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Abstract. In this paper optimal algorithms for robust estimation and filtering are con

structed. No statistical assumption is supposed available or used and the noise is considered 

a deterministic variable unknown but bounded belonging to a set descibed by a norm. Pre

vious results obtained for complete (one-to-one) and approximate information [1] are now 

extended to partial and approximate information. This information seems useful in deal

ing with dynamic systems not completely identifiable and/or with two different sources 

of noise, for example process and measurement noise. For different norms characterizing 

the noise, optimal algorithms (in a min-max sense) are shown. In particular for Hilbert 

norms a linear optimal algorithm is the well-known minimum variance estimator. For 100 

and It norms optimal algorithms, computable by linear programming, are presented. Ap

plications to time series prediction and parameter estimation of nonidentifiable dynamic 

systems are shown. 

State estimation is formalized in the context of the general theory. Assumin'g an expo

nential smoothing of the bounds of the noise it is proved that, for stable systems, the un

certainty of the state is aymptotically bounded. Then the results of the previous sections 

provide computable algorithms for this problem. Two application examples are shown: 

Leontief models and Markov chains. 
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I. INTRODUCTION. 

In recent years an alternative approach to the classical statistical one has been developed 

for system identification. Generally, in estimation theory the uncertainty is considered as 

a random variable described by, a certain density function. In the worst case approach 

no statistical assumption is available or used and the noise is supposed a deterministic 

variable belonging to a certain set [1]-[5]. A relationship between optimal estimators for 

statistical and worst case can be found in [6]. 

In this paper ~e address the problem of estimation and filtering when the uncertainty is 

assumed unknown but bounded belonging to a set described by a norm. We extend previous . 

results [1] obtained for complete (one-to-one) and approximate information to the case of 

partial (not necessarily one-to-one) and approximate information. The use of partial and 

contaminated information seems useful for two kinds of problems in system identification. 

First, for problems in which two different sources of noise should be considered, for example 

process and observation noise of a dynamic system. Second, for problems in which the 

parameters are not completely identifiable from the output measurements and some a 

priori information is given. 

We construct optimal algorithms defined in the sense of information-based complexity 

(see [1]-[4], [7], [8]). Now we briefly discuss the subject of this theory. We are interested 

in approximating Sf E Z where S is a linear mapping S : F ~ Z, and an element f 

belongs to a certain subset KeF representing the a priori information available about 

it (f and S are called, respectively, problem element and solution operator). The element 

f is not exactly known but only approximate information h = N f + p, h E H is given, 

where N is called information operator and the noise p is unknown but bounded by a 

given constant e. An approximation to Sf is given by an operator 'P ( called algorithm 

or estimator) operating on the information h. Optimal algorithms minimize the maximal 

distance between the actual solution Sf and the computed solution 'P( h) for the worst 

problem element f and for the worst information h. The error of an optimal algorithm 

3 



is called intrinsic error or radius of information. Strongly optimal algorithm are optimal 

algorithms for any fixed information h. Formal definitions and notations are presented in 

Section II. 

In Section III we present optimal algorithms for some norms describing the uncertainty 

of the problem elements f and of the noise p. First we consider the uncertainty bounded by 

Hilbert norms. This problem is studied in [8]: the linear optimal algorithm presented has 

the same structure as the maximum a posteriori estimator for Gaussian distributions, but 

depends on a 'smoothing factor' whose practical computation is not an easy task. In this 

section we show that Gauss-Markov estimator is an optimal algorithm if the bound e on 

the noise p is sufficiently small (corresponding to the statistical case when the knowledge 

on the covariance matrix of the noise is essential). If e is large (equivalent to a poor 

knowledge of the covariance matrix) an optimal algorithm is o. Then we turn our attention 

to other norms in the measurement space. For 100 norm a strongly optimal algorithm, 

computable by linear programming is derived in [1]. Here, with the same norm we show 

an optimal algorithm using the restrictive information given by the active constraints of 

the intrinsic error. Note that these constraints correspond to the optimal information 

minimizing the intrinsic error, in the sense defined in [7]. For 11 norms we construct a 

strongly optimal algorithm computable by linear programming. Finally, we present two 

examples showing the applications to time series prediction and parameter eStimation of 

nonidentifiable systems. 

