
Hamiltonian Decompositions of Regular Topology
Networks with Convergence Routing

Biilent Yener, *t Terry Boult, + Y oram Ofek, §

Columbia University
Computer Science Department
Technical Report CUCS-OII094

Abstract
This paper introduces new methods to construct multiple virtual rings for loss-free routing of

non-reserved bursty data in high-speed environments such as ATM LANs. The routing algorithm
on multiple virtual rings is convergence routing which combines the actual routing decision with
the internal flow control state.

Multiple virtual rings are obtained on the hypercube and the circulant networks such that
each virtual ring is hamiltonian, and are mutually edge-disjoint. It is shown that multiple virtual
rings improve (i) the bound on the length of routing, and (ii) the fault tolerance.

On the circulant graphs, necessary and sufficient conditions for hamiltonian decomposition
is established. On the hypercube, three algorithms are designed for an N-node hypercube with
even dimension: (i) an O(N) time algorithm to find two edge-disjoint hamiltonian circuits, (ii)
an O(N log N) time algorithm to find I01N hamiltonian circuits with only E ~ 0.1 common
edges, and (iii) a recursive algorithm for the hamiltonian decomposition of the hypercube with
dimension power of two.

It is shown analytically, and verified by simulations on the circulants that with the d virtual
ring embeddings, a bound of O(N / d) is established on the maximum length of routing.

*College of Computer Science Northeastern University, Boston MA, yener@ccs.neu.edu
tDepartment of Computer Science, Columbia University, New York, NY, yener@cs.columbia.edu
tLehigh University Department of Electrical Engineering and Computer Science, Bethlehem, PA,

tboult@eecs.Lehigh.edu.
§IBM T.J .Watson Research Center, P.O.Box 704, Yorktown Heights, NY 10598, ofek@watson.ibm.com

1 Introduction
Supporting bursty traffic sources on ATM LAN s are the focus of growing research and devel

opment activities. ATM was initially conceived as a network architecture for connection oriented

traffic, over fixed routes, and with reserved bandwidth per connection. Thus, the initial conges

tion control scheme for ATM was based on an "open-loop" mechanism, called "Leaky-Bucket"

[23]. The Leaky-Bucket scheme enables only limited traffic burstiness, which should be negoti

ated with the network in advance. However, the "open-loop" approach may not be adequate for

many types of applications, such as, distributed data processing with bursty sources.

In this paper we consider embeddings of multiple virtual rings into a network with bursty data

sources to achieve congestion free (i.e., no-loss due to congestion) routing of the non-reserved

bursty traffic. Each virtual ring operates like the MetaRing [6, 15] (i.e., buffer insertion ring with

spatial bandwidth reuse).

The routing algorithm on multiple virtual rings IS convergence routing [16, 17] which is a

variant of deflection routing [4, 14]. Convergence routing ensures no-loss due to congestion and

combines, in a dynamic fashion, the on-line routing decision with the traffic load inside network.

However, unlike other deflection techniques, convergence routing guarantees that packets will

reach (or converge) to their destinations. Thus it is suitable for ATM LAN s with bursty traffic

characteristics.

Routing of the non-reserved bursty traffic is realized on the virtual rings, embedded into the

network topology. In this work we introduce new methods for embedding of multiple virtual

rings such that (i) rings are pairwise edge-disjoint (for congestion free-ness), and (ii) each is

hamiltonian (i.e., includes each node exactly once). Multiple virtual rings provide a global sense

of direction and allow switching of the packets from one ring to another for fast convergence

to their destinations. Convergence routing on the multiple virtual rings not only ensures a

deterministic worst case bound on the length of routing, but also improves the fault tolerance.

In this paper we consider two types of regular networks to show how to construct multiple

virtual rings: the circulants and the hypercubes. These regular topologies has several properties

that are useful in network design and analysis. Furthermore, as the high-speed networks operate

like multi-computers for parallel processing.

First we consider the circulant networks with N nodes, each with degree d and present an

algebraic construction of d global virtual rings. The circulant networks are suggested for reliable

communication networks [9], and for efficient routing [19,20,7]. These works have similar bound

on the routing length, but it is achieved by compromising congestion-free routing and failures

1

can result in deadlocks.

Second we consider the N-node hypercube (which is a hamiltonian network) and design new

algorithms to find edge-disjoint hamiltonian circuits 1. This problem is called the hamiltonian

decomposition of the hypercube if every edge is included into some hamiltonian circuit. De

composition of the hypercube is possible for any dimension d [1]. For even dimension, the

decomposition results ~ hamiltonian cycles, whereas for odd dimension the result is l~J hamil

tonian cycles and one perfect matching. However, there are no simple algorithms for obtaining

such a decomposition, except for some special cases.

In this work we consider this problem and present an O(N) algorithm to construct two edge

disjoint hamiltonian circuits of an N-node hypercube with even degree. In addition we present

another algorithm with running time O(N log N) to construct I01N hamiltonian circuits with

a fraction E ::; 0.10 of common edges. We call the result of this algorithm a hamiltonian E

Decomposition. Since this fast algorithm yields the maximum number of virtual rings, we note

that pseudo-decomposition is a useful tool.

Convergence routing is simulated on the multiple virtual rings to verify the analytical bounds

on the length of routing. The performance measure considered in this paper is the average number

of hops assuming: (i) uniform destination distribution, and (ii) heavy load traffic conditions,

which means that inside the network packets are sent over the longest possible paths (i.e., worst

case analysis). We show analytically and verify computationally that a bound of O(N / d) can be

established on the worst case length of routing.

This paper is organized as follows. In the next section we explain the network model and

explain virtual ring embedding. In Section 3, we discuss the conditions for circulant networks

to be hamiltonian and hamiltonian decomposition of the hypercube. In Section 4, routing and

flow control on the multiple virtual rings, is explained. In Section 5, analytic bounds on the

length of routing is derived. In Section 6, experimental results are presented and compared to

the analytical bounds. The work is concluded in Section 7.

