Compiling Path Expressions
into VLSI Circuits

T.S. Anantharaman
E. M. Clarke
M. I. Fostert
B. Mishra .

CUCS=166-85

Carncgic-Mellon University
Pittsburgh, Pennsylvania 15213

June 1985

*Current address: Department of Computer Science, Columbia University, New York, New York 10027.

This rescarch was partially supported by NSF Grant MCS-82-16706, and the Defense Advanced Rescarch
Projects Agency (DOD), ARPA Order No. 3597, monitored by the Air Force Avionics [aboratory Under
Contract F33615-81-K-1539.

Abstract; Path cxpressions were originally proposed by Campbell and Habermann [2] as a mechanism for
process synchronization at the monitor level in software. Mot uncxpectedly, tey also provide a uscful
notation for specifying the behavior of asynchronous circuits. Mouvated by these potential applications we
investigate how to directly translate path cxpressions into hardware.

Qur implementation is complicated in the case of multiple path expressions by the necd for synchronization
on ¢cvent names that are common to more than one path. Moreover, since cvents are inherently asynchronous
in our model, all of our circuits must be sclf-timed.

Nevertheless, the circuits produced by our construction have area proportional to N -log(N) where N is the
towal length of the multiple path expression under consideration. This bound holds regardless of the number
of individual paths or the degree of synchronization between paths. Furthermore, if the structure of the path
expression allows partitioning, the circuit can be layed out in a distributed fashion without additional area
overhead.

1. Introduction

As the boundary between software and hardware grows less and less distinct, it becomes increasingly
important to investigate mecthods of directly implementing various programming language featurcs in
hardwarc. Since many of the problems in interfacing hardware devices involve some form of process
synchronization, language features for synchronization deserve considerable attention in such investigations.
In this paper we consider the problem of directly implementing path cxpressions as self-timed VLSI circuits.
Path expressions were originally proposed by Campbell and Habermann (2] for restricting access by other
processes to the procedures of a monitor. For exainple, the simple readers and writers problem with two

reader processes and a single writer process is solved by the following multiple path expression:

path R1 + W end,
path R2 + W end.

The first path expression prohibits a read operation by the first process from cccurring at the same time as a
write opcration. The second path expression enforces a similar restriction on the behavior of 'the sccond
reader process. [n a computation undcr control of the multiple path cxpression, the two read operations may

occur simultaneously, but a read and writc operation cannot occur at the same time,

A simple path expression is a regular expression with an outermost Klcene star. The only operators
permitted in the regular c;(pression arc (in order of precedence) "*”, *;”, and "+". The "*" operator is the
Kleene star, ;" is the sequencing operator, and * + " represents exclusive choice. Operands are cvent names
from' somc sct of events Z that we will assume to be fixed in this paper. The outermost Kleene star is usually
represented by the delimiting keyword path ... end. Thus (a)' would be represented as path a end. Roughtly

the sequence of events allowed by a simplc path expression must correspond to the sequences asceept by the

rcgular cxpression.

A multiple path expression is a sct of simple path expressions. As we will see shortly, cach additional simple
path cxpression further constrains the order in which events can occur. However, we cannot simply take as
our secmanucs for multiple path cxpressions the intersection of the languages corresponding to the individual
path expressions; two cvents whose order is not explicitly restricted by one of the simple path cxpressions may
be concurrent. For cxample, in the multiple path cxpression for the readers and writers problem discussed in
the introduction the two read cvents Rl and R2 may occur simultancously. Nevertheless, we will still have

occasion to usc ordinary regular expressions in giving the semantics for path expressions.

Path expressions are useful for process synchronization for two reasons: First, the close relationship
between path expressions and regular expressions simplifics the task of writing and reasoning about programs
which use this synchronization mechanism. Sccondly, the synchronization in many concurrent programs is
finite state and thus, can be adequatcly described by regular expressions. For preciscly the same reasons, path
expressions are uscful for controlling the behavior of complicated asynchronous circuits. The readers and
writers example above could cqually well describe a simple bus arbitration scheme. [n fact, the finite-state

assumption may be even more rcasonable at the hardware level than at the monitor level,

Path expressions may be uscful in coordinating the actions of distributed systems. Distributed systems are
typically locally synchronous, with cach dcvice having a local clock, but globally asynchronous, since no
global clock is sent to every device. [f two devices in such a system share a resource, but do not share a global
. clock, somc mcans of synchronizing their actions must be provided. An asynchronous device that enforces a
path expression could be used as a synchronizer in this case. Using such a synchronizer, separate devices in a

distributed system could run without a global clock, synchronizing their actions only when necessary.

-

Which brings us to the topic of this paper: What is the best way to translate path expressions into circuits?
Lauer and Campbell have shown how to compilc path expressions into Petri nets {7}, and Patil has shown how
to implement Petri nets as circuits by using a PLA-like device called an asynchronous logic array (13]. Thus,
an obvious method for compiling path expressions into circuits would be to first translate the path expression
into a Petri net and then to implement the Petri net as a circuit using an asynchronous logic array. However,
carcful examination of Lauer and Campbell's scheme shows that a multiple path expression consisting of M
paths each of length K can result in a Petri nct with KM places. Thus, the naive approach will in gereral be

infeasible if the number of individual paths in a multiple path cxpression is large.

For the case of a path cxpression with a single path their scheme does result in Petri net which is

comparable in size to the path expression. However, direct implementation of such a net using Paul’s ideas

may still result in a circuit with an unacceptably large arca. An asynchronous logic array for a Puri net with P
places and T transitions will have arca proportional to P -1 regardless of the number of arcs in the net. Since
the nets obtained from path cxpressions tend to have sparse cdge scts, this quadratic behavior may waste

significant chip arca.

Perhaps, the work that is closest to ours is due to Li and lauer[l0} who do indeced implement path
expressions in VLSI. However, their circuits differ significantly from ours: in partcular, their circuits are
synchronous, and synchronization with the external world (which is, of course, inherently asynchronous) is
not considered (This means that the entire circuit, not just the synchronization, must be described using path
expressions . Furthermore, their circuits use PLA's that result in an arca complexity of O(N?). Rem {15] has
investigated the use of a hicrarchically structured path expression-lixe language for specifying CMQOS circuits.
Although he does show how certain specifications can be translated into circuits, he does not describe how to

handle synchronization or give a gencral layout algorithm that preduccs arca efficient circuits,

In contrast, the circuits produced by the construction described in this paper have arca proportional 1o
N -log(N) where N is the total length of the multiple path expression under consideration. Furthermore, this
bound holds regardless of the number of individual paths or the degree of synchronization between paths. As
in [4] and (5] the basic idea is to genecrate circuits for which the underlying graph structurc has a constant
separator theorem [8]. For path expressions with a single path the techniques used by [4] and [5] can be
adapted without great difficulty. For multiple paths with common event namcs, however, the construction is
not straightforward, becausc of the potential necd for synchronization at many different points on ¢ach
individual path. Moreover, the actual circuits that we use must be much more complicated than the
synchronous ones used in ([4], [5]). Sincec events are inherently asynchronous in our madel, all of our circuits
must be self-timed and the use of special circuit design techniques is required to correctly capture the

scmantics of path expressions.

The paper is organized as follows: A formal semantics for path expressions in tcrms of partially ordered
muldsets [14] is given in section 2. In sections 3, 4, and S we give a hierarchical description of our scheme for
implementing path expressions as circuits. [n section 4 we first describe how the complete circuit interfaces
with the external world. We then show how to build a synchronizer that coordinates thie behavior of the
circuits for the individual path expressions in a multiple path cxpression. In section 3 we describe a circuit for
implementing single path expressions which we call a sequencer. [n section 5 we show how the arbiter circuit
used in section 4 can be implemented. We also arguc that these circuits are correct and can be laid out
cfficiently. The conclusion in scction 6 discusses the feasibility of our implementation and the possibility of

extending it to other synchronization mechanisims like those used in CCS and CSP.

4

2. The Semantics of Path Expressions

In this scction we give a simple but formal scmantics for path cxpressions in terms of partally ordered
multiscts of events [14]. An alternative semantics in terms of Petri Nets is given by [.auer and Campbell in 7]
A a ponsct may be regarded as a generalization of a scquence in which certain elements are pennitted to be
concurrent; this is why the concept is uscful in modcling systems where scveral events may occur

simultancously.

Definition 1: A partially ordered multiset (pomset) over Z is a triple (Q, <, F) where (Q, <) is a partially

ordered set and F is a function which maps Q into 2. O

An cxample of a pomset is shown in Figurc 2-1. We use subscripts to distinguish different elements of Q
that map to the same clement of Z. In this case Q = (’\1'A"A3’BL'Bz'BJ'CrCz'Cz) and £ = (A.B,C). Note
that we could have alternatively defined a pomsct as a dirccted acyclic graph in which cach node is labeled

with some clement of Z.

