 

nonacene derivative 

a. b. 

corannulene coronene 

dibenzotetrathienocoronene 
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change the intermolecular packing structure of the molecule through sulfur-sulfur interactions 

(Figure 1.1b).24 

The synthesis of PAHs relies heavily on reaction chemistry that achieves fused 

aromatics. The development of catalytic aryl-aryl coupling reactions, such as Suzuki25 and 

Heck,26 has progressed with the field of synthetic materials chemistry, providing a large toolset for 

building PAH systems. Cyclization reactions also play an important role, by either building up the 

PAH framework or, in the case of photocyclizations,27 closing bonds of an existing framework to 

expand aromatization. Another important method of aromatic cylization is the Scholl reaction, 

which accomplishes Lewis acid assisted oxidative intramolecular aryl-aryl bond formation.28 

The counterpart to electron donors is the class of organic semiconductors known as electron 

acceptors. These molecules have lower energy HOMO-LUMO levels and are relatively stable in  

 

 

Figure 1.2. Examples of small molecule organic electron acceptors. a) n-type pentacenes b) 
common families of acceptors. R = alkyl chains 
 

N-type pentacene A 

N-type pentacene B 

a. b. 

perylene bisimide tetracyanoquinodimethane 

PC60BM 

C70 fullerene C60 fullerene 
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the reduced form. There are fewer known electron acceptors than electron donors. This is largely  

due to the fact that organic anions are less stable in air than organic cations.29 There are three 

main classes of n-type semiconductors: fullerene, perylene bisimide, and 

tetracyanoquinodimethane (TCNQ) (Figure 1.2).7 Of these, fullerenes are the most widely used of 

the three and are the only acceptor used in this thesis.  

In 1985, Kroto, Curl, and Smalley discovered a new allotrope of carbon that has become 

one of the most popular electron acceptor materials.30 This discovery eventually won them the 

Nobel Prize in Chemistry. This new allotrope of carbon was composed of a number of six and 

five-membered rings fused to form a spherical cage. These carbon molecules, called “fullerenes,” 

form with an even number of carbons. C60 and C70 are the most widely used, although C72, C76, 

C84, and C100 can also be obtained (Figure 1.2b). In each of the fullerenes, there are 12 

pentagons, each surrounded by a number of hexagons determined by the fullerene size. Each 

carbon is bonded to three other carbons, making them sp2 hybridized.  Fullerenes are air stable, 

fairly soluble in organic solvents, and can accept between four and six electrons, depending on  

 

Figure 1.3. Examples of charge transfer complexes. Donor material is shown on top, and 
acceptor material is shown on bottom. a) Complete charge transfer complex between TDAE and 
C60 fullerene.  b) Partial charge transfer complex between TTF and TCNQ. a) Supramolecular 
complex between buckycatcher and C60 fullerene. 
 
 

TDAE 

TCNQ 

buckycatcher TTF 

C60 fullerene C60 fullerene 

a. b. c. 
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the fullerene. More soluble forms of fullerenes, such as phenyl-C61-butyric acid methyl ester 

(PC60BM) and phenyl-C71-butyric acid methyl ester (PC70BM), retain the favorable stability and 

accepting power of their unsubstituted counterparts (Figure 1.2b).31 A complete review of 

fullerene chemistry and properties can be found elsewhere.32,33 

While charges flow through the crystal lattice of solid state materials within an electronic 

device, small molecules rely on intermolecular interactions for electronic communication.  π-π 

stacking was mentioned previously as an important structural feature in small molecule design for 

electronic materials. This π-π stacking is a very weak intermolecular interaction that encourages 

close packing and electronic communication of large π-conjugated molecules. However, to get 

very conductive materials, a gradient is necessary within a device to encourage charge transport 

through the material. This gradient can come in the form of an external electric field, such as that 

in a field effect transistor (FET), or in the form of charge transfer interactions between donors and 

acceptors, such as that found at the interface of a solar cell.34 

 Charge transfer complexes have been vital to the development of organic small molecule 

electronics. In 1973, a charge transfer complex comprised of tetrathiofulvalene (TTF) and 

tetracyanoquinonedimethane (TCNQ) became the first example of an organic system with  

metallic properties and conductivities as high as 100 Ω-1cm-1 (Figure 1.3b).35 Prior to this 

discovery, several examples of organic charge transfer complexes with semiconducting 

properties had been observed.36  

Charge transfer complexes can be categorized based on degree of charge transfer. 

Complete charge transfer results in the formation of a radical ion-pair (Dn+An-), whose strong 

intermolecular interactions give interesting properties.37 An ionic salt is formed between 

tetrakis(dimethylamino)ethylene (TDAE) and C60 fullerene that shows a ferromagnetic transition 

at a high temperature relative to other organic systems (Figure 1.3a).38 TTF-TCNQ is an example 

of a partial charge transfer, where the complex can be represented as Dδ+Aδ- (Figure 1.3b).35 

Finally, charge transfer that is close to zero is the result of a supramolecular complexes. 

Concave-convex π-π interactions, such as that between a “buckycatcher” and fullerene (Figure 
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1.3c) have recently been explored as supramolecular complexes with fairly high association 

constants.39  

In Chapter 2 of this thesis, the interaction between a family of contorted 

hexabenzocoronene small molecule organic electron donors and fullerene electron acceptors 

was investigated as a function of shape matching. These solution studies indicate the importance 

of shape complementarity for the formation of supramolecular complexes and for electronic 

interactions; work that could have implications for molecular design of molecules at device 

interfaces. In the second part of Chapter 2, the electronics of a small molecule organic electron 

donor material, contorted hexabenzocoronene, is tuned to absorb longer wavelength light by 

functionalization with azulene. 

 

1.1.2 Molecular Clusters 

 Solid state semiconductors have been the material of choice during the development of 

electronics. However, production of these materials generally requires very high temperatures, 

which is costly on an industrial scale. In addition, there is often no ability to design new solid state 

semiconductor materials, as their chemical structure is largely unpredictable and not well 

understood. In an effort to understand how bulk semiconductors form from precursors, 

nanocrystals were investigated as intermediates in this process.40,41 These nanocrystals can be 

thought of as small chunks of semiconductor, usually less than 100 nm in diameter, that are 

capped with ligands to keep them from aggregating. They were shown to have unique properties 

as compared to their solid state relatives, including optical and electronic effects of quantum 

confinement.42 Within this relatively small size range, many different types of nanocrystals have 

been synthesized and characterized. Larger, monodisperse semiconductors are generally 

referred to as quantum dots, and have been studied extensively as optical and electronic 

materials in the literature.43,44 In contrast, while many atomically precise molecular clusters have 

been isolated and characterized, their materials applications have been largely unexplored. 

These molecular clusters offer advantages of solubility and tunable structural diversity over solid 

state compounds, and structural characterization with X-ray diffraction techniques over 
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monodisperse quantum dots.45 In this thesis, metal chalcogenide molecular clusters will be 

synthesized and investigated as electronic materials. 

 Metal chalcogenide molecular clusters are particularly attractive as a class of molecules 

with tunable structures and properties, which stems from the ability to choose almost any 

combination of transition metal, chalcogen (S, Se, or Te), and ligand. Changing the metal in the 

cluster can have large impacts on the electronics of the resulting molecular cluster. For example it 

is easy to imagine that a molecular cluster containing early transition metals will have a very 

different electronic structure than that of clusters containing middle or late transition metals. For 

example, one of the largest structural families of metal chalcogenide molecular clusters is the  

 

Figure 1.4. Examples of molecular clusers. a) Cubane cluster shape; Co4S4(Pi-Pr3)4 b) 
octahedral M6Ch8(PR3)6, where Ch is blue, M is green, PR3 is orange, and black is carbon. c) 
Cu146Se73(PPh3)30, where P is green, Se is red, and Cu is blue. d) W6S8(PR3)6 where R is 
dithiophene, P is blue, S is yellow, W is white, C is black, and H is teal. 
 

	  

	  

a. b. 

c. d. 
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cubanes, M4Ch4, where M is metal and Ch is chalcogenide (Figure 1.4a). This cluster core has 

been explored with a variety of metals and can be described as the outer four metal atoms of a 

tetrahedron overlaid with the outer four chalcogenide atoms of a tetrahedron to form a cube, with 

each metal bound to three chalcogenides and each chalcogenide bound to three metals.46-49 

Middle transition metals, such as cobalt48 and iron,47 have been shown to form electron-rich 

cubanes with a valence electron count of 72 while early transition metal cubanes, such as Ti4S4(i-

PrCp)4
46 give an electron-deficient species with 52 valence electrons. In other cases, the diversity 

in reactivity between early, middle, and late transition metals produces different cluster cores. In 

addition to reactivity, the availability of metal precursors dictates the synthetic strategy and the 

types of cluster cores that are accessible for that metal.  

Changing the chalcogenide is another way to tune the properties of clusters. The 

octahedral M6Ch8L6 cluster family, where L is ligand, is a well known example of this (Figure 1.4 

b).50 Changing the chalcogenide of the cobalt cluster leaves the structure largely unchanged, 

while producing a significant shift in the optical absorption. From S to Se to Te, the absorption 

moves to longer wavelengths, although in all cases there are three transitions observed. In other 

cases, such as the family of copper chalcogenide clusters synthesized from silylated 

chalcogenide precursors, different chalcogenides produce different cluster structures as a result 

of difference in electron affinities, ionization potentials, and size between chalcogenides.51,52 This 

has led to an extremely diverse structural library within this family and has produced some of the 

largest metal chalcogenide molecular clusters, including the Cu146Se73(PPh3)30 (Figure 1.4c).53,54 

Ligand structure also has a large impact on molecular cluster structure and properties. 

Ligands in particular have the potential to be the most diversifiable synthetic handle on molecular 

clusters. The choice of capping ligand a particular cluster is dictated by the method of cluster 

synthesis. For example, the reaction of a phosphine chalcogenide with a M(0) source gives a 

metal chalcogenide molecular cluster where L is a phosphine.50,55,56 In contrast, soluble 

chalcogenide anions, formed by reduction of chalcogenide with an alkali metal, can react with 

metal salts or metal carbonyls to form chalcogen-capped clusters or carbonyl capped clusters.57-

59 Added complexity results from the fact that the choice of capping ligand also dictates the size 
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and structure of the resulting cluster. For example, when bis(cyclooctatetraene)iron is reacted 

with phosphine telluride, the resulting cluster structure is shown to be dependent on the 

phosphine ligand.56 Triethylphosphine and bulkier triisopropyl phosphine both give an Fe4Te4 

cluster while trimethylphosphine gives a larger Fe6Te8 cluster core.56  

Choice of ligand on a molecular cluster can control the intermolecular communication and 

spacing, a vital consideration for the use of molecular clusters in electronic devices. In an effort to 

enhance inter-cluster communication, DiSalvo and co-workers have done extensive work to 

incorporate ligands, such as cyano ligands,60 hydrogen bonding ligands,61 and thiophene 

ligands62 that create, or have the potential to create, networks of clusters (Figure 1.4d). However, 

resulting networks have proven difficult to fully characterize due to solubility or stability problems. 

There is an ongoing effort to achieve covalently linked cluster networks. 

 Molecular clusters are redox active and possess discrete energy levels, atomic-level 

structural characterization, solubility and structural diversity and tunability. While an extensive 

library of molecular clusters has been built up, there has been little work to apply these molecular 

clusters as materials in electrical devices. This thesis is mostly concerned with ligand chemistry 

and its effect on cluster formation and intermolecular communication in the context of electrical 

transport. In chapter 5, the impact of phosphine structure on nickel telluride cluster formation is 

explored. In chapter 3, a set of novel aromatic phosphine ligands are installed on Co6Se8 clusters 

as pathways for communication through normally insulating ligands, with single molecule 

conductance used to evaluate the efficacy of these pathways. In chapter 4, this intermolecular 

communication demonstrated with single molecule conductance is shown to translate into cluster 

thin films.  

 

1.2 Electronic Measurements 

Design and synthesis of small molecules for electronic applications is only part of the 

challenge of molecular electronics. These small molecules must then be tested within electrical 

devices to determine their performance. While our understanding of how small molecule structure 

influences performance in electrical devices has grown significantly, theoretically predicting the 
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performance of a small molecule within a device is still difficult. In this section, an overview of 

electrical measurements on small molecule devices will be given. First, single molecule 

conductance measurements will be discussed. Next, small molecule thin films and modes of 

transport through small molecule thin films will be discussed. Finally, an introduction to solar cells 

will be given. 

 

1.2.1 Single Molecule Conductance Measurements 

 In principle, the simplest electrical device is composed of a single molecule wired to two 

electrodes. However, constructing such a device is far from simple, demonstrated by the fact that 

single molecule devices are being developed long after the discovery of bulk film devices. Some 

of this complexity lies in the fact that single molecules are physically difficult to manipulate. 

Constructing a connection between the single molecule and the necessary electrical contacts and 

understanding how this interface affects the measured conductance presents significant 

hurdles.63 Another significant complexity lies in the lack of fundamental understanding of charge 

transport on the molecular level, which is presumably much different than that of the micro and 

even nanoscale.63 Much recent work has been done to develop the theoretical and experimental 

tools to begin to understand this rich area of research.63-70 Because of the expansive amount of 

work being done in this area, this section will only introduce the necessary background and 

recent work that is relevant to the research performed in this thesis.  

 Scanning tunneling microscopy was developed in 1981 as a technique for atomic 

imaging.71,72 During an STM measurement, a probe tip is brought very close to the surface of a 

sample. The probe tip is extremely small, with the tip being comprised of a single atom. A voltage 

bias is applied between the tip and the sample to induce quantum tunneling. Because quantum 

tunneling is very sensitive to distance, a piezoelectric is necessary to precisely control the 

location of the tip with respect to the sample in three dimensions. In addition, the quantum 

tunneling current observed is dependent on the density of states of the sample. As the tip is 

scanned across the sample, the changes in tunneling current as a result of both distance of the 

tip from the sample and the density of states of the sample are mapped to produce an image.73  
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 STM was modified to create a break junction technique (STM-BJ) utilized for single 

molecule conductance measurements.74 An illustration of this technique is shown in Figure 1.5. In 

this technique, the probe tip, typically made of gold, is brought into direct contact with a substrate  

 

Figure 1.5. Cartoon depiction of STM single molecule junction measurements. 1) Tip is smashed 
into substrate. 2) Tip is pulled away from substrate 3) As tip is pulled away, a single gold atom 
bridges the junction. 4) If there is no solution, the gold junction breaks and conductance drops 
significantly. If there is a solution of molecules, one may be trapped between the gold electrodes 
to give a plateau on the conductance trace. In this cartoon, a molecule is represented as a red 
circles with functional groups to bind electrodes depicted as purple arrows. 5) When the gold tip is 
pulled away farther, the single molecule junction is broken and conductance drops significantly. 
This process is repeated many times. 
 
 
electrode, also gold, to form a complete circuit. The tip is then pulled away from the substrate 

until the contact is broken, with current measured throughout the process. This break in the 

junction can be observed as a significant decrease in current as a function of distance of the tip 

from the substrate. An example of the conductance trace as a function of tip displacement is 

shown in Figure 1.6 (left). When a solution of molecules that can bind to the gold electrodes is 

introduced, a molecule is occasionally trapped in the broken junction. This event can be observed 

as a plateau on the conductance trace (Figure 1.6, middle). The whole process of forming and 

then breaking the junction is on the order of milliseconds, allowing for thousands of conductance 

traces to be observed and then statistically analyzed to account for variations in the junctions 

being formed, caused by variability in molecule-electrode binding and molecule geometry. The 

conductance traces are compiled into a histogram from which the most probable conductance 
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value is determined (Figure 1.6, right). The conductance of the single molecule is measured in 

units of quantum conductance, G0. G0 can be defined by 

 
G0 = 2e2/h  

 
where e is the electron charge and h is Planck’s constant and represents the conductance of a 

single atom bridging two electrons, where the composition of the two electrons is the same as 

that of the bridging atom.  

 

Figure 1.6. Examples of STM-BJ data. Left) Conductance trace of gold tip and substrate without 
a solution of molecules. As displacement is increased, the conductance decreases slightly. At the 
break of the junction, conductance decreases dramatically. Middle) When a solution of molecules 
is placed on the substrate, a molecular plateau is observed when a single molecule is trapped 
between the tip and substrate. This plateau is observed after gold-gold rupture, but before 
complete junction disconnection. Right) Compiling many conductance traces into a 1D histogram 
gives the a conductance peak from which the most probable conductance can be observed. 
 

The SMT-BJ technique requires that the molecule contain functional groups that can bind 

to gold. Linker groups such as primanry amines, thiomethyls, and dimethylphosphine show sharp 

and consistent single molecule conductance traces.75 Other linker groups include carboxylic acids, 

pyridines, and cyano groups.76-79 Experiments have been performed to demonstrate that the point 

of contact between electrode and sample molecule is in fact through these linker groups on the 

sample molecule. For example, absence of a linker group shows no conductance and sterically 

bulky alkyl chains on linker groups turn off conductance by inhibiting binding of the linker to 

gold.78 

Several studies have confirmed the importance of linker group placement on phenyl 

terminated conjugated molecules.80-81 A set of stilbene molecules in which thiomethyl linker 
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groups are placed at the meta or para position is shown in Figure 1.7. When two thiomethyl linker 

groups are placed in the para position, a sharp conductance peak is observed at high 

conductance (10-3 G0) (Figure 1.7a). When one para linker is installed and there is no linker group 

on the other end of the molecule, conductance broadens and decreases significantly, indicating a 

weak interaction between the half of the molecule lacking a thiomethyl group (Figure 1.7d). When 

the linker groups are placed with one in the meta position and one in the para position (Figure 

1.7b), conductance increases from that of the single para linker molecule, however it remains less 

than that of the molecule with two para linkers. This decrease in conductance is presumed to be 

because the meta linker, while providing an anchor for the electrode, is  

 

 

 

Figure 1.7. A series of stillbene molecules that have been measured by the STM-BJ technique. 
Above) Molecular structures of stillbenes with various thiomethyl substitutions. Below) Single 
molecule conductance values obtained from STM-BJ technique. 
 
 
not in resonance with the π- system. This is further confirmed by the fact that a stilbene molecule 

with either a single meta placed linker group and no opposing linker group or two meta placed 

linker groups show no detectible conductance (Figure 1.7f, e). The importance of the π- system 

was demonstrated by a stilbene derivative with two para placed linker groups in which the 

conjugation is broken by a saturated ethyl bridge (Figure 1.7c). This molecule showed lower 

         A                       B          C          D                       E                 F 
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conductance than its fully conjugated relative. The lessons learned through these experiments 

will be applied to more complex metal-organic molecular clusters in chapter 3 and 4.  

While there has been a significant amount of research on the single molecule 

conductance of a variety of organic molecules, there are only a few examples of single molecule 

conductance measurements of organic-inorganic hybrid materials.82,83 In chapter 3, the single 

molecule conductance of a variety of metal chalcogenide molecular clusters with organic ligand 

shells is measured. Tuning of the conductance is demonstrated by changing the ligand structure. 

In chapter 4, thin films are constructed from two of the clusters whose single molecule 

conductance was measured in chapter 3. These thin films show the same trend of conductance 

as in chapter 3. This provides an interesting case study because single molecule conductance is 

often not correlated to the thin film conductance of the same molecule, due to the significant 

increase in system complexity.  

    

1.2.2 Small Molecule Thin Film Conductance Measurements 

 Moving from single molecule electronic devices to small molecule thin film devices adds 

many modes of complexity. Successful movement of charge through the films requires effective 

molecule-molecule interactions and molecule-electrode interactions, both of which depend on 

many variables including molecular orientation, presence of impurities and defects, and molecular 

interaction with the substrate, to name a few. Despite the significant amount of complexity 

involved, there are many examples of conductive small molecule thin films.17, 84-90 This section 

overviews some of the theory of conductivity as well as measurement and fabrication techniques 

used to study conductive small molecule thin films.91,92  

 Conductivity (σ) is a property of a material that describes how well electrical current 

passes through the material. It is related to the conductance (G), or the ease with which electrical 

current flows through a sample of a particular length (l) and area (A), by the following equation: 

 
G = σ A 
         L 
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A similar relationship exists between resistance (R) and resistivity (ρ), where only resistance is 

dependent on the length and area of the sample: 

 
R = ρ l  
         A 

 
The conductivity and resistivity of a material are therefore reciprocals such that: 

 
ρ = 1 / σ 

 

There are two main ways in which resistivity and conductivity of a given material are 

experimentally determined: a four-probe method and a two-probe length dependence method 

(Figure 1.8). Both of these methods aim to minimize or remove parasitic resistance, which can 

stem from the contact resistance (Rc) at the interface between the material and electrodes.93  

 Four-point probe measurements separate the area of applied current and measured 

voltage to minimize the parasitic resistance. Four electrodes, generally evenly spaced, are placed 

on the thin film to be measured and current is applied between two of the probes while voltage 

between the other two probes is measured. There are several methods of spacing the probes, 

including the Four-In-Line, Montgomery, and the Van der Pauw techniques, although an overview 

of these are beyond the scope of this thesis. The resistivity from four-point probe measurements 

can be calculated from the inverse slope of the experimental current (I) - voltage (V) plot, with an 

additional correction factor determined by selection of four-point probe technique, film thickness, 

length, and area.  