1 In this paper we consider simple cycles and use cycle and circuit interchangeably.

2

2 The Network Model
In this work we consider the circulant and the hypercube networks in which each node has a

unique ID, denoted by a capital letter A, B, C, etc., and the links are full duplex (i.e., bidirec

tional) .

Both the circulant networks and the hypercube are node-symmetric graphs (i.e., by simply

relabeling the nodes, any node can be mapped onto any other node) with small diameter. This

property enables us to analyze the network from an arbitrary node's point of view. Furthermore,

since edge connectivity of a connected point-symmetric graph is equal to the minimum degree of

this graph, we ensure that the network with degree d is a d-edge connected network.

2.1 Virtual Ring Embeddings

In this paper virtual ring embeddings are based on the hamiltonian cycles of the network

topology. Each undirected hamiltonian embedded ring (HER) can be used to obtain two directed

global rings, thus each unidirectional virtual ring has a dual in the opposite direction. For

example, consider the network in Figure 1 which has four virtual rings (see Figure 2) such that

ring HERa has a dual H ERl and ring H ER2 has a dual H ER3 . Each time a virtual ring visits

a node, a virtual node is induced. Thus each node U has exactly one virtual node on each virtual

ring, and a node with degree d has d virtual nodes.

Each virtual ring is a buffer insertion ring with spatial bandwidth reuse and operates according

to the principles of the MetaN et [16]. Virtual embed dings of rings into the networks linearize

them to ensure (1) no packet loss due to congestion (buffer contention) inside the network, (2)

fair and deadlock free access, and (3) self-routing and simple broadcast/multicast with a single

input buffer per link.

2.2 Global Assignment of Virtual Node Labels

The virtual node labels should be assigned in a systematic and unique manner. For a network

of N nodes and degree d, each virtual node is assigned two integers: r - to indicate the ring

number that it resides in, 0, 1, ... , (d -1), and 1- to indicate its offset which is the distance from

a predefined origin on the ring, 0, 1, ... , (N - 1). The computation of the virtual node label,

V N j , is simply: r x N + 1. For example, consider the virtual rings in Figure 2 where node C has

virtual address: {V N2, V N16 , V N26 , V N28 } and the global ID of its virtual nodes are computed

as 2 = 2 + (0 x 9), 16 = 7 + (1 X 9), 26 = 8 + (2 X 9), 28 = 1 + (3 X 9), one on each virtual ring.

Since each node has exactly one virtual node on each virtual ring, virtual address of a node can

3

Network for N=9, d=4

Figure 1: The Circulant Network

be represented as a d-jield array.

Virtual Rings of the Circulant Design for N=9, d=4

VN2 C

VN5 F

VN13
F

VN1

B

VN17

B

VN19

H

A VN18

VN. ~

VN23 I G VN24

VN35

~
A VN27

HER3

G VN12

Figure 2: Hamiltonian Virtual Ring Embed

dings (HER)

Having explained the virtual ring embeddings, next we consider how to construct multiple

virtual rings in the circulants and the hypercube.

3 Hamiltonian Virtual Ring Embeddings
In this section we show how to obtain the multiple virtual rings in two regular topologies.

Although it is possible to construct partial rings (i.e., each ring visits only a subset of the nodes),

we limit this paper to the hamiltonian virtual rings. We assume an assignment of a unique

positive integer j, between ° and N-l, to each node in order to express the construction of the

rings algebraically (i.e., A=O, B=l, ...).

3.1 Hamiltonian Circulant Networks

A circulant network with N nodes is constructed by connecting the node j, to the nodes

(j ± ni) mod N, where ni is called a jump size and j = 0, 1, ... ,N - 1 [8]. For example, suppose

4

N = 9 and ni = 7, then node 7 will be connected to node (7 + 7) mod 9 = 5 and to node o.
Similarly node 5 will be connected to (5 + 7) mod 9 = 3 and node 7. Construction of circulant

graphs is quite simple and can be done in linear time simply by determining the jump sequence.

To meet the constraints that d virtual rings are (i) hamiltonian, and (ii) mutually edge-disjoint,

one must choose carefully d/2 jumps to construct the circulant.

First note that the edge-disjoint virtual rings are a natural outcome of the circulant based

design. To prove that let j be the integer associated with a node and ni < ni+l be any two

jumps. Consider the edges that can be generated by these jumps from the node j. Since

(j ± ni)mod N -=I (j ± ni+dmod N, the other end point of each one of these edges is unique.

However, it is not always true that the circulant graph has hamiltonian virtual rings. In order

to ensure that each cycle is hamiltonian, we state the following sufficiency condition and use a

basic theorem from number theory to prove it. Denote by gcd(x, y) the greatest common divisor

of the integers x, y.

Claim 1 Let ni be a jump) if gcd(ni' N) = 1) then the edges constructed by this jump induces a

hamiltonian cycle.

Proof: Note that the unique numbers j = 0,· .. ,N - 1 constitute a complete system of residues

modulo N. Then (0 x ni) + b, (1 x ni) + b,· .. ,(N - 1 x ni) + b is a complete system of modulo

N for any integer b, since gcd(ni, N) = 1 (see also theorem 3.6. in [22]). D

Following we present an example to summarize the construction process. Suppose N = 9

and d = 4, and consider Figure 3, in which two jumps are chosen as nl = 1 and n2 = 7 (both

are relatively prime to N = 9, in order to ensure the hamiltonian property). Each hamiltonian

circuit is generated by a distinct jump ni, by constructing an edge (j, j'), between the node which

is associated with integer j, and the node with j' = (j + ni) mod N. For example in Figure

3, the first ring is generated by the jump size nl = 1, thus there is an edge between A and

B which is obtained by a jump from 0 to 1 = (0 + 1) mod 9. The topology for the circulant

network-obtained from the union of these rings-is shown in Figure 1 and the virtual rings are

shown in Figure 2.