/\/\/
\/\/\

Figure 2-1: An c¢xample pomset

[f the ordering relation of a pomset P over Z is a total ordcer, then we can naturally associate a sequence of

elements of T with P; we will use S(P) to denote this sequence,

Definition 2: IfP = (Q, <, F) is a pomset over Z and Z, ¢ I, then the restriction of P to Z, is the
pomset P‘z (Ql' Sp 1) where Q1 ={deQ | F(d) e 2 } and < <y Fl are restrictions of <, F to Ql,

rcspectivcly. a

IfPis a totally ordered pomset over Z and 21 ¢ Z, then S(P| 3) is just the subsequence of S(P) obtained by
1
delcting all of those elements of Z which arc not in 21. Ifif R is an ordinary rcgular expression over Z, then

ZR ¢ T will be the set of symbols of £ that actually appcar in R and LR g Z;will be regular language which

corresponds to R.

Definition 3¢ Lot T he a finite sct of events: a trace over Tis a finite pomsct [= (Q. <. F) over Z. We
say thati € Qs an instance of an event ¢ € Z if F(i) = ¢. Aninstance 1, of event ¢, precedes an instance i,

of evente, ifi1 precedes i, in the partial order <. An instance I of event ¢, is concurrent with an instance

iy of event ¢, if neither instance precedes the other. O

[n the cxample above A, precedes A, but B, and C, are concurrent.

Definition 4: Let R be a simple path expression with eventset Z,. A trace T is consistent with R if'r"[’l -

: “R
is totally ordered and S(Tl <) is a prefix of some scquence in LQ . If M s a muliiple path expression,
then a trace T is consistent with A iff it is consistent with cach simple path expression R in M. Tr (M) is

the set of all traces which are consistent with M. O

Consider, for cxample, the multiplc path expression M:

path A:B end,
path A;C end.

with £ = {A. B, C}. Itis easy to sce that the trace in Figure 2-1 is consistent with cach of the simple path

- expressions in M and hence is in TrX(M).

3. Implementing the Sequencer for a Simple Path Expression

This section shows how to construct a sequencer that enforces the semantics of a simple path expression.
The sequencer circuit is constructed in a syntax-dirccted fashion bascd upon the structure of the simple path
expression. We show that a compact layout for the sequencer exists, so that circuits of this type can be

implemented economically in VLS.

Since a simple path expression is a regular expression, the sequencer for a simple path expression is similar
to a recognizer for the regular expression. Although schemes for recognition of regular languages have been
proposed that avoid broadcast [4], we will use a scheme that requires broadcast of cvents throughout the
scquencer {3, 12]. Because our scheme for interconnecting sequencers (sce section 4) requires broadcast, the
broadcast within an individual scquencer carrics no additional penalty. A sequencer for a simple path
expression is built up from primitive cells, cach corresponding to onc character in the path. The syntax of the

path determines the interconnection of the cells in the sequencer. [n this scction, we first describe the

behavior of a sequencer for a simple path expression, then give a syntax-directed construction method.

A outside world communicates with a scquencer using three lines for cach event:

*TR,Q signal to the scquencer that event e is about to commence in the outside world;

®Ta,an acknowledgement from the sequencer that the exccution of event e has been noted by the
sequencer.

e DIS,: a status line indicating that action e would violate the path constraints so that 1R, should not
-be asscricd by the outside world. It is valid when TR and TA arc both low.

T‘hcsé communication lines interact in a complex way, qu a single type of cvent, the signals TR, and TA,
follow the four-cycle signaling convention (for an example see Section 4). For differcnt types of cvents, the
outside world must guarantce the correct interaction of TR signals by ensuring that only one TR signal for an
event satisfying the simple path cxpression is asscrted at any time. The outside world can use the DIS status

lincs to determine which requests to send to the sequencer.

The sequencer also has a part to play in cnsuring the correct interaction of TR, TA and DIS. DBesides
generating a TA signal that follows the four cycle convention with TR, it must ensure that the signal DIs, is
correct as long as no TR or TA signal is asserted. This guarantce mcans that if no TA is asserted, and netther
DIs,, nor DIS , is true, then the outside world may choosc arbitrarily between ef and e2, letting cither of them
through to the simple path sequencer. On receiving a TR, signal, then, the scquencer must asscrt Ta,, adjust
1ts internal state to reflect the occurrence of cvent e, assert the proper sct of DIS lines while awaiting the

ncgation of TR , before ncgating TA,,

More formally we require the following propositions to hold :

Proposition 5; (Scquencer protocol): For any scquencer SEQJ. ,

L. TA, is raiscd only ifTRe is high.
2 TA, is lowered only if‘rRe is low.
3 DIs, is stable while all TR's and TA’s are low. a

Proposition 6: (Sequencer safety and liveness) : For any sequcncer SF_Qj , assume that at all times,

e no two TR's are high simultancously,
* TR, is raiscd only if DIs, and all TA's are low,
® TR, is lowered only if TA, is high.

Then the following hold :

1. TA, is raiscd within a finitc time OfTRe being raised.
2.TA is lowered within a finite ime ofTRe being lowered.

3. For any sequencer SEQ, whenever all ra's and IR's arc low, exactly those cvents ¢ will have DIS
low, for which S(1tSeq(j))) can be extended by e to give a prefix of some scquence in

LRj‘ a

Now that the behavior of a sequencer has been described, we show how to construct a scquencer for any
simplc path cxpression. A scquencer has two parts: a controller and a recognizer. The controller is connected
directly to the rest of the outside world and generates both the TA signals and some control signals for the
recognizer. The rccognizer keeps track of which events in the path have been seen and generates the DIS

signals.

Figure 3-1 shows the coutroller for a simple path P. The controller accepts the signals TR, from the
sequencer for each event e that appears in P. [t generates the signal§ TA, along with Start and End. The
meaning of TA , is that all actions caused by TR, have been completed. [n this realization, TA is just a delayed
version of TR, where the delay is long cnough to let the sequencer stabilize. An upper bound on this delay can
be computed from the layéut of the rest of the circuit. Thus the sequencer is self-timed but not delay
insensitve. A delay insensituve circuit will be described in a separate paper {1} . [t has been omitted in this
paper as it unnccessarily complicates an understanding of how the sequencer works. Start and End are
essentially two phase clock signals that control the movement of data through the recognizer for P. Roughtly
Start is true from the time onc TR is asserted untl the correponding TA is asserted, while End is true from the
time TR is deasserted until Ta is also deasserted. The element labelled M.E. (Mutual Exclusion) is an interlock

element as shown in fig 5-2. [t is required to guarantce that the two clock phascs are stricdy non-overlapping.

The recognizer for a path accepts the TR, signals and generates the DIS signals. It is made up of sub-circuits
corresponding to subexpressions of the path. To construct the recognizer for a path, we parsc the path using a
context-free grammar. Productions that are used in parsing the path dctermine the interconnections of
sub-circuits to form the recognizer. Non-terminals that arc intoduced in the parse correspond to primitive

cells used in the circuit.

Recognizers are constructed using the following grammar for simple path expressions.

S — path R end
R —=R;RI(R + R)|(R)*|<evenD.

The terminal symbols in the grammar correspond to primitive cells; there is one type of cell for the “+"
symbol, onc for the “*" symbol, one for the **:" symbol, and one for cach event. [he non-terminals
correspond to more complex circuits that are formed by iﬁtcrconnccting the primitive cells. Using the
method described in [3]. semantic rules attached to the productions of the grammar specify how the circuits

on the right of each production are interconnected to form the circuit on the left.

——
1
; C] . s { C ;
v v
TRa TRy TAa TAp

Figure 3-1: The controller for path P

To kecp track of which events in the path have occurred and which are legal, the sub-circuits uf a recognizer
communicatc using the signals ENB (cnable) and RES (result). If ENB is asserted at the input of a circuit for a
subcxpression at the beginning of a cycle (when START is asserted), the subcircuit begins keeping track of

~events starting with that cycle, and asserts RES after a cycle if the event sequence so far is legal for the
subexpression. The ENB input may be asserted before any cycle, and the subcircuit must generate a RES sighal
whenever any of the previous ENB inputs by itself would have required it. At the top level ENB is asserted only
once, before the first .cyclc. Between cycles each subcircuit deasseris the DIS signal_for an event, if the
occurance of that event during the next cycle is legal {this is the case if the subcircuit would assert Dis for
some subscquent sequence of events even if ENB were not asserted any morc). These ¢vent signals from all

subcircuits are combined to generate the external DIS signals.

Figure 3-2 shows the cell for event e. Two latches, clocked by Start and End, control the flow of £NB and
RES signals. The latches are transparent when their cnable is asserted and hold their previous value otherwise.
The lawch pair forms a level trigerred master - slave D-Flip-Flop, clocked by the non-overlapping clock signals
Start and End.