In Section IV we formalize the state estimation of a dynamic system in the general 

context of the theory. The problem of recusive state estimation in the presence of unknown 

but bonded noise is studied in [5], [9], [10]. Unfortunately when instantaneous constraints 

are considered, only approximate solutions can be easily computed. In fact, in general, the 

uncertainty set cannot be characterized by a finite set of numbers, even in the case when h 

norms are considered. Furthermore, the uncertainty set may be too small asymptotically, 

with respect to the actual one, as in statistical case, especially in the presence of modeling 
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errors. For these reasons we consider a different approach. We differently weight new 

and old data introducing an exponential smoothing of the bounds of the noise. We prove 

that, for stable systems, the intrinsic error representing the uncertainty of the solution, is 

asymptotically finite. By neglecting the higher order powers, a computable solution can be 

obtained by applying the results of Section III. Finally we show two application examples: 

dynamic Leontief models and finite Markov chains. 

II. DEFINITIONS AND NOTATIONS 

This section provides formal definitions and notations used in the paper. 

Let F be a linear normed n-dimensional space over the real field and let I< be the unit 

ball in F defined by 

I< = {I E F: 11/11 $ 1} . (1) 

Consider a given linear operator 5, called a solution operator, which maps F into Z 

5:F-Z 

where Z is a linear normed r-dimensional space over the real field. Our aim is to estimate 

an element 51 of the Z space knowing approximate and partial information about the 

element I E I<. 

Define a linear operator N, called information operator , which maps F into a linear 

normed m-dimensional space H 

N:F-H. 

In this paper we do not assume that N is a complete information, i.e., N is not necessarily 

a one-to-one mapping. This means that the problem element I may be not identifiable 

from the knowledge of N I. In general, in the presence of noise, exact information N I 

about I is not available and only perturbed information h is given. In this context we 

assume that the uncertainty of information p = h - N I is unknown but bounded 

IIh-NIIi $ e 
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where e is some fixed number. 

An algorithm cp is a mapping (in general nonlinear) from H into Z 

i.e., it provides an approximation cp(h) of Sf using perturbed and a priori information. 

Such an algorithm will be often called estimator. 

Define the following sets 

T(h) = {f E K : IIh - N fll :5 e} (3) 

and 

H 0 = {h E H : T( h) # 0} (4) 

where 0 is the empty set. The set Ho represents the set of all approximate information 

h compatible with the information Nf, the bound on the noise e and the subset K. For 

each approximate information h E Ho we define a local error E(cp,h) of an algorithm cp as 

E(cp, h) = sup IISf - cp(h) II "ih E Ho . 
feTCh) 

An algorithm CP6 is called strongly optimal if 

E ( cp 6, h) = inf E ( cp, h) "ih E H 0 • 
'P 

(5) 

(6) 

The strong optimality is a meaningful property in estimation problems as it ensures the 

minimum uncertainty between the actual solution Sf and the estimated solution cp( h) for 

the worst element f belonging to the set T( h) for any fixed approximate information h. 

Note that strongly optimal algorithms map h into the center of a minimal ball containing 

the set S {T(h)} "ih E Ho. For this reason they are often called central algorithms (see 

[1]-[4]). 

The global error E( cp) of an algorithm cp is defined as 

E(cp) = sup E(cp, h) . (7) 
hEHo 
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An algorithm CPo is called ( globally ) optimal if 

(8) 

The minimal global error E( CPo) is called intrinsic error or radius of information. 

In the following, by the subscript i and the superscript T we will denote the i-th row 

. and the transpose of a matrix or a vector; thus (cp( h))i denotes the i-th component of the 

vector cp(h). 

III. OPTIMAL ESTIMATORS FOR LINEAR PROBLEMS 

In this section optimal and strongly optimal algorithms for linear problems (N and S 

linear) with partial information for some norms characterizing input and output noise are 

presented. 