3.2 Hamiltonian Decomposition of the Hypercube

In this section we present algorithms for embeddings of multiple hamiltonian virtual rings

into even dimensional hypercube. Denoted by H Qd, the N-node hypercube is a d_regular graph

with degree d = log N, 2d nodes and M = d2d- 1 edges. Each node is represented with ad_bit

5

2+1 mod 9) = 3

D

F

Circulant Design for N=9, d=4, with Jump Sequence <1,7>

0+ 1 (mod 9)=1

B

0+7 (mod 9)= 7

H

G

Figure 3: Construction of Hamiltonian Cycles for nl = 1, n2 = 7

binary string and two nodes are adjacent if and only if their binary string differ in exactly one

bit position. The hypercube is a hamiltonian graph (i.e., it contains a hamiltonian cycle) and

sequence of nodes traversed by a hamiltonian cycle generates a Gray code [13]. There are three

main previous results that ensure the hamiltonian decomposition of a hypercube. The first is

from Kotzig [12] and shows how to decompose the cartesian product of two cycles into two

hamiltonian circuits. The second is from Foregger [10] who showed that cartesian product of

three cycles is also hamiltonian decomposable. Finally Aubert and Schneider [3] showed that

the cartesian product of a cycle and a 4-regular graph, which has two hamiltonian cycles, is

decomposable into three hamiltonian cycles.

Although these results are constructive, driving an algorithm for decomposition of the hy

percube requires considering many cases and will not to be included into the scope of this paper

(the general case for hamiltonian decomposition of the hypercube is studied in [24]). Therefore,

we consider the hypercube with even dimension and note that the N-node hypercube can be

decomposed into d global virtual rings since:

Theorem 1 [5) 11} Let N = 2d. Then for any even d) the N -node hypercube can be decomposed

6

A

Ifli -------Qi : 11 , ----- - J- /l H

1 1 1 1 /1 1 1 1 1
1 1 1 1 1 1 1 1 M

1 1 1 1 / 1 1 1 L P
1 1 I 1 I 1 I 1

U ~--~------ / 1 1 -}----1>l I :
L

:A : B: 1
r- E 0

1 :p 1 1 1 E
1 1 1 1 1 1 1 F

B

1 1 1 1 1 1 1 1
1 1 E l F 1

1
1 L : KI F

HER2 G
1 1 1_- ____ L __ -,4
1 IL-----T--;A

1 I I I
I 1 1 1 I J

I I I
I 1 I / 1 1 I I
I I I / 1 I I I J K

I I I I I 1 I I
A

10
/ el / I ;M NI/

B 1 __________ 1 L _________ I
p

U
D

0
N E

J H

16-Node Hypercube 0

H

Figure 4: The hypercube N=16, d=4 Figure 5: 4 edge-disjoint directed He

into ~ edge-disjoint hamiltonian cycles. 0

For example, in Figure 5 a decomposition of the 16_node hypercube (shown Figure 4), into four

directional rings is illustrated. Each such a ring can be used for a HER.

In what follows we present three algorithms for finding hamiltonian circuits of an even dimen

sional hypercube. The first algorithm is solves the special case where the dimension is a power

of two. The second algorithm finds not d/2 but exactly two edge-disjoint hamiltonian cycles.

The last one is a fast approximation to the d/2 edge-disjoint hamiltonian cycles, since it finds

d/2 hamiltonian cycles which share a small faction of the total edges.

3.2.1 The Degree is a power of two

In this section we consider the special case where the dimension of the hypercube is a power of

two [21], and present a simple algorithm for its hamiltonian decomposition.

Algorithm has two phases, and its correctness is based on two theorems proven by Kotzig

[12]. In the first phase (cycle phase), two hamiltonian cycles of size 2d/ 2 is used to obtain a torus

of size 2d. In the second phase (torus phase), the torus is decomposed into two hamiltonian cycles

of size 2d. The algorithm switches back and forth between these two phases, until the dimension

of the target hypercube is reached.

Let Cl be the i'th hamiltonian cycle in the d dimensional hypercube H Qd (d = 2P where p is

7

a non negative integer). Let G i be the N x N torus obtained by ClDCl (where 0 denotes the

cartesian product).

Claim 2 The torus Gi is decomposable into two hamiltonian circuits.

Proof: The cartesian product of two arbitrary cycles is decomposable into two hamiltonian

cycles Kotzig [12]. We proceed with an example to show the hamiltonian decomposition of the

hypercube with N = 216 nodes. Consider Figure 6, in which 8 cycles (each is a 2 X 2 cycle) are

used construct a torus of size 22 x 22 from the cartesian product of a distinct pair of these cycles.

The hamiltonian decomposition of each of these toruses yields to two hamiltonian cycles (each

of size 24
). Let hij be the j'th cycle in the i'th torus. Then we can express the hypercube as

Note that the pair hn Dh21 results a torus of size 28 with a hamiltonian decomposition of two

cycles. Let Hij be the j'th cycle in the i'th torus. Then we can express the hypercube as

(Hn U H12)D(H21 U H22) U(H31 U H32)D(H41 U H42)

(Hn DH21) U(H12 DH22) U(H31 DH4d U(H32 DH42)

Note that the pair Hn DH21 results a torus of size 216
. Let Hij be the j'th cycle in the i'th

torus. Then we obtain the decomposition of the N = 216 node hypercube to 8 hamiltonian cycles:

To conclude the correctness of the algorithm, let G1, G2,· .. ,Gp be the toruses obtained as

explained above. Note that the d_dimensional hypercube HQd is a 2020 ... 02 array [13], then

it follows that G1 DG2 D ... DGp = HQd, where d = 4p.

Claim 3 The hypercube H Qd is decomposable into ~ hamiltonian circuits.

Proof: iFrom the previous claim we know that each G i is decomposable two hamiltonian circuits.

Thus, due to Kotzig [12] the graph G1 DG2 0 ... DGp has a decomposition into 2p hamiltonian

cycles. Since d = 4p, claim holds.

What remains to be shown is to find the hamiltonian cycles in each torus. In Figure 7, we

demonstrate how to find the two hamiltonian cycles on a 12 x 12 torus (only one of the hamil

tonian cycles is marked for the clarity). However, the same method can be used in hamiltonian

decomposition of any N x N torus [12, 5].

