
Compiling Path Expressions

into VLSI Ci rcuits

T. s. Anantharaman
E. M. Clarke
M. J. F ostcrt

13. ;v1ishra .

Carncgic-\lellon University
Pittsburgh. Pennsylvania 15213

June 1985

CTCS-166-3S

tCurrcnt address: Department of Computer Science, Columbra University. New York, New York 10027.

This research was partially supported by NSF Grant MCS-82-16706, and the Defense Advanced RescJrch
ProJccts ,\gency (DOD). ,\RPA Order No. 3597. monitorcd by the Air force Avionics LaborJtory Cndcr
Contract F33615-81- K -1539.

.\ilqra(t: Path expressiuns l,I,ere urigln,llly propused by CJrnpbcl1 Jilli HJoermJ!l1l [2] JS ,1 mcch,lnl')m for
process synchroniz.1tion at the moniwr level in sur'twJre. ~()t lIncxpcc[cdly. they Jlso provide Zl Llseful
nucJtiun fur specifying me behavior uf asynchronuus circuits. \lot!\J(ed by c.hesc putentlal applicJtIons we
investigate how [0 dir(Xtly translate path expressIons In(O h;udl,l,;.ue.

Our implementation is cumplicated in the case of multiple pam expressions by the need for synchronizJtion
on event names that Jre cornmon to more than one path. \10rcover, since events are inherently asynchronous
in our model, all of our circuits must be self-timed.

~cverthelcss. the circuits produced by our cunstruction have area proportional to N 'log(N) where N is thc
[0 tal length of thc multiple path expression under consideration. This bound holds regardless of the number
of individual paths or the degree of synchronization between paths. Furthermore, if the structure Qf the path
expression allows partitioning. the circuit can be layed out in a distributed fashion without additional area
overhead.

1. Introduction

As the boundary between software and hardware grows less and less distinct., it becomes increasingly

important to investigate methods of directly implementing various programming language features in

hardware. Since many of the problems in interfacing hardware devices involve some tonn of prcces.1

synchronization. language features for synchronization deserve considerable attention in such investigations.

In this paper we consider the problem of dir(Xcly implementing path expressions as self-timed VLS [circuits.

Path expressions were originally proposed by Campbell and Habermann [2J for rcstricting access by other

proccsses to the procedures of a monitor. For example, the Simple readers and writers problem with two

reader processes and a single writer precess is solved by the foiJowing multiple path expression:

path Rl + Wend,
p:nh R2 + W cnJ.

The first path expression prohibits a read operation by the first process from cccurring at the same time as a

write operation. The second path expression enforces a similar restriction on the behavior of'the second

reader process. In a compu~tion under control of the multiple path expression. the two read operations may

occur simultaneously, but a read and write operation cannot occur at the s.m1C time.

A simple path expression is a regular expression with an outennost K1cene star, The only operators

permitted in the regular expression are (in order of precedence) ";". and" + ", lbe " ... operator is the

Kleene star, It; .. is the sequencing operator, and" +" represents exclusive choice. Operands are evcnt nJITIes

from some set of events k that we will assume to be fixed in this paper. The outermost Klcene star is usually

represented by the delimiting keyword path ... end. lhus (a)· would be represented as path a end. Roughtly

the sequence of events allowed by a simple path expression must corrc~pond to the sequences ascccpt by the

regular expression.

/\ multiple path expression is J set uf simple P,)(/1 expressions. 1\5 we \Ii III sec shortly. CJch JddiCiunJI simple

path expression further constrJins the order in which c\encs cJ.n occur. HO\licver, we cannot simply take as

our semantlcs fur multiple PJth expressions the intersection uf the IJnguJges corresponding to the individual

p;llh expressions: two events whose order is not explicitly restricted by one uf the simple path expressions may

be concurrent. For example. in the multiple path expression for the readers Jnd writers problem discussed in

the introduction the two read events Rl and R2 may occur simultaneollsly. Nevertheless. we will still have

occasion to use ordinary regular expressions in giving the semantics for path expressions.

Path expressions are useful for process synchronization for two reasons: First, the close relationship

between path expressions and regular expressions simplifies the task of writing Dnd reasoning about programs

which use this synchronization mechanism. Secundly. the synchronization in many concurrent programs is

finite state and thus. can be adequately described by regular expressions. For precisely the same re(1sons. path

expressions are useful for controlling the behavior of complicated asynchronous circuits. The readers and

writers example above could equally well describe a simple bus arbitration scheme. In fact. the finite-state

assumption may be even more reasonable at the hardware level than at the monitor level.

Path expressions may be useful in coordinating the actions of distributed systems. Distributed systems are

typically locally synchronous. with each device having a local clock. but globally asynchronous, since no

global clock is scnt to every device. If two devices in such a system share a resource, but do nut share a global

. clock. some means of synchronizing their actions must be provided. An asynchronous device that enforces a

path expression could be used as a synchronizer in this case. lsing such a synchronizer, separate devices in a

distributed system could run without a global clock, synchronizing their actions only when necessary.

Which brings us to the topic of this paper: What is the best way to translate path expressions into circuits?

Lauer and Campbell have shown how to compile path expressions into Petri nets [7], and Pati! has shown how

to implement Petri nets as circuits by using a PLA-like device called an asynchronous logic array [13]. Thus,

an obvious method for compiling path expressions into circuits would be to first translate the path expression

into a Petri net and then to implement the Petri net as a circuit using an asynchronous logic array. However,

careful examination of Lauer and Campbell's scheme shows that a multiple path expression consisting of M

paths each of length K can result in a Petri net with K M places. Thus, the naive approach will in gereral be

infeasible if the number of individual paths in a multiple path expression is large.

For the case of a path expression with a single path their scheme docs result in Petri net which is

comparable in size to the path expression. However, direct implementation of sLich a net using Patil's ideas

J

may still result in a circuit with an unJccepLJbly large arc.] .. \n Js:,nchronoLts logic arrJ> for a P2~ri ne~ with P

p);:1Ces and T transitions will have JreJ proportional (0 P' T reg,lrdless of (he number of arcs in the net. Since

me nets obtained from path exprcssions (end to hJve sparse edge sets. lhis quadratic beha'dor may waste

signit1cant chip area.

Perhaps, the work that is closest to ours is due to Li and Lauer [10] who do indeed implement path

expressions in VLSI. However. their circuits differ significantly from ours: in particular, their circuits are

synchronous, and synchronization with the external world (wl1ich is, of course, inherently asynchronous) is

not considered (This means that the entire circuit, not just the synchronization, must be described using pach

expressions. Furthennore, their circuits use PL\'s that result in an arc a complexity of O(N2). Rem [15] has

investigated the use of a hierarchically structured path expression-like language for sp<xifying C~10S circuits.

Although he docs show how certain specifications can be tr~1nslated into circuits. he does not describe how to

handle synchronization or give a general layout algorithm that produces area efficient circuits.

In contrast, the circuits produced by the construction described in this paper have area proportional to

~ ']og(N) where N is the total length of the multiple path expression under consideration. Furthennore, this

bound holds regardlcss of the number of individual paths or the degree of synchronization between paths. As

in [4] and [5] the basic idea is to generate circuits for which the underlying graph structure has a constant

separator theorem [81. For path expressions with a single path the techniques used by [4J and [5] CJn be

adapted"without great difficulty. For multiple paths with common event names. however, me construction is

not straightforward, because of the potential need for synchronization J(many ditTcrent points on each

individual path. MoreO'Ver, the actual circuits that we use must be much more complicated than the

synchronous ones used in ([4], [5]). Since events are inherently asynchronous in our model, all of our circuits

must be self-timed and the use of special circuit design techniques is required to correctly capture the

semantics of path expressions.

The paper is organized as follows: A fonnal semantics for path expressions in terms of partially ordered

multisets [14] is .given in section 2. In sections 3, 4, and 5 we give a hierarchical description of our schcmc for

implementing path expressions as circuits. In section 4 we first describe how che complete circuit interfaces

with the external world. We then show how to build a synchronizer that coordinates U1C behavior of the

circuits for the individual path expressions in a multiple path expression. In section 3 we describe a circuit for

implementing single path expressions which we call a sequencer. [n section 5 we show how the arbiter circuit

used in section 4 can be implemented. We also argue that these circuits are correct and can be laid out

efficiently. The conclusion in section 6 discusses the feasibility of our implementation and the possibility of

extending it to other synchronization mechanisms like those used in CCS and esp.

2. The Semantics of Path Exp ressions

In this section we give a simple but formal semantics for pJth expressions In terms of partially (JrJcrcd

multiscts of events [l4]. An alternative semantics in tcrms of Pctri \cts is gi'vcn by I.dllcr and (.llnphcllln (7].

:\ a pomset may be regarded JS a gcnerali7Jtion of a sequence in which certain elemcnts Jre pcnnittcd to be

concurrent: this is why the concept is useful in modeling systems where sevcral events may occur

simultaneously.