1. MEASUREMENT SPACE EQUIPPED WITH HILBERT NORMS. 

This problem is studied in [8] when F, Hand Z are Hilbert spaces, not necessarily of 

finite dimensions. Let F and H be equipped with the following Hilbert norms 

(9) 

and 

(10) 

Then, based on [8], one can derive the optimal algorithm of the form 

(11) 

where J.L is a parameter between zero and one, which is solution of the equation 

(12) 
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Note that (11) is the maximum a posteriori estimator (minimum variance and minimum 

absolute error) of Sf when f and p are independent random variables normally distributed 

with mean value and covariance matrix given by 

Unfortunately, from a practical point of view, the computation of the smoothing coef

ficient J1., i.e., the solution of the equation (12) is not an easy task. However, for some 

specific cases the parameter J1. can be easily found. We consider two such cases depending 

on the size of the bound e of the noise. 

Define the set Do( e) as 

Do(e) = {f E F: IINfll:5 e} . (13) 

THEOREM 1. 

Let F, H and Z be Hilbert spaces. Let H be equipped with the norm (10). Then a 

linear optimal algorithm is given by 

PROOF: 

if Do(e) C K 
if Do( e) 2 K . 

(14) 

It is easy to prove that J1. = a for the first case, Do( e) C K and J1. = 1 for the second one, 

Do(e) 2 K. 

Let Do( e) C K. Note that this condition implies that N is one-to-one. Under this 

assumption we obtain 

sup IISfll = sup IISfll· (15) 
fET(O) IINfll~E 

From this we conclude that J1. = a is a solution of (12) and Gauss-Markov is an optimal 

algorithm. 

If Do(e) 2 K we get 

sup IISfll = sup IISfll . (16) 
fET(O) IIfll~l 
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Thus, J.I. = 1 is now a solution of (12). Then, for J.I. tending to one, the algorithm <.po in 

(11) tends to zero. Hence, the zero algorithm is optimal as claimed. 

I 

The interest of Theorem 1 lies in the fact that, if .6.(e) C K, a linear optimal algorithm 

is the Gauss-Markov estimator. Note that if N is one-to-one and K = F Gauss-Markov is 

strongly optiIhaI (see [11]). Note that .6.( e) C K is equivalent to liN-III> e-I . 

If the knowledge on the noise is weak, i.e. K ~ .6.( e) (corresponding to the statistical 

case when a poor knowledge of the covariance matrix of the noise is available), the optimal 

algorithm is 0, as in the statistical case. Observe that .6.(e) 2 K is equivalent to IINII ~ e. 

Optimal algorithms are now presented under different assumptions on the norms. 

2. MEASUREMENT SPACE EQUIPPED WITH 100 NORMS. 

In [1] a solution is given when Hand Z are equipped with I~ weighted norms I and 

K is a piecewise linear, convex set. The nonlinear strongly optimal algorithm presented 

can be easily computed by means of linear programming. In [6] it is shown that the same 

algorithm is a maximum likelihood estimators for uniform distribution of the noise when 

the information is complete and K = F. Note that the use of the 1: weighted norm in the 

measurement space allows one to handle situations in which the noise of every measurement 

may be differently bounded. 

In this section we present a linear optimal algorithm: this algorithm is constructed using 

the restrictive information given by the active constraints of the intrinsic error. Consider 

the case when 5 is a linear functional and J{ is a convex balanced set. In this case the 

intrinsic error is given by (see [12]) 

IThe norm Ilhll~ is defined as 

E(cpo) = sup 15fl. 
fET(O) 

Ilhll~ = m!loxwdhil Wi > 0 . 
• 
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Define an (n + m) by n matrix P and an (n + m )-dimensional vector d such that 

P = [1, Nf (18) 

(19) 

where 0 is the null vector. If J( is the unit ball and W a suitable weight T(h) can be written 

as 

T(h) = {f E F: liP f - dll~ :5 e} . (20) 

If WI = ... = Wn = e, using the definition of l~ norm we obtain 

T(O)={f EF :IPdl:5 ~i ;i=I, ... ,(m+n)} (21) 

Then the intrinsic error is 

E('Po) = sup Sf = sup Sf . (22) 
IEF:IPi/IS tr IEF:IPi/IS tr 
i_l"",(m+n) i::Ktl, ... ,t n 

The constraints t l , ... , tn are called the active constraints of the linear programming prob-

lem (22). 

