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ABSTRACT

Image Understanding Algorithms on
Fine-Grained Tree-Structured SIMD Machines

Hussein A. H. Ibrahim

An important goal for researchers in computer vision is the construction
vision systems that interpret image data in real time.  Such systems
typically require a large amount of computation for processing raw image
data at the lowest level, and for sophisticated decision making at the
highest level Recent advances in VLSI circuitry - have led to several
proposals for parallel architectures for computer vision sys.temsi In this
thesis. we demonstrate that fine-grained tree-structured SIMD machines,
which have favorable characteristics for effictent VLSI implementation, can
be used for the rapid execution of a wide range of image understanding
tasks  We also identify the limitations of these architectures and propose
methods to ameliorate these difficultiess The NON-VON supercomputer,
currently being constructed at Columbia University, 1s an example of such

an architecture

The major contribution of this thesis 1s the development and analysis of
several parallel image understanding algorithms for the class of architectures
under consideration. The algorithms developed in this research have been
selected to span different levels of computer vision tasks  They include
image correlation, histogramming, connected component labeling, the
computation of geometric properties, set operations, the Hough transform
method for detecting object boundaries, and the correspondence problem in
moving hLght display applications. The algorithms incorporate novel
approaches to reduce the effects of communication bottleneck usually

associated with tree architectures
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Chapter 1

Introduction

The field of image understanding, also referred to as computer vision or
image analysis, has developed quickly during the last decade, w.ith
growing applications 1n various fields. Industnal production, medicine,
space exploration, robotics, and the discovery of natural resources are but
a few examples of such areas. An important goal for researchers i1n this
field 1s to construct computer-based vision systems that receive an image
or a sequence of images from a sensory device and output an
interpretation of this input 1n real time. Input images with reasonable
resolution contain large quantities of data, and conventional von Neumann
machines require an excessive amount of time to sequentially process the
fetched data Image understanding applications, however, usually involve
computations that can be performed simultaneously on many or all of the
image elements Consequently, parallel computers are highly desirable for

fast execution of image understanding tasks

A computer implementation of a complete vision system not only
requires the performance of many computations on large structured arrays
of raw image data at the lowest level, but also sophisticated decision
making at the highest level  With recent advances in very large scale
integrated (VLSI) circuitry, 1t 1s feasible now to embed a number of

processing and memory elements within a single chip in a cost-effective



manner. This has led to a surge in research aimed at developing new
computer organizations that meet the large computational and decision
requirements of image analysis tasks by exploiting the new technology.
Various kinds of special parallel machines for computer vision have been
proposed and some have been implemented; examples are described 1n

[Duff 76], [Krus 76}, [Dyer 81], [Kush 83|, [Pott 83|, and [Reev 84]

The organization of some of the proposed machines i1s based on a very
large number of very small processing elements (PE’'s). Throughout this
thesis, we will refer to such machines as fine-grained or highly parallel
machines In such machines, different schemes are used to interconnect
the PE's For example, the PE's can be connected together in the form
of a two-dimensional mesh, or they can be placed at the nodes of a
binary tree If all the PE's simultaneously execute the same instruction
on their own data, the machine 1s saild to be executing in single
_instruction stream, multiple data stream (SIMD) mode [Flyn 72]. On the
other hand. if the PE’'s execute different instruction streams concurrently
on different data streams, then the machine 1s said to be executing in

multiple instruction stream, multiple data stream (MIMD) mode.

In this thesis, we investigate how fine-grained tree-structured SIMD
computer architectures, which have favorable characteristics for efficient
VLSl implementation, can be used for the rapid execution of a wide

range of vision tasks We also discuss certain limitations of these



architectures as vision machines and propose methods to ameliorate these
difficulties  The NON-VON supercomputer, currently being constructed
at Columbia Umversxtyl, 1s a representative example of this class of

architectures

Several parallel image understanding algonithms, spanning different levels
of wvision algonthms, have been developed and implemented on a
functional simulator of the NON-VON machine. Some of these
algorithms have also been tested on a machine instruction-level simulator
of NON-VON  The design, implementation and time analysis of these
algorithms are discussed 1n this thesis, as are issues related to 1mage
representation and 1mage I/O. NON-VON’s performance for the
developed algorithms 1s also compared with that of other highly parallel

vision machines.

In the rest of this chapter, we first discuss the nature of image
understanding tasks and the manner in which they affect the design of
the proposed architectures. In Section 12, we outhne the central 1ssues
related to the construction of such highly parallel machines, and describe
the motivations for this research In Section 13, we state the major
contributions of this work and outline the organization of subsequent

chapters

IThe first prototype is expected to be completed by March 1985.



1.1. Levels of Computer Vision Tasks

Computer vision tasks may be divided into three characteristic classes
low-level vision, intermediate-level vision, and high-level vision. Low-level
image processing deals with the raw image data received from the sensory
devices and usually produces an output of the same size as the input
Low-level vision processing 1s sometimes referred to in the literature as
signal level processing, since input image data may be viewed as a signal
to be processed.  Examples of low-level vision tasks include 1mage
restoration, noise removal, gathering certain statistics about the image,
tmage enhancement, and simple feature extraction such as edge detection
[Ball 82| Since such tasks usually involve the execution of the same
sequence of instructions repeatedly on all of the image data, they are well
sutted for fast execution on machines of SIMD architecture Most special
hardware systems proposed for image understanding tasks are of this

tvpe

[ntermediate-level vision tasks are usually concerned with aggregating
image features obtained from low-level vision tasks and transforming the
image into some symbolic representation, such as labeled graphs of
relations between image features Examples of such tasks include the
Hough transform method for detecting object boundaries described by
parametric curves, and interpreting the shape of three-dimensional objects

from two-dimensional images Intermediate-level vision tasks may be

o



viewed as the interface between low-level processing and processing of the
symbolic 1mage representations on the high-level There are some open
research questions regarding tasks on this level Examples of such
problems include the choice of the best sets of features to be extracted
by loQ-level procedures for the task at hand, and the manner i1n which

they are represented for use in high-level vision tasks.

High-level vision tasks accept a symbolic representation of an image and
classify 1mage f[eatures and segments into known classes They also
match these symbolic representations to known symbolic structures for the
final interpretation of the image  Techniques used in these tasks are
similar to those used in the fields of artificial intelligence and pattern
recognition  High-level vision tasks usually involve multiple operations
that can be executed 1independently For example, the same image
segment can be analyzed using different techniques Architectures suited

for these kinds of tasks are usually of the MIMD class

In Chapter 2, we overview some of the architectures that have been
proposed to implement these tasks, and discuss the advantages and

disadvantages of these different architectures.



1.2. Motivations For This Research

There are several motivations for this research. First, tree-structured
machines have favorable characteristics for efficient VLSI implementation,
such as area-effictent layout, simple interconnection scheme, and a
bounded number of I/O ports per chip. Thus, tree machines are easy to
copstruct and expand. The reader 1s referred to [Ibra 83] for a detailed

discussion of this aspect of tree machines.

Second, NON-VON'’'s hardware, with its éupport for the fast global
broadcast of instructions and data to all PE’s, 1s well-suited for the rapid’
execution of a wide range of vision tasks, especially low-level SIMD vision

tasks A detailed discussion of this aspect of NON-VON's architecture is

presented 1n Chapter 2

Third. NON-VON has some specital hardware features that have been
designed to support large scale data processing, and which have proven
useful 1n vision tasks to ameliorate some of the problems related to the
communication bottleneck generally associated with tree architectures

We will describe these features in Chapter 3

The fourth motivation 1s based on the fine granularity of the NON-
VON PE's, which 1s well suited to image analysis tasks involving large

amounts of data.

J



Furthermore, the hierarchical nature of the NON-VON tree allows the
efficient 1mplementation of existing hierarchical and multi-resolution
algonithms for i1mage analysis. Algorithms based on the aggregation of
values computed at a number of 1mage points can be executed very

quickly by virtue of the hierarchical nature of the machine.

NON-VON's architecture also supports the concurrent manipulation of
massive amounts of symbolic data, which 1s useful in high-level vision
tasks Relational image databases can be handled very efficiently on the
NON-VON machine. The implementation of such systems is discussed 1n
[Shaw 82] Rapid execution of expert systems on tree machines 1s also
discussed 1n [Stol 82] The efficitent use of image databases and of expert
vision svstems for high-level vision, are interesting research questions that

are however. beyvond the scope of this thesis

1.3. Contributions of This Research and

Organization of Subsequent Chaptefs

The major contribution of this thesis 1s the development and analysis of
parallel algorithms for several image understanding tasks on highly
parallel tree-structured SIMD machines The i1mage analysis applications
consndered‘m this thesis have been selected to span different levels of
computer vision applications These algorithms incorporate novel
approaches to exploit the machine's tree organization and to reduce the

effects of communication bottleneck usually associated with tree



architectures.