Definition 1: A partially ordered mu/tiset (pomset) over 2: is a triple (Q. s. F) where (Q. s) is a partially

ordered set and F is a function which maps Q into 2:. 0

An example of a pomset is shown in Figure 2-1. We LIse subscripts to distinguish different elements of Q

that map to the same element of I. In this case Q = (/\.A2.A3.Bl.J32.I33'Cl,C2,C3) and L = (A,B,C). Note

that we could have alternativcly defined a pomsct as a directed acyclic graph in which each node is labeled

with some clement of I.

8, 8 2 8 3

/~/~/
A1~ /A2~ //3~

C, C2 C3

Figure 2·1: An example pomset

If the ordering relation of a pomset P over I is a total order. then we can naturally associate a sequence of

elements of I with P; we will use S(P) to denote this sequence.

Definition 2: If P = (Q. ~: F) is a pomset over I and Ii ~ I. then the restriction of P to Ll is the

pomset pi I = (Ql' S l' F 1) where Q 1 = {d E Q I F(d) E II } and::; l' Flare restrictions of s. F to 01'
1

respectively. 0

If P is a totally ordered pomset over L and II ~ I. then S(pl k) is just the subsequence of S(P) obtained by
1

deleting all of those elements of I which are not in I r If if R is an ordinary regular ~xpression over L, then

LR ~ L will be the set of symbols of L that actually appear in Rand Lf{ ~ L~ will be regular language which

5

corresponds to R.

Definition 3: I.et L he a finitc sct uf cvcnLS: a {race over I IS a finite pomsct [' = (Q. $. F) over~. Wc

say that i E Q is an iI/stance of an cvcnt e E 2: if F(i) = e. ,\n instance II 0 f C\ en t e, preCfJes an instance i2
• l

of event e
2

if i1 precedes i2 in the partial order:s. :\n instancc it of event C1 IS concurrent with an instance

i2 of cvent e2, if neither instance preccdes the other. 0

fn the example above A1 precedes A 2, but [31 and C1 are concurrenL

Definition 4: Let R be a simple path expression with event set LR. ,\ tr2ce T is cOllsistell! with R iffTI ,_
, -R

is totally ordered and scrl i:
R

) is a prefix of some scquence in LR . If \-1 ~ a multiple path expression,

~en a trace Tis COf/sis/em with M iff it is consistent with each simple path expression R in M. Tr ~C\O is

the set of all traces which are consistent with M. 0

Consider, for example, the multiple path expression M:

path A; I3 cnd,
path A;C end.

with L = {A. B, C}. It is easy to sce that the trace in Figure 2-1 is consistem with each of the simple path

expressions in M and hence is in Tr ~(M),

3. Implementing the Sequencer for a Simple Path Expression

This section shows how to construct a sequencer that enforces the semantics of a simple path expression.

The sequencer circuit is constructed in a syntax-directed fashion based upon the structure of the simple path

expression. We show that a compact layout for the sequencer exists, so that circuits of this type can be

implemented economically in VLSI.

Since a simple path expression is a regular expression, the sequencer for a simple path expression is similar

to a recognizer for the regular expression. Although schemes for recognition of regular languages have been

proposed that avoid broadcast [4], we will usc a scheme that requires broadcast of events throughout the

sequencer [5, 12]. Because our scheme for interconnecting sequcncers (see section 4) requires broadcast, the

broadcast within an individual sequencer carries no additional penalty. r\ sequencer for a simple path

expression is built up from primitive cells. each corresponding to one character in the path. The syntax of the

path determines the interconnection of the cells in the sequencer. 1 n this section, we first describe the

6

beh.:n ior of J sequencer for a simple path expression. then give J syntax-directed constn.!ction method .

. \ outside world communie<.Hcs With a sequencer using three lines for each event:

• TR : a signal to the sequencer that event e is about to commence in the outside world: e

• TA : an acknowledgement from the sequencer that the execution of event e has been noted by the e
sequencer.

• DIS : a status line indicating that action e would violate the path constraints so that lR should not e e
. be asserted by the outside world. It is valid when TR and TA arc both low.

These communication lines interact in a complex way. For a single type of event, the signals TR and TA
. e e

follow the four-cycle signaling convention (for an example see Section 4). For different types of events. the

outside world must guarantee the correct in teraction of TR signals by ensuring that only one TR signal for an

event satisfying the simple path expression is asserted at any time. The outside world can use the DIS status

lines to determine which requests to send to the sequencer.

The sequencer also has a part to play in ensuring the correct interaction of TR, TA and DIS. Besides

generating a T" signal that follows the four cycle convention with TR, it must ensure that the signal DIS is
e

correct as long as no TR or T" signal is asserted. This guarantee means that if no TA is asserted, and neither

DIS e/ nor DIS e2 is true, then the outside world may choose arbitrarily between e/ and e2. letting either of them

through to the simple path sequencer. On receiving a TRe signal, then, the sequencer must assert TAe' adjust

its internal state to reflect the occurrence of event e, assert the proper set of DIS lines while awaiting the

negation OflR before negating TA . e e

Yfore formally we require the following propositions to hold:

Proposition 5: (Sequencer protocol): For any sequencer SEQ
j

,

1. TA is raised only if TR is high. e e
2. T" is lowered only if TR is low. e e
3. DIS is stable while all TR'S and TA'S are low. 0 e

Proposition 6: (Sequencer safety and liveness) : For any sequencer SEQj , assume that at all times.

• no two TR's are high simultaneously,
• TR is raised only if DIS and all TA'S are low, e t

• TR is lowered only if T A is high. e t

Then the following hold:

1. TA is raised within a finite time ofTR being raised. e e
2. TA is lowered within a fl11itc time oflR being lowered. e e

7

3. For Jny sequenccr SLQ, whcnc\cr JII I."S Jnd lR'S MC low, eXJctly thuse c\cnts c will hJve Drs"
low, for wl1ich scns'cqU))) CJn be extendcd by c (() give J prefix of some sequence in
LRj' 0

~ow chat the behavior of J sequencer has been dcscribed. we show how to construct a sequencer for any

simple path expression, t\ sequencer has two parts: a controller Jnd a recognizer. The controller is connected

directly to the rest of the outside world and generates both the TA signals and some control signals for the

recognizer. The recognizer keeps track of which events in the path have been seen and generates the DIS

signals.

Figure 3-1 shows the controller for a simple path P. The controller accepts the signals TR from the
. e

sequencer for each event e that appears in P. It generates the signals TA along with Start and End. The _ e

meaning of TA is that all actions caused by TR have been completed. In this realization. TA is just a deiJycd
t e

version ofTR. where the delay is long enough to let the sequencer stabilize. I\n upper bound on this delay can

be computed from the layout of the rest of the circuit. Thus the sequencer is self-timed but not delay

inscnsitlve. A delay insensitive circuit will be described in a separate paper [1] . I t has been omitted in this

paper as it unnecessarily complicates an understanding of how the sequencer works. StJrt and End are

essentially two phase clock signals that control the movement of data through the recognizer for P. Roughtly

Start is true from the time one TR is asserted until the correponding T/\ is asserted. while End i) truc from the

time TR is uC3sserted until TA is also deasserted. The clement bbcllcd '\f.E. (Mutual Exclusion) is an interlock

element as shown in fig 5-2. It is required to guarantee that the two clock phases are strictly non-overlapping,

The recognizcr for a path accepts the TR signals and generates the Drs signals. It is made up of sub-circuits e

corresponding to subexpressions of the path. To construct the recognizer for a pam, we parse me path using a

context-free grammar. Productions that are used in parsing the path determine me in terconnections of

sub-circuits to form the recognizer. Non-terminals that arc introduced in me parse correspond to primitive

cells used in the circuit

Recognizers are construct~d using the following grammar for simple patll expressions.

S ..:.. path Rend
R - R;R I (R + R) l (R)-I <event>.

The terminal symools in the grammar correspond to primitive cells; there is one type of cell for the "+"
symbol. one for the symbol. one for the ";" symbol. and one for each event. The non-terminals

correspond to more complex circuits that are fanned by interconnecting the primitive cells. Using the

method described in [3}. semantic rules attached to the productions of the grammar speci fy how the circuits

on me right of each production arc interconnected to form t.he circuit on the left.

8

Start End
t

TRa TAa

Figure 3·1: The controller for path P

To keep track of which events in the path have occurred and which are legal. the sub-circuits uf a recognizer

communicate using the signals E.';[3 (enable) and RES (result). If L:\I3 is asscrted at the input of a circuit for a

5ubexpression at the beginning of a cycle (when START is asscrted). the subcircuit begins keeping track of

. events starting wic.h that cycle, and Jsserts RES after d cycle if the event sequence so far is legal for the

subexpression. The E~I3 input may be asserted before any cycle, and the subcircuit must generate a RES signal

whenever any of the previous E~B inputs by itself would have required it. At the cop level E:\8 is asserted only

once. before the first .cycle. Between cycles each subcircuit deasscrtS the DIS signal ... for an event, if the

occurancc of that event during the next cycle is legal (this is the case if the subcircuit would assert Drs for

some subsequent sequence of events even if E~B were not asserted any more). These event signals from all

subcircuits are combined to generate the external DIS signals.

Figure 3·2 shows the cell for event e. Two latches. clOCKed by Start and End, control the flow of [~B and

RES signals. The latches are transparent when their enable is asserted and hold their previous value otherwise.