8

2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2

Figure 6: Hamiltonian decomposition of a N =Figure 7: Hamiltonian decomposition of a 12x 12

2I6-node hypercube torus

3.2.2 2-Hamiltonian Decomposition

In this section, we introduce a linear time (i.e., O(N)) algorithm which constructs exactly 2

edge-disjoint hamiltonian cycles from a hypercube with any even degree. The algorithm is based

on the fact that (2N + 2) node hypercube is isomorphic to the Cartesian product of two (N + 1)

. A multi-index- based on the gray code of the nodes-is defined for generating one hamiltonian

cycle. Each multi-index consists of two subindices and takes the leftmost ~ bits as the first

index io and the other half as the i l . For example a node with binary string 00111110- in a

8-dimensional hypercube-is mapped to a multi-index (2,12). In our algorithm (i) each subindex

is associated with a unique loop variable (i.e., jo,jd, (ii) each loop variable is initialized to the

corresponding subindex (e.g., io = 2, i l = 12) and incremented k = 21o~ N times by modulo

operation (e.g., jo = (jo + 1)mod k), thus each loop has a counter which is equal to k.

In our algorithm, an ordering of the subindices corresponds to two nested loops which together

generate a cyclic code for all the possible values of a multi-index. Since each value of a multi-

9

index corresponds to a unique node, the result is a hamiltonian cycle. Thus in the algorithm

there are two set of nested loops defined by (io, id and (iI, io), to print the values of the two

multi-indices, and the algorithm runs in time O(N).

For example, in Figure 8 we demonstrate two edge-disjoint hamiltonian cycles for the 64-Node

hypercube generated by our algorithm. The multi-index consists of two subindices (io, id. Each

subindex is mapped to 3 bits of the 6 bit ID of a node and thus has decimal range between 0

and 7.

Hamiltonian Circuit 1 generated by the indices (io, it}:
(0,0) (1,0) (2,0) (3,0) (4,0) (5,0) (6,0) (7,0) (7,1) (0,1) (1,1) (2,1) (3,1) (4,1) (5,1) (6,1) (6,2) (7,2)
(0,2) (1,2) (2,2) (3,2) (4,2) (5,2) (5,3) (6,3) (7,3) (0,3) (1,3) (2,3) (3,3) (4,3) (4,4) (5,4) (6,4) (7,4)
(0,4) (1,4) (2,4) (3,4) (3,5) (4,5) (5,5) (6,5) (7,5) (0,5) (1,5) (2,5) (2,6) (3,6) (4,6) (5,6) (6,6) (7,6)
(0,6) (1,6) (1,7) (2,7) (3,7) (4,7) (5,7) (6,7) (7,7) (0,7)

Hamiltonian Circuit 2 generated by the indices (iI, io):
(0,0) (0,1) (0,2) (0,3) (0,4) (0,5) (0,6) (0,7) (1,7) (1,0) (1,1) (1,2) (1,3) (1,4) (1,5) (1,6) (2,6) (2,7)
(2,0) (2,1) (2,2) (2,3) (2,4) (2,5) (3,5) (3,6) (3,7) (3,0) (3,1) (3,2) (3,3) (3,4) (4,4) (4,5) (4,6) (4,7)
(4,0) (4,1) (4,2) (4,3) (5,3) (5,4) (5,5) (5,6) (5,7) (5,0) (5,1) (5,2) (6,2) (6,3) (6,4) (6,5) (6,6) (6,7)
(6,0) (6,1) (7,1) (7,2) (7,3) (7,4) (7,5) (7,6) (7,7) (7,0)

Figure 8: Two edge-disjoint hamiltonian circuits of 64-Node hypercube

3.2.3 Hamiltonian t-Decomposition

In this section we introduce a fast algorithm to find ~ HCs on a d_dimensional hypercube for any

even d. The output of the algorithm is not a proper decomposition, since some number (M' C M)

of the total number of (M) edges will not be included into any HC. Let t = ~, and note that

these edges are excluded since some other edges are included into more than one hamiltonian

cycles. Consequently, the algorithm does not yield to mutually edge-disjoint hamiltonian circuits

(BCs); however, it constructs lo~N HCs in time O(NlogN) with a small ratio (i.e., t::; 0.1) of

common edges, thus called hamiltonian t-decomposition of the hypercube. First, we present the

hamiltonian t-decomposition of the hypercube, and then compute the ratio t empirically.

Our algorithm algorithm takes a 2 x 2 array as its building block, visits all the nodes on this

block, and then jumps to a neighboring block. The algorithm has two preprocessing steps: (i)

construction of decimal multi-indices, and (ii) construction of a Latin square [2].

The multi-index-defined with respect to the d_bit binary string ID of each node- is used

for the traversal, and constructed from the collection of lo~N subindices such that the subindex

10

i k is obtained from bn , bn+1 bits of the ID. For example, a node of the 8-dimensional hypercube

with binary string 11010010 will be mapped to an multi-index (io, iI, i2, i3) = (2, 1,0,3) where ik
is a subindex.

In our algorithm (i) each subindex is associated with a unique loop variable (i.e., jO,jl,j2,j3),

(ii) each loop variable is initialized to the corresponding subindex (e.g., io = 2) and incremented

four times by modulo operation (e.g., jo = (jo + 1)mod 4), thus each loop has a counter which

is equal to four. An ordering of the subindices defines a nesting of these loops. For example,

let i3, iI, io, i2 an arbitrary ordering of the subindices, then there will be four nested loops (each

with four iterations) such that the loop associated with subindex i3 will be the innermost loop.