Issues that affect the design and time analysis of these algorithms are
also addressed in this dissertation. Image representation in tree machines
is one such issue. We describe how hierarchical data structures can be
modified to represent images in the NON-VON tree. Fast image [/O 1s
an important factor for efficient implementation of vision algorithms. In
this thesis, we propose different methods to perform I/O efficiently in

tree machines.

More specifically, we have developed and analyzed parallel algorithms
for fast 1mage correlation, and for quasi-parallel connected component
labeling A fast, distributed, space-efficient algorithm has been developed
to implement the Hough transform method for detecting object
toundaries  We have also developed a parallel algorithm that quickly
enumerates possible solutions for the correspondence problem in moving
light display apphcations  Other fast algorithms have been developed,
including 1mage histogramming, set operations, and the computation of

the geometric properties of objects

NON-VON's performance for different image algorithms is analyzed and
compared with that of other highly parallel image understanding
architectures Two simulators have been used to simulate the image

algorithms A functional simulator has been implemented on a VAX



11/750 augmented with a Grinnell image processor, and using the
programming language C We have used this simulator to test all of the
algoritlms described in this thesis. A Lisp-based machine instruction-level
snmulatpr that has been developed for the NON-VON machine 1s used to
execute some of the image algorithms  Based on simulation results,
NON-VON's performance 1s compared with that of other highly parallel
architectures for i1mage analysis systems, and many algorithms are shown
to execute faster on NON-VON than on other highly parallel machines.
We have also 1dentified the limitations of tree machines in the rapid
execution of certain 1mage analysis tasks, and have proposed special
modifications to the NON-VON architecture for the rapid execution of

these tasks

In what follows, we outline the organization of the remaining chapters
In the following chapter, a number of special parallel architectures for
image understanding are reviewed, with an emphasis on their basic
architectural features and the vision applications for which they are best
suited  The NON-VON architecture 1s described in Chapter 3, and 1s
compared with other proposed hierarchical architectures for vision. A
parallel programming language, based on PASCAL, 1s also described 1n
Chapter 3° This language, referred to as N-PASCAL, 1s used to describe

the developed algorithms throughout the thesis

In Chapter 4, we introduce certain hierarchical data structures for



image processing, and demonstrate how they can be used to represent
images in the NON-VON tree. We also discuss in Chapter 4 the
initialization procedures for the NON-VON tree, along with various issues

related to image I/O.

o

Four groups of algorithms are presented in this thesis:

1. Signal level processing algorithms.

2 Geometric algorithms.

3. Aggregation algorithms.

4 High-level algorithms.
Examples of these groups are presented i1n Chapters 5 thfbugh 8,
respectively  The first two groups represent low-level vision tasks, while
the third and fourth groups represent intermediate- and high-level vision
tasks respectively Time analysis results are presented for each
algorithm. and NON-VON's performance 1s compared with that of other
architectures  Simulation results, obtained by implementing the image
understanding algorithms on the functional simulator and on the NON-
VON instruction-level simulator, are also presented and analyzed.
Chapter 9 includes the conclusion of this thesis and outline possible

directions for further research

10



Chapter 2

Parallel Image Processing
Architectures: An Overview

In this chapter, we describe several of the parallel architectures that
have been proposed for computer vision, with an emphasis on the match
between their underlying architectural features and various image analysis
tasks Advantages and disadvantages of the surveyed machines as vision
machines are also discussed.  These architectures may be classified into
four categories based on the scheme used to interconnect the processing

elements

1 Mesh-connected architectures

(2]

Pipelined architectures.

w

Multiprocessor Architectures
4 Hierarchical architectures.
We will focus on the last of these architectural families, and will show in

more detail the motivation behind 1t

1



2.1. Mesh-Connected Architectures

Cellular logic arrays, proposed by Uuger [Unge 58|, [Unge 59] for use as
parallel i1mage processors, form the basis for many later architectural
proposals 1n this category. In cellular logic arrays, also referred to as
two-dimensional arrays or parallel array processors, an image is divided
into a regular two-dimensional array of cells, with a PE assigned to each
cell.  Physically adjacent PE’s can communicate with each other, and
each PE has some local storage and some hardware to manipulate its |
contents. The PE’s execute in SIMD mode with instructions broadcast
by the host computer.  Figure 2-1 shows the organmization of a two-

dimensional cellular array.

PE: PE: PE:s s o
PE P * L] [ ]
n<4=1 n+2 n<s

Figure 2-1: A Two-Dimensional Cellular Array
(Adapted from [Rose 83])

Loading and unloading of images are usually performed alongside the



perimeter of the array.  All the data paths within a single PE are
typically one bit wide, for this reason, such machines are also referred to
as bifiary array processors [Reev 84]  With recent advances in VLSI,
machines containing as many as 16K one-bit PE’'s (organized in a

128 x 128 array) have been constructed.

The fundamental advantage of this family of architectures i1s that 1t
maps the physical adjacency of image elements directly into hardware,
thus making access to neighborhood information very rapid. Many low-
level image operations, such as image filtering and local image feature
detection, can be executed very rapidly in parallel on this architecture.
Operations 1nvolving the gathering of statistics about the whole image are
not as fast as local operations They execute 1n a time proportional to

the array diameter (that 1s, to the square root of the number of PE's)

VLSI implementation of such machines involves designing chips with a
number of PE's interconnected together in the form of a rectangular grid
The PE's on the perimeter of the grid communicate with other chips
through I/O ports.  With VLSI device dimensions scaling down, an
increasing number of PE's can be embedded on one chip. However, the
number of pins required for inter-chip communication increases in
proportion to the square root of the number of PE's per chip. Thus, the
number of PE's to be embedded on one chip 1s limited by the number of

pins allowed by the technology One way of dealing with this problem

13



involves time-multiplexing the use of [/O ports between several PE's on
the perimeter of the chip [Weem 84]. This, however, reduces the speed

of inter-chip communication.

Examples of operational machines in this architectural family include
CLIP4 [Duff 76] which 1s a 96 x 96 PE LSI machine, the MPP [Pott 83)
with an array of 128 x 128 PE’s, and the ICL DAP ([Mark 80|,
containing an array of 64 x 64 PE's. A further discussion of cellular

logic arrays can be found in [Rose 83] and [Reev 84].

2.2. Pipelined Architectures

Other parallel machines proposed for image understanding make use of

pipelining as a way of introducing parallelism 1nto the system.

Auxihary | | Host
Store Computer

o PEL | PE: (.- —s{ PEn

Buffer
Memory [

Figure 2-2: Organization of Pipelined Architectures
(Adapted from [Reev 84|)

Figure 22 depicts the basic organization of this family of architectures.

14



Image data 1s passed to the first stage of the pipeline from the scanning
device, or from a buffer memory. The function of each stage 1s specified

by thé host computer through the instruction bus

Machines of this type are most efficient in real-time low-level image
processing applications where the image data source 1s connected to the
machine directly, and generates data at the speed of a simple pipeline
step  Such architectures can be fully utilized when the 1magé processing
tasks have a number of steps equal to the number of the pipeline stages
The architecture has 1ts hmitations, though, and when dealing with more
than one 1mage at a time, or when performing operations such as
geometric corrections, due to the limited interconnection scheme of the

pipeline

An example of this family of architectures 1s the Cytocomputer
[Ster 83], which 1s wused 1n biomedical 1mage processing The
Cytocomputer has 80 binary stages in one pipeline and 25 grey level
stages 1n a second pipeline, each stage operates on a three by three
window 1n the image  Binary stages are capable of implementing all
possible logical operations on the nine elements by means of a look-up
table memory 1n each stage. This makes such operations extremely fast
in these stages  The gray level stages can perform 8-bit anthmetic

operations on their window operands

()



2.3. Multiprocessor Architectures

Members of this category of architectures make use of a high-bandwidth

interconnection network for communication between an independent set of

PE’s

Shared Memory
3

Interconnection Network

PE: PE2 « o PEn

Figure 2-3: An MIMD Architecture
(Adapted from [Reev 84))