The latch pair forms a level trigerred master - slave D-Flip- F1op, clocKcd by the non-overlapping clock signals

Start and End.

The event cell in Figure 3· 2 propagates a 1 from E~B to RF.5 only if event e occurs. When this cell is used in

a recognizer for a path expression, the E~B input will be true if and only if event e is pe!1i1itted by the

9

From other

cells tor e

~OIS.
~ ~ ENS p-t:J 10 l~tCh RES

~

I

TR e
Sta rt p ctld?

(Some TM (Sorr.e T A

and no T A) Jrld no TM)

Figure 3-2: Cell for event e in path P

expression. Thus. if E?"B is true it negates DIS for the path, as shown in the figure. \Vhen a request TR is
(.

made, the output of the A~O gate is loaded into the leftmost latch. [f this request is TRe.-> this output is 1;

otherwise it is O. In either case the output of the A:\O gate is propagated to RES through the. latch when rR is

lowered.

Figures 3-3 and 3-4 show the cells for the ":" (sequencing) and" +" (union) operators. Thesc Jrc strictly

combinational circuits. The circuit for ";" feeds the Rf.5 signal from the circuit at its left into the E~G signal

for the circuit to its righL The circuit for" +" broadcJSts its E~ [) signal to its operands and combines the RES

signals from its operands in an OR gate. It will be seen that the combination (union) of multiple recognitions

by each subcircuit is essential in allowing them to be built up recursively, and exploits the fact that the union

and)cquencing operators are distributive over union.1

Figure 3-5 shows the cell for the ... " operator. The cell enables its operand after receiving' either a 1 on

either its own END or its operand's RES. Every time the operand is enabled the cell also puts out a 1 on its

own RES. It therefore outputs 1 on RES after 0 or more repetitions of its operand's expression. The additional

A~D gate sets the output to 0 momentarily after ~h event. thereby preventing the formation of a latch whe~

two or more cells are used together. This cell is responsible for making the minimum cycle duration

depend on the path expression. During the first phase of a cycle the sequencer has to perform an (-closure of

IThis is also the rc:lSOn why this method cannol be used for extendcd rcgular c:'(prcssion Wlth complementJlntcr.;cctlon by
ivnclllng/ Al'Oing thc corresponding Rrs outputs: The complcmcntJintcfSCCllon operator.; arc not dlstllbuLlvC over union.

10

/
I RES ENS

I I
\:; A t \

Figure),3: Cell for "; It

ENS t RES

Figure),4: Cell for" +"

the simple path cxpr~ssion. This delay is directly reflected in the gate delay between the c o input and RES

output of the cell. These delays will add up for an expression like ((a e ; be) ; (c e ; de)).

End p ENB RES
Figure),5: Cell for ... "

11

When IJrgcr circuits are made from Ulesc cells. U1C RI sand [\11 Sig!l:1ls ['c(ain ulcir mCJnings. Fach CyelH

cell or sub-circuit formcd from sCyef;1! cells accepts une input I.'\B and produces onc ()utput RLS. In general

we define a pair of E:"13 and R.CS to be currect if me rullol,l,ing JPplies ,H me beginning of cach cycle (just

before ST\RT is deasserted) :

• r:-., /I is true if and unly if L1e sequcnce of events so far can be extended by any sequence of events
satisfying the expression of the subcircuit controlled by the E:" [J/R. LS pair, to give a prefix of some
sequence in LRj'

• RES is true if and only if some sequence of events satisfying the subcircuit has just completed, and
E:-.,-n was true just before the beginning of that sequence.

In addition, a sequencer has a signall:"IT, not shown in me fi 6urcs, which clears the RES outputs of all event

(leat) cells and generates the c:-.,-n input for the root cell (which must a cell, if there is an outennost

implied Klccne Star) during the first cycle (an RS flip-flop set by L1e [:'jIT si;nal and reset by E:"O can be

used to generate this E='iR signal).

The semantic actions for the productions of the grJmmar de~ribe the interconnections of the cells in

Figures J- 2. J-3 and 3-4. Attributes arc attached to the symbols of the grammar to represent the sets of events

that appcar in the path. These sets determine which TR and TA signals are combined to produce St:lrt and

End.

S[A] -+ path R[A] cnd
Hoole the Ins output of R to its F:-"-B input, Jnd connect l:--.;rr.

R[A u 13] -+ R[A):R[13]
Connect the RES output for R[A] to l1e E~n input of R[D]

R[A u 13] -+ (R[AJ + R[BD
Connect the R's to the operand ports of a + cell.

R[A] -+ (R{AD- Connect R to the operand port of a • cell.

R{{t-)] -+ event t' Use a cell for e as the circuit for R

Figure 3-6 shows a recognizer for the path path a:(a + b);c cnd constructed using this syntax-directed

technique.

All rccognizcrs constructed by this procedure perform the correct function. as required by Propositions

5 and 6. The former follows directly from the control circuit while the latter is equivalent to the following: If

a recognizer is initialized and some sequcnce of evcnts 'clock.ed' into thc circuit, the recognizer will output 1

on DIS betwee.n cycles for precisely those events e that are forbidden (as the next event) by the simple path e

12

a b

Figure 3-6: A recognizer for ~th a;(a+ b);c end

expression. To prove this we show that the E:'-in input of an event cell in the recognizer is 1 if and only if the

event corresp~nding to this cell is permitted hy the path. As shown in Figure 3-2. Drs is 1 if and only if none e

of the cells for event e is enabled. Therefore. proving that an event cell has its E:--;n signal set if and only if the

corresponding event is permitted in the path will show that the recognizer is functionally correct. In other

words. we wish to prove that all [~n signals for event cclls are correct, according to the definition of E~B

above.

\Ve shall prove the stronger statement that all E~ B signals in the recognizer are correct. This proof is based

upon the structun.: of the recognizer. An E\" 0 signal in a recognizer is set by one of four sources:

• The opcrand port of a .. +" or cell;

• The left opcrand port of a ";" cell;

• The right operand port of a ";" cell;

• The I~IT signal.

In the first and second cases the signal is correct if and only if [\0 for the operator cell is corn~cl In the

third case the signal comes from the RES port of a recognizer for an initial 5ubcxpression. 1l1crefore it is

correct if and only if the RES signal for the subexpression is correct. In the fourth case the signal is asserted

only at the start of the recognition and is correct by definition. Thus. to prove that the circuits are correct, we

need only prove that if the E:--';B signal for any rccognizer is correct then so is the RES signal.

Once again. the proof of correctness is based upon the structure of a recognizer. In a correct recognizcr the

RES signal is true at time II if Jnd only if the END signal is true at some preceding time '0 and the events

between '0 and '1 obey the path. A recognizer that is a single event cell is clearly correct. A recognizer for

path a:h built by composition of correct subrecognizeri for a and b is also correct. since if RES b is true at time

13

(2 then Ulcre must be some time [t whcn Rf\ WdS CrlIC. with ,lillntcr'vcning c'.cncs s':H1sfying r Jtl1 b. [3ut (hcn

lhcrc must have becn a time [0 whcn [\13
J

WJS true and JII c\cms bccwccn to ,lnd [1 must SJtlsfy PJth a. fly

definicion of composition. then. the events betl,l,ecn '0 Jnd 12 SJtisfy a:h. :\ recognilcr for PJt.h (a)* is corrcrt

if its subrecognizcr is correct. sincc it outputs 1 Clnd enables its operand If Jnd only if F\n or RFS a is tnle.

Finally. J recognizer for path J + h is correct if both subrecognizers arc corrcct. since if RES is true then one

of RESa or RFS
IJ

must be true. and if one of [~mJ or E0~ is true then E\n must be true. Since all methods of

constructing recognizers have been shown to lead to correct circuits. recognizers constnlCccd using this

procedure are functionally correct

Now that circuits have been designed and proved correct. we give compJct layouts for them. The floorplan

for a sequencer. shown in Figure 3-7 has the cells that make up the rccognizer arranged in a line with the

controller to one side. The TR signals flow parallel to the line of rec03nizer cells to enter the controller. and

the StJrt and End signals emerge from the controller to flow pJrallel to the line of cells. The [\8 and RES

signals that arc used for intercell communication also flow parallel to the tine of cells.

TR's

. Start

End

-
I RES ar~

1111 II f!
ENS

• • •
1 Call3

I

Controller

I

Figure }O7: The floorplan for a sequencer

The layout in Figure 3-7 !s fairly small. If the sequencer for a path of length n that has k types of input

events is laid out in this fashion, the area of the layout is no more than O«(n + k)(Iog n + k». This is due to

the structure of the recognizer circuits. All recognizer circuits are trees, which can be laid out with all nodes

on a line and edges running parallel to the line using no more than O(1og n) wiring tracks [8]. Thus the height

of the circuit in Figure 3-7 is O(log n + k) while its width is O(n + k).