In contrast, the length dependence technique utilizes only two-probes and varies the 

length between electrodes to remove parasitic resistance. In this technique, several electrodes 

are placed with increasing distance between pairs of electrodes, essentially creating many two-

electrode devices on the film with varying device lengths. An I-V plot is generated for each two-

probe device and a plot of the resistance of each device, calculated from the inverse of the I-V 

plot slope, versus the length to width ratio for that device gives a linear relationship. The slope of 

this line is the desired sheet resistance of the material, while the contact resistance is the y-
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intercept. In this way, parasitic resistance can be excluded. The resistivity is then determined by 

multiplying the sheet resistance by the film thickness.   

 

 

Figure 1.8. Two methods of measuring conductivity and resistivity. Where gold squares represent 
electrodes, gray represents a thin film, yellow represent probes, V is voltage, and I is current. a) 
four-point probe technique b) two-point length dependence technique.  
 
 
 
 Electronic materials are classified according to band structure and the type of carrier 

(electron or hole) that is transported (Figure 1.9).94 In films of conductor materials, there is no 

band gap (Eg) so electrons occupy the conduction band (CB). These electrons in the CB are the 

carriers. In semiconducting materials, there is a small Eg such that vacancies in the valence band 

(VB) or electrons that have been thermally excited to the CB act as carriers. When holes are the 

carriers, the material is a p-type semiconductor and when electrons are the carriers, the material 

is an n-type semiconductor. Small molecule conducting materials are generally semiconducting in 

nature. Distinguishing between conducting and semiconducting materials requires temperature-

dependence measurements.95 Conducting materials generally have quite low resistivity (<10-4 

Ω�cm) at room temperature because they have large numbers of carriers already in the 

conduction band. Increasing the temperature of the device increases the resistivity of the material 

due to phonon scattering. In contrast, semiconducting materials have moderate resistivity values 
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(10-3 Ω�cm to <1011 Ω�cm) that decrease with increasing temperature. This is due to an increase 

in the thermally populated conduction band of the material at higher temperatures causing an 

increase in charge carriers.  

Determining whether a semiconductor primarily carries holes (p-type) or electrons (n-

type) requires the construction and measurement of a field effect transistor (FET). In an FET, 

current is measured across a device through source and drain electrodes while an electric field is  

applied through a third gate electrode. The applied electric field is used to build up charge, either 

 

Figure 1.9. Band structure and charge carriers associated with insulators, n-type 
semiconductors, p-type semiconductors, and conductors. Blue represents electrons as carriers, 
grey represents holes as conductors, and red represents filled energy states.  
 
 
holes or electrons, in the thin film depending on the direction of gate voltage.  

 In addition to the type and number of carriers, conductivity of a small molecule thin film 

depends on the ability for these carriers to move through the film. This means that the 

morphology of the film is extremely important in determining how well the individual molecules 

interact with each other, and in turn how well the charge can move from one molecule to the next 

through the film. Mobility, or the ability for charges to move through a film in response to an 

electric field, can be calculated using an FET.91 In addition, mobility can be used in conjunction 

with conductivity to calculate the number of charge carriers in a film.91 
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 In chapter 4 of this thesis, the conductivity and resistivity of thin films made of atomically 

precise molecular clusters is determined. While molecular clusters have been investigated for 

their interesting magnetic and structural properties, there have been few reports of their utilization 

in electrical devices. The understanding of charge transport through the single molecule gained in 

chapter 3 is used to design conductive thin films in chapter 4. Also, a discussion of the link 

between single molecule conductance and thin film conductivity is discussed. 

 

1.2.3 Solar Cells 

 In 1839, Edmond Becquerel discovered the photoelectric effect when he noticed an 

increase in the current of an electrolytic cell upon illumination.96 This experiment fueled a number 

of experiments throughout the 1800s, culminating in Albert Einstein’s seminal paper on the 

photoelectric effect.97 This work laid the foundation for solar energy as a largely abundant and 

clean source of electrical power, although solar cells only became widely commercially available 

after the development of the silicon solar cell in 1954 at Bell Laboratories.98  

 Silicon solar cells are made of a layer of p-doped silicon and n-doped silicon that form a 

p-n junction.99 When illuminated, semiconducting silicon absorbs photons with the appropriate 

energy and produces electron-hole pairs. The electric field intrinsic to the p-n-junction drives the 

movement of these newly produced charge carriers through the conduction band, resulting in the 

collection of current with device efficiencies of up to 27.6%.100 High performance silicon solar cell 

devices require extremely high quality single-crystal silicon because any imperfections in the 

crystal can act as traps for the charge carriers, ultimately negatively impacting the efficiency of 

the device. Only 7% of the U.S. energy comes from renewable energy sources, including wind, 

solar, and hydropower.101  

Although there have been significant improvements in the cost of silicon solar cell 

manufacturing, the development of other solar cell materials is an extremely active area of 

research. Organic solar materials have provided an attractive alternative to silicon solar cells due 

to their potential to produce flexible solar cells with less expensive manufacturing techniques, 

such as printing. Organic photovoltaic (OPV) devices work in a fundamentally different way than 
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the silicon solar cell because they are made of molecular materials rather than bulk materials.102 

An OPV is comprised of an electron donor material and an electron acceptor material, with each 

attached to an electrode (Figure 1.10). The HOMO and LUMO level of the donor must be higher 

in energy than the acceptor, but the HOMO level of the donor cannot exceed the LUMO energy of 

the acceptor.  

 

 

Figure 1.10. Cartoon of organic photovoltaic mechanism and representative data. a). Proposed 
mechanism for OPVs. Red box is electron donor, purple box is electron acceptor (top of box is 
LUMO, bottom of box is HOMO), EF is exciton formation, ED is exciton dissociation, ES is exciton 
separation, CC is charge collection, black circles indicate electrons, tan circles indicate holes, 
blue arrows indicate path of electron to cathode, orange arrow indicates path of holes, and green 
arrow indicates movement of exciton. b) J-V curve of an organic photovoltaic device with 
illumination is shown in green. Dark blue box indicates the theoretical power maximum, 
calculated from the open circuit voltage (Voc) and short circuit current (Jsc). The maximum power 
of the observed curve is indicated by the light blue box, from which the maximum voltage (Vmax) 
and maximum current (Jmax) are calculated. 

 

Upon illumination, photons are absorbed by the donor material to create an exciton 

(Figure 1.10a, EF). The exciton differs from the electron-hole pair generated in the silicon solar 

cell because, while the electrons and holes are free to move in the conduction band of silicon, the 

electron and hole in the exciton must diffuse together towards the donor-acceptor interface 

(Figure 1.10a, ED). Once at the interface, the higher energy electron in the LUMO of the donor 

moves to the lower energy LUMO of the acceptor (Figure 1.10a, ES). At this time, the exciton has 

separated and the electrons proceed through the acceptor layer towards the electrode for 

collection while the holes proceed through the donor layer to be collected at the other electrode, 

a. b. 
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thus creating current (Figure 1.10a, CC). A a typical current-voltage (J-V) curve is shown in 

Figure 1.10b. Efficiency (ηp) of the OPV can be calculated using the equation:  

 

 
ηp = Jsc x Voc x FF 

       Pin 
 
 
where Jsc is the short circuit current, Voc is the open circuit voltage, FF is the fill factor, and Pin is 

the input power. The Jsc is the maximum generated current density upon illumination when no 

voltage bias is applied. The Voc is the maximum voltage allowed when no current is flowing. In a 

simplified model, the Voc is determined by the energy gap between the HOMO of the electron 

donor and the LUMO of the electron acceptor, with a larger gap resulting in a higher open circuit 

voltage. The fill factor is defined by the following equation: 

 
FF = Jmax x Vmax 

                            Jsc x Voc 

 
The efficiencies of OPVs are significantly lower than silicon solar cell efficiencies, with a 

highest recorded efficiency of 12.0%.100,103 This is partially due to the fact that OPVs are not 

made of bulk crystalline materials but are instead molecular in nature, resulting in traps and grain 

boundaries that inhibit exciton movement and ultimately charge collection.103 Another reason why 

they are typically less efficient is because of charge recombination.103 Since the electron-hole pair 

must move as an exciton through the donor material in an OPV rather than as an electron and 

hole that can diffuse away as in the silicon solar cell, there is more time for the excited electron to 

relax to the ground state. In addition, charge collection is dependent on the separation of the 

exciton at the interface. Studies have shown that the molecular design has a high impact on the 

interaction of donor and acceptor at the interface, which is crucial to higher efficiency OPVs.104 

Shape-complementary donor-acceptor interactions will be studied in solution in chapter 2, with 

the hope of gaining insight into how molecular design impacts solar cell interfaces. 

It should be noted that, while this thesis does not directly investigate molecular clusters in 

solar cells, it does lay some foundation for utilizing this interesting class of materials in thin film 
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devices such as photovoltaics. Atomically defined quantum dots act both as small molecules in 

terms of possessing discrete energy levels, solubility, and a lack of long range crystallinity, while 

also representing the bulk material with a crystalline, metal-rich core. This makes them an 

extremely complex system that is largely underexplored in electronic devices. The author hopes 

that the fundamental understanding of cluster-cluster interactions gained in this thesis will lead to 

advances towards molecular cluster-based solar cells. 
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Chapter 2. Tuning the Properties of Contorted Hexabenzocoronene for Organic 
Photovoltaic Performance 

 

Part of this chapter was reproduced from a paper published in Chemical Science by © Royal 

Society of Chemistry: “Bending Contorted Hexabenocoronene into a Bowl” by Adam C. Whalley, 

Kyle N. Plunkett, Alon A. Gorodetsky, Christine L. Schenck, Chien-Yang Chiu, Michael L. 

Steigerwald, and Colin Nuckolls. Chemical Science 2011, 2, 132-135. 

DOI: 10.1039/C0SC00470G. Copyright © Royal Society of Chemistry 2011.  

 

2.1 Introduction 

Organic photovoltaics (OPVs) are being heavily pursued as a virtually inexhaustible 

source of clean energy to address mankind’s ever-increasing energy demands. 

Hexabenzocoronene (HBC) derivatives have been explored as a family of polycyclic aromatic 

hydrocarbons (PAHs) with interesting optical, electronic, and structural properties for organic 

photovoltaics. The HBC structures contain a coronene core with six benzene rings fused on the 

outer edges of the core. These six additional benzene rings can result from either three-carbon 

annulated rings (blue, Figure 2.1) or four-carbon annulated rings  

 

Figure 2.1. Hexabenzocoronene structures. a) Schematic of the various substitution patterns of 
fused benzene rings around a coronene core. Blue phenyl rings represent the outer ring 
placement that results in flat HBC 2.1. Red phenyl rings represent outer ring placement that 
results in contorted HBC 2.2. b) Structures of the two hexabenzocoronene derivatives, flat HBC 
2.1 and contorted HBC 2.2, where R = H or solubilizing alkyl chains. 
 

	  

a. b. 

2.1 2.2 
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(red, Figure 2.1) around the outer edge of coronene. The former placement results in hexa-peri-

hexabenzocoronene (flat HBC 2.1, Figure 2.1b), a completely planar structure, while the latter 

results in hexa-cata-hexabenzocoronene (contorted HBC 2.2, Figure 2.1b), which is a contorted 

structure due to the steric interaction between the hydrogens in the bay positions.1,2 Despite the 

markedly different three-dimensional structure of these HBC relatives, these molecules share 

very similar electronic and optical properties. Both are p-type semiconductors with a maximum 

UV-visible (UV-vis) absorption near 380 nm and a HOMO-LUMO gap of approximately 2.7 eV.1,3  

 

 

Figure 2.2. Hexabenzocoronene derivatives of increasing contortion.  a) Structures of 2-closed 
contorted HBC 2.3 and 4-closed contorted HBC 2.4 where R = OC12H25. b) Cartoon of the 
interaction between 2.1 - 2.4 and C60 fullerene. This cartoon is not meant to imply that the 
solution complex is 1:1.  
 

When investigated in a solar cell, the shape-complementarity between HBC derivatives 

and the chosen acceptor molecule was shown to be vital to device efficiency. An OPV device was 

made with flat-HBC 2.1 as the donor material and N,N’-bis(1-ethylpropyl)-3,4,9,10-perylenebis 

(dicarboximide) (perylene) as the acceptor material to give a power conversion efficiency (PCE) 

2.3 2.4 

a. 

b. 

2.1 �  C60 2.2 �  C60 2.3 �  C60 2.4 �  C60 
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of 1.95% (490 nm illumination).4 However, when 2.1 is used as a donor material with C60 fullerene, 

the PCE was dramatically lower (0.03% at 422 nm illumination).3 When contorted HBC 2.2 was 

used as a donor material with C60 fullerene, the PCE was 3.36% (422 nm illumination).3 These 

studies demonstrate that 2.1 interacts more favorably within an OPV device with a flat acceptor 

molecule (perylene diimide) while 2.2 may interact more favorably with a curved acceptor 

molecule (C60 fullerene). In addition, 2.2 and C60 fullerene form co-crystals under a number of 

growth conditions in which the concave faces of contorted HBC contain a fullerene molecule, 

much like a ball-and-socket.3   

There are several examples of the unique guest-host interaction involving concave-

convex π-π faces of curved PAHs and fullerenes.5-9 Association of the guest and host are 

generally studied through fluorescence and NMR spectroscopy to give association constants as 

high as 105.9 Bowl-shaped HBC derivatives 2.3 and 2.4 were synthesized in order to gain a 

deeper understanding of how the donor-acceptor electronic interactions are impacted by shape-

complementarity (Figure 2.2). Section 2.2 describes the interaction of contorted HBC derivatives 

2.2 – 2.4 with fullerenes in solution through fluorescence quenching and NMR spectroscopy 

titration experiments.  

Another important consideration for improving efficiency of contorted HBC OPV devices is the 

range of UV-vis absorption of the device. Most HBC derivatives absorb primarily UV light, with 

absorption extending out to near 450 nm (Figure 2.3a).2,10,11 In contrast, the solar spectrum emits 

primarily in the lower energy visible and infrared regions (Figure 2.3a). The consequence of this 

poor overlap with the solar spectrum is that the PCE of the contorted HBC 2.2 and C60 fullerene 

OPV increases significantly when illumination is changed from a solar simulator to a light source 

at 422 nm.3 The contorted octabenzocircumbiphenyl 2.5 has been recently synthesized and 

explored as a much larger HBC derivative with red-shifted absorption (Figure 2.3b).12 This 

structure, which contains eight aromatic rings fused to a circumbiphenyl core, extends absorption 

out to approximately 500 nm.12 However, further extension of contorted HBC in this fashion is 

limited by solubility, which presumably gets worse as the π-face of the contorted HBC grows 
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larger. In addition, size-matching between donor and acceptor molecules is known to be an 

important aspect of their interaction, so extension of contorted HBC may inhibit the donor- 

 

Figure 2.3. Addressing the poor overlap between HBC light absorption and the solar spectrum.  
a) UV-vis spectrum of 2.2 overlaid with the spectral irradiance of the sun (obtained from NREL at 
http://rredc.nrel.gov/solar/spectra/am1.5/) b) Structure of octabenzocircumbiphenyl 2.5, where R = 
OC12H25. 
  
 

 

Figure 2.4. Azulene and azulene PAHs. From left to right: Structure of azulene (2.6) represented 
as a fused aromatic structure as well as a fused tropylium cation and cyclopentadiene anion, 
structure of azulenocyanine (2.7), structure of napthalocyanine (2.8), and structure of target 
molecule azulene HBC (2.9). Azulene segments of 2.9 are highlighted in blue.  
 
 
acceptor interaction due to a size mismatch.13 An alternate method for expanding the UV-vis 

absorption is to tune the electronics of contorted HBC by functionalization of the outer aromatic 

rings. This strategy is potentially very powerful, as it would allow for continued shape- and size-

matching between HBC and fullerene due to the preservation of the effective three-dimensional 

structure of 2.1.  

2.5 

a. b. 

2.7 2.8 

2.6 

2.9 
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Azulene (2.6) is a nonalternate PAH that has a large dipole moment and is most notably 

a royal blue color.14 It is often represented as a fused tropylium cation and cyclopentadiene anion 

(Figure 2.4).14 Incorporation of azulene into PAHs has been shown to have a dramatic impact on 

the electronics of the system.15-18 A notable example of this is azulenocyanine 2.7.18 While 2.7 is 

a structural isomer of naphthalocyanine 2.8, it has a lowest-energy absorption band that is red-

shifted by more than 300 nm and a significantly lower LUMO energy level due to the azulene 

subunit. Additionally, the azulene moiety provides a means for further tuning of the electronics by 

protonation of the electron rich five-membered ring to yield a stable tropylium cation. The effects 

of this reversible process on the optoelecronics of the system include a dramatic color change 

and a lowering of the band gap.18-20 Although the azulene unit induces interesting properties 

within larger structures, there are relatively few examples of azulene PAHs in the literature. 

Section 2.3 describes efforts towards the synthesis and study of an azulene HBC derivative. 

 

2.2 Interaction of Fullerenes and Shape-Matched Contorted Hexabenzocoronenes 

 In this section, the interaction between contorted HBC derivatives 2.2 - 2.4, which have 

increasing degrees of curvature, and fullerenes will be explored. Fluorescence quenching 

experiments with fullerenes C70, C60, and phenyl-C61-butyric acid methyl ester (PCBM) 

demonstrated a strong association to only the more severely bowl-shaped HBC derivatives. NMR 

titration experiments confirmed this strong association. Both experiments suggested that a 2:1 

complex of 2.4 and C70 in solution and a 1:1 complex between 2.4 and C60 or PCBM.  
 

2.2.1 Results and Discussion 

The synthesis of 2.2 – 2.4 was accomplished using previously developed synthetic 

routes.21-23 Structures 2.2 – 2.4 were derived from pentacenequinone HBC precursors 2.10a - c 

(Scheme 2.1). Formation of 2.2 – 2.4 was determined by the number of halogens installed on this 

pentacenequinone HBC precursor (zero, two, and four, respectively), which determines how 

many five-membered rings are formed in the final step. The pentacenequinone HBC precursors 

2.10a - c were transformed into the corresponding bisolefin intermediates through a Ramirez-  
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Scheme 2.1. Synthesis of HBC derivatives 2.2 - 2.4. Key: (a) CBr4, PPh3, toluene, 80oC, 16 h. (b) 
[Pd(PPh3)4], 2-(4-(dodecyloxy)phenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane, THF, 2 M K2CO3 
(aq), 100oC, 16 h. (c) hν, I2, propylene oxide, benzene, rt, 3h. (d) FeCl3, CH3NO2, CH2Cl2, rt, 3 h. 
(e) [Pd(PCy3)2Cl2], DBU, DMA, µwave, 150oC, 3 h. In all cases, R = C12H25.  
 
 
 

 

Figure 2.5. Fluorescence quenching experiment for 2.2 - 2.4 with fullerenes and calculated 
association constants. a) Fluorescence emission spectra of 2.2 - 2.4 in CH2Cl2 (Concentration = 
1.00 x 10-6 M). Inset shows the zoomed in region of 2.3 (red) and 2.4 (green). Blue curve 
represents 2.2. b) Fluorescence emission spectra of 2.2 with addition of 0%-800% C70 excited at 
392 nm (1.0 x 10-7 M in CH2Cl2). c) Fluorescence emission spectra of 2.3 with addition of 0-200% 
C70 excited at 392 nm (1.0 x 10-6 M in CH2Cl2). d) Fluorescence emission spectra of 2.4 with 
addition of 0-100% C70 excited at 392 nm (1.0 x 10-6 M in CH2Cl2). Note: For all spectra, blue 
arrows indicate decrease in fluorescence upon quenching. 