Define the n by n matrix P containing the rows t l , ... , tn of the matrix P 

(23) 

-and the n-dimensional vector d containing the active constraints t l , ... ,tn of the vector d 

- T d = [dtp ••• , dtnl . (24) 

The information d is the optimal information in the sense defined in [7]. Note that at 

most n measurements out of m should be aV.1ilable and are used by the following optimal 

algorithm. 
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THEOREM 2. 

Let F and H be linear nonned spaces equipped with l~ nonns and S a linear functional. 

If rank P = n then the algorithm 

--1-epoCh) = SP d (25) 

is linear and optimal. 

PROOF: 

Using (20) the local error of the algorithm (25) is 

E(SP-1 J, h) = sup lSI - sp-1d1 . (26) 
f:IIPf-dll~~E 

Since 

{I E liP I - dll~ $ e} S; {I E liP I - d11~ $ e} (27) 

it results that 

E(SP-1J, h) $ sup lSI - sp-1 d1 = 
f:lIPf-dll~~E 

sup IS(I - p-1 d)1 = sup ISII. (28) 
f:IIP(f-P-ld)II~~E f:IIPfll~~E 

Using the definitions of active constraints (22) and of matrix P (23) we get 

(29) 

Since the opposite inequality is obvious the proof is complete. 

• 
In [1] the properties of a similar algorithm are studied for complete and approximate 

infonnation. Remark that the condition about the invertibility of the matrix P is not 

restrictive in practice; in fact if rank P < n the intrinsic error is not fini.te. 
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REMARK. 

The previous theorem can be easily extended when S is a linear operator and Z is 

equipped with 100 norm. In this case the active constraints of the problem can be computed 

component wise and a linear optimal algorithm is the rectangular matrix r by m having 

row by row the optimal solution of each component of Sf obtained by Theorem 2. 

• 
3. MEASUREMENT SPACE EQUIPPED WITH II NORMS. 

In this section we present a strongly optimal algorithm when the measurement noise is 

described by If' norms1 

Define the following matrix W of size 2m
-

1 by m containing the weights Wi 

WI W2 Wm-I Wm 

WI W2 W m -l -Wm 

WI W2 -Wm-l Wm 

W= WI W2 -Wm-I -Wm (30) 
..................... 
.................... . 
WI -W2 ... - W m -l -Wm 

THEOREM 3. 

Let H and Z be linear normed spaces equipped with If' and 100 norms and I< be the 

unit ball. Then the algorithm given by 

1 The norm If is defined as 
m 

Ilhilf = L Wilhil Wi > 0 . 

i=l 

12 



is strongly optimal. 

PROOF: 

Using the definition of the Ii norm in the space H we get 

m m 

liN! - hili = L wilNd - hil = L IWi(Nd - hi)1 ~ e (32) 
i=1 i=1 

which is equivalent to 

Wi(N!-h)~e i=I, ... ,2m
-

1 

(33) 
-Wi(N! - h) ~ e i = 1, ... ,2m

-
1 

and 

(34) 

A strongly optimal algorithm is given by the center of the set S {T(h)} (see [1]-[4]). If 

the space Z is equipped with 100 norm the center can be computed componentwise. Then 

relation (31) follows. 

• 
If K is defined by linear inequalities (i.e., the space F is equipped with 100 or 11 norms) 

the computation of the previous algorithm is a linear programming problem, although the 

number of constraints is at least (2m + 2n). The previous algorithm can be efficiently 

computed in many practical problems when the number of measurements is limited, for 

example, in nonidentifiable dynamic systems. Nevertheless, in many other cases, since the 

structure of the matrix (30) is very particular, the number of constraints may be greatly 

reduced. 

Now we present two examples showing the practical application of the theory previously 

developed to problems of time series prediction and parameter estimation of nonidentifiable 

dynamic systems. 