14

4. Synchronizers for Multiple Path Expressions

This section describes our linplemCIHJtion of Sy nchronlLers for muluple path expressions. Figure

4·1 Illustrates the interface between a synchronizer and the external world. Each event e is associated with a

request line REQ and acknowledge line I\CK . The synchronizer cooperates ',I;ith the external world to ensure
e e

that these request and acknowledge lines follow a 4-cycJe protocol:

1. The external world raises REO to indicate that it would like to proceed with event e.
e

2. The synchronizer raises ACK to allow the external world to proceed with event e. e

3. The external world lowers REQ , signifying completion of event e. e

4. The synchronizer lowers ACKe' signifying the end of the cycle and permission to begin a new one.

In this implementation, an event will occur during the period between CYC!c3 2 3nd 3 in this protocol, where

both R[O and ACK arc high. Thus, multipre occurrences of any event e are non'overlapping in time, since Jny

two occurrences are separated by the lowering of ACK and the raising of REQ.

REO a

ACK a

REO b

ACK b

REO z

ACK?

....
~

./

"-

",'

Synchronizer

•
•
• ",'

.... ..-

Figure 4-1: i\ synchronizer

The synchronizer in Figure 4·1 could be used to coordinate processes in a distributed system. 8lch of the

devices in the system would be a client of the synchronizer; only a subset of the REQ and ACK lines would go

to each device. I3efore performing an action, each client would request permlssion from the synchronizer Jnd

wait until pennission was granted. In this way, harmonious cooperation could be ensured with only a small

amount of inter-device communication. fkcause of the symctric nature of the protocol any client could Jet

either as a master or a slave relative to other clients. i\ slave would always assert all RCQ'S and wait for a

response through the ACK'S telling it what to do, whereas a master would assert REO'S only for those events it

wishes to proceed with and usc the ACK'S only to get its timing right

An overview of a synchronizer circuit is shown in Figure 4-2. The circuit shown is self timed but not delay

independant as it makes certian assumtions about gate delays which will be described later. Some of the

building blocks in the circuit are described below.

lS

AC l(I

ACX,

REQ 1 :

REQ e

CLR t

Figure 4·2: A synchronizer circuit

The C gate in Figure 4-2 is a Muller C-element; the output of a C-element remains low until all inputs are

high and thereafter remains high until all inputs are low again. Its behavior then cycles. For an

implementation see [16].

The arbiter in Figure 4-2 enforces pairwise mutual exclusion over the outputs corresponding to pairs of

events which occur in the same path expression.ln addition to enforcing mutual exclusion the arbiter tries to

raise any output whose input is high. Many implementations of arbiters will have metastable stltes during

which fewer signals than possible may be high at the output. Despite the metastable states, however, once an

output signal has been raised, it must remain high as long as the corresponding input remains high. The

implementation of such an arbiter is discussed in detail in section 5.

Each sequencer block in Figure 4-2 ensures that the sequence of events satisfies one of the simple path

16

expressions that comprIse the Illultiple paul expression. It WJS descrIbed In the bst scc[ion. The s;nchronl7er

circuit contains one sequencer for eJch simple PJth expression. so that eJch simple p.1th expression is satisfied

by In executIon event trace. For eJch event c Ulat appears in a simple path, the corresponding sequencer has

three connections: a request lR ,an ackno\\'ledge TA", and a disable DIS. Events are sequenced by executing e c e

a 4-cycle protocol over one pair of the TR/L\ lines. The DIS outputs of the sequencer are only valid between

these cycles (when all TR and TA are low), and indicate which events would 'violate the simple path. The

synchronizer will not initiate a cycle for any event whose DIS line is high. The implementation of the

seq uencer is gi ven in section 3.

We now describe how the components of the circuit are interconnected. Refer to Figure 4-2. Let SEQ
~

denote the set of sequencers for simple paths that contain event e. Every sequencer in SEQ has its DIS signal
~ e

connected to a ~OR gate for e, its TA signal connected to a C gate for e, and its TR signal connected to ACK .
e ~ e

'111e output of the latch at the end of the C gate for e, which is lab~led CLR , is connected to each of the ~OR e

gates in front of the arbiter which corresponds to event e or to some event mutually exclusive to e.

~otice that there is no in trinsic need for the synchronizer to be centralized as long as the constraints

themselves do not require it. Whenever the multiple path expression can be partioned into disjoint sets of

paths so that paths in different sets do not refer to the same event, then each set can be lmplemented as a

circuit independently of the others.

The following is an informal description of how the circuit works. The circuit behaves as shown in the

timing diagram in Figure 4- 3. When REQ is raised, event e is not allowed to proceed unless each sequencer in
~

SEQ signals that at least one e type transition is enabled by negating DIS. Once this happens I~ is raised. e e e

provided no mutually exclusive event is executing the second half of its cycle (and hence has its CLR high). If

the arbiter decides in favor of some other pending event mutually exclusive to e, the above process repeats

until e again gets a chance at the arbiter. Otherwise ACK will be raised and latched by the ~OR gate
~

arrangement in front of the arbiter. At this point the external world may proceed with event e.

Simultaneously each sequencer in SEQ will find TR high and after some time raise TA. When all
. t t e

sequencers in SEQ have raised TA and the external world acknowledges completion of event e by lowering
t t

REO.oJ CLR will be raised. This causes ACK to be lowered. Each sequenccr in SEQ will find TR low and
c: t t e t

after some time lower TA . When all such sequencers are done. CLR E is lowered, and the cycle is completed.
e.

To formally establish the correctness of our circuit. we must establish two things: First., we must show that

the circuit allows only semantically correct event traces; second, that the circuit will allow any semantically

correct event trace for some behavior of the external world. These propcrties of the circuit are often called

safeness and liveness respectively. i\ third tmport,:mt property, fairness, is dealt with in a seperJte section. Our

REO -------'

ACK

DIS

TA

Sequencer

Internal

ExternaJ

17

>/

Figure 4-3: Synchronizer timin'J

proof will make usc of properties of the various circuit components shown in Fi:;urc 4-2. We list the m~t

important of these properties as propositions. namely those relating to the sequencer. the arbiter. and the

external world. Properties of other circuit components such as SR Flip- Flops. NO R gates. etc .. are JSSumed to

be well known and are used without further discussion. The prcof also makes certain assumptions about the

delays of the components:

1. The delay of the main NOR gate plus the 2-input OR gate is less than that of the main ~fujkr-C
clement plus the SR. Flip-Flop.

2. The maximum variation in delay for the NOR gates in front of the arbiter is less than the
minimum delay of the arbiter.

\Ve begin by introducing some notation that will be needed in the proof. Let the sequencers be denoted by

SEQl ... SEQp corresponding to the path expressions R 1 .,. Rp E \t1, and let LR1 ... ~Rp be the subsets of r that

actually appear in Rl ... Rp respectively. Let I be a set of time intervals. which may include semi-infinite

intervals extending from some finite instant to infinity. Each clement in I is labelled by an element in r.
Detine T(I) to be the trace w.hich has an clement for each element in I and has the obvious partial order

defin9d between elements whose time intervals are non-overlapping. Referring to Figure 4- 3, let

• Ext = set of time intervals labelled 'external',
• Int = set of time intervals labelled 'internal',
• ScqU) = set of time intervals labelled 'sequencer' for sequencer SEQr

For every interval hInt with label e there are corresponding intervals with the same label in Ext and in every

ScqU) such that e E LRj , namely those which start at the same time. We assume that the starting points of

- intervals in Int lie within some finite time period of interest and the intervals in F:xt and ScqU) are restricted

18

to intervals corresponding to those in Int.

\Vith this notation in place we state some propositions. or axiums. that describe the properties of the circUit

of f--'igure 4-2, These properties will be used to prove that the circuit is safe Jnd live, The propositions that are

not self-evident will be justified in later sections of this paper.

Proposition 7: (External world protocol): For all events e,

1. REQ is raised only if ACK is low. e e
2. REQ is lowered only if ACK is high. 0 e e

Proposition 8: (Arbiter safety and liveness):

1. For any events el.e2 that are mutually exclusive. ACK el and ACK e) are never high simultaceously.
2. For any event e, ACK is raised only if I\" is raised.

/! c
3. For any event e, ACK is lowered only if I~ is low,and within a finite time of [7'/ being lowered.

/! c e
4. Consider any set of events L' ~ L, such that no two cyents in L' arc in the same path expression.

Then if all I~ ,e E I', are raised, within a finite time all .I\CK ,e E I', must be raised. 0
/! e

Proposition 9: (Initialization)

1. Sequencers arc initialized with all TA'S low.
2. The synchronlLer circuit SR flip-flops are initialized to make all CLR'S high. 0

Thc following theorem states that a synchroniLer satisfying Propositions 7 through 9 is provably safc.

Theorem 10: (Synchronizer Safety) : T(Ext) E Tr k(M) .

proof: See the appendix. 0

,\s a converse to theorcm 10 we would like to show that our circuit can producc any valid tra~e Ext, such

that T(Ext) E Tr I(M) for at least some behavior of the external world. However for some traces T E Tr ~(M),

there does not exist any Ext'such that T(Ext) = T, so there is no way any circuit can produce the required trace

Ext. This happens when T does not sufficiently constrain the order in which the clements may occur so that

any actual set of time intervals will have fewer concurrent clements than T. Given such a T it is necessary to

constrain its partial order relation further, by adding additional (consistent) precedence relationships. It is

easy to show using definition 4 that this will never remove T from the set Tr r(M). We shall show that

whenever T is sufficiently constrained so that it falls in a class of traces we call layered, then for some behavior

of the external world T(Ext) for our circuit will equal this modified T.

