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ABSTRACT 

Despite intensive research on distributed processor interconnection architec
tures, relatively little work has been done on the performance analysis of such systems. 
The reason for this, besides the complexity of the behavior of such systems, is that 
Queueing Theory cannot easily handle systems consisting of many tightly interacting 
components. An alternate approach, based upon statistical mechanics, is used. We 
analyze interconnection structures such as crossbar, linear array, binary tree and ring. 
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INTRODUCTION 

The objective of this paper is to investigate the possibility of using methods, 
borrowed from statistical mechanics as a possible alternative to the traditional Queueing 
Theory approach, to analyze the perfomance of multiprocessor .interconnection net
works. 

Multiprocessor interconnection networks provide communication between a 
set of distributed processing modules. In high performance multiprocessor systems, a 
high capacity interconnection network is required if inter-module communication is not 
to be a system bottleneck. Recent developments towards supercomputers has spurred 
increased interest in the design and analysis of multiprocessor interconnection networks 
[Siegel79, Thurber82]. 

Typically, the interconnection networks do not provide a dedicated com
munication path between any two agents. Therefore, an established path may block 
other paths. For example, in a crossbar switch connecting processors to memories, two 
processors cannot simultaniously access the same. memory module. The description 
of possible states and blocking between them often presents challenging combinatorial 
problems. Relatively little analytic results are known for the crossbar, tandem, banyan, 
delta, shuffle-exchange, loop and other interconnection networks. [Bhandakar73, Bhuyan83, 
Diaz81] 

Queueing Theory approach encounters a number of difficulties when it comes 
to the analysis of these systems. Firstly, it requires a very detailed study of the 
evolution of each component to the steady state even when the only questions of 
interest are some global averages. Secondly, and most importantly, Queueing Theory 
approach can offer very little when it comes to analyze systems consisting of many 
tightly-interacting components. The approach only works if a large-scale system can 
be decomposed into many independent "easy-to-analyze" subsystems. 

An alternative to Queueing Theory is the application of ideas from Statistic~l 
Mechanics. [Benes63, Ferdinand70, Yemini82]. Such approach can provide us with tools 
for handling tightly-interacting components. In contrast to the Markovian Analysis of 
Queueing Theory, the "Statistical Mechanics" approach does not require detailed track
ing of the evolution of each component to steady-state, but can derive. all important 
system measurements directly using a partition function, derived from an interaction 
potential. 

THE MODEL 

Consider a resource shared by a set of distributed agents. An agent becomes 
active according to exponential interarrival law with rate).. and once active, (that 
is, once it has acquired the resource) it uses the resource for a period distributed 
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exponentially with rate p. Assume further that agents may interfere with each other 
and that two interfering agents may not acquire simultanious access to the resource. 
We call such a system an Inter terence System. In an interconnection network, for 
example, the contending agents are transmissions accessing the shared communication 
switch. 

Clearly, most multiprocessor systems do not have an exponentia~ly distributed 
service times. However, techniques such as memory interleaving, read/write access 
mechanisms and cache memories suggest that the exponential assumption may be as 
good as the assumption of the fixed service time. [Bhandarkar73). In the above model, 
requests that are not accepted, are rejected altogether. In real systems, the rejected 
requests must be resubmitted. Simulation studies [Bhandarkar73, Diaz81, Strecker70) 
show however that this turns out to be a very good approximation. For the crossbar 
switch, for example, the analytic results are within five percent of the simulation 
results. [Strecker70]. 

An interference system can be represented by an interference graph G=<N,E> 
where the set of nodes N represents the agents and the and an edge between two agents 
represents a mutually exclusive interference between them. With the above assump
tions, the evolution of the network is that of a spatial birth-death process over the 
interference graph. Let 1I'(A) represent the equilibrium probability of the set A E V 
being active while V-A being idle. Then it is clear that the process is time-reversible 
and the equilibrium probability distribution 11'(.) satisfies the following detailed balance 
equation: 

>'1I'(A) = p1l'(A U x) ... (1) 

for x not in cl(A), both sides being zero otherwise. [Here cl(A) denotes the 
closure of A, that is the set of vertices in A and those neighboring to vertices in A.) 