2.10a X, Y = H 
2.10b X = H, Y = Cl 
2.10c X, Y = Cl    2.2 X, Y = H 

2.11a X = H, Y = Cl 
2.11b X, Y = Cl    

(a-d) 

(e) From 2.11a   

(e) From 2.11b   

2.3   

2.4   
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Corey-Fuchs reaction, followed by coupling of four 2-(4-(dodecyloxy)phenyl)-4,4,5,5-tetramethyl-

1,3,2-dioxaborolanes using Suzuki cross-coupling. With the carbon framework in place, a 

sequence of photocyclization and subsequent oxidative ring closure gave the HBC core 2.2 and 

2.11a - b. To complete the synthesis of 2.3 and 2.4, a final microwave-assisted Heck coupling 

with [Pd(PCy3)2Cl2] as the catalyst and 1,8-diazabicycloundec-7-ene (DBU) as the base was 

required to form the five-membered rings around the periphery.24-26  

The fluorescence emission spectra of compounds 2.2 – 2.4 showed a dramatic reduction 

in light emission as well as a general red-shift when the number of five-membered rings 

increased (Figure 2.5a). While 2.2 was highly fluorescent with a quantum yield of 0.14 (CH2Cl2), 

the quantum yields of 2.3 and 2.4 were 0.034 and 0.0085 (CH2Cl2), respectively. The apparent 

fluorescence dampening is reminiscent of fullerenes, which have quantum yields on the order of 1 

x 10-4, as well as other cyclopenta-fused polycyclic aromatic hydrocarbons (CP-PAHs) that 

display no detectable fluorescence.27 

Several fluorescence quenching experiments were performed to determine binding of 

different fullerenes to 2.2 – 2.4 in solution. No measurable decrease in emission intensity was 

found for C70 and 2.2 at equimolar concentrations in CH2Cl2 (Figure 2.5b) suggesting that the 

association between 2.2 and C70 was minimal in solution. HBC 2.3 emission was quenched by 

about 50% when it was mixed with equimolar amounts of C70 (Figure 2.5c). HBC 2.4 shows 

completely quenched fluorescence when ~0.5 equivalents of C70 is added (Fig. 2.6a). The 

complete quenching of 2.4 with only 50% C70 may suggest that a 2:1 complex was formed in 

solution. Using a simple Stern–Volmer analysis, association constants were calculated to be 4.7 x 

105 M-1 for 2.3 and C70 and 3.2 x 106 M-1 for 2.4 and C70.28 These values are among the highest 

reported for concave-convex π-π host-guest complexes.5-9   

Fluorescence quenching experiments were also performed with C60 and PCBM as 

quenchers (See Figures A.1-A.8). Similar to the case of C70, almost no fluorescence quenching 

was observed with 2.2, while 2.3 and 2.4 showed significant quenching. Fluorescence of 2.4 was 

most significantly quenched in all cases, and a summary of the fluorescence emission intensity of 

2.4 versus equivalents of fullerene is shown in Figure 2.6a - c. While fluorescence is almost 
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completely quenched with ~0.5 equivalents of C70, fluorescence is only quenched completely 

after one equivalent of C60 is added. This result may imply that while a 2:1 complex is formed  

 

Figure 2.6. Fluorescence quenching and NMR titration experiments for 2.2 - 2.4 with fullerenes. 
a) Fluorescence emission intensity of 2.4 versus C70 equivalents (excited at 600 nm, 1.0 x 10-6 M 
in CH2Cl2). b) Fluorescence emission intensity of 2.4 versus C60 equivalents (excited at 600 nm, 
1.0 x 10-6 M in CH2Cl2). c) Fluorescence emission intensity of 2.4 versus PCBM-C60 equivalents 
(excited at 600 nm, 1.0 x 10-6 M in CH2Cl2). d) Change in ppm of protons Hh (2.2), Hc (2.3, 2.4) 
versus equivalents of PCBM. See Figure 2.7 for proton assignments.  
 
 
between 2.4 and C70, respectively, there is a 1:1 complex formed between 2.4 and C60. This 

distinction may be accounted for by the capsule shape of the C70 fullerene, which provides more 

surface area for π-π interactions on both ends of the capsule. The spherical shape of C60 may not 

be large enough to accommodate two molecules of 2.4 simultaneously. By this logic, PC60BM 

should only be able to interact with one molecule of HBC at a time because of the steric bulk of 

the phenyl butyric acid methyl ester group. The plot of emission intensity versus PCBM-C60 

shows a steady decrease in fluorescence intensity beyond 0.5 equivalents of PCBM and a 

tapering off of fluorescence quenching after one equivalent of PCBM.  
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NMR titration experiments were performed to monitor shifts in 1H NMR peaks of 2.2 - 2.4 

with addition of PCBM (Figure 2.6d, A.9-A.17). The most dramatic change in proton shifts were 

observed with 2.4, while very little change was observed for 2.2. This correlates well with the 

results from the fluorescence quenching experiment. The change in proton shifts for 2.2 - 2.4 

occurred between the addition of zero and one equivalents of PCBM. Beyond one equivalent of 

PCBM, the proton shifts remained constant. This suggests that a 1:1 complex is being formed 

between HBC derivative and PCBM.   

 

 

Figure 2.7. NMR titration experiments for 2.2 - 2.4 with fullerenes. a) Δδ (ppm) of 2.2 versus 
equivalents of PCBM (right). Corresponding protons are shown on the structure (left). b) Δδ (ppm) 
of 2.3 versus equivalents of PCBM (right). Corresponding protons are shown on the structure, 
with red protons indicating those that are shielded (left). c) Δδ (ppm) of 2.4 versus equivalents of 
PCBM (right). Corresponding protons are shown on the structure (left).  
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A summary of the proton shifts for all proton signals in structures 2.2 - 2.4 upon 

incremental addition of PCBM are shown in Figure 2.7. Protons of 2.2 were slightly shielded when 

introduced to PCBM, indicating a very weak association of the complex. Protons of 2.4 were 

shifted a full order of magnitude more than those of 2.2 upon addition of PCBM, with all protons 

shifting downfield. The large change in proton shift indicates that a complex is being formed with 

stronger association. The fact that these protons were being deshielded suggests that the 

strongest binding is occurring at the coronene center of the structure rather than on the outer 

rings, as protons directly attached to the binding site are generally shielded while those farther 

away are deshielded.7,8 HBC 2.3 demonstrated an extremely interesting phenomenon. Initially, all 

protons show minor shielding effects, indicated by an upfield shift. However, as more equivalents 

of PCBM were added, protons Hd, Hf, and Hg were the only protons whose shifts remained upfield. 

All other protons reversed their shift, and moved downfield from their original position. The 

downfield shift of protons Ha, Hb, and Hc directly mimic the shifts of 2.4, indicating that binding is 

occurring away from these protons and more towards the center of the molecule.  Protons Hd, Hf, 

and Hg are located on the half of the molecule that remains similar in structure to that of HBC 2.2, 

with a minimum energy conformation calculated to be down-up-down relative to the bowl on the 

other half of the molecule (Figure 2.2b). The fact that these protons shift upfield implies not only 

that PCBM is binding directly to the these outer rings, but also suggests that these flexible three 

“arms” flip up to form a bowl structure similar to that of 2.4. As these arms flip, it would be 

expected that they would also twist somewhat due to steric congestion from proximal carbons. 

This may explain why Hh and He show an upfield shift (far from binding) while Hg, Hf, and Hd show 

downfield shifts (direct participation in binding).  

 

2.2.2 Experimental 

2.2.2.1 General Information 

Synthesis of 2.2 – 2.4 was performed according to reported procedures.22 1H NMR (400 

MHz) and 13C NMR (100 MHz) spectra were recorded on Bruker DRX-300 and Bruker DRX-400 

spectrometers at room temperature unless otherwise noted. Fluorescence spectroscopy was 
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performed with a Jobin Yvon Fluorolog-3 Spectrofluorometer (Model FL-TAU3). C60 and C70 

fullerene were purchased from BuckyUSA. PCBM-C60 was purchased from Nano-c. Solvents 

were purchased from Aldrich and used as received. NMR solvents were purchased from 

Cambridge Isotope Laboratories and used as received. 

 

2.2.2.2 Fluorescence Quenching and Quantum Yield Determination Experimental Details 

 To perform this experiment, stock solutions of 2.2 - 2.4 and C60, C70, and PCBM were 

made in CH2Cl2. The concentration of HBC derivatives (2.2 - 2.4) was constant for all measured 

solutions within a quenching experiment and the amount of fullerene used in that experiment (C60, 

C70, or PCBM) was varied. Each solution being measured was brought up to a constant volume of 

3 mL. Association constants were calculated using Stern-Volmer techniques.28 Quantum yields 

were determined at an excitation of 425 nm with 9,10-bis(phenylethynyl)anthracene as a standard. 

Quantum yields were calculated using standard methods.29   

 

2.2.2.3 NMR Titration Experimental Details 

 NMR titration experiments were run on a single sample of 2.2 - 2.4, where the amount of 

PCBM was increased incrementally and NMR spectra were obtained after each addition of PCBM. 

The amount of solvent was kept constant throughout the experiment. All spectra were referenced 

to CD2Cl2.  

 

2.2.3 Conclusions 

 The solution association of fullerene and contorted HBC is increased as bowl-shaped 

character is increased. Using fluorescence quenching and NMR titration spectroscopy, it was 

observed that 2.2 shows almost no association with C70 fullerene in solution while 2.3 and 2.4 

have some of the highest association constants observed in ball-and-socket systems. 

Experiments indicate that a 2:1 complex of 2.4 and C70 are being formed in solution, while a 1:1 

complex is being formed between 2.4 and C60 or PCBM-C60. These results suggest that shape-
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matching donor materials, such as contorted HBCs, to fullerenes results in strong electronic 

interactions.   

 

2.3 Towards the Synthesis and Study of Azulene Hexabenzocoronene 

 In this section, progress towards the synthesis of azulene HBC 2.9 will be described. A 

preliminary study of the properties of azulene HBC will be presented. Calculated structures of the 

azulene HBC and the precursor bisolefin will be discussed. Finally, the bisolefin intermediate is 

explored as an azulene PAH with electronic tunability through acid exposure.  

 

2.3.1 Results and Discussion 

The synthetic route to 2.9 was inspired by previous syntheses of contorted HBC derivatives 

(Scheme 2.2).21 Azulene is readily borylated at the 2-position via iridium-catalyzed C-H activation 

to give intermediate 2.12.30 Suzuki cross-coupling of four units of 2.12 to tetrabromo 

pentacenequinone 2.13 gave the forest green bisolefin product 2.14 in 64% yield. Upon 

photocyclization of 2.14, a dark red solid was obtained. The 1H NMR spectrum in d8-THF showed 

a highly unsymmetrical product with many overlapping peaks and was therefore inconclusive as 

to the structure of the product. However, the NMR did not indicate any starting material. The 

highly asymmetric nature of the NMR and the appearance of peaks dramatically downfield from 

the original bisoelfin 2.14 suggested a partially cyclized product. To fully cyclize the product, the 

intermediate was subjected to Scholl conditions without any purification of the intermediate to 

give a black-red solid in high yield. This final material is insoluble in many common solvents and 

is only sparingly soluble in THF. Its 1H NMR spectrum in d8-THF was obtained, but poor 

resolution due to the poor solubility did not allow for full structure determination. The decrease in 

the number of peaks in the spectrum indicated a much more symmetric structure, and further 

downfield shifting of the aromatic protons suggested a further cyclized product.  

A UV-vis spectrum of 2.14, 2.9, and the partially cyclized intermediate was obtained 

(Figure 2.9a). As expected, the UV-vis spectrum shows that absorption was red-shifted as the 

structure increased in cyclization and therefore in conjugation. The lowest energy absorption of 
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Scheme 2.2. Synthesis of azulene HBC 2.9. Key: (a) [IrCl(COD)]2, 4,4’-di-tert-butyl-2,2’-dipyridyl, 
bis (pinacolato)diboron, cyclohexane, 97oC, 14 h, 34%. (b) CBr4, PPh3, pentacene-6,13-dione, 
toluene, 80oC, 20 h, 75%. (c) Pd(Cl)2(PPh3)2, K2CO3, THF, H2O, 70oC, 24 h, 64%. (d) hν, I2, 
propylene oxide, benzene, 3h. (e) FeCl3, CH3NO2, CH2Cl2, rt, 30 min, 95% (impure). 
 
 
 
 

 

 
Figure 2.8. DFT Calculations for 2.14 and 2.9. a) Top and side view of calculated structure of 
2.14. and calculated HOMO, LUMO, and band gap. b) Top and side view of calculated structure 
of 2.9 and calculated HOMO, LUMO, and band gap. c) Comparison of the frontier orbitals for 2.9 
(left) and 2.2 (right). The calculated HOMO, LUMO, and band gap of 2.2 is shown on the right.  
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2.9 was red-shifted nearly 100 nm relative to 2.2. This indicates that the electronics of the HBC 

core are significantly impacted by the incorporation of azulene subunits.  

Calculations confirm that incorporation of azulene into the HBC core changes the 

electronics of HBC dramatically while maintaining a contorted structure. Contorted HBC 

structures typically adopt either an “up-down-up” or “butterfly” conformation, with the electronically 

favored structure of 2.2 being the up-down-up conformation.2 However, in the case of 2.9, the 

butterfly conformation is favored by approximately 7 kcal/mol (Figure 2.8b). The HOMO of 2.9 is 

also calculated to be significantly higher in energy than that of 2.2 (Figure 2.8b,c).31 Similar to the 

HOMO of 2.2, the HOMO of 2.9 has significant radialene character around the coronene core 

(Figure 2.8c).31 However, while the pendant phenyl rings in 2.2 have little involvement in the 

HOMO, the electron density extends onto the cyclopentadiene rings in 2.9 (Figure 2.8c).31 Finally, 

excited state calculations predict low energy absorptions out to near 750 nm. This is in good 

agreement with the observed UV-vis spectrum, which shows low absorption beyond 750 nm.  

 We became interested in 2.14 because, while the comparable tetraphenyl bisolefin 

intermediate in the synthesis of 2.2 is white, 2.14 exhibited a forest green color, suggesting that 

incorporation of azulene has a significant impact on the bisolefin electronics.21 The calculated 

structure of 2.14 shows the pentacene is bent at the olefin attachment, and the azulene subunits 

are twisted to minimize steric interactions. Surprisingly, the HOMO level of 2.14 is the same 

energy as the HOMO of 2.2 and the LUMO of 2.14 is lower than that of 2.2. This results in a lower 

band gap for 2.14 than 2.2. This is supported by the UV-vis spectrum of 2.14, which shows two 

strong transitions with λmax at 288 nm and 422 nm (Figure 2.9a). Absorption of bisolefin 2.14 

continues to almost 500 nm, which is a slightly larger window of absorption compared with 2.2.  

 It is well known that azulenes can be protonated at the electron-rich five-membered ring, 

forming an aromatic cation in the seven-membered ring.17,19,20 The formation of this relatively 

stable tropylium cation significantly alters the electronics of the system, allowing for tuning of the 

band gap that can be observed by UV-vis spectroscopy.17,19,20 Treatment of 2.14 in chloroform 

with incremental addition of trifluoroacetic acid (TFA) led to a dramatic color change of the 



	  

42 
	  
solution from dark green to black-red (Figure 2.9b). While the transitions at λmax 288 nm and 422 

nm remained strong, two new peaks grew in at much longer wavelengths with addition of TFA. 

 

 

Figure 2.9. UV-vis spectroscopy. Key: a) Normalized UV-vis spectra of 2.14 (blue), the 
photocyclization product of 2.14 (purple), and impure 2.9 (red) in THF.  b) UV-vis spectroscopy 
titration experiment in chloroform. Concentration of 2.14 remained constant at 4.2 x 10-6 M and 
TFA was added in volumes from 0 µL – 100 µL. Blue arrows depict growth of two new peaks with 
addition of a large excess of TFA.  
 
 
These new peaks at λmax 535 nm and 751 nm account for a large red shift in the absorption 

(Δλmax of ~300nm) and indicate a much smaller band gap material. While small molecules that 

have only one azulene unit incorporated generally display a red-shift of approximately 100 nm, 

polyazulene has been shown to red-shift nearly 300 nm.17,19,20 The fact that 2.14 demonstrates a 

shift similar to that of polyazulene suggests that more than one of the four azulene units on 2.14 

is being protonated, resulting in a system with more than one tropylium cation. This dramatic 

change in optoelectronic properties makes this system interesting as a potential sensor, and 

certainly indicates the value of adding multiple azulene subunits into PAH systems for tuning of 

electronics.  

 

2.3.2 Experimental 

2.3.2.1 General Information 

 Pentacene-6,13-dione was purchased from TCI. PdCl2(PPh3)2 was purchased from 

STREM. All other reagents and solvents were purchased from Sigma Aldrich. Dry and 

a. b. 
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deoxygenated solvents were used in all syntheses unless otherwise stated and were prepared by 

elution through a dual column solvent system (Glass Contour Solvent Systems). All reactions 

were carried out in oven-dried glassware and under nitrogen using standard Schlenk techniques 

or in an argon-filled glovebox unless noted otherwise. Column chromatography was performed 

using a CombiFlash® SG100c system using RediSepTM normal phase silica columns (ISCO, 

Inc., Lincoln, NE). 1H NMR (400 MHz) and 13C NMR (100 MHz) spectra were recorded on Bruker 

DRX-300 and Bruker DRX-400 spectrometers at room temperature and can be found in Appendix 

A.3. Synthesis of 2-(azulen-2-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (2.12) and 6,13-

bis(dibromomethylene)-6,13-dihydropentacene (2.13) were performed according to  reported 

procedures.30,21  

 

Synthesis of 6,13-bis(diazulen-2-ylmethylene)-6,13-dihydropentacene (2.14)  

To a 50-mL two-neck round bottom flask, 2-(azulen-2-yl)-4,4,5,5-tetramethyl-1,3,2-

dioxaborolane (2.12) (0.564 g, 2.2 mmol), 6,13-bis(dibromomethylene)-6,13-dihydropentacene 

(2.13) (0.275 g, 0.44 mmol), K2CO3 (0.920 g, 6.7 mmol), THF (130 mL), and H2O (30 mL) were 

added with a stirbar. A reflux condenser was placed on one neck of the flask and the solution was 

bubbled for 15 minutes through a rubber septum in the other neck. To the flask, PdCl2(PPh3)2 

(0.016g, 0.022 mmol) was added and the reaction was bubbled again for 5 minutes. The reaction 

was heated to 70oC for 24 hours. After cooling the reaction, water (5 mL) was added. The THF 

was removed under vacuum and the reaction mixture was extracted with dichloromethane. The 

organic layer was washed with saturated NaCl, dried with Na2SO4, and concentrated to give a 

dark green residue. The crude product was purified by column chromatography (35% 

dichloromethane in hexanes) to give a dark green solid in 64% yield. 1H NMR (400 MHz, 

Methylene Chloride-d2) δ (ppm): 8.25-8.22 (m, 8H), 7.71 (s, 4H), 7.55-7.48 (m, 12H), 7.28-7.25 

(m, 4H), 7.17-7.11 (m, 12 H). 13C NMR (100 MHz, Chloroform-d1) δ (ppm): 140.26, 138.77, 

138.19, 136.38, 136.23, 135.99, 127.81, 127.13, 125.43, 125.09, 123.21, 122.74, 119.61.  

Molecular Mass (Ion mode:FAB): calculated for C64H40 808.3, found 808.3. 
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Synthesis of tetraazuleno[1,2-d:2',1'-g:1'',2''-m:2''',1'''-p]dibenzo[a,j]coronene (2.9) 

Part I: The photolysis setup has been previously described. A mixture of compound 2.14 

(0.083 g, 0.11 mmol), iodine (0.133 g, 0.52 mmol), and propylene oxide (20 mL) in 300 mL of 

anhydrous benzene was irradiated with UV light (Hanovia 450 W high-pressure quartz Hg-vapor 

lamp) in an immersion well. Nitrogen was bubbled through the reaction vessel during the reaction. 

The apparatus was submerged in a large bath of water to maintain a constant temperature. After 

irradiating for 5 hours, the solvent was removed under vacuum and methanol was added to the 

resulting residue. The solution was filtered through a Millipore to give a red solid (0.049 g) in 58 % 

yield. Product was only slightly soluble in methylene chloride. 1H NMR (400 MHz, Methylene 

Chloride-d2) δ (ppm): see supplemental figure A.20. 

Product from Part I was used in Part II without further purification. 