The processors 1n such architectures can typically execute different
programs (MIMD mode), or the same program (SIMD mode) at any point
in time Communication among the PE’s 1s affected by sending messages
through the interconnection network or through a shared memory, as

shown 1n Figure 23

Parallel machines of this type are mostly efficient in executing high-level
image understanding tasks, in which the image 1s no longer represented

as a large array of data, but rather in the form of a symbolic description



of objects For example, dlffereni processors may be assigned different
algorithms for the analysis of the same image object. Because of the
complgxity of the interconnection network required to connect the PE's,
machines of this type can not embody more than few thousand
processors. The distribution of tasks between independent processors and

the synchronization of different PE'’s present added complications

Examples of this class of architectures include PASM |[Sieg 81] and
ZMOB |Kush 82] The proposed architecture of PASM comprises 1024
PE's interconnected together by means of a permutation network  The
‘machine also contains a number of control units that enable the machine
to execute as an independent set of SIMD machines ZMOB, on the
other hand. consists of 256 1dentical PE's, connected to each other and to
a VAX 11/780 host computer by a high-speed bus The PE's
communicate with each other and with the host machine by means of
messages transferred through the bus The reader 15 referred to
[Kusﬁ 82] and [Sieg 81] for a description of the implementation of some

image tasks on these two machines

2.4. Hierarchical Architectures

A fourth architectural approach is suggested by the vision systems of
humans and hlgher animals The human visual system processes pictorial
information through a series of layers, each containing a large set of

parallel receptors and processors. Input information to the visual system



is received by a large parallel set of sensory receptors, the rods and
ccnes, 1n the retina. The retina behaves 1n many ways like a mesh of
PE's. This raw information 1s ‘then transformed into gradients, and
contours are enhanced by two other parallel sets of processor layers in
the retina [Uhr 80]. The transformed information is then carried by the
optic nerve to the higher portions of the visual system. Information
reaching the higher portions 1s compressed in size by a factor of about
100, and 1t 1s then processed and transformed by several layers of parallel

processors.

These observations have generated proposals for  hierarchical
architectures for image understanding systems. Such architectures are
often referred to 1n the literature as hierarchical, cone, or pyramid
machines In hierarchical architectures, processing takes place in a series
of levels, as shown in Figure 24 At the lowest level 1s the raw pictonal
information 1nput to the system by a sensory deviee A set of
transformations is first performed on this input; their output 1s then
either stored on the same level or passed to the next level in the
hierarchy. This process continues for several layers in the hierarchy
Data may also flow top-down in the hierarchy of layers, or laterally

within any layer

Hierarchical architectures are well suited to the fast execution of multi-

resolution feature (color, texture, edge, etc) algorithms. In addition,

,»4
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Figure 2-4: A Hierarchically Organized Architecture
(Adapted from [Uhr 84))

many algorithms that use hierarchical data structures, such as quadtrees,
[Khn 76], can be 1implemented efficiently on hierarchical machines
Global feature information, such as bit counting, can be rapidly

accumulated at the top of the hierarchical structure

A number of special hierarchical parallel machines have been proposed
for 1mage processing tasks ([Hans 78|, [Uhr 78], [Dyer 81], [Tam 83a))
The pyramid machine proposed by Dyer [Dyer 81] 1s a representative
example of this class of architectures The organization of a pyramid
machine 1s shown 1n Figure 25 PE’s in each layer are organized as two
dimensional arrays. with each PE capable of communicating with 1its
immediately adjacent PE's Each PE also communicates with four PE's

in the layer below 1t, and with one PE in the layer above it. Pyramid



Figure 2-6: Organization of the Pyramid Machine
(From [Tani 83a))

machines are difficult to build because of the complexity of their wiring,
and only a few projects for building a 16 x 16 base pyramid machines

are under way ([Tami 83a] and [Scha 84])

The NON-VON supercomputer [Shaw 82] 1s another example of a
hierarchical machine Its architecture includes a large number of small
PE's that form the nodes of a complete binary tree NON-VON has
been designed to support the massively parallel manipulation of data
records stored i1n its PE's This aspect of the NON-VON machine makes
it attractive for vision applications that involve a large amount of data.
Furthermore, hlerarghlcal data structures proposed for image analysis,

including multi-resolution pyrafnxds and quadtrees, can be effectively used



to represent images on NON-VON  Also, the binary image tree data
structure proposed 'y Knowlton |[Know 80] as a variant of quadtrees, can
be mapped directly onto the NON-VON machine to represent binary

images in a manner to be described in Chapter 4.

The present version of the NON-VON architecture differs from other
proposed pyramid machines 1n that i1t does not implement in hardware
the mesh connections at each level. Thus, local operations execute faster
on mesh-connected and pyramid machines Careful design of the
algorithms can speed up these operations considerably, as will be
described later  The architecture of NON-VON is described in the
following chapter, and the differences between its architecture and other

proposed pyramid machines are presented



Chapter 3

The NON-VON Supercomputer
Architecture

The name NON-VON 1s used to describe a family of massively parallel
tree-structured machines intended to support large scale data manipulation
[Shaw 84] The architectures of all the NON-VON family members
include a tree-structured primary processing subsystem (PPS) based on
custom VLSI circuits, along with a secondary processing subsystem (SPS)
based on a bank of intelligent disk drives. Figure 3-1 shows the top-level

organization of the NON-VON architecture.

The PPS 1s configured as a binary tree of small processing elements
(SPE's) Each SPE comprises a small RAM (up to 256 bytes), a modest
amount of processing logic, and an [/O switch that supports various
modes of communication within the tree, as will be described in Section

32

The SPS 1s based on a number of rotating storage devices. Associated
with each disk head in the SPS is a separate sense amplfier and a small

“amount of logic capable of dynamically examining the data passing
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Figure 3-1: Top Level Organization of NON-VON
(From [Hill 83])

beneath 1t [Shaw 82] This organization supports parallel transfer of data
between the PPS and SPS, which 1s necessary to keep 1/O from

becoming a bottleneck

NON-VON 1 and NON-VON 3, the first two members of the NON-
VON family, include a single special control processor (CP) at the root of
the tree The CP 1s responsible for coordinating different activities

within the PPS It 1s capable of broadcasting instructions to be executed



simultaneously by all active PE’s Thns, NON-VON 1 and NON-VON 3
function for the most part as SMMD machines, with all SPE's
simultaneously executing the same instruction. (The single exception
involves transfers between the SPS and the PPS, which will not be
discussed in this dissertation.) We will call the algorithms that use this

mode of execution SIMD algorithms.

The first member of the NON-VON family, NON-VON 1, contains
chips with only one PE, and is being constructed primarily to evaluate
certain electrical, timing, and layout area characteristics. The chip has
already been tested and has been proven functional. A modified version
of the chip with eight PE's has Been designed for use in NON-VON 3.
The modified chip, partial prototype of which has recently been
fabricated. has less area per PE, and the instruction set has been made
more powerful by generalizing register-to-register data transfers and

adding more arithmetic processing power.

The design of the NON-VON 3 PE 1s briefly described in the following
section.  All algonthms developed 1n this thesis are based on the
NON-VON 3 architecture and instruction set  Appendix A contains a
listing of all such instructions. It 1s expected that the time required to
execute a NON-VON 3 instruction in all PE's in a tree of 15 levels (32K
PE’s) 1s approximately 250 nsec. We will use this number throughout

this thesis to compute the execution time for the developed algorithms.



The emerging design for NON-VON 4 [Shaw84a] would include a
number of large processing elements (I.PE’s) connected to all nodes above
a cerfain tree level Each LPE would include an off-the-shelf 32-bit
microprocessor, a reasonable amount of memory (between 256K bytes and
one megabyte), and some spectal hardware to interface with the rest of
the machine A high-bandwidth multi-stage interconnection network would
be used to interconnect the set of LPE's. The LPE’'s would be capable
of executing their own programs, or of functioning as CP's for the
subtrees they root  Thus, NON-VON 4 would have the capability of
executing in MIMD and ‘“‘multiple-SIMD” (MSIMD) modes. The LPE
network should sigmficantly improve the bandwidth of communication

involving the top of the tree.

In the following sections, we describe the design of the SPE in the
NON-VON 3 machine and the various communication modes supported
by both the NON-VON 1 and NON-VON 3 machines We also
introduce the N-PASCAL programming language, which will be used to

describe the vision algorithms developed on the NON-VON machine.

3.1. The Small Processing Element Design

Figure 3-2 depicts the main functional blocks of the NON-VON 3 PE.
They are the eight-bit arithmetic logical unit (ALU), an array of five
byte registers, called A8 B8, C8, 108, and IMAR; an array of five one-

bit registers, called- Al, Bl, C1, 101, and EN1, a 64 word x 9-bit

-
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random access memory (RAM) and two special combinational networks.
called the I/O switch and the RESOLVE circuit [Shaw 84b] A PE
executes the instructions broadcast by the CP as long as its enable bit,
EN1, 1s set. If the enable bit 1s reset, the PE 1s disabled and only an

ENABLE instruction will activate it again.