The event cell in Figure 3-2 propagates a 1 from ENB to RES only if event e occurs. When this cell is used in

a recognizer for a path expression, the ENB input will be true if and only if cvent e is permitted by the

From other
cellsfore

DIS

ENB > {D latch Dlatch > Qes
.- 5] _’-l\—
TR - :
e Start, end;
(Soma TR (Some TA
and no TA) and no TR)

Figure 3-2: Ccll for cvent ein path P

expression. Thus, if ENB is true it ncgates nis, for the path, as shown in the figure. When a request TR is
made, the output of the AND gatc is loaded into the leftmost latch. [f this request is TR, this output is 1;
otherwise it is 0. In cither casc the output of the AND gate is propagated to RES through the.latch when TR is

lowcred.

Figures 3-3 and 3-4 show the cells for the *;” (scquencing) and "+ " (union) opcrators. These are stricty
combinational circuits. The circuit for *;" feeds the RES signal from the circuit at its lef into the £NB signal
for the circuit to its right. The circuit for * + " broadcasts its ENB signal to its operands and combings the RES
signals from its operands in an OR gate. [t will be seen that the combination (union) of multiple recognitions
by cach subcircuit is essental in allowing them to be built up recursively,_ and exploits the fact that the union
and sequencing opcrators are distributive over union.}

Figure 3-5 shows the cell for the “*" operator. The cell cnables its operand after receiving cither a 1 on
cither its own ENB or its operand’s RES. Every time the operand is enabled the “*” cell also putsout a L on its
own RES. [t thercfore outputs 1 on RES after 0 or more repetitions of its operand's expression. The additional
AND gate sets the output to 0 momentarily after each event, thercby preventing the formation of a latch when

o

two or more cells are used together. This ccll is responsible for making the minimum cycle duration

depend on the path expression. During the first phase of a cycle the sequencer has to perform an e-closure of

11his is also the rcason why this mcthod cannot be used for extended regular cxpression with complement/intersection by

ivnerting/ ANDing the corresponding Rrs outputs : The compiement/intersect:on operators are not distributve over union.

ENB /'F RES
I
1]
v \:
Figure 3-3: Cell for ;"
ENB ' RES

Figure 3-4: Cell for"+"

the simple path expression. This delay is directly reflected in the gate delay between the E.\'B input and RES

output of the “*” cell. These dclays will add up for an expression like ((a' ; b') : (c‘ ; d')).

Y N
|

oD -

A
End, ENB RES

Figure 3-5: Ccll for **”

L

When larger circuits arc made from these cells, the RS and ENB signals reqin their meanings. Fach event
cell or sub-circuit formed from several cells accepts one input N3 and produces onc output RIS, [n general
we define a pair of £NB and RES to be correct if the following applics at the beginning of cach cycle (just

before START is deasserted) :

e [NB s true if and only if the sequence of events so far can be extended by any scquence of events
satisfying the expression of the subcircuit controlled by the ENB/RES pair, to give a prefix of some
scquence in LR)'

e RES is true if and only if some sequence of events satisfying the subcircuit has just completed, and
END was true just before the beginning of that scquence.

[n addition, a scquencer has a signal INIT, not shown in the figures, which clears the RES outputs of all event
(leaf) cells and generates the ENB input for the root cell (which must a "*” cell, if there is an outermost
implicd Kleéne Star) during the first cycle (an RS flip-flop set by the [NIT signal and reset by END can be
uscd to generate this ENB signal).

The semantic actions for the productions of the grammar describe the interconncctions of the cells in
Figures 3-2, 3-3 and 3-4. Attributes arc attached to the symbols of the grammar to represcent the sets of events
that appear in the path. These sets detcrmine which TR and TA signals arc combined to produce Start and
Fnd.

S{A] — path R[A] end :
Hook the RES output of R to its £NB input, and connect INIT,

R[A U B] — R[A]:R[B]
Connect the RES output for R[A] to the ENB input of R[B]

R{A U B] — (R[A] + R[B))
. Connect the R's to the operand ports of a + cell.

R[A] — (R[A])* ConncctR to the operand port of a * cell.

R{{e}] — event e Usc acell for e as the circuit for R

Figure 3-6 shows a recognizer for the path path a;(a+b);c end constructed using this syntax-directed

technique.

All rccognizers constructed by this procedure perform the correct function, as required by Propositions
5 and 6. The former foilows dircctly from the control circuit while the latter is equivalent to the following @ If
a recognizer is initialized and some scquence of events ‘clocked” into the circuit, the recognizer will output 1

on Dis, between cycles for precisely those events e that are forbidden (as the next event) by the simple path

Figure 3-6: A rccognizer for path a;(a+b);c end

expression. To prove this we show that the ENB input of an event cell in the recognizer is 1 if and only if the
event correspending to this cell is permitted by the path. As shown in Figure 3-2, DIs, is 1 if and only if none
of the cells for event e is enabled. Therefore, proving that an event cell has its ENB signal sct if and only if the
corresponding cvent is permitted in the path will show that the recognizer is functionally correct. [n other
words, we wish to prove that all ENB signals for event cells are correct, according to the definition of ENB

above.

We shall prove the stronger statement that all ENB signals in the recognizer are correct. This proof is based

upon the structure of the recognizer. An ENB signal in a recognizer is sct by one of four sources:
e The opcrand portofa ™+ " or **" cell;

G,

o The left opcrand portofa ;" cell;

[ORT

¢ The right operand port of a ;" cell;

o The INIT signal.

In the first and sccond cases the signal is correct if and only if ENB for the opcerator cell is correct. In the
third case the signal comes from the RES port of a rccognizer for an initial subexpression. Therefore it is
correct if and only if the RES signal for the subexpression is correct. [n the fourth casc the signal is asserted
only at the start of the recognition and is correct by definition. Thus, to prove that the circuits are correct, we

need only prove that if the ENB signal for any recognizer is correct then so is the RES signal.

Once again, the proof of correctness is based upon the structure of a recognizer. In a correct recognizer the
RES signal is true at time N if and only if the END signal is truc at somc preceding time ly and the events
between ¢, and ¢, obey the path. A recognizer that is a single event cell is clearly correct. A rccognizer for

path a:h built by composition of correct subrecognizers for a and b is also correct, since if RES, is truc at time

13

ly then dhiere must be some tme l when RES was (ruc, with afl intervening cvenes sausfying rath b, But then
there must have been a time 5 when ENB was truc and all cvents between and ¢ must satisty path a. By
definition of composition, then, the cvents between 7y and «, satisfy ah. A recognizer for path (a)* is correct
if its subrccognizer is correct, since it outputs 1 and cnables its operand if and only if ENB or RES, is true.
Finally, a recognizer for path a + h is correct if both subrccognizers are correct, since if RIS is true then one
of RES_ or RI'S, must be true. and if one of ENB_ or ENB, is true then ENB must be true. Since all methods of
constructing rccognizers have been shown to lead to correct circuits, recognizers constructed using this

procedure arc functionally correct.

Now that circuits have been designed and proved correct, we give compact layouts for them. The floorplan
for a sequencer, shown in Figure 3-7 has the cells that make up the i'ccqgnizcr arranged in a line with the
controller to one side. The TR signals flow parallcl to the line of recognizer cells to enter the controller, and
the Start and Fnd signals emerge from the controller to flow parallel to the line of cells. The £NB and RES

signals that are used for intcrcell communication also flow parallel to the line of cells.

‘—"'_‘ RES ard
EN
—] ' = 8
LI S ’] Ce”s
TR's]
Controller
© Start
End

Figure 3-7: The floorplan for a sequencer

The layout in Figure 3-7 is fairly small. If the sequencer for a path of length n that has 4 types of input
cvents is faid out in this fashion, the area of the layout is no more than O{(n+ kXlog n + %)). This is due to
the structure of the recognizer circuits. All recognizer circuits are trees, which can be laid out with all nodes
on a line and edges running parallel to the linc using no more than O(log n) wiring tracks {8]. Thus the height
of the circuit in Figure 3-7 is O(log n + k) while its width is O(n+ k).

14

4. Synchronizers for Multiple Path Expressions

This scction describes our implementation of synchronizers for multiple path cxpressions. Figure
4-1 ustrates the interface between a synchronizer and the external world. Each cvent e is associated with a
request line REQ, and acknowledge line ACK,. The synchronizer cooperates with the external world to ensurc

that these request and acknowledge lines follow a 4-cycle protocol:

1. The external world raiscs REQ,t0 indicate that it would like to procced with event e,
2. The synchronizer raises ACK, 10 allow the external world to procecd with event e,
3. The external world lowers REQ |, signifying completion of event e,

4

4. The synchronizer lowers ACK,, signifying the cnd of the cycle and permission to begin a new one.
In this implementation, an cvent will occur during the period between cycles 2 and 3 in this protocol, where
both RCQ and ACK arc high. Thus, multiplc occurrcnces of any cvent e are non-overlapping in time, since any

two occurrences are separated by the lowering of ACK and the raising of REQ.