 

 Part II: The product from Part I (0.024 g, 0.030 mmol) was dissolved in dichloromethane 

(100 mL) in a 250 mL round bottom flask with a stirbar. The reaction was bubbled with nitrogen 

for 10 minutes before dropwise addition of FeCl3 (0.040 g, 0.24 mmol) dissolved in CH3NO2 (0.25 

mL). The reaction was stirred under nitrogen for 15 hours. To the reaction mixture, 75 mL of 

methanol was added and dichloromethane was removed under vacuum. The precipitate was 

collected using a Millipore filtration system to give a black-red solid in 95% yield. This product 

was only sparingly soluble in THF. 1H NMR (400 MHz, tetrahydrofuran-d8) δ (ppm): see 

supplemental figure A.21. 

 

2.3.2.2 UV-vis Titration Experiment 

 To perform this experiment, a stock solution of 2.14 was prepared. The concentration of 

2.14 was kept constant and the amount of concentrated TFA added was varied. The total volume 

of all solutions was brought up to 2 mL. All solutions were allowed to equilibrate for 5 minutes 

before the measurement was taken.  
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2.3.2.3 Calculations 

All density functional theory calculations were performed using Jaguar.32 Geometries 

were optimized, orbitals were calculated, and energies were determined all at the B3LYP/6-31G** 

level. We report final energies, orbital energies, and final geometries. 

 

2.3.3 Conclusions 

 While characterization of azulene HBC 2.9 proved to be difficult due to solubility issues, 

preliminary results demonstrate that incorporation of azulene units into an HBC structure 

dramatically impacts the electronics of the system. Calculations suggest that 2.9 is a much lower 

band gap material than previously reported HBC derivatives, with a significant red-shift in 

absorption supporting these calculations. Intermediate azulene bisolefin 2.14 has very different 

properties from its HBC bisolefin relative, with calculations and UV-vis absorption supporting a 

lower band gap than even HBC 2.2. UV-vis titration experiments show that the band gap is 

tunable with addition of acid.  
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Chapter 3. Understanding Single Molecule Conductance of  
Cobalt Chalcogenide Clusters 

 
 

Part of this chapter was reproduced from a paper published in Angewandte Chemie International 

Edition by © Wiley-VCH Verlag GmbH & Co.: “Quantum Soldering of Individual Quantum Dots” 

by Dr. Xavier Roy, Christine L. Schenck, Seokhoon Ahn, Prof. Roger A. Lalancette, Prof. Latha 

Venkataraman, Prof. Colin Nuckolls, and Dr. Michael L. Steigerwald. Angewandte Chemie 

International Edition 2012, 51, 12473-12476. DOI: 10.1002/anie.201206301. Copyright © Wiley-

VCH Verlag GmbH & Co. 2012. 

 

3.1 Introduction 

 Here we describe a precise method to make electrical contact to an individual quantum 

dot (QD). This supramolecular construction connects the QD to its macroscopic environment, yet 

it does not disturb the nanoscopic quantum mechanical confinement of the excitons in these 

small solids. Quantum mechanical confinement has given rise to the hallmark optical properties of 

QDs,[1-3] but it has been of only limited use in electronic and opto-electronic applications[3] of QDs 

because of three interrelated problems: (i) the lack of knowledge of how to make innocent 

electrical contact to QDs; (ii) the challenge of synthesizing atomically precise QDs; and (iii) not 

having the methods to efficiently wire individual QDs in electrical devices. Robust electrical 

contact to the core of QDs is essential in the development of QD-based electronic devices[3-8] and 

for the extraction of hot electrons[9] and the separation of charges from multiple exciton states[10,11] 

in QDs solar cells, yet it has only been thoroughly explored in the context of thin films and bulk 

samples of QDs[12-17] where performance cannot be related to the poorly characterized structure 

and quantum confinement is compromised at best.  

 Previously, a scanning tunneling microscope based break-junction (STM-BJ) technique 

was used to study the single molecule conductance of cobalt chalcogenide clusters with alkyl 

phosphine ligands.[8] The single molecule conductance pathway was determined to be from gold 

electrode directly to the chalcogenide in the cluster core, with bulkier phosphine ligands shutting 

off the conductance. The alkyl phosphine ligands do not participate in the conductance pathway 
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and the bulkier alkyl phosphine ligands act as an insulating shell around the cluster core. This led 

to the question of whether ligands could be designed to actively participate in the conductance 

pathway.  

Here we synthesize, for the first time, a molecularly-discrete, crystallographically defined, 

electron-rich, metal chalcogenide cluster, Co6Se8,[18] that is capped with conjugated, molecular 

connectors that can couple electronically to nanoscale electrodes. We show that these 

connectors provide a well-defined electronic pathway for the transport of charge carriers through 

a single QD. We measure the conductance of individual QDs using STM-BJ techniques[19-21] and 

compare our results with density functional theory. Finally, we show that we can control the 

electronic coupling between the core of the QD and the conducting backbone of the connector by 

varying the connector structure allowing us to differentiate between conductive molecular 

connectors and insulating ones. These results establish quantum mechanical design rules for 

controlling the electronic coupling to a QD for the creation of QD-based electrical circuits. 

 

3.2 Results and Discussion 

The solid-state compound CoSe is an infrared bandgap semiconductor.[22] We 

synthesized a series of atomically precise cobalt selenide quantum dots[18,23,24] decorated with 

different molecular connectors (L3.2–L3.5). Connectors L3.2–L3.4 have a phosphine end that 

coordinates to the cobalt atom in the cluster and a thiomethyl end that is aurophilic. Connector 

L3.5 lacks a thiomethyl group and serves as a control. We selected this family of compounds 

based on the parent QD Co6Se8(PEt3)6 (3.1) (Figure 3.1b) because its electron-rich core is a 

reservoir of carriers, and its synthesis is amenable to a broad range of phosphines. Single 

crystal X-ray diffraction (SCXRD) shows that the Co6Se8 core of the clusters, 3.1–3.5, are 

isostructural (Figure 3.2), forming an octahedron of Co atoms concentric with a cube of Se 

atoms. Cluster 3.4 packs with its six molecular connectors grouped into two diametrically 

opposed groups of three, resulting in an ideal conformation for bridging a linear gap between 

two electrodes, as illustrated in Figure 3.1a.  
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Figure 3.1. Making electrical contact to an atomically precise QD. a) Schematic of a single-
cluster junction formed between nanoscale electrodes and molecular connectors. b) Molecular 
structure of the parent cluster Co6Se8(PEt3)6 (3.1). Carbon, black; cobalt, blue; phosphorus, 
orange; selenium, green. c) Chemical structures of the different clusters investigated in this 
study. 
 
 

 

 

Figure 3.2. SCXRD characterization of the clusters. a–d) show the molecular structures of 
clusters 3.2–3.5, respectively. The hydrogen atoms and solvent molecules of crystallization have 
been omitted. Carbon, black; cobalt, blue; phosphorus, orange; sulfur, yellow; selenium, green. 
The Co-P, Co-Se and Co-Co bond lengths for clusters 3.1–3.5 are in the range 2.12-2.14 Å, 2.32-
2.36 Å and 2.88-2.97 Å, respectively. These distances change little in a given cluster and 
throughout the cluster series. The methyl group on one of the sulfur atoms in cluster 3.4 is 
disordered between two orientations (the site-occupancy-factor is 0.75:0.25). 
 
 

We measured the conductance of both the individual QD 3.2–3.5, and the free 

connectors, L3.2–L3.5 using a STM-BJ technique.[19] STM-BJ measurements use a gold tip and 
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L3.4 

L3.5 



	  

51 
	  
gold substrate to repeatedly form and break gold point contacts in solutions of the target 

compounds in 1,2,4-trichlorobenzene as solvent. Clusters 3.2–3.4 can bind to the Au electrodes  

via thiomethyl groups[25] while 3.5, which lacks thiomethyl groups, cannot. The conductance 

across the Au gap is measured versus the tip/substrate separation at an applied voltage of 500 

mV and 750 mV for L3.2–L3.5 and 3.2–3.5, respectively. In the inset of Figure 3.3a and 3.3b, 

we show sample traces measured for 3.2, 3.4, L3.2, and L3.4. These conductance traces show 

plateaus with lengths and conductance that characterize each compound, indicating that each 

forms junctions. 

 

 

Figure 3.3. Single-cluster junctions. Logarithm-binned conductance histograms constructed using 
over 5000 traces for (a) connector L3.2 (pink) and cluster 3.2 (red) and (b) connector L3.4 (light 
blue) and cluster 3.4 (blue). Bin size is 100/decade. The insets show individual conductance 
traces. (c) and (d) show 2D conductance histograms for clusters 3.2 and 3.4, respectively. The 
conductance peaks extend over a distance of 0.7 nm for 3.2 and 1.8 nm for 3.4 relative to the 
break of the G0 contact. 
 

We created one-dimensional (1D) conductance and two dimensional (2D) conductance-

displacement histograms from the conductance traces.[21] Figures 3.3a and 3.3b show 1D 

conductance histograms generated using logarithm bins for 3.2, 3.4, L3.2 and L3.4. The 

histograms for the clusters do not overlap those of the corresponding connectors confirming that 
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stable cluster junctions indeed form with 3.2 and 3.4. The lower conductance of 3.2 and 3.4, 

when compared with that of L3.2 and L3.4 is consistent with longer molecules spanning the 

junctions. The heights of the conductance peak for the clusters decrease after measurement of 

several thousand traces, possibly due to degradation under ambient conditions. 

The 2D conductance-displacement histograms for 3.2 and 3.4, shown in Figure 3.3c and 

3.3d, extend to ~0.7 nm and ~1.8 nm, respectively. These are significantly longer than for the 

corresponding connectors (2D histograms for L3.2 and L3.4 are shown in Figure B.1) and agree 

with previous measurements showing that longer molecules can bind further away from the apex 

of the Au electrodes and change their binding site on the electrode as the junctions are 

elongated.[21,26] 

Cluster 3.5 lacks aurophilic thiomethyl functionality. Neither the 1D nor 2D conductance 

histograms for 3.5 (Figures B.2 and B.3) show peaks as those of 3.4. This suggests that cluster 

3.4 forms molecular junctions by bonding its terminal thiomethyl groups to the Au electrodes, 

while 3.5 does not. 

Comparison of 3.2 and 3.3 demonstrates the effect of the connector substitution pattern 

on the conductance of the cluster. Although the meta-substituted connector L3.3 shows a clear 

conductance peak that we ascribe to σ-conduction,[27-29] cluster 3.3 shows no peak (Figure B.2). 

This indicates that no end-to-end electronic pathway exists in 3.3. There is also no stepwise 

pathway by which a carrier can travel from one electrode to the cluster core and then to the 

second electrode. Thus when L3.3 binds to the cluster its 3-thiomethylphenyl substituent does not 

rotate around the P-C bond to enable conduction through a σ-pathway between the sulfur and the 

cluster core. These results show that we can effectively modulate the conductivity of a QD device 

by tuning the chemistry of the connectors by varying the substitution pattern or removing of the 

aurophilic group. 

Electronic absorption spectroscopy, cyclic voltammetry, 1H- and 31P-NMR 

spectroscopies, and electronic structure calculations further characterize these molecular circuit 

elements. The absorption spectra (Figures B.4-B.8) show that modifying the connectors changes 

the Co6Se8 core very little. The three longer-wavelength absorptions that characterize 3.1 remain 
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essentially unchanged in 3.2–3.5. The connectors L3.2–L3.5 absorb in the near-UV and 3.2–3.5 

show similar absorptions. The spectra of the clusters are simply the sum of the spectra of the 

isolated constituent parts. This conclusion is supported by voltammetry of 3.2–3.5 (Figures B.9-

B.12). Each cyclic voltammogram shows one reversible reduction and two reversible oxidations - 

identical behavior (and at essentially identical potentials) to 3.1. We see no redox processes for 

the connectors on their own (L3.2–L3.5). Thus multiple charged states are reversibly accessible 

in 3.2–3.5: the cluster core contains a number of stored charge carriers that can be transferred 

onto a macroscopic electrode. This voltammetry is complementary to the STM-BJ experiments 

that show the transport of charge carriers through conductive molecular connectors. The 1H-NMR 

spectra of 3.2–3.5 are essentially the same as for L3.2–L3.5. The single 31P-NMR resonances for 

3.2–3.5 are significantly broader than and and shifted downfield from those of L3.2–L3.5, 

respectively, by ~75 ppm. 

These data show that in most ways the clusters 3.1–3.5 are essentially identical; the 

differences in electronic absorption, chemical structure (determined both in the solid by SCXRD 

and in solution by NMR), and electronic structure (determined by cyclic voltammetry) are minor. 

In only two aspects do these clusters differ: 3.2 and 3.4 are electrically conductive, and they are 

much more sensitive to air than are the others. For example, we can record sharp, well-defined 

1H-NMR spectra for all of the clusters, but the spectra of 3.2 and 3.4 broaden rapidly after the  

 

 

Figure 3.4. Model computational studies of clusters 3.2 and 3.3 using density functional theory. 
The orbitals associated with the sulfur pπ lone pairs for the models (PMe3)5Co6Se8(L3.2), 
(PMe3)5Co6Se8(L3.3) (PMe3)4Co6Se8(L3.2)2 and (PMe3)4Co6Se8(L3.3)2 are shown. 
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samples are exposed to air while those of the other three clusters remain sharp. We suggest that 

these two features, molecular conductance and chemical reactivity, are two facets of the same 

fundamental property: access to the Co6Se8 core that is granted by L3.2 and L3.4 but forbidden 

by PEt3, L3.3, and L3.5. 

We and others have shown that 1,4-disubstitution on phenyl rings can give conductive, 

conjugated systems while compositionally similar 1,3-disubstitution gives insulating, cross-

conjugated systems.[27-29] The present results extend this to include substituted phenyl phosphine 

ligands in metal-containing systems, and we use density functional theory to study this. We 

modeled 3.2, 3.3 (Figure 3.4), and 3.4 (Figure B.13) with the simpler clusters, 

(PMe3)5Co6Se8(L3.2) and (PMe3)5Co6Se8(L3.3), and (PMe3)5Co6Se8(L3.4), respectively. The 

electronic structures of the three model clusters are very similar; the salient difference is in the 

orbitals that are most nearly identified with the pπ lone pairs on the sulfur atoms. Comparison of 

these orbitals in the model clusters indicates that the thiomethyl substituents are coupled more 

strongly to the cluster core in 3.2 and 3.4 than in 3.3. We believe that the corresponding orbitals 

in 3.2 and 3.4 provide conduits through which electrons may move from the cluster to its ambient 

surroundings - either to effect electrical conduction in the break-junction or to mediate reaction 

with oxygen. 

We supplemented these calculations with studies in which the Co6Se8 core was protected 

with four spectator PMe3 ligands and two of the thiomethyl-containing ligands 

((PMe3)4Co6Se8(L)2) to characterize the electronic communication between antipodal aurophilic 

sites. We observe that the essential electronic structure of the cluster is unchanged; the 

significant differences again appear in the orbitals most readily associated with the sulfur pπ lone 

pairs (and also the C=C bond in the case of L3.4). We find that there is a clear, single-orbital 

pathway between the two antipodal points in (PMe3)4Co6Se8(L3.2)2 and (PMe3)4Co6Se8(L3.4)2 

that is absent in (PMe3)4Co6Se8(L3.3)2. These results are consistent with our experimental 

observations that 3.2 and 3.4 are electrically conductive and air-sensitive.  
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3.3 Experimental 

3.3.1. Synthetic Details 

3.3.1.1 General Information  

Chlorodiethylphosphine was purchased from Acros Organics. Selenium powder and 

dicobalt octacarbonyl were obtained from STREM Chemicals. Diethyl benzylphosphonate, 4-

bromobenzaldehyde, potassium tert-butoxide, 4-bromothioanisole, 3-bromothioanisole, 4-

(methylthio)benzylbromide, trimethylphosphite, 1,2,4-trichlorobenzene, and all other reagents and 

solvents were purchased from Aldrich. Dry and deoxygenated solvents were prepared by elution 

through a dual column solvent system (Glass Contour Solvent Systems). Unless otherwise noted, 

all reactions were carried out under nitrogen using standard schlenk techniques or in an argon-

filled glovebox. Only the IR peaks in the range 4000-1500 cm-1 are reported. 

 

3.3.1.2 Stilbene Synthesis  

General Horner-Wadsworth-Emmons reaction: 

 

 

 

4-Bromo-4ʹ′-thiomethylstilbene: 4-Bromobenzaldehyde (0.89 g, 4.8 mmol) was dissolved in 40 

mL of THF and cooled to 0 °C. Dimethyl-4-thiomethylbenzyl phosphonate[30] (1.18 g, 4.8 mmol) 

was added and the solution was stirred for 30 min. A solution of potassium tert-butoxide (0.62 g, 

5.5 mmol) in 10 mL of THF was added dropwise to the cold reaction over 15 min. The reaction 

was stirred and warmed to RT overnight. In air, 50 mL of water was added and the mixture was 

poured into 50 mL of dichloromethane. The organic phase was extracted and the aqueous phase 

was washed twice with 10 mL of dichloromethane. The combined organic phase was washed 
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with water and brine, dried with MgSO4 and evaporated to dryness. The white solid was 

recrystallized at -30 °C from a mixture of toluene and hexanes. Yield: 1.35 g (92 %). 

 
1H NMR (300 MHz, [d2-dichloromethane], 298 K): δ = 2.50 (3H, s), 7.00 (2H, m), 7.21-7.25 (2H, 

m), 7.32-7.48 (6H, m). IR (ATR)  = 3079, 3015, 2917, 1903, 1834, 1628, 1590, 1551 cm-1. 

 

4-Bromostilbene: 4-Bromobenzaldehyde (2.10 g, 11.4 mmol) was dissolved in 50 mL of THF 

and cooled to 0 °C. Diethyl benzylphosphonate (2.61 g, 11.4 mmol) was added and the solution 

was stirred for 30 min. A solution of potassium tert-butoxide (1.40 g, 12.5 mmol) in 10 mL of THF 

was added dropwise to the cold reaction over 15 min. The reaction was stirred and warmed to RT 

overnight. In air, 50 mL of water was added and the mixture was poured into 50 mL of 

dichloromethane. The organic phase was extracted and the aqueous phase was washed twice 

with 10 mL of dichloromethane. The combined organic phase was washed with water and brine, 

dried with MgSO4 and evaporated to dryness. The white solid was recrystallized at -30 °C from a 

mixture of toluene and hexanes. Yield: 2.44 g (83 %).  

 
1H NMR (300 MHz, [d2-dichloromethane], 298 K): δ = 7.10 (2H, m), 7.26-7.31 (1H, m), 7.35-7.54 

(8H, m). IR (ATR) = 3081, 3060, 3026, 2922, 1970, 1953, 1904, 1831, 1785, 1732, 1667, 1645, 

1583 cm-1. 
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3.3.1.3 General Synthesis of the Phosphine Ligands 

 

Diethyl-4-thiomethylphenylphosphine (L3.2): 4-Bromothioanisole (1.51g, 7.4 mmol) was 

dissolved in 50 mL of THF and cooled to -78 °C. n-Butyllithium (1.6 M in hexanes, 5.1 mL, 8.1 

mmol) was added dropwise and the reaction was stirred for 45 min. Chlorodiethylphosphine (1.10 

g, 8.8 mmol) in 10 mL of THF was added dropwise to the solution and the reaction was warmed 2 

gradually to RT overnight. The solvent was removed under vacuum and 20 mL of toluene was 

added to the crude product. The mixture was filtered through a fine frit to remove LiCl and the 

solvent was once again removed under vacuum. The pale yellow oil obtained was distilled under 

vacuum at 110 °C to give a colorless oil. Yield: 1.32 g (84 %).  

 
1H NMR (400 MHz, [d2-dichloromethane], 298 K): δ = 0.99 (6H, m), 1.66 (4H, m), 2.48 (3H, s), 

7.23 (2H, m), 7.40 (2H, m). 31P NMR (162 MHz, [d2-dichloromethane], 298 K): δ = -16. IR (ATR) = 

2957, 2927, 2871, 1885, 1634, 1579 cm-1.  

