
C\';CS-139-84

Image Understanding Algorithms
on

Fine-Grained Tree-Structured SIMD Machines

Hussein A. H. Ibrahim

Submitted in partial fulhllment of the
requirements for the degree

of Doctor of Phllosophy
in the Graduate School of Arts and SCiences

COLL'W3lA t:~IVERSITY
1984

(]) 1984

HusselO A H. Ibrahim

ALL RIGHTS RESERVED

ABSTRACT

Image Understanding Algorithms on
Fine-Grained Tree-Structured SIMD Machines

Hussein A. H. Ibrahim

An Important goal for researchers In computer vision IS the construction

VISion systems that Interpret Image data in real time. Such systems

tYPically require a large amount of computation for processing raw Image

data at the lowest level, and for sophisticated decision making at the

highest level Recent advances In VLSI circuitry· have led to several

proposals for parallel architectures for computer vision systems. In this

theSIS. we demonstrate that fine-grained tree-structured SIMD machines,

which have favorable charactenstlcs for effiCient VLSI Implementation, can

be used for the rapid execution of a wide range of Image understanding

tasks We also Identify the limitations of these architectures and propose

m~thods to ameliorate these dlfflcultles. The NON-VON supercomputer,

c urrl?ntly being constructed at Columbia Umverslty, IS an example of such

an .lrC hltl?ct ure

The m .lJor contribution of thiS theSIS IS the development and analYSIS of

spveral parallel Image understanding algOrithms for the class of architectures

under c<?l)slderatlon The algOrithms developed In thiS research have been

sl?lected to span different levels of computer VISion tasks They Include

Image correlation, hlstogrammlng, connected component labeling, the

com putatlOn of geometric properties, set operations, the Hough transform

method for detecting object boundaries, and the correspondence problem In

moving light display appilcatlons. The algOrithms Incorporate novel

approaches to reduce the effects of commUnication bottleneck usually

associated With tree architectures

Table of Contents

1. Introduction 1
1.l. Levels of Computer ViSIon Tasks 4
l.2. MotIvatIons For This Research 6
1 3. Contnbutlons of This Research and Organization of Subsequent 7

Chapters

2. Parallel Image Processing Architectures:
Overview

2 1. Mesh-Connected Architectures
22. Plpehned ArchItectures
23. MultIprocessor Architectures
24 Hierarchical ArchItectures

3. The NON-VON Supercomputer Architecture
3 1 The Small Processing Element DeSIgn
32. CommUniCatIon In NON-VON
3 3. N-P AS CAL An OvervIew

4. Image Representation
4 1 Image Data Structures: An OverVIew

4 1 1. MultI-ResolutIon PyramIds on NON-VON
4 1 2 Binary Image Trees on NON· VON

4 2 Inltlahzatlon and Image Loading
4 2 1. loading the Image
-4 2 2 BUildIng the Binary Image Tree
-4 2 3 Budding the Multi-Resolution Pyramid

5. Low-Level Imaae Processing Algorithms
5 1. Image Hlstogramming
52. Thresholding
5 3. Image Correlation

5 3 1 Image Shift Algonthms
532 Image Correlation Algonthms

An 11

12
14
16
17

22
25
27
30

34
35
36
39
42
47
51
54

59
60
67
71
73
83

s. Geometl'ic A1gol'ithms 94
6 1. Connected Component Labeling 95

6 1 1. The Connected Component Labeling Algorithm 95
6 1 2. Connected Component Labeling Simulation 107

62. Computing Connected Component Properties 108
6.2.1. Area 112
62.2. Perimeter 113
623. Moments 115
62.4. Centroid 118
62.5. Compactness 119
62.6. Eccentricity 119
62.7. Euler Number 120
628. Connected Component Properties Simulation 128

6 3. Set Operations 129
63 1. Complement 130
6 3 2 Intersection 131
633 Union 133

7. The Hough Tl'anstol'm 135
7 1. The Hough Transform Algorithm - A Direct Approach 138
72 The Hough TraDlform Algorithm - A MSIMD Approach 143
73 Simulation Results 151

8. Moving Light Displays 154
8 1 The Trackmg Algorithm 155

9. Conclusion and Directions tor Further Research 166
References 170
Appendix A. The NON-VON 3
Appendix B. NON-VON 3

Instruction Set 182
Code tor Selected

A1lorithma
8 1 NON-VON Tree Inltlahzatlon
8 2. Imale 1/0
B 3. Binary Image Tree Budding
84. Gray-Scale Image Histogram and Thresholdmg
8 5 Bmary Image Shlftlnl
8 6 Gray-Scale Image Shlftlng
87 Conneceted Component Labehng

Appendix C. Some Functional Simulator Results
C 1 Hough Transform
C 2 ~1ovmg Light Dlsplays

11

187
187
191
197
200
204
207
209

218
218
220

Figure 2-1:
Figure 2-2:
Figure 2-1:
Figure 2-.1
Figure 2-0:
Figure 3-1:
Figure 3-2:

Figure 3-a:
Figure 4-1:

Figure "-2:
Figure 4-,:
Figure :
Figure "-0:

Figure 6-1:
Figure 6-2:
Figure 6-11
Figure 6-.. :
Figure 6-0:

Figure 6-81
Figure 8-1:
Figure"' 8-1:
Figure e. ••
Figure 8-4.

Figure 8-1.
Figure 7-1:
Figure 7-2:
F1gure 7-11
Figure 8-1:

List of Figures

A Two-Dimensional Cellular Array 12
Organization of Pipelined Architectures 14
An MIMD Architecture 16
A Hierarchically Organized Architecture 19
Organization of the Pyramid Machine 20
Top Level Organization of NON-VON 23
NON-VON 3: Block Diagram of the Small Processing 27
Element
Inorder Em bedding of the Linear Array 29
An Image and its Multi-Resolution Pyramid 37'
Representation
A Picture and its Quadtree 40
Binary Image Tree Rectangle Arrangement 41
Coordmate System for Binary Image Trees 43
A Binary Image and its Binary Image Tree 55
Representation

The Gray-Scale Image Histogram 66
A Bimodal Histogram 68
The Binary Image Alter Thresholding 70
Binary Image Shifting 77
A 2k x k Subimage and its NON-VON Tree 79
Representation
Image Correlation Template in a 4 x 4 Subimage 88
Connected Component Labeling of a Binary Image 96
Cases of a Rectangle Adjacent to Two Rectangles 105
Some Simulation Results 109
Possible Configurations of Three or Four Nodes That 121
Intersect a Pomt
Testing for 5 Points 123

The Two-DimenSional Histogram of Parameter Vaiues 148
The Input Boundary Points 152
Some Hough Transform Simulation Results 153
Permutations of the InItial Solution First Three 158
Elements

111

List of Tables

Table 4-1: Image I/O ExecutIon Time for Some Parallel Machmes 52

Table 6-1: Execution Time (or Some Low-Level OperatIOns on 93
Some Parallel Machines

Acknowledgments

I wish to express my SlDcerest thanks to my research advisors, David

Shaw and John Kender, for their constant gUidance, support and

encouragement throughout my graduate studies at Columbia University,

their Influence on this work and on me has been tremendous. I conSider

myself fortunate Indeed to have had the pnvilege and pleasure to have

worked With two such dlstlDgulshed and dedicated lDdivlduals. Salvatore

Stolfo has also contnbuted to the contents of the research reported in this

theSIS With hiS support and thoughtful counseling on several occasions.

SpeCial thanks are due to Cyrus Levlnthal of Columbia University and

Robert Hummel of New York University for generously agreeing to serve as

outSide committee members, and for their careful reading of this

dissertation

Among the other IndiViduals who have made contrIbutions of varIOUS sorts

to the completion of thiS dissertation are Theodore Bashkow, Mary Forry,

Bruce Hillyer, Richard Korf, Jim Kurose, Gerald MagUire, and Stephen

L·ng~r

But beyond all else, lowe much to my wife Nlhal Nounou, not only for

her continuous support and encouragement, but also for her help In proof

re.ldlng thiS theSIS and for her constructive CrItiCism of ItS contents

ThiS research was supported In part by the Defense Advanced Research

Projects Agency, under contract ~00039-84-C-0165, and by the New York

State Center for Advanced Technology In Computers and InformatIOn

Systems at Columbia Unlverslty

v

To my pa.rents

VI

Chapter 1

Introduction

The held of Image understandmg, also referred to as computer vIsion or

Image analysis, has developed qUIckly dUrIng the last decade, with

growing appilcatlons In varIOUS fields. IndustrIal production, mediCine,

space exploration, robotiCS, and the discovery of natural resources are but

a few examples of such areas. An important goal for researchers In this

held IS to construct computer-based vision systems that receive an Image

or a sequence of Images from a sensory devIce and output an

interpretation of thiS Input In real time. Input images wIth reasonable

resolutIOn contain large quantities of data, and conventIonal von Neumann

machln~s require an excessive amount of tIme to sequentially process the

fetched dolt.). Image understanding apphcatlons, however, usually Involve

computations that can be performed simultaneously on many or all of the

Image elements Consequently, parallel computers are highly deSirable for

f~t execution of Image understandmg tasks

A computer Implementation of a complete VISion system not only

requires the performance of many computations on large structured arrays

of r3.W Image data at the lowest level, but also sophisticated decision

making at the highest level With recent advances In very large scale

Integr3.ted (vl...SI) circuitry, It IS feasible now to embed a number of

proceSSing and memory elements within a single chip In a cost-effective

1

manner This has led to a surge In research aimed at developing n~w

computer organIzations that meet the large computational and deCISion

r~qulrements of image analysIs tasks by exploiting the new technology

V.:mous kinds of special parallel machines for computer vision have been

proposed and some have been Implemented; examples are descnbed In

[Duff i6!. [Krus i6J, [Dyer 811. [Kush 831. [pott 831. and [Reev 84).

The organIzation of some of the proposed machines is based on a very

large number of very small processing elements (PE's). Throughout this

th~sIS, we wIll refer to such machines as fine-grained or bigbly parallel

machines In such machines, dIfferent schemes are used to interconnect

the PE's For example, the PE's can be connected together in the form

of a two-dimensional mesh, or they can be placed at the nodes of a

blnJ.ry tr~e If all the PE's Simultaneously execute the same instruction

on t heir own data, the machIne IS said to be executIng in single

instruction stream, multiple data stream (SIMD) mode [Flyn 72] On the

oth'?r h.lnd, If the PE's execute different Instruction streams concurrently

on different data streams, then the machIne is said to be executIng In

multiple ilJStructiolJ stream, multiple data stream (MIMD) mode

In thiS theSIS, we lDvestlgate how fine-grained tree-structured SIMD

computer :lrChltectures, which have favorable characteristics for efficient

\ LSI Implementation, can be used for the rapid execution of a Wide

r .lnge of vIsion tasks We also diSCUSS certaIn lImitations of these

architectures as vIsion machlOes and propose methods to ameliorate these

difficulties The NON-VON supercomputer, currently belOg constructed

at Cohlmbla UnIversltyl, IS a representative example of this class of

architectures

Several parallel Image understanding algorithms, spannIng different levels

of VISion algorithms, have been developed and Implemented on a

functIOnal Simulator of the NON-VON machlOe. Some of these

algorithms have also been tested on a machine instruction-level Simulator

of ~ON-VON The design, Implementation and time analYSIS of these

algorithms are discussed 10 this thesIs, as are Issues related to Image

representation and Image I/O NON-VON's performance {or the

developed algorithms IS also compared With that of other highly parallel

VIsion machlOes.

In the rest of this chapter, we hrst diSCUSS the nature of Image

understandlOg tasks and the manner 10 which they affect the deSign of

the proposed architectures. In Section 1 2, we outhne the central Issues

related to the construction of such highly parallel machlOes, and deSCribe

the motivations for this research In Section 1 3, we slate the major

contributions of thiS work and outline the orgaOlzation of subsequent

chapters

IThe rirst prototype is expected to be completed by March 1985.

1.1. Levels of Computer Vision Tasks

Computer vIsion tasks may be divided Into three charactenstlc classes

low-level vision, intermediate-level vision, and bigb-Ievel vision. Low-level

Image proceSSIng deals with the raw Image data received from the sensory

deVices and usually produces an output of the same size as the Input

Low-level vIsion processing is sometimes referred to in the lIterature as

signal level processing, Since Input Image data may be Viewed as a Signal

to be processed. Examples of low-level vision tasks Include Image

restoration, noise removal, gathering certain statistics about the Image,

Image enhancement, and Simple feature extraction such as edge detection

[Ball 821 SInce such tasks usually Involve the execution of the same

sequence of Instructions repeatedly on all of the Image data, they are well

SUited for f.l.St execution on machines of SL\ID architecture Most speCial

hardware systems proposed Cor Image understanding tasks are of thiS

type

Intermlldlate-level vIsion tasks are usually concerned with aggregating

Image Ceatures obtaIned from low-level vIsion tasks and transforming the

Image Into some symbolic representation, such as labeled graphs of

relatIons between Image features Examples of such tasks Include the

Hough transform method for detectIng object boundanes described by

parametric curves, and interpretIng the shape of three-dimenSional objects

from two-dimensional Images Intermediate-level VISion tasks may be

-
)

newp.d as the mterface between low-level processmg and processing of th~

symbolic Image representations on the high-level There are somp. open

rE'searcll qUf'stlons regardmg tasks on this level Examples of such

problems mclude the chOlce of the best sets of features to be extracted

by low-leYel procedures for the task at hand, and the manner m which

they are represented for use m high-level vIsion tasks

High-level vIsion tasks accept a symbolic representation of an Image and

classify Image features and segments mto known classes They also

match these symbolic representations to known symbolic structures for the

final mtp.rpretatlon of the Image Techmques used In th~se tasks are

similar to those usp.d· m the fields of artificial Intelligence and pattern

recognItion High-level vIsion tasks usually Involve multiple operations

that can be executed Independently For example, the same Image

SE'gment can be analyzed uSing different technIques Architectures sUlted

for these kinds of tasks are usually of the MIMD class

In Chapter 2, we overview some of the architectures that have been

proposed to Implement. these tasks, and diSCUSS the advantages and

disadvantages of t.hese different architectures

1.2. Motivations For This Research

There are several motivations for this research. First, tree-structured

machInes have favorable characterIstics for effICient VLSI ImplementatIOn,

such as area-effiCient layout, simple Interconnection scheme, and a

bounded number of I/O ports per chip. Thus, tree machines are easy to

construct and expand. The reader IS referred to [Ibra 831 for a detaIled

dISCUSSIon of thiS aspect of tree machInes.

Second, ~ON-VON's hardware, With Its support for the fast global

broadcast of InstructIOns and data to all PE's, is well-SUited for the rapid·

execution of a Wide range of vIsion tasks, especially low-level SIMD vIsion

tlSks A detalled diSCUSSion of thiS aspect of NON-VON's architecture IS

pre::ented In Chapter 2

Third. :\ON-VON has some speCial hardware features that have been

dl?::lgned to support large scale data proceSSIng. and which have proven

u::ef:JI In VISion tasks to amehorate some of the problems related to the

com m unlcatlon bottleneck generally assOCiated With tree architectures

\\'e Will descnbe these features In Chapter 3

The fourth motivation IS based on the fme granularity of the NON·

\'O~ PE's, which IS well SUited to Image analYSIS tasks mvolving large

amounts of data

Furthermore, the hierarchical nature of the NON-VON tree allows the

efficient ImplementatlOn of eXlstmg hierarchical and multi-resolution

algontlrms for Image analysIs. Algorithms based on the aggregation of

values computed at a number of Image pomts can be executed very

qUickly by virtue of the hierarchical nature of the machme.

:'\o~-\'O~'s architecture also supports the concurrent mampulatlOn of

massive amounts of symbolic data, which IS useful 10 high-level VISion

ta.5ks Relational Image databases can be handled very effiCiently on the

~O~-\"O~ machme The Implementation of such systems IS discussed 10

[Shaw 821 Rapid execution of expert systems on tree machmes IS also

discussed In [Stol 821 The effiCient use of Image databases and of expert

VISion systems for high-level VISion, are interesting research questions that

ar p how"' "'r. beyond the scope of thiS theSIS

1.3. Contributions of This Research and

Organization of Subsequent Chapters

The major contribution of thiS theSIS IS the development and analYSIS of

parallel algOrithms for several Image understandmg tasks on highly

parallel tree-structured SIMD machmes The Image analYSIS apphcatlons

conSidered 10 thiS theSIS have been selected to span different levels of

computer \'Ision apphcatlons These algOrithms mcorporate novel

approaches to explOit the machme's tree orgaOlzatlon and to reduce the

effects of comm umcatlon bottleneck usually associated With tree

are hi teet ures

Issues that affect the design and time analysIs of these algorithms are

also addressed In this dissertation. Image representation in tree machines

IS one such issue. We describe how hierarchical data structures can be

modifIed to represent Images in the NON-VON tree. Fast Image I/O IS

an Important factor for effiCient implementation of VISIon algOrIthms In

thIS thesIS, we propose dIfferent methods to perform I/O effiCIently In

tree machines

~tore speCifically, we have developed and analyzed parallel algOrIthms

for fa.st Image correlatIon, and for quasi-parallel connected component

labllltng A fast, dIstrlbutlld, space-effiCient algorithm has been developed

to Implement the Hough transform method for detectIng object

bou nd.lfles We have also developed a parallel algOrithm that qUickly

pnUmf>rltps pOSSible solutions for the correspondence problem In mOVing

lIght (itsplJ.y applIcations Other fast algOrIthms have been developed,

I nc I udlng Image hlstogrammIng, set operations, and the computation of

t he geometrIc properties of objects

:'\ON-VON's performance for different Image algOrIthms IS analyzed and

com pa.red With that of other highly parallel Image understanding

a.rchltectures Two Simulators have been used to SImulate the Image

a.lgorlthms A functional SImulator has been Implemented on a VAX

11/i50 augmented with a Grinnell Image processor, and us10g the

programm1Og language C We have used thiS simulator to test all of the

algonthms described in this theslS. A Lisp-based machme 1Ostructlon-Ievel

Simulator that has been developed for the NON-VON machme IS used to

execute some of the Image algOrithms Based on simulation results,

NON-VON's performance is compared with that of other highly parallel

architectures (or Image analysIs systems, and many algorithms are shown

to execute faster on NON-VON than on other highly parallel machmes

\Ve have also Identified the hmItatIons of tree machmes 10 the rapid

executlon of certam Image analYSIS tasks, and have proposed speCial

modlficatlons to the NON-VON architecture for the rapId execution of

these tasks

fn what follows, we outhne the orgaDlzatton of the r~ma101Og chapters

In the follow1Og chapter, a number of speCial parallel archltect.ures for

Image understand10g are reviewed, With an emphasiS on their baslc

arc hlt~ctural features and the VISion apphcatlons (or which they are best

5ulted The NON· VON architecture IS deSCribed 10 Chapter 3, and IS

compared With other proposed hierarchical architectures for VISion A

parallel programm1Og language, based on PASCAL, IS also deSCribed 10

Chapter 3 ThiS language, referred to as N·PASCAL, is used to descnbe

the developed algOrithms throughout the theSIS

In Chapter 4, we 1Otroduce certam hierarchical data structures for

Image processing, and demonstrate how they can be used to represent

Images In the NON-VON tree We also discuss In Chapter 4 the

Initialization procedures for the NON-VON tree, along with various Issues

related to Image I/O.

Four groups of algorithms are presented in this thesIs:

1 Signal level processing algorithms.

2 Geometric algorithms.

·3. Aggr~gatlon algonthms.

4 High-level algorithms.

Exam pies of these groups are presented in Chapters 5 through 8,

respectively The fIrst two groups represent low-level VISion tasks, while

the third and fourth groups represent Intermediate- and high-level vision

tasks respectively Time analysIs results are presented for each

J.lgortthm. and ~ON-VON's performance IS compared with that of other

J.rchltectures Simulation results, obtained by Implementing the Image

und~r::t..lndlng algOrithms on the functional Simulator and on the NON

\·O~ instruction-level Simulator. are also presented and analyzed

Chapter 9 Includes the conclusion of thiS th~sls and outline pOSSible

directions for further research

1 iJ

Chapter 2

Parallel Image Processing
Architectures: An Overview

In this chapter, we descrIbe several of the parallel architectures that

havf> been proposed Cor computer VISion, with an emphasis on the match

between their underlYlDg architectural features and varIOUS Image analysIs

tasks Advantages and disadvantages of the surveyed machlDes as VISion

machines are also· discussed These architectures may be classlfled lDtO

four categorIes based on the scheme used to lDterconnect the processlDg

ell?m~nts

~fesh-connected architectures

2 Plpehned architectures.

3 ~fultlprocessor Architectures

4 Hierarchical architectures

\\"e wlll focus on the last of these architectural Camlhes, and will show 10

more detall the motivation behlDd It

11

2.1. Mesh-Connected Architectures

Cellular logic arrays, proposed by Unger [Unge 58], [Unge 591 for use as

parallel Image processors, form the basis for many later architectural

proposals In this category. In cellular logic arrays, also referred to as

tw<rdlmenslOnal arrays or parallel array processors, an image is diVided

Into a regular tW<rdlmensional array of cells, with a PE assigned to each .

cell Physically adjacent PE's can communicate with each other, and

each PE has some local storage and some hardware to mampulate Its

contents. The PE's execute in SIMD mode with instructions broadcast

by the host computer. Figure 2-1 shows the organization of a two-

dimensional cellular array.

PEl PE2 PE3 • • •

PE PE PE
• • •

11+1 11+2 n+s

• • •

•
• •

• •

F11ure 2-1: A Two-Dimensional Cellular Array

(Adapted from [Rose 83))

Loadmg and unloading of Images are usually performed alongside the

1) , -

13

pen meter of the array. All the data paths wlthm a slOgle PE are

tYPically one bit wide, for this reason, such machines are also referred to

as bilIary array processors [Reev 841· With recent advances 10 VLSI,

machlOes contaming as many as 16K one-bit PE's (organized 10 a

128 x 128 array) have been constructed.

The fundamental advantage of this family of architectures is that It

maps the physical adjacency of image elements directly lOto hardware,

thus maklOg access to neighborhood information very rapid. Many low-

level Image operations, such as Image filtering and local image feature

detection, can be executed very rapidly in parallel on this architecture.

Operations lOvolvlng the gathering of statistics about the whole image are

not as fast as local operations They execute In a time proportional to

thl? array diameter (that IS, to the square root of the number of PE's)

\ 'LSI Implementation of such machines involves deSigning chips with a

num ber of PE's Interconnected together 10 the form of a rectangular grid.

The PE's on the perimeter of the grid communicate with other chips

through I/O ports. With VLSI device dimensions scaling down, an

mcreulDg number of PE's can be embedded OD one chip. However, the

number of pins required for inter-chip communication
. .
Increases In

proportion to the square root of the number of PE's per chip. Thus, the

number of PE's to be embedded on one chip IS limited by the number of

pms allowed by the technology One way of dealing with thiS problem

Involves time-multiplexing the use of I/O ports between ~everal PE's on

the penmeter of the chip [Weem 84]. This, however, reduces the speed

of Inter-chip commumcation.

Examples of operatIonal machines in this archltectural family mclude

CLIP4 [Duff 76] whlch is a 96 x 96 PE LSI machine, the MPP [Pott 83]

with an array of 128 x 128 PE's, and the leL DAP [Mark 80\'

contalmng an array of 64 x 64 PE's. A further discussion of cellular

logiC arrays can be found in [Rose 83] and [Reev 84].

2.2. Pipelined Architectures

Other parallel machmes proposed for Image understanding make use of

plpehmng as a way of mtroducmg parallelism into the system.

Figure

Auxlhary Host

.") .J --

Store Computer

~

L ! l
PEl ~ PE2

Buffer
~ .. -.. PEn -

Memory

Figure 2-2: Organization of Plpehned Architectures
(Adapted from [Reev 841)

depicts the basiC organization of thiS family of architectures

1 t

Image data IS passed to the flrst stage of the plpehne from the scanning

device, or from a buffer mE'nlU1 y The function of each stage IS specIfied

by the host computer through the lDstructlon bus

~fachlnes of this type are most effiCient lD real-time low-level Image

processlDg apphcatlons where the Image data source IS connected to the

machlDe directly, and generates data at the speed of a simple pipelIne

step Such architectures can be fully utlhzed when the Image proceSSIng

tasks have a number of steps equal to the number of the plpehne stages

The architecture has Its hmltatlons, though, and when deahng With more

than one Image at a time, or when performlDg operations such as

geometric corrections, due to the limited lDterconnectlon scheme of the

plpehne

An ~xample of thiS famlly of architectures IS the Cytocomputer

ISter 831, which IS used In biomedical Image processIng. The

Cytocom puter has 80 blDary stages m one pipeline and 25 grey level

stages lD a second pipelIne, each stage operates on a three by three

wlDdow m the Image Bmary stages are capable of Implementmg all

pOSSible logIcal operations on the nlDe elements by means of a look-up

table memory lD each stage. ThiS makes such operations extremely fast

lD these stages The gray level stages can perform 8-blt anthmetlc

operations on their Window operands

2.3. Multiprocessor Architectures

Members of this category of architectures make use of a high-bandwidth

interconnection network for communIcatIon between an Indep~ndent set of

PE's

Shared Memory

Interconnection Network

PEl PEz • • • PEn

FIgure 2-1: An MIMD Architecture
(Adapted from [Reev 84])

The proc(>ssors In such architectures can tYPically execute different

programs (MIMD mode), or the same program (SIMD mode) at any point

In time Communlcatlon among the PE's IS affected by sending messages

through the interconnection network or through a shared memory, as

shown In Figure 23

Parallel machInes of thIS type are mostly effiCIent In executing high-level

Image understanding tasks, In whIch the Image IS no longer represented

as a large array of data, but rather In the form of a symbolic deSCription

of objects For example, dIfferent processors may be assIgned dIfferent

~J~onthms for the analysIs of the same Image object Because of the

complexIty of the mterconnectlon network requIred to connect the PE's,

machmes of thIs type can not embody more than few thousand

processors The distribution of tasks between mdependent processors and

the synchromzation of dlfferent PE's present added comphcatlons

Examples of thIS class of archItectures include PASM [Sleg 81} and

Z~10B [Kush 82} The proposed archItecture of PASM comprises 1024

PE's mterconnected together by means of a permutatIon network. The

machme also contams anum ber of control umts that enable the machme

to execute as an mdependent set of SIMI> machmes ZMOB, on the

other hand. consists of 256 IdentIcal PE's, connected to each other and to

a \-AX 11/780 host computer by a hlgh-speed bus The PE's

commumcate With each other and WIth the host machme by means of

me~sages transferred through the bus The reader· IS referred to

[Ku~h 82} and [Sleg 811 for a descnptlon of the ImplementatIon of some

Image tasks on these two machmes

2.4. Hierarchical Architectures

A fourth architectural approach IS suggested by the vIsion systems of

humans and higher ammals The human ViSUal system processes pIctorial

information through a senes of layers, each contalDlDg a large set of

parallel receptors and processors Input information to the visual system

17'

IS received by a large parallel set of sensory receptors, the rods and

'c~es, ID the retina. The retina behaves In many ways like a mesh of

PE's This raw informatIOn IS then transformed IDto gradients, and

contours are enhanced by two other parallel sets of processor layers in

the retina [Uhr 801 The transformed information is then carned by the

optiC nerve to the higher portIons of the visual system. Information

reaching the hIgher portIons is compressed in SIze by a factor of about

100, and It IS then processed and transformed by several layers of parallel

processors.

These observations have generated proposals for hIerarchical

arc hi tect ures (or I mage understanding systems. Such architectures are

oftl?n referred to In the literature as bierarchica/, cone, or pyramid

m.lchlnes [n hierarchical architectures, processing takes place In a senes

of li?vl?ls, as shown In Figure 2 4 At the lowest level IS the raw plctonal

Information Input to the system by a sensory deVice A set of

tr .ln~formatlons IS first performed on thiS Input; their output IS then

PI t hl?f stored on the same level or passed to the next level In the

hlercll'chy. ThiS process continues (or several layers In the hierarchy

Data may also flow top-down In the hierarchy of layers, or laterally

within any layer

Hierarchical architectures are well SUited to the fast execution of multl-

resolution feature (color, texture, edge, etc) algonthms. In addition,

Input
Image

First Level

•••

Top Level

Second Level

Figure 2-4: A Hierarchically Organized Architecture
(Adapted from (Uhr 84])

many algorIthms that use hierarchical data structures, such as quadtrees,

[Kim 761. can be Implemented errlclently on hierarchical machmes

Global f'?at ure Information, such as bit counting, can be rapIdly

a(cumulat~d at the top of the hIerarchical structure

A numb~r of special hierarchical parallel machines have been proposed

for ImagE' processing tasks ([Hans 781. [Uhr i8J, [Dyer 811. [Tani 83a!)

The pyramid ma('biD~ proposed by Dyer [Dyer 811 IS a representative

example of this class of architectures The organization of a pyramid

machine IS shown In Figure 25 PE's In each layer are organized as two

dimensional arrays, with each PE capable of communicating with ItS

Immediately adjacent PE's Each PE also communicates with four PE's

In the layer below It, and with one PE In the layer above It. Pyramid

l~

20

Flgure 2-&: Organization of the Pyramid Machine
(From [Tani 83a))

machines are difficult to buIld because of the complexity of their wirIng,

and 0nl'i J. few projects for bUilding a 16 x 16 base pyramid machines

.1re under way ([Tam 83a) and [Scha 84))

Thp \'O\'-VON supercomputer [Shaw 82) IS another example of a

hl~r a.rchlcal machine Its architecture Includes a large number of small

PE'~· that form the nodes of a complete binary tree NON-VON has
been deSigned to support the massively parallel manipulation of data

records stored In Its PE's ThiS aspect of the NON·VON machine makes

It a.ttractlve for vIsion apphcatlons that Involve a large amount of data.

Furthermore, hierarchical data structures proposed for Image analYSIS,

Including multi-resolution pyramids and quadtrees, can be effectively used

to represent Images on ~O~-VON Also, the bmary Image tree data

structure proposed l,y Knowlton {Know 80) as a varIant of quadtrees, can

be mllJ'ped directly onto the NON-VON machine to represent bmary

Image5 m a manner to be descrIbed m Chapter 4

The present versIon of the NON-VON architecture dIffers from other

proposE'd pyramid machmes m that It does not Implement m hardware

the mesh connections at each level Thus, local operations execute faster

on mesh-connected and pyramId machmes Careful design of the

algonthms can speed up these operations consIderably, as will be

descnbed later The architecture of NON-VON is descrIbed in the

folloWIng chapter, and the dIfferences between Its architecture and other

proposed pyramid machmes are presented

~ 1

Chapter 3

The NON-VON Supercomputer
Architecture

The name NON-VON lS used to descrIbe a family of massively parallel

tree-structured machmes intended to support large scale data manipulation

[Shaw 841 The architectures of all the NON-VON family members

mclude a tree-structured primary processing subsystem (PPS) based on

custom VLSI clrcults, along with a secondary processing subsystem (SPS)

based on a bank of mtelligent disk drives. Figure 3-1 shows the top-level

organlza.tlOn of the ;\jON-VON archltecture.

The PPS IS configured as a bmary tree of small processing elements

(SPE's) Each SPE comprises a small RAM (up to 256 bytes), a modest

amount of processing logiC, and an 1/0 sWitch that supports varIOUS

modp.s of communication wlthan the tree, as will be descnbed m Section

32

The SPS IS based on a number of rotatang storage devices. AssOCiated

With each disk head In the SPS IS a separate sense amphfier and a small

amount of logIC capable of dynamically examlOang the data passmg

))

Secondary
Prc.'cesslng
Subsystem

- > To the host

Pnmary
Processing
Subsystem

Figure 1-1: Top Level Orgamzation of NON·VON

(From (Hill 83))

beneath It {Shaw 82} This orgamzation supports parallel transfer of data

b~tween the PPS and SPS, which IS necessary to keep 1/0 from

becoming a bottleneck

NON-VON 1 and NON·VON 3, the hrst two members of the NON·

VON family, Include a Single special control processor (CP) at the root of

the tree The CP IS responsible for coordinating different activities

Within the PPS It IS capable of broadcasting instructions to be executed

.2 3

:5Imultaneously by all actIve PE's Th1lS, NON-VON 1 and NON-VO~ 3

functIon for the most part as Sf\ID machInes, WIth all SPE's

:5Im ultaneously executIng the same InstructIon. (The SIngle exception

Involves transfers between the SPS and the PPS, which wIll not be

dIscussed In thIs dIssertation.) We wIll call the algorithms that use thiS

mode of execution SL® algoritbms.

The first member of the NON-VON (an.111y, NON-VON I, contains

ChIPS With only one PE, and is being constructed primanly to evaluate

certaIn electncal, timIng, and layout area characteristics. The chip has

already been tested and has been proven functional. A modified version

of the chip With eight PE's has been designed for use in NON-VON 3.

The modified ChiP, partial prototype of which has recently been

fabncat~d, has less area per PE, and the Instruction set has been made

morl> powerful by generalIzIng reglster-to-reglster data transfers and

adding more anthmetlc processIng power.

The deSign of the NON-VON 3 PE I:; bnefly descnbed In the following

All algorIthms developed In thiS theSIS are based on the

\'O~-VON 3 architecture and instruction set Appendix A contains a

ltstlng of all such Instructions. It IS expected that the time required to

execute a :"iON-VON 3 instruction In all PE's In a tree of 15 levels (32K

PE's) IS approximately 250 nsee We will use thiS number throughout

thiS theSIS to compute the execution time for the developed algorithms.

The emergmg design for ~O~':'\'O~ 4 !Shaw84a! would mclude a

n umber of large processing el':IIlen t~ \ r .PE 's) connected to all nodes above

a certam tree level Each LPE would 10clude an off-the-shelf 32-blt

microprocessor. a reasonable amount of memory (between 256K bytes and

one megabyte), and some speCial hardware to 10terface With the rest of

the machine A high-bandWidth multi-stage 1Oterconnectlon network would

be used to Interconnect the set of LPE's. The LPE's would be capable

of execut10g their own programs, or of functioning as CP's for the

subtrees they root Thus, NON-VON 4 would have the capability of

executing In ML\ID and "multiple-SIMD" (MSIMD) modes. The LPE

network should Significantly Improve the bandWidth of communication

1Ovolvmg the top of the tree.