REQ
b —— Synchronizer

Figure 4-1: A synchronizer

The synchronizer in Figure 4-1 could be used to coordinate processes in a distributed system. Each of the
devices in the system would be a client of the synchronizer; only a subsct of the REQ and ACK lines would go
to each device, Before performing an action, each client would request permission from the synchronizer and
wait until permission was granted. In this way, harmonious cooperation could be cnsurcd with only a small
amount of inter-device communication. Because of the symetric nature of the protocol any client could act
either as a master or a slave relative to other clients. A slave would always assert all REQ's and wait for a
responsc through the ACK's telling it what to do, whereas a master would assert REQ's only for those events it

wishes to procced with and use the ACK's only to get its timing right.

An overview of a synchronizer circuit is shown in Figure 4-2. The circuit shown is self timed but not delay
independant as it makes certian assumtions about gate delays which will be described later. Some of the

building blocks in the circuit arc described below.

SEQJ

DIS,j ’l'RQJ TA,,j

/

ACK ,

ACX,

4---‘®IH .

REQ, -

AKDITEH

e o7 >

S
: R QM
CLR,
3 :
: C R Q
) CLR .

Figured4-2: A synchronizer circuit

The C gate in Figure 4-2 is a Muller C-element; the output of a C-clement remains low untl all inputs are
high and therecafter remains high untl all inputs are low again. Its behavior then cycles. For an

implementation see [16].

The arbiter in Figure 4-2 enforces pairwise mutual exclusion over the outputs corresponding to pairs of
events which occur in the same path expression.In addition to enforcing mutual exclusion the arbiter tries to
raise any output whose input is high. Many implemcntations of arbiters will have metastable states during
which fewer signals than possible may be high at the output. Despite the metastable states, however, once an
output signal has been raised, it must remain high as long as the corresponding input remains high. The

impleinentation of such an arbiter is discussed in detail in section S.

Each scquencer block in Figure 4-2 cnsures that the sequence of events satisfies one of the simiple path

16

cxpressions that comprise the multiple path expression. [t was deseribed in the last section. The synchronizer
circuit contains one sequencer for cach simple path expression. so that cach simple path expression is satisfied
by an cxecution cvent trace. For cach cvent e that appcars in a simple path, the corresponding scquencer has
three conncections: a request IR, an acknowledge TA, and a disable nIs,. Events are sequenced by cxecuting
a 4-cycle protocol over onc pair of the TR/TA lines. The DIS outputs of the scquencer are only valid between
these cycles (when all TR and TA are low). and indicate which cvents would violate the simple path. The
synchronizer will not initiate a cycle for any cvent whose DIS line is high. The implementation of the

sequencer is given in scction 3.

We now describe how the components of the circuit arc interconnected. Refer to Figure 4-2. Let SEQe
denote the sct of sequencers for simple paths that contain event e, Every sequencer in SEQe has its DIs, signal
connccted to a NOR gate for e, its TA signal connected to a C gate for e, and its TR signal connected to ACK,.
‘The output of the latch at the end of the C gatc for e, which is labeled CLR,, is connccted to each of the NOR

gates in front of the arbiter which corresponds to event e or to some event mutually exclusive to e

Notice that there is no intrinsic need for the synchronizer to be centralized as long as the constraints
themselves do not require it. Whenever the multiple path expression can be partioned into disjoint sets of
paths so that paths in different sets do not rcfer to the same event, then each sct can be implemented as a

circuitindependently of the others.

The following is an informal description of how the circuit works. The circuit behaves as shown in the
uming diagram in Figurc 4-3. When REQ, is raised, cvent e is not allowed to procced unless cach scquencer in
SEQe signals that at least onc e type transition is enabled by ncgating DIs,. Oncc this happens IN, is raised,
provided no mutually exclusivc event is executing the second half of its cycle (and hence has its CLR high). If
the arbiter decides in favor of some other pending event mutually exclusive to e, the above process repeats
until e again gets a chancc at the arbiter. Otherwise ACK, will be raised and latched by the NOR gate
arrangement in front of the arbiter. At this point the external world may procced with event e.
Simultaneously each sequencer in SEQC will find TR, high and after some timc raise TA, When all
scquencers in SEQ, have raiscd TA, and the external world acknowledges completion of event e by lowering
REQ,, CLR, will be raised. This causes ACK, 10 be lowered. Each sequencer in SEQe will find TR, low and

after some time lower TA, When all such sequencers are done, CLR - is lowered, and the cycle is completed.

To formally establish the correctness of our circuit , we must cstablish two things: First, we must show that
the circuit allows only semantically corrcct event traces; second, that the circuit will allow any semantically
correct event trace for some behavior of the external world. Thesc properties of the circuit are often called

safeness and liveness respectively. A third important property, fairness, is dealt with in a seperate section. Our

7/

LA

~
ois I

|
~ | | | gj
ra TTIIE " O
Sequencer I <> l] l .
Intarnal]< i] /]
External l{ >.

Figure 4-3: Synchronizer timing

proof will make use of propertics of the various circuit components shown in Figure 4-2. We list the mcst
important of these properties as propositions, namecly those relating to the sequencer, the arbiter, and the
external world. Properties of other circuit components such as SR Flip-Flops, NOR gates, etc., are assumed 0
be well known and are used without further discussion. The precof also makes certain assumptions about the

delays of the components:

1. The delay of the main NOR gate plus the 2-input OR gate is less than that of the main Muller-C
clement plus the SR Flip-Flop.

2.'The maximum variation in delay for the NOR gates in front of the arbiter is less than the
minimum delay of the arbiter.

We begin by introducing some notation that will be nceded in the proof. Let the sequencers be denoted by
SEQy - SEQp corresponding to the path expressions R1 ... Rp € M, and let le sz be the subsets of Z that
actually appear in Rl ... Rp respectively. Let [be a sct of ume intervals, which may include semi-infinite
intervals extending from some finite instant to infinity. Each clement in [is labelled by an element in Z.
Define T(I) to be the trace which has an clement for each element in [and has the obvious partial order

defined betwecen elements whose time intervals are non-overlapping. Referring to Figure 4-3, let

o Ext = sctof time intervals labelled ‘external’,
e Int = sct of time intervals labelled "internal’,
¢ Seq(j) = set of ime intervals labelled 'sequencer’ for sequencer SEQJ..

For every interval in Int with label e there are corresponding intervals with the same label in Ext and in every
Seq(j) such that e € sz' namely thosc which start at the same time. We assume that the starting points of

“intervals in Int lic within some finitc time period of interest, and the intervals in Fxt and Seq(j) arc restricted

18

to intervals corresponding to thosc in Int.

With this notation in place we state some propositions, or axioms, that describe the propertics of the circuit
of Figure 4-2. These propertics will be used to prove that the circuit is safe and live. The propositions that are

not self-cvident will be justificd in later sections of this paper.

Proposition 7: (External world protocol): For all cvents e,

1. RLQ, is raised only if/\CKe is low.
2. REQ, is lowered only ifACKe is high. O

Proposition 8: (Arbiter safety and liveness):

1. For any cvents e/.e2 that arc mutually exclusive, ACK , and ACK , arc never high simultancously.

2. Forany cvent e, ACK, is raiscd only ifl.\'e 1$ raiscd.

3. Forany cvente, ACK, is lowered only iFINc is low,and within a finite time of[Ne becing lowered.

4. Consider any sct of events Z' ¢ Z, such that no two events in £ arc in the same path expression.
Then if all N, e€ 2, arc raised, within a finite time all ACK, . e€ Z', must be raised. a

Proposition 9: (Initialization)

1. Scquencers are initialized with all TA's low.
2. The synchronizer circuit SR flip-flops are initialized to make all CLR's high. a

The following thecorem states that a synchronizer satisfying Propositions 7 through 9 is provably safe.

Theorem 10: (Synchronizer Safety) : T(Ext) € Tr};(M) .
proof: See the appendix. O

As a converse to theorem 10 we would like to show that our circuit can produce any valid trace Ext, such
that T(Ext) € TrE(M) for at least some behavior of the external world. However for some traces T ¢ Trz(M)'
there does not exist any Ext'such that T(Ext)=T, so there is no way any circuit can producc the rcquired trace
Ext. This happens when Tldoes not sufficicntly constrain the order in which the elements may occur so that
any actual set of time intervals will have fewer concurrent elemcents than T. Given such a T it is nccessary to
constrain its partial order relation further, by adding additional (consistent) preccdence relationships. It is
casy to show using dcfinition 4 that this will ncver remove T from the sct Trz(M). We shall show that
whenever T is sufficiently constrained so that it falls in a class of traces we call /ayered, then for some behavior

of the external world T(Ext) for our circuit will cqual this modificd T.