13 



EXAMPLE 1. (Time Series Prediction) 

Time series prediction is the estimation of a future value of a time function knowing the 

observed values during a previous time interval. The problem element f is a discrete time 

function of the form 

I 

f(k) = L aigi(k) + u(k) k = 1, ... , (m + 1) 
i=l 

where l is a fixed integer, gi( k) are given discrete functions, aj arbitrary real unknown co

efficients and u( k) are samples of the process noi~e. In this case, since the exact knowledge 

of N f = {f (1), ... , f (m)} is available, the information is partial and exact. Our aim is to 

approximate the problem element Sf = f( m + 1) by an algorithm cp, called in this case 

optimal error predictor, operating on the information N f. A complete solution of this 

problem is provided by tlie results of Section III, according to the norm used to describe 

the process noise. 

This problem has been studied in detail in [13] and [14]. Furthermore, in [14] a wide 

numerical comparison between autoregressive, mixed harmonic, ARMA, ARIMA, GMDH, 

bilinear, subset bilinear, subset autoregressive and optimal error predictors is presented 

using three well-known time series, namely Wolf Sunspot Numbers, Annual Canadian Lynx 

Data and Australian Births. 

I 

EXAMPLE 2. (Parameter Estimation of NonidentiEable Dynamic Systems) 

In this case the problem element f = f(A., k) is the input-output pair of a linear discrete 

dynamic system with unknown parameter vector A.. The information is the knowledge 

of f(A., k) at different times k possibly corrupted by additive measurement noise and the 

solution is the estimation of A.. Since f( A., k) may be nonidentifiable from the knowledge 

of the output measurements the information is partial and possibly contaminated. The a 
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priori information acquired about the parameters A is taken into account in the set K. In 

this case the results of Section III can be used. The problem of parameter estimation of 

dynamic identifiable systems in the presence of measurement noise unknown but bounded 

and described by 100 norm is studied in [1] and [15]. 

IV. STATE ESTIMATION OF LINEAR SYSTEMS 

IN THE PRESENCE OF UNKNOWN BUT BOUNDED NOISE 

In this section we apply the general theory previously developed to state estimation of 

linear systems when process and observation noise are unknown but bounded. 

Consider the following discrete, linear, time invariant dynamic system represented in 

state variable form 

x(k + 1) = Ax(k) + Bu(k) 

y(k) = Cx(k) + 7](k) 
(35) 

where x( k) is the r-dimensional state vector; y( k) is the q-dimensional observation vector; 

u( k) and 7]( k) are the p-dimensional process noise and the q-dimensional observation noise 

vector; A, Band C are given matrices with compatible dimensions. 

At time k the problem element f is defined as 

f = [x(O), u(O), ... , u(k)]T (36) 

It results that the space F of the elements f is a linear space of dimensions n = r + p( k + 1). 

The subset K contains the information about the initial conditions (if available) and the 

process noise and is defined by 

K = {f E F: Ilx(O)1I ~ 8; Ilu(i)11 ~ T,i = 1, ... ,k} (37) 

Since our goal is the estimation of the state x( k + 1) the solution operator is given by 

Sf = x(k + 1) 
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where x(k + 1) can be written in tenns of the variables x(O), u(O), ... , u(k) as 

k 

x(k + 1) = Ak+lx(O) + L AiBu(k - i) . (39) 
i=O 

The space Z of the solution S I is linear and r-dimensional. At time k the infonnation 

operator N is given by 

NI = [Cx(0),Cx(1), ... ,Cx(k)]T = 

- [CX(O), CAx(O) + CBu(O), ... , CA 'x(O) + C ~ Ai Bu(k - i-I) r (40) 

In this case the exact infonnation (40). is corrupted by observation noise and only the 

approximate information h is available 

h = [y(O), ... , y(k)f = N 1+ [7](0), ... , 7](k)f (41) 

The space H is linear and of dimensions m = q(k + 1). According to (2) we assume that 

the uncertainty of infonnation 

p = [7]( 0 ), ... , 7]( k ) ] T (42) 

is unknown but bounded by a constant f. An algorithm cp operating on the infonnation 

( 41), available at step k, provides an estimate x( k + 1) of the state x( k + 1) 

cp(h) = x(k + 1) . (43) 

In particular we are looking for locally and globally optimal algorithms minimizing the 

uncertainty of the estimate of the state measured with a suitable norm 

IIS1 - cp(h) II = IIx(k + 1) - x(k + 1)11 ( 44) 
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according to the min-max criteria defined in (6) and (8). 