19

Definition 11: A trace P = (Q.S.U IS called /dyer('d. if Q CJn be subdi\ided Into J sequence of subsets.

such that for any il, i2 E Q. il prccedes i] iff the sllbsel in v.hich il lies precedes the subset in v.hich i2

lies. 0

The trace in Figure 2·1 is layered. since its clements can be subdivid~d into the sequence of subsets

{(Al).(Bl,Cl).(1\2).(132.C2).(A3),(By C3)} with the above property. If the size of each subset were one. then the

trace would be totally ordered.

In general, any trace P will have a corresponding layered trace T which preserves most of the parallelism of

P. It is easy to show that for any trace P.there exists a layered trace T, which differs from P only in that the

partial order relation of P is a restriction of that ofT.

Theorem 12: (Synchronizer Liveness): Given Jny layered trace P E Tr I Cv1) , our circuit \It ill produce an

event trace Ext, such that T(Ext) = P for some behavior of t.he external world. 0

proor: Sec the appendix. 0

s. Implementation of the A rbite r

In this section we briefly elaborate on the arbiter shown in Figure 4-2 to show that the corrditions assumed

for it can be mel In older literature the term arbiter refers to a device which selects a single event from a

mutually exclusive set of requests. In this paper the term is used in a somewhat less restrictive sense. j\ll

. events need not be mU:1.lally exclusive"and the arbiter may select more than one event concurrently, as long as

no two mutually exclusive events are selected simultaneuusly. In addition, the arbiter should be jair when

forced to chose between events. This is much harder to achieve than just the mutual exclusion requiremcnl

The following observation helps to simplify the arbiter: a pair of events occurring in any single path

expression must be mutually exclusive. This is due to the role that each event playS in enforcing

synchronization among a set of multiple path expressions that all contain the same named event. The

arbitration function can thus be represented by a conflict graph, in which each event is denoted by a vertex

and the relation between a pair of mutually exclusive events denotcd by an undirected edge. Our observation

shows that the resulting conflict graph for a set of path expressions consists of a set of overlapping cliques,

where a clique of k nod~ AI' A2, ... , i\ k' corresponds to a path expression R, with

I R = { AI' A2, "', A k }. The conflict graph represents the static structure of a set of path expressions.

Figure 5-1 shows a multiple path expression with its conflict graph.

The dynamic behavior of the arbiter depends on the conflict graph together with the set of events that arc

20

8 C

A
..... _-.~ __ F

path (A + 8 + D) end

path (8;(C + O);E) end

path (E + F + G) end

Figure 5-1: The conflict graph of a path expression

enabled at any inst.lnt (An event with a pending request is enabled if it docs not violate the sequencing

constraints of any path expressions) . The dynamic structure of the set of path expressions is represented by

an active subgraph of the conflict graph induced by the set of vertices corresponding to the events. enabled at

that instant. The function of the arbiter is to select an independent set of this subgraph. thus ensuring that

only one of any pair of mutually exclusive events is enabled. In this paper we require the arbiter to respond

whenever it can and not introduce deliber(l(e w(lit states. More formally we define a maximally parallel set of

events to be an independent set of the active subgraph. such that it is not a subset of any other independent

set of the active subgraph. We require the arhiter to respond with a maximally parallel set without waiting for

any input change or introducing deliberate delays. In general there will be more than one possible maximally

parallel set, and the arbiter need not chose the largest one. Note that events overlap in time. hence when the

arbiter makes its selection some of the events in the subgraph may already be selected, and this further

constrains the possible choices of the arbiter.

The arbiter should be fair when faced with a choice. So far we have not defined what we mean by fairness.

The definition is complicated because events with pending requests need not be enabled. ilecausc of logic

delays, the circuits keeping track of the path expression states, may think a particular event is still cnabled

even though the arbiter has just acknowledged a conflicting event. For our purposes such an event is

considered not enabled. The most commonly used definitions of fairness that allows pending events to be

disabled are due to Lehman, Pneuli and Stavi [9] . The definitions apply to infinite execution traces. An

arbiter is fair if all the infinite execution traces it produces are fair.

1. Impartiality: Each pending event is infinitely often acknowledged in the trace. (M ust be fair to all
events).

2. Fairness: Each pending event is either infinitely often acknowledged or almost everywhere disabled
in the trace. (Need be fair only to events that are infinitely often enabled).

3. Justice: Each pending event is either infinitc/y often acknowledged or infinitely often disabled.
(~eed only be fair to events that are after some finite time continuously enabled.)

The order of these definitions is such that if an arbiter is fair according to one definition it will also be fair

according to any succeeding definition but not the other way round. Note that these definitions do not require

2 L

different c\ents to bc ackno';l.1cdgcd \vitli cqual i"Jirncss. Jll tJld(IS required is :J1~1t no e'.2nt is stM\cd.

Since we do not allow deliberate ';l.Jit stJtes it is not possible fur an arbitcr for PJlh cxpreSS1UnS(u be faIr

according to the lirst definition. Consider for instance t.he t'()llowing palh expressiun:

path (t\ + 8); C end.
path D; (A + E) cnd

Suppose that each event takes the same amount of time to execute externally and that new requests for each

event are forthcoming as soon as allowed by the protocol. Then simultaneous execution of D and 8 will

alternate with simultaneous execution of C and E without the arbiter ever having to block any event. Yet.

event A will never execute even if it remains continually ready. If. however. the first request for event B is

delaycd by the time it takes to execute an event, then initial execution of event D may be followed by

alternate executions of A and (D.C)! Note that neither the durJtion of external events nor the occurrence of

external requests is under the control of the circuit.

The third definition is easy to satisfy and all arbiters to be deSCribed in this paper satisfy this condition. In

fact this kind of fairness is probably all that is required for most practical Jpplications. However. it is clearly

not the strongest form of fairness that can be enforced.

The second definition of fairness can be realized using a simple LR U type deterministic arbitration

algorithm. Let there be k events. \Ve assign a priority number from 0 to k-l to each evncl., where the priority

corresponds to the number of times the event is blocked. ie the number of times the event is enabled but not

selected by the arbiter. I\t any instant the arbiter selects from the set of enabled events in order of priority.

When an enabled event is selected its priority number is reinitializcd to the lowest value. On the other hand.

if the enabled event is not selected its priority number is incremented by one. Since each event is enabled

infinite number of times. any particular event can have at most k-l neighbors in the connict graph. and since

each time it is blocked at least one of its neighbors is selectcd with a resulting increment in its own priority.

aftcr the ~th attempt it will have the highest possible priority. It is pOSSible to show (using induction on k) that

when it gets enabled next it will have the highest priority, and hence get selected. Since this will happen an

infinite number of times. this ensure fairness according to the second definition. The LR U algorithm has the

added advantage that the response time to different events is approximately balanced.

Ho.wever even the second definition is not the strongest possible form of fairness that can be enforced for

path expressions. Consider for instance the path expression path ((A;C) + (D;A» end. I\s before assume that

all events are pending at all times. The execution sequcnce DADt\ I1A ... then is fair according to this definition

22

e"en though event C is starved (event C is never enJbled) . \\ie could hJ"e done better huwever since

ACD,\i\CBi\ ... is also a legal execution sequence.

Obviously the strongest furm of fairness en forcible lies somewhere between definitions 1 and 2. We do not

know the strongest form of fairness that can be enfofCJ;;d for path expressions. Intuitively the fairest arbiter

would always cause starvation for the least number number of events possible. It is not possible to

characterize this form of fairness just in terms of execution traces. Reference must be made to the sequencing

constraints that enable/disable pending requests, which in our case in volves the complete path expression.

The probelm can be greatly simplified by requiring the arbiter to be oblivious of the sequencing constraints

and therefore equate a disabled event with a event not requesting. This restriction will also tend to simplify

the logic since the arbiter size need not depend on the size of the path expressions, but only on the alphabet

size. It should be kept in mind however th:lt like our previous restriction requiring prompt response, this

restriction limits the kind of arbiters possible.

We shall describe a probabilistic arbitration algorithm for an oblivious arbiter whose infinite execution

traces will be "fair" with probability 1 where "fair" is defined by either of definitions 2 and 3. It also holds for

stronger forms of fairness and therefore realizes some kind of fJirness between definitions 1 and 2. The

algorithm is as follows: Whenever the set of currently executing events is not a maximally parallel set, find all

ways of extending this set with enabled events so that the new sets are maximally parallel, choose one of them

at random, and then acknowledge the events in the selected extension. Every time an event is no longer

. disabled there is a finite probability that it will be acknowledged, and if this is the case infinitely often the

event will be infinitely often acknowledged. It follows that this algorithm ensures fairness in the sense of the

the second or third definition above. It will also prevent st.1rvation for event C in the last example above.

Although this algoritllm is currently only of theoretical interest since we do not know of any efficient

implementations it forms the basis of several efficient arbiter implementations below.