To solve equation (I), we define a set of nodes in the interference graph to 
be independent if no two nodes in such a set are neighbors. Thus, independent setS of 
nodes represent possible concurrent transmissions. Let J denote the set of independent 
subsets of G. Let us define Qh to be the number of distinct independent subsets of G 
having 1 nodes. It is easy to verify that: 

Theorem l' 

The equilibrium probability that solves equation (1) is given by 

1I'(A) = {pIAl / Za, 
0, 

where 

AEJ 
otherwise 
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and Za, the "partition" function of the system is given by: 

N 

Za = LplAJ = LQ~pi 
i-O 

Let us now note an analogy to statistical mechanics: The equilibrium behavior 
of a large mechanical system is completely descibed by its partition function 

Z = Lexp( -{3Ei) 
i 

where the summation is over all microstates of the system (enumerated by i); Ei is the 
energy of i-th microstate and {3=l/kT where T is the absolute temperature and k is 
the Boltzmann constant. The equilibrium probability that the system is in state i is 
given by the Gibbs distribution: 

All thermodynamic functions describing the system (energy,entropy,pressure) are ob
tained in terms of the partltion function and its derivatives. 

One can easily see the analogy to statistical mechanics. A microstate of an 
interference system is described by an independent set of nodes in the interference 
graph. The cardinality of an independent set corresponds to the energy of a microstate. 
The global energy thus corresponds to the average number of concurrent transmissions 
processed by the interconnection network, that is the thruput of the system. The prob
abtlity of non-zero energy corresponds to the utilization of the system. Pressure P can 
be shown to correspond to the average rate of blocking experienced by transmissions. 
A detailed elaboration of this analogy can be found in [Yemini82J. In this paper we will 
show how to calculate the partition function, thruput, utilization and average blocking 
probability of some interesting interconnection structures. 

If we let T = -l/klnp, we can rewrite the partition function as: 

in complete analogy to the statistical mechanics model. Note that p = 0 
corresponds to T=O and p = 1 corresponds to T=oo, so traffic increase is associated 
with raising the "temperature". 
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Formally, the thruput can be defined in terms of the "logarithmic derivative" 
of the partition function as follows: 

then 

~ .. dlnZ 
E = ~iQ' P' = P-;r-

i-O P 

The utilization of the system (the probability of at least one transmission) is 

1 
U=I-

Z 

It can be shown [Yemini82) that the pressure of the system corresponds to the 
average probability of blocking and can be computed as follows: 

p= )'ddZ 
Z dn 

where d denotes the average degree of a node in the interference graph, that 
is, the average number of edges incident on that node. Of course, the above formula is 
meaningful only for sufficiently large interference graphs. 

APPLICATWNS 

Example 1 ( A non-blocking interconnection network). . Consider a 
system capable of producing n transmissions which do not interfere with each other. 
Its interference graph is the graph with no edges. 

The number of independent sets of with i vertices is o}v = (~)and so 
the partition function is given by 

Zn = 1 + (~)p + .... + (:)pn = (1 + p)n 

The energy (thruput) of the complete interconnection network is given by 

np 
En = (1 + p) 

The thruput per node is then 

En p - = ~.;...-.~ 

n (1 + p) 
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Utiliza.tion of such system is 

1 
Un = 1 - (1 + p)n 

Since the degree of each node in the interference graph is 0, P = 0 which 
reflects the fact that no blocking is experienced by concurrent transmissions. 

For p ~ 0 we have ~" ~ 0 and Un ~ o. 

For p ~ 1 we have ~" ~ ! and Un ~ 1 - in. So, the utilization approaches 
1 very fast, as one expects: the system is non-blocking. 

Example 2 (Complete interference model) Suppose we have n processors 
connected to a carrier-sense bus with negligible propagation delay. Any two concurrent 
transmissions interfere with each other. The interference graph is Kn. Clearly, o~ = 
1 and o~ = 0 for i>1. 

The partition function of the bus,is thus given by 

Zn = 1 + np 

The energy (thruput) of the bus is given by 

E _ np 
n - (1 + np) 

The energy per node is then 

p 
En/n = (1 + np) 

The utilization of such a bus is 

1 
Un = 1- ---

1+ np 

The pres;mre (average blocking probability) is 

P = >'(n -1)p 
1 +np 

For p ~ 0 we have ~" ~ 0, Un ~ 0 and P ~ o. 
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For p ..... 1 we have e,." ..... rh· Un ..... 1 - rh and Pn ..... 00. This is 
what one expects - in heavy traffic each processor will be involved in a transmission 
approximately * of the time, and since any two concurrent transmissions interfere with 
each other, the average rate of blockmg approaches infinity. 

Example 3 Consider n processors arranged in a linear array. Suppose 
that any processor can be involved in a transmission with one of its neighbors, but not 
with both. To calculate the partition function Zn we will derive a recursive relations 
for Q~. 

Suppose one more processor is added to the tandem. Let us examine a 
configuration involving i transmissions. There are clearly two cases to consider: 

Case 1: the (n+l}-st processor is not transmitting. There are Q~ such configurations. 

Case 2: the (n+l}-st processor is involved in a transmission. There are Q~-1 
such configurations. 