It is to remark that the strong optimality property may be very useful for this problem. 

In fact it guarantees the minimization of the uncertainty ( 44) for the worst problem element 

j when the information h is fixed. The intrinsic error represents the minimum uncertainty 

(44) for the worst h and j, i.e., the minimum global error. 

REMARK. 

The previous formulation can be generalized to include a measurable input vector v(k), 

I.e., 

x(k + 1) = Ax(k) + Bu(k) + v(k) 

and a dynamic time-variant system with matrices A(k), B(k) and C(k). 

• 
REMARK. 

The condition of observability of the dynamic system is necessary such that the set T( h) 

is bounded and the radius is finite, at least when no reliable information about the initial 

condition is available, as frequently happens. In this case 8 = 00 in the set (37) and we 

must assume that 

rank [C,CA, ... ,CAn-I]T = n 

in order to ensure that the term Ak+lx(O) in formula (39) could be recovered. 

• 
The problem of recursive parameter and state estimation of a dynamic sytem in the 

presence of unknown but bounded noise is addressed in [9], [10], [16]. In particular in [10] 

a recursive algorithm, having the same structure as the Kalman filter, is given. Unfor

tunately, the solution suggested is sharp only if energy-type constraints on the noise are 

considered. In general, in the case of instantaneous constraints the resulting uncertainty 

set cannot be easily described. The approximate solution proposed is to bound the set of 
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possible states compatible with the given observations by an ellipsoid. Equations for the 

center and for the weighting matrix are given. 

In this paper we consider a different approach to the problem. According to previous 

formulation if the bounds € and T are constant and independent of k the algorithms given in 

Section III use all the available data, including all observations y(O), ... , y(k) and a priori 

information about the process noise u(O), ... , u(k) contained in the set K. In this case the 

uncertainty for k large can be too small with respect to the true one, especially when the 

dynamic system (35) is just a good representation of the actual system and the matrices 

A, Band C are not exacly known. This problem is particularly relevant when the bounds 

€ and T are smalL A similar problem arise when a statistical approach is used: the error 

covariance matrix becomes very small and the new observations available are ignored. This 

problem, generally called divergence between the estimate x(k + 1) and the state x(k + 1), 

is relevant in the presence of modelling errors in statistical filtering theory (see [17]). In 

order to avoid these drawbacks the choice of different models of information, weighting 

differently new and old data, seems suitable. This technique, generally called exponential 

smoothing (or exponential age weighting, see [17] and [18]), well known and frequently 

used in statistical contexts, is now introduced in the case of unknown but bounded noise. 

Assume that the following exponential bounds on process and observation noise are given 

lIu(i)1I ~ Texp(k - i) a> 0 i = O, ... ,k 
a 

(45) 

(46) 

In practice the number of observation to be processed is constant when k increases and the 

lenght of the memory can be suitably chosen by means of the constants a and f3. However 

in this case we must guarantee that with this model of noise a solution can be computed 

even for k ~ 00. The next theore:n shows that if the norm of the matrix A is sufficiently 

small the state x( k + 1) is asymptotically bounded. 
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THEOREM 4. 

Let (45) and ( 46) be the bounds on process and measurement noise. If II A II exp( 1 j a) < 1 

then 

. < rliBIl 
hmsup IIx(k + 1)11 - ( j )IIAII k-oo 1 - exp 1 a 

( 47) 

PROOF: 

Let us consider the solution operator given by (38) and (39) 

k 

IIx(k + 1)11 ::; IIA k+1x(O)1I + II LAiBu(k - i)1I . (48) 
i=O 

Since IIAII < 1 by hypothesis the term IIAHlx(O)1I vanishes for k --+ 00. Furthennore, 

using (45), (48) and the properties of the matrix nonn we get 

00 00 

lim sup IIx(k + 1)11 ::; r L exp(ija)IIAiB II ::; rliBIl L exp(ija) II Ai II ::; 
k-oo i=O i=O 

00 00 

(49) 
i=O i=O 

The proof is complete by observing that the geometric senes (49) IS convergent if 

exp(lja)IIAIl < 1. 