Two internal buses, called the A bus and the IO bus, run through the
data path Both are capable of transferring either one- or eight-bit data,
depending on the instruction being executed. The A bus is used to
transfer data between the registers, the RAM, and the [/O switch. The
IO bus 1s required to support inter-PE communication, as will be seen in
the following section It connects the dual-port registers IO and A, the

[/O switch, and the ALU

The ALU comprises an eight-bit comparator that compares the contents
of the A8 register with one of the other eight-bit registers, and sets Al
and B1 to indicate the result If A8 i1s compared with B8, for example
Al 15 set (ff A8 is equal to B8, and Bl 1s set iff A8 i;_‘ léss than BS.
Eight-bit addition, subtraction, and logical operations are also supported
by the ALU In the case of addition and subtraction, Cl 1s used to hold
the carry output  One-bit logical operations are also supported by a
special one-bit logical function unit The RAM allows access to one 8 or
1-bit location per instruction cycle, and the IMAR register 1s used to

store the memory address used in RAM operations.
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Figure 3-2: NON-VON 3 Block Diagram of the
Small Processing Element

(From [Shaw 84b})

3.2. Communication in NON-VON

Inter-PE communication in NON-VON s supported by the I/O switch,
which 1s a matrix of pass transistors that routes data between the two
internal buses and the 1/O ports The NON-VON /O switch supports

the following three modes of communication.

1 Global bus communication, supporting both broadcast by the CP to
all PE's in the PPS as required for SIMD execution, and data
transfers from a single selected PE to the CP No concurrency 1s
achieved when data 1s transferred from one PE to another through



the CP using the global communication instructions An instruction
called RESOLVE can be used to disable all but a single PE chosen
from a specified set of PE’'s. This 1s an example of a hardware
multiple match resolution scheme, in the terminology of the
literature of associative processors. The CP, upon executing a
RESOLVE 1nstruction, 1s able to determine whether executing the
instruction has resulted in any PE being enabled The REPORT
instruction transfers data from the single chosen PE to the CP
using global bus communication.

(3%

. Tree communication, supporting data transfers among PE's that are
physically adjacent within the PPS tree. Instructions support data
transfers to the parent (P), left child (LC), and right child (RC)
PE's. Full concurrency i1s achieved in this mode, since all nodes can
communicate with their physical tree neighbors in parallel.

3 Linear communication, in which the whole tree 1s reconfigured to
act as a linear array of PE's This mode of communication supports
data transfers to the left neighbor (LN) or right neighbor (RN) PE's
in the linear array Linear communication 1s useful for applications
that require a predefined total ordering of data. Figure 3-3 shows
how the linear logical sequence 1s mapped onto the tree-structured
physical topology of the PPS by inorder enumeration [Knut 73]
The paths needed to transfer data concurrently between linear
neighbors 1n the tree concurrently are shown in Figure 3-3 Two
phases are required to complete the lLinear communication cycle
Note that every other element in the inorder sequence 1s a leaf
node In the first phase, data s transferred along the arrows
originating from the leaf PE’s, while in the second phase, data
passes along the black arrows terminating at the leaf PE's

The onginal NON-VON architecture which was not intended to

efficiently support computer vision applications, differs from other
=

proposed highly parallel hierarchical 1mage understanding architectures

(for example, [Tani 83}) in that it does not employ any extra physical

links to perform mesh neighbor communication This has certain

advantages from a hardware point of view, as 1t results in a fixed



Figure 3-3: Inorder Embedding of the Linear Array
(From [Shaw 82])

number of pins per integrated circuit chip. independent of the number of
PE's on that chip This makes it possible to increase the size of the tree
as chip dimensions scale down by simply embedding more PE’s on the
chip Increasing the machine size involves only removing the old PE chips
and plugging 1n the new ones On the other hand, the lack of mesh
connections slows many local operations i1n which the output value at an

image pasnt depends on its own image value and that of neighbor points

A vision-oriented variant of the NON-VON 3 machine that includes
mesh connections to supplement the current tree-structured architecture 1s

now in the early stages of design Alternative algorithms exploiting these

ad



hardware modifications will be discussed later 1n this thesis.

NON-VON's other special hardware features, including its ability to be
configured logically as a linear array, its fast global instruction broadcast
and its hardware multiple match resolution scheme, have provén useful in
the vision algorithms we have developed to overcome some of the
problems related to the communication bottleneck generally associated

with tree architectures.

3.3. N-PASCAL : An Overview

In this section we introduce a PASCAL—based parallel language called
N-PASCAL, which will be used to describe the NON-VON vision
algorithms presented in this thesis. This language 1s closely related to a
PASCAL-based parallel language,. NV-PASCAL, that has been designed to
be used on SDMD architectures [Baco 82]. The principal idea behind the
design of N-PASCAL has been to create features that make full use of
the machine’'s parallel capabilities while retaining all of the high-level

constructs of PASCAL.

N-PASCAL 1s based on standard PASCAL as described in [Jens 74].
One new data type and two extra constructs have been added to
standard PASCAL. The new data type is referred to as the vector—var
(for vector variable), and the two new constructs are the parallel

assignment and WHERE statements In addition, built-in functions allow

50



the programmer to explicitly make wuse of the NON-VON tree
communication instructions  We now briefly describe the N-PASCAL
constricts that have been used to describe 1mage understanding

algorithms presented in this thesis

The new data type vector—var 1s used to express the parallelism in the
language  Vector variables reside i1n the PPS and are associatively
addressed. whereas standard PASCAL variables reside in the CP and are
sequentially addressed In the following sections, variables that are
defined to be of type vector var are referred to as vector variables,
while scalar variables refer to those that are stored in the CP In the
NV-PASCAL procedures described in this thesis, we will use italies to
refer to scalar variables and capital letters to refer to vector variables
Small bold letters will be used to refer to the reserved keywords of the

language

There are two types of statements in N-PASCAL.  sequential and
parallel The sequential statements are those of standard PASCAL, while
the paralle] statements are those that operate on vector variables The
assignment statement can be either sequential or parallel. The sequential
assignment statement 1s the assignment statement encountered in standard
PASCAL The parallel assignment statement 1s the one that refers to a
variable that 1s defined as a vector vanable. The parallel assignment

statement 1s executed concurrently. in all active PE's in the machine For
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example, upon execution of the following segment of an NV-PASCAL

program

vector_ var
COUNTER integer,

begin
COUNTER = 0,

the vector variable COUNTER stored in all PE’s is initialized to zero

The WHERE statement 1s a form of parallel conditional statement that
operates only on vector variables. The form of the WHERE statement 1s

as follows

WHERE <conditional expression>
DO <statement>
[ ELSEWHERE <statemeat> | ;

It 1s used to first select only those PE’'s with vector variables that satisfy
the boolean expression. The statement following Vthe DO 1s then executed
in only those PE's. If the optional ELSEWHERE clause 1s included, the
statement following the ELSEWHERE keyword is executed in the subset
of the PE’s that failed to satisfy the original conditional expression. An

example of the WHERE statement follows:

vector_var
COUNTER , VALUE Integer,

begin
where COUNTER > 50 do VALUE = 100
elsewhere VALUE = 0,
The vector variable COUNTER 1s tested in all PE's and 1n those PE’s

whose COUNTER value exceeds 50, the vector variable VALUE 1s set to



100 In all PE's whose COUNTER value 1s less than or equal to 50, the
variable VALUE is set equal to zero. An important point to remember
1s that the WHERE statement in general executes both the statement
following the DO and the statement following the ELSEWHERE (the
exception being the case 1n which all or none of the PE's satisfy the

condition).

Built-in functions based on the NON-VON instruction set are employed
to implement operations that use the tree communication modes of the
machine, which are described in Section 3.2. Function names that start
with 'N_" correspond to NON-VON machine instructions, and their

parameters correspond to the arguments of these instructions.
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Chapter 4

Image Representation

In this chapter, we examine certain data structures for representing
images on parallel tree-structured machines. This subject i1s of prime
importance, as it greatly affects the design of. image algorithms. Methods
used for image input and output are also affected by the choice of data
structure. The choice of a data structure for a set of problems can even
tinfluence the design of a machine architecture for efficiently solving those
problems For example, mesh-connected architectures map into hardware
the two-dimensional array data structure used 'most. commonly to
‘represent 1mages on sequential machines Similarly, the hierarchical
nature of the NON-VON architecture affects the choice of data structures

nzed to represent images on it.