Consider an algorithm which takes an ordering of the subindices, and prints the values of

all the loop variables (i.e., the value of the multi-index) at each iteration. First note that each

output line of the algorithm corresponds to the ID of unique a node, and when the algorithm

terminates the result will be a cyclic code, representing a hamiltonian cycle. Thus, by choosing

lo~N different ordering of the subindices, it is possible to obtain lo~N hamiltonian circuits. The

next question is how to choose such an ordering of the subindices to minimize number of common

edges among these hamiltonian circuits. Our solution is based on construction of a Latin square

(LSQ) [2] from the subindices. For example in Table 1 we show a LSQ for the subindices of

12-dimensional hypercube. Each column (row) in this Latin square gives a unique ordering of

nested loops of these subindices and can be used to generate a distinct hamiltonian circuit. A

subindex with a smaller row (column) number in the Latin square is nested into the index with

a larger row (column) number, thus it is incremented faster. For example, the first loop in Table

1 induces a hamiltonian circuit by first incrementing il then i6 and so on.

H. Cycle 1 H. Cycle 2 H. Cycle 3 H. Cycle 4 H. Cycle 5 H. Cycle 6

21 22 23 24 25 26

26 21 22 23 24 25

25 26 21 22 23 24

24 25 26 21 22 23

23 24 25 26 21 22

22 23 24 25 26 21

Table 1: A Latin square for 12-dimensional hypercube

11

3.2.4 Computation of Congestion and the Ratio E

An edge is congested if it is included into more than one hamiltonian cycles. Let Zi,j denote the

congestion (i.e., multiple occurrences of an edge (i,j)), and Zmax be the maximum congestion

over all edges. Note that if the Zi,j = 0 for all edges (i, j) then a hamiltonian decomposition is

achieved. However, if Zi,j = k for a positive integer k, the edge (i,j) replaces some edge on the

k hamiltonian cycles. Thus, the value of congestion determines the value of Eo In what follows

we consider the hypercubes up to N = 216 nodes, and show empirically that E ~ 0.10.

N: # of nodes M: # of edges M': # of excluded edges f = %- # of Res ZMax

4 4 0 0% 1 0
16 32 0 0% 2 0
64 192 9 4.6% 3 1
256 1024 36 3.5% 4 1
1024 5120 252 4.9% 5 3
4096 24576 1047 4.2% 6 3
65536 524288 32760 6.2% 8 6

Table 2: Edges (M') that are not included into any He

In our simulations, first we generate the hamiltonian cycles, by mapping the d_bit binary

string ID of each node onto a multi-index and constructing a Latin square as explained before.

Then a procedure is activated to count the number of common edges (congested edges) to get the

ratio E (shown in column 4) over the total number of edges. Evidently the maximum congestion

is at most one less than the number of hamiltonian cycles (i.e., lo~N - 1), and the congested

edges are approximately 5-7% of the total edges. In Table 3 we show in detail the value of the

congestion. The columns of this table indicate the congestion values and the number of edges

with these values. For example, the second column in this table gives the number of the edges

that occur in exactly one Res while the last column shows the number of edges appearing in 7

different Res.

Note that almost half of the congested edges have a congestion of two which is much less

than the maximum congestion. The following claim presents the summary of the results:

Claim 4 The algorithm Hamiltonian E-Decomposition outputs lo~N hamiltonian cycles in time

O(N log N) and the maximum congestion on any edge is at most lo~N - l.

Proof: Since there are lo~N rows in the Latin square, the number of Res holds. Each Latin

square row gives a Re since the columns correspond to Gray coding. The number of indices

12

N: # of nodes Z=O Z=l Z=2 Z=3 Z=4 Z=5 Z=6 Avg. Congestion
64 183 9 1.047
256 988 36 1.035
1024 4868 237 3 3 1.049
4096 23529 900 60 9 1.042
65536 491528 18432 4608 1152 288 72 24 1.016

Table 3: Congestion analysis showing number of edges at each congestion level In sample

Hamiltonian-pseudo-decomposition. Average congestion in all cases is ::; 1.05.

associated with each node is lo~N. Since the edge that is used to arrive at a node cannot be used

to leave the same node there are exactly lo~N -1 candidate edges for each HC to leave this node.

Thus an edge can be used by at most lo~N - 1 hamiltonian cycles to leave this node. Now let

us compute the time complexity. The Latin square has lo;N columns and each has lo;N nested

loops. Each loop has a counter 0,· .. ,3 (i.e., 22 iterations). Thus, each HC costs 22eO~N) = O(N).

Since we generate lo~N HCs, the total time is O(N log N).D

4 Routing and Flow Control
Routing and flow control on the networks with multiple global virtual ring embeddings is

based on convergence routing of the MetaNet [16, 18]. Convergence routing is a variant of

deflection routing [4, 14]. It combines, in a dynamic fashion, the on-line routing decision with

the traffic load inside network. For example, the routing decision may depend on flow-control

aspects like whether or not the serial transmission link is idle. Deflection routing typically

minimizes intermediate buffering requirements and it suffers no loss due to congestion inside the

network.

Convergence routing is based on global sense of direction such that the packet or cell distance

from its destination, at the next node, strictly decreases compared to its current distance. It

achieved by numbering the virtual nodes on the embedded rings sequentially. Convergence

routing differs from previous deflection techniques since it assures that: (i) a packet reaches its

destination (unless a failure occurs), and (ii) a packet can traverse each direction of a link at

most once, and the number of hops it takes is bounded deterministically.

The packet enters the virtual embedded ring via its virtual node that is closest to the des

tination. The Default routing decision in convergence routing is simply to follow the virtual

ring, which will guarantee that the packet will reach its destination. This simple method is, of

13

course, not very efficient. Therefore, the routing mechanism at every intermediate node tries to

decrease the distance to the destination - while preserving the global sense of direction - as much

as possible.

Inside the network a non-default routing operation (called Jump) may be used for switching

packets from one virtual ring to another in order to obtain faster convergence to the destination

[26]. This kind of switching is possible only if the next ring link, which is reachable by the Jump

operation, is available. A link is defined to be available if it is: (i) idle, and (ii) not marked by

another packet as its default link. A link is marked in order to avoid congestion and loss, which

means that a packet has priority over all packets from other ring links for using its default ring

link. This priority is equivalent to the ring traffic priority in buffer insertion rings.