In the follow1Og sections, we descnbe the deSign of the SPE 10 the

~O~-VO~ 3 machme and the vanous commUnication modes supported

by both the ~ON-VON 1 and NON-VON 3 machmes "". e als9

Introduce the N-PASCAL programm1Og language, which Will be used to

descnbe the VISion algonthms developed on the NON-VON machine.

3.1. The Small Processing Element Design

Figure 3-2 depicts the maln functional blocks of the NON-VON 3 PE.

They are the eight-bit arithmetic logical unit (ALU), an array of flve

byte registers, called A8, 88, C8, 108, and IMAR; an array of flve one

bit registers, called· AI, Bl, CI, 101, and E~l; a 64 word x 9-blt

1--)

random access memory (RAM), ::\nrl. two speCial combinatIOnal networks.

ca.lled the I/O sWitch and thp. RESOLVE CircUit [Shaw 84bl A PE

executes the instructIOns broadcast by the CP as long as Its enable bit,

E~ 1, IS set. If the enable bit IS reset, the PE IS disabled and only an

E~ABLE Instruction Will activate It again.

Two Internal buses, called the A bus and the 10 bus, run through the

data path Both are capable of transfernng either one- or eight-bit data,

depending on the mstructlon bemg executed. The A bus is used to

transfer data between the registers, the RAM, and the I/O SWitch. The

10 bus IS required to support mter-PE communication, as will be seen in

the followmg section It connects the dual-port registers 10 and A, the

I/O SWitch, and the ALU

The ALV compnses an eight-bit comparator that compares the contents

of the :\8 register with one o(the other eight-bit registers, and sets Al

and 81 to mdlcate the result If AS IS compared with 88, for example

.-\ 1 15 5et Iff AS IS equal to 88, and B1 IS set iff AS is less than 88.

Eight-bit. addition, subtraction, and logical operations are also supported

by the ALU In the case of addition and subtraction, C1 IS used to hold

the carry output One-bit logical operations are also supported by a

speCial one-bit. logical (unction unit The RAM allows access to one 8- or

I-bit location per Instruction cycle, and the !MAR register IS used to

:store the memory address used In RA.\t operations.

LOCAL
RAM

10 BUS
~

MP
KI.C
KItC

..... ---. PR

tI--...... !...C

tI--_.. RC

Flgure 3-2: ~O~-VO~ 3 Block Diagram of the
Small Processing Element

(From [Shaw 84b])

3.2. Communication in NON-VON

Inter-PE communication In NON-VON IS supported by the I/O sWitch,

which IS a matrix of pass transistors that routes data between the two

Internal buses and the I/O ports The NON·VON I/O sWitch supports

t he follOWing three modes of .comm UnlCatlon

1 Global bus communication, supporting both broadcast by the CP to
all PE's In the PPS as required for SIMI> execution, and data
transfers from a Single selected PE to the CP No concurrency IS

achlHed when data IS transferred from one PE to another through

the CP USIng the global communication instructions An Instruction
called RESOLve can be used to disable all but a SIngle PE chosen
from a speclhed set of PE's. ThiS IS an exa.mple of a hardware
multiple matcb resolution scheme, In the terminology of the
lttera.ture of asSOCiatIve processors. The CP, upon executmg a
RESOLVE Instruction, IS able to determIne whether executmg the
mstructlon has resulted In any PE being enabled The REPORT
instruction transfers data from the Single chosen PE to the CP
USing global bus commUniCatIon.

2 Tree communication, supporting data transfers among PE's that are
phYSically adjacent Within the PPS tree. Instructions support data
transfers to the parent (P), left child (LC), and nght child (RC)
PE's Full concurrency IS achieved In thiS mode, since all nodes can
commUnlcate With their phYSical tree neighbors In parallel.

.3 Linear communication. In which the whole tree IS reconfigured to
act as a lmear array of PE's ThiS mode of commUnlcatlon supports
data transfers to the left neighbor (LN) or nght neighbor (RN) PE's
In the linear array Linear commUnlcatlon IS useful for apphcatlons
that require a predefined total ordenng of data. Figure 3-3 shows
how the linear logical sequence IS mapped onto the tree-structured
phY5lca.1 topology of the PPS by Inorder enumeration [Knut i3J
The paths needed to transfer data concurrently between llnear
neIghbors In the tree concurrently are shown In Figure 3-3 Two
ph~es are reqUired to complete the hnear commUnication cycle
~ote that every other element In the Inorder sequence IS a lea.f
node [n the hrst phase, data IS transferred along the arrows
onglna.tlng from the leaf PE's. whtle In the second phase, data
pJ.'Sses along the black arrows terminating at the leaf PE's

The onglnal NON· VON architecture which was not Intended to

pfflclently support computer VISion appllcatlons, differs from other

proposed highly parallel hierarchical Image understanding architectures

(for exa.mple, [Tant 8J\) In that It. does not. employ any extra phYSical

links to perform mesh neighbor communtcatlon ThiS has certam

a.dva.ntages from a hardware pomt. of VIew, as It results 10 a hxed

Figure a-a: Inorder Embedding of the Lmear Array
(From [Shaw 82])

numb-:>r of pinS per Integrated Circuit ChiP, independent of the number of

PE:: on that chip ThiS makes It possible to mcrease the size of the tree

as chip dimenSions scale down by simply embeddmg more PE's on the

chip Incr-:>aslng the machme size IOvolves only removlOg the old PE chips

a.nd plugglOg In the new ones On the other hand, the lack of mesh

connections slows many local operations 10 which the output value at an

Image p~t depends on Its own Image value and that of neighbor pOlOts

A vIsion-oriented variant of the ~O~-VON 3 machlOe that lDeludes

mesh connections to supplement the current tree-structured archltectu;e IS

now In the early stages of deSign Alternative algOrithms exploltlDg these

hardware modifications wlll be discussed later In this thesIs.

;\ON-VON's other speCial hardware features, mcluding Its abilIty to be

conflg1jr~d logically as a lInear array, Its fast global mstructlon broadcast

and ItS hardware multiple match resolution scheme, have proven useful m

the VISion algOrithms we have developed to overcome some of the

problems related to the communication bottleneck generally associated

with tree architectures.

3.3. N-P ASCAL : An Overview

In thiS section we mtroduce a PASCAL-based parallel language called

N-P.\SCAL. which WIll be used to describe the NON-VON vIsIon

algOrIthms presented m thiS theSIS. ThiS language IS closely related to a

PASC.\L-based parallel language, NY-PASCAL, that has been designed to

b~ Il::ed on SL\ID architectures [Baco 82). The prinCipal Idea behmd the

de::lgn of ~-PASCAL has been to create Ceatures that make Cull use of

the m J.C h me's parallel capablhtles while retaining all of the hIgh-level

con::tructs of PASCAL

:"i-PASCAL IS based on standard PASCAL as deSCrIbed In [Jens 74}.

One new data type and two extra constructs have been added to

standJ.rd PASCAL. The new data type IS referred to as the vector-var

(for vector variable), and the two new constructs are the parallel

assignment and WHERE statements. In addltion, built-in functions allow

the programmer to explicitly make use of the NON-VON tree

commUnlCatlOn 1Ostructlons We now bnefly descnbe the N-PASCAL

constracts that have been used to descnbe Image understand10g

algorithms presented 10 this thesIs

The new data type vector-var IS used to express the parallehsm 10 the

language Vector vanables reside 10 the PPS and are associatively

addressed, whereas standard PASCAL vanables reside 10 the CP and are

sequentially addressed In the foUowlOg sections, variables that are

defIned to be of type vector var are referred to as vector variables,

whIle scalar variables refer to those that are stored in the CP In the

!\'''V-PASCAL procedures deSCribed 10 thiS thesis, we will use Itahcs to

refer to scalar varIables and capital letters to refer to vector varIables

Sm all bold letters Will be used to refer to the reserved keywords of the

language

There are two types of statements 10 N-PASCAL: sequential and

par olllel The sequential statements are those of standard PASCAL, while

the parall~l statements are those that operate on vector varIables The

assignment statement can be either sequential or parallel. The sequential

assignment statement IS the assignment statement encountered 10 standard

PASCAL The parallel assignment statement is the one that refers to a

vanable that IS defmed as a vector variable The parallel assignment

statement IS executed concurrently, In all active PE's In the machlOe For

example, upon execution of the folloWIng segment of an NV-P AS CAL

program

vector var
COl::"iTER integer;

begin
COU~TER= 0;

the vector varIable COUNTER stored in all PE's is initiahzed to zero

The \\1-IERE statement IS a form of parallel conditional statement that

operates only on vector vanables. The form of the WHERE statement IS

as follows

W"HERE <coDditioDal expressioD>
DO <statemeDt>

{ ELSEWHERE <statemeDt> J ;

It IS used to fIrst select only those PE's with vector vanables that satisfy

the boolean expression The statement follow1Og the DO IS then executed

In only those PE's. If the optional ELSEWHERE clause IS 1Ocluded, the

st a.t~ment follow1Og the ELSEWHERE keyword is executed 10 the subset

of t h~ PE's that failed to satisfy the onglnal conditional expression An

~x.lmple of the WHERE statement follows

vectop vap
COUNTER , VALUE Integer;

begin
where COUNTER> 50 do VALUE - 100

elsewhere VALUE = 0,

The vector vanable COUNTER IS tested 10 all PE's and In those PE's

whose COt:~TER value exceeds 50, the vector vanable VALUE IS set to

100 In all PE's whose COUNTER value is less than or equal to 50, the

vanable VALUE IS set equal to zero. An Important POlDt to remember

IS that· the WHERE statement in general executes both the statement

followmg the DO aDd the statement following the ELSEWHERE (the

exceptIon bemg the case lD which all or none of the PE's satisfy the

condition).

BUllt-lD functions based on the NON-VON instruction set are employed

to Implement operations that use the tree commUDlcatlon modes of the

machme, which are descnbed m Section 3.2. Function names that start

with I~ _' correspond to NON-VON machine instructIOns, and their

parameters correspond to the arguments of these instructions.

.3.3

Chapter 4

Image Representation

In this chapter, we examme certain data structures for representmg

Images on parallel tree-structured machmes. This subject IS of pnme

Importance, as It greatly affects the design of Image algorithms. Methods

used for Image mput and output are also affected by the choice of data

structure The chOice of a data structure for a set of problems can even

Influence the design of a machine architecture (or efficiently solving those

problems For exa.mple, mesh-connected architectures map mto hardware

the two-dimensional array data structure used most commonly to

represent Images on sequential machmes. Similarly, the hierarchical

nolt ure of the NON-VON architecture affects the chOice of data structures

Ils~d to represent Images on It.

An overview of data structures used to represent Images on sequential

machines IS presented In Section 4 1, with an emphasis on hierarchical

da.ta structures We then demonstrate how two of these hierarchical data

structures can be modified to represent Images on bmary trees. A

procedure for Inltlahzlng the NON·VON tree IS presented m Section 4.2.

AlgOrithms and Issues related to the loadmg and unloading of Images in

tree machmes are also discussed 10 that section \Ve then descnbe

procedures u::-~d to l;ulld the data structures employed m the algonthms

deSCribed m this thesIs

4.1. Image Data Structures: An Overview

Stonng raw plctonal data requires a large amount of memory About

512 x 512 bytes are needed, for example, to store a smgle black and

white teleVISion frame Two-dimenSional arrays are commonly used for

stonng Images, where every element 10 the array represents a

corresponding area m the Image space. These small areas are referred to

as pixels Pixels can take different shapes, producmg different

tessellations Most commonly they are squares, but they can also be

rectangles, tnangles, or hexagonals The value of the array elem.ents can

represent the mtenslty of the Image at the correspondmg pixels or other

va.lues ~uch as the spectral components of color pixels Mesh-connected

architectures use thiS data structure to represent images, With each PE

bemg asSigned a pixel. or a block of pixels 10 the case where there are

fewer PE's than there are pixels In the Image Other data structures

used to represent Images melude cham codes, graphs, and relational

databases See (Tanl 80b) for further diSCUSSion of these data structures.

HierarchIcal data structures can be mapped naturally onto tree

machmes They are often used 10 Image understandmg tasks because

they allow many algonthms to be expressed 10 forms SUitable for dlvlde-

and-conquer techmques They also support certam technIques for data

compactIon and Image t.ran::.mlsslOn [Know 801 HIerarchical data

structures mclude multi-resolution pyramids, regular decompositions, and

quadtrees [Tam 80b]

In what follows, we present two of these hierarchical data structures,

namely multi-resolution pyramids and a modified verSIon of quadtrees

called binary Image trees, and show how they are used to represent

Images on NON-VON.

4.1.1. Multi-Resolution Pyramids on NON-VON

A multi-resolution pyramid can be defined as a sequence {/(L), l(L-l),

. I(O)} of Images, each represented as a two dimenSional array, where

I(L) IS the ongmal Image, and l(m-l) is a version of I(m) at half the

re50lutlon (This IS the same deflmtion Tanimoto used In [Tam SObl.)

The term "Image resolution" refers to the number of pixels used to

descnbe the image. For example, If J(m) represents a version of the

Image wIth resolution 64 x 64, then J(m-l) represents the same Image at

resolutlon 32 X 32. Figure 4·1 shows an Image and its multl-resolution

pyramid representatlon The pyramid provides reduced resolution versions

of the Image. U more than one operation IS to be performed on the

Ima.ge. then each operatIon should use only the resolutIon required for

thiS operatIon. The extra amount of memory requlred to store the

pyramId representatIon IS 1/3 that of the amount of memory used to

FlgUM! 4-1:

store the onglnal Image

An Image and Its Multi-Resolution
Pyramid Representation

(From [Tam 751)

~1ulll-resolullon pyramids can also be defined In terms of trees rather

than arrays In this case, they are referred to as pyramid trees A

multi-resolution pyramid IS df'fin~d In terms of quartic (4-ary) trees as

follows. The leaf nodes r'T': ' flt. the pixels of the Image at its highest

resolution (the base of the pyramid), and the nodes of an internal level of

the tree represent the pixels of a reduced resolution version of the Image.

Thus, gOing from one level In the tree to the level above It results In an

Image wIth one-fourth the resolution. Note that the four child nodes of

a parent node represent a 2 x 2 region m the Image.

An Image at a specific level can be computed from the image at the

level b~low It in the pyramid tree in different ways. Typically, a parent

node IS set equal to the average value of its four chlldren This

av~raglng process can be vIewed as a kind of low-pass filtermg of the

tmJ.ge followed by resamphng Hence, Images With lower resolution retam

the gross fea.tures of the Image For binary Images, the averagmg process

t~ dpftnpd to result m the binary value 1 only If three or more of the

chtldr~n have the bmary value 1, and to result In 0 other'wlse

In the :'\ON-VON tree, the leaf level IS used to store the onglnal

Image, whereas the Internal levels are used to represent the Image at

co.user resolutions Since ~O~-VON IS a binary tree, the resolution

reduction from one level In the tree to the level above It IS only a factor

of two lnd hence t wo ~ON-VON levels are used to effect the same

reduction as one level m the multi-resolution pyramid. We use thiS

Iffilge representation whenever we deal With gray-scale Images In

SectIon 4 2 we show In detaIl how this can be done

4.1.2 •. Binary Image Trees on NON· VON

Binary image trees are a variant of quadtrees, whIch were proposed by

Knowlton [Know 801 as an encoding scheme for compactly transmitting

gray-scale and binary Images Qlladtree data structures are sImIlar In

many aspects to multi-resolutIon pyr8mlds A good way to vIsualIze the

quadtree IS by assuming that the Imag~ IS a square whose dImensions are

a power of 2 The quadtree data structure IS bUilt by subdividing the

whole Image Into four square quadrants wIth dimenSions that are half

that of the Image ThIS process IS repeated recursively for each quadrant

n tImes, untIl the single pixel level IS reached, as shown In Figure 4-2

The root of the quadtree corresponds to the whole Image, the leaves

correspond to the Single pixels, and the nodes of the tree correspond to

quadra.nts of the square represented by theIr parent node If the four

chIldren of a node share the same value, they are all deleted and the

father"s va.lue represents them all.

Quadtrees are used mainly to encode binary Images, and the nodes In a

quadtree are IOterpreted differently from the nodes 10 a multi-resolution

pyramid tree In the case of blOary Images, nodes of the quadtree can

take one of three values If the node's chIldren are all black, then the

node IS black If they are all white, then the node IS white. The node

wIll take the value gray If ItS children do not have the same value, or If

39

11

•

·, • J

.~--~~ __ ~ ____ ~ ____ -J

FIgure 4-2: A Picture and Its Quadtree
(From [Same 821)

t hey all have the value gray All subtrel!s rooted with either a white or

1 black node may thus be omitted, significantly reducing the amount of

memory required to store the picture on a sequential machine

Blnar~· Image trees are a variant of quadtrees In which the whole Image

1:; ~ubdl"·lded Into two halves. This process of subdividing Into two

halves IS repeated recursively until the single pixel level IS reached

FIgure 4-3 Illustrates the binary Image tree data structure Note that the

shape..of the subdivIsions changes from level to level In the binary Image

tree SpecIfically, It is either a square or a rectangle with the width

equal to tWice the length We will refer to these subdivIsions as

rectangles throughout the rest of thiS theSIS

~ The Single pixel

.f

The root of the

binary Image tree

IJ

.j

F11ure 4-.: Binary Image Tree Rectangle Arrangement

The shape of the rectangles at any level can be determined by testing to

5e~ If the level number IS odd or even GOing from one level to the next

level down the tre~ Increases the resolution by only a factor of two,

~ 1

while In quadtrees the resol'ltlOn :s Increased by a factor of four

Binary Image trees are mapped naturally onto bmary tree machines.

On NON-VON, the leaf processors are used to store Image mformatlon at

the smgle pixel level, whlle non-leaf PE's correspond to rectangles of size

larger than the pixel size. A record associated with each PE is used to

store information about the location, size, contents, and adjacency relation

of the part of the Image It represents. A flag associated with each PE

Indlcat.es whether the rectangle represented by that PE is part of the

binary Image tree An algOrithm for bUlldmg the binary Image tree and

stonng the rectangle mformatlon is described later in this chapter. We

will use binary Image trees whenever we are dealing with binary images.

4.2. Initialization and Image Loading

Image processmg algonthms on NON-VON use mformatlon that IS

~tor~d Inltlally m each PE Each PE corresponds to a rectangle m the

ongln.}.l Image On the leaf PE level. each rectangle corresponds to a

31ngle pixel In the tw<>dlmenslonal array that represents the orlgmal

Image. The location of each rectangle IS Indicated by speclfymg the

coordinates of Its upper left-most corner pixel. The hOrizontal directIon

IS referred to as the z-dlrectlon, while the vertical direction IS referred to

J.S the y-dlrectlon The ongln of the coordmate system (0,0) is the upper

left-most pixel 10 the Image, and the values of the coordinates IOcrease to

the nght 10 the z-dlrectlon, and down 10 the ,.directlon, as shown 10

In atfdltlon to the readdress and r-address, each PE stores the width

(r-slde), and the height (r-slde) o(the rectangle It represents For a

256 X 256 Image, four bytes are needed to store the location and size

Information The root level IS labeled the O-tla level, whIle the leaf level

IS the n-th level Other Information is also stored in each PE, and will

be descn bed later

T~
r-dlrectlon

2

3

..
s

6

7

• o 1

(0,2)

r-dlrectlon
2 3 4 s 6 7

(4.2)
x-side:"
r-slde=2

(4,4)1 _J
r-slde == 4
r-slde ~ 4

FIgure 4-4: Coordinate System (or Binary Image Trees

The :'-:-PASCAL algonthm for InItialIzing the NON-VON tree follows

/- The follOWing vanables are defined In the main dnver of all vIsion

43

ma.nner ThIs has led to a surge in research aimed at developing new

com puter organIZatlOns that meet the large computational and deCISIon

requirements of image analysis tasks by exploiting the new technology

V J.rlOUS kinds of speCIal parallel machines for computer vision have been

proposed and some have been Implemented; examples are deSCrIbed in

[Du.ff i6J, [Krus i6J, [Dyer 811. [Kush 831. [pott 83]. and [Reev 841.

The organizatIon of some of the proposed machines is based on a very

la.rge number of very small processing elements (PE's). Throughout thiS

theSIS, we will refer to such machines as fine-grained or bigbly parallel

machines In such machines, different schemes are used to interconnect

the PE's For example, the PE's can be connected together in the form

of a two-dimensional mesh, or they can be placed at the nodes of a

bln,HY tree If all the PE's Simultaneously execute the same instruction

on their own data, the machme IS SaId to be executmg in single

instruction stream, multipl~ data stream (SIMD) mode [Flyn 721· On the

other h.lnd, If the PE's execute different mstructlon streams concurrently

on different data streams, then the machme IS said to be executmg in

multip/~ ilJStructiolJ strram, multiple data stream (MIMD) mode.

In thiS theSIS, we Investigate how fine-grained tree-structured SIMD

computer architectures, which have favorable charactenstlcs for efficient

\ 1.SI Implementation, can be used for the rapid execution of a wlde

r .lnge of Y\Slon tasks We also discuss. certain hmltations of these

procedures descnbed In this thesis. Some of these vanables are used In
the InItialIzation procedure The rest are used In other procedure
defInItions. * /

program vision algorithm~);

vector var
XSIDE, YSIDE, XADD, Y ADD: integer;
GRAY _ VALVE, TREE, COMP LABEL: integer;
FQUAD· ehar;
BINARY boolean;

/* The follOWing procedure marks leaf PE's by setting the vanable
LEAF equal to 1 In all leaf PE's and 0 elsewhere. • /

Proeedure mark_lea/(var LEAF: boolean);
vee tor var

TE~tP boolean,
begin

j* 1 Initialize TE~tP to the value 0 in all PE's. On executing a
"receive from left child" instruction (RECVl LC), all leaf PE's receive a
logical 1 All other PE's receive whatever IS sent by their left children.
This procedure thus serves to mark all leaf PE's The N _ RECVl IS a
pnmltl ve function that corresponds to the NON· VON instruction RECVl.
On I?xl?cutlng this function each PE receives the value of Its left child
boolean vanable TEMP Into Its own vanable LEAF • /

TE\fP = false,
~ RECV1(LC, TEMP, LEAF),

end,

Procedure tr~_init(no Itl'ds I~TEGER),
var

lev count, r, '!J integer,
vector var

X.illDl, '{ADDl integer,
LEAF ~ boolean,

begin

/* 1 The Inltlallzatlon algorIthm starts by Inltlallzlng the size
information It starts at the leaf level by storing the value 1 In each PE
width and length vanables (XSIDE, YSIDE) The function mark leaf(L)
sets tlte. boolean variable L to 1 only In leaf PE's The boolean -;-anable
N IS used to mark the level up the tree next to the current level. It IS
set equal to 0 only In current level PE's, and to 1 elsewhere. A level
counter lev count IS Inltlahzed to 0 * f

lev count = 0,

r = 1, Y = 1,
N = true,
mark _leaf(LEAF),
w here LEAF = true do

begin
XSIDE
YSIDE
N

end,

= 1,
= 1,
= false,

f* 2 Enable PE's on the next level up the tree N _RECVl(LC, N, N)
sets the varIable N equal to 0 only 10 PE's whose children have the N
vanable set to 0 The size variables are then computed on that level
If the level number IS equal to no _'eve'" then the size inltializatlon IS
com plete and the algonthm starts address Inltlahzatlon, otherWise the size
Inltlailzatlon continues • f

while lev count < no lewl, do
begin

:\ _ RECVl(LC, N, N);
if lev count mod 2 - 1 then

% = z • 2
elae 1/ = 1/ • 2,

where N = false do
belln

XSIDE - %,

YSIDE = 1/;
end.

lev count - lev count + 1,
end.

r 3 At thiS pOInt only the root PE has Its N variable set to 0 Set

the varIables XADD and Y ADD In the parent PE equal to 0 * /

where N = raise do
begin

XADD = 0;
YADD = 0;

end,

/* 4. For address Information, left chlldren always have the address of
theIr parents ThIS step computes the nght child address of each enabled
parent and stores the computed values in the variables XADDl and
YADDl Left children are then enabled. Read the address of theIr
parent and store It as theIr own address. The same is repeated for nght
chddren. except that they read their address from the variables XADDl,
and YADDl * /

while lev count > 0 do
begin

end.

lr lev count mod 2 = 0 then
begin

XADDI = XADD;
YADDI = Y ADD + YSIDE dlv 2;

end
else

begin
XADDI = XADD + XSIDE dlv 2;
Y ADDI = Y ADD;

end.

~ SE~8(LC, XADD. XADD).
N-SEND8(LC, YADD. YADD),
N-SEND8(RC, XADDI. XADD),
N-SEND8(RC. YADDI. YADD),

ltv coun' - ltv count - 1.
end;

The lnltlailzatlon algonthm takes time proportlonal to the number of

levels In the tree (i9 levels In the case of a 512 X 512 image). The

NON-VON 3 code for this procedure IS presented In Appendix B It takes

18 "sec to ln1tlailze one level at 4 Mhz (68 NON-VON 3 instructions)

initializing a tree with 15 levels thus requires 0 27 msec

4.2.1. Loading the Image

In tree machines, loading and unloading the tree through the root can

be a bottleneck for algonthms wlth extensive I/O operations To

overcome thiS, a real NON-VON system would load and unload Image

data In parallel through I/O devlces connected to all PE's at some

intermediate level In the PPS tree Loadmg an lmage point through the

root only involves hrst broadcasting ltS z- and ,.coordinates and enabling

the PE with the same values for z and y on the leaf level. The image

pOint value IS then broadcast and stored 10 the enabled PE. The N-

PASCAL procedure for thiS loading procedure follows

Procedure tree _loadl(z _ 'ide, y _ 'ide Integer),
var

I,) Integer;
begin

/* 1 The function read fale(hle-name) returns the next integer value in
the hIe "hIe-name" The procedure arguments are the lengths of the
Image sldes • /

ror i== 0 to z ,ide-l do
ror j == 0 to -; _ ,ide-l do

end,

where ((XADD = i) and (Y ADD = J1)
do GRAY_VALUE = read_flle(lmage);

The NON-VON 3 code for this loading procedure IS Included In

Appendix B Seven NON-VON 3 Instructions, requIrIng about 2 0 ~sec of

executIOn time at 4 Mhz, are used to load one Image POInt Loadmg an

128 x 128 Image through the root thus takes about 32 msec uSing this

procedure

Instead of broadcastmg the data byte by byte and isolating a smgle

destInation leaf PE at a tlme, blocks of lmage data can be broadcast and

stored m the PE's m an mtermediate level. These PE's then load the

blocks of data m parallel mto the leaf PE's In their subtrees. Next we

descrIbe the ='I-PASCAL procedure to perform this operation along with

an analysIs of the tlme requlred for Its execution.

Procedure tree _load2{z side, y-side Integer);
var

i. j, k. n1 Integer,
vector var

LEAF. N boolean;
Xl, Yl, TEMP Integer;

begin

/. 1 The leaf PE's are marked, and so a.re the PE's on the
Intermediate level. We assume a. block size of 16 bytes • /

='I == raise,
mark leaf(LEAF),
where ((XSIDE == 4) and (YSIDE == 4)) do N == true;

r 2 Loop to load the blocks In mtermedlate level PE's startmg at

RA.\f locatlon 16 • /

i = 0,
while i < r side-l do

begin
j= 0,

- while j < "_ side-l do
begin

where ((XADD = i) and (YADD =)) and (N = true))
do ror k = 1 to 16

do N _ BROADCAST8(read _ flle(lmage), RAM(l5+k)),
j = j + 4,

end,
i = i + 4,

end,

/* 3 Now load the blocks 10 parallel 1000 the leaf PE's The addresses
of the PE's relatlve to the address of the root of the subtree are stored
10 Xl and YI. • /

Xl = XADD mod 4,
Yl = YADD mod 4,
n1 = 16,

/* Loop untll the hrst block element reaches the leaf PE's • /

ror k = 1 to 4 do
begin

where N = true do N _READRAM8(n1, TEMP);
>: RECV8(P, TEMP, TEMP),
n1 = n1 + 1,

end,

/* Now loop to load the elements • /

ror i =- 0 to 3 do
ror j =- ° to 3 do

bealo
where ((i == Xl) and (j == YI)) do

GRAY _ VALUE == TEMP;
ir n1 < 32 then

where N == true do N_READRAM8(n1, TEMP);
N REC\"~(P, TEMP, TEMP),
n1 = n1 + 1,

49

end;
end;

In the above algorIthm, Step 2 is simllar to the first loading procedure

It takes about 2 ~sec to load the first byte, but the next 15 bytes In the

bloc k are loaded at the rate of 4 bytes per ~sec. Thus, It takes a.bout 6

~sec to load a block of 16 bytes, and about 6.14 msec to load a

128 x 128 gray-scale image. Step 3 requires about 10 NON-VON 3

instructIons to load one byte of the block into a leaf PE. Thus, about

o 04 msec IS needed to perform this step, which is very small compared

wIth the tIme required to execute Step 3.

It should be noted that increasing the block size reduces the time

required to perform the first step of the second loading procedure. For

~xample. a block size of 32 reqUlres 10 "sec to be loaded Into the

Int p rm p dl3te level. and hence 5 12 msec are reqUlred to load a 128 x 128

gn.y-sCJle Image Increasmg the block size also Increases the time

r~'lulrf'oci to load the blocks In the subtrees USing the numbers Cited

J.bove, the time to load an Image of size A uSing block size 5 can be

computed by the following expression

loading timt = (A/S)(2 + 5/4) + 255 "sec

Thellue of 5 that mmlmlzes thiS expression IS equal to 09Al/2 Thus,

a block size of about 115 bytes results In the minimum loading time for

an Image of size 128 x 128. If the size of the available memory In each

PE IS less than this number, then uSing as much memory as we can for

this loading procedure results In the minimum loading time The NON

VON '3' code for this procedure IS presented In Appendix B

Th~ time reqUlred to load Images could be reduced Significantly through

parallel loading of the subtrees rooted by the PE's at some Intermediate

level If the I/O deVices are connected to the intermediate level,

containing 64 PE's, then the above descnbed procedures would be

executed In parallel In the 64 subtrees, and the time of executIOn would

be reduced approximately by a factor of 64, If more than one Image are

to be stored In the tree, then the address and size information stored In

each PE wIll be common to these Images Other Image information has

to he duplicated for each loaded Image

Table 4 1 provides a summary of the execution times for different

~O~-\·O~ I/O procedures and for some eXisting parallel Image processing

machlnl?s

4.2.2. Buildins the Binary Imase Tree

In thiS subsection, we descnbe the procedure for constructing the binary

Image tree representation of a bInary Image stored In the leaf PE's The

vector character variable FQUAD IS used In each PE to indicate the type

of rectangle held by thiS PE The value 'B' refers to black rectangles,

'\\"' to white ones, a:nd 'G' to gray rectangles The value 'N' Indicates

11

Table 4-1: Image I/O ExecutlOn Time for
Some Parallel Machines

--
Th. Parall.l Machia. blt.net.ioa

RatA
I/O t.iM (.. ec)
(128 X 128)

--
reL DIP

Goodyear aero. pace IPP

101-YOI 3 --

a. Load1a, throB,h the root. oa17

b. Load1a, t.hroB,h r/o d •• 1e.
coaaectecl to foh. 84 PE 1.ft1.