Hence, 

The above relation implies the following recursive relation 

Zn+l = Zn + pZn-l with Zo = ZI = 1 

The solution is readily seen to be 

Zn = 1 [(1 + VI + 4P)n+l _ (1- VI + 4p)n+l] 
VI + 4p 2 2 

The energy (average number of transmissions) is 

[ 

1 (1- 1+4)n ] E _ -2p + 2p(n+l) + 1+ 1+4p 

n - 1 + 4p VI + 4p(1 + VI + 4p) 1 _ (1_Ji'±7it)n+l 
1+v'1+4p 

For "large" n the term in brackets may be ignored to obtain the followi.ng 
asymptotic expression the energy per node in a linear array 

En 2p 
-n = ~v';:;:1 =+:::;4=p(-;:I~+-v'-;l;:::+=:;:4p~) 

The utilization of the array is 

- 1 -



The pressure is easily computed to be 

Pressure is thus nearly linear in~. For p .- 1 the thruput per node ~" .
! -~. The term! is the thruput per node if no interference existed; the amount 

27s is lost due to interference. The average rate of blocking P .- 2~/og( 1+2~). while 

utilization U • .... 1- ( ')"+> 1+.l'5 

Example 4 Consider n processors, arranged in a linear array as before, 
but now assume circuit switching, so that once a path is established between nodes A 
and B which passes thru node C, this node C cannot be involved in any transmission. 
An example of such a network is the MP IC architecture, suggested by Arden and 
Ginosar [Arden81,Ginosar81]. To calculate a~ note that the choice of 2i processors 
uniquely determines i transmissions. 

Therefore, a~ ....:.. (~) The partition function is 

1 
Z1l = 2[(1 + Jp)1I + (1 _ Jp)1I] 

So, the energ:r is 

nJP [(1 + JP)1I-l - (1 - JP)1I-l] 
E --

11 - 4 (1 + JP)1I + (1 - JP)1I 

[ 
(' _ 1':)11_1] ~ 

E _ nJP 1 - l+fl 
11 - 4(1 + JP) 1 + C~~)1I 

For very "large" n, the term in the bracket can be ignored. Thus, asymptoti
cally, the average number of transmissions in a linear array per node is 
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'..[P 
En ...... 4(1 + ..[P) 

Utilization of such linear array of n processors is 

2 
Un = 1 - ~(l-+-..[p-=p:-'-)n-+~(-1 ---V1'~p )~n 

Asymptotically, the utilization is 

2 
Un ...... 1 - (1 + V1')n 

For p ...... 1 the thruput per node ~" ...... i = 1 - i Here t represents the 
thn,lput per node without an interference, the amount j is lost due to interference. 
The utilization Un ...... 1 - ~. 

Example 5 Consider n processors arranged in a ring. Two transmissions 
between 2 different pairs of nodes interfere if they share at least one node in common. 
To calculate Q~ observe that once we fix 2i nodes for i transmissions there are only two 
possibilities for a pair of adjacent nodes among those chosen: either they are the end 
nodes of the same transmission or of two different transmissions. 

Hence, Q~ = 2(~) 
Therefore, 

The energy (average number of transmissions) of the ring is 

nV1'[(l + V1')n-l - (1 - y'P)n-l] ny'P 
En = -2- (1 + V1')n + (1 - y'P)n ...... 2(1 + V1') 

The utilization of the ring is 

1 
Un = 1 - ---------

[(1 + ..[p)n + (1 - .jP)nJ 
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For" large" n, the utilization 

1 
U" ..... 1 - (1 + JP)" 

For p ..... 1 the energy per node converges to ~. In the absense of interference 
the thruput per node would have been i in heavy traffic, the amount i is lost due to 
interference. 

To calculate the pressure, observe that the cardinality of the interference 
graph for the ring is n2 - n + 2 and that a vertex representing a transmission involving 
k consecutive nodes in the ring has degree n2 - n + 1- (";k). Thus, the average degree 

d = ("-2~(25..:':~;"+3). The average rate of blocking is then ~A/og(l + JP). 

Example 6 Consider a full binary tree interconnection network with 
n processors at the leaves. Such a network switch has been suggested as a multi
processor communication mechanism [Shaw82] and as a local area network architecture 
[Yemini82]. Let n = 2k - 1 be the number of leaves. (k is the depth of the tree) 

Two processors can be involved in a transmission through their least common 
father on the tree. Two transmissions paths that cross, interfere with each other. It is 
clear from this that to a configuration with i transmissions there corresponds a choice 
of 2i leaves, and conversely, a choice of 2i leaves uniquely determines the possible i 
transmissions. Therefore o~ = (~) Hence, the partition function is given by 

1 
Z" = 2[(1 + .fP)" + (1 - .fP)"] 

This is identical with the partition function for the linear array in example 
4. Therefore, the thruput and utilization of the binary tree interconnection network 
are the same as that of a linear array. This proves Ginosar-Arden's argument that an 
MP IC bus is as good as a binary tree. [Arden82,Ginosar82]. 