19

Definition 113 A trace P = (Q.<.L.) is called layered, if Q can be subdivided into a sequence of subsers,
such that for any i/, i2 € Q, il precedes (2 iff the subser in which ¢/ lies precedes the subset in which i2

lies. O

The trace in Figure 2-1 is layered, since its elements can be subdivided into the scquence of subsets
{(Al)'(BL'CI)'(AZ)'(B*CZ)'(A3)’(Bs' C3)} with the above property. If the size of cach subset were one, then the

trace would be totally ordercd.

In general, any trace P will have a corresponding layered trace T which preserves most of the parallelism of
P. It is easy to show that for any trace P.there cxists a layerced trace T, which differs from P only in that the

partial order relaton of P is a restriction of that of T.

Theorem 12: (Synchronizer Liveness): Given any layered trace P € Tr (M), our circuit will produce an

event trace Ext, such that T(Ext) = P for some behavior of the external world. O

proof: Sce the appendix. 0O

5. Implementation of the Arbiter

In this section we briefly claborate on the arbiter shown in Figure 4-2 to show that the conditions assumed
for it can be met. In older litcrature the term arbiter refers 1o a device which selects a single event from a
mutually exclusive set of requests. In this paper the term is used in a somcewhat less restrictive sense. All
. events need not be muzually exclusive and the arbiter may sclect more than onc event concurrently, as long as
no two mutually exclusive cvents are sclected simultancously. [n éddiu‘on, the arbiter should be fair when

forced to chose between events. This is much harder to achicve than just the mutual exclusion requirement.

-

The following observation helps to simplify the arbiter: a pair of events occurring in any single path
expression must be mutually exclusive. This is due to the role that each event plays in enforcing
synchronization among a set of multiple path expressions that all contain the same named cvent. The
arbitration function can thus be represented by a conflict graph, in which cach cvent is denoted by a vertex
and the relation between a pair of mutually exclusive cvents denoted by an undirected edge. Our observation
shows that the resulting conflict graph for a sct of path expressions consists of a set of overlapping cliques,

where a clique of k nodes, A,, A A,, corresponds o a path cxpression R, with
1

2- L) k'
ER ={ Ap Ay oo Ay }. The conflict graph represents the static structure of a set of path expressions.

Figure 5-1 shows a multiple path expression with its conflict graph.

The dynamic behavior of the arbiter depends on the conflict graph together with the sct of events that are

path (A + 8+ D)end
A path (B;(C + D),E) end
s F path (E +F + G) end

G
Figure 5-1: The conflict graph of a path expression

enabled at any instant (An cvent with a pending request is enabled if it does not violate the scquencing
constraints of any path cxpressions) . The dynamic structure of the set of path expressions is represented by
an active subgraph of the conflict graph induced by the sct of vertices corresponding to the events, cnabled at
that instant. The function of the arbiter is to sclect an independent set of this subgraph, thus ensuring that
only one of any pair of mutually exclusive events is cnabled. In this paper we require the arbiter to respond
whenever it can and not introducc dceliberate wait states. More formally we define a maximally parallel set of
events to be an independent set of the active subgraph. such that it is not a subset of any other independent
sct of the active subgraph. We requirc the arbiter to respond with a maximally parallel set without waiting for
any input change or introducing deliberate delays. In gencral there will be more than one possible maximally
parallel sct, and the arbiter nced not chose the largest one. Notc that cvents overlap in time, henee when the
arbiter makes its sclection some of the events in the subgraph may already be sclected, and this further

constrains the possible choices of the arbiter.

The arbiter should be fair when faced with a choice. So far we have not defined what we mean by fairness.
The definition is complicated because events with pending requests nced not be enabled. Bcecause of logic
delays, the circuits keeping track of the path expression states, may think a particular cvent is stll cnabled
even though the arbiter has just acknowledged a conflicting event. For our purposes such an event is
considercd not cnabled. The most commonly used definitions of fairness that allows pending cvents to be
disabled arc due to Lchman, Pneuli and Stavi[9] . The definitions apply to infinite exccution traces. An

arbiter is fair if all the infinite execution traces it produccs are fair.

1. Impartiality: Each pending event is infinitely often acknowledged in the trace. (Must be fair to all
events).

2. Fairness: Each pending event is cither infinitely often acknowledged or almost everywhere dxsablcd
in the trace. (Necd be fair only to events that are infinitely often cnabled).

3. Justice: Each pending event is cither infinitely often acknowledged or infinitely often disabled.
(Necd only be fair to events that arc after some finite time continuously enabled.)

‘The order of these definitions is such that if an arbiter is fair according to one detinition it will also be fair

according to any succceding definition but not the other way round. Note that these definitions do not require

21
different events to be acknowledged with cqual fairness. all that s required is diat no ¢ antis starved.,

Since we do not allow deliberate wait states it is not possible for an arbuer for path expressionsto be fair

according to the first definition. Consider for instance the following path cxpression:

path (A + B); C end,
path D; (A + E) end

Suppose that cach cvent takes the same amount of time to execute externally and that new requests for cach
event arce forthcoming as soon as allowed by the protocol. Then simultaneous exccution of D and B will
alternate with simultancous exccution of C and E without the arbiter ever having to block any event. Yet,
event A will never execute even if it remains continually ready. If, however, the first request for cvent B is
declayed by the time it takes to cxccute an event, then initial execution of event D may be followed by
alternate executions of A and (D,C) ! Note that neither the duration of external cvents nor the occurrence of

cxternal requests is under the control of the circuit.

The third definition is easy to satisfy and all arbiters to be described in this paper satisfy this condition. In
fact this kind of fairness is probably all that is rcquired for most practical applications. However, it is clearly

not the strongest form of fairness that can be enforced.

The second dcfinition of fairncss can be realized using a simple LRU type deterministc arbitration
algorithm. Let there be k events. We assign a priority number from 0 to k-1 to cach cvnet, where the priority
corresponds to the number of times the event is blocked, ie the numnber of times the event is enabled but not
selected by the arbiter. At any instant the arbiter selects from the set of cnabled events in order of priority.
When an enabled eve.nt is selected its priority number is reinitialized to the lowest value. On the other hand,
if the enabled event is not selected its priority number is incremented by one. Since each event is cnabled
infinite number of times, any particular event can have at most k-1 neighbors in the conflict graph, and since
each ume it is blocked at least one of its neighbors is selected with a resulting increment in its o»?n priority,
after the km attempt it will have the highest possible priority. It is possible to show (using induction on k) that
when it gets enabled next it will have the highest priority, and hence get selected. Since this will happen an
infinite number of times, this ensure fairness according to the second definition. The LRU algorithm has the

addcd advantage that the response time to different cvents is approximately balancced.

However even the second dcefinition is not the strongest possible form of fairness that can be enforced for
path expressions. Consider for instance the path cxpression path ((A;C) + (B;A)) end. As before assume that

all events are pending at all times. The exccution scquence BABABA... then is fair according to this definition

(3]
(o)

even though event C is starved (cvent C is never cnabled) . We could have done better however since

ACBAACBA... is also a legal exccution sequence.

Obviously the strongest form of fairness cnforcible lics somewhere between definitions 1 and 2. We do not
know the strongest form of fairness that can be enforced for path expressions. [ntuitively the fairest arbiter
would always cause starvation for the least number number of cvents pbssible. It is not possible to
characterize this form of fairness just in terms of cxccution traces. Reference must be made to the scquencing

constraints that cnable/disable pending requests, which in our casc involves the complete path expression.

The probelm can be greatly simplificd by requiring the arbiter to be oblivious of the sequencing constraints
and thercfore equate a disabled cvent with a event not r;c.qucsting. This restriction will also tend to simplify
the logic since the arbiter sizc need not dcpend on the size of the path cxpressions, but only on the alphabet
size. It should be kept in mind however that like our previous restriction requiring prompt response, this

restriction limits the kind of arbiters possible.

We shall describe a probabilistic arbitration algorithm for an oblivious arbiter whose infinite exccution
traces will be "fair” with probability 1 where "fair” is defined by cither of definitions 2 and 3. [t also hoids for
stronger forms of fairness and thereforce realizes some kind of fairness between definitions 1 and 2. The
algorithm is as follows: Whenever the set of currently executing cvents is not a maximally parallel sct, find all
ways of extending this set with cnabled cvents so that the new scts are maximally parallel, choosc one of them
at random, and then acknowledge the events in the sclected extension. Every time an cvent is no longer
. disabled there is a finite probability that it will be acknowledged, and if this is the case infinitely often the
cvent will be infinitely often acknowledged. [t follows that this algdrithm ensurcs fairness in the sense of the
the second or third definition above. It will also prevent starvation for event C in the last cxample above.
Although this algorithm is currently only of theoretical interest since we do not know of any efficient

implementations it forms the basis of several cfficient arbiter implementations below.