4 1Oa& 4.098

10 IDa 0.102

4 IDa &.120

4Mb 0.080

that the rectangle IS white or black but has been merged with a similar

rectangle to form a larger one. The vector Integer variable TREE

corr~sponds to the number of black pixels In the rectangle represented by

the PE It ta.kes the value 0 when the rectangle IS white, and is equal

to the area of the rectangle In the case of black rectangles. We assume

that the binary Image IS stored In the NON·VON tree In the vector

v arI.lbl~ Bl~ARY The N'-P ASeAL algOrIthm for bUildIng the bInary

I m age tree follows

Procedure build _ bioimg{no _'eve', INTEGER),
label 2;

var
cur lev Integer;

vector var
GVl, GV2 integer,
FQ 1, FQ2 char;
LEAF, ~ boolean,

begin

-) ,-

/* 1 Enable all PE's on the leaf level. Set N equal to 0 only In the
current level. * /

N :.- true,
cur lev = 1,
mark ieaf(LEAF),
w here LEAF = true do

begin
where BINARY = true do TREE - 1

elsewhere TREE = 0,
~ = false,

end,

/* 2 Mark PE's on the level Just above cur _lev Let all the enabled
PE's read the values of TREE and FQUAD in their children The value
of TREE In the enabled PE's will be set equal to the sum of the two
TREE vanables In their children FQUAD will be set to 'G' If FQUAD
In the two chlldren are dlfferent, or If one of them is 'G' If the two
varIables FQUAD In the two chlldren are both either 'W' or 'B', then
the parent FQUAD will be set to the mutual value and the FQUAD In

the two chlldren will be set to 'N' • /

f) -
~ RECV1(LC, N, ~).

w here ;\i = falee do
begin

N_RECV8(LC, TREE, GV1),
~ _RECV8(LC, FQUAD, FQl);
~ _ RECV8(RC, TREE, GV2),
:'\ _ RECV8(RC, FQUAD, FQ2),
TREE = GVl + GV2 ,
If (((FQl :=II '8') and (FQ2 = 'B')) or

((FQl = 'W)' and (FQ2 = 'W')))
then FQUAD = FQl
else FQUAD = 'G' ,

end,

:": _ RECV8(P, FQl, FQUAD),
If (FQ} < > 'G') then FQUAD = 'N',

/a .J If the root IS reached, stop, otherwlse, enable all PE's above and

go to step two * /

ir cur _lev < > no levels then
begin

end,

cur lev = cur lev + 1;
goto 2,

end,

After the above algorIthm is executed, the root PE has Its TREE

varIable set equal to the number of black pixels 10 the whole image, and

10 general, each PE's TREE varIable will be equal to the number of

black pixels 10 the tree rooted by that PE. Steps 2 and 3 are repeated

anum ber of times equal to the number of levels in the tree. Thus, the

algOrIthm takes time proportional to the height of the binary tree. The

:"iO~-VON 3 code IS Included In Appendix B. It requires about 50 NON-

VON .J InstructIOns per level (12.5 ~sec); for a tree WIth 15 levels

(corr~~pondlng to a 128 x 128 orIginal Image), the execution time for thiS

procedure IS thus about 0 175 msec. Figure 4-5 shows a binary image

J.nd the binary Image tree representation of It as output by the

functional SImulator

4.2.3. Buildinl the Multi-Resolution Pyramid

The multi-resolution pyramid representation of a gray-scale Image can

be bullt uSing a procedure Similar to the one used to bUlld the binary

Image tree The variable GRAY VALUE in each PE IS set equal to the

J.verage of the values of GRAY V ALL"E In ItS two children. ThiS step

IS repeated a number of times equal to the height of the tree The

Figure 4-6: A Bmary Image and Its
Bmary Image Tree Representatlon

(a) The Input Binary Image

.. i I: . .--'11 .-. :11
I. I. I. _
!- •
il -
.~;I-.... . -- --.-

(b) The Blnary Image Tree

))

roundoff errors due to the averaging process from one level to the next

up the tree can accumulate, resulting In large errors In the computed

average values. To solve this problem, the averaging should take place

only after all the sums have been computed in all levels. Then each PE

dIvides the sum by the rectangle size it corresponds to. Because the

rectangle SIzes are powers of two, the division is equivalent to logical

shIft operatIOns. If we start with gray level values that are 8 bits long,

the sum at the root of 15 levels tree could be 23 bits long. The add

operations should be therefore 24 bits long (three bytes). The N-

PASCAL algOrithm to bUild the multi-resolution pyramid follows:

Procedure build_multi _ reso~ no _'eve's: INTEGER};
label 2,

var
cur lev Integer;

vector var
GVl. GV2 integer,
LEAF, ~ boolean,

begin

/* 1 Enable PE's on the leaf level Set N equal to 0 only In the

current level • /

~ = true;
cur lev == I;
mark leaf(LEAF),
w here LEAF == true do

begin
GVI == GRAY _VALUE,
~ == raise,

end.

r 2 ~fark PE's on the next level above cur lev. Let all the enabled
PEts read the values of GVI In their children. The value of GVI In

each enabled PE's Will be set equal to the sum of the variables GVI In

)')

Its two children * /

~ RECVl(LC N, N),
w here ~ = raise do

begIn
~ _RECV8(LC, GVl, GVl),
~ _RECV8(RC, GV2, GVI),
GVl = GVl + GV2,

end,

/* 3 If the root IS reached, stop, otherwise enable all PE's In the next
level above and go to step two • /

ir cur _lev < > no level, then
begin

cur lev = cur lev + 1,
goto 2;

end,

/* 4 Compute the average value In each PE * /

GRAY VALLe: = GVl div (XSIDE * YSIDE),

end,

The time analYSIS of thiS procedure IS similar to that of the algOrithm

for constructing the binary Image tree The algOrithm executes In time

proportional to the height of the tree Each step consists of

approximately 30 NON-VON 3 instructions (approXimately 0.120 msec to

bUild the multi-resolution py'ramld In a 15 level tree) The multl-

resolution pyramid representation of binary Images can be computed uSing

a slmtlar procedure, With the exception that the computed value In Step

4 IS set equal to 1 Iff the sum IS larger than half the rectangle Size,

otherwise the computed value IS set equal to 0

Chapter 6

Low-Level Image
Processing Algorithms

In this chapter, we describe the implementation on NON-VON of some

low-level Image understandIng algorithms (also referred to as signal level

Image processing algOrithms). In low-level image processing, the input is

tYPically the onglnal image input by some sensory device or the output

from some other low-level operations. The output is usually of the same

sIze as the input Some examples include image restoration, Image

enhancement, and nOlSe removal Other low-level operations extract from

the Input Image such phYSIcal characterIstics as color, surface orientatIon,

range, velOCity, and edges. The output images in this case are called

intrinsic images [Ball 82] The low-level operations described In this

chapt~r lre the gray level Image histogram computation, Image

segmentation by thresholding, and Image correlation. The selected tasks

lre repr~~(lntatlve of a large class of low-level image understanding

algOrithms. For our tIme analysis, we assume that the image has already

been IO.lded In the NON-VON leaf PE's, as descnbed in the previous

chapter

59

5.1. Image Histogramming

A gray level histogram of a gray-scale Image is a function that gives

the frequency of occurrence in the image of each possible gray level.

The gray level at each image point is quantized from 0 to m (typically

m is equal to 255). The value of the histogram at a specific gray level

p is the number of image points with gray level value equal to p. The

histogram of an image can be useful in many ways. It can be used to

select a threshold value (or values) for segmenting an image into a

foreground-background image, or it can be used to guide the filtering of

an image [Ball 821· Other applications include image enhancement and

image encodIng [palv 821. Sometime, it is desirable to compute the gray

level histogram, not for each possible gray value, but for non-overlapping

ranges of gray values In the latter case, the range of gray level values

IS usually diVIded Into equal mtervals called the bistogram biDs. The

Interval range IS referred to as the bill widtla. The histogram value for a

certJ.1n hIstogram bin IS the number of pixels in the image with gray

level Intensity Within the bin range.

We now descnbe a Simple algonthm to compute a histogram of a gray

scale Image stored In the leaf PE's of the NON-VON tree. We assume

that the Image has n pixels (nl/2 on a side), and that the whole image

can fit 10 the leaf PE's of the NON-VON tree. Also, we assume that

the histogram to be computed contains 6 bins. For each histogram bin,

50

the algorithm fIrst marks all leaf PE's correspondmg to Image pIxels with

gray level value falling m this bin range. A vector vanable HIST SUM

is then' set equal to 1 in the mark.ed leaf PE's and 0 elsewhere. Note

that the markmg operation is performed concurrently in all leaf PE's,

and therefore requires a fixed number of instructions for execution. The

marked PE's are then counted using the tree connections. The counting

opera.tlon consists of h steps, where Ia iJ the height of the tree. In each

countIng step, each parent node in the tree sets the value of its vector

varla.ble HIST _ SUM equal to the sum of the same vector variable In its

two children. Thus, the counting operation executes in a time

proportional to the NON-VON tree height (logarithmic in the number of

PE's). ThiS simple algonthm thus executes in time proportional to the

product of NON-VON tree height and the number of histogram bIDS

(O(b log n)) The computed histogram values can be stored in the CP,

or can be stored m the NON-VON tree for further processing. It should

be noted t hat during the counting operations only PE's on a certain level

are performIng a useful work. at any specific time. Actually, the marking

and countmg steps described above can be intl!rleaved, resulting In a

more effiCient algonthm

In general terms, the new algorithm involves the repetition, a number of

times equal the number of biDS in the histogram, of a sequence of a

markmg operation followed by a counting operation step. Then the

count operation steps' are repeated a number of times equal to the

61

num ber of tree levels. Before a formal descnptlOn of this SIMD-plpehned

algorithm and its time analysis are given, we descnbe the vanables used

m our algonthm. The vector variable GRAY VALUE in leaf PE's IS

used to hold the gray level intensities of the original image. The vector

vanable HIST SUM In all PE's is used to store the partial sums

resulting from counting the marked PE's for a specific bin in the

histogram. The vector variables lDST _ VAL and BIN _ VAL are used to

store the values of the histogram and the corresponding bin values in the

NON-VON tree. The scalar variable num _, stores the number of

computed histogram values which have been reported to the CPo The

scalar vanable count keeps track of how many histogram bin values have

been broadcast (the number of mark operations performed), while the

scalar vanable valut contains the minimum value in the bin range to be

broadcast The scalar variables nbin. and bwid denote the number of

histogram bms to be computed and the bin-width, respectively. The

vanJ.ble bwid lS computed by dividing the histogram range by the

numb~r of binS. The N-PASCAL procedure follows:

r The following procedure adds to the Integer variable Z in each PE
the value of the two variables X and Y in Its two chlldren. *'
Procedure add _ C'bcp(var X, Y, Z: 1 Dtea8r);
vector var

TEMP 1 Dtea8r;
begin

'* 1 read the value of left chlld varlable X into TEMP. Add this

62

value to the value of the vector variable Z, and store the sum in Z • /

N RECV8(LC, X, TEMP);
N=:ADD(Z, TEMP, Z);

/* 2 Repeat step 1 for the rIght child and Y Instead of X. • /

N RECV8(RC, Y, TEMP);
N::=ADD(Z, TEMP, Z);

end,

Proeedure ,;ray _'eve'_bisto,;ram(Ia: 1 Dteaer);
label 2, 4, 7,

var
value, eou"t, "um _" "bi"., bwid: lDteler;

veetor var
HIST VAL, BIN VAL: I Dteaer;
HIST =: SUM Integer;
LEAF boolean,

begin

/* 1 Inltlaltze the scalar varIables w/ue, eou"t, and "um • In the
CP, and the vector varIables BIN_VAL, and HIST _ VAL in allPE's */

t'alue = 0; eou"t == 0; "um • == 0;
BIN _ VAL ::II -1; -
HIST _ VAL=- -1;

1* 2. Set the vector varIable HIST SUM equal to zero in all leaf PE's.
The procedure mark leaf sets the vector variable LEAF equal to 1 only
In leaf PE's. • / -

2 mark leaf(LEAF),
where 1.EAF == true do HIST _ SUM . == 0;

1* 3 ThiS IS the markIng step. Enable only the leaf PE's with gray

6.3

level value fallIng wlthln the current bln range. Set the vector vanables
HIST _ SUM equal to 1 10 the enabled PE's. • /

where ((LEAF = true) and (VQ/ue <= GRAY VALUE)
and (GRAY VALUE < oo/ue+bwid))

do HIST SUM = 1;

r 4 Thls is a counting operation step. It is performed by setting the
vanables HIST SUM in each PE equal to the sum of the HIST SUM
vanables 10 lts two children. The function add chtp(Z,II,Z) adds the two
vanables Z , II in LC and RC respectively and stores the sum 10 the
vanable z of thelr parent node. *'

4 add_chtp(HIST_SUM, HIST_SUM, lflST_SUM);

r 5 If all the marking operations have been performed (nbin. of
them) and the number of counting steps is larger than the tree height,
then sklp the next step which computes the new bin range. • /

ir ((count = nbin,) and (count >= Ia))
then go to 7,

r 6 Increment count by one, and compute the new bin range by
lOcr~mentlng value by bud. If the number of count steps is less than
both the tree height and the number of bins, then perform another
marklng op~ratlon. If the first histogram value has not arrived to the
root. then perform another count step; otherwise read a hlstogram value
from the tree root. • /

count = count + 1,
value = value + bud;
lr ((count < Ia) and (count < nbin.))

then Iota 2;
tr ((count < Ia) and (count >= nbin.))

then Iota 4;

r i Read a hlstogram value. thIS IS performed by reading the value
HIST SL~f lD the root of the NON-VON tree. Store the reported value
back m the NO!\l-VON tree. Select a PE (HIST _VAL equal to -1) to

64

store the hlstogram value • /

7 N RECV8(LC. HIST SUM, N GG8);
wheT; HIST VAL == -1 do N AI== true
elsewhere N _AI== false; -

N RESOLVE(),
where N Al == true do

N _ BROADCAST8(N _ GG8 , HIST _ VAL);

1* 8. Increment the number of stored histogram values (num ,) by
one. If all histogram values have already been stored, then stop. -If not,
then check to see whether to perform another countlOg step, or a
marklOg operation. • /

num_, = num_. + I;
If num _' < > nbin. then

begin

end,

If count = nbin. then IOto 2
else IOto 4,

end,

Steps 2. 3 (constltutlDg the match operation), 5, and 6 are executed a

number of times equal to b, while step 4 (the counting operation step) is

executed h+b times, where h IS the height of the tree. Therefore the

time required to execute the hlstogrammlOg algorithm is of O(b+h) (or in

terms of the Image size n, 0(6+10g n)). Appendix B contains the

NON-VON 3 code for the above algorithm. For a 128 x 128

NON-VON 3 machine and a hlstogram with 64 bins, the algorithm

executes 10 approximately one. msec. By way of comparison, 120 msec is

required on a 128 x 128 MPP machine [Pott 83). and 17.5 msec on a

32 x 32 DAP machine (Mark SO). The numbers given above are for

65

THE &RAY-SCALE I"A6E HISTO"S.

28_
26_
24_
22_
28_
18_
16_
14_
12_
18_
8_
6_
4_
2_
8-

FIgure 6-1: The Gray-Scale Image Histogram

gray-scale Images of the same size as the machine size. If the Image IS

larger than the NON-VON tree, then each leaf PE would hold more than

one Image POIOt. II each leaf PE holds k Image pOints, then the time

needed to execute the histogram Increases approximately by a factor of k

Figure ~l shows a 128-bln histogram of a 32 X 32 gray-scale Image, as

computed by the functional simulator uSing the algorithm described In

this sectIOn

The histogram algonthm descnbed In thIS section can be easily adapted

to compute different vanants of the Image histogram For example,

computmg the histogram of a sublmage mvolves changmg Step 2 to

enable the subset of leaf PE's In the subimage Instead of all the leaf

PE's A cumulative bistogram of a gray-scale Image lS a functlon that

gives for each gray level p the number of pixels that have gray level

values less than or equal to the value p. To compute a cumulative

histogram, we create a new scalar variable in the CP I initlahze It to

zero, and add to It the histogram values as they are being reported to

the CP The accumulated values are then stored in the NON-VON tree.

A norm:llized bistogram can be computed from the accumulated

histogram by diViding Its values by the number of pixels in the image

5.2. Thresholding

Thresholding IS one technIque that IS used for imare segmentation 10

Image understandIng applIcations. Image segmentation lS concerned With

IdentifYIng areas of the Image that are homogeneous wlth respect to one

or more charactenstlc Examples of such charactenstlcs include mtenslty,

contInuity, and range. One approach to lmage segmentation separates

Image "obJects" from the "background" The resultIng Image IS referred

to as an object-background Image For a gray-scale image, for example,

thlS technique PlcD a threshold value from the image histogram and uses

that value to diVide the set of Image points into object pomts

background pomts [Ball 82} The object points are those pixels which

have a gray level value exceeding the threshold value, all other pixels are

67

background pixels. There are many technlques for selectmg a threshold

value [Cast 79}. The choice of a certain technique depends on the nature

of the Image under consideration. Assume, for example, that the objects

pixels are predominantly dark, while the background pixels are light

The hlstogram of such an image might have two peaks , corresponding to

the dark and light regions.

'"

~

~

too '" .. P'" t-

P'" too,.

"" ,..
~

nfh-rrtf
F11ure 6-2: A Bamodal Histogram

Such a histogram (Figure >2) IS called a bimodal bistogram. One way

to pick a threshold value IS to search the histogram and find a mmlmum

separating the two peaks

The :"i-P ASeAL algOrithm for segmentIDg the amage into objects and

background based on a sIDgle threshold value follows:

Proeedure seg _ by _ tbresboldilJlf. tlar: Integer),

begIn _.

/* 1 The threshold value tlar IS compared with the variable
GRAY VALUE, which holds the gray level value. U GRAY VALUE IS
larger than or equal to 'lar, then the globally defined lOcal one-bit
vanable BINARY is set to 1 and the point is an object point; otherWise
the pomt lS a background point and BINARY is set to O. • /

where GRAY VALUE >- tlar do BINARY .= true
elsewhere BINARY: -falae;

end,

The algonthm executes a fixed number of instructions, independent of

the number of pixels In the image. The NON-VON 3 code for thiS

algOrithm IS provided In Appendix B (6 NON-VON 3 instructions). The

tlme requlred to execute the algorithm is 1.5 ,.sec Figure 5-3 shows the

bmary lmage resultlOg from thresholdlOg the gray-scale Image whose

hlstogram lS shown 10 Flgure 5-1 using the gray lntenslty value of 80.

Image segmentation based on a single threshold value is useful only 10

slmple sltuatlons (Ball 82) For example, a common problem With the

slOgie threshold method occurs when the Image has a background of

varYlOg gray levels. A spatially vary10g threshold can be used to

segment the Image In such a case (Ball 82). In this method, the Image IS

dlvlded lOto sublmages and a threshold is computed for each subimage

based on the hlstogram of thIS sublmage as descnbed earlier. These

sublmages tYPically correspond to separate subtrees The entire Image IS

then segmented by segmentlDg each sublmage uSlDg lts own computed

•
Figure 5-J: The Binary Image Alter Thresholding

threshold value. The threshold value computed for a subimage IS stored

In the root of the subtree corresponding to this sublmage. Thresholding

can then be performed by broadcasting the separate threshold values

Slm ultaneously from the roots of all subtrees to all the PE's in their

respective subtrees. Step 2 of the thresholding algorithm described 10

thiS section is then executed. This approach can be thought of as a

MSL\ID approach with each subtree representing an Image for which

thresholdmg IS apphed. Other segmentation methods based on

thresholdlDg, such as hierarchical refinement (recursive region splitting),

70

can be performed in a similar manner [Ball 82).

5.3. Image Correlation

Correlation techniques are widely used in many Image understandIng

tasks, including simple filtering to detect a particular feature in an Image,

edge detection, image registration, motion and stereo analysis, and object

detection by template matching [Ball 82}. Image correlation lDvolves

determining the position at which a relatively small t~mplat~ Image best

matches the Input Image. The co,,~latiolJ (ulJctiolJ reflects how well the

Image data match the template image for each possible template location.

Image correlation IS a representative of a wider class of image operations

known as local op~,atiou (also referred to as wi.IJdow-bU«J op~,atiolJs).

In local operations, the output value at a speCific point is a function of

the Image values at thiS pOint and at a number of points ;:1 Its

Immediate neighborhood. Techniques and algOrIthms developed In this

section to compute Image correlation are applicable to many other local

operations

In what follows, we present several numerIcal measures of the

correlation function. Let us assume an Image array X and a template

array y. with % and , representinl the elements of X and Y respectively.

One correlation measure IS the EucJjd~u djstuc~, d, defined for each

pOSSible relative locatIon of the input image and the template as follows:

(5 1)

:"1

The value of d is zero for an exact match. There are other correlatIon

measures which are variations of this basic measure. One of these

measures IS the covariance of the template with a portion of the input

area, which is defined as follows lSieg Sial:

SZI = E 1:y - (E zE y)/A (5.2)

where A IS the area of the template. Large positive covanance values

indicate Similarity between the image and the template, while large

negative values indicate similarity between a positive and a negative

Image. Values near zero lDdicate no similarity. Anotber correlation

measure IS a normalized version of Sz, and is defined as [Sieg Sla):

RZy = Szy / (Szz - S,,)I/2 (5.3)

One way to Visualize the computation of the correlation function is to

Imagine a template scanning the image at all possible offsets, computing

the correlation at each offset, and stonng these correlation values for

later computations. On a sequentIal machine, the time required to

execute such a function IS O(nm), where n IS the number of pixels in the

Image and m is the number of p1xels In the template.

A basIC operatIon that IS performed repeatedly in the parallel image

correlatIon algonthms desCribed in this section is the imap ,hil&

-')

operation In this operation, the whole Image stored at the leaf PE's IS

shifted one or more positions 10 the right, left, up, or down direction

The Image shift operation lOvolves the transfer of all the Image elements

and IS thus commuDlcatlon-lOtensive, accounting for a high percentage of

the local operation execution time on the present version of NON-VON 3

In the next subsection, we describe two algorithms to perform this

operation for both gray-scale and binary Images. In ,the following

subsection, we present the algorithms for image correlatl~"

5.3.1. Image Shift Algorithma

The algorithm for shifting a binary image lOvolves reportlOg the size

and location information of the black rectangles, one by one, to the CP

USIng the RESOLVE instruction. For each reported rectangle, the new

location of the rectangle IS computed using the reported location and the

hOrizontal and vertical shifting required. The new location information

and the rectangle size are then broadcast to all the PE's in the tree. All

leaf PE's corresponding to pixels falhng within the rectangle boundary set

their BINARYl variable equal to 1 The boolean variable BINARYl is

Initialized to the value 0 The binary Image tree representation of the

shifted Image can be then computed as deSCribed in Chapter 4. The

algOrithm just described does not perform Climage wraparound". A3 a

result, parts of the onglnal Image, determined by the amount of shift, no

longer eXist 10 the shifted Image. The algorithm can be modified to

perform Image wraparound as follows U the reported rectangle in Its

73

new position containS a portion which IS outSide the boundary of the

Image, then this portion wraps around. To perform this wraparound, the

rectangle In ItS new location IS shifted horizontally by a distance equal to

the Width of the rectangle, then vertically by a distance equal to the

rectangle length. Finally, it is shifted vertically and hOrizontally a

distance equal to Its length and width, respectively. The direction of the

shift IS opposite to the origlOal shift direction. For example, If the

Original shift IS 10 the east and south directions, then the wraparound

shifts are performed 10 the west and north directions. If the portion of

the rectangle to be wrapped around totally exists on the east or west

Side of the Image, then only a horizontal shift is needed. On the other

hand, If thiS portion eXists only on the north or south sides of the Image,

then only a vertical shift IS needed.

\Ve now deSCrIbe a non-wraparound N-PASCAL algOrithm to shift an

Image I places in the hOrizontal direction and j places' 10 the vertical

dlr~ctlon Positive values of i and j lOdicate Image shifts in the right

and down directions, respectively while negative values indicate shlftlOg

the Image In the left and up directions

Procedure bimap _ slli/t(i, j. Integer, kchar);
label 2, 4;

var
il, jl, kl. Integer;
r. y, I, w: Integer;

vector var
BINARYl, REPORTED' boolean;

begin

r 1. ImtlalIze the vector vanables BINARYl and REPORTED.
REPORTED IS set equal to 1 only for rectangles to be shifted. The
character scalar vanable I: specifies the type of rectangles to be used In
the shift operation. * /

ir I: = 'B' then 1:1= 1
else 1:1 = 0;

If 1:1 = I then BINARYI= false
else BINARY I . = true;

REPORTED = false;
where FQUAD = I: do REPORTED := true;

/* 2 Select a PE corresponding to a rectangle In the binary Image
tree representatIon that has not yet been reported. Report its size and
address Information to the CPo H there are no PE's satisfying this
condition, the ShIft operation 15 done. • /

2
where REPORTED = raise do N Al = true
elsewhere:"l Al = raise,

/* The function N RESOLVE selects a Single PE among the enabled
PE's It returns 0 If there are no enabled PE's. • /

ir :-.; _RESOLVEO ~ 0 then IOto 4,
where N AI:II true do

belln
N REPORT8(XADD, %),
N-REPORT8(Y ADD, ,);
N - REPORT8(XSIDE, w);
N: REPORT8(YSIDE, I);
, = , + j,
z = % + i;
REPORTED = true;

end,

/* 3 Broadcast the new location inform atlon , and set the vector

,)

vanable BINARY equal to 1 only in those leaf PE's corresponding to
pixels falhng within the boundary of the rectangle. * /

where (XADD >= z) and (XADD < z+w)
and (YADD >= JI) and (YADD < JI+I) do

If leI = 0 then BINARYl : .. tal_
else BINARYl . = true;

goto 2;

4,
end;

The algorithm executes In time proportional to the number of black

rectangles In the binary image tree representation of the image.

TYPically, thiS number IS of O(d), where d is the diameter of the Image

[Dyer 82aJ, as Will be discussed in Chapter 6. Thus, the time requlred to

execute thiS operation is tYPically O(nl/2), where n is the Image size.

Alternatively, the white rectangles can be used In place of the black

rectangles The only change Involves initialiZing the BINARYl vanable

to 1 In Step 1, and setting It to 0 In step 3. If the number of white

and black rectangles IS known In advance, this declsion may be made in

such a way as to mlnlmlZe number of rectangles to be processed. Note

that the distance to be shlfted in both the the horizontal and vertical

posltlons does not affect the execution time of the algorithm. The

NON· VON 3 code (Appendix B) executes about 40 Instructlons per

reported rectangle. Thus, shiftIng a 128 x 128 binary image containing

500 rectangles requires about 5 msec. Figure 5-4 depicts the results of

shifting the binary Image of Figure 5-3 three pixels in the right directions

and 5 pixels 10 the u·p directlon. Two cases are shown in the figure, the

75

•
l

Figure 6-.: Bmary Image Shlftmg

(a) Without Wraparound

(b) With Wraparound

-I I

hrst one, Figure ~4-a, is shift10g wIthout wraparound and the second

case, Figure ~4-b, shows the wraparound effect.

Next, we describe the algorIthm to perform gray-scale image shlftlOg.

For the sake of slmphclty, we consIder the case of shifting the gray-scale

image one position 10 the left direction. Slightly modified versIons of thIs

algonthm may be used to shift the gray-scale image in other directions.

Recall that gray-scale images are stored in the leaf PE's, and that the

leaf PE's of a subtree 10 the NON-VON tree correspond to a block of

the stored Image. Figure ~5 shows two adjacent k x k blocks of the

Image and the NON-VON tree representation of these two subimages.

ShlftIng the Image one posItIon In the left direction Involves transfernng

k Image values from subtree number 1 to subtree number 2 through the

common root of the two subtrees (PEa). This operatIon can be

performed In parallel for all sublmages of sIze k x k, using the PE's at.

the level correspondIng to rectangles of size 2k x k

The procedure to transform the k elements sends the elements to be

shIfted up the tree one by one In a plpehned fashIon After a number of

steps equal to the heIght of the subtree (2 log k), the first element

reaches the root of the source subtree, PEl. This element IS then

transferred to the root of the dest1Oatlon subtree, PE2, through the

common root of the two subtrees, PE3 At thIS pOInt, the algOrIthm

78

(b)

Subtree2 / 1 \
I \

~-~
•

uk

elements

" t \\ Subtreel

~-~
kxk

elements

-("1
, j

starts sending the elements as they arnve to PEl to PE2 through PE3

Each time an element IS transferred to PE2, the algorithm moves the

elements that have arnved to PE2 one level down the destmatlon

subtree. Thus, in time proportional to (k + log k). image elements on

the boundary of k x k subimages are shifted one position left. Shlftmg

the whole image includes repeating this operation for

k = 1, 2, 4, , (n1/2)/2

where n IS the image size. The time required to shift the whole image is

proportional to the sum of 1, 2, 4 •... , (nl/2)/2, which is equal to n1/ 2 - 1.

Thus, the time required to shift the whole image one position left is of

The N-P AS CAL algorithm to perform the shiftlDg of k elements on the

western boundary of a k x k sublmage to the neighbonng k x k

sublmage follows

Proeedure sub;mag~ _Ielt _ slli/t(k, h: Integer);
var

i, j: Integer;
vee tor var

REL X, REL Y, SHIFT VALUE: Integer;
SH LC, SH RC, SH P,-GRAY2 VALUE. Integer;
LEAF: boolean; - -

/* The followmg procedure enables In each subtree the PE
correspondmg to element number i among the elements to be shifted and
reads Its gray-scale value into the vector variable SHIFT _ VALUE.
SHIFT _ VALUE IS set equal to 0 In all other leaf PE's. .. /

80

Proeedure pick element(n integer),
begin

w here LEAF = true do
_begin

SHIFT VALUE = 0;
where (REL X = 0) and (REL Y = n) do

SHIFT VALUE = GRAY_VALUE;
end,

end;

/* The following procedure sends the elements to be shifted one level
up the tree • /

Proeedure move_up;
begin

w here LEAF = ralae do

end,

begin
N RECV8(LC, SHIFT VALUE, SH LC);
N-RECV8(RC, SHIFT-VALUE, SH-RC);
N:=OR8(SHIFT _ VALUE, SH_LC, SH_RC);

end,

/* The fcllowlng procedure enables a single PE in each subtree
corre~pondlng to the destination element i and assigns the value of
SH P to Its GM.Y2 VALUE vector variable */

Proeedure assip _ el~m~Dt{n,m, 1nteler);
begin

where (LEAF == true) and (REL_X = m)
and (REL Y = n)

do GRAY2 VALUE- = SH P,
end,

r The follOWing procedure sends the elements of the vector vanable
SH P one level down the tree • /

Proeedure mov~ _ dOWD;

belln
:-.; _RECV8(P, SH_P, SH_P);

81

end,

1* The followmg procedure assigns to the vanable SH P In the root of
subtree 2 the value of the vanable SHIFT VALUE In the root of the
subtree 1 */

procedure move_around;
begin

N RECV8(RC, SHIFT VALUE, SH RC);
N=SEND8(LC, SH_Rc' SH_LC); -
SH P - SH LC,

end,

/* ThiS 1S the mam procedure: * /
begin

/* 1 Compute the address of each Image point relative to the Ie x Ie
block In which It eXists, and mark leaf PE's. * /

REL_X = XADD mod Ie;
REL_ Y = YADD mod Ie;
ma.rk _leaf(LEAF),

/* Now start calling the various procedures to move the boundary
elements between the two blocks. Note that h is the number of the
level where the roots of the subtrees eXIst. • /

ror i = 1 to (k + 2 • h) do

end,

begIn
It i < = k then pick _ element(i-I);
It i <= k+h then move up,
It i >= h then move around,
It i > h then move _ down;
It i >= 2· h then asslgn_element(i - 2· h, Ie);

end,

82

The NON-VON 3 code for thls procedure lS lOc1uded 10 Appendlx

8 To shift the whole gray-scale lmage one position, thls procedure lS

called-wlth values of It ranglOg from 1 to n1/ 2/2 (The cases of It equal

to 1 and 2 can be actually programmed dlfferently as they consist only

of few tree communication steps.) For each element shlfted, 48

Instructions are executed, requiring 12 pSec. The time required to shift

the whole bInary Image IS proportional to Image side length. For a

128 x 128 gray-scale image, 1 6 msec is needed to shift the whole Image

one pixel to the left Shifting the gray-scale image more than one pixel IS

performed by executing this algorithm a number of times equal to the

number of shifts required.

AddIng one-bit mesh connections to the leaf PE's of the NON· VON

machIne should reduce Significantly the time required for gray-scale Image

shiftIng Such connections allow smgle-plxel shifts 10 2 pSec for gray-scale

lmages shifting. and 250 nsec for binary Images. Unlike the algonthm

deSCribed above to shift binary lmages, however, thls approach would

requlre addltlonal tlme for shlfts of more than one plxel.

5.3.2. 1m... CorrelatioD Allorithma

In this subsectloD. we descnbe two algontbms to perform the cross

correlation operation on tbe NON· VON macblne. Tbe cross correlation

value at a certaln posltlon In tbe Image is defined as

'"
era.. cornlGtion ~ E zi'i

i-l

where lIi i;e the template elements, xi are the Image elements covered by

the template elements, and m is the number of template elements The

first algonthm IS a direct parallel Implementation of the standard

sequential machme algonthm The second one uses the tree structure of

NON-VON to reduce the number of Image shifts reqUlred to compute the

correlation, thus reducmg the time required to execute these operatlOns

The hrst algonthm starts by imtlahzmg the vanable CORR VAL,

which stores the correlation function value m each leaf PE, to zero.

Each leaf PE then computes the correlation function term corresponding

to Its own pixel value and adds the resultmg value to the vanable

CORR VAL To compute the rest of the correlation function terms,

f'>ach leaf PE reads the value of Image pomts m Its neighbor PE's usmg

the shift operation, as descnbed In the prevIous section. For each value

read, a term m the correlation function IS computed by -each of the lp.af

PE's and ItS value IS added to the vector vanable CORR VAL.

Consequently, the algonthm consists of a repeated sequence of Image shift

a.nd compute steps ThiS sequence IS repeated a number of times

dependmg on the template size For example, If we have a 3 x 3

template, the sequence IS repeated eight times (template size - 1).

\Ve now descnbe the hrst Image correlation algonthm m N-PASCAL.

For SimpliCIty, we assume that the template size IS 3 x 3 and that the

correlatIOn function IS the sum of products of Image elements and

template elements The correlation function value IS st.ored In the Image

elemertt' under the center pixel In the template

The N-P ASCAL algorithm follows:

Proeedure image _ corr 1;
var

i integer;
temp array[O 8] of Integer;

vector var
G _ VALl, CORR VAL Integer;
LEAF boolean,

begin

1* I Imtlailze the vector vartable CORR VAL and compute the first
term of the correlation function • /

CORR VAL = 0,
CORR VAL = CORR_ VAL + templO) • GRAY_VALUE ,

1* 2 Compute the rest of the correlation terms The function
shift _\(X, Y) shifts left the Image represented by the vector vanable X,
and stores the result Image In the vector varIable Y ShIft u, shift d,
and shift _ r are dehned Similarly • /

shift I(GRAY VALUE, G VALl),
CORR_ VAL ~ CORR_ VAL + temp(l) • G VALl

shift d(G VALl, G VALl),
CORR _ VAL == CORR _ VAL + tem,{2} • G _ VALl ,

shift I(G VALl, G VALl);
CORR_ VAL == CORR_ VAL + temp{3} • G_ VALl,

shift r(G VALl, G VALl);
CORR VAL == CORR _ VAL + temp{4} • G _ VALl ,

8)

shift r(GRAY VALUE, G VALl);
CORR _ VAL=- CORR _ VAL + temptS) * G VALl

shift u(G VALl, G VALl);
CORR_ VAL = CORR_ VAL + temp(6) * G_ VALl,

shift l(G VALl, G VALl);
CORR_ VAL = CORR_ VAL + temp(7) * G_ VALl,

shift l(G VALl, G VALl);
CORR VAL = CORR _ VAL + temp[8} * G VALl

end;

Note that the order in which the image shifts are performed depends on

where the value of the operation is to be stored. The time required to

p.xecute the funcllon IS O(m(s+c)), where m IS the template size, c is the

time reqUlr~d to com pute a term 10 the correlation function, and 8 IS the

execution time of the Image shift operation On the present version of

NON-VON, the Image shift time IS O(ra l / 2) for typical Images, where ra IS

the Image size Thus, the time required can be expressed in terms of

Image size as O(m(ra1/ 2+c)) In the N-PASCAL procedure described

above, the correlation function term is computed by multiplying two S.bit

1Otegers, and then perform1Og a 32-blt 10teger add (for a IS-level tree)

ThiS operation takes about 30 "sec on the present version of

NONVON 3. The Image shift operation for a 128 X 128 Image takes

about 1 6 msec, on the present version of NON-VON, as stated earlier.

Therefore the computation lime IS very small compared to the shift time

For a 3 x 3 template, the correlation function as defined earlier executes

86

ID 128 msec On a mesh-connected machIDe, the Image shift operation IS

performed m constant time, and the computation of Image correlation

thus ~qulres only O(mc) time. For templates of different Sizes, the same

procedure can be adapted to compute the correlation function value

Note that the time required to execute the procedure on the present

ver:slon of NON-VON (which lacks mesh connections) is dominated by the

Image shift time.