An overview of data structures used to represent images on sequential
machines 1s presented in Section 41, with an emphasis on hierarchical
data structures We then demonstrate how two of these hierarchical data
structures can be modified to represent images on binary trees. A
procedure for initiahzing the NON-VON tree 1s presented in Section 42.

Algorithms and 1ssues related to the loading and unloading of images in
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tree machines are also discussed 1n that section  We then describe
procedures used 'o Luild the data structures employed in the algorithms

described 1n this thesis

4.1. Image Data Structures: An Overview

Storing raw pictorital data requires a large amount of memory About
512 x 512 bytes are needed, for example, to store a single black and
white television frame  Two-dimensional arrays are commonly used for
storing 1mages, where every element 1n the array represents a
corresponding area in the image spacei“ These small areas are referred to
as pixels Pixels can take different shapes, produc;ng different
tessellations  Most commonly they are squares, but they can also be
rectangles, triangles, or hexagonals The value of the array elements can
represent the intensity of the image at the corresponding pixels or other
values such as the spectral components of color pixels Mesh-connected
architectures use this data structure to represent images, with each PE
being assigned a pixel, or a block of pixels in the case where there are
fewer PE's than there are pixels in the image  Other data structures

used to represent images include chain codes, graphs, and relational

databases See [Tanmi 80b] for further discussion of these data structures.

Hierarchical data structures can be mapped naturally onto tree
machines  They are often used in i1mage understanding tasks because

they allow many algorithms to be expressed in forms suitable for divide-
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and-conquer techniques. They also support certain techmiques for data
compaction and 1image transmission [Know 80} Hierarchical data
structures include multi-resolution pyramids, regular decompositions, and

quadtrees [Tan1 80b].

In what follows, we present two of these hierarchical data structures,
namely multi-resolution pyramids and a modified version of quadtrees
called binary image trees, and show how they are used to represent

images on NON-VON.

4.1.1. Multi-Resolution Pyramids on NON-VON

A multi-resolution pyramid can be defined as a sequencé {IL), [L-1),

. I{0)} of images, each represented as a two dimensional array, where
[[L) 1s the original image, and /[[m-1) 1s a version of I{m) at half the
resolution  (This 1s the same definition Tammoto used in [Tani 80b])
The term ‘‘image resolution” refers to the number of pixels used to
describe the image. For example, if [[m) represents a version of the
image with resolution 64 x 64, then I(m-1) represents the same image at
resolution 32 x 32. Figure 4-1 shows an image and its multi-resolution
pyramid representation The pyramid provides reduced resolution versions
of the image. If more than one operation 1s to be performed on the
image. then each operation should use only the resolution required for
this operation. The extra amount of memory required to store the

pyramid representation 1s 1/3 that of the amount of memory used to

[
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Figure 4-1: An Image and its Multi-Resolution
Pyramid Representation

(From [Tam 75))

store the original image

Multi-resolution pyramids can also be defined in terms of trees rather

than arrays In this case they are referred to as pyramid trees A



multi-resolution pyramid is defined in terms of quartic (4-ary) trees as
follows. The leaf nodes repriseut the pixels of the image at its highest
resolution (the base of the pyramid), and the nodes of an internal level of
the tree represent the pixels of a reduced resolution version of the image.
Thus, going from one level in the tree to the level above 1t results in an
image with one-fourth the resolution. Note that the four child nodes of

a parent node represent a 2 x 2 region in the image.

An i1mage at a specific level can be computed from the image at the
level below 1t in the pyramid tree in different ways. Typically, a parent
node 1s set equal to the average value of 1ts four childrenn  This
averaging process can be viewed as a kind of low-pass filtering of the
image followed by resampling Hence, images with lower resolution retain
the gross features of the image For binary images, the averaging process
13 defined to result 1n the binary value 1 only if three or more of the

children have the binary value 1, and to result in 0 otherwise.

[n the NON-VON tree, the leaf level 1s used to store the orginal
image, whereas the internal levels are used to represent the image at
coarser resolutions  Since NON-VON 1s a binary tree, the resolution
reduction from one level in the tree to the level above 1t 1s only a factor
of two. and hence two NON-VON levels are used to effect the same
reduction as one level in the multi-resolution pyramid. We use this

image representation whenever we deal with gray-scale images. In
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Section 42 we show 1n detail how this can be done

4.1.2. Binary Image Trees on NON-VON

Binary image trees are a variant of quadtrees, which were proposed by
Knowlton [Know 80] as an encoding scheme for compactly transmitting
gray-scale and binary images Quadtree data structures are similar in
many aspects to multi-resolution pyramids. A good way to visualize the
quadtree 1s by assuming that the image 1s a square whose dimensions are
a power of 2 The quadtree data structure is built by subdividing the
whole 1mage into four square quadrants with dimensions that are half
that of the image This process is repeated recursively for each quadrant
n times, until the single pixel level 1s reached, as shown in Figure 4-2
The root of the quadtree corresponds to the whole image, the leaves
correspond to the single pixels, and the nodes of the tree correspond to
quadrants of the square represented by their parent node If the four
children of a node share the same value, they are all deleted and the

father's value represents them all

Quadtrees are used mainly to encode binary images, and the nodes in a
quadtree are interpreted differently from the nodes 1n a multi-resolution
pyramid tree In the case of binary images, nodes of the quadtree can
take one of three values If the node's children are all black, then the
node 1s black If they are all white, then the node 1s white. The node

will take the value gray if its children do not have the same value, or if
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Figure 4-2: A Picture and its Quadtree
(From [Same 82])

they all have the value gray All subtrees rooted with either a white or

a black node may thus be omitted, significantly reducing the amount of

memory required to store the picture on a sequential machine

Binary image trees are a variant of quadtrees in which the whole image

1s subdivided into two halves  This process of subdividing into two



halves 1s repeated recursively until the single pixel level 1s reached
Figure 4-3 illustrates the binary image tree data structure Note that the
shape -of the subdivisions changes from level to level in the binary image
tree  Specifically, 1t 18 either a square or a rectangle with the width
equal to twice the length  We will refer to these subdivisions as

rectangles throughout the rest of this thesis.

v foe single pixel

i

—

The root of the

binary image tree

Figure 4-3: Binary Image Tree Rectangle Arrangement
The shape of the rectangles at any level can be determined by testing to
see If the level number 1s odd or even. Going from one level to the next

level down the tree increases the resolution by only a factor of two,
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while 1n quadtrees the resolution is increased by a factor of four.

Binary image trees are mapped naturally onto binary tree machines.
On NON-VON, the leaf processors are used to store image information at

the single pixel level, while non-leaf PE’s correspond to rectangles of size

larger than the pixel size. A record associated with each PE is used to

store information about the location, size, contents, and adjacency relation
of the part of the image 1t represents. A flag associated with each PE
indicates whether the rectangle represented by that PE is part of the
binary image tree An algonthm for building the binary image tree and
storing the rectangle information is described later in this chapter. We

will use binary image trees whenever we are dealing with binary images.

4.2. Initialization and Image Loading

Image processing algorithms on NON-VON use information that is
stored 1mitially 1n each PE Each PE corresponds to a rectangle in the
original image On the leaf PE level each rectangle corresponds to a
single pixel 1n the two-dimensional array that represents the ornginal
image. The location of each rectangle is indicated by specifying the
coordinates of its upper left-most corner pixel. The honzontal direction
is referred to as the z-direction, while the vertical direction 1s referred to
as the y-direction The origin of the coordinate system (0,0) is the upper
left-most pixel in the image, and the values of the coordinates increase to

the right in the z-direction, and down in the y-direction, as shown 1n



Figure 4-3

In addition to the z-address and y-address, each PE stores the width
(z-side), and the height (y-side) of the rectangle 1t represents For a
256 x 256 i1mage, four bytes are needed to store the location and size
information. The root level 1s labeled the 0-th level, while the leaf level
1s the n-th level Other information is also stored in each PE, and will

be described later.