We first show that no deterministic oblivious arbiter can do as well as our probabalistic algorithm. We show
that cvery deterministic oblivious arbiter gives rise to starvation of an event which is continually rcquesting
for some path-expression for which the probabilistic algorithm (described above) does not cause such
starvation, Later we consider ways of physically implementing the probabalistic algorithm. We lock at several
direct implementations that appear to work at first sight but have problems when examined more closcly. We
show that a straight-forward extension of Scitz's scheme [16] for a two-input arbiter to a gencral conflict graph
results in an unfair arbiter. We present one attempt to rectify this problem based on graph-coloring, and show
why it does not work. Finally, we present a somewhat non-standard scheme implemented in CMOS which

forms a best direct approximation to the probablistic algorithm described above. All of these schemes also

23

suffer from the drawback that critically balanced circuit clements are needed and/or the Ievel of noise in the
circuit must cxceed the amount of imbalance. Finally we show a practical way of implementing such an
algorithm given an oracle that gencrates a random sequence of bits. Such an oracle can be physically

approximated by an off-chip thermal noise source, that is amplified and digitised.

The difficulty of building a fair deterministic arbiter that martches the probabalistic arbiier can be illustrated

by an example. Consider the following path expression:

path (A;C) + (B:(A + B)) end.

Assume the LRU algorithm described previously is being used, and that the external client/s always requests
permission to perform all threc events A, B and C. Let the priorities of all three be 0's initdally. As a result,
initially A and B are cnabled. Assume that B is sclected, making B's priority 0 and A's priority L. In the next
instant, A and B will again be enabled. But now A has the higher priority and will be selected, so that A’s
priority becomes 0 and B's becomes 1. Continuing in this fashion, it is casy to sce that the sequence chosen
willbe BA B A B-A The touble with this scheme is that C will never be enabled even if its request is
pending. Increasing the number of levels of priority will not help. This example can be extended to the

following lemma.

Lemma 13: Let M bc a deterministic finite-state transducer implementing an oblivious deterministic
arbiter. Then there exists a path expression over £ = { A, B, C } such that one event, say C, will be
starved even though its réquest is continually bending. Morecover the probabalistic algorithm does not
causc such starvation for this path expression.

Proof: Let M be a deterministic finite-state transducer whose alphabetis £ = { A, B, C}. Let the states
of MbeS = { 1Sy e S }. Let the conflict graph, G, for the path cxpression be the complete graph
on the vertices A, B and C. We construct a path expression P with Lhé conflict graph G such that M
causcs the starvation of the event C. Notice that because of the nature of the contlict graph G, if at any

instant A and B (but not C) are enabled then at most one of A and B may be selected by M.

Let 5, be an arbitrarily chosen state of M. We conduct an experiment on M by continuously providing A
and B as the enabled inputs, starting with Af in the state 5. If we present a string of inputs
{A B}, {A B } ...,{A B} oflength m then we notice that at the 1% input { A, B}, the
transducer deterministically goes from the state (1) = 5, o astate s(2) while outputting A or B. Let s(1),
%2), ..., s{m + 1) be the sequence of states and o € { A, B }™ be the output string produced as a result

of the experiment. As a conscquence of the pigcon-hole principle, some two states in the scquence of

24

states will be the same . Of all such pairs, let s(:) and (/) be two such states closest o 5 Assume that i <
and let k be the smallest multiple of (4 - 1) such that & > i Without loss of generality assume that 3/

outputs B when in state (/) with the input { A, B }.

Lct P be the path cxpression

path (A + B)"L:((A:C) + B): (A + B)*'end

[t is casy to see that P has G as the conflict graph and if the requcsts for A, B and C are continuously

pending then the sequence of outputs will be astring in { A, B }* and C will never be enabled.

The probabilistic algorithm would have no problem with the path-expression since from any state (of the
path expression) it could reach the state cnabling C with finite probability, and hence cnable C an

infinitc number of times in an infinite trace. O

The result of the above lemma can also be stated as follows: A dcterministic oblivious arbiter nceds at least
N/2 states to do as well as one using the probabalistic algorithm, where N is the size of the path-cxpression,
whercas the probablistic algorithm requires no internal state. The actual bound on the minimum number of

states required may be much larger.

Before procecding further, tet us consider the path expression path A + B end, where the conflict graph is
G=(V,E) = ({A B}, {[A. B]}). Seitz [16] has shown how to build an arbiter for such a structure using an

interlock-clement, as shown in Figure 5-2.

high threshold

buffers

Figure 5-2: Scitz's [nteriock Element

25

Circuit operation in Figurc 5-2 is most casily visualized starting with neither chient requesting, voand v,
hoth near 0 volts, and both outputs high. If any single input. say Ais fowered then Y is driven high,
resuling in A being lowered — B remains unaffected. Morcover, once Ay s lowered. and as long as
.‘\m is kept low, the interlock element remains in this stable state irrespective of what happens to Bm. Ir‘f‘\m is
now raised high, then the clement returns (o its initial condition if B, s still high: or B, islowered if B, is

lowered in the meantime.

However, the interesting situation occurs when both A.m and Bm are both lowered concurrently or within a
very short interval of time. In this case the cross-coupled NOR gatces cnter a metastable state, which is resolved
after indeterminate period of time in favor of cither A or B. Since this resolution depends on the thermal
noisc generated by the gates, it is inherently probabilistic. [n this case the outputs of the NOR gates themselves
cannot be used as the outputs. High threshold inverters between the NOR gates and the outputs prevent false

outputs during thc metastable condition.

[t would scem natural to cxtend Scitz's idea by generalizing it to the conflict graph for an arbitrary set of
path cxpressions. Roughly spcaking, we may construct a circuit by homomorghically transforming the
conflict graph to a circuit by replacing each veriex with a NOR ga(é and cach edge with a cross-coupling of
NOR gates corresponding to the pair of vertices on which the edge is incident. However, such an
implementation in NMOS has some severe problems, which will be clarified if we consider the circuit for the

rcaders-writers path expression:

path R1 + W end
path R2 + W end

where the pair Rl and W and the pair R2 and W are mutually exclusive. The conflict graph and the circuit for

this expression are shown in Figure 5-3.

Consider the situation when the circuit is in the none-requesting condition and all three requests, Rl, R2
and W, armive concurrently. An infinitesimally short interval At after all three requests arrive, let us assume
that the voltages at the outputs (of the NOR gates) have increased by an infinitesimally small value Av « Vg
The pull-down MOS transistors may be assumed to be opecrating in their lincar region. If all pull-ups are
assumed to provide equal active resistance, the output of the NOR gate corresponding to W will grow less
rapidly than those corresponding to Rl or Rz' The cumulative effect of this imbalance will result in a low
output for W's NOR gate and high outputs for Rl’s and Rz's. Hence if Rl, R, and W request continuously
then the request for W will never go through, resulting in W's starvation. An apparent fix to this problem is to

increase the ratio of pull-up to pull-down for W's NOR gate to twice that of R s and R,’s. But if this is donc

o o— —0
R1 W RZ
(a)

R
R;W—';%{ |

Figure 5-3: (a) The Conflict Graph and (b) The Arbiter in NMOS.

in a static manner then, when only Rl and W are rcquesting, W will have an unfair advantage over Rl.

The imbalance that favors certain arbiter inputs over others will not occur if the conflict graph is complete,
A sccond arbiter design makes use of this observation. We first obtain a minimal vertex coloring for the
conflict graph, i.e., an assignment of colors to the vertices of the graph so that no two adjaccnt vertices reccive
the same color. This task is, of course, NP-complete. However, it only necds to be done once, and there are
heunistics that will come within a factor of two of the minimum number of colors. Events that correspond to
vertices within the same color class may occur simultaneously without violating our constraint on the behavior
of adjacent vertices. Thus, we only need to arbitrate between color classes, and the conflict graph for the coldr

classes will be complete. A schematic diagram for this second design is shown in Figure 5-4,

For cach color class an OR gate is uscd to collect the inputs that correspond to vertices in the class.

Additional AND gates arc used to combine cach arbiter output with all the inputs that correspond to vertices

2
~J

IN L_
J— D‘ Out

In for color Out for color

Arbiter

Figure 5-4: An Arbiter based on graph coloring

in that color class. Assuming that all of the initial OR gates have the same delay and that all of the final AND

gatcs also have the same dcelay, the sccond design will be fair.

Although the sccond design appcars, at first, to have solved the problem with the original design, further
thought shows that in reality the sccond scheme may not be that much better than the first. First of all, the
assumption that all of the OR gates have the samnc delay may not be very realistic. If the standard NMOS
implementation for OR gates is used, the delay through a gate will depend on the number of inputs that are
high--the argument is cssentally the same as the one that is used to show the imbalance in the first arbiter
design. Thus, if more inputs in onc color class are on than in another color class, the events in the first color

class would always win the arbitration.