The second approach treats the whole image as a number of subimages

stored m the leaf PE's of NON-VON subtrees. Each subimage contains

all local Image mformatlon required to compute the correlation for a

subset ,)f Its pomts The Image correlation for these points is computed

for all sublmages In parallel Computmg the correlation function for

Image pOints on the boundary of sublmages requires Image mformatlon

from nelghbonng sublmages ThiS IS the only case m which the Image

shifts are required. Figure 5-6 depIcts a sublmage of size 4 x 4 and a

template of size 3 x 3 There are 4 pomts 10 this sublmage (pomts 1 to

4) at which the correlation function can be computed usmg only the

sublmale values

The computation of the correlation function for these four points 1:3

performed by stormg the template for each position 10 the leaf PE's, such

that PE's that are not covered by the template have template value zero

ThiS IS equivalent to scannlDi the template allover the sublmale, and at

87

88

10 9 8 7

11 1 2 5

12 4 3 6

13 14 15 16

Figure 6-8: Image Correlation Template In

a 4 x 4 Sublmage

each of the positions where all the sublmage elements covered by the

tern plate eXist, the correlation function IS computed For a 3 x 3

template, four template values must be stored In each PE. ThiS IS

performed for all PE's In time proportional to the template size The

correlation function IS then computed In the leaf PE's, and the results

are compiled uSing the tree connections In each subtree root. Shifting

the whole Image one position to the left enables us to compute the

correlation function for POints 5 and 6 Shifting the resulting Image one

posItIon down makes It pOSSIble· to compute the functIon at pOInts 7 and

8 Simllarly four shIfts enable us to compute the functIon at POlOts 9

through 16. Note that only SIX image shifts are required 10 thiS

approach Instead of eight shifts in the standard algonthm descnbed

earher in this section. The number of shifts required is given by the

follOWing equation:

number 0/ 8hi/t, = (, - t2)/1; (5 5)

where , IS the sublmage Size, and I; x I; is the number of pOlOts at

whIch the correlation function can be computed using the subimage

information. The value of I; depends on both the template size and the

sublmage size. For example, If the template size IS 5 x 5 and the

subimage size IS 8 x 8, then I; IS 4 and the number of shifts reqUired is

12 Instead of the 24 reqUIred by the first approach.

We now present the N-PASCAL algonthm to compute the image

correlation, assuming sublmages of size 4 x 4 and a template of size

3 x 3

Proeedure ;map _ cor,2;
var

i lntepr;
tem,: array(1..4,1 16) of 1 Dtepr;

vec:tor var
GYAL1, G_ VAL2 1 Dt.eser,
CORR VAL 1nteler,
TEMPI arraY[l 4) of 1 Dt.epr;
LEAF boolean,

Proeedure camp _ corr{i: Integer);
var

j: Integer;
vector var

CORR _ L, CORR _ R, X, Y, NO: Integer;
begIn

1* 1. Com pute the correlation terms at the leaf level. • /

X= Y· TE!vfPl[lJ;

1* 2. Add the terms together using the tree connections. • /

ror j == 1 to 4 do
begIn

N_RECV8(LC, X. CORR_L);
N RECV8(RC, X. CORR R);
X- CORR L + CORR_R;

end ,

/* 3 Send the result back to the leaf PE's. • /

ror j = 1 to 4 do
N RECV8(P. X, X).

/* 4 Enable only PE's m posltlon i in the subimages and store the
correlatlon functlon value in the varIable CORR VAL· /

where NO = i do CORR VAL = X;
end.

begIn

/* 1. Compute the correlation (unctlon (or pomts at positions 1
through 4. The function comp _ corr(i) computes the correlation function
at posltlon 1 • /

ror i = 1 to 4 do
comp _ corr(l),

90

r 2 Compute the rest of the correla.tlon terms • /

shift I(GRAY _ VALL'E, G_ VALl),
com"p _ corr(5), comp _ corr(6),

shlft_d(G_ VALl, G_ VAL2);
comp _ corr(7); comp _ corr(8);

shift u(G VALl, G VAL2);
comp _ corr(15), comp _ corr(16),

shift r(GRAY VALVE, G _ V AL2),
comp _ (orr(9), comp _ corr(lO);

shift u(G VAL 2 , G_ VALl),
comp _ corr(ll), comp _ corr(12);

shlft_u(G_ VAL 2 , G_ VALl);
comp _ corrt 13), comp _ corr(l4),

end,

The a.bove ~-PASCAL a.lgorIthm executes m time proportional to

(j(8 + Ie log a)), where j IS the number of shifts, , IS the shift time, Ie IS

the number of correlation function values computed after each Shift, and

a IS the lrea of the sublmage ThiS time IS agam dommated by the time

reqUired to perform the Image shlftmg In the case of 3 x 3 templates,

thiS time IS approximately 9 6 msec

The performance figures presented above clearly mdicate that if tree

comm umcatlon IS used to shift the whole Image m any direction, then

thiS time dommates the execution time of local operations on the present

version of ~ON-VON Adding the capability of fast image shifting to

91

NON-VON speeds up these operations consIderably There are several

ways to add this capabilIty The Simplest and most direct approach IS

to Incorporate a sIngle-bIt mesh connections at the leaf level, as IS In fact

currently planned. A second pOSSible solution would be to add the mesh

connections at an intermediate level, reducIng the compleXity of the

machIne wmng. For example, If the mesh connections are incorporated

at the second level above the leaves, the required number of wIres IS

reduced by half. ThIS, however, will increase the time reqUired for Image

shifting

We are also consldenng a shght modification to the current PE design,

by adding a second speCial rotatIng regIster, that will result in byte

multlphcatlon being performed In about 30 "sec Instead of 30 "sec on

the pr~sent version The fast multiplication will reduce signIficantly the

execution time In case of addIng mesh connections Based on these two

proposed modifications to the NON-VON hardware, we have computed

the ~xpected execution time for the Image correlation operations. Table

5-1 summanzes these projections

Table 6-1: ExecutIon TIme for Some Low-Level OperatIons
on Parallel MachInes

ICL DiP IIPP 101-'01 3 101-'01 3

(without ... h (wit
cODDeetioD.) cODDeetioD.)

Speed (MIPS) 5.0000 10.0000 4.0000 4.0000

ExecutioD ti_
a. Hi.toru (uee) 70.0000 120.0000 4.0000 4.0000
(128 I 12 i..,., 258 biD.)

b. ThrellloldiDC 2.5000 1.5000 1.5000
(~.ec)

c. 8iDarI iuC·
.I1itt DC (uee) 0.0001 5.0000 0.00025

d. cur·Cal• !:r 0.0001 l.eooo 0.0020
lhi tiDe (uec:

•• Cro.. corr.latio •
(3 I 3) uec: 0.2000 V.eooo 0.0500

(7 I 7) 1.0000 2'1.0000 0.2500

r; ·3

Chapter 6

Geometric Algorithms

Geometnc operations usually accept bmary Images as their mput and

produce a symbolic descnptlon of the geometnc properties of mput Image

objects as their output The output of these operations usually results

from combmmg Image data that IS found m distant parts of the Image

Consequently, these operations can be viewed as global operations

performed on Images Examples of these operations mclude Identlfymg

separate objects m the Image and computmg different geometnc

d~scrIptlons of these objects In this chapter, we descnbe algonthms for

labelIng Image objects, and for computmg some of their geometnc

prop~rtles, such as area, penmeter, genus, centroid, moments, and

compactness Algonthms to perform set operations on bmary Images are

also d~scnbed. We assume throughout this chapter that the bmary

Image IS already stored m the tree, and that the bmary Image tree

representation IS constructed as descnbed m Chapter 4

6.1. Connected Component Labeling

Connected component labelIng IS a basiC operation In Image analYSIS

that IdentifIes the disJoInt regions of a binary Image. The connected

component labelIng algorithm assigns unique labels to disJoInt connected

reglOns of a bInary image as illustrated in Figure 6-1. The disJoInt

regIons IdentIfied by the algorithm may be then analyzed separately USIng

one label at a tIme

We assume In thIS chapter that the image objects have been separated

from their background USing some segmentation procedure. Thresholding

based on Image histogrammIng, as described in the prevIous chapter, IS

an example of such a segmentation procedure In descrIbing the NON·

VON connected component algc:"lthm, we assume that only the

foreground components (the black areas) are to be labeled; but the same

procedure can also be apphed to background components (the white

areas)

6.1.1. The Connected Component Labeling Algorithm

There are several algOrithms for performing the labeling operation on a

sequential machine depending on the data structure used to represent the

Image If for example, a two dimenSional array is used, the classical

sequential algOrithm scans the btnary Image from left to right and top to

bottom [Ball 82] For each foreground pixel (pixel with value 'I'), ItS left

and top neighbors are examtned. U they both have no labels assigned to

(a) The input binary image

00000000000000000000000000000000
00111101111111000001110001110000
00111111111111110011110001111000
00111111111111111001110001110000
00111101111100111100111111100000
00000000011100011110001110000000
00000000011100000000001110000000
00000000011100000000001110000000
00000000011100000000001110000000
00000000011100000000001110000000
00000000011100000000001110000000
00000000011100000000001110000000
00000000011100000000001110000000
00000000011100000000001110000000
00000000011100000000001110000000
00000000011100000000001110000000
00000000011100000000001110000000
00000000011100000000001110000000
00000000011100000000001110000000
00000000011100000000001110000000
00000000011100000000001110000000 .
00000000011100000000000100000000
00000000011110001111100000000000
00000000011100111111111000000000
00000000000001111000111100000000
00000000000001110000011110000000
00000000000001111000111110000000
00000000000000111111111100000000
00000000000000001111110000000000
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000

(b) The labeled image

00000000000000000000000000000000
00777707777777000008880008880000
00777777777771710088880008888000
00777177111777777008880008880000
00777707 717 70omtOO8888888OOOOO
oOOOOOOOOmooomtOOO888OOOOOOO
OooOooooOmOOOOOOOOOO888OOO
OOOOOOOOOmOOOOOOOOOO888OO000
oOOOOOOOOmOOOOOOOOOO888OOO
000000OOOmOOOOOOOOOO888OO00
0000OOOOOmooOOOOOOOO888OOOO000
00000000077700000000008880000000
00000000077700000000008880000000
00000000077700000000008880000000
00000000077700000000008880000000
00000000077700000000008880000000
00000000077700000000008880000000
00000000077700000000008880000000
00000000077700000000008880000000
00000000077700000000008880000000
00000000077700000000008880000000
00000000077700000000000800000000
00000000077770002222200000000000
00000000077700222222222000000000
00000000000002222000222200000000
00000000000002220000022220000000
00000000000002222000222220000000
00000000000000222222222200000000
00000000000000002222220000000000
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000

FIgure 8-1: Connected Component. Labehng of a Bmary Image

96

them, then the pixel IS assigned a new label If only one of them has a

label, or both have the same label, then the examined pixel is assigned

thIS label. If they have different labels, then the pixel IS assIgned the

smallest of them, and an entry is created in an equIvalence table taking

note of the eqUIvalence between the two labels. So, after one scan of the

whole Image, each pixel IS assigned a label, and equivalence relations

between labels are known. A second pass is thus required to reassign a

unique label to pixels In the same eqUivalence class. This algonthm takes

time proportIOnal to the size of the image. For a 512 x 512 image (256K

pIxels), thiS algOrIthm executes in about 300 seconds on a VAX 11/750

[Lum) 831 Other vanatlons of the algorithm and their execution times for

dIfferent Image sizes are descrIbed in [Lumi 83)

A second algOrIthm on sequentIal machines that uses the quadtree data

struct ure IS descrIbed .:1 [Same 81cI The average eXecutIon tIme of thiS

algOrithm IS proportIonal to the sum of the black and white squares In

the quadtree data structure representIng the bInary Image A parallel

algOrithm that computes the connected components on an nl/ 2 x nl /2

mesh-connected parallel SL\ID computer In O(nl/2), IS descnbed In

[~a.ss 80)

The ~ON-VON algOrIthm descnbed In thiS thesIS scans the rectangles of

the binary Image tree representation of the Image The rectangles are

scanned In terms of their SIze, rather than In terms of their location The

r:
j ,

RESOLVE instruction IS used to achieve that, and the reason for that IS

to eliminate the need for a second pass, as will be clear soon. For each

rectangle, all neighbor rectangles (rectangles havinl a common boundary)

are labeled with the same label. U any of the ne1lhboring rectangles has

already been assigned a label, then this equivalence case IS noted

EqUivalence cases are limited by two at each step, and they are treated

after each scanning step.

The algOrithm, as Implemented on NON-VON, starts by assigning the

label zero to all black rectangles of the binary image tree. The

RESOLVE mstructlon IS then used to report to the CP the black

rectangles of the bmary Image one by one, in order of their sizes. This

can be done Simply by startmg at the root level and enabling only PE's

holding black rectangles at that level, and then reporting them to the CP

In an order that depends on how the RESOLVE mstruction IS

Impl~mented ThiS order IS not Important to our algorithm, smce all

rectangles on a speCific level have the same size. After all the black

rectanglp.s on level i level have been reported, we enable the PE's with

black rectangles m the next level i+ 1 down the tree and repeat the

reporting procedure The algOrithm termmates when all black rectangles

In the leaf level have been reported.
'C'~;'.

For each reported rectangle, the CP assigns a new label If It has not

already been assigned a label The CP broadcasts mstructlons to mark

98

and label all adjacent rectangles In different directIOns with the same

label of the reported rectangle If dunng the adjacency test, any

adjacent rectangle has already been labeled, then thIS adjacent rectangle

and all rectangles haVing the same· label value wIll be assigned the label

of the reported rectangle. Another black rectangle is picked as descnbed

above and the labeling procedure is repeated. This procedure guarantees

that all black rectangles are labeled, SlDce all black rectangles are

reported to the CP and are assigned a label if they have not already

have a label. One pass IS enough because at each step, all rectangles

that have been labeled and are adjacent to each other have the same

label. During the execution of this algorithm, information about the

common boundaries between rectangles will be stored locally at each node

to be used later for computlDg some geometrical propertIes of different

components

The algOrithm lS described more rigorously below US10g N-P ASCAL.

The vector vanable COMP LABEL is used to store the region label to

which the rectangle belongs. The vector boolean van abies TE, TN, TW,

and TS are used to 10dlcate the eXIstence of a common boundary

between a rectangle and Its nelghbors 10 the east, north, west and south

dlrections respectively The algonthm sets the value of these variables,

such that If two rectangles share a common boundary, then this

Informatlon IS stored only In the smaller of the two rectangles. Another

vector variable, REPORTED, IS used by a rectangle to mark itself as

reported. The scalar varIable newlabel IS used to store a new unassigned

label. While the scalar variable comlabel is used to store the label

assigned to adjacent rectangles in adjacency testIng respectively The

scalar vanable curiev Will be used to refer to the current level from

which the algOrIthm picks black rectangles.

In what follows, we descrIbe the N-P ASCAL algOrIthm to label the

connected components of a binary Image

Proeedure connected _ comp(no _lew/.: INTEGER);
label 3, 6, 8;

var
new/abel, com/abel, cur/ev: Integer;
x, y, z., y., I Integer,

veetor var
TE~lP, CUR LEV integer;
TE. T!\J, T\V~TS, TO _BE_LAB boolean;
A.'\"y _AI, REPORTED, EQUIV boolean;

begin

/* 1 Inttlailze the scalar varIables newlabel and cur/ev to o. Set the
varIable CUR LEV equal to the level number In all PE's. The
procedure to perform thiS IS very Simple and IS Impilcltly included In the
code for InltlahzIng the NON-VON tree We Will not descnbe thiS

procedure here. *'
newlabel == 0, cur/ev == 0,
TW == false, TE == false,
TN == false; TS == faille,
REPORTED == faille;
set _level_ number(CUR _LEV),

/* 2 Enable all PE's correspondIng to black rectangles (FQUAD=='B').
Set the vector variable COMP LABEL (dclared In the malO procedure)
equal to 0, and the van able REPORTED to 1 • /

100

where FQUAD = 'B' do
begin
CO~fP lABEL = 0,
REPORTED = true;

end.

/* 3 Enable all PE's corresponding to black rectangles that have not
been reported yet at the current level U none is enabled and the
current level IS the leaf level, then stop; else if none is enabled and the
current level is not the leaf level then repeat this step for the next level
From the enabled PE's, select and enable only one PE. * /

3
where (CURLEV = curlev) and (REPORTED = true)

do N AI.= true
elsewhere N Al = raise;

AAl'" Al = N RESOLVEO,
ir (Al~l'" _ Al = raise) and (curlev = no _'evel,) then

goto 8,
ir (Al~l'" Al = true) and (curlev < > no _'eve',) then

begin
cur/ev = curltv + I,
gota 3,

end.

/* 4 R~port the address, Size, and label mformation of the enabled PE
to the CP Mark the enabled PE as bemg reported. If the rectangle
associated with the PE has not been labeled before (COMP _LABEL =
0), then assign to It a new label Set com label equal to the label of the
reported rectangle * /

where N Al == true do
begin

N REPORT8(XADD, z),
~-REPORT8(YADD, ,);
N REPORT8(XSIDE, r,),
N REPORT8(YSIDE, 11')'
N-REPORT8(COMP LABEL, I),
REPORTED == raise;

end,

1(: I
, ,

ir 1 = 0 then
begin

ntwlabtl= ntwlabel + I,
-\ = ntwlabtl;

end,
cornia bel = I,
COMP LABEL. = I,

/* 5 Test for adjacency 10 the four directions one at a time. This IS
done by broadcast1Og for each dlrectlon the range 10 whlch the location
of the adjacent rectangles should he. This range is computed uS10g the
reported rectangle size and location lOformation. Only rectangles 10 this
range Will be enabled. If any of them has a label other than zero, then
ItS value IS reported to the CPo Only two rectangles at most can have
their labels equal a value other than zero, as wlll be proven later All
adjacent rectangles labels are set to comlaHI. Dunng check for
adjacency, lOformatlon regardlOg adjacency are stored in PE's. • /

TO BE LAB = false, EQUlV . = raise;
where REPORTED = true do

begin
where (XADD = Z + Z8) and (Y ADD < II + II')

and (Y ADD > = II) do
begin

T\V = true,
TO BE LAB - true

end,

where (YADD = 11 + II') and (XADD < Z + Z8)

and (XADD >= z) do
begin

TN =II true;
TO BE LAB = true,

end,

where (YADD + YSIDE = II) and (XADD < Z + Z8)

and (XADD >= z) do
begin

TS = true,
TO BE LAB = true;

end,

where (XADD + XSIDE - z) and (YADD < II + 118)

102

end,

and (YADD >= y) do
begin

TE = true;
TO BE LAB - true;

end;

w here TO BE LAB = true do
begin

ir COMP LABEL = 0 do
begin

EQUIV = true,
TEMP = COMP LABEL,

end;
COMP LABEL = cornia bel;

end;

/* 6. This step takes care of the equivalence cases. For each adjacent
rectangle with COMP _ LABEL not equal to zero, broadcast the value of
-Its COMP LABEL. Set CO~IP LABEL in all PE's having the same
label value equal to comlabel • /

6
where EQUIV = true do N Al = true

elsewhere N _AI = false,
ir ~ _RESOLVE() = 0 then goto 3
else where N Al = true do

8,
end,

begin
EQUIV = false,
N REPORT8(TEMP, I);
where (COMP LABEL = I) and (FQUAD = 'B')

do COMP LABEL = comlabel,
loto 6,

end,

In Step 5, a crucial part of the algorithm's efficiency is due to the fact

that at most two of the adjacent rectangles can have labels other than

zero To prove thiS, we assume that rectangle 3 has been reported to the

1 (: S

CP and that without loss of generahty we are looklOg for rectangles

adjacent to It along Its eastern boundary, as shown 10 Figure 6-2

Assume also that rectangle 2 IS adjacent to rectangle 3 10 the east

directIOn as shown 10 Figure 6-2-a. U rectangle 2 has been labeled

before. then It must be adjacent to a rectangle 1 of size greater than or

equal to rectangle 3 This IS true because rectangles are reported to the

CP 10 order of their size. Rectangle 2 can share a common boundary

with rectangle 1 In the east, north, or south direction along the

boundanes of the shaded area shown 10 Figure 6-2. From the way we

build the binary Image tree, we know that if rectangle 1 IS to the east of

rectangle .3 and IS larger than or equal to it, then the distance separat10g

them IS greater than or equal to the Width of rectangle 3 (L3) Thus,

we conclude that If rectangle 2 IS adjacent to both 1 and 3, and

rectlngle 2 15 smaller than or equal to rectangle 3, then its Width (L2) IS

equal to LJ There IS only one rectangle that can satisfy this condition,

as shown In Figure 6-2-b, where Its two unique positions are shown In

addition to rectangle 2 10 the prevIous case, we can have only a second

rectangle 2 that could have been labeled before because It IS adjacent to

a larger or equal size rectangle 10 either the north or south direction as

shown In Figure 6-2-b Figure 6-2-c shows the third possible case, where

we have two rectangles (not necessarily of the same size) that have been

labeled before, and which are adjacent to rectangle 3, and to larger or

equal size rectangles 10 the north and south dlrectlon respectively

lO-t

:+- L3 at- L2 --I

, I

(a) 3

(b)
3

(c) 3

Figure 8-2: Cases of a Rectangle Adjacent to
Two Rectangles

A similar proof IS valId for adjacent rectangles In the other directions

Steps 3 through 7 are repeated a number of times equal to the number

of blae k nodes In the Image Each step consists of at most a fixed

number of ~ON-VON instructions Thus, the time the algonthm takes IS

proportional to the number of rectangles In the bmary tree O(B) If

prior mformatlon about the adjacency for Single pixels IS known (for

exam pie, dunng the broadcasting of the Image), then those rectangles

With adjacenCies only In one direction do not have to be reported to the

CP once they are labeled.

10)

The IOformatlon obtalOed about the common boundarIes between

rectangles can be used not only to compute component properties In time

proportional to the height of the NON-VON tree, but also to mark all

boundary pixels with respect to a black region. This is a simple

procedure, and It will not be deSCrIbed in this thesis. It executes 10 a
•

tIme proportional to the number of black rectangles In the binary Image

tree MarklOg boundary pixels can be used 10 other algorithms, such as

determlOlOg adjacency relationships between components.

Notl! that 10 the labehng procedure, only bmary Image tree rectangles

belonglOg to the connected component are being labeled If all the image

pixels con tamed WithIn the connected components are also to be labeled,

then a sim pie procedure that executes 10 time proportional to the height

of the ~O~-VON tree may be used to perform this operation The

OaslC step 10 this procedure IS to let each PE reads the label of Its

parent node, and only If thiS PE corresponds to a non-gray rectangle that

IS not part of the binary Image tree (FQUAD IS equal to 'N'), then the

fp.ad valul! IS stored 10 ItS L-'BEL variable ThiS step IS repeated a

number of times equal to the tree height, after which all lear PE's will

have their LAJ3EL vanablp.s set p.qual to the label value of the connected

component to which they belong The ~-P AS CAL for thiS Slm pie

proced ure follows

Procedure spread _/abeK.,no _Itt,tls INTEGER),
var

IG5

i integer,
vector var

TE~IP integer,
begin

ror i = 2 to no levels do
begin

end;

N RECV8(P, COMP LABEL, TEMP);
where (FQUAD = 'N"'7) do COMP _LABEL - TEMP;

end;

The NON-VON 3 code for this procedure contains 4 instruction per

iteration. Thus (or a IS-level tree the procedure executes In

approXimately 16 ISsec

6.1.2. Connected Component Labeling Simulation

The algOrIthm descrIbed In the prevIous section has been Simulated on

both the functional and InstructIOn-level Simulators Figure 6-3 shows (a)

a 32 x 32 bInary Image (the same as that of Figure 5-3), that was Input

to the functional Simulator and (b) the labeled foreground components

The Slm ulator has also been used to label background objects as shown

In rart (c) of Figure 6-3 The bInary Image representation of thiS Image

cont llns 64 black rectangles and 88 white rectangles It took about three

seconds of actual (sequential) CPU time for the Simulator to label all

black components

The ~ON-VON 3 code for the algonthm executes usmg at most about

200 :":ON-VON Instructions, per Iteration, In case of the existence of two

equivalence cases In all directions.

Wlth-a NON-VON 3 Instruction cycle of 250 nsec, the algorIthm

execution time IS approxlmately .058 msec, where 8 lS the number of

black components. For an ra 1/ 2 x ra1/ 2 binary image the average number

of black rectangles 10 the bmary Image tree 15 O(ra1/ 2) (Dyer 82] Thus

the average case running time for the algorithm is O(ra1/ 2) The average

runOlng tlme of the algOrIthm on NON-VON for a 512 x 512 Image wlth

1000 black rectangles IS about 50 msec. (We can always in a time

proportional to the height of the tree compute the number of black

rectangles 10 the NON-VON tree, and use that number to estimate the

runnIng time of the algorIthm) The slmulator was also used to compute

some components propertles based on the information produced by the

connf?cted component algOrIthm, as Will be descrIbed 10 the next section.

6.2. Computing Connected Component Properties

In thiS sectlon, algOrIthms that compute varIOUS shape properties of

binary Images are presented ThiS quantltatlve deSCrIption of Image

shape properties is used to clasSify objects 10 the image, and lS usually

fed to high level vIsion procedures that 10terpret the Image Area,

perimeter, moments, centrOid, compactness, eccentnclty, and Image genus

are the shape properties discussed 10 thls section AlgOrIthms for

computIng the complement, Intersection, and UOlon of bInary Images are

also deSCribed \Ve assume throu~hout thiS section that the Image objects

108

000000000000000000000000000
00011011000000000000000000000000
00111110000000000000000000000000
11111111110000000~

11111100011000000000000000000000
11110011110000000000000000000000
11110011110000000000000000000000
11111111000000000000000000000000
11111110000000000000000000000000
11111000000000000000000000000000
11110000001110000000000000000000
00000000111100000000000000000000
00000001111100000000000000000000
00000011111000000000000000000000
10000001110000000000000000000000
10000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000001100000
00000000000000000000000011100000
00000000000000000010011111100000
00000000000000000111011111000000
00000000000000000111111111000000
00000000000000001111011111000000
00000000000000001110011110000000
00000000000000001110000000000000
00000000000000000100000000000000
00000000000000000000000000000000
100000000000000000000000000
11000000_
1100000_

(a)

o 0 0 0 0 0 0 0 0 0 0 0 0 0 000 000 000 0 0 0 0 0 0 0 0 0
000 9 go. 9 000 000 0 0 000 0 0 0 0 0 0 0 0 0 0 0 0 0
o 0 9 9 9 9 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 000 0 0 000 0 0 0
9 9 9 9 9 9 9 9 9 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 000 0
9 9 9 9 9 gOO 0 9 gOO 0 0 000 0 0 0 0 0 000 000 000
9 g 9 900 9 9 9 9 0 000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
9 9 9 9 0 0 9 9 9 900 0 0 0 0 0 000 0 0 0 0 0 0 0 0 0 0 0 0
9 9 9 9 9 9 9 gOO 0 000 0 000 0 0 000 0 0 0 0 0 000 0
9 9 9 9 9 9 gOO 0
9 9 9 9 gOO 0 0 0 0 0 0 0 0 0 0 000 0 0 0 000 0 0 0 000
9 9 9 gOO 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
o 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 000
o 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 000 0 0
o 0 0 0 0 0 1 1 1 1 100

10 0 0 0 0 0 0 7 7 7 0
10
o 000 0 0
o 0 0 0 0 0 0 0 0 0 0 000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
o 0 000 000 0 0 0 0 0 0 0 0 000 0 0 0 0 0 0 0 0 0 0 0 0 0
o 0 0 0 0 0 0 0 0 0 0 000 0 0 0 0 0 0 0 0 000 4 400 0 0 0
o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 000 0 0 0 0 004 4 4 000 0 0
o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 000 4 0 0 4 4 4 4 4 400 0 0 0
o 0 0 0 0 0 0 0 0 0 0 0 0 0 000 4 4 4 0 4 4 4 4 4 0 0 0 0 0 0
o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 4 4 4 4 4 4 4 4 0 0 0 0 0 0
o 0 0 0 0 000 0 0 0 0 0 0 0 0 4 4 4 4 0 4 4 4 4 4 0 0 0 0 0 0
o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 4 4 0 0 4 4 4 4 0 0 0 0 0 0 0
00000 0 0 0 0 0 0 0 0 0 004 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0
o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 000
o 000 0 000
2 0 0 000 0 0 0 0 0 0 0 0 0 0 000 0 0 0 0 0 0 0 0 0 0 0 0 0
2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 000 0 0 0 000 0 0 0 0 0 000
2 2 0 0 0 000

(b)

s s S S 5 5 5 5 5 5 5 5 555 5 5 5 5 5 5 5 5 5 555 5 5 5 S S
~ ~ S 9 9 5 I I 5 5 5 555 5 5 5 5 5 5 5 5 5 5 5 5 5 S 5 S S S
SSg 9 9 9 9 5 S 5 5 5 5 5 5 5 5 5 5 5 5 5 S 5 5 S 5 5 5 S S S
9 9 9 9 9 9 9 9 9 9 555 5 5 5 5 5 5 S S S S S S S S S S 5 S S
9 9 9 9 9 9 I I I 9 9 5 S 5 5 5 555 5 S 5 5 S 5 5 5 S S 5 S S
9 9 9 9 J J 9 9 9 9 S S 5 5 S 555 5 5 5 S 5 5 5 5 S 5 5 5 5 S
999 9 J l 9 9 9 9 5 5 5 5 S 5 S S 5 S S S S 5 S S S S S S S S
9 9 9 9 9 9 9 9 S S S 5 S S S 5 S S S S 5 S S S 5 S S S S S S S
9 9 9 9 , 9 9 S S 5 5 S 5 5 5 5 5 5 5 S S S 5 S S S S S 5 S S S
999995 S 5 S 5 5 S 5 S 5 S 5 S 5 S 555 S·S 5 S S 5 5 S S
9 9 9 9 S S 5 ; ; S i 1 1 S 5 5 S 5 5 S S 5 S S S 5 S S S S ; S
S 5 S S 5 S S ; 711 7 S 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 S S 5
SiS iSS 5 7 7 717 555 5 5 5 5 5 5 5 5 5 5 5 555 5 5 5
S S S S S 5 7 7 777 5 5 5 5 S 5 555 5 5 5 S 555 S 5 5 5 5

10 S 5 5 5 5 S 7 7 1 5 5 5 S 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 S S
10 S 5 ; ; s S S 5 S S ; 5 5 5 5 S 5 5 5 5 S 5 S 5 5 5 5 5 5 5 5
.555 S S S 5 i 5 S 5 S 5 5 5 5 555555555555555 5
5 5 S 5 5 S S S S S 5 5 5 5 5 5 5 5 5 5 S 5 5 5 5 5 S 5 5 S S 5
; 5 S ; 5 S ; S 5 S 555 555 5 S 5 5 5 S 5 5 5 5 5 5 5 5 S 5
5 ; S 5 ; 5 S S 5 5 5 5 5 S 5 5 5 5 5 S 5 S 5 5 5 4 4 5 S S 5 5
5 ; 5 S S S S S S 5 S 5 5 5 S S S 555 5 S 5 544 4 5 5 5 S 5
S 5 S 5 S 5 5 5 5 5 5 5 5 5 5 5 554 5 5 4 4 4 4 4 455 5 5 S
S S \ S 5 5 \ \ 5 S S S 5 S S S 5 4 4 4 5 4 4 4 4 4 S S 5 5 5 S
S S 5 ; \ S ; S ; ; S 5 S 5 5 5 5 4 4 4 4 4 4 4 4 4 5 S 5 S S S
S S S 5 5 S 5 5 S S 5 5 5 5 5 5 4 4 4 4 S 4 4 4 4 4 5 S 5 5 S 5
S S \ S 5 ; 5 5 S 5 5 5 S S S 5 4 4 4 554 4 4 4 S S S S 5 S S
5 S S S S 5 S 5 S S 5 5 5 5 5 S 4 4 4 5 5 S S 5 5 5 S 5 S 5 S S
S S S S S S S ; S 5 5 S 5 S S 554 5 S 5 S 5 5 S 5 S S 5 5 S ;
S S S S 5 S 5 5 S 5 5 5 5 S 555 5 5 5 5 5 5 5 5 5 S S 5 S S 5
2 5 S ; 5 5 S 5 S 5 5 S S 5 5 5 5 5 5 S 5 5 5 5 5 5 5 5 5 5 S 5
2 l ; ; ; ; S ; S 5 5 ; S S S 5 5 5 S S 555 5 5 5 S 5 5 S ; S
2 2 S 5 ; ; ; s S S 5 5 S ; ; 5 5 5 5 5 5 5 S 5 5 5 5 ; ; S ; ;

(c)
Figure &-1: Some Simulation Results

have been labeled by the connected component algonthm as descnbed In

the first section of this chapter, and that the vector vanable LABEL

contains the value of the label associated with each rectangle.