More specifically, routing of a packet at some node U is based on computing distances from

U to the final destination, say V, on the d embedded virtual rings. Thus, each intermediate

node U computes a distance vector ~v(U) for a packet destined to node V. This vector contains

all the virtual nodes that are closer to the destination and can be accessed from node U, using

a jump. The distance from the i'th element Ui of ~v(U) is denoted by 6i and computed as:

8i = Vi - ui(mod m), where m = N is the size of the virtual ring on which both Vi E V I D(V)

and Ui E ~v(U) resides. (V I D(V) is the subset of node V virtual nodes). If Ui and Vj are

on different rings then the distance between them is defined as +00. The 6i values are sorted

in increasing order and higher priorities are given to the outgoing links of a virtual node with

smaller 8i value (i.e., those that are closer to the destination).

For example, consider Figure 2 and suppose that node C on ring HERO receives a packet

designated for node I. The default route of the packet is to V N3 on the virtual ring HERO. If

the packet remains on the HERO, the length of routing would be six hops. However, a Jump

operation to the V N17 on virtual ring HER1 would decrease the distance to two hops, and if

another Jump were possible from HER1 to HER2, the packet would reach to the destination

via virtual node V N23 .

4.1 Controlling the Probability of Jumps

In the MetaNet the asynchronous access is regulated by a predefined quota given to each

node in every global or local fairness cycle (see [25] for details). The size of the quota controls

the internal flow in the network and determines the availability of a link or alternatively the

probability P for a Jump operation. High quota increases the number of packets in the network

which in turn increases the busy period of a link, and therefore, decreases the probability P for

14

a Jump. Thus, the external access quota is the control parameter for the MetaNet routing and

internal flow control.

4.2 Fault-Tolerant Properties of Convergence Routing

In this section, we explain how to route in case of broken rings due to link/node failures, and

show that the multiple virtual rings can tolerate (i) single node failure, and (ii) single link failure

on each virtual ring. We argue that the routing algorithm presented in this section efficiently

handles the faults by the information (1) provided in the header of a packet, (2) and maintained

in the virtual node that receives this packet.

Link failures

In case of a link failure only one hamiltonian circuit (i.e., two virtual rings) is broken and on

this ring some nodes becomes inaccessible to the others. Suppose the link between the node A

and B goes down (see Figure 2). Then the virtual rings HERO and HERI are broken (since these

are the only virtual rings that includes one direction of the faulty full duplex link). In order to

determine which virtual nodes become inaccessible upon an edge failure, it is sufficient for each

virtual node just to know the closer end point of the faulty link. For example, V N6 can compute

in a constant time the inaccessible segment [V N 1 , •.. , V N s] of the broken ring by knowing that

V No is the closer end point of the faulty link on ring HERO.

Note that these are nodes that reside between the other end point of the faulty link (i.e., V Nd
and the down-stream neighbor of this virtual node on HERO. Therefore upon being informed

about a failure, each virtual node on the broken ring performs the following steps to ensure that

a packet is not sent to an inaccessible segment:

1. information needed in the nodes: each node stores the closer end point of the faulty link to

determine the inaccessible nodes.

2. distance computation in the routing algorithm: at step 2 of the routing algorithm, the

distance to an inaccessible node is considered to be +00 to ensure that the packet will not

be sent to that node.

Node failures

In case of a node failure all the virtual rings are broken into paths. For example, consider the

virtual rings in Figure 2 and suppose the node A has a failure then each virtual ring is broken

into a directed path. Since each virtual ring has a dual, each path has a reverse, thus together

they induce a dual bus structure. Since, a node failure causes two adjacent links to be faulty,

15

it can be treated similar to the single link failure on each virtual ring. Therefore, upon being

informed about a node failure, each node performs the steps stated above.

5 Bounds on The Length of Routing
5.1 Worst Case: Average Pairwise Distance on d Virtual Rings

One of the objectives of multiple virtual ring embedding is to minimize the expected length of

the routing under heavy traffic conditions. In such a case, the probability for a Jump operation

is small, thus the packets likely to follow the longest paths. In this section we assume the worst

case traffic pattern, in which each source has N - 1 packets and each destination receives N - 1

packets, thus no Jump operation is possible. Therefore, we consider the pairwise distance, over

d global virtual rings, and establish a bound on the worst-case length of the routing.

One of the objectives of multiple virtual ring embedding is to minimize the expected length of

the routing under heavy traffic conditions. In such a case, the probability for a Jump operation

is small, thus the packets likely to follow the longest paths. In this section we assume the worst

case traffic pattern, in which each source has N - 1 packets and each destination receives N - 1

packets, thus no Jump operation is possible. Therefore, we consider the pairwise distance, over

d global virtual rings, and establish a bound on the worst-case length of the routing.

Suppose that a generic node can access r ~l disjoint sets of nodes at each global ring. Then

the total distance from this generic node to the others in one ring is

Thus yielding to the average distance (from a generic node to all the others) as ~.

However, the set of r ~l nodes at each ring are not necessarily disjoint. The union of these

sets can not cover all the nodes. Let p denote the fraction of the nodes that are "uncovered".

Thus (1 - p)N of the nodes will have distance from a generic node at most N / d. This is on the

average at most ~. The rest of the nodes will have distance between r: and If on each ring

which is on the average is N(::2).
Therefore, in order to have a bound from a generic node to all others of ~, we solve the

following equation for p:

N(l) N(d+2) N
2d - P + 4d p:::; d

16

which has a solution for p :::; l Consequently, as the number of virtual rings (thus the degree of

each node) increases for the same N, the ratio p becomes negligible. Although in the hypercube

Nand d are mutually dependent, these parameters in the circulant networks are flexible. Thus

d can be increased as long as new jumps which are relatively prime to N and less than N /2 can

be found [8]. Thus we conclude that

Claim 5 Pairwise average distance on the networks with d global virtual rings zs bounded by

O(lf). 0

5.2 Best Case: Minimum Diameter Circulant Design

In this section we consider circulant networks which have minimum diameters. The diameter

of the circulant network implies a bound on the maximum length of routing, if the network

is lightly loaded and Jump operations are always possible. Although the problem of finding

the diameter of a circulant is difficult, there is theorem [9] which enables us to determine the

minimum diameter among all circulants obtained with two jumps on N > 6 nodes. Precisely, if

the two jumps are m, m+ 1 then for m = r-l±~l the minimum diameter, among all circulant

graphs with two jumps on N nodes, is m.