Morcover, the second design does not acknowledge maximally parallel sets. A conflict graph consisting of
2N vertices arranged in a ring may be colored with just two colors. [f N > 2 there will be two vertices with
different colors that are not adjacent. Assume that both request service at the same time and that all of the
other vertices remain inactive. Because thg two events belong to different color classes our arbiter design will
not lct them occur in parallel. Since the vertices are not adjacent, however, they should be allowed to proceed

in parallei.

An arbiter that tries to‘conﬁgurc itself dynamically for the problem with two readers and one writer is
shown in Figure 5-5. To see how this scheme tries to rememdy problem discussed earlier, consider the
situa'tion when the circuit is in non-requesting condition and all three rcquests, R, R, and W, arrive
concurrently. An infinitesimally short interval At after all three requests arrive, the voltages at the outputs
will have increased by an infinitesunally small valuc Av <« V- The pull-down MOS transistors arc in their

lincar region. However, since active resistances of the pull-up transistors depend on the neighboring events

28

(W R1Rz)

R SR
: A TE.K{.L

Gnd| '
R

(R2 W)

1

Figure 5-5: The Arbiter for 1-Writer-2-Readers Problem in CMOS.

that are cnabled, the pull-up resistance of the gate associated with W is exactly half of that associated with R,
or Rz' This provides a balance among pull-up resistances and results in almost equal rate of growth of
voltages at the outputs. Hence the interlock clements cnter their mctastable states more or less
simultaneously; and the mctastable condition is resoived either in favour of R1 and R2 or in favour of W, the

choice governed by statistical thermal phenomena.

A similar analysis shows that the circuit bchaves correctly when only two out of three requests arrive
concurrently. However, if only onc request, say W, 'arrivcs while all its ncighbours remain in their non-
requesting condition the circuit behaves somewhat differently. In this case the pull-up transistor with input
Nei4 RI'RZ) will turn on, thus allowing the output of the gate to go high. It is important to obscrve that the
pull-up transistors arc controlled dynamically by the requests for the ncighbouring events — if there is a
request for the neighbouring event then only the pull-up corresponding to the event turns on; and if there is
no request for the ncighbouring events then only the pull-up corresponding to the event itself turns on. For
this to be implemented correctly it is essential that the pull-up corresponding to the event itself be turned on
only after a delay necessary for the requests for the necighbouring events to propagate to the gate of the
pull-up. Unfortunately the time constants associatcd with the arbiter outputs differ since the capacitances are

not dynamically adjusted and hence even this circuit fails to be (even theoretically balanced).

We now describe a probablistic arbiter that does not rely on critical balancing of circuit elements, or the
presence of noise in the circuit itself. It makes use of an external oracle, that works as a random bit generator.
This can be practically realized in a seperate isolated circuit, that uses thermal noise (or some other source of
noisc) to generate a random bit pattern. The arbiter itself is only required to ensurc mutual exclusion and the

simple extension of Scitz's arbiter described above will perform this function. ‘The only difference is the

29

prescnce of a delay clement at cach input. The delay clements can be digitally switched on or ¢ff (hy
bvpassing them), and are large cnough, so that if two conflicting cvents arc cnabled at the same time, and one
is delayed by the delay clement, the other is surc to be passed by the arbiter. This means that the delay should
exceed the gate delay of the arbiter {(when no conflicts occur). The delay elements are cach controlled by a |
bit register, which determines if the delay is on or off. A new valuc is loaded into cach register from a
(seperate) oracle, cach tme the corresponding cvent gets cnabled. This imcans whenever a new set of cvents
gets cnabled, their ‘prioritics’ are randomly 1 or 0. It is casy to show that any maximally parallel set then has a
finite chance of being sclected (when just its cvents have priority 1 and all others have priority 0), which is just
what the probabalistic algorithm requires. To ensure that the random bits clocked into the different registers
are largély uncorrelated, the oracle is split into multiple oracles by clocking it into a shift register at a high
rate. The parallel outputs of the shift register will be largely uncorrclated if all bits in the register gets shifted
“out once for every arbitration cycte. Lower clocking rates will still work, since the outputs will stll be partially

uncorrclated. A tapped delay line could be uscd instead of the shift register.

For many path expressions, the LRU algorithm is just as fair as the probabalistic algorithm and has the
advantages that the response times arc approximately balanced, instcad of being a complex function of the
conflict graph as in the probabalistic algorithm. For such path expressions the use of the LRU algorithm is
preferable. A way of realizing the LRU algorithm in hardware has not yet been deseribed. One realization is
to usc logically controllablc delay lincs in front of an arbiter that ensurcs mutual exclusion,.just as in the case
of the probabalistic algorithm. However in this case each of the k event inputs has k delay lines (in series) and
the delay lines are controlled directly by their priority : Each tme an event is blocked, an additonal delay line
is switched off for it, whereas if the event is acknowledged all its delay lines are switched on again, reducing its

priority to the lowest level. This circuit requires just O{k*k) area.

More direct ways of combining the advantages of the LRU algorithm with the probabalistic algorithm

remain to be investigated.

6. Conclusion

Since our circuits have the constant separator property, a more compact O(N) layout is be possible using the
techniques of [5]. However, while it is definitely possible to automatically generate the O(N -log(N)) layout
that we propose, it is much more difficult in practice t generate the O(N) layout of [S]. Furthermore, the
O(N) layout will occupy less area only for very large N. We suspect that casc of generating the layout will win
over asymptotic compactness in this éasc. Onc of the authors (M. Foster) is currently implementing a silicon

compiler for path expressions, basced on the ideas in this paper.

Finally, we plan to investigate extensions of our construction to appropriate finite state subscts of CSP [6]

30

and CCS [11]. In the case of CSP the subsct will only permit boolean valued vanables and messages which are
signals. If the number of message types is fixed, we conjecture that arca bounds comparable to thosc in
section 3 can be obtained. Arrays of processes in which the connectivity of the communication graph is low
can be treated specially for a more compact layout. Such a finite-state subsct of CSP may even be morce uscful
than the path cxpression language discussed in the paper for high level description of various asynchronous

circuits.
References

1. Anantharaman, T. A. "A dclay inscnsitive regular cxpression rccognizer.” (1985).

2. Campbell, R. H. and A. N. Habermann. The Spccification of Process Synchronization by Path
Expressions. In Lecture Notes in Computer Science, Volume 16, G. Goos and J. Hartmanis, Ed., Springer-
Verlag, 1974, pp. 89-102.

3. Foster, M. J. Specialized Silicon Compilers for I.anguage Recognition. Ph.D. Th., CMU, July 1984,

4. Foster, M. J. and Kung, H. T. "Rccognize Regular Languages with Programmable Building-Blocks.”
Journal of Digital Systems VI, 4 (Winter 1982), 323-332.

5. Floyd, R. W.and Ullman, J. D. "Thec Compilation of Regular Expressions into [ntegrated Circuits.”
Journal of the Association for Computing Machinery 29, 3 (July 1982), 603-622.

6. Hoare, C. A. R. "Communicating Scquential Processes.” Comm, ACA 21, 8 (1978).

7. Lauer, P. E. and Campbell, R. H. "Formal Semantics of a Class of High-Levcl Primitives for Coordinating
Concurrent Processes.” Acta Informatica 5 (June 5 1974), 297-332.

8. Lciserson, C.E. Area-Efficient VI.SI Computation. Ph.D. Th., Carncgic-Mellon University, 1981.

9. D.Lehman, A. Pnueli, J. Stavi. "Impartiality, Justice and Fairness: The Ethics of Concurrent
Termination.” Automata, Languages and Programmning (1981), 265-277.

10. Li, W. and P. E. Laucr. A VLSI Implemcntation of Cosy. Tech. Rept. ASM/121, Computing
Laboratory, The University of Newcastlc Upon Tyne, January, 1984.

11. Milner, Robin. A Calculus of Communicating Systems. Volume 92: Lecture Notes in Computer Science. ‘
Springer-Verlag, Berlin Heidelberg NY, 1980.

12. Mukhopadhyay, A. "Hardware Algorithms for Nonnumeric Computation.” /LLEE Transactions on
Computers C-28, 6 (June 1979), 384-394.

13. Patil, Suhas S. An Asynchronous [.ogic Array. MAC TECHNICAL MEMORANDUM 62,
Massachusctts Institute of Technology, May, 1975.

14. Pratt, V. R. On the Composition of Processes. Symposium on Principles of Programming Languages,
ACM, January, 1982. :

15. Rem, Martin. Partially ordered computations, with applications to VLSI design. Eindhoven University of
Technology, 1983.