Before descnbing the algorithms, a common function that will be called

by these algonthms IS presented. The function, add _ tree(X), IS used to

compute the sum of the values of the vector variable X found 10 all PE's

in the NON-YON tree The N-P AS CAL procedure for evaluatlOg the

add tree function follows

Function add _ tree(var X. Integer) Integer;
label 2;

var
count, sum: integer;

vector var
TE~tP Integer,
LEAF, TEMP 1 boolean;

begin

/* 1 InItlahze count We assume that the number of tree levels Ia is
InItialized by the calling procedure. Enable only those PE's 10 the lev~l

above the leaf level • /

count = 1,
mark leaf(LEAF);
LEAF- = not LEAF ,
:'l RECYl(LC, TEMPI, LEAF),
LEAF =- not TEMPI,

/* 2. VSlOg the tree connections, every enabled PE reads the contents
of the vanable X 10 ItS two children, adds them to the value of Its own
vanable X, and places the result 10 Its vanable X. • /

2
w here LEAF - true do

110

begin
N RECV8(LC TE~1P, X),
X- X + TEMP,
:'<l'_RECV8(RC, TEMP, X),
X = X + TEMP;

end,

/* 3 If the enabled level is the root level, then stop. Otherwise, enable
all the PE's in the level above the currently enabled level. Goto step 2

*/

count = count + I;
if count < > h then

begin
LEAF = not LEAF ,
N RECVI(LC, TEMPI, LEAF);
LEAF = not TEMPt;
goto 2;

end,
add tree = read root(X),

end,

Steps 2 and 3 are executed h times, where h IS the number of levels In

the tree. after which the sum wIll be reported to the CP Thus, the

time required to compute the function add _ tree(X) IS O(h) The

NON· VO~ 3 code for this procedure IS Included in Appendix B. The

time required to execute this procedure assumIng, a 32-blt add operatIon,

IS 10 "sec per level For a 128 x 128 Image, the time required IS thus

o 15 msec

1 1 1

6.2.1. Area

The area of a region (connected component) IS defmed as the total
-'

num ber of black pixels 10 thiS reglOn The area of a connected

component can be found by settmg the vector integer vanable AREA 10

all PE's contammg rectangles belongmg to thiS component equal to the

area of the rectangle, and settmg the same vanable equal to zero 10 all

other PE's Then the function add _ tree(AREA) is called, arid the value

of the function IS the area bemg sought. The same procedure IS repeated

for other regions of mterest 10 the Image An N-P AS CAL procedure for

Implementmg thiS simple algonthm follows

Procedure tODD _ area(conn _Iabtl Integel");
val"

arta _ valut mteger,
vector val"

AREA integel",
begin

/* 1 Enable all PE's, and set the local vanable AREA equal to zero 10

all of them • /

AREA = 0;

/* 2. Enable only those PE's with their label equal to the label of the
connected component for which the area IS to be computed. In all
enabled PE's, multiply the Width by length and place the result 10

AREA Note that multlphcatlon IS performed through a senes of shift
operations because the x-side and y-slde values are all powers of 2 Once
thiS IS done, enable all PE's XSIDE and YSIDE are the globally defmed
local vanables,mltlal1zed by the mltlal1zatlon procedure • /

where COMP Lo\BEL - conn labtl do

112

AREA = XSIDE * YSIDE,

/* 3 Call the function add _ tree(AREA) When the function IS
executed, the area will be reported to the CP * /

area value = add _ tree(AREA);
end,

The algorIthm executes a fixed number of NON-VON instructions to

compute Steps 1 and 2, independent of the size of the Image. The

multiplication In Step 2 IS computed by a series of shift operations, SInce

the values of XSIDE and YSIDE are powers of two. Step 3 takes time

proportional to the height, h, of the tree. Thus, the algorithm executes

In O(h) time The execution bme of this algorithm is dominated by the

time required to compute the function add_tree, which is approximately

o 15 msec for a 15-level tree, as shown earlier In thiS section.

6.2.2. Perimeter

The computation of object penmeter is a basic operation in image

processlOg The penmeter of a bInary Image object, represented by

binary Image trees, lS defined as the total length of object black rectangle

Sides that are adjacent to white rectangles The algonthm makes use of

the Information stored 10 each PE in the course of executlOg the

connected component algonthm about the common boundaries of

rectangles The algonthm computes the penmeter of a region by adding

the penmeter of all rectangles In thlS regIon, and then subtracting from

1 i 3

thIS sum tWIce the sum of the lengths of all common boundanes The

algOrIthm proceeds as follows:

-'
Procedure COlJlJ _perimeter{eonn _label Integer),
var

ptrimtler: integer;
vector var

PER COM integer;
begin

/* 1 Enable all PE's and Inltlalize the two varIables whIch store the
lengths of the perimeter and the common boundary of each rectangle. * /

PER = 0, COM = 0;

/* 2 Enable only PE's that belong to the regIon for whIch the
perimeter IS to be computed In all enabled PE's, set the vanable PER
equal to the perimeter of the rectangle held by the PE. Compute the
total length of the common boundanes, and store It 10 the vanable
CO~I */

where COMP L\BEL = conn label do - -
PER = 2 * (XSIDE + YSIDE)

elsewhere PER = 0,
where COMP LABEL = conn label do

begin
where (T~ = true) do COM = COM + XSIDE,
where (TS = true) do COM = COM + XSIDE,
where (TE = true) do CO~ = COM + YSIDE,
where (TW = true) do COM = COM + YSIDE,

end;

/* 3 Enable all PE's and compute the perimeter. * /

perimeter = add _ tree(PER) - 2 * add tree(COM),
end,

Steps 1 and 2 execute 10 NON-VON 3 Instructions Independent of the

Image or tree size. Step 3 executes in time proportional to the running

tIme of the function add tree. Thus, the algorithm executes in O(h)

time The execution time of the NON-VON 3 code for this procedures IS

dominated by the time to execute the function add tree, which IS equal

to·03 msec.

6.2.3. Momenta

There are many shape descriptors that can be derived from Image

moments The set of moments of a bounded discrete function J(Z,lI) of

two vanables z,lI IS defmed by

(61)

The parameter i + j IS called the order of tbe moment, where i and j

take on all nonnegative Integer values. There IS an mflnIte set of

moments for every function This mfinIte set IS unIque for every

function, and IS sufficient to specify the function completely [Cast 791.

For a bmary Image, /(z,,) takes the value 1 mSlde the objects and 0

elsewhere. ThiS functIon reflects the shape of the object, and It has a

UnIque set of moments. NotIce that the zer<>order moment corresponds

to the area of the object. The two first order moments, M IO and MOl.

divided by the area of the object (Moo) correspond to the coordinates of

the center of gravIty (centroid). U an object moment is divided by the

11)

object area, the resultIng value is size-invariant.

The- celJtral momelJu "ij of an object are defined by the following

equation:

(6 '2)

where Zo and Yo are the center of gravity. The central moments are

posltlon-InVanant. U the second central moment "u computed relatIve to
, ,

the coordInate axes X ,Y is equal to zero, then these axes are called the

prilJcipal axes. Moments computed relative to these axes are rotatlon-

Invanant We can conclude from past definitIons that object area-

normalized moments computed relative to the prlDcipal axes can be used

to descnbe umquely the shape of an object, mdependent of Its SIze,

transla.tlon, or rotation The set of such moments necessary to descnbe

umquely an object IS object-dependent.

To compute the moments of an object In a binary Image, the vector

IDt~g~r va.nable MOMENT IS Inltlahzed to zero In all PE's. PE's

assOCIated wIth pixels belonging to thIS object are then enabled. The

moment of each of these pIxels IS computed In the eaabled PE's uSIng

the address InformatloD stored at each PE (z-address, y-address), The

computed moment IS stored In the vector Integer variable MOMENT

The (unction add _ tree(MOMENT) is next called to compute the object

moment To compute central moments, flrst the coordinates of center of

115

gravity are broadcast to all PE's. Each enabled PE computes the central

moment of the pixel held by this PE. The function add tree IS then

used to compute the object central moment. In what follows, we

descnbe an algOrIthm that computes the central moment "11 of a bmary

Image, which is defined by:

Procedure momeot_ll(conn_label, rO, 1J{) Integer);
var

moment _ value integer;
vector var

MOMENT, XO, YO Integer;
LEAF. boolean;

begin

(63)

/* 1 Enable all PE's, and set the local variable MOMENT equal to
zero In all of them • /

~fO~fE~T = 0,

/* 2 Enable only those leaf PE's whose label IS equal to the label of
the connected component for which the area IS to be computed.
Broadcast the values of the center· of gravity (zo, yo). In all ena.bled
PE·s, compute the central moment for the rectangle associated With thiS
PE */

~ BROADCAST8(zO, XO),
~=BROADCAST8(1JO. YO).
mark lea.f(LEAF);
wheN (COMP LABEL = conn laH/) and (LEAF = true) do
~fOMENT - ((XADD • XO) .. (Y ADD - YO));

/* 3 Call the function add tree(MOMENT). When the function IS

executed. the moment will be reported to the CP • /

117

momtnt v41ut - add _ tree(MOMENT);
p.nd;

Steps 1 and 2 execute a fixed number of NON-VON instructions, whde

the execution time of Step 3 IS proportional to the height of the tree

Thus, the time required to compute Image moments IS proportional to the

tree height (0(1a)) As In the case of area and perimeter computation,

the time required to compute the function add_tree dommates the time

required to execute thiS procedure (approXimately 0.15 msec to compute a

moment value)

6.2.4. Centroid

The coordlnates of the centroid of an object are defined as the first

order moments of the object diVided by its area. To compute the two

first order moments two values are computed In each rectangle belonglng

to the region we are lnterested In The first, YMOM, is the result of

multiplYing the rectangle area by the sum of Its x-address and half ItS x-

Side The second, XMOM, IS the product of multlplYlng the rectangle

,lfea by the sum of Its y-address and half ItS y-slde The centrOid IS a

pair consisting of add _ tree(XMOM) diVided by the area of the region,

and add _ tree(YMOM) diVided by the area of the region The area can

be com puted as descnbed earlier In thiS section Note that multlpilcatlon

can a.gam be performed usmg a senes of Simple shifts and additIOns,

which takes a constant time Thus, the time reqUired to compute the

llS

centroid IS proportional to the height of the tree, and IS approximately

030 msec on ;\ION-VON 3

6.2.5. Compactness

The compactness (or circularity) of an object IS one measure of the

complexity of the shape of ItS boundary. The most commonly used

measure of compactness IS penmeter2/area, which is a dimenSIOnless

quantity that IS minImized by a circular area. Perimeter and area are

computed as deSCrIbed before in time proportional to the height of the

tree. Thus this measure of compactness is computed in time proportional

to the height of the tree There are other measures of compactness; the

reader IS referred to [Cast 791 for more details.

6.2.6. Eccentricity

Eccentricity IS another characterIstic of objects. Also referred to as

rectanrularity, It measures the elongation of an object There are several

measures of eccentrIcity One of them IS the ratio A/B where A is the

maximum chord of the object, and B IS the maximum chord

perpendicular to It Another possible measure IS the ratio of the

principal axes of illertia The prinCiple axes of mertla for an object are

the two orthogonal axes that pass through the center of gravity, such

that one of the values of the two moments "20 and "02 computed relative

to them IS maximum, and the other value IS minimum One formula

that approximates this ratio [Ball 82) IS

1 1 ~

(6 4)

Agairr . the time required to compute E is proportional to the time

required to compute the moments In the above equation, which IS O(h).

This time IS approximately equal to 0.45 msec on NON-VON 3.

8.2.7. Euler Number

The Eul~t lJumb~t (r~lJUs) of an Image is a topological property that

describes the connectedness of a region. The Euler number of an Image

IS defIDed as the number of connected components minus the number of

"holes" In the Image If there IS only one connected component under

conslderatlon, then one mIDus the Euler number gives the number of

holes ID this connected component.

For a bInary Image, the Euler number may be computed from the

expression

E= V-E+F (6 5)

where V IS the number of l's ID the Image, E IS the number of

horizontally or vertIcally adjacent pairs of l's, and F IS the number of

2 x 2 blocks of 1 's [Dyer SOb). Similarly, Dyer (Dyer SOb) has shown

that the Euler number for a binary image represented as a quadtree (the

proof IS slmliar for a bInary Image tree) can be computed from the

expression

120

E= B-A+S (6 6)

where B IS the number of black rectangles, A IS the number of adjacent

pairs of black rectangles, and S is the number of triples or quadruples of

black rectangles that surround a point. Figure 6-4-a shows how three

rectangles can surround a node, while Figure 6-4-b show four rectangles

surrounding a pOint.

PEl ~E3. u
PE2

(a) (b)

o

(c)

FllUN 8-41 PossIble Configurations of Three or
Four Nodes That Intersect a POint

In computing the ~uler number, the number of black rectangles B can

121

be computed by setting a vanable TEMP equal to one In all PE's

associated with black rectangles that are part of the component under

consuIeratlon, and zero in all other PE's. The fUDction add _ tree(TEMP)

IS then called to compute the value of B. Counting the number of

adjacent rectangles is performed In a similar way uSing the common

boundary Information variables (TE, TN, TW, and TS). As descnbed In

Section 6 1, If there are two adjacent rectangles, then only one of them

sets the appropriate common boundary varIable equal to 1. The variable

TEMP IS set equal to the number of common boundary varIables that

are equal to one In each PE representing a rectangle of the component.

Next, the function add _ tree(TEMP) IS called to compute A

To compute 5, all the POints surrounded by three or four black

rectangles are examined, one at a time. These POints can be located

uSing the common boundary information stored at each PE as follows.

By inspecting Figure 6-4-30, If there are three rectangles surrounding a

pOint. then there are three common boundary vanables stored in the

three PE's representing these rectangles Due to the way these vanables

a.re set In the labeling procedure, the first PE of the three to report Its

rectangle (depending on their sizes) has none of these common boundary

vanables set equal to 1 Consequently, one of the other two PE's has

two of these common boundary vanables set (PE 3 In Figure 6-4-30)

Note also that these two common boundaries Intersect at one of the

rectangle corners FollOWing a similar argument, It IS easy to show that

I).)

In the case of four rectangles surrounding a pOint, one or two of the

PI-:'s have two common boundary vanables set (Figure 6-4-b) It IS

possible, however, to have three rectangles IntersectIng at a POlOt without

surrounding It, as shown In Figure 6-4-c. To compute S, all PE's with

two common boundary variables set equal to 1, and which correspond to

a corner In the rectangle, are examIned. The corner POInt IS counted

only If It IS surrounded on all Sides by black pixels. If there is another

PE with two common boundary variables that Intersect at the same

pOint, then It IS flagged and not counted.

For example, If a rectangle has a common boundary along its north and

west boundanes (that IS, If both TW and are TN are set), the point at

the north western corner of this rectangle is surrounded by two

rectangles as shown In Figure 6-5

The exami d

pixel

ne

~ .. _-
I
I
•

Figure 1-&:

TN =- It

TW =- 1
..-

Testing for 5 Points

1 ' ' -)

This corner POInt IS examIned to check whether there are other rectangles

surrounding It The rheck IS performed by examlDlDg the nelghborlDg

Image- pOlDt 10 the north western direction. If this pOlDt IS black, then

we Increment the value of S The corner of the rectangle contalDlDg this

pOlDt IS flagged so that It will not be examlDed later by the algorIthm

The N-PASCAL algorIthm follows:

var
z, 1}, Z8, 1}8 integer,

Procedure COllll _ euler{ conn _label Integer);
var

b, a, 8, euler_no Integer,
vector var

TE~fP integer,
"S\V, !'tt:, SW, SE, LEAF boolean,

begin

/* 1 Compute the value of B 10 the Euler number formula by settlDg
the v anable TE~fP equal to 1 10 all PE's associated with rectangles of
the component, and then countlDg the number of 1'5. • /

TE~IP = 0,
where COMP LABEL = conn label do TEMP- I,
b = add _ tree(TEMP);

.... ,;;.-

/* 2. Compute the value of A 10 the Euler number equation as in Step
1 Thls tlme, set the variable TEMP equal to the number of common
boundary variables equal to 1 10 the component PE's • /

TEMP = 0;
where COMP LABEL = conn laHI do

begin
ir TE = true then TEMP = TEMP + I,
ir T:"-l = true then TEMP = TEMP + I,
ir TW = true then TEMP = TEMP + I,
i r TS = true then TEMP = TEMP + I,

12t

end,
a = add _ tree(TEMP),

/* 3. Set the varIables corresponding to rectangle corner pixels
surrounded by trtples or quadruples of rectangles. Mark all leaf PE's
corresponding to black plxels * /

~w := raise; NE= raise;
SW = raise; SE . = raise;
TEMP =0;
where (TN = true) and (TW = true)

and (COMP _ L\BEL = conn _'abe')
do NW = true;

where (TN = true) and (TE = true)
and (COMP _ L\BEL = conn _'abe')

do NE = true,
where (TW = true) and (TS = true)

and (COMP L\BEL = conn label) - -do SW = true;
where (TE = true) and (TS = true)

and (COMP _ L\BEL = conn _'abel)
do SE = true;

rn ark _leaf(LEAF),
LEAF = LEAF and BINARY,

/* 4 For each corner, report the size and address mformatlon of the
rectangle contamIng It The function check _ euler(D) checks for any PE
with the boolean vanable 0 set equal to 1 If there eXists a black pixel
which surrounds the corner from the only left direction. If none eXists,
then a zero value IS returned, otherwlse a smgle PE with 0 equal to 1 is
enabled, and Its address and size mformatlon are reported. Also, thiS
step checks to determme whether a black pixel eXists diagonally across
the corner bemg exammed • /

TEMP == 0;
while check_ euler(NW) < > 0 do

begin
where (XADD + XSIDE == z) and (YADD + YSIDE == ,)

do SE == ral_;
where (XADD == z • 1) and (YADD == , • 1)

and (LEAF == true) do TEMP== 1;

end,

while check _ euler(NE) < > 0 do
begin

where (XADD = % + %8) and (YADD + YSIDE = y)
do SW . = raise;

where (XADD = % + %.!) and (YADD = y - 1)
and (LEAF = true) do TEMP . = 1;

end;

while check_euler(SW) <> 0 do
begin

where (XADD + XSIDE = %) and (YADD = y + y8)
do SE = raise;

where (XADD = % - 1) and (YADD = 1/ + 1/B)
and (LEAF = true) do TEMP '= 1;

end;

while check euler(SE) < > 0 do
begin

where (XADD= % + %8) and (YADD = y + 1/8)
do SE = raise,

where (XADD = z + z.!) and (YADD = 1/ - 1/8)
and (LEAF = true) do TEMP = 1.

end.

s = add tree(TEMP),

/*) Compute the Euler number for the connected component. * /

euler no = 6 - CI + B,

end

/* The following procedure checks to see whether there are any PE's
With the boolean variable 0 equal to 1 If so, one such PE IS enabled
and the address and Slze Information associated wlth the rectangle It
represents are reported to the CP If there are no PEts wlth 0 equal to
1, then the functlon returns 0 • /

runetion cbeck _ euJet{var D' boolean) Integer;
labell,

125

begin
where 0 = true do N Al = true
elsewhere N Al = raise,

ir N_RESOLVE(N_AI) = 0 then
cbeck euler = 0

else

end,

begin
where N Al = true do

end,

begin
N REPORT8(XADD, x);
N-REPORT8(YADD, y);
N REPORT8(XSIDE, XI);
N=:REPORT8(YSIDE, YI);
o = raise;
cbeck euler = 1,

end,

Steps 1 and 2 of this algorIthm execute in time proportional to the

height of the tree Step 4 executes in time proportional to the number

of POints of intersection of three or four rectangles This number IS

always less than the number of black rectangles. Thus, 10 the worst

case, the algorIthm executes 10 O(h+b), where h is the height of the tree

and b IS the number of black rectangles. Simulation results for some

strnple blOary Images show that the value of S on the average IS

approximately equal to half the number of black rectangles.

8.2.8. Connected Component Properties Simulation

The algorIthms descrIbed 10 the prevIous section have been tested USlOg

the functional Simulator. Six geometnc properties have been computed

for each component in the binary image. The output of the Simulator

resultmg Crom computing these properties of the connected components oC

Figure 6-3 Collows.

Computmg some geometric properties for the labeled foreground objects:

label[OJ= 9 I area[OJ= 67 I perimeter(O)= 62
x-center[O}= 4 ·32 . y-center[O)= 24.10 I No. of holes(O)== 1
compactness[O}= 5737 I elongatlon(O)== 8.30

label[l}= 2 I area[l}= 5 I perimeter(l)== 10
x-center[l}= 0 90 , y-center[l}== -0.50 I No. of holes[l)== 0
compactness[IJ= 2000 I elongatlon(I)= -0.48

labe![2J= 4 area[2J= 49, penmeter[2)= 48
x-center[2J= 21 66 ,y-center[2J= 707 I No of holes[2J= 0
compactness[2J= 4702 , elongatlon(2)= 13.78

llbelpJ= 7 ,area[3J= 20 I penmeter(3)= 24
x-center[3J= 9 50 , y-center(3)= 1805 I No of holes(3)= 0
complctness[J)= 2880 I elongatlon(3)== 5 19

l.lbel[41= 10 ,area(4)= 2. penmeter[4J= 6
x-center(4)== 050. y-center(4)== 1600 , ~o of holes(4)= 0
compactness(4)= 1800 ,elongatlon(4)= 000

Computing some geometnc properties for the labeled background objects:

labeI(O/=l , area[O/= 874 . penmeter[O/== 232
x-center[O/= 1693 ,y-center[O)== 767 I No of holes[O)== 3
compactness[O/= 61 58 I elongatlon[O)== 4627

128

label[IJ=3 ,area[IJ= 4, penmeter[IJ= 8
x-centerll]= 500, y-center[I]= 2500 , No of holes[l]= 0
compactness[I]= 1600 ,elongatlon[I]= 000

label12J=6 ,area[2]= 3, penmeterI2]= 8
x-center[2]= 7 50 , y-centerI2]= 26.50 , No. of holes[2j= 0
compactness[2]= 2133 ,elongatlonI2]= 047

Note that the perImeter of components contaIning holes includes the

pen meter of these holes. The eXlStence of holes also increases the

compactness measure of objects, smce it lOcreases the length of the object

penmeter Performance companson with other highly parallel machines IS

not possible, smce performance data for geometric algorithms on these

machmes are not avallable as of the time of writing this thesIs. It is

expected that NON-VON's performance for computing the geometrIc

properties IS an order of magnitude better than the mesh-connected

machines because of the hierarchical nature of NON-VON.

6.3. Set Operations

Set operations on Images Involve the computation of a new image based

on one or more eXisting Images For example, 10catlOg common objects

between two Images In the same relative POSition lOvolves intersectlOg the

two Images pomt by pOint and determining which POints are common to

both of them In the followlOg subsections, we will present NON-VON

algOrIthms for computing the complement, intersection, and union of

binary Images Other set operations can be expressed as a combination

12'J

of these three set operations We assume that the binary Images have

already been loaded In the leaf PE's of the NON-VON tree, and that the

blnary- Image representation has been bUilt. In this representation, the

character vector vanable FQUAD contaIns the type of the rectangle

associated with the PE, and the vector integer variable TREE Indlcates

how many black plxels exist In this rectangle. Also, the vector boolean

vanable BINARY stores the value of the pixel in a binary Image.

8.3.1. Complement

Computmg the complement of a binary image involves changlng the

black pixels mto white and the white pixels into black. The most obvious

manner 10 which the complement operation lnvolves computing the

complement of all pixels of the ongmal bmary Image stored 10 the leaf

PE's ThiS operation IS executed concurrently 10 all leaf PE's, and

Involves readmg the pixel value and then complementing it. If the bmary

Image tree representation of the complement IS reqUired for subsequent

processing stages, the algOrithm for budding the bmary Image tree

representation described 10 Chapter 4 can be executed This algonthm

executes In O(h) time A more effiCient method to bUild the bmary

Image tree representation of the complement Image uses the bmary Image

tree representation of the onglnal Image This method can compute the

bmary Image tree representation of the complement In constant time

The algOrithm for complementing an Image and constructing Its binary

Image tree follows

1 30

Procedure set _ comp,
vector var

TREEl integer,
FQUADI char;

begin

1* 1 The FQUAD variable is checked. If It IS equal to 'B', then It IS
chan-ged to 'W', and vice versa If the value IS 'G' it remains as It IS
FQUADI and TREEI are the Image complement variables. FQUAD and
TREE are globally defined. * /

ir FQUAD = 'B' then FQUADI .= 'W'
else ir FQUAD = 'W' then FQUADI - 'B'
else ir FQUAD = 'G' then FQUADI := 'G'
else FQUADI = 'N';

/* 2 The vanable TREE (denoting the number of black. pixels in the
rectangle) IS set equal to the size of the rectangle minus its old value. * /

TREEI = XSIDE * YSIDE - TREE;

end,

Steps 1 and 2 take a fixed number of NON-VON instructions (about 32

NO~-VON 3 Instructions) regardless of the NON-VON tree Size, so the

algorithm will be executed In a constant time (8 "sec on NON-VON 3)

6.3.2. Inteneetion

The intersection of two bmary Images Involves a pixel-wise logical

conjunction of the two images We assume that the two binary images

are stored 10 the NON-VON tree. BINARY t , TREE t and FQUAD1

represent the first Image, while BINARY 2' TREE2 and FQUAD2

represent the second image The two images in their finest resolution (the

1·) :

pixel level) are stored In the leaf PE's The intersection algonthm follows

Proeedure set int;
veetor var

FQUAD3. ehar;
LEAF, BINARY3 boolean;

begin

/* 1. Enable all leaf PE's. Compare the two vanables BINARY 1 and
BINARY2, and If they are both equal to 1, set the vanable BINARY3
equal to 1; otherWise set BINARY3 equal to 0 This companson reduces
to logical conjunction BINARY1 and BINARY2 are globally defined. *'

mark leaf(LEAF);
where LEAF - true do BINARY3 = BINARY1 and BINARY2;

'* 2 In the case of binary Image tree representation IS needed, set the
vanable FQUAD3 to either the value 'B' or the value 'W', dependmg on
the value of BINARY 3 Gall the procedure bUild _ blt() to build the
binary Image tree representation for the result Image *'

where BI~ARY3 = true do FQUAD3 = 'B'
elsewhere FQL'AD3 = 'W',

budd _ blntmg(h),
end.

Ex~cutlon of the mtersectlon algonthm on the two ongmal Images takes

cl fixed number of mstructlons, mdependent of Image size BUlldmg the

binary lmage tree takes time proportional to the height of the tree, as

descnbed In Chapter ..

Image intersection can also be defmed for gray-scale Images Gray-scale

mtersectlon IS performed by companng each pixel 10 the hrst lmage With

the correspond1Og pixel 10 the second Image If the 10tensllles are equal,

l32

the corresponding pixel In the result Image IS set to the common value,

otherwise It IS set to zero

6.3.3. Union

ComputatIOn of the union of two binary Images Involves the pixel-wise

disjunction of the two Input Images The algonthm for the union of two

binary Images IS analogous to the one for Intersection. The difference IS

that the logical operation performed 10 Step 1 of the algOrithm IS the

diSjunction of the two pixels Instead of the conJunction. The N-P ASCAL

procedure to per-form the union of two binary Images follows:

Proeedure set_union,
veetor var

FQUAD3 ehar;
LEAF, BINARY3 boolean,

begin

/* 1 Enable all leaf PE's Compare the two variables BINARYl and
BI~ARY 2, and If one of them IS equal to I, set the variable BINARY 3
equal to 1, otherwise set BINARY 3 equal to O. This companson reduces
to logical diSjunction BINARY 1 and BINARY2 are globally defined. • /

mark _leaf(LEAF),
where LEAF == true do BINARY3 == BINARY 1 or BINARY2;

/* 2. To build the binary Image tree representation, set the variable
FQUAD3 to either the value 'B' or the value 'W', depending on the
value of BINARY 3 Call the procedure bUild _ bitO to bUild the binary
Image tree representation for the result Image. • /

where BINARY3 = true do FQUAD3 == 'B'
elsewhere FQUAD3 = 'W',

bUild _ blnlmg(h),

In

end,

The_ time analysIs for the union algonthm IS therefore similar to that of

t he IntersectIOn algorithm.

Chapter 7

The Hough Transform

The Hough transform method is used frequently in image understanding

tasks for among other uses to detect the shape of object boundanes

descnbed by parametnc curves. This method is based on the duahty

between POints on a curve and the parameters of that curve. In hiS

Initial work, Hough (Houg 62) described a method for detecting straight

lines In an Image uSing the slope-mtercept parameterization of the line.

According to thls parameteriZatlon, the line equation is expressed as

'II = mz + c (7 1)

Suppose that we have a set of lmage pomts {(Zl''II1), ... , (z",'II,,)} that

have a hkehhood of being on linear boundarIes. In this paper, we refer to

these POints as bouadary poult,. The Hough transform method organizes

the boundary points lnto a set of straight lines as follows. ConsIder a

boundary point (zi,lIi) in the lmage plane. The parameters of all lines

passing through this point must satisfy the equation:

IIi = mZi + C

ThiS equation corresponds to a straight line m the m-c space (the

parameter space) Thus, the set of boundary points in the image plane

135

corresponds to a set of hnes in the m-c plane If two boundary POints are

on a line AB in the Image plane with parameters m l and c
l
' then the

-
two hnes corresponding to these two pomts 10 the m-c plane intersect at

the pOint (ml,cJ In fact, all boundary points m the Image plane on the

same hne AB map to lines in the m-c plane that intersect at the pOint

(ml,cl) Thus, the problem of fIndmg the set of lines in the Image plane

IS reduced to that of finding common points of intersection of lines in the

parameter space A better parameterization of a straight line IS suggested

by Duda [Duda 72], 10 whlch the parameters , and p are used, where , IS

the angle of the line normal and p IS the algebraic distance from the

ongln The advantage of thls parameterIZatlon IS that the values of 9 and

p a.re bounded, whIle In the case of m-c parameterization the values are

not bounded The Hough transform can be extended to detect other

curves of analytical parameters {Ball i5], or to detect general curve

sha.pes uSing edge OrIentation at the Image POints and a reference pOint

[Ball 81\ A memory efhclent Implementation of the Hough transform on

51O'quentlal machInes IS deSCrIbed In [Brow 84} A parallel algOrIthm based

on the Hough transform for detecting a general curve With speCIfIc

onentatlon has been developed by \1erhn et 301 [Merl i5}

The 1m pie mentation of the Hough transform for detecting straight hnes

on a sequential machIne Involves a quantization of the parameter plane

Into a quadruled grid The gnd size IS determlOed by the acceptable

errors In the parameter values, and the quantization IS confined to a

1 3~

specIfic region of the parameter plane determmed by the range of

parameter values A two-dimenSional array (tbe accumulator array) IS

then used to represent the parameter plane grid, where each array entry

corresponds to a gnd cell. For each boundary pomt, the algOrithm on. a

sequential machme mcrements the counts 10 all accumulator array entries

that correspond to grid cells along the straight hne 10 the parameter

plane After thiS step, gnd cells correspondmg to the accumulator array

entries where the count exceeds a certalO threshold value are selected as

the set of parameters for the Image straight hnes bemg sought The

Increment of accumulator array counts can be thought of as a process of

"votmg" by the boundary pomts for the parameter values of possible

curves passmg through these pomts The time required to execute thiS

algOrithm on a sequential machme IS proportional to the size s of the

grid plus the number m of boundary pomts times the number of votes v

of each pomt (O(s+mv)) Memory space reqUired IS proportional to the

size of the grid

In what follows, we describe two parallel algOrithms to Implement the

Hough transform on NON· VON The hrst one IS a direct parallel

Implementation of the standard sequential algonthm The disadvantages

of thiS approach are presented, and we describe a second approach that

solves these problems We assume that the boundary POlOtS have been

detected by some other procedures and that the PE's holding them are

marked usmg a special flag Without loss of generality, we also assume

137

tha.t the curves bemg sought are straight hnes whose equations a.re

expressed usmg the slope and Intercept parameters

7.1. The Hough Transform Algorithm - A Direct

Approach

In the sequential machme Implementation of the Hough transform, each

boundary pOint casts Its votes 10 the accumulator array by incrementing

all the entnes corresponding to gnd cells along the parameter space curve

assOCiated with thiS pomt. ThiS process IS repeated for all Image

boundary pOints :"iext, accumulator array entnes whose count exceeds a

speCIfied threshold value are selected We now descnbe how this

algonthm IS Implemented on NON-VO~

EJ.ch :\O:\-\"O~ PE IS assOCiated with a gnd cell 10 the parameter

'p.lce The procedure to perform thiS IS very Simple, and It executes In

time proportIOnal to the tree height The first step IS to enumerate the

:\0:\-\"0:\ tree PE's us10g the Inorder enumeration descnbed In

[Knut -:41 (Figure 3-3 Illustrates such an ordenng) The number

l.'55lgned to each PE IS stored In the vector 10teger vanable ADDR If

t he parameter space IS m by c, then the address of the gnd cell held by

each PE IS the pair (~, C) resulting from computing the remamder and

the quotient of dlvldmg ADOR by m The ~-PASCAL procedure to

perform thiS follows

var
i: Integer;

veetor var
M, C, ADDR Integer;
LC, RC, ROOT boolean;

begin

/* 1 Enumerate the PE's using the morder enumeration. We assume

that left and nght children are marked and that the marking result IS

stored In the LC and RC variables, respectively. Also ROOT is assumed

to be true only in the root of the tree. z .idt is the length of the

Image Side * /

ADDR = (r _ sidt • z _ .idt) dlv 2,
for i = 2 to no lttJtl. do
w here ROOT = false do

begin
N_RECV8(P, ADDR, ADDR);
where LC = true do

ADDR = ADDR dlv 2,
where RC = true do

ADDR = ADDR + (ADDR dlv 2);
end,

/* 2 M, and C are now computed. • /

M = ADDR mod m,
C == ADDR dlv m,

end,

This procedures executes In time proportional to the tree height. Note

also that dlvidmg by 2 in this procedure is equivalent to shifting the

139

blOary representat10n of the number one pos1tlOn to the left.

A veCtor mteger vanable COUNT is initialized to zero In all PE's

before startlng the algonthm. The coordinates of boundary points are

then reported to the CP one point at a t1me using the RESOLVE

lnstruction. The coordlnates of each reported point are then broadcast to

all PE's and all those PE's holding a grid cell across the curve In the

parameter space corresponding to the reported point increment the vector

vanable COUNT by one. This step is performed by substituting the

broadc3.St values In the parameter space curve equation and if it sat1sfies

the equat10n then COU~T 1S lncremented. Each PE whose COUNT

vanJ.bl~ I?xceeds the threshold value 1S marked, and the value of the grid

cell J.550c1J.ted w1th 1t 1S reported to the CP usmg the RESOLVE and

REPORT lOstruct1ons A vector character vanable HT 1S used to flag

thc::~ bounda.ry pOlnts that have not voted yet.