 

Diethyl-3-thiomethylphenylphosphine (L3.3): 3-Bromothioanisole (1.06 g, 5.2 mmol) was 

dissolved in 40 mL of THF and cooled to -78 °C. n-Butyllithium (1.6 M in hexanes, 3.6 mL, 5.7 

mmol) was added dropwise and the reaction was stirred for 45 min. Chlorodiethylphosphine (0.78 

g, 6.2 mmol) in 10 mL of THF was added dropwise to the solution and the reaction was warmed 

gradually to RT overnight. The solvent was removed under vacuum and 20 mL of toluene was 

added to the crude product. The mixture was filtered through a fine frit to remove LiCl and the 

solvent was once again removed under vacuum. The pale yellow oil obtained was distilled under 

vacuum at 110 °C to give a colorless oil. Yield: 0.78 g (71 %). 
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1H NMR (500 MHz, [d2-dichloromethane], 298 K): δ = 1.00 (6H, m), 1.68 (4H, m), 2.49 (3H, s), 

7.20-7.29 (3H, m), 7.36-7.37 (1H, m). 31P NMR (236 MHz, [d2-dichloromethane], 298 K): δ = -14. 

IR (ATR) = 2959, 2931, 2876, 1635, 1574, 1562 cm-1.  

 

Diethyl-4’-thiomethyl-4-stilbenylphosphine (L3.4): 4-Bromo-4′-thiomethylstilbene (1.16 g, 3.8 

mmol) was dissolved in 50 mL of THF and cooled to -78 °C. n-Butyllithium (1.6 M in hexanes, 2.6 

mL, 4.2 mmol) was added dropwise and the reaction was stirred for 45 min. 

Chlorodiethylphosphine (0.57 g, 4.6 mmol) in 10 mL of THF was added dropwise to the solution 

and the reaction was warmed gradually to RT overnight. The solvent was removed under vacuum 

and 20 mL of toluene was added to the crude product. The mixture was filtered through a fine frit 

to remove LiCl and the solvent was once again removed under vacuum. The white solid was 

recrystallized at -30 °C from a mixture of toluene and n-hexane. Yield: 1.00 g (84 %). 

 
1H NMR (400 MHz, [d2-dichloromethane], 298 K): δ = 1.02 (6H, m), 1.70 (4H, m), 2.50 (3H, s), 

7.10-7.11 (2H, m), 7.25 (2H, m), 7.45-7.51 (6H, m). 31P NMR (162 MHz, [d2-dichloromethane], 

298 K): δ = -15. IR (ATR) = 3066, 3018, 2950, 2924, 2901, 2866, 2821, 1899, 1833, 1630, 1588, 

1547 cm-1. 

 

Diethyl-4-stilbenylphosphine (L3.5): 4-Bromostilbene (0.49 g, 1.9 mmol) was dissolved in 40 

mL of THF and cooled to -78 °C. n-Butyllithium (1.6 M in hexanes, 1.3 mL, 2.1 mmol) was added 
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dropwise and the reaction was stirred for 45 min. Chlorodiethylphosphine (0.28 g, 2.3 mmol) in 10 

mL of THF was added dropwise to the solution and the reaction was warmed gradually to RT 

overnight. The solvent was removed under vacuum and 20 mL of toluene was added to the crude 

product. The mixture was filtered through a fine frit to remove LiCl and the solvent was once 

again removed under vacuum. The white solid was recrystallized at -30 °C from n-hexane. Yield: 

0.38 g (75 %). 

 
1H NMR (400 MHz, [d2-dichloromethane], 298 K): δ = 1.01 (6H, m), 1.70 (4H, m), 7.15 (2H, m), 

7.27 (1H, m), 7.37 (2H, m), 7.46-7.55 (6H, m). 31P NMR (162 MHz, [d2-dichloromethane], 298 K): 

δ = -15. IR (ATR) = 3064, 3020, 2955, 2927, 2912, 2869, 1950, 1915, 1828, 1597, 1576, 1548 

cm-1. 

 

3.3.1.4 General Synthesis of the Co6Se8L6 Clusters: 

 

 

 

Cluster 3.1: Cluster 3.1 was synthesized according to a published procedure (9). 

1H NMR (400 MHz, [d6-benzene], 298 K): δ = 1.10 (36H, m), 1.96 (24H, m). 31P NMR (162 MHz, 

[d6-benzene], 298 K): δ = 61 (broad peak). The 31P peak for compound 3.1 is very broad and we 

believe that it was wrongly assigned in ref. 2. We report the corrected shift here. IR (ATR) = 2966, 

2925, 2877 cm-1. 
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Cluster 3.2: Diethyl-4-thiomethylphenylphosphine (L3.2) (0.38 g, 1.8 mmol) was dissolved in 25 

mL of toluene. Selenium powder (0.14 g, 1.8 mmol) was added and the suspension was stirred 

until the solid completely dissolved. Dicobalt octacarbonyl (0.14 g, 0.4 mmol), dissolved in 10 mL 

of toluene, was added to the solution and the reaction was heated to reflux overnight. The mixture 

was cooled down to room temperature and filtered through a fine frit. The dark brown solution 

was concentrated under vacuum and the product was precipitated with diethyl ether. Yield: 0.12 g 

(37 %). Single crystals were grown by slow diffusion of n-hexane in a toluene solution of 3.2. 

1H NMR (400 MHz, [d8-tetrahydrofuran], 298 K): δ = 0.86 (36H, m), 1.97 (24H, m), 2.50 (18H, s), 

7.15 (12H, m), 7.28 (12H, m). 31P NMR (162 MHz, [d8-tetrahydrofuran], 298 K): δ = 58 (broad 

peak). IR (ATR) = 3066, 2961, 2922, 2868, 1966, 1879, 1579, 1542 cm-1. 

 

Cluster 3.3: Diethyl-3-thiomethylphenylphosphine (L3.3) (0.6 g, 2.8 mmol) was dissolved in 40 

mL of toluene. Selenium powder (0.22 g, 2.8 mmol) was added and the suspension was stirred 

until the solid completely dissolved. Dicobalt octacarbonyl (0.22 g, 0.6 mmol), dissolved in 10 mL 

of toluene, was added to the solution and the reaction was heated to reflux overnight. The mixture 

was cooled down to room temperature and filtered through a fine frit. The solvent was removed 

under vacuum to give a dark brown oil. Large black single crystals of 3.3 were grown from a 

mixture of diethyl ether and n-hexane. Yield: 0.23 g (46 %).  

1H NMR (400 MHz, [d8-tetrahydrofuran], 298 K): δ = 0.88 (36H, m), 1.95 (24H, m), 2.48 (18H, s), 

7.09-7.13 (12H, m), 7.16-7.20 (6H, m), 7.34 (6H, m). 31P NMR (162 MHz, [d8-tetrahydrofuran], 

298 K): δ = 58 (broad peak). IR (ATR) = 3038, 2964, 2926, 2870, 2727, 1954, 1859, 1740, 1669, 

1570, 1561 cm-1. 

 

Cluster 3.4: Diethyl-4'-thiomethyl-4-stilbenylphosphine (L3.4) (223 mg, 0.71 mmol) was dissolved 

in 40 mL of toluene. Selenium powder (56 mg, 0.71 mmol) was added and the suspension was 

stirred until the solid completely dissolved. Dicobalt octacarbonyl (56 mg, 0.16 mmol), dissolved 

in 5 mL of toluene, was added to the solution and the reaction was heated to reflux overnight. The 

hot mixture was filtered through a fine frit. The dark brown solution was concentrated under 
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vacuum and the product was precipitated with diethyl ether. Yield: 102 mg (65 %). Single crystals 

were grown by slow evaporation of a toluene solution of 3.4.  

1H NMR (400 MHz, [d8-tetrahydrofuran], 298 K): δ = 0.89 (36H, m), 2.06 (24H, m), 2.48 (18H, s), 

7.13 (12H, s), 7.20 (12H, m), 7.32-7.43 (36H, m). 31P NMR (162 MHz, [d8-tetrahydrofuran], 298 

K): δ = 58 (broad peak). IR (ATR) = 3018, 2963, 2921, 2872, 1629, 1586, 1545 cm-1. 

 

Cluster 3.5: Diethyl-4-stilbenylphosphine (L3.5) (300 mg, 1.12 mmol) was dissolved in 40 mL of 

toluene. Selenium powder (88 mg, 0.71 mmol) was added and the suspension was stirred until 

the solid completely dissolved. Dicobalt octacarbonyl (88 mg, 0.26 mmol), dissolved in 10 mL of 

toluene, was added to the solution and the reaction was heated to reflux overnight. The mixture 

was cooled down to room temperature and filtered through a fine frit. The dark brown solution 

was concentrated under vacuum and black single crystals of 3.5 were grown by slow evaporation 

of the solution. Yield: 125 mg (56 %).  

1H NMR (400 MHz, [d8-tetrahydrofuran], 298 K): δ = 0.90 (36H, m), 2.06 (24H, m), 7.19-7.22 (18H, 

m), 7.28-7.31 (12H, m), 7.35-7.39 (12H, m), 7.44-7.49 (24H, m). 31P NMR (162 MHz, [d8-

tetrahydrofuran], 298 K): δ = 56 (broad peak). IR (ATR) = 3075, 3056, 3025, 2962, 2931, 2907, 

2874, 1942, 1875, 1823, 1633, 1597, 1575, 1551 cm-1. 

 

3.3.2 Instrumentation Details  

All 1H and 31P NMR were recorded on a Bruker DRX300 (300 MHz), Bruker DRX400 

(400 MHz), or Bruker DMX500 (500 MHz) spectrometer. Infrared (IR) spectra were obtained 

using a Perkin Elmer Spectrum 400 FTIR spectrometer using a PIKE ATR attachment. 

Absorption spectra were taken on a Shimadzu UV-1800 spectrophotometer. Electrochemistry 

was performed using a CHI600c potentiostat and analyzed using the CHI600c electrochemical 

analyzer software package. Single crystal X-ray diffraction data were collected on a Bruker 

SMART CCD APEX II diffractometer using a fine-focus sealed-tube graphite monochromator Cu 

Kα source (λ = 1.54178 Å). The conductance measurements were performed using a home-built 

modified scanning tunneling microscope (STM) that has been previously described.[31] Sub-
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angstrom level control of the tip-substrate distance was achieved using a commercially available 

single-axis piezoelectric positioner (Nano-P15, Mad City Labs). The STM was controlled using a 

custom program using IgorPro (Wavemetrics, Inc.). 

 

3.3.3 Conductance Measurements 

The conductance of each molecule was measured using the STM-based break-junction 

technique, where an Au tip (Alfa Aesar, 99.999%) cut to be sharp is brought in and out of contact 

with a substrate of ~100 nm of gold (Alfa Aesar, 99.999%) evaporated onto cleaved mica disks. 

The substrate is mounted on a piezoelectric positioner (Mad City Labs), so that sub-angstrom 

resolution in position is achieved. During the entire break junction procedure, a bias (500 mV for 

the molecular connector and 750 mV for the complex) is applied between the tip and the 

substrate while the current is measured (Keithley 428-Prog). Piezo control and data collection 

were performed using a National Instruments PXI Chassis System (with PXI-4461, PXI-6289) at 

40 kHz, and driven and managed with a custom-program using Igor Pro (Wavemetrics, Inc.). 

 The experimental set-up is kept under ambient. For each experiment, the substrate is 

cleaned under UV/Ozone for 15 minutes prior to use. For every conductance trace measurement, 

the STM tip is first brought into hard contact with the substrate to achieve a conductance greater 

than ~ 10 G0. At this point, the junction electrodes are pulled apart at a speed of 15 nm/s for 0.25 

seconds. Conductance is measured as a function of tip-sample displacement to generate 

conductance traces. For each tip/substrate pair, at least one set of 1,000 traces of clean gold 

breaks is collected to ensure the system is clean. Then, the target molecule, dissolved in 1,2,4-

trichlorobenzene (1 mM) is deposited and over 5,000 conductance traces are collected for each 

of the molecules reported here. One-dimensional conductance histograms are created using 

every measured trace. 

 

3.3.4 UV-vis Absorption Spectroscopy  

All spectra were taken under nitrogen in a 1-cm quartz cuvette following a recording of 

the background spectrum. 
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3.3.5 Cyclic Voltammetry  

A solution of clusters 3.2-3.5 in degassed, anhydrous dichloromethane containing 0.1 M 

of supporting electrolyte, tetrabutylammonium hexafluorophosphate (TBAPF6) was used in a 

single cell. The measurements were carried out under nitrogen in a cell with a glassy carbon 

working electrode, a platinum wire counter electrode and a Ag+/AgCl reference electrode with a 

scan rate of 0.1 V/s. The potentials are reported against a Ag+/AgCl reference. 

 

3.3.6 Crystallography  

Crystals of 3.1 suitable for X-ray diffraction were grown by slow diffusion of n-hexane in a 

toluene solution of the compound. All measurements were made on a Bruker SMART CCD APEX 

II diffractometer[32] using a fine-focus sealed-tube graphite monochromator Cu Kα source (λ = 

1.54178 Å). Of the 12,986 reflections that were collected, 1,958 were unique (Rint = 0.039); 

equivalent reflections were merged. Data were collected and integrated using the Bruker SAINT 

software package.[33] Data were corrected for absorption effects using a multi-scan technique 

(SADABS)[34] and numerical face-indexing with max and min transmission coefficients of 0.2095 

and 0.1663, respectively. The structure was solved using SHELXTL.[35] All non-hydrogen atoms 

were refined anisotropically. All hydrogen atoms were found in electron-density difference maps, 

but placed in idealized positions and allowed to ride on their respective C atoms. The final cycle 

of full-matrix least-squares refinement on F2 was based on 1,962 reflections and 88 variable 

parameters and converged. Cambridge Crystallographic Data Centre deposition number: 894787 

Crystals of 3.2 suitable for X-ray diffraction were grown by slow diffusion of n-hexane in a 

toluene solution of the compound. All measurements were made on a Bruker SMART CCD APEX 

II diffractometer[32] using a fine-focus sealed-tube graphite monochromator Cu Kα source (λ = 

1.54178 Å). Of the 40,988 reflections that were collected, 7,134 were unique (Rint = 0.049); 

equivalent reflections were merged. Data were collected and integrated using the Bruker SAINT 

software package.[33] Data were corrected for absorption effects using a multi-scan technique 
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(SADABS)[34] and numerical face-indexing with max and min transmission coefficients of 0.228 

and 0.141, respectively. The structure was solved using SHELXTL.[35] All non-hydrogen atoms 

were refined anisotropically. All hydrogen atoms were found in electron-density difference maps, 

but placed in idealized positions and allowed to ride on their respective C atoms. The final cycle 

of full-matrix least-squares refinement on F2 was based on 7,134 reflections and 425 variable 

parameters and converged. Cambridge Crystallographic Data Centre deposition number: 894788 

Crystals of 3.3 suitable for X-ray diffraction were grown from a mixture of diethyl ether 

and n-hexane. All measurements were made on a Bruker SMART CCD APEX II diffractometer[32] 

using a fine-focus sealed-tube graphite monochromator Cu Kα source (λ = 1.54178 Å). Of the 

21,117 reflections that were collected, 7,059 were unique (Rint = 0.049); equivalent reflections 

were merged. Data were collected and integrated using the Bruker SAINT software package.[33] 

Data were corrected for absorption effects using a multi-scan technique (SADABS)[34] and 

numerical face-indexing with max and min transmission coefficients of 0.158 and 0.054, 

respectively. The structure was solved using SHELXTL.[35] All non-hydrogen atoms were refined 

anisotropically. All hydrogen atoms were found in electron-density difference maps, but placed in 

idealized positions and allowed to ride on their respective C atoms. The final cycle of full-matrix 

least-squares refinement on F2 was based on 7,059 reflections and 424 variable parameters and 

converged. Cambridge Crystallographic Data Centre deposition number: 894789 

Crystals of 3.4 suitable for X-ray diffraction were grown by slow evaporation of a toluene 

solution of the compound. All measurements were made on a Bruker SMART CCD APEX II 

diffractometer[32] using a fine-focus sealed-tube graphite monochromator Cu Kα source (λ = 

1.54178 Å). Of the 56,108 reflections that were collected, 11,178 were unique (Rint = 0.043); 

equivalent reflections were merged. Data were collected and integrated using the Bruker SAINT 

software package.[33] Data were corrected for absorption effects using a multi-scan technique 

(SADABS)[34] and numerical face-indexing with max and min transmission coefficients of 0.450 

and 0.116, respectively. The structure was solved using SHELXTL.[35] All non-hydrogen atoms 

were refined anisotropically. All hydrogen atoms were found in electron-density difference maps, 

but placed in idealized positions and allowed to ride on their respective C atoms. The final cycle 
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of full-matrix least-squares refinement on F2 was based on 11,178 reflections and 724 variable 

parameters and converged. Cambridge Crystallographic Data Centre deposition number: 894790 

Crystals of 3.5 suitable for X-ray diffraction were grown by slow evaporation of a toluene 

solution of the compound. All measurements were made on a Bruker SMART CCD APEX II 

diffractometer[32] using a fine-focus sealed-tube graphite monochromator Cu Kα source (λ = 

1.54178 Å). Of the 24,900 reflections that were collected, 3,251 were unique (Rint = 0.046); 

equivalent reflections were merged. Data were collected and integrated using the Bruker SAINT 

software package.[33] Data were corrected for absorption effects using a multi-scan technique 

(SADABS)[34] and numerical face-indexing with max and min transmission coefficients of 0.393 

and 0.160, respectively. The structure was solved using SHELXTL.[35] All non-hydrogen atoms 

were refined anisotropically. All hydrogen atoms were found in electron-density difference maps, 

but placed in idealized positions and allowed to ride on their respective C atoms. The final cycle 

of full-matrix least-squares refinement on F2 was based on 3,251 reflections and 195 variable 

parameters and converged. Cambridge Crystallographic Data Centre deposition number: 894791 

 

3.3.7  DFT Calculations 

All density functional calculations were performed using Jaguar.[36] Geometries were 

optimized, orbitals were calculated, and energies were determined all at the B3LYP/6-31G** level. 

We report final energies, orbital energies, and final geometries for Co6Se8(PMe3)5L and 

Co6Se8(PMe3)4L2 for L = dimethyl-4-thiomethylphenylphosphine (L3.2), dimethyl-3-

thiomethylphenylphosphine (L3.3), and diethyl-4'-thiomethyl-4-stilbenylphosphine (L3.4) (Figure 

B.13).  

 

3.4 Conclusions 

Quantum dots can act as reservoirs of electrical carriers or electronic excitations but this 

is valuable only to the extent that the charge or excitation can be removed from the cluster. In this 

study, we demonstrate a method to make contact and extract charge from one simple prototype. 

These results thus provide design rules for the preparation of structurally and electronically 



	  

66 
	  
discrete molecule scale quantum dots that reliably connect to nanoscale electrodes in a selective, 

well understood, and controllable fashion. Our work paves the way to incorporating these 

molecular-electronic elements into circuits. We anticipate that this approach will be widely 

applicable to other quantum dot systems, thereby enabling a multitude of studies including the 

extraction of charges from multiple exciton states and extraction of hot carriers. 
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Chapter 4. Investigating the Relationship Between Single Molecule Conductance and Thin 

Film Conductance of Atomically Defined Quantum Dots 
 

4.1 Introduction 

QDs are promising electronic materials due to their quantum confinement, solubility, and 

interesting magnetic, electronic, and chromophoric properties.1-5 In particular, we have been 

interested in atomically defined QDs that offer additional advantages of monodispersity, structural 

control, and x-ray crystallographic structural characterization.6-7 These atomically defined QDs 

are composed of a metal chalcogenide core surrounded by an organic ligand shell that serves to 

prevent formation of bulk metal chalcogenide solids and by the same mechanism creates an 

environment for quantum confinement within the core. However, by nature these organic ligand 

shells are often insulating and inhibit communication between metal centers, thus hindering the 

application of these atomically defined QDs as electronic materials.  

We recently investigated whether conductance could occur through the organic shell and 

whether we could design ligands that, while preserving QD properties of quantum confinement, 

could also provide a conduction pathway.8,9 Using a scanning tunneling microscope based break-

junction (STM-BJ) technique, we measured the single molecule conductance of atomically 

defined QDs. These results show that with insulating alkyl phosphine ligands, the conductance 

pathway occurs from gold electrodes to chalcogenide atoms in the metal core and do not involve 

the phosphine ligands. Increasing the bulk of the alkyl phosphine prevents electrode-QD core 

interactions, thus shutting down the conductance pathway. However, aromatic phosphine ligands 

decorated with aurophilic thiomethyl groups in the para position (Figure 4.1, L4.1) provide a 

pathway through the phosphine ligand to the cluster core (Figure 4.1, 4.1). When the thiomethyl 

groups are installed in the meta position (Figure 4.1, L4.2), the conductance pathway through the 

cluster (Figure 4.1, 4.2) is shut down. Calculations show that the thiomethyl groups in the para 

position electronically couple to the cluster core, while those in the meta position do not. This 

electronic coupling provides a pathway for delocalization of electrons from one ligand through the 

cluster core to other ligands. Even more exciting, these aromatic phosphine ligands do not impact 

the electronics of the cluster core. Thus, conductance can be switched on or off by ligand design,  
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Figure 4.1 a) Molecular structure of 4.1, 4.2, L4.1, and L4.2. Carbon, gray; cobalt, blue; 
hydrogen, light gray; phosphorus, orange; selenium, green; sulfur, yellow. b) Logarithm-binned 
conductance histograms constructed using over 5000 traces for cluster 4.1 (red curve) and 4.2 
(green curve). 