31

16. Sciwz, C. L. "ldeas About Arbiters.” LAMBDA First Quarter (1980), 10-14.

Appendix : Proof details

Refer to section 4:

Lemma 14; If the same assumptions as in proposition 6 arc satisficd, then T(Seq(j)) is consistent with Rj .
Proof: From proposition 6 it follows that Seq(j) consists of non concurrent time intervals. The result is

thercfore casy to prove by induction on the number intervals in Seq(j), using the same proposition. O

Leinma 13: For cach element 7 in Int with label e, the corresponding elements in Ext and Seqy(j) are
subintervals of i

Proof: Follows from the propertics of the circuit in fig 4-2) (sce also fig 4-3). O

Lemma 16: Forany Rj € M, T(lnt)l is a totally ordered multiset.

Proof: It is casy to show that I(lnt)lZ = Int, . But Int}. consists of ‘internal cvents' of the
path expression Rj, during each ofwhlch the corrcspojndmo ACK is gfzh Hence by proposition 8, no two
such cvents overlap, and thercfore” I(Int)l ERj is a totally ordered muldset. O

Lemma 17: Forany Rje M, 1(Int)i2 = T(E‘(t)lz

Proof: For any clement ¢ of T(Int), Lhat isalsoinT (Int)lz the corresponding element of T(Fxt) will be
in T(Ext)lsz (definition 2) since Lhc.y must map to the sgf'nc alphabet e ¢ ERJ‘ Hence these traces have
- the same number of elements. Also from lemma 15 it follows that if {/ and 2 are two elements. of
T(Int)lz “satisfying one or none of "i/ precedes i2” and "2 precedes i/, the corresponding clements of
T(Ext)lzR{ will satisfy at least the same relationships. In other words the partial order of T(Int) is a
rcerictionJof that of H(Ext). But by lemma 16 T(Int)lz s a totally ordered mulusct. Hence from the
above 'I‘(Ext)l Zg, will have the same partal order rcla[jor}:sjhip and, therefore, be the same totally ordered

multiset. O

Lemma 18: For any Rj € M, T(Seq()) = T(Int)|
R
Proof: Follows from lemma 15 and 16 in the same jway as in the proof of lemuna 17. The only difference
is that T(Seq()|; = T(Seq()). O
Rj

Lemma 19: For any sequencer SEQJ , no two TR's are high simultancously.
Proof: The two TR's would be two ACK's of events in the same path expression Rj, which cannot be high

simultancously by proposition 8. O

Lemma 20: For any sequencer SEQ; , TR, is raised only if DIS is low and all TA’s are low.

Proof: By induction on the number of rising transitions of TR's :

1. (First transition): Let the corresponding event be e. By proposition 9 initally all TA's arc low, and
all CLR’s arc high, hence all TR's arc low initially. By proposition 5 all TA's will remain low until
the first rising transition of TR, By the same proposition DIs, will not change until the first rising
transition of TR, If DIS, were not low, IN, would remain low (sce Figure 4-2). Hence by
proposition 8, TR, would remain low, a contradiction.

2. (For a succeeding transition): Let the corresponding cvent be p and that of the previous transition
g- While TR is high no TA or TR other than TA_or TR can be high (proposition 8 and lemma 19).
Until CLR goes high, TR _must remain high (see Figure 4-2). Once CLR _goes high, all IN, with a
€ 2 " wnﬂ be low after a short delay (sce Figurc 4-2). Assuming the variation in this dclay for
dlfferem a's is less than the delay of the arbiter in lowering TR |, all 1R, with a » q will continue to
remain low until CLR _is lowered (scc Figure 4-2). All TA, witha = g, also continuc to rcmain low
(proposition 5). But CL.R remains high at least until TA is lowered (sce Figure §). Hence by the
ume TR _is raiscd all TA’s will bc low. Also TRp could not have been raised if IN were low
(propositicn 8). But if Dlsp was high when TAp was last lowered then I.\‘p would now be low (see
Figurc 4-2), assuming the main NOR gate plus the 2-input NOR gatc have a lesser delay than the
Muller-C element plus the SR Flip-Flop. Morcover, DIS cannot change before rR is raised
(propositicn'5). Hence DIS must be low when TR is raiscd.

O

Lemma 21: For any sequcncer SEQj TR, is lowercd only if‘rAe is high.
Proof: The NOR gate arrangement in front of the arbiter insures that once TR, is high it remains high
undl CLR is raised, and this can occur only ifTAe is high (sce Figure 4-2). Moreover once TA, is high it

will remain high until TR;is lowered (proposition 5).

Theorem 10

Proof: Lemmas 19,20,21 satisfy the preconditions of proposition 6. Hence T(Seq(j)) is consistent with Rj

for any Rj ¢ M. By lemma 18 and definition 4, T(Int) is consistent with Rj for any Rj ¢ M. By lemma

17 and definition 4, T(Ext) is consistent with Rj for any Rj € M. Hence by definition 4, T(Ext) € Trz(M).
a

Lemma22: IfTe Trz(M) is layered, then cach subset (cf definition 11) of T has the property that no two
elements in it are instances of events in ZRJ for any Rj € M. »

Proof: Any two clements i/,:2 (corresponding to events e/,e2) in the same subset of T must be concurrent
(dcfinitions 3,11). Supposc el,e2 € 2 . with Rj € M. Then le will include i7,i2 which will be

concurrent (definition 2). Henee T cannot be a total order and L{\crcforc Te¢Tr (\A) (definition 4)
IR

33

-- lcading to a contradiction. Hence the result. O

Theorem 12

Proof: The behavior we require of the cxternal world is that it simultancously raise REQ for all events in
the first subser of T, wait undl all corresponding ACK are high, then simultaneously lower all REQ, wait
until all ACK are low, then repeat this cycle for the next subser of T, and so on. We need to show that
under these conditions the circuit responds within a finitc amount of time in each cycle. The result then

follows directly.

As shown in the proof of lemma 20, all ACK’s are initally low. Hence they are low at the beginning of
each of the cycles mentioned in the previous paragraph. At the beginning of each such cycle, Ext,Int and
every Seq(j) with Rj € M, get redefined. Let Tp denote T restricted to subsets before the current cycle. [t
is easy to show by induction on the number of cycles and definition 4 that at the beginning of each cycle
T(Ext) = Tpand Tp ¢ Trz(M) Hence for any Rj € M, S(Tp

the next subset contains an instance i/ of event e/, then for each Rj € M such that e/ ¢ 2‘. S(Tp’z)

s) is a prefix of some element in L If
“Rj

can be extended by i/ to give a prefix of some sequence in I_ ; in fact this extension gives Lhe next value
of I‘p]zR (see lemma 22). But by lemmas 18,17, for any RJ € M, T(Seq(j)) = T(Ext) Iz N = TplZ

Hence for each Rj ¢ M, such that el ¢ 2 T(Seqo)) can be extended by i/ to give a prefix of somc
sequence in Lo, T‘nus by proposition 6, Lhe corrcspondmg sequencers SEQ with e/ € 2 will have DIS

low. This apphcs to any e/ in the next subserof T.

Thercfore at the beginning of any cycle, when REQ,, for any cvent e/ in the next subsct of T is raised, all
DIs,, inputs to the NOR gate for event e/ (sec Figure 4-2), will be low. Also within a finite amount of
time all relevant TAd'S mulst go low by proposition 6, since the torrcsponding TRd's are already low.
Hence CLR,, will go low, and IN,, will go high for each e/ in the next subset of T. It follows from
proposition 8 and lemma 22 that all ACK’s corresponding to events in the next subser of T will be raised

within a finite amount of time.

The proof for the second half of the cycle is more straightforward. By lemma 6 once all REQ's are
lowered, within a finite time all relevant TA’s will be raised, causing the corresponding CLR's to go high.
As a result all relevant IN’s go low (sce figure 4-2) and hence by proposition 8 all ACK's go low within a

finitc ime, completing the cycle. O

Table of Contents

L. Introduction

2. The Semantics of Path Expressions

3. Implementing the Sequencer for a Simple Path Expression
4. Synchronizers for Multiple Path Expressions

5. Implementation of the Arbiter

6. Conclusion

-

19
29

List of Figures

Figure 2-1:
Figure 3-1:
Figure 3-2:
Figure 3-3:
Figure 3-4:
Iigure 3-5:
Figure 3-6:
Figure 3-7:
Figure 4-1:
Figure 4-2:
Figure 4-3:
Figure 5-1:
Figure 5-2:
Figure 5-3:
Figure 5-4:
Figure 5-3:

An cxample pomset

‘I'he controller for path P

Ccll forevent ein path P

Cell for ;"

Cell for “+"

Cell for "*"

A recognizer for path a;(a+b);c end
‘The Roorplan for a scquencer

A synchronizer

A synchronizer circuit

Synchronizer iming

The conflict graph of a path expression
Scitz's [nterlock Elcment

(a) The Conflict Graph and (b) The Arbiter in NMOS.
An Arbiter based on graph coloring

The Arbiter for 1-Writer-2-Readers Problem in CMOS.

10
10
10
12
13
14
15
17
20
24
26
27
28