PASC.\L algonthm that descnbl!s the procedure follows

Procedure bou(bJ(thruh Integer),
label 2. 4, 5,

var
z. y, m, c: Integer.

vector var
cot;~T. X. Y Integer.
P.-\RAMETER boolean,

begin

The NON-VON

/a 1 Imt1allze the vector vanable COUNT an all PE's. Thp. other
vector vanablH M, C, and HT are assumed to be defined and 1n1tlahzed
by the calhng procedure • /

l~O

COUNT = 0,
PARAMETER = false,

/* 2 Enable all PE's in which the boundary points have not been
reported yet Report the coordinates of a single boundary pOint uSing
the RESOLVE Instructlon, and mark this point as reported U none 'lS
enabled then all the boundary pOlOts have been reported, In thlS case
start computing the parameter values USlOg the threshold value. • /

2
where HT = true do N A1: = true
elsewhere N _A1 = false;

if ~_RESOLVE(N_A1) = 0 then
goto 4,

where N A1 = true do
begin
HT = false;
N _ REPORT8(XADD, z),
N _REPORT8(YADD, 51);

end,

/* 3 Enable all PE's holding the gnd cells. Broadcast the reported
lmage pOint value Substltute thls value In the equation of the parameter
space curve Increment COUNT In all PE's in which the equatlon is
satlshed Now loop to select another boundary point. • /

x = x,
y = y,

if Y = (M • X + C) then
COUNT = COUNT + 1,

goto 2,

/* 4. Broadcast the threshold value tla,.e.1a Mark all PE's in which the
count exceeds the threshold value Alternatively, the user can be
prom pted to Input the threshold value. • /

4 where COUNT> thresh do
PARAMETER = true;

l-n

/* 5. Report the gnd cell values held by these enabled PE's one by
one uSing the RESOLVE instructIon. * /

5
where P ARA..\1ETER = true do

N Ai.= true
elsewhere N _AI .= false;

If N_RESOLVE(N_AI) <> 0 theD
begin

where N Al = true do

end;
end,

begin
P ARA.\fETER • = false;
N_REPORT8(M, m);
N _ REPORT8(C, c);
goto 5;

end· ,

Steps 2 through .. are executed a number of times equal to the number

of boundary pOints b Step 5 executes a number of times equal to the

num ber of curves found, whIch IS less than b. Thus, the algOrithm takes

tIme proportIonal to the number of Image boundary points (O(b)). The

~O:--;-VON 3 code ror thiS procedure [Ibra 84c} executes about 200

Instr:lctlons for Steps 2 through 4 (50 "sec at 4 Mhz) Of these 200

~ON-YO~ 3 Instructlons, approximately 160 instructions Implement the

evaluatlon of the straight hne equation (ThiS number can be reduced

signtficantly by Implementing the hardware modification proposed In

Chapt~r 5) Step 5 executes about 12 NON· YON 3 Instructions for each

set of parameter values found Thus, If the lmage contains 1000 boundary

pOints. the executlon time of the algOrithm IS approximately 53 msec

1-12

The number of PE's required by this approach IS equal to the number of

grid POints If the the gnd size IS larger than the machine size by a

factor of k, then the parameter space is diVided Into k parts The above

procedure IS then executed for each of these parts. The time reqUired to

execute the algonthm In thiS case is O(kb).

One disadvantage of thiS approach is that it requires a NON-VON

machme of size comparable to the grid size, despite the fact that many

of the PE's Will never get their COUNT mcremented. Note also that

each time a boundary pOint IS broadcast the curve equation has to be

evaluated In each PE, which IS a time consuming operation as clear from

the numbers Cited earlier The second approach we descnbe below solves

these problems It uses a number of PE's equal to the number of votes

cast by the boundary POints rather than the grid size, and the curve

equatIOn IS evaluated only once

7.2. The Hough Transform Algorithm - A MSIMD

Approach

In our Improved approach, the NON-VON tree is treated as .if it were

an Independent set of subtrees, and each boundary POint casts Its votes

one by one in one of these subtrees. This voting process is performed

concurrently 10 all the subtrees. Thus, In time proportional to the

number of votes cast by each boundary pOlOt, all votes are cast and

stored throughout the tree. The problem of fmdmg the parameter values

which exceed the threshold value IS equivalent to that of finding the local

peaks of a tw~dlmenslonal histogram In the m-c example. Because of

the .."a.y the votes are cast in thls second approach, we refer to thls

algOrithm as a multiple-SIMD (MSIMD) algonthm.

The size of these subtrees is determined by the number of votes cast by

each boundary pOint. For example, if each boundary point casts 60 votes,

then the subtree size reqUlred IS at least 60 (A subtree of six levels WIll

suffice). Boundary POints are stored in the roots of these subtrees. ThiS

can be performed by more than one method. The simplest one is to

report the boundary POints to the CP one by one using the RESOLVE

Instruction, and then to broadcast them to be stored in the roots of the

subtrees

The PE's In these subtrees are enumerated In such a way that each PE

In .l :subtree IS assigned a unIque address (stored In the vector varIable

ADDRESS) In the range [0, maz _ num _ votu), where maz _ num _ vote.

IS the value of the maximum number of votes casted by each pOint The

enumeration IS performed In such a way that all PE's In the same

relative position within these subtrees have the same address. ThiS

enumeration procedure IS similar to the enumeration procedure descnbed

In the prevIous section, except that the number assigned to each PE is

the remainder of the computed address divided by the subtree size The

remaInder operation actually can be performed by extracting the nght

144

It:J.St slgmflcant number of bits from the address computed by the

el1llmeratlon procedure Time rl?qulred by this procedure IS proportional

to the height of the subtree We now descnbe the algorithm for stonng

the votes In the NON-VON tree.

\Ve assume that the boundary pOints reside in the roots of the subtrees,

With the PE's being enumerated as described earlier. We also assume

that the parameter space IS a two-dimensional one. The vector Integer

vanables X and Yare used t.o store the value of the boundary pOints,

whIle the vector variables Ml and M2 are used to store the parameter

values voted for by the boundary pOints. A scalar variable g_ml stores

the value of parameter Ml to be broadcast, and the scalar constant

delta ml IS the Increment us~d to change the value of g _ ml The

scalar constant h Bubtree IS the height of the subtree The N-PASCAL

votIng procedure follows

Procedure bougb2;
label 3,

val'
i, j, g_ml: Integer;

vector va ..
Ml-:-M2, X, y. Integer,

begIn

r 1. Initialize the scalar variables. The scalar variables h .ubtree,
delta ml, maz num votn are lDltlallzed by the calling procedure. * /

i = 0,
g ml - 0,

1-1')

2 Enable all PE's that are not the root of some votIng subtree The
ble SUBTREE ROOT IS assumed to be set by the calhng
dure Set X and Y in each child equal to X and Y in Its pa.rent
It thIS step h _ Bubtree tUMS. * /

re Sl13TREE ROOT = false do
~in
,; RECV8(P, XADD, X);
~-RECV8(P, YADD, Y);
or j = 1 to h _ Bubtree-l do

begin

I,

N RECV8(P, X, X),
N:=RECV8(P, Y, Y);

end;

; Enable the PE's with ADDRESS equal to i in voting subtrees. In
~ enabted PE's store the new value of the parameter Ml. • /

~re ADDRESS = i do
tl = 9 mI,

Incr,=ment 9_ m 1 by delta _ mI, and Increment i by 1. If all the
of ~f1 have been stored In the voting PE's, then proceed to

lte the value of ~12 In those PE's, otherwise repeat step 3 * /

= I + 1,
ml = 9_mI + delta_ml,
< maz num volet then

goto .3,

Enable all PE's L'slng. the values of X, Y, and ~H, compute M2
he curve equation * /

= compute_m2(X , Y , Ml),

Step 2 IS executed a number of tImes equal to the subtree helght (log

v), where v IS equal to the number of votes cast by "ach pOint Steps 3

and 4 are executed a number of tImes equal to v Thus, the procedure to

store th~ votes In the subtree takes tIme of O(v). Note that step 5, the

evaluatIon of the curve equatIon, IS executed only one tIme If the

evaluatIOn of the curve equatIon results 10 more than one M2 value for

each value of MI, then each PE stores more than one parameter set

values ThIs case depends on the parameter space curve, and should

result In a shghtly modIfied verSIon of the algorithm to compute the local

peaks of the parameter hIstogram described later. U substltutmg the

known values In the curve equatIon results in a non-solvable equation in

the parameter bemg sought, then one possible way to overcome this

problem IS by keepmg a table of the parameter values and correspondmg

functIon values 10 the CP The CP broadcasts these pairs of parameter

and functIon values for all PE's and only PE's holding sImilar functIon

values (maybe withm a small range) set the value of their parameter

vanable equal to the broadcast parameter value. This process takes tIme

proportIonal to the length of the table, but It is executed only one tIme

In thIS second approach to Hough transform method.

The NON-VON 3 code for this procedure executes approximately (10"

+ 160) NON-VON 3 InstructIons. For t1 equal to 100, the tIme required

to cast the votes In the tree IS thus about 0.3 msec. U there are more

votes than the NON-VON tree SIze, each PE stores more than one vote

In this case, If ~ach PE stores k values, then the time required to

execute the above procedure IS O(kv), where k IS the ratio between the

total number of votes and the NON-VON tree size

~ext, we descnbe how to find the parameter values that have votes

exceeding the threshold value These values occur at the the local peaks

of the two dlmenslOnal histogram of the votes for Ml and M2. We

assume In the follOWing diSCUSSion that there are few of these local peaks

ThiS IS a reahstic assumption, as the number of curves being sought IS

usually small.

Ml

~.
!t.,. '

-c;

/ <:

"!l .. -
jl.onal
gram

\
- ~ ..

. :---+"-.: -: -
_ ?eaks ~ > :> ...

\ .,-------' . .

F1gure 1·1: The Two-Dimensional
Histogram or Parameter Values

Figure '7·1 shows such a histogram In thIS example, there are a few

a.reas of voting activity (local p'!aks) A direct approach to the

Identification or these local peaks lOvolves dlvldlOg the two dimensional

148

histogram space mto grid cells For each grid cell, all PE's with Ml and

~1'~ values falhng wlthm this grid cell are then marked and counted. The

time requIred to execute this simple procedure is O(ah), where a IS the

grid size and h IS the NON-VON tree height. Counts that exceed the

threshold value are the parameter values belDg sought. A large percentage

of the tIme m this procedure IS spent countmg votes lD grid cells

correspondmg to areas that contalD few votes.

A dIfferent approach, m which areas of non votmg activity are not

considered m locatmg the local peaks of the tWc>dimensional histogram, IS

described now The procedure first computes a one-dimensional histogram

of the parameter M2, as shown lD Figure 7-1. (A pipehned-SIMD

algOrithm to compute the one-dimensional histogram IS descnbed m

Chapter 5) A small number of local peaks corresponding to regions of

the two-dimensional histogram where most of the votes occur, appear m

the one-dimensional histogram Only votes lD those regions are then

marked A second one-dimensional histogram of the parameter Ml IS

then computed for the marked votes only. The local peaks of thiS

histogram are the values of Ml, for which there are local peaks in the

two-dimenSional histogram. The values of Ml and M2 for which eXlst

local peaks of the two one-dimensional histograms mark the regions of

activity In the tWc>dlmensional histogram. These regions of active votmg

are then checked for exact vote counts. Round off errors in computing

the parameter values can result lD peaks that are relatively flat. For

149

this reason, a small WIndow around the regIons of votIng actIvIty should

i.!~() be checked when countIng the exact votes ThiS second approach

executes In time of O(ml + me + h), where ml and m2 are the

number of bIns 10 the two one-dimenSional histograms The computation

of a 64 bins one-dimensional histogram requires about one msec. The

algOrithm for locatlOg the local peaks in the tWc:>dimensional histogram of

the parameter values as descnbed earlier executes in about 5 msec. Tbe

total execution time of the second approach is thus about 53 mSI!C,

which IS consIderably less than the tIme required by the first approach

(50 msec for 1000 boundary pOInts)

The algOrithms described here can be extended using slIght modlhcations

to de.ll with parameter spaces of hIgher dImenSions For example, In the

first .lpproach If we have an n-dImensional parameter space, then each

PE wIll correspond to a n-dImensIonal gnd cell In thIS space. In the

second approach, the subtree size wIll correspond to that of

(n-I)-r11mensional area. of the parameter space, and each PE Will store

p.lr .lmeter values that represent cells In thiS sub-parameter space A

:3econd approach to ~xtend the Hough transform to parameter spaces of

higher dimenSions In·.olves applYing the current algOrIthms to two

dimenSional cross sections of the multI-dImensIonal parameter space

7 .3. Simulation Results

The two algorithms described 10 thIS chapter have been tested uSlDg the

fu nctlOnal Slm ulator Boundary pOlDts representing straIght ltnes 10 a

32 x 32 blDary image, as shown 10 Figure 7-2, have been lDPUt to ~he

simulator. The parameter space grid is a 32 x 64 grid, with m taklDg

the values -15 to 16 and e assumlDg the values -10 to 53. Appendix C

Includes the Hough transform SImulation as performed on the functional

slmulator Nine hnes, each conslstlDg of five or more pOlDts, have been

found USlDg the hrst approach The tw<>dimensional accumulator array

of these hnes are shown 10 Figure 7-3-a.

In the second approach, 16 votes are cast 10 each subtree with m

varY-lOg from -7 to 8 Figure 7-3-b depicts the two-dimensional hIstogram

of the votes stored 10 the tree AppendIx C contalDs the values of the

two one-dlmenslonal hlstograms computed for the stored votes The

s~cond approach has computed the same set of straight lines found by

the first approach.

1)1

00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
00000000011111111100000000000000
00000000100000001000000000000000
00000001000000010000000000000000
00000010000000100000000000000000
00000100000001000000000000000000
00000111111110000000000000000000
00000100000001000000000000000000
00000010000000100000000000000000
00000001000000010000000000000000
00000000111100111000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
0000000000 LOOC000100000000000000
0000000000UOOGG0\JOOOOOOOOOOOOOOO
OOOOOOOOlOOOOOOICGOOOOOOOOOOOOOO
00000010000000000000000000000000
00000010000001000000000000000000
00000100000000080000000000000000
0000100000010000GOOOOOOOOOOOOOOO
00001000000000000000000000000000
001000000 1 OOCOG(~(:OOOOOOOOOOOOOOO
0001 00001l: ::-!(~(Jt.'l:I:li()OOOOOOOOOOOOOO
OOOOOOOlor '''': '('I :1, 11COOOOOOOOOOOOOO
001000001; : .,1':):)D(; U~I(;OOOOOOOOOOOOO

OOOOOOOOOOO(I:II)O(I'(;COOOOOOOOOOOOO
OlOOOOOOOOOGUOO~CGooaooooooooooo

00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000

Figure '1-2: The Input Boundary POints

Figure 7-1: Some Hough Transform Simulation Results

000000000000'>00000000000000010000000000000001001000000000000010
oooOOOlDOOll)()O()oo(lOOCllOOOOOOOOI OOOOOOOOOOOOOOO 1 001 000000000000 1 0000
OOOOOCOOOOOOOOOOOOOOOOOoool 000000000000001001 000000000001 0000000
0000000000000000000000000100000000000001001000000000010000000000
000000000000000000OOOOOOI~I001~10000~1

0000000000000000000000010000000000010010000000010000000000011000
0000000000000000000000100000000001001000000010000000000110000000
0000000000000000000001000000000100100000010000000001100000000100
0000000000000000000010000000010010000010000000011000000010000000
0000000000000000000100000001001000010000000110000001000000210011
0000000000000000001000000100100010000001100000100001110001110102
0000000000000000010000010010010000011000010010110000112111110200
0000000000000000100001001010000110001100110001012202031022011211
0000000000000001000100110001101100111000102222131212021112224111
0000000000000010010020021011110110011424221426021212121100000000
0000000000000101112121212020072228222290000000000000000000000000
00000000060012236212172323232S~0000000000000OOOO

21111142322822212112122210000000000000000000000000000000
2021132133112~020211 0000000000
022113021211111 000 000000000
12110201310000000 0000000000000000
ooI210110000ooo0001000IOOClIOOClIOOCIOOCIOOCIOOC)o()c:IOO4:1OO4:1OO4000000DOOlOOODO
010010100000000000 00000
ooI001000000000000000l000l000l000l~~:IOO4~~IOOCIOOC~~~1OOO
1000100000000000 000000000I0000
00010
00 1 000
010000000000000 000000000000000000000
100000000000000 OOO~

000
000000000 OOOOOOOOOOOO
00000000.

(a) The 32 X 64 Accumulator Array

OCIOOOOOOOOOOOOl00000G00lool00000l00000000ll000000010000000
OOOOOOOOOOOlIOOl0GD0000lool000010000000110000001000000210011
OOOCIOOOOOOOOOOl000000loo100010000001100000100001110001110102
00000000000000010000010010010000011000010010110000112111110200
000000000000000100001001010000110001100110001012202031022011211
0000000000000001000100110001101100111000102222131212021112224111
~1001002002101111011001142422142t021212121100000000
0000000000000101112121212020072H1222290000000000~
00000000060012236212172323232SOOOOOOOOOOOOOO
2111114232282221211212221000000000000000
20211321331122O2O211~
022113021211111000000000000000
1211020131000000000000000000000000
00121011.
0100101.
001001.

(b) The 16 X 64 Two-Dimensional Histogram

1')3

Chapter 8

Moving Light Displays

In thlS chapter, we descnbe a NON-VON algonthm that tmplements the

tracktng step in systems that interpret the motion of jOinted objects from

a sequence of binary tmages representing points lYing on the moving

objects The term movinr lirht display (MLD) is used to refer to thlS

kind of tmage motion [Rash 801· An MLD system uses only infOrmatlon

about the posltlon and veloclty of lts pOlQts for the perception of motion,

and a sequence of such binary lmages (frames) are reqUlred for the

Interpretatlon of the object motlon The objects in these frames are

represented by a relatlvely 3mall number of POints (tYPlcally less than one

hundred) Rashld [Rash 801 has tmplemented a system, whlch he calls

Lights, that interprets Simple MLD's The input to thiS system lS a set

of coordlnate paars corresponding to the pOints of the ~D In thlS

chapter, we present an algonthm that Implements the "tracking" step in

Rashld's algonthm

The tracking problem lS concerned with determining the correspondence

of pOints from one frame to the next The only information known lS

the posltlon of frame' POints depicting parts in relatlve motion, and the

average velocity of these pOints based on prevIous frame information A

funrlamental assumption IS that the velocity of MLD pOints vary

"smoothly" from one frame to the next ThiS assumption can be used to

predict the position of the MLD pOints In the next frame The tracking

algOrithm computes the correspondence that minimiZeS the sum of

differences between the expected position of each pOint and the actual

position of the corresponding pOint in the next frame Assume that the

hrst frame contains m pOints and the next frame contains n pOInts

(Note that m and n may differ, since different points may be occluded In

the two frames) One approach IS to try all the possible matches

between the two frames. There are O(m") such possible matches; this

approach IS thus prohibitively time-consuming. Rashid has proposed a

second approach based on the observation that the actual corresponding

pOint IS usually one of the ones which are found relatively near the

predicted position In the case of Images produced by real phYSical objects.

We describe In the following section a NON-VON implementation of the

tracking step, which IS based on thiS heUristic.

8.1. The Tracking Algorithm

The NON-VON algOrithm starts by computing a good approximate

solution based on the heUristic mentioned earlier. ThiS is performed by

calculating for each POlOt 10 the hrst frame, the point closest to Its

predicted POSition among the pOlOts that have not been selected yet In

1))

the second frame (This approach to compute the inItIal solution IS

basIcally a greedy algonthm, where the best local match among the

a. vallable ones IS selected.)

ThIS solution IS then stored as an m-vector in the root PE of the

N9N-VON tree. If the number of the P0lnts in the first frame is larger

than the number of the second frame points (some points In the second

frame are occluded), then one approach to handle the inequality IS to

mark the correspondences of the extra points In the first frame With a

special character and they are not conSidered In computing the sum of

differences. However, for the sake of Simplicity and to demonstrate how

the actual computation IS belng performed, we assume in this chapter

that the number of pomts In both frames IS equal.

The pOints of the first frame are ordered such that pOints near to each

other In the Image are also near to each other In the ordered set. ThiS

orden ng IS Important to our algOrithm, as Will be explained later In thiS

section. It should be noted however that In general such a perfect

ordenng is not possible, since we are ordering pomts In a two-dimensional

space Into a one-dimensional vector that IS supposed to keep the spatial

relationships of the pOints In the two-dimensional space. One pOSSible

Wa.y to solve thiS problem IS by constructing an array of m lists, With

each hst correspondIng to a pOint In the first frame and contammg the

nearest Ie elements to thiS pomt. In the case that there are two pomts

that are near each other In the two-dimensIOnal frame, as indicated by

the array of hsts, but they are far from each other In the Inltlal vector,

then an additIOnal initial solution IS computed by moving one of the two

pOints In the Inltlal vector and inserting It near the other pOint

Computing these extra initial solutions Involves searching the I.-element

adjacency lists If an rvfi..D pOint IS found In the adjacency hst of

another pOint that IS far from the first pOint In the initial solution

vector, then an additional Inltlal solution, considering these two pOints IS

computed as descnbed earher. The procedure descnbed 10 the next

section IS then applied for each of the computed mitial solutions. To

demonstrate the basiC principals of the algonthm, we assume that the

frame POints can be ordered. without the need to create more than one

initial vector. as IS often the case of MLD's representmg physical objects

In non degenerate positions

The basiC Idea of the algonthm IS to qUickly enumerate pOSSible

solutions of the correspondence problem and store these solutions 10 the

leaf PE's The set of pOSSible solutions contaInS permutations of the

Inltlal solution, such that only POInts near to each other In the first

frame are permuted. The sum of differences for these solutions can then

be computed in parallel 10 all leaf PE's. The tree connections are then

used to compute the matching that mmlmlzes the computed sums

(requmng O(h) time) The match correspondmg to the selected mInimum

value IS the solution being sought We now show how to compute the

permutations of the initial solution. For the sake of simpilclty, we

assume that only permutations of clusters of Initial solution POints are to

be performed Each cluster conslsts of three consecutlve POints In the

initial solution vector, wIth clusters overlapping. We descnbe now how

possible solutlOns containing all permutatlons of the first three elements

can be computed

The initial solutlon In the root PE IS passed to !ts two chlldren. The

left chIld keeps the parent's solutIon, whlle the right chlld performs a

perm utatlon on thiS solution by swapping the first two correspondences,

as shown In Figure 8-1

12

l\ !\
123 . 321 132 231

Figure 8-1:

l\ !\
213 312 . 231 132

Permutations of the Inltlal Solution
First Three Elements

Agam the solution IS passed to the next level PE's The nght children

swap the second and third elements lQ their solution When the solution

IS passed to the following level, nght chlidren swap the first and third

elements At thiS pOint solutions containing all possible permutations of

the first three elements are found at the fourth level down the tree

Note that at the fourth level we have two solutions that are duplicated

ThiS wlil not affect the procedure, but It will result in less effiCient use

of the PE's ThiS, however, can be aVOIded by replacmg the duplicate

solutions with other permutations of elements that are more than two

elements apart In the solution vector The same procedure IS now

repeated for the element three through five. This process continues until

the leaf level IS reached At thIS pomt we have 0(2h) possible solutIons

stored In the leaf PE's of the NON-VON tree.

The set of permutations of the Initial SolutIon may be computed In

other ways One pOSSIble method IS to compute for each of the predicted

POints of the hrst frame theIr best match In the second frame (This can

be performed In time proportIonal to the number of pomts In the second

frame) If a pOint in the second frame has been selected as the best

match for more than a smgle first frame pomt, then these points are

reported to the CPo PermutatIons of thIS set of points are computed as

part of the possible solutions to be stored 10 the leaf PE's.

We argue that the selected solution usmg this algorithm IS near the

optimal match, If not equal to It. The rationale for this 15 two-fold.

First, the initIal SOIQtlon is presumably a good approximation of the

1)']

desired solutIOn, based on the heuristic assumption used In computing it

Second. as much as possible the permutations on the Initial solution are

performed between POints that are near to each other In the image

frame. That In turn insures that If there IS a conflict resulting from two

POints In the first frame selecting the same correspondence in the second

frame, then alternatives including both selections wIll be among the set of

possible solutions.

The N-PASCAL procedure descnbmg this algorIthm for frames

containing at most 16 POints follows

Procedure mld2;
var

i. j, k. delta. did _ sqr integer;
sol. r. y. r 2. y2. rp. yp arrayl1..161 of Integer.

vector var
Xl YI t..: V X2, Y2 integer,
XP. YP LEVEL_~O integer.
:\l ~t. DIST, TEMP Integer.
S array[l 161 of Integer,
RIGHTC, ROOT. Fl, F2. N boolean,

fa The (ollowlng function hnds the minimum value of the vector
... a.nable passed to It as an argument It looks for the minimum value
.lmong the vector vanable stored In enabled leaf PE's • /

runctlon mill lea1{var ~UN integer) Integer.
var

j integer,
vector var
TE~IP integer.

begin

ror j - 2 to no level, do
begin

N RECV8(LC, MIN, MIN),
N-RECV8(RC, MIN, TEMP),
ir TEMP < MIN then MIN = TEMP.

t:lld:
N RECV8(LC, MIN, MIN),

/* At this pOlOt the mlOlmum value IS stored 10 the CP register GG8
*/

min _'ea/= N _ GG8;
end

Procedure swap _ sol(i, j integer);
vector var

TEMP Integer;
begin

where RIGHTC = true do
begin

TEMP = SIll,
S[)l = S[ir.
S[i! = TEMP,

end,
end,

begin

/* 1 Mark the nght ch1ldren, mark the root PE, and store the level
number of each PE in the vector vanable LEVEL NO. The first frame
POints (Xl,Yl) are assumed to be stored 10 the NON-VON leaf PE's,
with the correspondlOg velOCity components U and V Fl 1S set to 1 10

these PE's The same 15 true for the second frame pOlOts (X2,Y2). The
time lapse between two frames IS stored 10 the vanable delta * /

XP= 0 ,
yP = 0;
mark _ rc(RIGHTC),
mark _ root(ROOT),
set _level_ num ber(LEVEL _ NO),

/* 2 Compute the 100tiai solution (pOlOts nearest to the predicted

161

solution). The POlOts of the first frame are stored lo the NON-VON
tree, one per PE Xl and YI are the coordmates of each of these
pomts XP and yP are the computed predicted values for the location
of eae-rr pomt 10 the next frame. NUM holds the number of the pOlnt 10

the frame The second frame IS aSsumed to contam n pomts, while the
first frame has m POlOts. • ,

where FI = true do
begin

XP = X + U • delta;
yP = Y + V • delta;

end;
N = F2;
i = 1,
while (i <= m) do

begin
where (NUM = i) and (F1 = true) do

begin
N REPORT8(XP, xplil);
N=:REPORT8(YP, yplil) ,

end;
DIST = 0,
where :"I = true do

DIST = (xp!iJ - X2) * (xpliJ - X2)
+ (yp!il - Y2) * (yp!il - Y2),

dist sqr = m10 leaf(DIST),
where (N = true) and (DIST = dist _ sqr) do

begin
:"I = raise,
N _REPORT8(NlJM, 80/lil),

end,
I - i + 1;

end;

'* 3 Store the Initial correspondence 10 the root PE *'
w here ROOT = true do

ror j = 1 to m do SI;l = so1111,

/* "' Perform the permutations on the Initial solution and store these
possible solutions 10 the leaf PE's \Ve will not deal with the duphcate

1 ~)
) -

cases In this procedure * /

j = 2, i = 2,
while j <= no _levels do

begin
where LEVEL NO = j do

begin
ror k = 0 to m do

N _ RECV8(P, S[k). S[k));
swap_sol(i, (i-I)),

end,
j = j + 1,
where LEVEL NO = j do

begin
ror k = 0 to m do

N _RECV8(P, S[kJ, S[k));
swap _sol(i, (i+1)),

end;
j = j + 1,
where LEVEL_NO = j do

begIn
ror Ie = 0 to m do

N _ RECV8(P, S[k). S[k));
swap _ sol((i-l), (i+1));

end;
j = j + 1,
i = i - 2;

end,

/* 5 Compute the sum of differences for each possible solution. * /

DIST = 0;
ror j = 1 to m do

bealn
ror Ie = 1 to n do

where Sl11 = Ie do
begIn

XP = r21k1,
yP = y2lleL

end,
DIST = DIST + (XP - rpl1H • (XP - rpl1l)

+ (YP - YPI1l) • (YP - YPI1l);
end,

163

/* 6 hnd the value of the mmlmum sum of differences. * /

disl _ sqr = mm _leaf(DIST);

/* 7 At this point the CP contains the value of the minimum sum of
position differences between the predicted positions and their
correspondence. Enable only the PE holding the solution with thiS
mmlmum value, and report the solution to the CP. • /

where DIST = did _ 8qr do
ror j = 0 to m do

N _ REPORT8(S[J1. 8011.11);
end;

Steps 2 and 4 of the algonthm execute In time proportional to the

product of the number of POlOtS 10 the first frame and the tree height

(O(mh) On the other hand, Step 5 of the algOrIthm takes time

proportlOn.).l to the product of the number of POlOtS of the two frames

(O(mn)) Thus. the algonthm executes In O(Max(h, n)m) time.

The functional Simulator session for testlOg the algonthm descnbed 10

this chapter IS Included In AppendiX C The hrst frame POlOtS have been

used lOstead of thelr predicted positions They have been ordered by

sta.rtlng at an arbitrary pOint and hndlng the nearest POlOt to It ThiS

greedy algonthm IS continued until all pOInts have been ordered. Frames

with up to SIX pOints have been tested on a tree of 10 levels, and good

solutions have been computed uSing the descnbed algonthm.

The occlusion of some POints In !\fi..D frames, and the lnabllIty to

pl?rfectly order two-dimensional POints In a one-dlmenslonal vector are two

problems that can cause the algonthm to compute solutlons that are far

from the optlmal solution However, It should be remembered that thls

algonthm has been mtended to demonstrate the feaslbihty of solvmg such

problems on tree machines, and not necessanly to show efficient ways of

solVing these problems

Chapter 9

Conclusion and Directions
for Further Research

In thIS research, we have addressed the problem of how fine-gramed

tree-structured SIMD machmes can be used for high-speed execution of a

wide range of Image understanding tasks. Parallel algonthms have been

developed for several image understanding tasks on the NON-VON

machine, a hIghly parallel tree-structured SIMD machme. The image

analYSIS appilcations consIdered in this thesIs were selected to span

different levels of computer vIsion tasks.

~Iore speCifically, we have developed and analyzed parallel algonthms

for fJ.St Image correlation and quasi-parallel connected component labeling.

:\. f.loSt dlstnbuted algonthm that uses the NON-VON PE's space

efficiently haa been developed to Implement the Hough transform method

for detectlOg obJect boundanes We have also developed a parallel

algontbm that. qUlcldy enumerates possible solutIons for the

correspondence problem 10 the mov1Og hght. display apphcatlon. Other

fast algorithms have also been developed, 10cludlng Image histogrammmg,

set operatlons, and tbe computatlon of the geometrIc propertles of

objects

The developed algorithms Incorporate novel approaches to exploit the

tree organization of the machine, and to reduce the effects of

comm uOlcation bottleneck usually associated with tree architectures. One

techOlque we have used to this end involves partitioning the problem Into

a number of smaller problems that fit within a set of independent

subtrees, in which communication is performed locally. Communication

between these subproblems is less than would be required if the problem

were not distributed among the subtrees. One example of thiS approach is

the second image correlation algOrithm described in Chapter 5. Another

techOlque uses NON-VON's special hardware features to perform the

communication for certain problems, as in the connected component

labeling algOrithm.

Issues related to the representation of images in tree machines have

been addressed In this research. We have demonstrated how hierarchical

data structures can be modified to represent images in the NON-VON

tree. Fast Image I/O is another Important operation that affects the

effiCient implementation of VISion algonthms. In this thesis, we have

described different methods to perform such I/O efficiently in tree

machInes.

NON-VON's performance for different lmage algorithms has been

167

analyzed and compared with that of other highly parallel Image

understand10g architectures. Two Simulators have been used to Simulate

the Image analysIs algorithms. A functional simulator has been

Implemented us10g the C programming language on a VAX 11/750

augmented with a Grinnell image processor. We have used this Simulator

to validate all of the algOrIthms desCrIbed in this thesis. A LISP-based

machme 1Ostructlon-Ievel Simulator that has been developed for the NON

VON machme has been used to execute some of the image algorithms,

and to prOVide accurate measures of the execution time of the machine

coded versions of our algOrIthms. Based on this comparison, NON-VON's

execution time for several algOrIthms has been shown to be considerably

less than that of other highly parallel vIsion architectures. We have

Identified the ltmltatlons of tree machines 10 the execution of certain

Image analysIs tasks, and have proposed particular modifications to the

:--';ON-VON hardware for the rapid execution of these tasks.

ThiS work can be extended lD several pOSSible directions. One pOSSible

J enue of further research would Involve the lDvestlgatlon of other

parallel algOrIthms for low- and Intermedlate-Iev~l vIsion application A

second Involves the Implementation of symbolIc high-level VISion tasks on

the present version of the machine. In this regard, it IS worth noting

that the ~ON-VON architecture supports the efficient execution of

operations anslng In relational database management and expert systems

applIcations The relevance of algOrIthms In these two areas to high-level

vIsion applications would suggest such effort might prove fruitful

Another interesting research problem Involves the manner In which

currently proposed architectural additions to the machine (NON-VON 4)

might be used to expand the set of vIsion tasks, which may be executed

at very high speed. The MIMD, SIMD, and MSIMD capablhties of the

proposed architecture and the aVailability of fine- and medium-grained

PE's should prove useful In implementing systems that perform well on

all levels of computer vIsion tasks

References

[Anto 821

[Aree 131

[Baeo 821

[Ball 811

[Ball 821

[Brow -;-91

[Brow 841

Antomsse, R 1.
Image Segmentation in Pyramids.
Computer Graphic. and Image Proceuing 19361-383,

1982.

Areelli, C, and Levlaldi, S.
On Blob Reconstruction.
Computer Graphic. and Image Proce .. ing 222-38, 1913.

Bacon, D, Ibrahim, R, Newman, R., Piol, A., and
Sharma, S
The .VON-VON PASCAL
Techmcal Report, Computer Science Department,

Columbia Umverslty, May, 1982.

Ballard. D H
GeneralIZIng the Hough Transform to Detect Arbitrary

Shapes
Pattern Reeognition 13(2) 111-122, 1981.

Ballard, D H, and Brown, C M.
Computer \/ision.
Prentice Hall, 1982

Browning, S
Computations on a Tree of Processors
In Proceeding, of The Fir.t Callech Conference on

VLSI January, 1919

Brown, C M
Peak Finding with Limited Hierarchical Memory
In Proceeding, of the 7th. International Conference on

Pattern Recognition, Alontreal 1984.

1
_,
,)

[Burt SO]

[Cast i9!