If m and m + 1 are both relatively prime to N, then we know that the corresponding rings

are hamiltonian. Thus, the circulant based network with N nodes, each with degree exactly 4,

would have the diameter approximately rqNl. However, since the value of m depends on N,

it may not be possible to have both of the jumps to be relatively prime to N. As a result, the

connectivity and hamiltonian property of the circulant network can not be ensured, since the

edges created by such jumps will induce node-disjoint partial rings. Therefore we must have

one of the jumps as relatively prime to N. Note that m grows much slower than N (see Table

4) that implies that length of routing increases in slower rate than the size of network grows.

Furthermore, for N = 2k (k = 3,···) one of the jumps is relatively prime to N. Thus, if N is

a power of 2 then it is ensured that there exists a hamiltonian cycle in the circulant network

with N nodes and degree 4. (As a result of this observation, a hybrid approach, which takes a

combination of global and partial rings becomes a promising design paradigm.)

We note that this bound on the diameter of the network is better than the ones on the

loop topologies with the same degree (such as the daisy chain, double loop, etc.) reported in

[19, 20, 7]. This property becomes more remarkable with a comparison to another regular graph

of similar size. For example, a circulant with 25 nodes each with degree 4 has the same diameter

3 with a De Brujin graph with 27 nodes. However, the degree requirement on each node on the

17

N m m+ 1
8 1 2
16 3 4
32 4 5
64 6 7
128 8 9
256 11 12
512 16 17
1024 23 24
2048 32 33

Table 4: The m, m + 1 values for the jumps to obtain diameter m for N = 2k node MetaNet

De Brujin graph is close to 6, thus more links are necessary to achieve the same diameter [9].

Now let us determine a bound which is valid for various values of degree d.

6 Performance Study
The performance measure considered in this paper is the average number of hops assuming:

(i) uniform destination distribution, and (ii) heavy load traffic conditions, which means that

inside the network packets are sent over the longest possible paths (i.e., worst case analysis).

Therefore note that in the worst case, only the Default routing operations are considered to

be possible, since the probability of finding an idle link would be very low. The expected number

of hops can be used as a measure of the potential throughput of the network (rather than the

actual throughput). In our simulations, we consider the following values of P to capture the

availability of a link which in turn reflects the internal load of the network:

1. The worst case: p=o. The network is operating under heavy traffic conditions such that

each source sends N - 1 packets and each destination receives N - 1 packets. In this case

only the Default operations are taken during the execution of the algorithm.

2. The average case: P=O.5.

3. The best case: P=l. The network is assumed to be very lightly loaded and the Jump

operations are favored.

In the worst case scenario no Jump operation is possible. Thus once a packet enters to a

virtual ring, it remains in that ring until it is delivered to the destination. This implies that

permutation of the nodes over the virtual rings to minimize the pair-wise distance becomes an

important performance issue.

18

6.1 Experimental Results

In this section we present simulation results to measure the performance of the convergence

routing on the circulant networks. The algorithm is simulated by first determining the closest

virtual node of the source to the destination V. At each intermediate node U, which receives the

packet, the distance vector ~v(U) and NEXT are constructed. If the link to a node in NEXT

which has the minimum distance to the destination, can be taken by the Default operation then

the packet is sent to the next ring link. However, if the routing operation is a Jump, then it is

taken with probability P. If the first choice link is not available then the link with the second

smallest distance is considered and this process continues until the next candidate link is via

the Default operation. The algorithm halts when the destination node is reached. Performance

of the convergence algorithm is analyzed both as a function of the number of nodes N and the

degree constraint d. Furthermore, different P values are considered to capture the internal load

in the network.

Average Number of Hops I
DEGREE ni values p=o P = 0.5 P=1
4 1,7 21.54 11.09 9.06
6 1,7,13 16.15 7.56 5.89
8 1,7,13, 17 13.51 6.39 5.332
10 1,7,11,13,17 10.86 5.68 5.01
12 1,7,11,13,17,19 9.32 5.13 4.50
14 1,7,11,13,17,19,23 8.09 4.72 4.25
16 1,7,11,13,17,19,23,29 7.21 4.26 3.78

Table 5: Average Length of Routing on a Network wi 128 Nodes

Average Number of Hops I
of Nodes p=o P = 0.5 P=1
16 3.20 2.80 2.53
32 5.54 4.21 3.47
50 8.51 6.19 6.61
64 10.92 7.00 6.62
128 21.54 11.09 9.06
256 42.85 19.35 17.01
512 86.17 37.61 31.39

Table 6: Average Length of Routing on a Network wi degree 4 and nl = 1, n2 = 7

Experimental bounds on the expected length of the routing

19

First we explain Table 5, in which the performance of the convergence routing is studied for

the synthesized networks with 128 nodes, as a function of the degree d of each node. The jump

sequence < ni > (i.e., a set of distinct jumps) used for construction of each network is shown

in the second column. The jumps are prime numbers and chosen according to the claim 1, (i.e.,

each jump is relatively prime to 128). In Table 6, the degree of the synthesized network is fixed

as 4 and the number of the nodes is increased.

The average number of hops on each network is computed for three different probability

values to capture the heavy, average and light traffic conditions, respectively. The results in

these tables lead to the following two remarks:

1. the performance difference of the algorithm under the heavy and the light traffic conditions

(i.e., P = 0, P = 1) is not too large. This demonstrates that the combinatorial design of

the virtual rings minimizes the performance degradation of the routing algorithm under

heavy internal load.