We first show that no deterministic oblivious arbiter can do as well as our probabalistic algorithm. We show

that every deterministic oblivious arbiter gives rise to starvation of an event which is continually requesting

for some path-cxpression for which the probabilistic algorithm (described above) does not cause such

starvation. Later we consider ways of physically implementing the probabalistic algorithm. We look at several

direct implementations that appcar to work at first sight but have problems when examined more closely. We

show that a straight-forward extension of Seitz's scheme [16] for a two-input arbiter to a general conflict graph

results in an unfair arbiter. We present one attempt to rectify this problem based on graph-coloring, and show

why it docs not work. Finally, we present a somewh.:1t non-standard scheme implemented in CMOS which

forms a best direct approximation to the probablistic algorithm described dbove. i\1l of these schemes also

23

sutTer from the dr3wb,lCk thJt critlcJlly balZ1nccd circliit elcmelilS are needed and/or llle levcl of nOISCln ehe

circuit must exceed the amount of imhalance. Finally we show a prJcticJI WJy of implementing slich In

JigoriLhm givcn an oraclc that generates a rJndom sequence of bilS. Such an oracle can bc pI1;.sicJlly

JPproxirn<Hed by an ofT-chip thcrmal noise source, that is amplified Jnd digitised.

The difficulty of building a fair deterministic arbiter that matches the probabalistic arbiLer can be Illustrated

by an example. Consider the following path expression:

path (A:C) + (B:(A + 13)) end.

Assume the LRU algorithm described previously is being used. and that the external clientls always requests

permission to perform all three events A. 13 and C. Let the priorities of all three be O's initially. As a result..

initially t\ and IJ arc enab\cd. ,\ssume t.hat 13 is selected, making ITs pliority 0 and 1\'S priority 1. In t.he next

instant, 1\ and 13 will Jgain be enabled. nut now /\ has the higher priority aod will be selected, so t.hat A's

priority hecomes 0 and Irs becomes 1. Continuing in this t~1shion, it is easy to sec thJt the sequence chosen

'Will be 13 A 13 A IlA The uouble with this scheme is t.hat C will never be enabled even if its request is

pending. Increasing the number of levels of priority will not help. This exarnple CJl1 be extended to the

following lemma.

Lemma 13: Let JI be a deterministic finite-state uansducer implementing an oblivious deterministic

arbiter. Then there exists a path expression over L = { ,\, 8, C } such that one event, say C, will be

starved even though its request is continually pending. \-forcover the probabalistic algorithm does not

cause such starvation for this path expression.

Proof: Let ,\I be a deterministic finite-state transducer whose alphabet is 2: = { A, 8, C }. Let the states

of M be S = { 51,52, ... , Sm }. Let the conflict graph, C, for the path expression be the complete graph

on the vertices A, Band C. We construct a path expression P with the conflict graph C such that ,tf

causes the starvation of the event C. Notice that because of the nature of the conrlict graph C, if at any

instant A and B (but not C) are enabled then at most one of A and 8 may bc selected by J/.

Let 51 be an arbitrarily chosen state of 1\1. We conduct an experiment on ,\/ by continuously providing A

and 8 as the enabled inputs, starting with J.,f in the state 51' If we present a string of inputs

{ A, 13 }, { A, B }, ...• { A, 13 } of length m then we notice that at the 1st input { A. 13 }, the

uansducer deterministically goes from the state 5{1) = 51 to a state .s(2) while outputting A or 13. Let 5(1),

5{2), ... , .s(m + 1) be the sequence ofst.1tes and a E { A, 13}m be the output string produced as a result

of the experiment. As a consequence of the pigeon-hole principle, some two states in the sequence of

24

Stdtcs will be the same, Of all such pairs, let s(t) and :-;0) be two slIch swtes closest to St' !\ssLlmc elidt i < }

and let k be the smallest multiple of U - i) sLlch that k ~ i. Without loss of gCl1crJlity assumc thJt .H

outputs I3 when in state s(t) with the input { i\, 13 }.

Let [> be the path expression

path (A + Bt l ;((A ;C) + 13); (/\ + I3)k-i end

It is easy to see that [> has G as the conflict graph and if the requests for A. I3 and C are continuously

pending then the sequence of outputs will be a string in { A. 13 } (,J and C will never be enabled.

The probabilistic algorithm would have no problem with the path-expression since from any state (of the

path expression) it could reach the state enabling C with finite probability. and hence enable C an

infinite number of times in an infmite trace. 0

The result of the above lemma can also be stated as follows: A deterministic oblivious arbiter needs at least

N/2 states to do as well as one using the probabalistic algorithm, where N is the size of the path-expression,

whereas the probablistic algorithm requires no internal state. The actual bound on the minimum number of

states required may be much larger.

Before proceeding further, let us consider the path expression path ,\ + I3 end. where the conflict graph is

G = (V, E) = ({ A, n }, {[A. Bn). Seitz [16] has shown how to build an arbiter for such a stnlCture llsing an

interlock-clement, as ~hown in Figure 5-2.

h1gh threshold

buffers

Figure 5-2: Seitz's Interlock Element

Aout

Bout

25

Circuit operation in Figurc 5-2 is most easIly l,isUJlil.cd sLlfling ',I,ilh ne:lllCf cllcnt rcqucsting, VI Jnd Ii,
l .:.

ho(h near 0 Yolts, and both outputs high. If Jny single input. SJy \n' is lowered then I't is driven high.

rcsulting in A being lowered - B remains unaffected . .\1orcovcr, once 1\ IS lowcred. and JS long as
. out out out

:\ is kept low the interlock clemcnt remains in this stable state irrcspectil,c of what happens to f1 , If 1\ is
In ' In In

now raised high then the clement returns to its initial condition if n IS still high: or 13 is lowered if 13 is
~ , In out :n

lowered in the meantime.

However, the interesting situation occurs when both A. and B are both lowered concurremly or within a
10 10

very short interval of time. In this case the cross-coupled :--';OR gates enter a metastable state, which is resolved

after indeterminate period of time in favor of either A or 13. Since this resolution depends on the thennal

noise generated by the gates. it is inherently probabilistic. In this case the outputs of the ~OR gates themsel ves

cannot be used as the outputs. High threshold inverters between the :'\OR gates and the outputs prevent false

outputs during the metastable condition.

It would seem natural to extend Seitz'S idea by generali7ing it to the conflict gr(lph for an arbitrary set of

path expressiuns. Ruughly speaking. we may construct a circuit by homomorphically transfonning the

conflict graph to a circuit by replacing each vertex with a NOIZ gate Jnd each edge with a cross-coupling of

:-JOR gates corresponding to the pair of vertices on which the edge is incident. However, such an

implementation in NMOS has some severe problems, which wi!! be clarified if we consider the circuit for the

readers-writers path expression:

path Rl + Wend

path R2 + Wend

where the pair Rl and yv and the pair R2 and Ware mutually exclusive, The conflict graph and the circuit for

this expression are shown in Figure 5· 3.

Consider the situation when the circuit is in the none-requesting condition and <111 three requests. R
I
, R2

and W, arrive concurrently. An infinitesimally short interval ~, after all three requests arrive, let us assume

that the voltages at the outputs (of the NOR gates) have increased by an infinitesimally small value A Y <t:: \h'

The pull-down MOS transistors may be assumed to be operating in their linear region. If all pull-ups are

assumed to provide equal active resistance, the output of the NOR gate corresponding to \V will grow less

rapidly than those corresponding to Rl or R2. The cumulative etTect of this imbalance will result in a low

output for W's NOR gate and high outputs for R1's and R2·s. Hence if RI, R2 and W request continuously

then the request for W will never go through, resulting in W's starvation. An apparent fix to this problem is to

increase the ratio of pull-up to pull-down for \V's NOR gate to twice that ofR1's Jnd R2·s. Dut if this is done

26

o----------------~o~------------------~o
R 1 w R z

(a)

Gnd
R 1 w R z

(b)

Figure S.3: (a) The Conflict Graph and (b) The Arbiter in NMOS.

in a static manner then, when only Rl and Ware requesting, W will have an unfair advantage over Rl'

The imbalance that favors certain arbiter inputs over others will not occur if the conflict graph is complete.

A second arbiter design makes use of this observation. We first obtain a minimal vertex coloring for the

conflict graph, i.e., an assignment of colors to the vertices of the graph so that no two adjacent vertices receive

the same color. This task is, of course, NP-complete. However, it only needs to be done once, and there are

heuristics that will come within a factor of two of the minimum number of colors. Events that correspond to

vertices within the same color class may occur simultaneously without violating our constraint on the behavior

of adjacent vertices. Thus, we only need to arbitrate between color classes, and the conflict graph for the color

classes will be complete. " schematic diagram for this second design is shown in Figure 5-4.

For each color class an OR gate is used to collect the inputs that correspond to vertices in the class.

Additional AND gates arc used to combine each arbiter output with all the inputs that correspond to vertices

IN D-out
In for color Out for color

Arbiter

Figure 5·4: An Arbiter based on graph coloring

in that color class. Assuming that .111 of the initial OR gates have the same delay and that all of me fInal AND

gates also have the same delay, the second design will be fair..

Although the sccond design appears. at first, to have solved the problem with me original design, further

though t shows that in reality the second scheme may not be that much better than the first. First of all, the

assumption that all of the OR gates have the same delay may not be very realistic. If the sL1ndard N\fOS

implementation for OR gates is used. the dclay through a gate will depend on the number of inputs that are

high--the argumcnt is essentially the same as the one that is used to show me imbalance in the first arbiter

design. Thus, if more Inputs In one color class are on than in another color class, Lhc el, ents in the .fIrst color

class would always win the arbitration.