[Dubl Sl]

[Duda i2]

[Duff 76]

[Dyer SOa]

[Dyer SOb)

[Dyer 81)

Burt, P J
Tree and Pyramid Structures for Coding Hexagonally

Sampled Binary Images
Compute,. G,.aphics and Image Processing 14271-2S0,

1980

Castleman, K R
Digital Image ProCtuing.
Prentice Hall, 1979

Dubltzkl, TSVI, Wu, A Y, and Rosenfeld, A
Parallel Region Property Computation By Active

Quadtr~e ~etworks.

IEEE T,.ansactions on Pattern Analysis and Afachine
Intelligence 3(6), November, 19S1

Duda, R 0, Hart, P E.
Use of the Hough Transformation To Detect Lines and

Curves In Pictures.
Communications 01 the ACM 15(1), January, 1972.

Duff, M J B
A Large Scale Integrated Circuit Array Parallel

Processor.
In Proceedings 01 the lEE Conlerence on Pattern

Recognition and Image Proctasing, pages 728-733.
1976

Dyer, C R
Computing the Euler Number of an Image from Its

Quadtree.
Compute,. G,.aphics and Image Processing 13270-276,

19S0.

Dyer, C. R, Rosenfeld, A., and Samet, H.
Region Representation Boundary Codes from Quadtrees.
Communications 01 the ACM 23(3), March, 1980.

Dyer, C R
A VLSI Pyramid Machine for HIerarchical Parallel Image

Processing
In Proceedings ·01 the IEEE Conle,.ence on Pattern

Recognition and Image Proceuing, pages 381-386
1981

1 -;- 1

[Dyer 82al

[Dyer 82bj

[Flyn 721

[Garg 821

[Glbs 821

[Gros 831

[Hans i8al

[Hans 78b)

lHans 80)

Dyer, C R
The Space Efhclency of Quadtrees
Computer Graphics and Image Processing 19 335-348,

1982.

Dyer, C R
Pyramid Algonthms and Machines.
In A.fulticomputers and Image Proce8sing: Algorithms

and Program" Preston, K. Jr., and Uhr, L., eda.
Academic Press, 1982.

Flynn, M. J
Some Computer OrganIZatlOns and Their Effectiveness
IEEE Transactions on Computers 21(9), September,

1972

GargantlnI, I
An Effective Way to Represent Quadtrees
Communication, 0/ the AC.W 25(12), December, 1982.

Gibson, L, and Lucas, D.
Vectorlzatlon of Raster Images Using Hierarchical

~1ethods

Computer Graphics and Image Processing 2082-89, 1982

Grosky. \V I, and Jam, R.
Optimal Quadtrees for Image Segmenting
IEEE Transaction. on Pattern Analysis and Afachine

Intelligence 5(1). January, 1983

Hanson, A R, and Rlseman, E ~.

Computer vision Sy.tem •.
AcademiC Press, 1978

Hanson, A R, and Rlseman, E. M
Segmentation of ~atural Scenes
In Computer Vision System., Hanson, .4. R., and

Ri.eman, E . • W., ed.. AcademiC Press, 1978

Hanson, A R, and Rlseman. E M
Processing Cones A Computational Structure for Image

AnalYSIS
In Strudurtd Computer vision, Tanimoto, S., and

Klinger, A. eds. Academlc Press, 1980

IHlll 81}

IHIlI 831

[Houg 621

IHunt i9al

IHunt i9b}

lIbra 831

lIbra 84 a}

lIbra 84b)

HIllis, W D
The Connection Machine
Techmcal Memo, M. I. T. ArtIficIal Intelligence Lab,

September, 1981

Hlllyer, B K, Shaw, 0 E, and Nigam, A
NON-VON's Performance on Certain Database

Benchmarks
Techmcal Report, Computer SCIence Department,

ColumbIa UniversIty, November, 1983

Hough, PVC
Methods and Means to Recognize Complex Patterns
US. Patent 9069654 , 1962

Hunter, G M, and Steiglitz, K
Lmear TransformatIon of Pictures Represented by

Quadtress.
Computer Graphic. and Image Processing 10289-296,

1979.

Hunter, G. m, and SteIghtz, K.
Operations on Images Usmg Quadtrees
IEEE Tran.action. on Pattem Analysi. and Machine

Intelligence 1(2), Apnl, 1979

Ibrahim, H A. H.
Tree Machine.: Architecture and Algorithm.
Techmcal Report, Computer SCIence Department,

ColumbIa Umverslty, June, 1983.

IbrahIm, H. A H.
The Connected Component Algonthm on the NON-VON

Supercomputer
In Proceeding. of the IEEE Computer Society Workshop

on Computer Va.ion: Representation and Control,
pages 37-45 1984.

IbrahIm, H. A. H., Kender, 1. R, and Shaw, 0 E.
The Hough Transform Method on Fine-GraIned Tree

Structured SIMD Machines.
In Proceeding, of DARPA Image Understanding

work.hop, Lee S. Baumann, Ed.. SCIence ApplicatIons
Inc, October, 1984.

173

[Ibra 84cl

[Jens 741

[KIet 801

[KIln 761

[Know 801

[Kn ut i.J1

[Kruse 761

[Kung 80aJ

Ibrahlm, H A H.
Some Image UnderstandlOg Algonthms on FlOe-Grained

Tree-Structured SIMD Machmes.
In Proceedings 01 the Workshop on Algonthm-Guided

Parallel Architectures lor Automatic Target
Recognition. 1984.

Jensen, K, and Wirth, N.
PASCAL User Manual and Report.
Spnnger-Verlag, 1974.

Klete, R.
Parallel Operatlons on Binary Images
Computer Graphics and Image Processing 14.145-158,

1980

Khnger, A, and Dyer, C. R.
Expenments on Picture Representation Using Regular

Decom POSI tlon.
Computer Graphics and Ima~ Proceuing 568-105, 1976.

Knowlton.
Progressive Transmlsslon of Gray-Scale and Bmary

Pictures by Slmple, Efflclent, and Lossless Encoding
Schemes

Proceedings 01 the IEEE 68(7), July, 1980

Knuth, D E
The Art of Computer Programming.
Addlson Wesley, 1973

Kruse, B
The PICAP Plcture Processmg Laboratory
In Proceeding, of the IEEE Conference on Pnttern

Recognition and Image Proceuing, pages 875-881
1976

Kung, H. T
Special PurpOIt Dev1CU for Signal Proceuing: An

Opportunity in "'LSI
Techmcal Report, Computer SCience Dp.partmp.nt,

Carnegie ~fellon University, July, 1980

[Kung 80b]

[Kung 81]

[Kush 82]

[LevI 801

[Luml 83]

[~1ark 801

[Mead i9]

[Merl 75)

1~11Og 81}

[Nass 80]

Kung, H T, and Song, S W
A SJlstolic Array Chip lor the Convolution Operator in

Image Proce"ing.
TechOlcal Report, Computer Science Department,

Carnegie Mellon UOlverslty, February, 1980.

Kung, H T., and Song, S. W.
A Systolic 2·D Convolution Chip
TechOlcal Report, Computer Science Department,

Carnegie Mellon UOlverslty, March, 1981.

Kushner, T. Wu, A. U, and Rosenfeld, A.
Image Process1Og on ZMOB.
IEEE Tranlactionl on Computer, 31(10), October, 1982.

Lev1Oe, M D.
Region AnalYSIS Usmg a Pyramid Data Structure
In Structured Computer Vi,ion, Tanimoto, S., and

Klinger, A., eds.. Academic Press, 1980.

Lumia, R, Shapiro, L., and Zuniga, 0
A New Connected Components AlgOrithm for Virtual

Memory Computers.
Computer GraphiCl and Image Processing 22287-300,

1983

Marks, P
Low Level VISion Us10g an Array Processor
Computer GraphiCl and Image Proce"ing 14.281-292,

1980

Mead, C and Conway, L.
Introduction to VLSI SYltem,.
Addlson Wesley, 1979

Merhn, PM, and Farber, D J.
A Parallel Mechanism for Detectmg Curves 10 Pictures
IEEE Tranlaction, on Computer, 24(1), January, 1975

Ming, Ll , Grosky, W ., and Jam, R
Normalized Quadtrees With Respect to Translations.
Computer Graphics and Image Proce"ing 2072-81, 1981

Nasslml, D, and SahOl, S
F10dmg Connected Components and Connected Ones on

A Mesh-Connected Parallel Computer
SIAM J Computing 9 i44-757, 1980

17)

[Pavl 821

[Pott 831

[Rw i6J

[Rash 80al

[Rash 80bl

[Reev 841

[Rose 761

[Rose 831

[S.lme 80)

[Same 81al

Pavlidls, T.
Algon'thms for Graphics and Image Processing.
Computer SCience Press, 1982.

Potter, 1. L.
Image Processmg on the Massively Parallel Processor
IEEE Computer Magazine 16(1), January, 1983.

Rw, C. V., Prasada, B., and Sarma, K. R.
A Parallel Shrinking Algorithm for Binary Patterns
Computer Graphics and Ima~ Proceuing 5.265270,

1976

Rashid, R.F
Towards a System for the Interpretation of Movmg Light

Displays
IEEE Transactions on Pattem Analysis and Machine

Intelligence 2(6), November, 1980

Rashid, R.F
Lights: A Study in Motion.
PhD theSIS, University of Rochester, Apnl, 1980

Reeves, A P
Parallel Computer Archttectures for Image Processmg.
Computer Graphics and Image Processing 2,5 68-88, 1984

Rosenfeld, A
Digital Picture Analysis.
Spnnger-Verlag. 1976

Rosenfeld. A
Parallel Image Processing Usmg Cellular Arrays
IEEE Computer A-fagazine 16(1), January, 1983

Samet, H
Region Representation Quadtrees from Boundary Codes
Communications 0/ the AC.\I 23(3), March, 1980

Samet. H
Computing Perimeters of RegiOns in Images Represented

by Quadtrees
IEEE Transactions on Pattem Analysis and A-fachine

Intelligfnce 3(6), November. 1981

[Same 8Ibj

[Same 81c)

[Same 82a)

[Same 82bl

[Same 82c)

[Same 82d]

[Scha 841

[Schw 80}

ISequ 19J

Samet, H.
An AJgonthm For Converting Rasters to Quadtrees
IEEE Transactions on Pattern Analysis and Afachine

Intelligence 3(1), January, 1981.

Samet, H.
Connected Component Labeling Using Quadtrees.
Journal 0/ the ACM 28(3), July, 1981.

Samet, H.
Quadtrees and Medial Axis Transforms.
In Proceedings 0/ the IEEE Parallel Proce88ing, pages

184-187. 1982.

Samet, H.
Neighbor Finding Techniques for Images Represented by

Quadtrees.
Computer Graphic. and Image Proce88ing 18:37-57, 1982.

Samet, H.
DIstance Transform for Images Represented by Quadtrees.
IEEE Transaction. on Pattern Anal,.is and Machine

Intelligence 4(3), May, 1982.

Samet, H.
A Top-Down Quadtree TratltrBal Algorithm.
Techmcal Memo, Umversity of Maryland, Computer

SCIence Department, december, 1982.

Schaefer. D H., Wilcox, G. C, and Harris, V.l
A Pyramid 0/ MPP Proee •• ing Element.
Techmcal Report, Department of Electncal and Computer

Engmeenng, George Mason University, 1984.

Schwartz. J T
Ultracomputers.
ACM Tran.action. on Programming lAnguage. and

Sf/.tem. 2, 1980

Sequin, C H
Single Chip Computers, The New VLSI Building Blocks
In Pr«eeding. 0/ the First CaUeela Conference on VLSI.

January, 1919

IShaw 821

[Shaw 831

[Shaw 84a}

[Shaw 84b]

[Shne 8hl

IShne 81 b}

[Sleg 81al

Shaw, D E
The NON·VON Supercomputer.
Technical Report, Computer Science Department,

ColumbH~ University, August, 1982.

Shaw, D E, and Hillyer, B K.
Allocation and Manipulation 0/ Record. in the NON·

VON Supercomputer
Technical Report, Computer SCience Department,

Columbia University, January, 1983

Shaw, D E
SIMD and MSIMD Vanants of the NON·VON

Supercomputer
In Proceeding. 0/ the COMPCON Spring '84. February,

1984.

Shaw, D E, and Sabety T M.
An Eight·Proceuor Chip for a Mauiwly Parallel

.i.\1achine
Technical Report, Computer Science Department,

Columbia University, July, 1984.

Shneler, M
Path-Length Distance for Quadtrees
Information Science. 23.49·67, 1981.

Shneler, M.
Calculations of Geometnc Properties Usmg Quadtrees.
Computer Graphic. and Image Proceuing 16296-302,

1981.

Siegel, H J
A Model of SIMI) Machmes and a Companson of Vanous

Interconnection Networks
IEEE Tran.adion. on Computer. 28(12), December,

1979

Siegel, L J, Siegel, H J, and Feather, A. E.
Parallel Image Correlation.
In Proceeding. 0/ the IEEE Parallel ProceSBing, pages

190-198 1981

[Sleg 81 b]

[Slro 761

[Sloa 79]

[Snyd 83]

[Starn 75]

[Ster 83]

[Stol 821

[Tam 75)

[Ta.m 78)

Siegel, H 1, Sle'gel, L. J, Kemmerer, Fe, Mueller,
P T, Smalley, HE, and Smith, S. D
PASM: A PartltlOnable SIMD/MIMD System for Image

Processing and Pattern Recognition.
IEEE Tran.action. on Computer. 30(12), December,

1981.

Slromoney, G, and Siromoney, R
Hexagonal Arrays and Rectangular Blocks.
Computer Graphic. and Image Proceuing 5:353.381,

1976.

Sloan, K. R, Tammoto, S. L.
Progressive Refinement of Raster Images.
IEEE Transaction. on Computer. 28(11), November,

1979

Snyder, W E, and Cowart, A.
An Iterative Approach to Region Growing Using

Associative Memories.
IEEE Transaction, on Pattern Analy,i, and Machine

Intelligence 5(3), May, 1983.

Stamopoulos, C D.
Parallel Image Processing.
IEEE Tran,action, on Computer. 24(4), Apnl, 1975

Sternberg, S R.
Biomedical Image Processing.
IEEE Computer MaIGzine 16(1), January, 1983.

Stolfo, S J , Shaw, 0 E
DADO A Tree-structured Machine Architecture {or

Production Systems.
In Proceeding' of the end National Conference on

Artificial Intelligence August, 1982

Tanimoto. S, and Pavhdls, T
A Hierarchical Data Structure for Picture Processing.
Computer Graphic. and Image Proceuing 4.104-119,

1975

Tanimoto, S
Regular Hierarchical Image and Processing Structures In

Mac hIne VIsion
In Computer Vi,ion Sy,tem., Han,on, A. R., and

Rittman, E. M., ed,. AcademiC Press, 1978

,-,
L. ~

[Tanl SOa1

[Tanl 821

[Tanl 83al

[Tanl 83bl

[Chr i81

[Chr 801

[Cnge 58)

[Cnge 59)

Tanimoto, S, and Klinger, A.
Structured Computer Va.ion.
Academic Press, 1980.

Tanimoto, S.
Image Data Structures.
In Structured Computer Va.ion, Tanimoto, S., and

Klingtr, A., ed... AcademiC Press, 1980.

Tanimoto, S. L.
Sorting, Hi.togramming, and Other Stati.tical

Operation. on a Pt/ramid Machine
Technical Report, Computer Science i ~partment,

University of Washmgton, August 982

Tanimoto, S L
A Pyramidal Approach to Parallel Proce"ing.
Technical Report, Computer Science Department,

University of Washington, January, 1983.

Tanimoto, S L
Algorithm. /or Median Filtering 0/ Imagt. on a

Pyramid ftrfachine.
Technical Report, Computer SCience Department,

University of Washington, January, 1983

Chr, L.
Recognition Cones, and Some Test Results
In Computer Va.ion SJI.tem., Han.on, A. R., and

Rileman, E. M., ed.. AcademiC Press, 1978

tlhr, L.
Psychological Motivation and UnderlYlng Concepts
In Structured Computer Va.ion, Tanimoto. S., and

Klinger, A., ed... AcademiC Press, 1980

Unger, S H.
A Computer Onented towards Spatial Problems.
In Proceeding. 0/ the IRE, pages 1744. 1958

L'nger. S H
Pattern Detection and Recognition.
In Proceeding. 0/ the IRE, pages 1737-1752. 1959

l~O

[Weem 841

lZuck i6J

Weems, C , Fost~r, C Levmthal, S , Rlseman, E ,
Hanson, A, and La.wton, E
Content Addressable Parallel Array Processor
In Proceedings of the Workshop on Algorithm-Guided

Parallel Architectures for Automatic Target
Recognition. 1984.

Zucker, S W
RegIon Growing: Childhood and Adolescence
Computer Graphic. and Image ProcelSing 5382-390,

19i6

l ~l

--
Appendix A

The NON-VON 3 Instruction Set

The semantIcs of each NON· VON 3 Instruction are descnbed below

along wIth the set of permlssable operands, where appropnate2,

IIStROCTIOI

Mo,a <byte r., l' <byte rei 2'

<byte r.,' • ua. II. ca. UI. IO.}

MO'l <b1~ r., l' <b1~ rea 2'

<b1~ r.,' · {ll. 11. Cl. Ell. IOl}

SlllAltICS

The ~10\"8 a.nd ~10Vl Instructions transfer are used to transfer data

between bit and byte registers wlthm the PE.

RElDIlIII <byte rea'
III ITEJWII <bf\e rea'
<byte r." • UI. II. ca or 101)

RtlDllIl <b1\ rea'
ftlTDAlll <b1\ rea'
<bl\ rIC' • (11. II. Cl or IOl)

IlCIaat

<bf\e rea' c- IlMI (lUI)

IlMI (lUI) c- cbf\e r.,'

Cb1\ r.,' c- 1&11 (11lI)

1&11 (lUI) c- Cbl\ rei'

UI c- UI • 1

t)

-The material presented in this appendix is rrom the pa~er
.. An Eight-Processor Chip ror a ~a.sslvely Parallel Machine , Technical Report
by David Elliot Shaw and Theodore M. Sabety

l~2

The READ~\1 and WRITERAM instructions are used to transfer data

between a register and the RAM location whose address IS stored In the

incrementing memory address register", IMAR. The INCREMENT

instruction adds one to the address stored In the IMAR

<byte rei' • <II. lOa. MIl. or Ill}

ea c- (cbJte r.I' • " • el);
Cl c- carr,

ca c- (AI - cbJ\e r.I' - Cl);
Cl c- bonow

if cbJ\e rea' • AI t... 11 c- 1
.11. 11 ~- 0;

if cbJ\e reK' , AI t... 81 c- 1
.1.. 81 ~- 0

The ADD, SUB and COMPARE instructions may be used to perform

anthmetlc and companson operations on two 8-bit operands The carry

•
bit must be cleared before these instructions are initiated The results of

a COMPARE are stored In the Al and Bl flags

Romi

ROlLI

Ro'ate I ril.' 1 bit

Rotate I l.ft 1 bit

The 88 and B1 registers contain logiC enabhng them to function

together as a 9·blt circular shift register

LOGIClLI copera'1oa)

LOGICAL1 copera'toa'

CI c- (jI coperatio.) II)

Cl c- (&1 copera'to.) 11)

where <operation> IS a four-bit code specifYing one of the sixteen

possible boolean functions of two varIables. LOGICAL8 applies the

specIfied operatIon ID a bitWISe fashion to all eight bits of its operands

Special cases of the LOGICALl Instruction Include SET, CLEAR,

NEGATE, A..l\lD, OR, XOR, EQU, NAND, NOR and NOP LOGICALl

may be used to combine the results of a COMPARE instruction to test

all SIX possible anthmetlc relational predicates (EQ, NE, GT, L T, GE and

LE) on two ~blt operands

SEIDl cpo <bfM ' 101 «PI» <- <'fM '

SEIDl cPO <bit. ' 101 «PI» <- <'1t. '

REevl <PO <bfM ' <bfM ' <- 101 «PO)

RECVl <PO <b1t rei' <b1t ' <- 101 «'1»

<bJ'e rei' • UI. II. ca. UI}

<b1t rei' • {Al. 11. Cl. Ell}

<PO • {LC. IC. LI. II} tor SlID 1 •• t.r.ct.10 ••
{LC t ac. LI. al. PI} tor IICf ialtr.ct.1ou

The SE~'D and RECV IDstructlons are used to transfer data ID parallel

not only between PE's that are physically adjacent within the PPS, but

also between two PE's that are adjacent ID a particular linear sequence

defined by a.n lDorder traversal of the nodes of the PPS tree In both

casl?S. da.ta IS transferred between some register ID the PE ID which the

In:5tructlon IS executed and the 10 register withIn some neighboring PE

It IS always possible to RECV data from a PE, regardless of whether It

IS enabled, but an attempt to SE~1) data to a disabled PE Will not

result in a transfer of data.

IROADCmI <'fM rei' <bfM'

IROADCASn <b1t. res' <biU

REPOlt.

RUDIn

<byte rei' • (AI. II. ca. 11&1. 101)

<bfM rei' <- <bfM'

<b1t. rei' <- <b1t)

lopcal rei. eGa U. CP) <- <byte rei'

lOl1cal CCl (1a CP) <- <b1t rei'

<bit rei) = {il. 81. Cl. Ell. lOl}

The BROADCAST InstructlOns are used to transfer a slngle data value

from the control processor into a specIfied destlnation reglster Wlthln all

enabled PE's sImultaneously. The REPORT instructions, on the other

hand, are defined only when exactly one PE is enabled, and result 10 the

transfer of data from the speclfied reglster within that PE to a partlcular

loglcal reglster" wlthm the control processor, which is called GG.

RESOLVE 11 c- 0 i. all PE'. escep'
'fir." PE •• ere 11 • 1;

if .0 PE ... 11 • 1 tbe.
1011eal rell.ter 11 (1. CP) c- 0
ell. 81 c- 1

After executlon of a RESOLVE, the Al regIster is reset to zero in all

PE's except the one that occurs hrst 10 100rder traversal order The

RESOLVE lnstruction lS frequently used In conjUnctIon wlth REPORT to

read data Into the control processor from each one of a set of PE's 10

turn

EldLE Ell c- 1 i. all PE'., iDeladil1
tbo.. prey10,.1, di.abled

E~ABLE IS the only 1Ostructlon that lS executed by all PE's, whether

or not they are already enabled It lS used to set all of the the ENl

regIsters to 1, thus awaken1Og" all PE's In the PPS after some subset

have been dlsabled

STlIIGIROlDClSt cle.,," c.,ri.I'
STRIIG8EPOlt clell'"

n \le. of , ,
oplratio.. are deecrlbed below

The- three strIng operations use the autA>1Ocrement capab1lity of the

MAR to perform highly efficient 10ad1Og, unloading, and match10g

operat1ons on succeSS1ve locat1ons 10 RAM The STRING BROADCAST

1Ostruct1on transfers a common string from the control processor 1Oto the

local RAM's of all enabled PE's, starting at the locat1on spec1fied by

the1r respect1ve MAR's STRINGREPORT funct10ns in a similar manner,

but 1S used to transfer a string 1Oto the control processor from a s10gle

enabled PE STRINGCOMPARE compares a strIng broadcast by the

control processor 10 parallel aga10st those stored in all enabled PE's. At

the end . of the STRINGCOMPARE instruct1on, only those PE'S

contammg a. matchmg strang are left enabled.

Appendix B

NON-VON 3 Code for Selected
Algorithms

B.I. NON-VON Tree Initialization

(comment "Thls program lOltla1izes the NON-VON tree for vision
algorithms The program will store at each node in the tree 4 values m
memory locations 0-3 representing the x-side, y-side, x-address, and y
address of each rectangle m the bmary image tree. The globally defined
vanable no-levels is the number of levels in the tree.")

(flUld '(n<>fevels x y i))
(setq n<>levels i)

(de IOlt-vlSlon ()
(prog ()

co Store 1 m the vanables x-slde and y-slde in all PE's

(~-E~ABLE)

(N-BROADCAST8 MAR 0)
(:--';-BROADCAST8 AS 1)
(~-'NRITERAM8 A8)
(~-INCREMENT MAR)
(N-WRITERAM8 A8)

(comment "Set 101 equal to 0 m leaf PEts, and equal to 1 in all other
PE's Then enable only leaf PEts. ")

(N-CLEAR1)
(N-MOV1 C1 101)
(:-.1-RECV1 Al RC)
(N-SETl)
(N-MOVI C1 101)

1,,-
-'

(~-MOVI Al E~l)
(~-CLEARI)
tN-MOVI Cl (01)

(comment "The following IS a CP code that In1t1alizes x, and y global
variables, and start the loop for computing In each PE the length and
width of the rectangle It represents")

(setq x 1)
(setq y 1)
(do ((1 1 (I + I)))

((= I no-levels))

(~-E~ABLE)

% Enable only PE's on the next level up the tree.

(~-RECVl Al RC)
(~-~tOVI Al (01)
(~-~cGATEAl)
(~-~10VI· CI E~l)

(com ment "This IS a CP code that com putes the rectangle dimensions on
the current level "'),

(cond ((eq I (times (quotient I 2) 2)) (setq y (times y 2)))
(t (setq x (times x 2))))

CC Store the x-side and y-slde values In the enabled PE'S.

(~-BROADCAST8 MAR 0)
(:"i-BROADCAST8 A8 x)
(~- 'NRITERAM8 A8)
(~-INCREMENT MAR)
(N-BROADCAST8 A8 y)
(N-WRITERAM8 AS)
) % E~1> OF THE LOOP

(comment "At thiS pOint only the root PE IS enabled with x=y=2**(nO
levels/2), and 101 set equal to 0 In the root PE, and to 1 In all other
PE's Store 0,0 In locations 2,3 In the root PEn)

(~-BROADCAST8 A8 0)

1~8

(N-BROADCAST8 ~fAR 2)
(:":- \VRITERAM8 A~)
(N-INCREMENT MAR)
(:'IJ -\VRITERAM8 A8)

(comment "The folloWIng IS a CP code to imtlalize the and start the
loop for stonng addresses.")

(do ((1 1 (1+ 1)))
((= i no-levels))

% Read x-side Into the B8 reglster.

(N·BROADCAST8 MAR 2)
(N-READRAM888)

(comment "ThIS IS a CP code to check if the current level number IS
odd or even.")

(cond ((eq 1 (tImes (quotIent 1 2) 2))
(s,etq x (quotIent x 2))

(comment "Compute the x-address and y-address of the right-chlld In
addresses 14,1.5")

C',-BROADCAST8 A8 x)
(~-CLEAR1)

(~-ADD 88)
(~-BROADCAST8 MAR 14)
(~- \VRITERA.\t8 C8)
(~-BROADCAST8 MAR 3)
(~-READRA.M8 A8)
(N-BROADCASTS MAR 15)
(~-WRITERAM8 A8)

)

so The else part.

(t (setq y (quotlent y 2))

(N-BROADCAST8 MAR 14)
(~-'NRITERAM8 88)
(7'1-BROADCAST8 A8 y)

1 ~;

(N-BROADCAST8 MAR 3)
(~·READRAM8 88)
(N-CLEAR1)
(!'l-APD 88)
(N-BROADCAST8 MAR 15)
(N-WRITERAM8 C8)

))

% Enable PE'S on the next level down the tree

(N-ENABLE)
(N-MOV1 101 B1)
(N-BROADCAST8 MAR 2)
(N-READRAM8 A8)
(N-SEl\ID8 A8 LC)
(N-MOV8 108 88)

(N-INCREMENT MAR)
(N-READRAM8 A8)
(N-SE~1)8 A8 LC)
(N-MOV8 108 C8)

(N-BROADCAST8 MAR 15)
(N-READRA.\i8 A8)
(N-SE~1)8 A8 RC)
IN-~tOV8 108 C8)

(N-BROADCAST8 MAR 14)
(N-READ~18 A8)
(N-SE~TI8 A8 RC)

so Enable only RC's.

(N-SET1)
(N-MOVl Cl AI)
(N·CLEARl)
(N·MOVl Cl 101)
(N-SENDI Al RC)
(N-MOVl 101 EN1)

(N-~tOV8 108 88)

so Enable next level down the tree

(~-E~ABLE)

(:"1-~fOVl 81 101)
(:--';-RECV1 Al P)
(N-~fOVl Al 101)
(~-:\t:GATEAl)

(:S-MOVl C1 ENl)

(N-8ROADCASTS MAR 2)
(N-\\lUTERAMS 8S)
(~-I~CREMENT MAR)
(~-\VRITERA.\1S CS)

i))

B.2. Image I/O

so global vanables declaratlOn

(fluid '(I J)) ,

(de load-Imgl (X-Side y-slde)
(prog ()

(:"-E~ABLE)

cc 88 and C8 are used to hold the x-address and y-address respectlvely

(~-8ROADCAST8 MAR 2)
(:"-READRAM8 88)
(:"-li\CRE~1ENT MAR)
(~-READRAM8 C8)

% Set. MAR equal to 14 In all PE's

(~-BROADCAST8 MAR 14)

co Loop to send bytes one bye one.

(do ((I 0 (addl 1)))
((= I x-side))

l'l

(comment "Store 1 m 101 only m PE's with XADD equal to I, and set
MAR equal to 0 ")

(~-ENABLE)
(~-BROADCASTS AS I)
(~-COMPARE 88)
(N-MOVI Al 101)
(N-BROADCASTS MAR 0)

(do ((J 0 (addl J)))
((= J y-slde))

co Enable PE's m ro~ ... I

(:"-MOVI 101 E~I)
(N-~OVS ~1AR AS)
(~-COMPARE CS)
(N-~10Vl Al E~l)
(~-BROADCASTS lOS J)
(N-ENABLE)
(N-I~CRE.\tENT MAR)

))

co Enable only leaf PE's

(mark leaf)

CC Store the gray level value

l :\-BROADCASTS MAR 4)
(:\- \VRITERAMS lOS)

))

(de load-Img2 (bslde Imslde)
(prog ()
(N-E~ABLE)

co . bSlde' IS the length of the block side
CO 'Imslde' IS the Image side size

so Set Cl equal to 1 only m the mtermedlate level PE's.

(;-';-CLEAR1)
(:"J-CLEAR8)
(~-MOV8 C8 MAR)
\0-l{EADRA..\18 A8) % A8 <-- XSIDE
(~-BROADCAST8 88 bSlde)
(~-CO\IPARE B8)
(:-J-'\10V8 Al EN1)
(N-Ir-.;CREME~T MAR)
(N-READRAM8 A8)
(N-COMPARE 88)
(N-MOV8 Al C1)
(N-ENABLE)

% B8 and C8 are used to hold the x-address and y-addresses

(N-BROADCAST8 MAR 2)
(N-READRA..\18 88)
(N-I~CREMENT MAR)
(N-READRAM8 C8)

% Loop to, send blocks of bytes.

(setq n (quotient Imslde bSlde))
(do ((I 0 (addl I)))

((= In))
(do ((J 0 (addl J)))

((= J n))
(N-E~L.wLE)
(~-MOVI Cl ENl)
(N-BROADCAST8 A8 (tlmes 1 4))
(N-COMP ARE 88)
(N-MOVI Al ENl)
(N-BROADCAST8 A8 (times J 4))
(N-COMP ARE C8)
(N-MOVI Al ENl)
(N-BROADCAST8 MAR 15)

co Store the block of 16 plxels

))

(~-STRING-BROADCAST8 '(A BCD E F G H I
J K L M N 0 P))

(comment "Loadmg of blocks fimshed Now m parallel load the leaf
PE's. Relatlve address are stored m 88 and C8")

(:'-1-E:'-1ABLE)
(:"-i-~10V8 C8 108)
(N-BROADCAST8 A8 3)
(N-A~~1)8)

(N-MOV8 108 88)
(:'-1-MOV8 C8 108)
(N-A~,\1)8)

(N-MOV8 108 88)

% Store 15 m intermediate level PE's MAR.

(N-BROADCAST8 MAR 15)

(do ((J 0 (addl J)))
((= J 4))

(:"-i-MOVl- Cl ENl)
(N-I~CRE~1E~T MAR)
(~-READRA.\18 108)
(\i-ENABLE)
(:"i-REC\"8 A8 P)
(:,\-~10\"8 A8 108)

)

(:,\-E~ABLE)
(:,\-~lOVI Cl Bl)
(:\-CLEAR1)
(:,\-\IOVI Cl 101)
(~-RECV1 Al RC)
l N-MOVI Al 101)
(N-MOV1 Bl C1)
(~-MOV1 101 E~l)
(N-BROADCAST8 ~tAR -l)

(do ((J 0 (add 1 J)))
((= J bSlde))

(do ((1 0 (add1 1)))
({ = I bSlde))

l:-<' E:"JABLE)
(~-MOVI 101 ENl)
l:-.l-BROADCASTS AS 1)
(N-COMPARE 8S)
(N-MOVI Al ENl)
(N-BROADCASTS AS J)
(N-COMPARE C8)
(N-MOVI Al ENl)
(N-WRITERAMS lOS)

(N-E:"JABLE)
(N-MOVI Cl ENl)
(N-INCREMENT MAR)
(N-READRAM8 108)
(N-ENABLE)
(N-RECV8 AS P)
(N-MOV8 A8 108)

))
))

(comment "The followmg function enables leaf PE's only,
and set Al equal to 1 only m leaf PE's")

(de mark_leaf()
(N-ENABLE)
(:--:-CLEARl)
(N-MOVI Cl 101)
(N-RECVl Al RC)
(N-MOVI Al ENl)

)

(comment "The follOWing function pnnts the contents of one of RAM
location In leaf PE's.")

(de show-Img (X-Side y-s1de ram k)

(N-ENABLE)

co 108 holds the value to be pnnted

(N-BROADCAST8 MAR ram)
(cond ((= k 1) (N-~RAM8 108))

(t (N-CLEAR8)
(N-MOV8 C8 88)
(N-READRAMI B1)
(N-ROTLB)
(~-MOV8 88 108)

(N-BROADCAST8 MAR 2)
(N-READRAM8 88)
(N-INCREMENT MAR)
(N-READR.A..\i8 C8)

% Loop to report bytes one bye one.