 

with the position of the thiomethyl group playing an important role in determining if a conductance 

pathway is present.  

While single molecule conductance measurements provide previously inaccessible 

insight into molecular conductance and conductance design rules,10-15 it is often difficult to 

determine how much of this insight is transferrable to thin film devices. Single molecule 

conductance depends solely on the chemical structure and orientation of the molecule within the 

junction. Considering conductance through molecules within a thin film device adds many 

degrees of complexity. Thin film conductance is controlled by variables such as morphology and 

interaction of the thin film molecules with other molecules, with the substrate, and with the 

electrodes. In this chapter, we explore the thin film conductance of clusters 4.1 and 4.2 and try to 

understand the mechanism of conductance through insight gained from single molecule 

conductance measurements. In addition, while monodisperse quantum dots have been recently 

been investigated as thin film conducting materials,16-19 thin films of atomically defined quantum 

dots have been largely unexplored. To the author’s knowledge, this is the first report of an 

atomically defined quantum dot conductive thin film. 

Co6Se8L6 a.  

L1 =  L2 =  

1  2  

	   
b. 
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4.2 Results and Discussion 

Due to the extreme air sensitivity of 4.1, all device fabrication and experiments were 

performed inside of a glove box, or in an inert atmosphere. Thin films of clusters 4.1 and 4.2 were 

generated on silicon dioxide (SiO2) substrates with pre-patterned gold electrodes. Electrodes 

were patterned such that several devices were made on a single substrate with a fixed width of 

50 µm and channel lengths varying from 3 µm to 30 µm (Figure 4.2a,b). First, a series of spin-

cast films were made from a 10 mg/mL solution of 4.1 or 4.2 in toluene. Thin film devices were 

measured at room temperature, where conductance was observed in thin films of 4.1 but not for 

thin films of 4.2 (Figure 4.2c). It was remarkable to us that the thin film conductance trend 

matched observations from STM-BJ single molecule conductance data. 

 

Figure 4.2. a) Optical microscope image of pre-patterned gold electrodes on SiO2. Electrodes are 
enlarged in the center to show lengths of devices from 3 µm to 30 µm. b) Device architecture. c) 
I-V curves for thin film devices of 4.1 (black) and 4.2 (red) b) Plot of resistance of 4.1 versus 
length/width.  
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Films of 4.1 gave sheet resistance proportional to channel length (Figure 4.2d). Contact 

and sheet resistance were determined from the slope of a plot of the sheet resistance of the film 

versus the ratio of channel length to width. Average sheet resistance was 470 MΩ (Table C.1). 

Film thickness, determined by Atomic Force microscopy (AFM) to be ~20 nm, was used to 

calculate an average resistivity of 1 kΩ·cm and conductivity of 0.7 mS/cm, over five devices 

(Table C.1). These values are well within the range of other semiconducting materials, including 

CdSe nanocrystal thin films.18 In contrast, the sheet resistance for thin films of cluster 4.2 was out 

of the range of measurement, with a value greater than 100 GΩ/☐.  

Absorbance of the spin coated thin films of 4.1 and 4.2 on glass slides was measured 

using UV-vis spectroscopy (Figure C.12). Both spectra showed three transitions at the same 

wavelengths as the clusters in solution. This indicates that the clusters remain intact within the 

film. However, there is significant broadening observed for the 4.1 films relative to those of 4.2. 

Broadening of the absorption spectrum indicates charge delocalization throughout the film. This 

data matches well with the fact that 4.1 thin films are conducting while 4.2 thin films are insulating. 

During our investigation of the single molecule conductance of 4.1 and 4.2, a significant 

difference in air sensitivity between 4.1, which is extremely sensitive to even small amounts of 

oxygen, and 4.2, which is air stable, was observed. Calculations suggested that the difference in 

air sensitivity is due to the fact that the external thiomethyl groups in the para position can act as 

a conduit for cluster core electrons to be accessed. Based on this knowledge, we hypothesize 

that at very low concentrations, oxygen acts as a dopant in thin films of 4.1, but cannot access 

the core electrons of 4.2. We believe that residual oxygen within the glovebox, at a level below 1 

ppm, is enough to dope the cluster film.  

In order to probe the similarities between the single molecule conductance characteristics 

and the thin film conductance we observed, an investigation of the film morphology was 

necessary. Optical microscopy of cluster 4.1 and 4.2 showed smooth films (Figure C.1, C.2) that 

were also observed by AFM measured surface topography (Figure 4.3a, b). The surface of 

cluster 4.1 films was extremely smooth with a roughness of only 0.3 nm, in contrast to the value 

of 1.6 nm for cluster 3 film.  



	  

73 
	  

For a better understanding of film crystallinity and packing, we used grazing incidence x-

ray diffraction (GIXD) to study the spin cast thin films of 4.1 and 4.2. Figure 4.3 shows the 2-D 

reciprocal (Q-space) diffraction patterns for cluster 4.1 (Fig. 4.3c) and cluster 4.2 (Fig. 4.3d,e). 

Cluster 4.1 is amorphous. In contrast, cluster 4.2 forms oriented, crystalline films on the SiO2/Si 

substrate. In particular, we observe a weak ring at Q=0.52Å-1 with high intensity concentrated 

along the Qz (Qr=0, out-of-plane) direction. We also observe three peaks at Qr=0.52Å-1 with Qz 

values of 0.18, 0.36, and 0.71 Å-1, respectively. We index the measured diffraction peaks and 

determine the crystallographic orientation(s) of the cluster 4.2 film based on reciprocal space 

diffraction patterns computed using the lattice parameters obtained from single crystal diffraction 

data. Figure 4.3d and 4.3e compares for different crystallographic orientations of the cluster 4.2 

unit cell and compared to thin film data; best fits are obtained for the (100) (Figure 4.3d) and 

(010) directions (Figure 4.3e) oriented along the surface normal. The lowering of the thin film Q- 

 

 

Figure 4.3. a) Atomic Force microscopy image of a thin film of 4.1. b) Atomic Force microscopy 
image of a thin film of 4.2. c.-e.) Two-dimensional reciprocal (Q-) space diffraction patterns for 
thin films of: 4.1 (c) and 4.2 (d,e), with 2-D patterns computed from lattice parameters obtained 
with single crystal measurements of 4.2 overlaid as white circles and peaks indexed for unit cell 
orientations with either the a-axis ((100), d) or b-axis ((010), e) oriented along the surface normal.   
 

a. b. 

c. d. e. 
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values of 4.2 along Qr with the a-xis oriented out-of-plane (Fig. 4.3e) and along Qr when the b-

axis is out-of-plane relative to the single crystal data may be explained as due to a slight 

expansion of the unit cell in the plane of the substrate due to the presence of solvent molecules. 

The fit results, together with the weak ring at Q=0.53 Å- and a series of sharp, highly textured 

rings at Q values > 1.5 Å-1 (Figure C.5), suggests that two distinct crystallographic orientations 

relative to the substrate coexist in thin films of 4.2, with the a-axis (100) and b-axis (010) 

respectively, oriented along the surface normal.  

 It is possible that the extreme difference in film crystallinity between 4.1 and 4.2 is the 

reason for the disparity in conductance of these films. However, we do not believe this is the 

case. Upon close inspection of the crystal structures of both 4.1 and 4.2, it was observed that 

both clusters are spaced between 9 and 14 Å apart and have weak interactions between sulfurs 

on the periphery of neighboring clusters (4-5 Å).9 If the mechanism of conductance was through a 

sulfur-sulfur interaction, it would be expected that a crystalline film would perform better than an 

amorphous film. Perhaps rather than morphology driving the film conductance, or lack thereof, we 

believe the proposed mechanism of conductance is responsible for the difference in morphology. 

Due to the extreme air sensitivity of 4.1, it is expected that a small percentage of the clusters in 

the solution used for device fabrication are doped by oxygen. During device fabrication, the 

doped clusters act as impurities, and the interaction between doped and undoped clusters 

prevents the formation of crystalline films. In the case of 4.2, the lack of doped clusters allows for 

pristine, crystalline films to be formed but prevents charge transport throughout the film.  

Drop cast films of 4.1 and 4.2 were made from 20 mg/mL solutions of 4.1 or 4.2 in 

toluene. Solutions were dropped onto the same pre-patterned SiO2 used for spin cast devices 

and left to dry slowly in a covered box within the glovebox. Films of 4.1 gave an average sheet 

resistance of 81 MΩ while those of 4.2 showed no measurable conductance (Table C.2). The 

sheet resistance of drop cast 4.1 is much lower than that of the spin cast films, most likely due to 

the difference in film thickness (170 nm for films of 4.1 and 420 nm for films of 4.2). Calculation of 

resistivity using film thickness gave similar values for both spin cast and drop cast films. Both 

drop cast films, not surprisingly, appeared much thicker and rougher than their spin cast 
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counterparts by both optical microscopy and AFM (Figure C.3, C.4, C.13). Optical microscopy 

showed visible crystallinity in thin films of 4.2, while 4.1 films were uneven and speckled (Figure 

C.3, C.4).  

Thermal annealing of the spin cast and drop cast films led to an increase in conductance 

for 4.1 and no change in the insulating nature of 4.2 thin films (Figure C.6, C.7; Table C.3). 

Improvement in conductance of thin films with thermal annealing is generally contributed to better 

interactions between molecules within the film. It is interesting to note that thermal annealing had 

no impact on films of 4.2. This suggests that conductance occurs due to a mechanism less 

dependent on morphology. However, further studies, such as GIXD, are necessary to explore the 

exact morphological changes that occur during annealing in this system.  

 

 

Figure 4.4. Short-term time dependence of spin cast films of 4.1.  
 
 

To test the proposed oxygen doping mechanism, we first monitored conductance of thin 

films of 4.1 over time. In the glovebox atmosphere with less than 1 ppm of oxygen, conductance 

increases after device fabrication for the first ~0.5 hours after which it begins to decrease at a 

slow rate (Figure 4.4, C.10). Devices of 4.1 remain conductive over >3 months, although the 

sheet resistance increases by at least an order of magnitude. Films that were annealed also 

showed an increase in sheet resistance over time. Other devices of 4.1 were exposed to 

atmospheric oxygen for 5 seconds, 30 seconds, and 10 minutes, with conductance 
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measurements taken after each exposure. After 5 seconds, conductance decreased by <5%. 

After 30 seconds, conductance was decreased by >70%. Exposure of the device to atmospheric 

oxygen for more than 2 minutes completely turned off conductance. 

This data suggests that there is an optimal amount of doping that occurs within the first 

half hour of glovebox exposure. We suggest that oxygen is reduced, leaving behind a vacancy 

within the cluster core. An electron from a neighboring cluster can fill this vacancy, leaving behind 

a vacancy. This charge transport, either through hopping or tunneling, from one cluster to another 

allows for charges travel through the film. However, if doping levels exceed this optimal level, 

which happens over time within the glovebox or with short exposure to the atmosphere, the 

conductance decreases and eventually turns of. This over-oxidation leads to a surplus of 

vacancies, resulting in a lack of electrons available to move through the film. It is interesting to 

note that films of 4.2 left in atmosphere for > 2 months did not become conductive. This supports 

our hypothesis that L4.2 is a highly insulating ligand that protects the core from oxidation via 

external dopants. A substrate surface control study using octyldecyltrichlorosilane-coated 

substrates verified that this doping effect is not from the substrate but solely from the 

atomosphere (Figure C.14). 

 

 

Figure 4.2. A cartoon of the proposed oxygen doping conductance mechanism. Blue hexagons 
indicate cluster cores. Light blue circles indicate organic ligand shell. Oxygen molecules shown in 
red. White circles indicate holes (+) and electrons (-). Green arrows demonstrate movement of 
electrons towards holes created by oxygen doping. Yellow rectangles represent gold electrodes.  
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This proposed oxygen doping mechanism of conductance is based on understanding thin 

film conductance at the molecular level. Single molecule conductance measurements 

demonstrated that the conjugation of the thiomethyl groups to the cluster core is what turned 

molecular conductance on or off, as well as impacting the kinetic access to core electrons. This 

kinetic access to core electrons translates into the conductance of the thin films. Thin films are 

often thought of as a collective material and are studied as such rather than focusing on the 

individual molecules that make up the film. Here, the difference in access to core electrons has a 

molecular origin, understood by the single molecule conductance results. The ease of access to 

the core electrons of 4.1, but not 4.2, results in a large difference in sensitivity to oxidation. This 

observation supports an oxygen doping mechanism for thin films of 4.1, where core electrons are 

easily accessed by small amounts of oxygen, but not 4.2, where core electrons are protected by 

the insulating ligands. Future work should include 4-point probe measurements of 4.1 thin films to 

further investigate the transport mechanism of the film, as well as a more detailed study of 

morphological differences. However, this system illustrates that lessons learned from single 

molecule conductance experiments can help to understand and perhaps eventually predict 

conductance of thin films.  

 

4.3 Experimental 

4.3.1 Synthesis 

Materials were prepared according to the synthetic procedures outlined in chapter 3. 

 

4.3.2 Substrate and Thin Film Preparation 

Pre-patterned electrodes were fabricated using a Heidelber µPG 101 Laser Writer on a 

silicon substrate with 285 nm of thermally grown SiO2. The source and drain electrodes were 

further thickened by evaporation of Cr/Au (1 nm/40 nm). Electrodes were patterned such that 

several devices were made on a single substrate with a fixed width of 50 µm and channel lengths 

varying from 3 µm to 30 µm (Figure 2a). A solution of 10 mg/mL of cluster in toluene was filtered 

through a 13mm syringe filter (0.45 µm, PVDF, Sterile, Fisherbrand) and then spin coated (SCS 
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G3-8 Spincoat Specialty Coating System) on top of the patterned substrate with a spin speed of 

1200 rpm for one minute. Drop cast films were made by dropping a filtered solution of 20 mg/mL 

of cluster in toluene on a patterned substrate. Once the solution was dropped onto the substrate, 

the substrate was left in a covered box until dry (between 10 and 30 minutes).  

 

4.3.3 Conductance Measurements 

 Conductance of the films was measured using an Agilent 4155C Semiconductor 

parameter analyzer and suss microtec EP4 probe station. Software used was I-CV lite system 

tools, Interactive characterization software, version 3.6.0 SP REL. 

 

4.3.4 Atomic Force Microscopy 

 Non-contact atomic force microscopy (AFM) images were acquired at room temperature 

using a PSIA XE100. It should be noted that AFM was done under ambient conditions. Because 

of the air sensitivity of 4.1, it is unknown how this significant oxygen exposure affected the 

morphology of the films. Measurements were made immediately upon removal from the glovebox 

to try and minimize this effect. 

 

4.3.5 Optical Microscopy 

 Optical microscope images were obtained using a Nikon LV100 instrument with an 

Infinity1-3C camera.  It should be noted that optical microscopy was done under ambient 

conditions. Because of the air sensitivity of 4.1, it is unknown how this significant oxygen 

exposure affected the morphology of the films. Measurements were made immediately upon 

removal from the glovebox to try and minimize this effect. 

 

4.3.6 Grazing Incidence X-Ray Diffraction (GIXD) 

GIXD measurements were performed at the National Synchrotron Light Source (NSLS) of 

Brookhaven National Laboratory on beamline X-9 at a photon energy of 14.0 keV. The incident x-

ray beam, kin, has a grazing incidence angle with the sample surface. A Photonic Science WAXS 
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detector (pixel size of 0.11 mm) positioned a distance L from the sample, records the scattered 

beam, kout. This is converted into an image of the reciprocal space (Q-space) with the scattering 

expressed as a function of the scattering vector Q=kout-kin. Here, the sample-to-detector distance 

L, calibrated with LaB6 and AgBH polycrystalline standards, was 265 mm at beamline X9. An 

incident angle of 0.12° at which the signal from the film is optimized and that from the substrate is 

suppressed is shown here; a depth profile was also performed by varying the angle of the 

incident light and the sample surface from 0.07 to 0.20°. It should be noted that films of 4.1 and 

4.2 were exposed to ambient atmosphere for under one minute. Because of the air sensitivity of 

4.1, it is unknown how this significant oxygen exposure affected the morphology of the films.  

 

4.3.7 UV-vis Spectroscopy 

 Thin films of 4.1 or 4.2 were prepared on glass slides by spin coating (SCS G3-8 

Spincoat Specialty Coating System) a solution of 10 mg/mL of cluster in toluene that had been 

filtered through a 13mm syringe filter (0.45 µm, PVDF, Sterile, Fisherbrand) with a spin speed of 

1200 rpm for one minute. UV-vis spectra were recorded on a Shimadzu UV Spectrophotometer 

(UV-1800) that had been blanked with a clean glass slide. A film of 4.1 was recorded in air and 

another film was measured with exclusion of air by taping a second glass slide over the face of 

the film within the glovebox. The film of 4.2 was measured in air.  

 

4.3.8 OTS Substrate and Thin Film Preparation 

 

 The 285 nm SiO2 substrates were coated with a monolayer of octadecyltrichorosilane 

(OTS) by immersion in a toluene solution of OTS (5 mM) for 16 h at room temperature. 

Substrates were rinsed with chloroform, isopropyl alcohol and deionized water. The static contact 

angle (~108°) was measured on a Rame-Hart goniometer to confirm surface hydrophobicity of 

the OTS self-assembled monolayer (SAM). A 20 mg/mL solution of 4.1 or 4.2 was drop cast on 

top of the OTS coated substrate. Conductance measurements showed sheet resistance similar to 

that observed without OTS (Figure C.14). 



	  

80 
	  
4.4 Conclusion 

 The ability for atomically defined quantum dots to make conductive thin films was 

demonstrated. These films show conductivity values similar to those observed in monodisperse 

QD systems. An atomically defined quantum dot with a para thiomethyl substituted aromatic 

ligand gives conductive thin films, while meta substitution does not. This subtle change in 

substitution mimicked results from single molecule conductance measurements of the same 

molecules. Films of the two materials show different morphologies, with 4.1 giving an amorphous 

film and 4.2 giving a crystalline film. However thermal annealing, which increases the 

conductance of 4.1 while not impacting the insulating nature of 4.2 suggests that the disparity in 

conductance between these two films is not completely a result of morphological differences.  A 

conductance mechanism based on doping of the 4.1 thin film with very low levels of oxygen is 

proposed. Preliminary data demonstrates that there is an optimal oxygen doping level. 
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Chapter 5. Expanding the Family of Nickel Telluride Molecular Clusters 

 

5.1 Introduction 

  There has been little reported on the magnetic and electrical properties of solid-state 

nickel telluride. That which has been reported suggests that solid-state nickel telluride is a poor 

metallic conductor with paramagnetic or weak antiferromagnetic properties.1-3 However, 

molecular clusters of nickel telluride have proven to be atomically precise, soluble, electron-rich 

materials with interesting magnetic properties.4-10 More recently, metal chalcogenide molecular 

clusters have been investigated as nanoscale atomic building blocks for novel solid-state 

materials.11 The properties of this class of solid-state materials are strongly dependent on the 

composition of the respective molecular cluster building blocks. For example, the solid state 

material prepared from Ni9Te6(PEt3)8 (5.1) co-crystallized with C60 fullerene demonstrated vastly 

different magnetic ordering at low temperatures when compared with the individual components 

or with that of other assembled materials, Co6Se8PEt3�2C60 and Cr6Te8PEt3�2C60.  