Comparing this with the results of the previous example, one can see that the 
utilization of each node in a ring interconnection network is twice as that of a binary 
tree. Moreover, the ring is a 2-connected graph whereas any single node failure is fatal 
to the binary tree interconnection. Therefore, the ring network is more reliable. In 
terms of the number of nodes to connect N processors, both require the same (N+1 
for the ring, N for the binary tree). In this respect they are equivalent. On the other 
hand, the longest interconnection may require a maximum of 2/of}2N nodes in a tree 
and r:. for the ring. This advantage of a binary tree interconnection network has been 
uttlized In a number of computer systems. [Shaw82, Yemini82, Stolfo81]. 
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Ezample 7 Consider an ,m x m crossbar with "non-overlap" restriction, 
that is once we choose i inputs and i outputs, there is a unique way to connect them. 
(Each of the m2 switches can only have at most one transmission going thru it) We 
can choose i inputs in (7) ways and i outputs in (7) ways. Therefore, 

Hence 

To calculate Z'" we note the following identities 

From this we can immediately verify the following 

{ 

, " 2 
Z'" + pZ", = m Z",-l, 

2 '2" 2 m Z'" -(2m-l)pZ", +p Z'" = m Z"'-l, 
Z'" = (2m -1)Z",_l + (1- P)Z:n-l' 

Therefore, 

mZ", = (2m - 1)(1 + P)Z"'-l - (m - 1)(1 - p)2 Z",-2 

Comparing this with the recurrence relation of the Legendre polynomials, 
namely 

mP",(z) = (2m - I)ZP"'_l(Z) - (m - I)P"'_2(z) 

we have the following formula: 
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where Pm denotes the Legendre polynomial of degree m. 

The energy of the "restricted" crossbar is 

· (1+1') E _ dlogZm _ -mp + Pm r=p 
m - P dp - 1- P P P (1+1') 

m 1-1' 
... (*) 

From the recurrence relation for the Legendre polynomials: 

(X2 -l)Pm '(x) = mxPm(X) - mPm- 1(x) 

the following expression for the average energy of the system is obtained 

Let's compute the asymptotic behavior of the energy. When p ~ 1 we have, 
~~p ~ 00. It is easy to show that if /m(X) is a polynomial of degree m, such that 

x ~ 00 we have L ~ m f z 

Therefore, for p ~ 1, from equation (*) above for the number in the system 
we obtain 

E ~ _-_m_p + 2mp = _m_p_ 
m . 1 - P (1 + p)( 1 - p) 1 + P 

Thus, in heavy traffic the thruput per input for the crossbar is !. This means 
that as multiprocessor systems with such an interconnection networks grow, one is not 
faced with diminishing returns in heavy traffic, no matter how many modules are there 
- one can expect half of them to be active. 

The utilization is 

1 
Un =1--------

(l-p)mPm(!~:) 

From the above examples one can see some of the difficulties in evaluating 
the' partItion function and interpreting the results. So far, we have not been able 
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to analyze a class of delta networks (omega, shuffle-exchange, banyan) because the 
recursive expressions for these networks seem to be not easily amenable to closed form 
expressions. We have been able, however, to analyze the crossbar, and we do this in: 

Ezample 8 Consider now a network capable of realizing any permuta-
tion of inputs to outputs such as the crossbar or a full banyan network. (we assume that 

an input can be connected to just one output). For such networks we have Q~ = (~)2i!. 
The partition function for the network is then 

From the definition of Laguerre polynomials of degr~e n, namely 

n Ic( n )zlc 
Ln(z) = [;,(-1) n _ k k! 

we have 

( 1) n ( ) I ( 1 )n-Ic nl{-z)nLn -- = L : n; __ 
z Ic-O n k k. z 

Therefore, we obtain 

The energy of the network is 

_ Z~ _ L~(-~) 
En-PZ-n+ p '( ) n L _1 

n p 

From the recurrence relation of the Laguerre polynomials, namely . 

, 2 
xLn{X) ~ nLn{X) - n Ln-dx) 

we obtain the following formula for the energy En 
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The utilization of the network: 

1 
Un =1--------

(-I)nn!pnLn( -~) 

CONCWDING REMARKS 

This paper presents some preliminary analytic results for the analysis of some 
complex interconnection structures, based upon ideas and tools analogous to those in 
statistical mechanics. Such an approach gives an attractive alternative to Queueing 
Theory, offering a relatively easy way to derive important quantities of interest without 
going into" fine-grained" analysis of the evolution of each com ponent. Future work will 
extend the applicatIOns to other models of interconnection networks and distributed 
systems. 
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