(do ((J 0 (add1 J)))
((= J y-slde))

(terpn)
(pnne "column number ")
(pnnc J)
(pnne" ")

cc Store 1 1n 101 only 1n lear PE's with Y ADD equal to J

(;\j-E~ABLE)

(:--';-CLEAR1)
(~-~10Vl C1 101)
(~-RECVl Al LC)
(:--.;-~tOVl Al 101)
(~-BROADCAST8 AS J)
(~-COMPARE C8)
(~-MOV1 101 B1)
(N·AND1)
(N-MOV1 C1 101)
(N-BROADCAST8 MAR 0)

(do ((1 0 (add1 1)))
((= 1 x-slde))

(N-MOVl 101 ENl) % Enable PE's 1Q row 1

tN-~10V8 ~tAR A8)

(~-COMPARE B8)
(N-MOV1 A1 EN1)
(N-REPORT8 108)
(pnne (N-GET-GG8))
(pnnc " ")
(~-E;..iABLE)

(N-INCREMENT MAR)
))
)

B.3. Binary Image Tree Building

(comment "This function buildmg the binary image tree representation of
a bmary Image stored m the RAMI location 4.")

(de bUlld-blnlmg ()
(prog ()
(N-ENABLE)
(N-BROADCASTS AS 71)
(N-BROAQCASTS MAR 5)
(N-\VRI TERAMS AS)
(~-CLEARl)

(~-~10Vl C1 101)

% 71 IS the code for 'G'
% RAMS location 5 is FQUAD.

% Store 'G' m all PE's FQUAD

co 101 <-- 0

(comment "Current level IS 0 Store 1 m RAMI location 14 (Xl) and 0
In RAMI location 15 (Yl) only m current level PE's")

(~-RECVl Al RC)
(N-BROADCASTS MAR 14)
(N- \VRITERAMI AI)
(N-MOVI Al ENl) % Enable leaf PE's only.
(N-BROADCASTS MAR 4) % Read BINARY value mto.
(!':-READRAMI BI) % Bl
(~-MOVI B1 e1)
(N-BROADCASTS AS S7)

% RAM8 5 <- 'W'
(N-INCREMENT MAR)
(~-WRITERAMS A8)
(~-CLEARS) % Store TREE In RAMS 6
(N-~tOVS C8 88)
(N-ROTLB)
(N-INCREMENT MAR)
(N-\\RITERAM8 88) % RAMS 6 <- TREE.

(~-MOV1 C1 ENl) % Enable leaf black pixels
(~-BROADCAST8 A8 66) % Store 'B' In those PE's
(N·BROADCAST8 MAR 5)
(N-WRITERAM8 A8)

(~-E~ABLE)

(~-BROADCAST8 MAR 14)
(~-READRAM1 AI) % Al IS 1 only In leaf PE's
(7'1-~cGATEAl) % C1 IS 0" " " "
(N-INCREMENT MAR)
(7'1-\\~ITERA.\11 CI) % RAMI 15 1S 0 "

c:o Loop to bUIld the bInary 1mage tree.

(do ((1 1 (addl 1)))
((= 1 no-levels))

% Read the value of TREE Into 108

(N-E:"iABLE)
(~-BROADCAST8 MAR 6)
(N-READRAM8 108)

co Ena.ble next level up the tree
(~-BROADCAST8 MAR 15)
(N-READRA.\H 101)
(:"i·RECV1 Al RC)
(:"i. \\ ~ITERA..\U AI)
(~-\cGATEAI)
(:"i-~10V1 CI ENI)

co Receive gray values from your two chIldren

(N-RECV8 88 LC)
(N·RECV8 A8 RC)

" "

(N·CLEARl) % Add the two gray values.
(N·ADD 88)
(:"i-BROADCAST8 MAR 6) % and store the resultmg
(~-\\"RITER.A..\18 C8) % TREE In RAM8 6.

co Store the value of FQt:AD In 108 In prevlous level.

(~-E~ABLE)

"

(:\,-BROADCAST8 MAR ,))
(="-READRAM8 108)

co Enable current level again

(~-BROADCAST8 MAR 15)
(="-READR.-\.\11 AI)
(~-~"EGATEAl)

(N-~OVI Cl ENl)
(="-RECV8 88 LC)
(~-RECV8 A8 RC)

~ Compare the FQVAD In the two children.

(N-COMPARE B8)
(N-~10Vl Al 101) % Enable only PE's where the two
(N-~OV1 Al EN1) % FQUAD's are the same
(N-BROADCAST8 MAR 5)
(N-WRITERA..\18 A8) % FQUAD In the result PE IS set.
(N-BROADCAST8 A8 i1) % A8 <-- 'G'
(N-COMPARE 88)
(N-:"..cGATEA1)
(N-~lOVl C1 101) CO 101 IS 1 where the two FQUAD

CO are equal but not Gray.
(N-E~ABLE)

(N-BROADCAST8 MAR 14)
(N-READRAM1 AI) % Enable only PE's on prevIous level.
(N-MOV1 Al EN1)

(N-RECV1 EN1 P) % Enable PE's with FQUAD to change to 'N'
(~-BROADCAST8 A8 i8) % A8 <-- 'N'
(~-BROADCAST8 MAR 5)
(~- \VRI TERAM8 A8)
(N-ENABLE)
(N-BROADCAST8 MAR 15)% Set RAM8 14 equal to 1 only
(N-READRAMI AI) % In current level
(~-~t"EGATEA1)
(N-BROADCAST8 MAR 14)
(N-\VRITERAM1 C1)

))
)

1 '~. •

B.4. Gray-Sca'~ 'mage Histogram and

Threshoh~ i .i~
-'

(comment "Th1s program computes the h1stogram of a gray-scale 1mage
stored In the leaf PE's PE's of the NON-VON tree The gray level level
value 1S stored In memory locat1on 4 at each of these PE's ")

(flUld '(x y count nums bW1d nblns no-levels level-I))
(setq no-levels 7)

(de Image-h1sto ()
(prog ()

(N-ENABLE)

(comment "Enable only leaf PE's and set 101 equal to 1 In leaf PE's
and equal to 0 elsewhere")

(:"J-CLEAaRI)
(~-MOVI Cl 101)
(~-RECVI Al RC)
(~-~fOVI Al 101)

(comment "Store the address 4 In MAR, and 1nIt1ailze global vanables
(step 1)")

(~-BROADCAST8 MAR 4)
(setq x 0) % x IS the man. value In ban range
(:!I?tq y 1,5) % y 1S the max, value an ban range
(setq count 0) % count IS how many match operat1ons.
(setq nums 0) % number of reported h1stogram values,
(setq oblo! 16) % number of binS.
(setq bWld 16) % b1n w1dth
(setq level-l 6) % no of levels above leaf level.

co ~farkang steps (steps 2,3)

step2
(~-MOVI 101 E~I)
(N-READRAM8 AS)
(~-BROADCAST8 108 0)
(N-BROADCAST8 B8 x)

200

(N-COMPARE 8S) co Al <-- 1 If gray value = x.
(:--';-~';EGATE81) SO 81 <-- 1 If gray < x
(:"i-MOVI Cl ENl) % Enable only leaf PE's with gray >= x
(~-8ROADCAST8 8S y)
(;\l-COMPARE 88) % Al <-- 1 If gray value = y
(~-ORl) % 81 <-- 1 If gray < y
(N-MOVI Cl ENl) % Enable PE's with gray <= y
(N-BROADCASTS lOS 1)

SO The counting step (step 4).

step4
(:,\-E~ABLE)

(N-RECVS BS LC)
(N-REC\'S AS RC)
(N-CLEARI)
(N-ADD 88)
(N-MOVS C8 lOS)

sc Steps 5,6

.
(setq count (plus count 1))
(cond ((and (= count nblns)(ge count level-I))(go step7))

(t (setq x (plus x bWld))(setq y (plus y bWld))
(cond ((a.nd « count level-I)(< count nbIns))(go step2))
)
(cond ((and « count level-I)(ge count nbIns))(go step4))
)

))

(comment "Steps 7,8 For simpilcity the histogram value IS not stored
ba.ck In the tree Enable root only and report the value In ItS 108")

step7
(;\l-ENABLE)
(N-MOVl 101 BI)
(~-put-ggl I) % ggl <-- 1
(:"J-CLEARI)
(:,\-~10Vl Cl 101)
(~-RECVI Al P) % Al IS I only In the root PE
(~-MOVI Al E~I) % Al IS I only In the root PE.
(~-REPORT8 108)

(setq nums (plus nums 1))
(prine "The value of b10 histogram number ")
(prine nums)
\ pnne n IS equal to ")
(prine GG8)
(terpn)

(~-ENABLE)
(N-MOV1 BI 101)

(cond ((= nums nb1Os)(go end))
(t (cond ((< count nb1Os)(go step2))

(t (go step4)))))
end
))

(de Image-thresh (thresh)
(prog ()
(~-E~ABLE)

(~-BROADCAST8 MAR 4)
(~-READRA.\18 88) % Read the gray value 10 88.
(N-BROADCAST8 A8 thresh) % Broadcast the threshold value.
(!'I-COMPARE 88) % Compare (Bl <-- 1 If gray> thresh)
(N-\VRITERAM1 BI) % Write value 10 RAM I-bit locatIon 4

))

(comment "ThIS function creates a random gray-scale Image in the leaf
PE·s .')

(de random-graY-image (rand-vall rand-vaI2)
(prog ()

co Enable root only

(:"I-ENABLE)
(:'\I-BROADCAST8 A8 rand-vaI2)
(~-BROADCAST8 MAR 14)
(~-WRITERAM8 A8)

(~-Pt:T-GGI 0)
l~-SET1)
(~-~10Vl Cl 101)
(~-RECVl Al P) .

% ggl <-- 0

co Al IS 0 only 10 the root PE

202

(N-~"EGATEA1) % Al IS 1 only In the root PE
(N-MOV1 Cl IOl) % 101 IS 1 only In the root PE
(N-MOVI Cl EN 1) % Enable the root PE only
(N-BROADCASTS 8S rand-vall)
(N-BROADCASTS MAR 4)
(N-WRITERAMS 88)

(do ((1 1 (1+ 1)))
((= i ncrlevels))

(N-ADD BS)
(N-MOVS CS lOS)
(N-ROTRB)
(N-ROTRB)
(N-ADD BS)
(N-MOVS lOS AS)

% Enable PE's on the next level.

(N-ENABLE)
(N-SEND& CS LC)
(N-SE~S AS RC)
(N-MOVS lOS 88)

% Enable PE's on the next level down the tree.

(N-RECVl Al P)
(N-MOVI Al 101)
(N-MOVI Al ENI)
(N-BROADCASTS MAR 14)
(N-READRAMS AS)
(N-BROADCASTS MAR 4)
(N-WRITERAMS 88)

)
))

B.5. Binary tm~ge Shifting

% Global variabl":5 Jt:claratlon

(fluid '(xadd yadd w 1 kl ne>-levels))
(setq no-levels 1)

(de binimg-shlft(l J k)

% I,J shift distances, k==O use white rectangles,
% k=l use black ones.

(prog ()

(~-E~ABLE)

(cond ((= k O)(setq kl 81)}
(t (setq kl 66))}

(comment "The 88 and 108 registers are used to store XADD and
Y ADD, 101 for the shlfted Image, and Cl for REPORTED.")

(cond ((= k O)(N-SET1})
(t (~-CLEARl)))

(~-MOVl Cl 101) 00 101 <-- 0 or 1
(N-BROADCAST8 MAR 5)
(N-READRA\i8 88) % read FQUAD mto 88
(N-BROADCAST8 A8 kl) % A8 <-- 'B' or 'W'
(~-COMP ARE 88) % Al IS 1 only In

(~-CLEAR8)

(N-MOV8 C8 MAR)
(N-READRAM8 A8)
(N-INCREMENT MAR)
(N-READRA'd8 C8l

% rectangles to be shifted
% C8 <-- 0

% A8 <-- XSIDE

% C8 < -- YSIDE

% Read XADD, Y ADD mto 88, 108

(~-I~CREME~T MAR)
(N-READRAM8 88) % 88 <-- XADD
(~-I:-';CREME:-';T MAR)
(;";-READRA\i8 108) % 108 <-- YADD

(~-BROADCAST8 MAR 14) CO M.\R <-- 14
(~.\VRITERAM1 AI) % RAMI 14 <-- REPORTED
~ '.·WRITERA ... \18 A8) % RAM8 14 <-- XSIDE

repeat
(:"-:-READRAMI AI)
(~-RESOLVE)

(cond ((= (N-GET-Rl) O)(go fim))
(t (N-MOVI Al ENl)

(N-CLEARl) % REPORTED <-- 'Y'
(N-WRITERA.\f1 Cl)
(N-REPORT8 88) %report XADD

(setq xadd (N-GET-GGS))

(N-REPORTS lOS)

(setq yadd (N-GET-GGS))

(N-READRAMS AS)
(:-';-REPORTS AS)

(setq w (N-GET-GGS))

(~-REPORTS CS)

(setq I (N-GET-GGS))
(setq xadd (plus xadd 1))
(setq yadd (plus yadd J))

%report Y ADD

%report XSIDE

%report YSIDE

(N-ENABLE) % Enable all PE's
(N-BROADCAST8 A8 xadd)
(N-COMPARE 88)
(N-ORl)
(N-MOVI Cl ENl)

(setq xadd (plus xadd w))

(N-BROADCAST8 AS xadd)
(N-COMPARE 88)
(~-~ORl) .

~ IJ")

(N-MOVI Cl E~l)
(N-BROADCAST8 A8 yadd)
(N-COMPARE 108)

- (N-ORl)
(N-MOVI Cl ENl)

(setq yadd (plus yadd I))

(N-BROADCAST8 A8 yadd)
(N-COMPARE 108)
(N-NORl)
(N-MOVI Cl ENl)
(~-MOVI 101 AI)
(:'-i-l'mGATEAl)
(N-MOVI Cl 101)
(N-ENABLE)

(go repeat)

co This IS the case of non wraparound and
CO white rectangles

(cond ((= k 0)

CC Enable area to be set to O's

(cond ((> I O)(setq xadd O)(setq w I})

(t (setq w 8)(setq xadd (mmus 8 I)}})

(N-ENABLE) % Enable all PE's
(N-BROADCAST8 A8 xadd)
(N-COMPARE 88)
(N-ORl)
(N-MOVI Cl E~l)
(~-BROADCAST8 A8 w)
(~-COMPARE 88)
(N-NORl)
(~-~10Vl Cl E~l)
(N-CLEARl)
(~-MOVI Cl 101)

))

))

(~-E~ABLE)

(cond ((> J O)(setq yadd O)(setq I I))
(t (setq I 8)(setq yadd (minus 8 J))))

(~-BROADCAST8 A8 yadd)
(~-COMPARE 108)
(N-ORl)
(~-MOVl Cl ENl)
(N'-BROADCAST8 A8 1)
(N-COMPARE 108)
(N-NORl)
(~-MOVl Cl ENl)
(N-CLEARl)
(~-MOVl Cl 101)

(N-ENABLE)
(N-BROADCAST8 MAR 20)
(N-WRITERAMI 101)

B.6. Gray-Scale Image Shifting

(de pick_element (n)
(~-E~ABLE)

)

(~-\fOVl 101 El) % mark leaf PE's
(~-CLEA.R8)
(~-\fOV8 C8 108)
(~-\fOV8 C8 A8)
(:'\-BROADCAST8 MAR 14) % read relative x address
(~·READRA.\f8 88)
(~-COMPARE 88)
(N-MOVI Al ENl)
(N-INCREMENT MAR)
(:"-I-BROADCAST8 A8 n)
(N-READRAM8 88)
(N-COMPARE 88)
(:,\-\fOVI Al E!'11)
(:"-I-BROADCAST8 MAR 4) % read gray_value
(:,\-READRAM8 108)

(de move _ up()
(N-ENABLE)
(N-MOV1 101 AI)
l ~·NEGATEA1)
(~-MOV1 Al E~l) % mark non-leaf PE'S
l ~-RECV'S AS LC)
(~.RECVS 88 RC)
(~-ORS)
(~-MOVS CS lOS)

)

(de assign _ element (n m)
(~·E~ABLE)

)

(~-MOV1 101 E1) % Enable leaf PE'S
(~-BROADCASTS MAR 14) CO read relative x address
(~-BROADCASTS AS m)
(:"J.COMPARE 88)
(~-~IOV1 Al E~l)
(:"i-I:"iCRE~fE;..JT ~fAR)
(~-BROADCASTS AS n)
(:"i-READJ~A.\fS 88)
(:"i-CO~1PARE 88)
(~-~tOVl Al E;..Jl)
(;-;-BROADCASTS ~t\R 12) CO read SH P
(:\,·RE.-illRA.\tS AS)
I ~·I:\'CRE~tE~T ~l-\R)

(~·\\"RITERA.\tS AS) CO store It In GRAY2 VALlJE

(de move down ()
(:\,·E:\,ABLE)
(:\,·~IOVS lOS 88)

)

(~-BROADCAST8 MAR 12) % read SH P
(N-READRAM8 108)
(:"J-RECV8 A8 P)
(~-WRITERAM8 A8)
(~-MOV8 B8 108)

(de move around ()
(;..J-E~ABLE)
(:"i-RECVS AS RC)
(~-MOVS lOS 88) .

20~

)

(~-SEND8 A8 LC)
(:"!-8ROADCAST8 MAR 12)
(~-\VRITERA.\18 108)
(\I-MOV8 88 108)

(de sublmage_left_shlft (k h)
(N-EI\L-\BLE)
(N-CLEARI)
(N-MOV1 CI 101)
(N-RECVI Al RC)
(~-MOVI Al 101) % set LEAF

(N-BROADCAST8 MAR 2)
(N-READRA.\f8 88)
(N-BROADCAST8 A8 (mmus k 1))
(N-A..'-41)8)
(!':-MOV8 C8 108)
(:--';-INCREMENT MAR)
(;\;-READRAM8 88)
(~-.-\.~1)8)

(~-BROADCAST8 MAR 14)
(~- \\'RITERA.\f8 108)
(~-I~CREMENT MAR)
(~-\\1UTERAM8 C8)

CC Th~ main program loop starts at this pomt

B.7. Connected Component Labeling

(comment "This function labels the black or white rectangles of a bmary
Image The label IS stored 10 RAM8 location 7 while the common
boundary information are stored In RAM8 location 8 RAM8 location 9
IS the level number")

ce· global variables declaration

(fluid '(x y xs ys I kl xxs yys newlabel no-leVI)}
(fluid '(comlabel curlev no-levels tw ts te tn)}

(setq no-levels 7)

(de conn-comp{k)

% k = 1 -- > laLe! f('(A~round components.
% k = 0 --> label background components.

(prog ()
(N-ENABLE)

(comment "Step 1: The folloWIng function stores in RAM8 location 9 the
tree level number."

(number-levels no-levels)

% Initialize global vanables

(cond ((= k O)(setq kl 87))
(t (setq kl 66)))

(setq newlabel 0)
(setq curlev 0)
(setq no-levI 6)
(setq tw L)
(setq tn 4)
(setq te 16)
(setq ts 64)

co InItialize the common boundary vanable.

(~-BROAD(" \STS MAR S)
I ~-CLEA.R8)

(~- \\"RITERAMS C8)

co Initialize the REPORTED vanable (101)

(~-CLEAR1)
(~-MOVI Cl 101)

(comment "Step 2 101 IS set only In rectangles of type kl RAMI
location 5 IS set In only PEts With rectangles to be labeled")

(~-BROADCASTS MAR 5)
(~-READRAMS 88)
(~-BROADCASTS A8 kl)
(~-CO~IPARE 88)

(;'\i-MOV1 Al 101)
(N-WRITERAl\11 AI)

so Set LABEL equal to 0 In rectangles to be labeled

(~-~fOVl Al ENI)
(N-BROADCASTS MAR 7)
(N-CLEARS)
(N-WRITERAMS CS)

(comment "Step 3 In the labeling algorithm. Report the rectangles one
by one In order of theIr sizes")

step3 (N-ENABLE)
(N'-BROADCASTS AS curley)
(N-BROADCASTS MAR 9)
(~-READRAMS 88)
(N-COMPARE 88)
(N-MOV1 101 BI)
(N-A."IDI)
(N-MOVI ,CI AI)
(N-RESOLVE)

(cond ((= (N-GET-RI) 0)

","'.,

(cond ((= curley no-levl)(go !tnt))
(t (setq curley (plus curley l))(go step3))))

(com ment ,. Step 4 Report the Informatlon of the selected rectangle, and
m ark It as reported")

(t (N-MOVI Al ENl)
))

(N-CLEARl)
(N-MOVI Cl 101) % REPORTED = 'V'
(N-CLEARS)
(N-MOVS CS MAR)
(N-READRAMS AS)
(N-REPORTS AS) % Report XSIDE

(setq xs (N-GET-GGS))

(~-INCRE~NT MAR)
(N-READRA.\fS AS)

) I ~ -, ,

(!'I-REPORT8 A8) % Report YSIDE

(setq ys (N-GET-GG8))

(:'-I-INCREMENT MAR)
(~-READRAM8 A8)
(N-REPORT8 A8) % Report XADD

(setq x (N-GET-GG8))

(N-INCREMENT MAR)
(N-READRAM8 A8)
(N-REPORTS AS) % Report Y ADD

(setq y (:'-I-GET-GG8))

(~-BROADCAST8 MAR 7)
(N-READRA\fS AS)
(N-REPORT8 A8) % Report LABEL

(setq I (~-GET-GG8))
(cond ((= I O)(setq newlabel (plus newlabel 1))

(setq 1 newlabel))

(s~tq comlabel 1)

(~-BROADCAST8 AS 1)
(N-\\lUTERAMS AS)

co Step j Test (or adjacency In 4 directions

(:'-I-ENABLE)

co Store 101 (REPORTED) In RAMI location Q

(N-BROADCAST8 MAR Q)
(N-WRITERAM1 101)
(:'-I-CLEAR 1)
(~-~fOVl Cl 101)
(N-BROADCAST8 MAR 2)
(:'-I-READRA.\f8 88) % 88 <-- XADD
(N-INCREMENT MAR)
(N-READRAM8 108) % 108 <-- YADD

1 1) -,-

(setq yys (plus y ys))
(setq xxs (plus x xs))

(N-BROADCAST8 MAR 9)
(~-READRAMI AI)
(~-MOVI Al ENI)

% Check in the east direction.

(N-BROADCAST8 A8 xxs)
(N-COMPARE B8)
(N-MOVl Al ENl)
(N-BROADCAST8 A8 yys)
(N-COMPARE 108) % B is set if yys < YADD
(N-NORI)
(N-MOVI CI ENI)
(N-BROADCAST8 A8 y)
(N-COMPARE 108) % Bl IS set if y < YADD
(N-ORI)
(N-MOVI Cl EN1)
(~-SET1)
(N-MOVI Cl 101)
(com-bounda.ry tw)

(;-";-E~ABLE)

(N-BROADCAST8 MAR 9)
(N-READRAMI AI)
(~-MOVI Al ENI)

so Check In the south direction.

(N-BROADCAST8 A8 yys)
(N-COMP ARE 108)
(N-MOVI Al ENI)
(N-BROADCAST8 A8 xxs)
(N-COMPARE 88) % B IS set If yys < YADD
(N-NORI)
(N-MOVI CI ENI)
(!'I-BROADCAST8 A8 x)
(N-COMPARE 88) % BI IS set If y < YADD
(N-ORl)
(N-MOVI CI ENI)

)' ,
_ I)

(~-SETI \
(N-MOVI CI 101)
(com-boundary tn)

(~-E~ABLE)

(~-8ROADCAST8 MAR 9)
(~-READRAMI AI)
(~-MOVI Al ENl)

so Check In the west direction
(~-8ROADCAST8 MAR 0)
(~-READRA.\f8 A8)
(~-CLEARl)

(N-ADD 88)
(N-MOV8 88 A8)
(N-MOV8 C8 88)
(N-MOV8 A8 C8)
(N-BROADCAST8 A8 x)
(~-COMPARE 88)
(N-MOV8 C8 88)
(N-MOVI Al E~l)
(~-BROADCAST8 A8 yys)
(:"i-COMPARE 108) % B IS set If yys < YADO
(:'\- :"iOR 1)
(:,\-~fOVl Cl E~l)
(~-8ROADCAST8 A8 y)
(~-COMPARE 108) % 81 IS set If y < YADO
(~-OR1)

(;\i-MOVI Cl EN1)
(~-SETl)

(~-MOVI Cl 101)
(com- boundary te)

(N-E~ABLE)
(N-BROADCAST8 ~l-\R 9)
(N-READRAMI AI)
(N-MOVI Al EN 1)

co Chec k In the north direction

(~-8ROADCAST M.\R I)
(:"l-READR.A.\18 A8)
(~-CLEARl)

214

(setq yys (plus y ys))
(setq xxs (plus x xs))

(N-BROADCAST8 MAR 9)
(~-READRAMI AI)
(N-MOVI Al ENI)

% Check 10 the east direction.

(N-BROADCAST8 A8 xxs)
(N-COMPARE B8)
(N-MOVI Al ENI)
(N-BROADCAST8 A8 yys)
(N-COMPARE 108) % B is set if yys < YADD
(N-NORI)
(N-MOVI CI ENI)
(N-BROADCAST8 A8 y)
(N-COMPARE 108) % Bl is set if y < YADD
(N-ORI)
(N-MOVI Cl ENl)
(N-SETl)
(N-MOVI Cl 101)
(com-boundary tw)

(N-ENABLE)
(N-BROADCAST8 MAR 9)
(N-READRAMI AI)
C~-MOVI Al ENl)

so Check 10 the south direction.

(N-BROADCAST8 A8 yys)
(N-COMPARE 108)
(N-MOVI Al ENl)
(N-BROADCAST8 A8 XX!)

(N-COMPARE 88) % B IS set If yys < YADD
(N-NORl)
(N-MOVl Cl ENl)
(N-BROADCAST8 A8 x)
(N-COMPARE 88) % Bl IS set If y < YADD
(N-ORI)
(N-MOVI Cl ENl)

(~-ADD r08)
(~-8RO.\~.l< 'AST8 A8 y)
(N-MOV8 C8 108)
(N-COMPAHE 108)
(N-MOVI Al ENl)
(:,\-8ROADCAST8 A8 xxs)
(~-COMPARE 88) % 8 is set if yys < YADD
(N-:~ORl)

(N-MOVI Cl ENl)
(N-8ROADCAST8 A8 x)
(N-COMPARE 88) % 81 is set if y < YADD
(N-ORl)
(N-MOVl Cl ENl)
(N-SETl)
(N-MOVl Cl 101)
(com-boundary ts)

% Step 5-b Mark equivalence labels.

(N-ENABLE)
(N-BROADCAST8 MAR 7)
(N-CLEARl)
(~- \VRITERA.\f 1 C 1)
(N-MOVI 101 EN I) CO Only rectangles to be labeled

CO are enabled.
(~-CLEAR8)

(N-MOV8 C8 A8)
(N-COMPARE RAM8)
(N-~ "EGA TEAl)
(N-MOVI CI ENI)
(N-\\lUTERAMI CI) % RAMI 7 <-- EQUIV
(N-READRAM8 C8) % C8 <- LABEL

% Set the label in all blocks

CO Step 6

(N-ENABLE)
(N-MOVI 101 ENI)
(N-8ROADCAST8 A8 comlabel)
(N-WRITERAM8 A8)

(N-ENABLE)

(N-CLEARl)
(N-MOVI Cl 101)
(N-READRAMS lOS)

st~6 (N-ENABLE)
(N-BROADCASTS MAR 7)
(~-READRA.\11 AI)
(~-RESOLVE)

(eond ((= (N-GET-RI) 0)

)

)

(N-ENABLE)
(N-MOVI 101 ENI)
(N-BROADCASTS AS eomlabel)
(N-\VRITERA\1S AS)
(N-ENABLE)
(N-BROADCASTS MAR Q)
(N-READRA.\11 101)
(go stepJ)

(t (N-MOVI Al ENl)
(N-CLEARI)
(N-\VRITERA.\H CI)
(N-REPORTS CS)
(setq I (N-GET-GGS))
(~-ENABLE)

(N-BROADCASTS MAR 5)
(N-READRAMI AI)
(N-~fOVl Al ENl)
(N-BROADCASTS AS I)
(N-COMPARE lOS)
(N-MOVI Al ENI)
(N-MOVI Al 101)
(go step6)

flna (N-ENABLE)
(terpra)
(prane "
(terpra)
(prine"

THE E~")

------- .,)
))

(de com- boundary (I)
(N-BROADCASTS ~ S)
(N-READRA.\1S A8)

2h

)

(N-MOVS BS MAR)
(N-BROADCASTS 88 I)
(N-ORS)
(N-MOVS MAR 8S)
(N-BROADCASTS MAR S)
(N-WRITERAMS CS)

(comment "This routine stores the level number in RAMS location 9 ")

(de n urn ber-Ievels (n)
(N-ENABLE)
(N-BROADCASTS MAR 9)
(n-put-ggi 1)

% Enable the root only.

(N-CLEARl)
(N-MOVI Cl 101)
(N-RECVl Al P)
(n-put-ggl.0)

(do ((I 0 (a.ddl I)))
((= 1 n))

))

(:'-i-MOVl Al E~I)
(;\i-BROADCASTS AS 1)
(~- \VRITERAM8 A8)
(:"-1-ENABLE)
(~-MOVl Al 101)
(~-RECVl Al P)

), -
- ! .

Appendix C

Some Functional Simulator Results

C.I. Hough Transform

Input subroutme number' (0 to ll) <0> 6

Input boundary pOints file name < > plc32 4

Do you want the !lrst or second method used (1 or 2): (1 to 2) < 1 >

The first HT method

Do you want to pnnt the accumulator array on the screen? <no>

How many pOints constitute a hne? (3 to 32) <5>

The solution
.----.-----
count= 6, parl= 1, par2= -1
count= 8, parI== 2, par2== 1
count== 6, parl== 1, par2= 6
count- 7, pari=- I, par2= II
count- 7, pari=- 0, pad== 19
count- S, parI= 1, par2= 19
count= 8, parl= 0, par2= 23
count= 9, parI= 0, par2== 28
count= 6, parI== -I, par2= 35

Input subroutine num ber? (0 to 11) <0> 6

Input boundary points file name < > pic32 4

Do you want the first or second method used (lor 2) (1 to 2) <1> 2

The second HT method.

Do you want to pnnt the 2-dimensional hIstogram On the screen? < no>

The fIrst hIstogram values (par2):
5, 6, 8, 6, 5,10, 8, 1,10,14, 4,10, 6, 8, 6, 8,10, 8, 6, 8, 1,11,
1,10, 1, 4, 7, 6, 5,15, 4, 5, 6, 8, 3, 6, 6, 7,12, 5, 5, 4, 3, 7,
6, 9, 3, 8, 5, 6, 2, 8, 3, 9, 5, 3, 5, 6, 6, 6, 5, 6, 3, 5.

Input the threshold value for the fIrst histogram: (1 to 200) <5> 7
-8,-5,-4,-2,-1, I, 3, 5, 6, 1, 9,11,13,19,23,28,35,37,41,43.

The secondo hIstogram values (parI)
3, 2, 2, 5, 9,12,18,31,36,31,21,10, 1, 2, 1, 2

Input the threshold value for the second hIstogram (1 to 200) <10>

Possible values of parI are
-2,-1, 0, 1, 2, 3

How many POInts constItute a hne? (3 to 32) <5>

The solution

parl== -I, par2=- as
parI=- 0, par2== 19
parI=- 0, par2== 23
parI=- 0, par2= 28
parI== I, par2== -1
parI== I, par2== 6
parl== I, par2== 11
parl== I, par2== 19
parI= 2, par2== 1

C.2. Moving Light Displays

% VlSlon

How many levels in the tree? (2 to 12) < 10>
Do you lOtend to use the Gnnnell? <yes> n

SubroutlOes Menu

o load an image
1 Build the BlOary Image Tree

lor the multi-resolution pyramid)
2 Label forground/background objects
3 Geometric properties of forground/background objects
4 Computing a gray image histogram
5 The gray Image thresholdlOg/Enhancement
6 ExecutlOg the Hough Transform
7 Display a multi-resolution pyramid tree level
8 1m ag~ shlftlOg
9 Image correlation
10 MovlOg hght displays
11 QUlt

Input subroutlOe number? (0 to 11) <0> 10

Input flrst frame pOlOts fIle name < > framel

Input flrst frame pOlOts hIe name < > framel

Do you want to print the first frame pOints on the screen? <no> y

The input first (rame pOlOts
----_ .. _------------

(4, 1)
(3, 3)
(I, 3)
(4, 5)
(5, 3)
(7, 3)

220

Input the followIng frame pOints fIle name < > frame2

Do you want to print the second frame pOints on the screen? < no> y

The Input second frame pOints

8, 6)
S, 8)
7, 8)

(9, 8)
(11, 8)
(8,10)

Do you want to prInt

The InItIal solutIon

0, 1, 2, 3, 5, 4,

Do you want to prInt

The final solutIon

o 2, 1, 5, 3, 4,

the InItIal solution on the screen?

the fInal solutIon on the screen?

Input subroutine number? (0 to 11) <0> 10

Input fIrst frame pOlOts file name < > planel

<no> y

<no> y

)) , --,

Do you want to pnnt the first frame pOints on the screen? < no> y

The 11'lput first frame POints

(1, ,5)
(1, 7)
(2, 9)
(5, i)
(i, 5)
(9, i)

Input the following frame POints file name < > plane2

Do you want to pnnt the second frame POints on the screen? <no> y

The Input second frame pOints

(2, 6)
(8, 6)
(2, 8)
(6, 8)
(10, 8)
(3,10)

Do you want to pnnt the Initial solution on the screen? <no> y

The Initial solution

0, 2, 5, 3, I, 4,
Do you want to pnnt the final solution on the screen? < no> y

The final solution

0, 2, 5, 3, 1, 4,

)))

Is there another frame? < no> y

Input the following frame pomts file name < > plane1

Do you want to print the second frame pomts on the screen? < no> y

The Input second frame points

(1, .5)
(7, 5)
(1, 7)
(.1, 7)
(9, 7)
(2, 9)

Do you want to print the Initial solution on the screen? <no> y

The Initial solution .

0, 5, 2, 3, 1, 4,

Do you want to print the final solution on the screen? < no> y

The final solution

0, 2, 5. 3, 1, 4,

Is there another frame? < no>

Input subroutlDe number? (0 to 11) <0> 11
CO -D

223