Currently, only a few nickel telluride molecular clusters are known (Figure 1, 5.1-5.3).5,8 

These molecules have been synthesized by reaction of bis(cyclooctadiene)nickel Ni(COD)2 with a 

phosphine telluride. It was demonstrated that by adjusting the stoichiometry, the size of the 

resulting cluster could be controlled.10 Using a 2:1 ratio of Ni(COD)2 to triethylphosphine telluride 

(PEt3Te), 5.1 was isolated.10 Cluster 5.1 was transformed into a larger Ni20Te18(PEt3)12 (5.2) by 

adding three additional equivalents of PEt3Te to a solution of 5.1 and PEt3.10 In addition, it was 

shown that 5.2 could be accessed directly by a 1:1 reaction of Ni(COD)2 and PEt3Te.10 In this 

study, only triethylphosphine ligands were utilized. Another reported cluster is Ni3Te2dppm3 (5.3, 

dppm = bis(diphenylphosphino)methane), which was isolated from a 1:1 reaction of Ni(COD)2 

with dppm, followed by addition of 2 equivalents of tri-n-propylphosphine telluride.8 

We became interested in expanding this small library of available nickel telluride clusters 

because of the exciting properties observed for the clusters and most recently their assembled 

co-crystalline solid-state materials. In order to explore the potential of the cluster-assembled 

materials approach, development of synthetic strategies for diversifying the family of nickel 



	  

83 
	  
telluride nanoscale atomic building blocks is necessary. In addition, it is of interest to try and 

understand why different cluster structures form under certain synthetic conditions in the hopes of 

eventually predicting and designing cluster cores. In this chapter, we explore the impact of ligand 

structure on cluster formation. We also find that ligand exchange provides access to a cluster not 

synthesized directly from reaction of Ni(COD)2 with phosphine telluride. Structural 

characterization and preliminary cluster properties are discussed. 

 

 

Figure 5.1. a) A schematic of the nickel telluride molecular clusters that result under different 
synthetic conditions. Atoms: nickel is green, tellurium is orange, phosphorus is purple. Phosphine 
substitution was omitted for clarity, however is described in parentheses below the molecule. 
Double slashed arrow indicates that reaction does not result in that cluster. Excess is represented 
as “XS.” 5.1, 5.2, and 5.3 have been previously reported. The labels of clusters reported for the 
first time in this chapter are shown in red.  
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5.2 Results and Discussion 

Our initial investigation involved probing the effect of sterically bulky ligands on cluster 

formation. We chose triisopropylphosphine (PiPr3) as a capping ligand because it is electronically 

similar to PEt3, but is much more sterically bulky. Previous syntheses of nickel telluride clusters 

with triethylphosphine involved reaction of phosphine telluride with Ni(COD)2.5,8,10
 Incorporation of 

PiPr3 was achieved using the same method, although in our case producing a completely different 

cluster. Elemental tellurium was stirred with a large excess of PiPr3 in hexanes at room 

temperature to give a yellow solution. This solution was characterized by NMR spectroscopy to 

be the expected phosphine telluride, and was henceforth used in situ. Two equivalents of 

Ni(COD)2, with respect to tellurium, were added directly to the phosphine telluride solution to give 

a dark brown, homogeneous solution. After stirring at room temperature for 20 minutes, the 

solution was filtered and left to crystallize overnight from the reaction mixture, giving dark brown-

black crystals in 6 % yield. 

The structure of this crystalline product was determined by single crystal X-ray diffraction 

(SCXRD) and confirmed by NMR, IR, and elemental analysis. Instead of forming the previously 

reported Ni9Te6(PEt3)8 (5.1) molecular cluster, the resulting structure was a smaller Ni7Te5(PiPr3)6 

(5.4, Figure 5.1). This result indicates that more sterically bulky ligands induce smaller cluster 

formation, a hypothesis that has previously been put forth.12 The general bonding scheme of 5.2 

is similar to that of other nickel telluride molecular clusters, with an outer covering of phosphine 

ligands each attached to a surface nickel atom and tellurium atoms bridging nickel atoms. A 

summary of select bond lengths can be found in Table 5.1. At first glance, one notices that this 

structure is quite asymmetric around the central nickel atom (Ni1). Ni1 is bonded to six outer 

nickel atoms in a distorted octahedron. Three of these outer six nickel atoms (Ni2) are 2.43 Å 

from the central nickel while the other three (Ni3) are at a distance of 2.66 Å. The Ni3 atoms are 

2.89 Å apart from each other and form a triangle that is capped by a tellurium atom (Te1). The 

Ni2 atoms are not bonded to each other, with a interatomic distance of 3.583 Å, but are instead  
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Figure 5.2. Ni7Te5(L)6 cluster core, where L = PiPr3 for 5.4 or P(NMe2)3 for 5.5. a) side view of 
cluster b)  rotated side view of cluster c) front view of cluster.  
 

Table 5.1. Select Distances (Å) found for 5.4. 

Ni1-Ni3 2.660(3) Ni2-Ni2 3.582 

Ni1-Ni2 2.428(3) Ni2-Te2 

 
2.552(3) 
2.542(3) 
 

Ni1-Te2 2.5197(6) 
2.5182(9) Ni3-Te1 

 
2.430(2) 
 

Ni1-Te3 2.728(3) Ni3-Ni3 
 
2.892(3) 
 

Ni2-Te3 2.529(2) Ni3-Te2 2.447(2) 

    

 

Figure 5.3. Comparison of the structure of 5.1 and 5.4. Blue lines highlight the alternating Ni-Te 
chair structure within the cluster cores. 
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bonded to three tellurium atoms (Te2). These Te2 atoms are also coordinated to the central Ni1. 

Looking down the C3 axis of the molecule, a six-membered ring in a chair conformation is formed 

by alternating Ni2 and Te2 atoms. The Ni2 face of this ring is capped by an additional tellurium 

(Te3). This six-membered ring centered on the central Ni1 is reminiscent of a fragment of the 

cubic cluster 5.1. Figure 5.3 highlights this common structural motif within structures of 5.1 and 

5.4. This feature has previously been related to the NiAs structure of the δ-phase NiTe extended 

solid system.6,13 It seems that the bulky PiPr3 ligands around the cluster core can only 

accommodate one of these structural motifs. The other half of the molecule must be smaller to 

make room for the bulkier ligands.  

Changing the steric bulk of the phosphine ligand clearly has a large impact on the size 

and structure of the resulting cluster core. We then wondered whether changing the electronics of 

the ligands would have as large of an impact. We became interested in aminophosphine ligands, 

which have recently enjoyed much investigation in fields such as catalysis and coordination 

chemistry.14-18 Aminophosphines are particularly attractive ligands because they (1) contain 

between one and three lone pairs, depending on how many amino groups are appended to the 

phosphine, (2) are easily synthesized and often commercially available, (3) are diverse in 

structure and reactivity, and (4) are easily modified through transamination reactions, opening the 

possibility of linked phosphines with diamines.18 While aminophosphine chalcogenides have been 

studied in detail,17-19 to the authors’ knowledge there has been no report of metal chalcogenide 

clusters with aminophosphine ligands. 

We chose to incorporate tris(dimethylamino)phosphine (P(NMe2)3) into a nickel telluride 

cluster because it is a structural relative of Pi-Pr3 and is very sterically similar. Using a synthetic 

procedure and stoichiometry analogous to that used for Pi-Pr3, elemental tellurium and P(NMe2)3 

were stirred at room temperature in heptane. The resulting phosphine telluride solution was used 

in situ, with addition of Ni(COD)2 causing an immediate color change to dark brown. 

Crystallization at room temperature gave shiny dark crystals in 23% yield. SCXRD was used to 

determine that the product of this reaction was isostructural to that of 5.4, giving    
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Ni7Te5(P(NMe2)3)6  (5.5). This indicates that the sterics of the phosphine dictate the structure of 

the resulting cluster more so than the electronics of the phosphine. 

While the cluster structure of 5.4 and 5.5 are the same, they show significant differences 

in the crystal packing. This indicates that, while sterics dictate the cluster structure, ligand 

electronics dictate the intermolecular packing, presumably due to a difference in intermolecular 

interactions. Cluster 5.4 packs as a rhombohedral lattice system while cluster 5.5 is monoclinic. 

Looking at the ab plane of the crystal structure of 5.4, the clusters are all oriented along their 

individual C3 axes (Figure 5.4a). Within this packing, a hexagonal structure is apparent, where the  

 

 

Figure 5.4. Crystal packing of 5.4 and 5.5. Crystal packing of a) ab plane of 5.4 b) ac plane of 5.4 
c) ab plane of 5.5 d) ac plane of 5.5. Blue arrows in (b) point from Te1 to Te3. Blue dots in (a) 
indicate the head of the arrows. Blue hexagons in (c) and (d) are meant to highlight the point of 
disorder within the crystal structure. Red arrows indicate intermolecular distances from Ni1-Ni1. 
 

a. 

	  

	  

	  

	  

	  

	  

	  

	  

	  

	  

	  

	  

	   	  

	  

5.4 (ab plane) 

5.5 (ab 
plane) 

b. 

c. d. 
5.4 (ac plane) 

5.5 (ac plane) 

	  

	  	  

	  

	  

	  

	  

	  

13.50 Å  12.35 Å  

20.01 Å  

11.72 Å  13.97 Å  

13.18 Å  



	  

88 
	  
clusters that make up the hexagonal packing are pointing in one direction, while the clusters in 

the center of the hexagon are pointed in the opposite direction (Figure 5.4a, blue dots). This 

ordering is apparent when viewing the crystal packing in the ac-plane, where layers are 

alternating in the cluster direction (Figure 5.4b, blue arrows). The “Te1” end of the clusters in a 

layer are pointing towards the “Te1” end of the clusters in the neighboring layer, and visa versa. 

Within each layer, clusters are spaced very far apart (20.01 Å, Ni1-Ni1) (Figure 5.4b, red lines). 

Clusters in neighboring layers are much closer together (12.35 or 13.50 Å, Ni1-Ni1), and the 

spacing is dependent on whether it is at a Te1-Te1 interface or the Te3-Te3 interface, 

respectively (Figure 5.4b, red lines). 

Looking at the ab plane of cluster 5.5, hexagonal-type packing is again apparent. 

However, the orientation of the molecules is quite different from that of 5.4. The six molecules 

making up the hexagonal array appeared to be paired up. Blue arrows in Figure 5.4 highlight that 

the molecules within each pair have the Te1 end of each molecule pointing away. The spacing 

between the two molecules within the pair (11.72 Å) is much smaller than the distances between 

molecules in neighboring pairs (13.17-13.20 Å). This inter-pair distance is also much smaller than 

the distance between molecules within the pair and the molecule in the center of the hexagonal 

array (13.18-15.49 Å). This may indicate a stronger interaction of the molecules within the pair 

that is absent in the structure of 5.4. It should be mentioned that the molecules in the center of 

the hexagonal array of 5.5 (highlighted with blue hexagon shadowing in Figure 5.4c, d) contain 

molecules with remarkable crystal packing disorder. It is apparent from the ac-plane that the C3 

axis of these molecules is off-center from the c-axis of the surrounding crystals by about 20o. In 

addition, the molecule was found to point with either Te1-up or Te3-up within the structure. For 

the purposes of refining the crystal structure, one orientation was chosen throughout the 

structure.  

While performing further characterization of 5.5 in solution, it was observed that this 

cluster was relatively unstable in solution and would frequently plate its container with a metallic 

looking material over a week’s time. This suggests that the P(NMe2)3 ligands are labile, providing 

an opportunity for ligand exchange. Cluster 5.5 was dissolved in heptane with a large excess of  



	  

89 
	  

 

Figure 5.5. Molecular cluster 5.7, the exchange product of 5.5 with an excess of PEt3. Nickel 
(green), tellurium (orange), phosphorus (purple). a, b, and c are different views of the same 
cluster. 

 

Figure 5.6. Deconstruction of cluster 5.7. a) Two views of the inner twelve nickel atoms (green, 
Nic) bound to the central Te atom (orange, Te1). Other atoms in cluster 5.7 removed for clarity. b) 
Highlight of four central nickel atoms (green, Nib) closest to Te1. Nib atoms are each bound to 
three outer Nia atoms (green) and form a tetrahedron around Te1. 
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PEt3 and left to crystallize for weeks. Small black crystals were obtained in extremely low yield. 

We hypothesized that this ligand exchange would either (1) maintain the cluster core structure 

while exchanging the P(NMe2)3 ligands for PEt3 to give Ni7Te5PEt3, (2) rearrange the cluster core 

and exchange the phosphine ligands to give the previously reported cluster 5.1, or (3) give a  

completely different cluster. SCXRD data indicated that the latter was true, with the product 

having a structure of Ni28Te17(PEt3)12 (Figure 5.5, cluster 5.7). 

This cluster is quite complex, with three different nickel environments. There are twelve of 

the first type of nickel atom (Nia). These Nia atoms decorate the outside of the cluster and are 

bound to phosphine ligands. Nia atoms are also bonded to three tellurium atoms and three inner 

nickel atoms in a distorted capped trigonal prism, where the phosphine acts as the cap. There are 

sixteen inner nickel atoms, with four being in one environment (Nib) and twelve being in another 

(Nic) (Figure 5.6). Both Nib and Nic are bonded in a distorted tetrahedron to three outer tellurium 

atoms and the central tellurium atom. The distinction between these atoms is that Nib is bound to 

three Nia atoms while Nic is bound to two Nia atoms (Figure 5.5, 5.6b). Nib is bonded to an 

additional nine Nic atoms making Nib a thirteen coordinate system. The four Nib atoms form 

almost a perfect tetrahedron around the central tellurium atom, and are the closest nickel atoms 

to the central tellurium atom at a distance of 2.71-2.79 Å (Figure 5.6b). The Nic atoms are 2.88-

2.93 Å from the central tellurium atom and have an eleven coordinate system (Figure 5.6a). They 

form a highly symmetrical fused hexagonal system within the cluster core.  

Compared with the previously reported Ni20Te18PEt3  (5.2) cluster, this cluster has a core 

that is much richer in nickel. This may be a result of the starting ratio of 1.4 Ni to 1 Te compared 

with the 1:1 ratio used for the synthesis of Ni20Te18PEt3. The interesting magnetic properties that 

have been previously investigated for 5.2 make 5.7 an interesting target. However, the low yield 

of the synthesis of 5.7 made further characterization beyond SCXRD difficult. In an effort to find 

an improved route to 5.7, we attempted to synthesize the cluster by reacting 0.5 equivalents of 

Te(P(NMe2)3) with Ni(COD)2 in an excess of P(NMe2)3, followed by immediate addition of excess 

PEt3. After crystallizing for several days, black crystals were isolated and characterized by 

SCXRD to be a Ni9Te6 cluster core. This interesting result highlights the utility of ligand exchange 
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reactions for accessing additional nickel telluride cluster structures. This method of ligand 

exchange may be vital to discovering a host of new structures. 

 

Figure 5.7. Molecular cluster 5.6, the exchange product of 5.1 with an excess of DEPE. Nickel 
(green), tellurium (orange), phosphorus (purple). Ligand substitution is omitted for clarity, 
although purple connectors in (b) are a cartoon representation of the bridging depe ligands. a.-c. 
are different views of the same cluster.  

 

In an effort to further explore the utility of ligand exchange for the development of novel 

cluster structures, we performed ligand exchange on 5.1 to replace PEt3 ligands with 

(diethylphosphino)ethane (DEPE) ligands, a bridging ligand that is again an effectively bulky 

phosphine ligand. The resulting cluster 5.6 (Figure 5.1, 5.7) has a Ni6Te5 cluster core with three 

bidentate phosphines. While this structure is most certainly related to that of 5.4 and 5.5, the 

clusters have several obvious differences. Cluster 5.6 lacks a central nickel atom and has two 

sets of three nickel atoms in a trigonal array that are eclipsed. With these structural features in 

mind, several conclusions can be drawn about why this structure is favored. As expected, the 

sterically bulky DEPE ligand forces a smaller size cluster. This ligand also requires that two nickel 

atoms be adjacent to each other and spaced at an appropriate distance for one DEPE to bridge 

the two. The distance between nickels bonded to the same phosphine ligand is 2.53-2.55 Å. 

Nickels within each trigonal array are separated by 2.65-2.69 Å. Both of these distances are 

much shorter than the Ni-Ni distances of 5.4 and 5.5. This spacing requirement induced by the 

DEPE ligand is most likely the reason for the eclipsed sets of three nickel atoms and for the lack 

of a central nickel atom. The central nickel atom in 5.4 and 5.5 is coordinated to the outer six 

nickel atoms in a distorted octahedron, a coordination geometry not available with the eclipsed 
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sets of trigonal nickel atoms in 5.6. In addition, the spacing constraints imposed by DEPE 

decreases the spacing of the cavity when compared to 5.2 and 5.3.  

Cluster 5.6 is also obviously structurally related to 5.3, which has bridging 

(diphenylphosphino)methane (dppm) ligands. This dppm ligand can be considered even more 

sterically bulky than depe, and has a smaller distance between phosphines because the bridge 

has one carbon instead of two. These structural changes to the ligand impose that the bridged Ni 

atoms in the cluster be closer together in 5.3 and restrict the size of the resulting cluster even 

further. This follows nicely with our previous observations that an increase in steric bulk results in 

a decrease of cluster size. When comparing 5.3 with 5.6, it looks as if the three nickel atoms in a 

trignoal array are a common element, with 5.3 having only one of these elements. Future work 

should explore whether 5.6 can be accessed directly by reaction of the Te(depe) with Ni(COD)2, 

which is similar to the synthesis of 5.3, or whether ligand exchange from 5.1 is necessary.  

 

 

Figure 5.8. UV-visible absorption spectra of clusters 5.1, 5.4-5.7. Normalization is achieved by 
dividing each spectrum by the absorption maximum of that spectrum.  
 



	  

93 
	  
 UV-visible absorption was used to preliminarily survey the difference in electronics 

between clusters within this family (Figure 5.8). The difference in spectra between clusters of 

different sizes demonstrates that core structure heavily impacts the electronics of the system. It is 

interesting to note that the spectra of 5.4 and 5.5 are extremely similar, indicating that the 

difference in electronics between PiPr3 and P(NMe2)3 is not significant enough to cause drastic 

changes to the core electronics. Cluster 5.4 and 5.5 have red-shifted absorption relative to 5.1 

despite the fact that 5.1 has more metal and chalcogenide atoms in its core. The absorption 

profile of 5.1 is only slightly red-shifted relative to cluster 5.6, even though the cluster core of 5.6 

is much smaller than 5.1. The fact that both larger (5.1) and smaller (5.6) clusters relative to 5.4 

and 5.5 have a smaller absorption window may be related to the fact that the former are much 

more symmetrical structures than the latter. Further work could include calculations to probe the 

effect of symmetry on the electronics of these clusters. Cluster 5.7 has an extremely large 

absorption window with very broad features, reminiscent of thin film semiconductor UV-vis 

absorption profiles. This data indicates that the family of nickel telluride clusters is electronically 

complex and also extremely versatile, even with subtle structural changes. Further investigation 

into the electronics of this system will certainly unveil a wealth of interesting properties.  

 

5.3 Experimental 

5.3.1 Synthetic Details 

5.3.1.1 General Information 

Tellurium powder, bis(cyclooctadiene)nickel (Ni(COD)2), triethylphosphine, 

triisopropylphosphine, and 1,2-bis(diethylphosphino)ethane were obtained from STREM 

Chemicals. Trisdimethylaminophosphine and all other reagents and solvents were purchased 

from Aldrich. Dry and deoxygenated hexanes, toluene, and THF were prepared by elution 

through a dual column solvent system (Glass Contour Solvent Systems). Other solvents were 

distilled from the appropriate drying agent (heptane and toluene-d8 from 

sodium/benzophenone/tetraglyme, THF-d8 from sodium/benzophenone). Unless otherwise noted, 

all reactions were carried out under nitrogen using standard schlenk techniques or in an argon-
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filled glovebox. Only the IR peaks in the range 4000-1500 cm-1 are reported. All 1H and 31P NMR 

were recorded on a Bruker DRX300 (300 MHz), Bruker DRX400 (400 MHz), or Bruker DMX500 

(500 MHz) spectrometer. Infrared (IR) spectra were obtained using a Perkin Elmer Spectrum 400 

FTIR spectrometer using a PIKE ATR attachment. 

 

5.3.1.2 Synthetic Procedures 

Cluster 5.4 [Ni7Te5(PiPr3)6]: To a 20-mL vial was added a stirbar, triisopropylphosphine (3.5 g, 

22 mmol), and 5 mL of hexanes. While stirring, tellurium powder (0.115 g, 0.9 mmol) was added 

to the solution. The solution was allowed to stir at room temperature until all of the tellurium 

powder was dissolved (approximately 2 hours). Ni(COD)2 (0.522 g, 1.9 mmol) was added, 

causing an immediate color change of the solution from clear yellow to a dark red-brown. The 

solution was allowed to stir at room temperature for 25 minutes before being filtered and left to 

crystallize in a glovebox freezer at -30oC for 5 days. Crystals were rinsed with 1 mL of hexanes 

five times and allowed to dry to give dark black-brown crystals. Yield: 22 mg, 6 %. 