• 
REMARK. 

From Theorem 4 it follows that the radius is asymptotically finite if IIAII < 1 and the 

smoothing factor a is appropriately chosen. Note that IIAII is strictly related to the spectral 

radius u(A) by means of the following formula 

u(A) ::; IIAII . 
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Note that the previous inequality is sharp for symmetric matrices and the second norm. 

From a practical point of view it is enough to require the stability of the dynamic system 

and choose a norm such that IIAII < 1. The constant a should be appropriately chosen: 

if the largest eigenvalue of A is close to the unit circle then exp( 1 / a) must be very small 

and a long memory should be considered. 

Note that the condition O"(A) < 1 is verified for nonnegative matrices (Le., matrices with 

nonnegative entries aij ) for which L:~=l aij < 1 j = 1, ... ,n. Nonnegative matrices of 

this kind are frequently used in many application areas, for example in economic problems 

(see [19]). 

• 
REMARK. 

Using the classical statistical techniques the optimal estimation (in a minimum variance 

sense) of the state can be computed without the requirement of the stability of the system, 

under the assumption of complete observability and controllability. Nevertheless, in prac

tical applications, the modelling errors may cause great problems. In fact, in the presence 

of parameter variations, nonlinearities, neglected unstable dynamics the requirement of the 

stability of the actual system is necessary in order to avoid the divergence of the algorithm 

(see [17] and [18] for further details on the subject). 

• 
Note that, using the exponential smoothing the number of constraints on the noise is, in 

practice, constant when k increases. On the other hand the number of samples of the input 

noise u( i) increases when k increases. Thus, in order to reduce the computational burden 

instead to approximate Sf we look for an algorithm approximating an easier solution 5 f 

obtained by neglecting the higher power in (39) 

j 

Sf = Ak+lx(O) + LAiBu(j - i) , j < k. (50) 
i=O 
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The number of terms in (50), i.e. j, should be chosen in order to guarantee an approxi-

mation "f required 

(51) 

The constant "f should be chosen according to precision and computational requirements. 

It is to remark that "f may be sufficiently small since in (50) just the power of high order 

are neglected. Next theorem present a relation to compute j in (51). 

THEOREM 5. 

Let (45) and (46) be the bounds on process and measurement noise. lfllAl1 exp(l/a) < 1 

and j is given by 

(52) 

then 
k 

lim sup II L AiBu(k - i)11 ::; "f. 
k-c:x> i=j+l 

(53) 

PROOF: 

Following the line of proof of Theorem 4 (see formula (49)) we obtain 

k k 

II L Ai Bu(k - i)11 ::; TIIBII L (exp(l/a)IIAIO
i 

(54) 
i=j+l i=j+l 

and 
k ()1+1 _ ( 1/ II)k+l 

II ~ AiBu(k - i)11 ::; TIIBII exp(l/a)IIAIl exp( a)IIA (55) 
.~ 1 ..... exp(l/a)IIAII t=J+l 
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Since exp(1/a)IIAIi < 1 for k ~ 00 (55) becomes 

. ~ i . (exp(1/a)/lAII)J+l 
hmsup II ~ A Bu(k - z)11 $ TIIBII _ (/ )IIAII 

k-oo " 1 exp 1 a 
I=J+l 

If j is chosen such that 

the right hand side of (56) is smaller than "y and relation (53) is proved. 

By means of easy computations formula (52) can be written as 

(56) 

(57) 

I 

(j + 1) (1/ a + In II A II) $ In (1 - II A II exp(1 / a ») + In "Y - In T - In II B II ( 58) 

and for the approximation "Y required a suitable value of j can be computed, when A,· B, 

a, T are given. Remark that j given by (58) is independent of k and the number of terms 

in the approximate solution Sf (50) is constant when k increases. 