Moreover, the seeo'nd design does not acknowledge maximally parallel sets. A conflict graph consisting of

2~ vertices arranged in a ring may be colored with just two colors. If 0i > 2 there will be two vertices with

different colors that are not adjacent. Assume that both request service at the same time and that all of the

other vertices remain inactive. llccause the two events belong to different color cldsses our arbiter design will

not Jet them occur in paralleJ. Since the vertices are not adjacent, however, they should be allowcd to proceed

in parallel.

An arbiter that tries to configure itself dynamically for the problem with two readers and one writer is

shown in Figure 5·5. To see how this scheme tries to remcmdy problcm discussed earlier, consider the

situa.tion when the circuit is in non-requesting condition and all three requests, R I' R2 and W, arrive

concurrently. An infinitcsimally short interval ~t after all three requests arrive, the voltages at the outputs

will have increased by an infInites;mally small value ~ v <t:: v
th

. The pull-down MOS transistors are in their

linear region. However, since active resist..1nccs of the pull-up tr:msistors depend on the neighboring events

23

(w, R! Rz)

1,11)

Gnd
Rl ',II R2

Figure 5-5: The Arbiter for l-Writer-2-Readers Problem in CMOS.

that are enabled, the pull-up resistance of the gate associated ':'lith W is exactly half of that associated with Rl

or R
2
• This provides a balance among pull-up resistances and results in almost equal rate of growth of

voltages at the outputs. Hence the interlock clements enter theIr metastable states more or less

simultaneously; and the metastable condition is resolved either in favour of Rl and R2 or in favour of \V, the

choice governed by statistical thermal phenomena.

A similar analysis shows that the circuit behaves correctly when only two out of three requests arrive

concurrently. However, if only one request, say W, 'arrives while all its neighbours remain in their non­

requesting condition the circuit beha~'es somewhat differently. In this case the pull-up transistor with input

(1l!. R . R) will turn on, thus allowing the output of the gate to go high. It is important to observe that the
1 2

pull-up transistors are controlled dynamically by the requests for the neighbouring events - if there is a

request for the neighbouring event then only the pull-up corresponding to the event turns on; and if there is

no request for the neighbouring events then only the pull-up corresponding to the event itself turns on. For

this to be implemented correctly it is essential that the pull-up corresponding to the event itself be turned on

only after a delay necessary for the requests for the neighbouring events to propagate to the gate of the

pull-up. Unfortunately the time constants associated with the arbiter outputs differ since the capacitances are

not dynamically adjusted and hence even this circuit fails to be (even theoretically balanced).

We now describe a probablistic arbiter that docs not rely on critical balancing of circuit clements, or the

presence of noise in the circuit itself. It makes use of an external oracle, that works as a random bit generator.

This can be prJctically realized in a seperate isolated circuit, that uses thermal noise (or some other source of

noise) to generate a random bit pattern. The arbiter itsel f is only required to ensure mutual exclusion and the

simple extension of Seitz's arbiter described above will perform this function. The only difference is the

29

presence of a delay clemel1t Jt each input. The dela:, cicments Gin be JlgnJily w' Itched on or ofT (b I

bypassing them). and are large enough. so tlldt if two conflictillg c\cnts cuc cnabled at the S,llTIe time. Jlld one

is delayed by the delay element the other is sure to be passed by the arbiter. This means that thc dclay should

exceed the gate delay of the arbiter (when no conflicts occur). The delay clements are cach controlled by a L

bit register. which determines if the dclay is on or orT. r\ new value is loaded in to eJch register from a

(sepcrate) oracle. each time the corresponding event gets enabled. This lTIeans '.lthcnever a new set of events

gets enabled. their 'priorities' arc randomly 1 or O. It is easy to show that any maximally parallel set then has a

finite,chance of being selected (when just its events havc priority 1 and all others have priority 0). which is just

what the probabalistk algorithm requires. To ensure that the random bits clocked into the different registcrs

are largely uncorrelated. thc oracle is split into multiple orJcles by clocking it into a shift register at a high

rate. The parallel outputs of the shift register will be largely uncorrelated if all bits in the register gets shifted

. out once for every arbitration cycle. Lower clocking rates will still work. since the outputs will still be paniJ.lly

uncorrelatcd. A tapped delay line could be used instead of the sh i ft re~ster.

For many path expressions, the LRC algorithm is just as fair as the probabalistic JIgortlhm Jnd hJS t.he

advantages that the response times arc approximately balanced. instead of being a complex function of the

conflict grJph as in the probabalistic algorilhm. For such path expressions the usc of the LRC algonthm is

preferable. A way of realizing lhe LR U algorithm in hardware has not yet been described. One realization is

to lise logically controllable delay lines in front of an arbiter mJt ensures mutual exclusion. just as in the case

of the probabalistic algorithm. However in this case cach of me k event inputs has k delay lines (in series) and

thc delay lines arc controlled directly by their priority: Each time an event is blocked. an additional delay line

is switched off for it, whereas if the event is acknowledged all its delay lines arc switched on again. reducing its

priority to the lowest level. This circuit requires just O{k*,) area.

More direct ways of combining thc advant.1ges of the LR U algorithm wilh the probabalistic algorithm

remain to be in vestigated.

6. Conclusion

Since our circuits have the const.1nt separator property, a more compact 0(01) layout is be possible using the

techniques of [5]. However. while it is definitely possible to automatically generate the O(~ 'log(N») layout

that we prop~. it is much more difficult in practice to generate lhe O(N) layout of [5]. Furthermore, the

O(N) layout will occupy less area only for very large N. We suspect lhat case of generating the layout will win

over asymptotic compactness in this casc. One of the authors (M. Foster) is currently implementiflg a silicon

compiler for path expressions. based on the ideJs in this paper.

Finally. we pl.:.n to investigate extensions of our construction to appropriate finite state subsets of CSP [6]

JO

and CCS [11]. In the case ofCSP the subset will only permit boolean valued vanablcs Jnd messages which Jre

signals. If the number of message types is fIxed. we conjecture (l1at area bounds comparable (0 those in

section 3 can be obtained. t\rrays of processes in which the connectivity of the communication graph is low

can be treated specially for a more compact layout. Such a finite-state subset of CSP may even be more useful

Ulan the path expression language discussed in the paper for high level description of various asynchronous

circuits.

References

1. ;\nantharaman, T. A. "t\ delay insensitive regular expression recognizer." (1985).

2. Campbell, R. H. and A. N. Habennann. The Specification of Process Synchronization by Path
Expressions. In Lecture NOles in Computer Science. Volume 16, G. Goos and 1. Hartmanis, Ed.,Springer­
Verlag, 1974, pp. 89-102.

3. Foster. M. J. Specialized Silicon Compilers/or rallguage Recognilion. Ph,D. Th., C~1U. July 1984.

4. Foster. M. J. and Kung, H. T. "Recognize Regular Languages with Programmable I3uilding-I31ocks."
Journal 0/ Digital Syslems VI. 4 (Winter 1982).323-332.

5. Floyd, R. W. and Ullman, J. D. "The Compilation of Regular Expressions into Integrated Circuits."
Journal a/the ;1ssociation/orComputillg Afac:hinery 29,3 (July 1982),603-622.

6. Hoare, C. A. R. "Communicating Sequential Processes." Comm. ;1C,\/ 21,8 (1978).

7. Lauer. P. E. and Campbell. R. H. "Fonnal Semantics of a Class of High-Level Primitives for Coordinating
Concurrent Processes." Acta fll/omwllca 5 (June 5 1974), 297 -332.

8. Leiserson, C.E. Area-Efficient VI-Sf Computation. Ph.D. Th., Carnegie-Mellon University, 1981.

9. D.Lchman. A. Pnueli, J. Stavi. "Impartiality, Justice and Fairness: The Ethics of Concurrent
Termination." Automata. Languages and Programmillg. (198l). 265-277.

10. Li. W. and P. E. Lauer. A VLSI Implementation of Cosy. Tech. Repl ASiYf/121, Computing
Laboratory, The Univcrsity of Newcastle Upon Tyne, January, 1984.

11. \iilner, Robin. A Calculus o/Communicating Systems. Volume 92: Lec/ure Notes in Computer Science.
Springer-Verlag, Tkrlin Heidelberg NY. 1980.

12. Mukhopadhyay. A. "Hardware Algorithms for Nonnumeric Computation." / EEE Transactions on
Compute.rs C-28, 6 (June 1979).384-394.

13. Patil, Suhas S. An Asynchronous Logic t\rray. MAC TECHNICAL MEMORANDUM 62,
Massachusetts Institute of Technology. May, 1975.

14. Pratt, V. R. On the Composition of Processes. Symposium on Principles of Programming LAnguages,
ACM, January. 1982.

15. Rem, Martin. Partially ordered computations, willI applications to VLSI design. Eindhoven University of
Technology, 1983.