= z.direction
1 2 3 4

l 0 |
1
y-direction
2 f(0.2) (4.2)
Zr-sides=
3 y-side=2
4 (4.4)1
3 z-side = 4
6 y-side = 4
7

Figure 4-4: Coordinate System for Binary Image Trees

The N-PASCAL algonithm for initializing the NON-VON tree follows:

/®* The following variables are defined in the main driver of all vision

13



manner. This has led to a surge in research aimed at developing new
computer organizations that meet the large computational and decision
requirements of image analysis tasks by exploiting the new technology.
Various kinds of special parallel machines for computer vision have been
proposed and some have been implemented; examples are described in

[Duff 76], [Krus 76], [Dyer 81], [Kush 83}, [Pott 83], and [Reev 84|

The organization of some of the proposed machines is based on a very
large number of very small processing elements (PE’s). Throughout this
thesis, we will refer to such machines as fine-grained or highly parallel
machines In such machines, different schemes are used to interconnect
the PE's For example, the PE's can be connected together in the form
of a two-dimensional mesh, or they can be placed at the nodes of a
binary tree If all the PE’'s simultaneously execute the same instruction
on their own data, the machine 1s saild to be executing in single
instruction stream, multiple data stream (SIMD) mode [Flyn 72]. On the
other hand, if the PE's execute different instruction streams concurrently
on different data streams, then the machine 1s saild to be executing in

muiiiple instruction stream, multiple data stream (MIMD) mode.

In this thesis, we investigate how fine-grained tree-structured SIMD
computer architectures, which have favorable characteristics for efficient
VLSI implementation, can be used for the rapid execution of a wide

range of vision tasks We also discuss certain limitations of these
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procedures described in this thesis. Some of these variables are used in
the initialization procedure. The rest are used 1n other procedure
definitions. */

program vision _algorithms();
vector _var
XSIDE, YSIDE, XADD, YADD: integer;
GRAY _VALUE, TREE, COMP _ LABEL: integer,
FQUAD char;
BINARY: boolean;

/* The following procedure marks leaf PE’s by setting the variable
LEAF equal to 1 in all leaf PE's and 0 elsewhere. */

Procedure mark leaflvar LEAF: boolean),
vector _var

TEMP' boolean;
begin

/* 1 Imtialize TEMP to the value 0 i1n all PE's. On executing a
“recetve from left child” instruction (RECV1 LC), all leaf PE's receive a
logical 1 All other PE's receive whatever 1s sent by their left children.
This procedure thus serves to mark all leaf PE's The N_RECV1 1s a
primitive function that corresponds to the NON-VON instruction RECV1.
On executing this function each PE receives the value of its left child
boolean variable TEMP into its own varniable LEAF. */

TENMP = false,
N _RECVI(LC, TEMP, LEAF),
end,

Procedure tree init(no__levels INTEGER),
var
lev__count, z, y integer,
vector _var
XADDI1. YADD1 integer,
LEAF N boolean,
begin



/* 1 The mmtiahization algorithm starts by inmitiahizing the size
information It starts at the leaf level by storing the value 1 in each PE
width and length variables (XSIDE, YSIDE) The function mark _leaf(L)
sets the boolean variable L to 1 only in leaf PE's. The boolean variable
N 1s used to mark the level up the tree next to the current level It 1s
set equal to 0 only in current level PE’s, and to 1 elsewhere. A level
counter lev__count 1s imtiahized to 0. */

lev_count = 0,
r =1y =1
N = true,

mark _leaf(LEAF),
where LEAF = true do

begin
XSIDE =1
YSIDE =1,
N = false
end,

/* 2 Enable PE's on the next level up the tree. N_RECVI(LC, N, N)
sets the variable N equal to 0 only in PE’s whose children have the N
variable set to 0 The size variables are then computed on that level
If the level number 1s equal to no_levels, then the size initialization 1s
complete and the algorithm starts address imtialization, otherwise the size
imtialization continues */

while lev__count < no_levels do
begin
N _RECVI(LC. N, N),
if lev_count mod 2 = 1 then
z =1z*2
else y =y * 2
where N = false do

begin
XSIDE = =z,
YSIDE =y,
end.
lev_count = lev _count + 1,
end.

/* 3 At this point only the root PE has its N vanable set to 0  Set

1>



the variables XADD and YADD 1n the parent PE equal to 0 */

where N = false do

begin
XADD = 0;
YADD = 0
end,

/* 4. For address information, left children always have the address of
their parents. This step computes the right child address of each enabled
parent and stores the computed values in the variables XADD1 and
YADD1  Left children are then enabled. Read the address of their
parent and store it as their own address. The same is repeated for right
children, except that they read their address from the variables XADD]1,
and YADD1 */

while lev_count > 0 do

begin
if lev_count mod 2 = 0 then
begin
XADD1 = XADD,
YADD1 = YADD + YSIDE div 2
end
else
begin
XADD1 = XADD + XSIDE div 2
YADD1 = YADD;
end,

N _SENDS(LC, XADD. XADD),
N SENDS(LC, YADD, YADD),

N _SEND$(RC, XADD1, XADD),
N_SEND8(RC. YADD1, YADD),

lev_count = lev_count - 1,
end;
end.

The 1mitiahization algorithm takes time proportional to the number of

levels in the tree (19 levels in the case of a 512 X 512 image). The



NON-VON 3 code for this procedure 1s presented in Appendix B It takes
18 usec to imtialize one level at 4 Mhz (68 NON-VON 3 instructions)

Initializing a tree with 15 levels thus requires 0 27 msec

4.2.1. Loading the Image

In tree machines, loading and unloading the tree through the root can
be a bottleneck for algorithms with extensive 1/O operations. To
overcome this, a real NON-VON system would load and unload image
data i1n parallel through I/O devices connected to all PE's at some
intermediate level in the PPS tree. Loading an image point through the
root only involves first broadcasting i1ts z- and y-coordinates and enabling
the PE with the same values for z and y on the leaf level. The image
point value 1s then broadcast and stored in the enabled PE. The N-

PASCAL procedure for this loading procedure follows:

Procedure tree loadl(z _side, y_side integer),
var

i, J 1nteger;
begin

/* 1. The function read _file(file-name) returns the next integer value in
the file ‘“file-name”  The procedure arguments are the lengths of the
image sides */

for i= 0 to z_side-1 do
for j= 0 to y_side-1 do
where ((XADD = ¢) and (YADD = j))
do GRAY _VALUE = read _file(image),
end,



The NON-VON 3 code for this loading procedure 1s included 1in
Appendix B Seven NON-VON 3 instructions, requiring about 20 pusec of
execution time at 4 Mhz, are used to load one image point Loading an
128 x 128 image through the root thus takes about 32 msec using this

procedure

Instead of broadcasting the data byte by byte and isolating a single
destination leaf PE at a time, blocks of image data can be broadcast and
stored 1n the PE’'s in an intermediate level. These PE’s then load the
blocks of data in parallel into the leaf PE's in their subtrees. Next we
describe the N-PASCAL procedure to perform this operation along with

an analysis of the time required for its execution.

Procedure tree loadXz _side, y-side integer),
var
i. J, k. nl integer,
vector _var
LEAF. N boolean;
X1, Y1, TEMP integer,
begin

/* 1 The leaf PE's are marked, and so are the PE's on the
intermediate level. We assume a block size of 16 bytes */

N = false,
mark _leaf(LEAF),
where ((XSIDE = 4) and (YSIDE = 4)) do N = true,

/* 2 Loop to load the blocks in intermediate level PE's starting at
RAM location 16 */



1= 0

while ¢ < z_side-l1 do
begin
=0,
while j < y_side-1 do
begin
where ((XADD = ) and (YADD = j) and (N = true))
do for k=1 to 16
do N_BROADCASTS(read _file(image), RAM(15+k)),
] =)+ 4
end,
1 = 1 + 4,
end,

/* 3 Now load the blocks in parallel into the leaf PE's The addresses
of the PE's relative to the address of the root of the subtree are stored

in X1 and Y1 */

X1 = XADD mod 4.
Yl = YADD mod 4,
nl = 16,

/* Loop until the first block element reaches the leaf PE’'s */

for k=1 to 4 do

begin
where N = true do N READRAMS(n1, TEMP)

> _RECVS(P, TEMP, TEMP),
n! =nl + 1,
end,

/* Now loop to load the elements */

for i= 0 to 3 do
for j= 0 to 3 do

begin
where ((i = X1) and (j = Y1)) do

GRAY _VALUE = TEMP,

if n1 € 32 then
where N = true do N READRAMS(nI1, TEMP),

N_REC\VS(P, TEMP, TEMP),
nl = nl + 1,
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end;
end,

In the above algorithm, Step 2 1s similar to the first loading procedure
It takes about 2 usec to load the first byte, but the next 15 bytes i1n the
block are loaded at the rate of 4 bytes per usec. Thus, 1t takes about 6
psec to load a block of 16 bytes, and about 614 msec to load a
128 x 128 gray-scale image. Step 3 requires about 10 NON-VON 3
instructions to load one byte of the block into a leaf PE. Thus, about
004 msec 1s needed to perform this step, which 1s very small compared

with the time required to execute Step 3.