IR (ATR) = 2948, 2928, 2869 cm-1 

 

Triisopropylphosphine telluride: 1H NMR (400 MHz, [d8-THF], 298 K): δ = 1.23-1.29 (18H, m), 

2.18-2.28 (3H, m). 31P NMR (162 MHz, [d8-THF], 298 K): δ = 42.32 ppm. 

 

Cluster 5.5 [Ni7Te5(P(NMe2)3)6]: To a 20-mL vial was added a stirbar, 

tris(dimethylamino)phosphine (2.43 g, 13.6 mmol), and 5 mL of cyclohexane. While stirring, 

tellurium powder (0.075 g, 0.59 mmol) was added to the solution. The solution was allowed to stir 

at room temperature until all of the tellurium powder was dissolved (approximately 30 minutes). 

Ni(COD)2 (0.323 g, 1.2 mmol) was added, causing an immediate color change of the solution 

from cloudy yellow to a dark red-brown. The solution was allowed to stir at room temperature for 

25 minutes before being filtered and left to crystallize at room temperature for 5 days. Crystals 

were rinsed with 1 mL of heptane ten times followed by rinsing with 1 mL of hexanes six times 

and allowed to dry. Resulting crystals were black. Yield: 55 mg, 23 %. 
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1H NMR (400 MHz, [d8-toluene], 298 K): δ = 2.58-2.59 (108H, m).  

31P NMR (162 MHz, [d8-toluene], 298 K): δ = 142 (broad peak). 

IR (ATR) = 3000, 2880, 2863, 2841, 2818, 2784, 1647 cm-1.  

Elem. Anal. Calc. for C36H108N18Ni7P6Te5: C, 21.32; H, 5.37; N, 12.43; Ni, 20.26; P, 9.16; Te, 

31.46. Found: C, 20.34; H, 5.12; N, 11.60; Ni, 21.04; P, 8.25; Te, 32.69. 

 

Tris(dimethylamino)phosphine telluride: 1H NMR (400 MHz, [d8-toluene], 298 K): δ = 2.27-

2.30 (18H, m). 31P NMR (162 MHz, [d8-toluene], 298 K): δ = 59.21 (broad peak). 

 

Cluster 5.7 [Ni28Te17(PEt3)12]: Cluster 5.5 (0.032 g, 0.016 mmol) was dissolved in heptane in a 

20-mL vial with a stirbar. Triethylphosphine (0.025 g, 0.21 mmol) was added, and the resulting 

reaction mixture was stirred for 10 minutes. The solution was filtered and left to crystallize for one 

week. Yield: 1 mg, 4.5 %. 

 

Cluster 5.6 [Ni6Te5(DEPE)3]: Solid 5.1 (0.105 g, 0.0466 mmol) was dissolved in 5 mL of toluene 

by stirring for 1h. The dark solution was filtered and depe (0.189 g, 0.916 mmol) was added. After 

shaking briefly, the solution was allowed to stand at room temperature overnight to produce large 

dark crystals. Yield: 32 mg, 36%. 

1H NMR (400 MHz, [d8-toluene], 298 K): δ = 1.29 (48H, m, broad), 1.07-1.03 (24H, m) 

IR (ATR) = 3031, 2970, 2931, 2864, 1741 cm-1.  

Elem. Anal. Calc. for C30H72Ni6P6Te5: C, 22.40; H, 4.51; Ni, 21.89; P, 11.55; Te, 39.65. Found: C, 

22.14; H, 4.40; Ni, 19.30; P, 9.71; Te, 36.02. 

 

5.3.3. UV-visible Spectroscopy 

Absorption spectra were taken on a Shimadzu UV-1800 spectrophotometer. All spectra 

were taken under nitrogen in a 1-cm quartz cuvette following a recording of the background 

spectrum. 
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5.5 Conclusions 

 In this chapter, we have expanded the family of nickel telluride clusters by two methods. 

First, we incorporated bulky phosphine ligands to synthesize a Ni7Te5 cluster core. Both PiPr3 and 

P(NMe2)3 gave the same core, despite being electronically different. The second method utilized 

ligand exchange of 5.5 with PEt3 to give an extremely large Ni28Te17(PEt3)12 cluster and of 5.1  

with a bridging phosphine to give Ni6Te5depe3. These two methods open up a host of possibilities 

given the number of ligands and the large set of clusters now known for this family. UV-vis 

spectroscopy highlights that small changes in cluster structure have large impacts on the 

electronic structure of the system. In addition, it demonstrates the potential for this class of 

molecules for electronic applications.  
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Appendix A. Supplemental Information for Chapter 2 

	  

A.1. Fluorescence Quenching and Quantum Yield Determination Experimental Analysis 

A.1.1. Fluorescence Quenching with C60 

 

Figure A.1. Fluorescence spectra of 2.2 (1.0 x 10-6 M in CH2Cl2) with addition of 0%-200% C60. 
Excited at 500 nm. Calculated association constant was 1.6 x 102. 

 

Figure A.2. Fluorescence spectra of 2.3 (1.0 x 10-6 M in CH2Cl2) with addition of 0%-200% C60. 
Excited at 600 nm. Calculated association constant was 1.4 x 105. 
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Figure A.3. Fluorescence spectra of 2.4 (1.0 x 10-9 M in CH2Cl2) with addition of 0%-400% C60. 
Excited at 600 nm. Calculated association constant was 5 x 106. 

 

 

 

 

Figure A.4. Stern-Volmer plot of the ratio of initial fluorescence of 2.3 (red) and 2.4 (green) to 
fluorescence at a given C60 concentration versus C60 concentration. Slope of each line represents 
the association constant.  
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A.1.2. Fluorescence Quenching with PC60BM 

 

Figure A.5. Fluorescence spectra of 2.2 1.0 x 10-9 M in CH2Cl2) with addition of 0-2.0 equivalents 
of PC60BM. Excited at 500 nm. No measurable association.  

 

 

 

Figure A.6. Fluorescence spectra of 2.3 (1.0 x 10-9 M in CH2Cl2) with addition of 0-6.0 
equivalents of PC60BM. Excited at 600 nm. Calculated association constant was 5.4 x 104.  
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Figure A.7. Fluorescence spectra of 2.4 (1.0 x 10-9 M in CH2Cl2) with addition of 0-2.0 
equivalents of PC60BM. Excited at 600 nm. Calculated association constant was 1.4 x 106.  

 

 

 

Figure A.8. Stern-Volmer plot of the ratio of initial fluorescence of 2.3 (red) and 2.4 (green) to 
fluorescence at a given PC60BM concentration versus PC60BM concentration. Slope of each line 
represents the association constant.  
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A.2. NMR Titration Experiments 

A.2.1 NMR Titration Experiments with 2.2 and PC60BM 

 

 

Figure A.9. 1H NMR spectra in CD2Cl2 of 2.2 (1-red). 2.2 with 0.5 eq. PC60BM (2-yellow), 2.2 with 
1.0 eq. PC60BM (3-green), 2.2 with 5.0 eq. PC60BM (4-blue), and PC60BM (5-purple).  
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Figure A.10. Aromatic region of 1H NMR spectra in CD2Cl2 of 2.2 (1-red). 2.2 with 0.5 eq. 
PC60BM (2-yellow), 2.2 with 1.0 eq. PC60BM (3-green), 2.2 with 5.0 eq. PC60BM (4-blue), and 
PC60BM (5-purple).  
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Figure A.11. Aliphatic region of 1H NMR spectra in CD2Cl2 of 2.2 (1-red). 2.2 with 0.5 eq. PC60BM 
(2-yellow), 2.2 with 1.0 eq. PC60BM (3-green), 2.2 with 5.0 eq. PC60BM (4-blue), and PC60BM (5-
purple).  
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A.2.2 NMR Titration Experiments with 2.3 and PC60BM 

 

Figure A.12. 1H NMR spectra in CD2Cl2 of 2.3 (1-red). 2.3 with 0.24 eq. PC60BM (2-yellow), 2.3 
with 0.51 eq. PC60BM (3-yellow-green), 2.3 with 0.77 eq. PC60BM (4-green), 2.3 with 1.07 eq. 
PC60BM (5-blue-green), 2.3 with 2.0 eq. PC60BM (6-blue), 2.3 with 4.95 eq. PC60BM (7-purple), 
and PC60BM (8-maroon).  
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Figure A.13. Aromatic region of 1H NMR spectra in CD2Cl2 of 2.3 (1-red). 2.3 with 0.24 eq. 
PC60BM (2-yellow), 2.3 with 0.51 eq. PC60BM (3-yellow-green), 2.3 with 0.77 eq. PC60BM (4-
green), 2.3 with 1.07 eq. PC60BM (5-blue-green), 2.3 with 2.0 eq. PC60BM (6-blue), 2.3 with 4.95 
eq. PC60BM (7-purple), and PC60BM (8-maroon). 
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Figure A.14. Aliphatic region of 1H NMR spectra in CD2Cl2 of 2.3 (1-red). 2.3 with 0.24 eq. 
PC60BM (2-yellow), 2.3 with 0.51 eq. PC60BM (3-yellow-green), 2.3 with 0.77 eq. PC60BM (4-
green), 2.3 with 1.07 eq. PC60BM (5-blue-green), 2.3 with 2.0 eq. PC60BM (6-blue), 2.3 with 4.95 
eq. PC60BM (7-purple), and PC60BM (8-maroon). 
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A.2.3 NMR Titration Experiments with 2.4 and PC60BM 

 

 

Figure A.15. 1H NMR spectra in CD2Cl2 of 2.4 (1-red). 2.4 with 0.5 eq. PC60BM (2-yellow), 2.4 
with 0.77 eq. PC60BM (3-yellow-green), 2.4 with 1.0 eq. PC60BM (4-green), 2.4 with 2.0 eq. 
PC60BM (5-blue), 2.4 with 5.0 eq. PC60BM (6-purple), and PC60BM (7-maroon). 
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Figure A.16. Aromatic region of 1H NMR spectra in CD2Cl2 of 2.4 (1-red). 2.4 with 0.5 eq. 
PC60BM (2-yellow), 2.4 with 0.77 eq. PC60BM (3-yellow-green), 2.4 with 1.0 eq. PC60BM (4-green), 
2.4 with 2.0 eq. PC60BM (5-blue), 2.4 with 5.0 eq. PC60BM (6-purple), and PC60BM (7-maroon). 
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Figure A.17. Aliphatic region of 1H NMR spectra in CD2Cl2 of 2.4 (1-red). 2.4 with 0.5 eq. PC60BM 
(2-yellow), 2.4 with 0.77 eq. PC60BM (3-yellow-green), 2.4 with 1.0 eq. PC60BM (4-green), 2.4 
with 2.0 eq. PC60BM (5-blue), 2.4 with 5.0 eq. PC60BM (6-purple), and PC60BM (7-maroon). 
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A.3. 1H NMR Spectra 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A.18. 1H NMR spectra in CD2Cl2 of 2.14  
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Figure A.19. 13C NMR spectra in CD2Cl2 of 2.14  

 

 



	  

113 
	  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A.20. 1H NMR spectra in CD2Cl2 of 2.9 (after photocyclization). 
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Figure A.21. 1H NMR spectra in d8-tetrahydrofuran of 2.9 (after Scholl conditions). 
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Appendix B. Supplemental Information for Chapter 3 

 

B.1 Conductance Data 

 

 

Figure B.1. Two-dimensional histograms showing ligand conductance as a function of STM tip-
sample displacement for compounds (A) L3.2 and (B) L3.4. These histograms are generated 
using a logarithmic binning with 10 bins/decade. The displacement dimension was binned linearly. 
The color scale indicates the average number of counts per trace in a given conductance-
displacement bin.   
 

 

Figure B.2. One-dimensional logarithm-binned conductance histograms of (A) 3.3 (dark green) 
and L3.3 (light green) and (B) 3.5 (black) and L3.5 (grey). Bin size is 100/decade. 
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Figure B.3. Two-dimensional histograms showing conductance as a function of STM tip-sample 
displacement for compounds (A) 3.5 and (B) L3.5. These histograms are generated using a 
logarithmic binning with 10 bins/decade. The displacement dimension was binned linearly. The 
color scale indicates the average number of counts per trace in a given conductance-
displacement bin. 
 

 

 

B.2 UV-vis Absorption Spectroscopy 

 

Figure B.4. UV-vis spectra of clusters 3.2-3.5 taken in dry and degassed THF with the following 
concentrations: 3.2, 5.5 µM (red); 3.3, 5.8 µM (green); 3.4, 3.3 µM (blue); 3.5, 3.3 µM (black) 
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Figure B.5. UV-vis spectra taken in dry and degassed THF with the following concentrations: 3.2, 
5.5 µM (red); L3.2, 26.0 µM (pink). 
 
 
 
 
 
 
 

 
 
Figure B.6. UV-vis spectra taken in dry and degassed THF with the following concentrations: 3.3, 
5.8 µM (dark green); L3.3, 51.0 µM (light green). 
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Figure B.7. UV-vis spectra taken in dry and degassed THF with the following concentrations: 3.4, 
3.3 µM (dark blue); L3.4, 4.1 µM (light blue). 
 
 
 
 
 

 

Figure B.8. UV-vis spectra taken in dry and degassed THF with the following concentrations: 3.5, 
3.3 µM (black); L3.5, 2.9 µM (gray). 
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B.3 Cyclic Voltammetry 

 

Figure B.9. CV trace of 3.2 in 0.1 M TBAPF6 in dichloromethane vs. Ag+/AgCl. 
 
 
 
 
 
 

 

Figure B.10. CV trace of 3.3 in 0.1 M TBAPF6 in dichloromethane vs. Ag+/AgCl. 
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Figure B.11. CV trace of 3.4 in 0.1 M TBAPF6 in dichloromethane vs. Ag+/AgCl. 
 
 
 
 
 

 
 
Figure B.12. CV trace of 3.5 in 0.1 M TBAPF6 in dichloromethane vs. Ag+/AgCl. 
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B.3 Crystallography 

 

Table B.1. Selected crystallographic data for clusters 3.1-3.3. 
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Table B.2. Selected crystallographic data for clusters 3.4 and 3.5. 
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B.4 DFT Calculations 
 

 

 

Figure B.13. Model computational studies of cluster 3.4 using density functional theory. The 
orbitals associated with the sulfur pπ lone pairs for the models (PMe3)5Co6Se8(L3.4) and 
(PMe3)4Co6Se8(L3.4)2 are shown. 
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Appendix C. Supplemental Information for Chapter 4 

	  

C.1 Conductance Data for Spin Cast Films 

Table C.1. Summary of contact resistance and sheet resistance of 7 spin cast films of cluster 4.1. 
Cluster 4.2 films showed no measurable conductance. 
 

 Contact R (MΩ) Sheet R (MΩ) 

Chip 1 57.2 487 

Chip 2 103 1.21 x 10
3
 

Chip 3 98.7 96.7 

Chip 4 134 1.03 x 10
3
 

Chip 5 269 1.09 x 10
3
 

Chip 6 32.3 212 

Average sheet resistance of seven chips: 833 MΩ 
 

 

C.2 Conductance Data for Drop Cast Films 

Table C.2. Summary of contact resistance and sheet resistance of six drop cast films of cluster 
4.1. Cluster 4.2 films showed no measurable conductance. 
 

 Contact R (MΩ) Sheet R (MΩ) 

Chip 1 5.61 38.6 

Chip 2 6.15 58.9 

Chip 3 6.35 55.3 

Chip 4 27.0 57.5 

Chip 5 34.7 114 

Chip 6 30.0 161 

Average sheet resistance of seven chips: 80.9 MΩ 

 

 



	  

125 
	  
 

C.3 Optical Microscope Images of Spin Cast and Drop Cast Films 

 
Figure C.1. Optical microscope images of spin cast films of 4.2. Scale bar = 50 µm. 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 

 
Figure C.2. Optical microscope images of spin cast films of 4.1. Scale bar = 50 µm. 
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Figure C.3. Optical microscope images of drop cast films of 4.2. Scale bar = 50 µm. 
 

 

 

 

 

 

 

 

 

 

Figure C.4. Optical microscope images of drop cast films of 4.1. Scale bar = 50 µm. 
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C.4 Grazing Incidence X-Ray Diffraction (GIXD) 

 

Figure C.5. Two-dimensional reciprocal (Q-) space diffraction patterns for spin cast thin film of 
4.2 with 2-D patterns computed from lattice parameters obtained with single crystal 
measurements of 4.2 overlaid as white circles and peaks indexed for unit cell orientations with 
either the a-axis ((100), left) or b-axis ((010), right) oriented along the surface normal.   
 

 

C.5 Thermal Annealing Data 

 

Figure C.6. I-V plot of a spin cast film of 4.1 before (black) and after (red) annealing for one hour 
at 80oC. Blue curve is the conductance of the film of 4.1 after two days. Spin cast thin film of 4.2 
showed no measureable conductance before or after annealing.  
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Figure C.7. I-V plot of a drop cast film of 4.1 before (black) and after (red) annealing for one hour 
at 80oC. Drop cast thin film of 4.2 showed no measureable conductance before or after annealing. 
 
 
Table C.3. Summary of contact resistance and sheet resistance before and after annealing for 
spin cast (green) and drop cast (purple) films. 
 

 Contact Resistance Sheet Resistance 
Before Annealing (Spin Cast) 174 MΩ 1.78 MΩ 
After Annealing (Spin Cast) 48.2 MΩ 0.522 MΩ  
Before Annealing (Drop Cast) 27.0 MΩ 57.5 MΩ 
After Annealing (Drop Cast 14.1 MΩ 29.3 MΩ 
 

C.6 Oxygen Exposure Data 

 

 

Figure C.8. Sheet resistance of thermally annealed films kept in a glovebox over many days. 
Blue curve is time dependence of spin cast film of 4.1. Red curve is time dependence of drop cast 
film of 4.1.  
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Figure C.9. Sheet resistance of thermally annealed films kept in a glovebox over many days. 
Curves represent data from different spin cast films.  
 

 

Figure C.10. Short-term time dependence of drop cast films of 4.1.  
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Figure C.11. Measured I-V curve of drop cast films of 4.1 with increasing exposure to oxygen. 
Initial conductance (black), 5 seconds O2 exposure (red), 20 seconds O2 exposure (blue), 2 
minutes O2 exposure (green), 10 minutes O2 exposure (pink) 
 
 
 
C.7 UV-vis Spectroscopy 

 

 

Figure C.12. Spin cast thin films of 4.1 in air (black) and encapsulated in nitrogen (light blue) and 
of 4.2 in air.  
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C.8 Atomic Force Microscopy 

 

Figure C.13. AFM image of a drop cast film of 4.2. AFM data for the drop cast film of 4.1 was 
extremely rough with fluctuations >150 nm.  
 
 
C.9 OTS Treated Device Conductance 

 

Figure C.14. Film of drop cast 4.1 on octadecyltrichlorosilane (OTS) treated substrates. Plot of 
resistance versus length to width ratio. Sheet resistance is 98.5 MΩ and contact resistance is 
4.87 MΩ. Film thickness is unknown.  
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Appendix D. Supplemental Information for Chapter 5 

 

D.1 Crystallography 

Crystals of 5.4, 5.6, and 5.7 were measured on a Bruker SMART CCD APEX II 

diffractometer (Bruker. APEX2. Version 2.0-2. Bruker AXS Inc., Madison, Wisconsin, USA 2006) 

using a fine-focus sealed-tube graphite monochromator Cu Kα source (λ = 1.54178 Å). Data were 

collected and integrated using the Bruker SAINT software package (Bruker. SAINT. Version 7.23 

A. Bruker AXS Inc., Madison, Wisconsin, USA 2005). The structures were solved using SHELXTL.  

 The single crystal x-ray diffraction data of 5.5 was collected using an Oxford Diffraction 

Xcalibur-2 CCD diffractometer with graphite monochromatized Mo Kα radiation. The crystal was 

mounted in a cryoloop under Paratone-N oil and cooled to 100K with an Oxford Diffraction Cryojet 

system. The collected frames were analyzed using the Crysalis program package. Integrated 

intensities were corrected for absorption using the Gaussian integration method.  

Table D.1. Select crystallographic data for clusters 5.5 and 5.4. 
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Table D.1. Select crystallographic data for clusters 5.6 and 5.7. 

 

 

 

 