31

16. Seitz. C. L. "Ideas i\ bout ,\rb iters." L.-1.\ /lJ f) II First Q UQrt cr (1980). In-l·t

Appendix: Proof details

Refer co section 4:

Lemma 14: If the same assumptions as in proposition 6 are satisfied. then T(SeqU)) is consistent with R .
J

Proof: From proposition 6 it follows that ScqU) consists of non concurrent time intervals. TIle result is

therefore easy co prove by induction on the number intervals in ScqU). using the same proposition. 0

Lemma 15: For each element i in Int with label e, the corresponding elements in Ext and ScqU) are

subintervals of i.

Proof: Follows from the properties of the circuit in fig 4- 2) (see also fig 4- J). 0

Lemma 16: For any Rj EM. T(lnt)l" is a totJlly ordered multisct.
.... RJ

Proof: It is easy co show that r(Jllt)l" = T(lntl"). But Inti" . consists of 'internal events' of the
""R] <.oR] -R

path expression Rj, during each of which the corresponding :\CK is high. Hence by proposition 8, no two

such events overlap. and therefore T(InOI" is a totally ordered multisct. 0
""Rj

Lemma 17: For any Rj E M, TOnt)l" = T(Ext)1 " .
""Rj ""Rj

Proof: For any clement i ofT(lnt). that is also in T(Innl" ,the corresponding element ofT(F.'(t) will be
""Rj

in T(Ext)ll: (definition 2) since they must map to the s.1me alphabet e E LR . Hence these traces have
Rj. . J

the same number of elements. Also from lemma 15 it follows that if il and i2 are two clements. of

T(lnt)ll: . satisfying one or none of" if precedes i2" and" i2 precedes ir. the corresponding clements of

I
RJ

T(Ext) l: . will satisfy at least the same relationships. In other words the partial order of T(Int) is a
RJ

restriction of that of r(Ext). But by lemma 16 T(Int) I " is a totally ordered multiset. Hence from the
""Rj

above T(Ext)l" will have the S.1IT1e partial order rclauonship and, therefore, be the same totJlly ordered
""Rj

multiset 0

Lemma 18: For any Rj € M, T(ScqU» = T(Int)ll: .
Rj

Proof: Follows from lemma 15 and 16 in the same way as in the proof of lemma 17. The only difTcrence

is that T(ScqU»1 ~ = T(SeqU». 0
""Rj

Lemma 19: For Jny sequencer SEQ, no two TR'S are high simultJneously.
J

Proof: The two TR'S would be two ACK's of events in the same path expression Rj, which cannot be high

simultaneously by prop<?sition 8. 0

32

Lemma 20: For any sequencer SEQ, ,TR is raised only if DIS is low and all TA'S are low.
J e e

Proof: By induction on the number of rising transitions OfTR'S :

o

1. (First transition): Let the corresponding event be e. By proposition 9 initially all T:\'S are low, and
all CLR'S are high, hence all TR'S are low initially. By proposition 5 all TA'S will remain low until
the first rising transition of TR . lly the same proposition DIS will not change until the first rising

t e
transition of TR . If DIS were not low, I~ would remain low (see Figure 4-2). Hence by e e e
proposition 8, TR would remain low, a contradiction. e

2 .. (For a succeeding transition): Let the corresponding event be p and that of the previous transition
q. While TR is high no TA or TR other than TA or TR can be high (proposition 8 and lemma 19),
Until CLR ~oes high. TR must remain high (s~e Figu~e 4-2). Once CLR goes high, all IN , with a
E r R" will be low after g short delay (see Figure 4- 2). Assuming the ~ariation in this delay for
diffefent a's is less than the delay of the arbiter in lowering TR • all TR with a .. q will continue to
remain low until CLR is lowered (see Figure 4-2). All TA • wid{ a .. q, ~lso continue to remain low
(proposition 5). But tl.R remains high at least until TA ais lowered (see Figure 5). Hence by the
time TR is raised all 'LZ,S will be low. Also TR could not have been raised if I~ were low
(propos~ion 8) .. But if DIS was high when TA w~s last lowered then r~ would now be low (see
Figure 4-2), assuming the rhain NOR gate pIu: the 2-input NOR gate ha~e a lesser delay than the
Muller-C clement plus the SR Flip-Flop. Moreover, 1)(S cannot change before rR is raised
(proposition' 5). Hence DIS must be low when TR is raised.

P
P

P P

Lemma 21: For any sequencer SEQ. ,TR is lowered only if TA is high.
J t e

Proof: The NOR gate arrangement in front of the arbiter insures that once TR is high it remains high
t

until CLR is raised, and this can occur only if TA is high (see Figure 4-2). Moreover once TA is high it e e t

will remain high until TR is lowered (proposition 5). 0
e

Theorem 10

Proof: Lemmas 19,20,21 satisfy the preconditions of proposition 6. Hence T(ScqU» is consistent with Rj

for any Rj E M. By lemma 18 and definition 4, T(Int) is consistent with Rj for any Rj E M. By lemma

17 and definition 4, T(Ext) is consistent with Rj for any Rj E M. Hence by definition 4, T(Ext) E Tr k(M).

o

ununa 22: 1fT € TriM) is layered. then each subset (cf definition 11) ofT has the property that no two

elements in it are instances of events in rRJ for any Rj € M.

Proof: Any two clements iI,i2 (corresponding to events el,e2) in the same subset ofT must be concurrent

(definitions 3.11). Suppose el,e2 € LRj with Rj E M. Then TI kR' will include il,i2 which will be

concurrent (definition 2), Hence TlrRj cannot be a total order and ~erefore T (Tr l:(M) (definition 4)

JJ

-- leading to a contradiction. Hence the result 0

Theorem 12

Proof: The behavior we require of the external world is that it simul taneously raise REQ for all events in

the first subset of T, wait until all corresponding ACK are high. then simultaneously lower all REQ. wait

until all ACK are low, then repeat this cycle for the next subset of T. and so on. We need to show that

under these conditions the circuit responds within a finite amount of time in each cycle. The result then

follows directly.

As shown in the proof of lemma 20, all ACK'S are initially low. Hence they are low at the beginning of

each of the cycles mentioned in the previous paragraph. At the beginning of each such cycle, Ext,Int and

every ScqU) with Rj € M. get redefined. Let Tp denote T restricted to subsets before the current cycle. It

is easy to show by induction on the number of cycles and definition 4 that at the beginning of each cycle

T(Ext) = Tp and Tp € Tr ~(M). Hence for any Rj E \-1, S(Tp I'>) is a prefix of some clement in L
R

. If
"'" -RJ ,J

the next subset contains an instance if of event el. then for each Rj E M such that el E L
R

· • S(Tpl ~)
J Rj

can be extended by if to give a prefix of some sequence in L
Rj

; in fact this extension gives the next value

of Tp I ~ (see lemma 22). But by lemmas 18.17, for any Rj E M. T(Scq(j» = T(Ext) I ~ = Tp I) .
""'Rj Rj Rj

Hence for each Rj € M, such that e1 E LRj' T(SeqU» can be extended by if to give a prefix of some

sequence in LR·. Thus by proposition 6, the corresponding sequencers SEQ. with el E LR ' will have DIS.
J J J J

low. This applies to any ef in the next subset'{)fT.

Therefore at the beginning of any cycle, when REQ
ei

for any event el in the next subset ofT is raised. all

DISei inputs to the NOR gate for event el (see Figure 4-2), will be low. Also within a finite amount of

time all r~levant TA e/s must go low by proposition 6. since the corresponding TR e/s are already low.

Hence CLRd will go low, and INti will go high for each el in the next subset of T. It follows from

proposition 8 and lemma 22 that all ACK'S corresponding to events in the next subset of T will be raised

within a finite amount of time.

The proof for the second half of the cycle is more straightforward. By lemma 6 once all REQ'S are

lowered, within a finite time all relevant TA'S will be raised, causing thc corresponding CLR'S to go high.

As a result all relevant IN's go low (see figure 4- 2) and hence by proposition 8 all ACK's go low within a

finite time, complcting the cycle. 0

Table of Contents
1. Introduction
2. The Semantics of Path Expressions
3. Implementing the Sequencer for a Simple Path Expression
4. Synchronizers for Multiple Path Expressions
5. Implementation of the Arbiter
6. Conclusion

4
5

14
19
29

List of Figu res
Figure 2-1: :\ n cXJmple pomsct
Figure :r 1: The controller for path P
I:igure :r 2: Cell for event e in path P
Figure :r3: Cell for ";"
Figurc 3··t Cell for" +"
Figure 3·5: Cell for
Figure 3-6: ,\ recognizer for pnth a:(a+ b);c end
Figure 3·7: The tloorplan for a sequencer
Figure 4·1: A synchronizer
Ftgure 4- 2: A synchronizer circuit
Figure 4·3: Synchronizer timing

11

Figure 5·1: The con flict graph of a path expression
Figure 5·2: Seitz's Interlock Element
Figure S.3: (a) The Conflict Graph and (b) The Arbiter in 0lMOS.
Figure 5·4: An Arbiter based on gr<1ph coloring
Figurc 5·5: The /\ rhiter for 1- \V riter- 2- Readers Problem in C:rIOS,

4

8
9

10
10
10
12
13
14
15
17
20
24
26
27
23