2. the worst case bound on the length of routing is empirically verified as approximately N / d

which is consistent with our analytic bound. In order to make this remark more visible, in

Figure 9, we plotted the analytical computations and the first column of the Table 6.

3. Finally we note that the performance of convergence routing under worst case traffic con

ditions is similar to the hypercube (i.e., O(N)), while under light traffic conditions it

approximates to the diameter of the network.

7 Summary and Discussions
In this paper we presented tools to embed multiple hamiltonian rings with convergence routing

for loss-free routing of non-reserved bursty traffic. Convergence routing with virtual rings is

suitable for ATM LANs with bursty data sources. This will enable the use of ATM LANs for

high performance distributed/parallel processing applications.

We considered two regular topology networks. The first structure is based on the circulant

design, and can be applied to any d and N provided that d/2 is even, and each construction

step is relatively prime to N. The second structure we examined in this paper was the hypercube

with even dimension. We have shown how to design a linear time algorithm to obtain two edge

disjoint hamiltonian circuits (HC) of any even degree hypercube. Furthermore, we presented an

t-decomposition in which a small percentage of the edges occur in more than one HCs.

20

M
a
x

H
o
p
s

Comparison of The Experimental and The Analytic Bound

90

45

22
12
~~

16 64 128 256 512
N = Number of nodes

Figure 9: Average Length of Routing for P = 0, d = 4

We described how multiple virtual ring embeddings can provide high transmission concur

rency and fault-tolerance. We showed how convergence routing can be employed on these regular

topologies to obtain good bounds on the routing length, while ensuring loss-free flow control.

Acknow ledgements

We would like to thank Moti Yung for his valuable comments on the earlier versions of this

work.

21

References
[1] B. Alspach, J.-C. Bermond, and D. Sotteau. Cycles and Rays. Kluwer Academic Publishers,

Hahn et al. (eds.), Netherlands, 1990.

[2] I. Anderson. Combinatorial Designs: Construction Methods. John Wiley Sons, New York,

1990.

[3] J. Aubert and B. Schneider. Decomposition de la somme cartesienne d'un cycle et de l'union

de deux cycles hamiltoniens en cycles hamiltoniens. Discrete Math., 38:7- 16, 1982.

[4] P. Baran. On distributed communication networks. IEEE Trans. on Communications Sys

tems, CS-12(1-2):1-9, March 1964.

[5] J. Bosak. Decompositions of Graps. Kluwer Academic Publishers, Boston, 1988.

[6] I. Cidon and Y. Ofek. MetaRing - a full-duplex ring with fairness and spatial reuse. IEEE

Trans. on Comm., COM-41(1):110- 120, January 1993.

[7] J.A. Silvester C.S. Raghavendra. A survey of multi-connected loop topologies for local

computer networks. Computer Networks and ISDN systems, 11:29- 42, 1986.

[8] Buckley F. and Harary F. Distance in Graphs. Addison-Wesley., New York, 1990.

[9] J.Wang F.Boesch. Reliable circulant networks with minimum transmission delay. IEEE

Transactions on Circuits and Systems, CAS-32:1286- 1291, 1985.

[10] M.F. Foregger. Hamiltonian decompositions of product of cycles. Discrete Math., 24:251-

260, 1978.

[11] Krizanc D. Kaklamanis C. and Thanasis Tsantilas. Tight bounds for oblivious routing in

the hypercube. Math. Systems Theory, 24:223- 232, 1991.

[12] A Kotzig. Every cartesian product of two circuits is decomposable into two hamiltonian

circuits. Preprint, Univ. de Montreal, Montreal, 1973.

[13] T. Leighton. Parallel Algorithms. Morgan Kaufmann, San Mateo, CA., 1992.

[14] N. F. Maxemchuk. Routing in the manhattan street network. IEEE Trans. on Communi

cations, COM-35(5):503- 512, May 1987.

22

[15] Y. Ofek. Overview of the MetaRing architecture. Computer Networks and ISDN Systems,

6-8:817-830, 1994.

[16] Y. Ofek and M. Yung. Principles for high speed network control: lossless-ness and deadlock

freeness, self-routing and a single buffer per link. 9-th Annual ACM Symposium on Principles

of Distributed Computing (PODC), pages 161- 175, August 1990.

[17] Y. Ofek and M. Yung. The integrated MetaNet architecture: A switch-based multimedia

LAN for parallel computing and real-time traffic. IEEE INFOCOM'94, 1994.

[18] Y. Ofek and M. Yung. Routing and flow control on the MetaNet: an overVIew. Computer

Networks and ISDN Systems, 6-8:859- 872, 1994.

[19] C.S. Raghavendra, M. Gerla, and D.S. Parker. Multi-connected loop topologies for local

computer networks. INFOCOM 82, pages 184-190, March 1982.

[20] C.S. Raghavendra, M. Gerla, and A. A vi zienis. Reliable loop topologies for large local

computer networks. IEEE Trans. on Computers, C-34, No. 1:46- 55, January 1985.

[21] G. Ringel. Uber drei kombinatorische probleme am n-dimensionalen wurfel und wurfelgitter.

Abh. Math. Semi Univ. Hamburg, 20:10-19, 1955.

[22] Rosen.K.H. Elementary Number Theory and Its Applications. Addison-Wesley, New York,

1993.

[23] J. Turner. New directions in communications (or which way to the information age?). IEEE

Communications Magazine, 24(10), October 1986.

[24] B. Yener, T. Boult, and Y. Ofek. Hamiltonian decompositions of regular topology networks

for convergence routing. Technical Report CUCS-011-94, Computer Science Dept., Columbia

University, 1994.

[25] B. Yener, Y. Ofek, and M. Yung. Design and performance of convergence routing on spanning

trees. Proc. IEEE GLOBCOM'94, 1994.

[26] B. Yener, Y. Ofek, and M. Yung. Topological design of loss-free switch-based lans. To appear

in IEEE INFOCOM'95 (available as IBM Research Report RC 19649 (87112)),1994.

23