It should be noted that mcrea.smg the block size reduces the time
required to perform the first step of the second loading procedure. For
example. a block size of 32 requires 10 psec to be loaded into the
intermediate level, and hence 512 msec are required to load a 128 x 128
gray-scale 1mage Increasing the block size also increases the time
required to load the blocks 1n the subtrees  Using the numbers cited
above, the time to load an image of size A using block size S can be

computed by the following expression

loading time = (A/S)(2 + S/4) + 255 usec.

The value of S that minimizes this expression is equal to 0.9AY2  Thus,
a block size of about 115 bytes results in the minimum loading time for

an 1mage of size 128 x 128 If the size of the available memory in each
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PE 1s less than this number, then using as much memory as we can for
this loading procedure results in the minmimum loading time The NON-

VON 38 code for this procedure is presented in Appendix B

The time required to load images could be reduced significantly through

parallel loading of the subtrees rooted by the PE'’s at some intermediate

level If the I/O devices are connected to the intermediate level .

containing 64 PE's, then the above described procedures would be

executed in parallel 1n the 64 subtrees, and the time of execution would

be reduced approximately by a factor of 64. If more than one image are

to be stored in the tree, then the address and size information stored in
each PE will be common to these images Other image information has

to be duplicated for each loaded image

Table 41 provides a summary of the execution times for different
NON-VON /O procedures and for some existing parallel 1mage processing

machines

4.2.2. Building the Binary Image Tree

In this subsection, we describe the procedure for constructing the binary
image tree representation of a binary image stored in the leaf PE's The
vector character variable FQUAD 1s used in each PE to indicate the type
of rectangle held by this PE The value ‘B’ refers to black rectangles,

‘W' to white ones, and ‘G’ to gray rectangles The value ‘N’ indicates



Table 4-1: Image I/O Execution Time for
Some Parallel Machines

The Parallel Machine Iastructios 1/0 time (msec)
Rate (128 x 1

ICL DAP 4 Mhz 4.008
Goodyear asrospace MPP 10 Mhz 0.102
§0N-VON 3 --
a. Loading through the root only 4 Mz 5.120
b. Loadin t.hrou!h 1/0 device

coanec to the 64 PE level. 4 M2 0.080

that the rectangle 1s white or black but has been merged with a similar
rectangle to form a larger one. The vector integer variable TREE
corresponds to the number of black pixels in the rectangle represented by
the PE It takes the value 0 when the rectangle i1s white, and 1s equal
to the area of the rectangle in the case of black rectangles. We assume
that the binary image 1s stored in the NON-VON tree in the vector

vartable BINARY  The N-PASCAL algorithm for building the binary

image tree follows:

Procedure build _binimg(no _levels INTEGER),
label 2;
var
cur__lev 1nteger,
vector _var
GV1. GV2 integer
FQl FQ2 char,
LEAF, N boolean,
begin



/* 1 Enable all PE's on the leaf level Set N equal to 0 only in the
current level */

N = true,
cur_lev =1,
mark _leaf(LEAF),
where LEAF = true do
begin
where BINARY = true do TREE =1
elsewhere TREE = 0,
N = false,
end,

/* 2 Mark PE’s on the level just above cur_lev. Let all the enabled
PE's read the values of TREE and FQUAD in their children The value
of TREE 1n the enabled PE's will be set equal to the sum of the two
TREE variables 1n their children. FQUAD will be set to 'G’' if FQUAD
in the two children are different, or if one of them 1s 'G’ If the two
variables FQUAD 1n the two children are both either 'W' or 'B’, then
the parent FQUAD will be set to the mutual value and the FQUAD 1n
the two children will be set to 'N' */

9

N_RECVI(LC, N. N),
where N = false do
begin
N _RECVS(LC, TREE, GV1),
N _RECVS(LC, FQUAD, FQ1),
N _RECVS(RC, TREE. GV?),
N _RECVE(RC, FQUAD, FQ?),
TREE = GVl + GV? ,
if ((FQ1 == ‘B') and (FQ2 = 'B’)) or
(FQ1 = ‘W) and (FQ2 = 'W"))
then FQUAD = FQI
else FQUAD = ‘G’
end,

N _RECVS(P, FQ1, FQUAD),
if (FQ1 <> 'G’) then FQUAD = ‘N’

/* 3 If the root is reached, stop, otherwise, enable all PE’s above and



go to step two */

if cur_lev <> no__levels then

begin
cur_lev = cur_lev + 1,
goto 2,

end,

end,

After the above algorithm 1s executed, the root PE has its TREE
variable set equal to the number of black pixels in the whole image, and
in general, each PE's TREE vanable will be equal to the number of
black pixels in the tree rooted by that PE. Steps 2 and 3 are repeated
a number of times equal to the number of levels in the tree. Thus, the
algorithm takes time proportional to the height of the binary tree. The
NON-VON 3 code 1s included 1in Appendix B. It requires about 50 NON-
VON 3 instructions per level (125 usec), for a tree with 15 levels
(corresponding to a 128 x 128 original image), the execution time for this
procedure 1s thus about 0175 msec. Figure 4-5 shows a binary image
and the binary 1mage tree representation of 1t as output by the

functional simulator

4.2.3. Building the Multi-Resolution Pyramid

The multi-resolution pyramid representation of a gray-scale image can
be built using a procedure similar to the one used to build the binary
image tree The variable GRAY _VALUE in each PE 1s set equal to the
average of the values of GRAY _VALLUE in its two children. This step

1s repeated a number of times equal to the height of the tree  The



Figure 4-5: A Binary Image and its
Binary Image Tree Representation
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(a) The Input Binary Image

(b) The Binary Image Tree




roundoff errors due to the averaging process from one level to the next
up the tree can accumulate, resulting in large errors in the computed
average values. To solve this problem, the averaging should take place
only after all the sums have been computed in all levels. Then each PE
divides the sum by the rectangle size 1t corresponds to. Because the
rectangle sizes are powers of two, the division is equivalent to logical
shx‘ft operations. If we start with gray level values that are 8 bits long,
the sum at the root of 15 levels tree could be 23 bits long. The add
operations should be therefore 24 bits long (three bytes) @ The N-

PASCAL algonthm to build the multi-resolution pyramid follows:

Procedure build_multi _resono _levels: INTEGER),
label 2,
var
cur _lev 1nteger,
vector _var
GVl GV2 integer,
LEAF. N boolean,
begin

/* 1 Enable PE's on the leaf level. Set N equal to 0 only in the
current level */

N = true,

cur _lev =1,

mark _leaf(LEAF),

where LEAF = true do

begin
GVl = GRAY_VALLE,
N = false,

end.

/* 2 Mark PE's on the next level above cur_lev. Let all the enabled
PE's read the values of GV1 in their children. The value of GVl in
each enabled PE's will be set equal to the sum of the variables GV1 in



its two children */

9
N_RECVI(LC. N. N),
where N = false do
begin
N _RECVS(LC. GV1, GV1),
N_RECV8(RC. GV2, GV1),
GVl = GV1 + GV?,
end, ‘

/* 3 If the root 1s reached, stop, otherwise enable all PE's in the next
level above and go to step two */

if cur_lev <> no_levels then

begin
cur_lev = cur_lev + 1,
goto 2,

end,

/* 4 Compute the average value 1n each PE */

GRAY _VALUE = GV1 div (XSIDE * YSIDE),

end,

The time analysis of this procedure is similar to that of the algorithm
for constructing the binary image tree The algorithm executes in time
proportional to the height of the tree Each step consists of
approximately 30 NON-VON 3 instructions (approximately 0.120 msec to
bulld the multi-resolution pyramid 1n a 15 level tree)  The multi-
resolution pyramid representation of binary images can be computed using

a similar procedure, with the exception that the computed value in Step



4 15 set equal to 1 if the sum 1s larger than half the rectangle size,

otherwise the computed value i1s set equal to O



Chapter §

Low-Level Image
Processing Algorithms

In this chapter, we describe the implementation on NON-VON of some
low-level image understanding algorithms (also referred to as signal level
image processing algorithms). In low-level image processing, the input is
typically the onginal image input by some sensory device or the output
from some other low-level operations. The output is usually of the same
size as the input  Some examples include i1mage restoration, image
enhancement, and nowise removal Other low-level operations extract from
the input 1mage such physical characteristics as color, surface orientation,
range, velocity, and edges. The output images in this case are called
intrinsic images [Ball 82] The low-level operations described in this
chapter are the gray level image histogram computation, image
segmentation by thresholding, and image correlation. The se!ected tasks
are representative of a large class of low-level image understanding
algorithms. For our time analysis, we assume that the image has already
been loaded 1o the NON-VON leaf PE's, as described in the previous

chapter
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5.1. Image Histogramming