When j and the smoothing constants a and f3 are chosen a complete solution to state 

estimation problem can be obtained by applying the results presented in Section III. 

Now we show two application examples: input-output economic models and finite 

Markov chains. 

EXAMPLE 3. (Dynamic Leontief Models) 

In this example we describe a typical application to economics. A dynamic open Leontief 

model (see [20]) represents an economic situation in which the production of some industries 

is a consequence of the demand of market. In particular consider a situation involving n 

independent industries producing a single type of commodity. By x( k) and v( k) we denote 

the whole production and the demand of market at time k 

x(k + 1) = Ax(k) + v(k) 
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where the nonnegative matrix A is called Leontief input-output matrix. Since in practice 

the demand v( k) is not exacly known we introduce the uncertainty u( k) in the previous 

relation 
k k 

x(k + 1) = Ak+lX(O) + L Aiu(k - i) + L Aiv(k - i) . 
i=O i=O 

The a priori information available, given by suitable bounds on the uncertainty u( i) and 

on the initial production x(O), is contained in the set K. The information h is given by 

the approximate knowledge y( i) on the production x( i) 

y( i) = x( i) + 7]( i) i = 0, ... , k . 

For a feasible Leontief model the solution Sf defined as 

k 

Sf = Ak+Ix(O) + L Aiu(k - i) 
i=O 

remains bounded even for k large, since u(A) < 1. In this case an approximation to Sf is 

provided by an algorithm 'P( h) and the estimated production x( k + 1) is given by 

k 

x(k + 1) = 'P(h) + L Aiv(k - i) . 
i=O 

An application of the optimal error predictors to dynamic Leontief models can be found 

in [21] when the input-output matrix is not known, the production x( k) is given and the 

aim is the forecasting of the production x(k + 1). • 
EXAMPLE 4. (Finite Markov Chains) 

A finite Markov chain can be represented in the following form 

x(k + 1) = Ax(k) 
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where the entries ajj of the matrix A are the transition probabilities between the state 

xj(k) and the state xj(k + 1) and describe the probabilistic behavior of the Markov chain. 

Clearly, the coefficients ajj satisfy the following relations 

ajj 2: 0 i = 1, ... ,n; j = 1, ... , n 

n 

L ajj = 1 i = 1, ... ,n . 

j=i 

By Xi(O) and xi(k + 1) we denote the probability that a system is in the state i initially 

and after k + 1 steps. We study the case when x(O) is uncertain, i.e. bounded in a suitable 

way, and the aim is the estimation of x(k + 1). In general no information is available 

on the probabilities at steps 1, ... ,k and the only information available is that the initial 

probabilities belong to a set defined by the following inequalities 

for given positive constants 8i :::; 1. 

An important class of Markov chains is that of absorbing chains (see [19]) for which the 

transition matrix can be permuted in the form 

where 0 is the null matrix and G is a stable matrix (i.e., O"(G) < 1). The k power of A is 

k ( I 
A = ,,~-l Gin 

LJ,=o 
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.. 

Since G is stable we get 
00 

L G i D = (I - G) -1 D . 
i=O 

A problem of major interest in this context is the estimation of the state x(k + 1) as 

k -+ 00. For absorbing chains, althuogh the condition O'(A) < 1 is n,ot verified, the matrix 

A k remains asymptotically bounded and the probability vector x( k + 1) can be recovered 

by means of the previous theory. I 

V. CONCLUSIONS 

In this paper problems of estimation and filtering In the presence of unknown but 

bounded errors are considered. In particular we have shown computable algorithms for 

nonidentifia.ble dynamic systems and/or for systems with two different sources of noise, 

measurement and process noise. Algorithms for some norms characterizing the uncer-

tainty, i.e. Hilbert, it and 100 are presented. For Hilbert norms a linear optimal algorithm 

is the well known minimum variance estimator. For 100 and II norms optimal algorithms, 

computable by linear programming, are constructed. The problem of state estimation is 

formalized in the general framework of the theory. Using an exponential smoothing on the 

bounds of the noise it is proved that the asymptotic uncertainty of the state is bounded. 

Examples of dynamic Leontief models and Markov chains are presented. 
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