A gray level histogram of a gray-scale image is a function that gives
the frequency of occurrence in the image of each possible gray level.
The gray level at each image point is quantized from 0 to m (typically
m is equal to 255). The value of the histogram at a specific gray level
p s the number of image points with gray level value equal to p. The
histogram of an image can be useful in many ways. It can be used to
select a threshold value (or values) for segmenting an image into a
foreground-background image, or it can be used to guide the filtering of
an image [Ball 82]. Other applications include image enhancement and
image encoding [Palv 82]. Sometime, it is desirable to compute the gray
level histogram, not for each possible gray value, but for non-overlapping
ranges of gray values In the latter case, the range of gray level values
1s usually divided into equal intervals called the histogram bins. The
interval range 1s referred to as the bin width. The histogram value for a
certain histogram bin 1s the number of pixels in the image with gray

level intensity within the bin range.

We now describe a simple algonthm to compute a histogram of a gray-
scale image stored i1n the leaf PE's of the NON-VON tree. We assume
that the image has n pixels (n'/2 on a side), and that the whole image
can fit in the leaf PE's of the NON-VON tree. Also, we assume that

the histogram to be computed contains b bins. For each histogram bin,
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the algorithm first marks all leaf PE’s corresponding to image pixels with
gray level value falling 1n this bin range. A vector variable HIST _SUM
is theii set equal to 1 in the marked leaf PE's and 0 elsewhere. Note
that the marking operation 1s performed concurrently in all leaf PE's,
and therefore requires a fixed number of instructions for execution. The
marked PE’s are then counted using the tree connections. The counting
operation consists of h steps, where A is the height of the tree In each
counting step, each parent node in the tree sets the value of its vector
variable HIST _SUM equal to the sum of the same vector variable in its
two children. Thus, the counting operation executes in a time
proportional to the NON-VON tree height (logarithmic in the number of
PE's) This simple algorithm thus executes in time proportional to the
product of NON-VON tree height and the number of histogram bins
(O(b log n)) The computed histogram values can be stored in the CP,
or can be stored in the NON-VON tree for further processing. It should
be noted that during the counting operations only PE's on a certain level
are performing a useful work at any specific time. Actually, the marking
and counting steps described above can be interleaved, resulting in a

more efficient algonthm

In general terms, the new algorithm involves the repetition, a number of
times equal the number of bins in the histogram, of a sequence of a
marking operation followed by a counting operation step. Then the

count operation steps are repeated a number of times equal to the
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number of tree levels. Before a formal description of this SIMD-pipelined
algorithm and its time analysis are given, we describe the variables used
in our algorithm. The vector variable GRAY _VALUE in leaf PE's 1s
used to hold the gray level intensities of the original image. The vector
variable HIST_SUM 1n all PE’s is used to store the partial sums
resulting from counting the marked PE’s for a specific bin in the
histogram. The vector vanables HIST _VAL and BIN_ VAL are used to
store the values of the histogram and the corresponding bin values in the
NON-VON tree.  The scalar variable num _s stores the number of
computed histogram values which have been reported to the CP. The
scalar variable count keeps track of how many histogram bin values have
been broadcast (the number of mark operations performed), while the
scalar variable value contains the minimum value in the bin range to be
broadcast  The scalar variables nbins and bund denote the number of
histogram bins to be computed and the bin-width, respectively. The
variable buid 1s computed by dividing the histogram range by the

number of bins. The N-PASCAL procedure follows:

/® The following procedure adds to the integer variable Z in each PE
the value of the two variables X and Y in its two children. */

Procedure add_chtp(var X, Y, Z: Integer),
vector _var

TEMP Iinteger,
begin

/* 1 read the value of left child vanable X into TEMP. Add this



value to the value of the vector variable Z, and store the sum in Z */

N_RECVS(LC, X, TEMP),
N_ADD(Z, TEMP, 2),

/* 2 Repeat step 1 for the right child and Y instead of X */

N_RECVS(RC, Y, TEMP),
N _ADD(Z, TEMP, 2),
end,

Procedure gray level _histogram(h: integer),
label 2, 4, 7,
var
value, count, num _s, nbins, bund: integer,
vector _var
HIST _VAL, BIN_VAL: integer;
HIST _SUM integer,
LEAF boolean,
begin

/* 1 Intialize the scalar variables value, count, and num__s in the
CP, and the vector variables BIN VAL, and HIST _VAL in all PE's. */

value = 0, count = 0, num_s =0,
BIN_VAL = .]
HIST_VAL - -],

/* 2. Set the vector vaniable HIST _SUM equal to zero in all leaf PE's.
The procedure mark _leaf sets the vector variable LEAF equal to 1 only
in leaf PE's. */

2 mark _leaf(LEAF),
where LEAF = true do HIST_SUM = 0,

/* 3 This 1s the marking step. Enable only the leaf PE’s with gray
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level value falling within the current bin range. Set the vector variables
HIST _SUM equal to 1 in the enabled PE's. */

where ((LEAF = true) and (value <= GRAY_ VALUE)
and (GRAY_VALUE < value+bwid))
do HIST _SUM = 1,

/* 4 This 1s a counting operation step. It is performed by setting the
variables HIST _SUM in each PE equal to the sum of the HIST SUM
variables in its two children. The function add _chtp(z,y,2) adds the two
variables z , y in LC and RC respectively and stores the sum in the
variable z of their parent node. */

4 add_chtp(HIST _SUM, HIST _SUM, HIST _SUM);

/* 5 If all the marking operations have been performed (nbins of
them) and the number of counting steps is larger than the tree height,
then skip the next step which computes the new bin range */

if ((count = nbins) and (count >= h))
then goto 7,

/* 6 Increment count by one, and compute the new bin range by
incrementing velue by busd. If the number of count steps is less than
both the tree height and the number of bins, then perform another
marking operation. If the first histogram value has not arrived to the
root. then perform another count step, otherwise read a histogram value
from the tree root. */

count = count + 1,

value = value + bdbuid,

If ((count < A) and (count < nbins))
then goto 2;

If ((count < h) and (count >= nbins) )
then goto 4,

/* 7 Read a histogram value. this is performed by reading the value
HIST _SUM in the root of the NON-VON tree. Store the reported value
back in the NON-VON tree. Select a PE (HIST _VAL equal to -1) to
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store the histogram value. */

7. N_RECVS(LC, HIST _SUM, N GG8)
where HIST VAL = -1 do N Al = true

elsewhere N Al = false;

N_RESOLVE(),
where N Al = true do
N_BROADCASTS(N_GGS , HIST_VAL);

/* 8 Increment the number of stored histogram values (num __s) by
one. If all histogram values have already been stored, then stop. If not,
then check to see whether to perform another counting step, or a
marking operation. */

num_s = num_s + 1,
if num 8 <> nbins then
begln
If count = nbins then goto 2
else goto 4,
end,
end,

Steps 2, 3 (constituting the match operation), 5, and 6 are executed a
number of times equal to b, while step 4 (the counting operation step) is
executed A+b times, where h 1s the height of the tree. Therefore the
time required to execute the histogramming algorithm is of O(b+h) (or in
terms of the image size n, O(b+log n)). Appendix B contains the
NON-VON 3 code for the above algorithm. For a 128 x 128
NON-VON 3 machine and a histogram with 64 bins, the algorithm
executes in approximately one msec. By way of comparison, 120 msec is

required on a 128 x 128 MPP machine [Pott 83], and 17.5 msec on a

32 x 32 DAP machine [Mark 80| The numbers given above are for
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Figure 6-1: The Gray-Scale Image Histogram
gray-scale images of the same size as the machine size. If the image 1s
larger than the NON-VON tree, then each leaf PE would hold more than
one image point. If each leal PE holds k image points, then the time
needed to execute the histogram increases approximately by a factor of k
Figure 5-1 shows a 128-bin histogram of a 32 x 32 gray-scale image, as

computed by the functional simulator using the algorithm described in

this section

The histogram algorithm described in this section can be easily adapted
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to compute different variants of the image histogram For example,
computing the histogram of a subimage involves changing Step 2 to
enable the subset of leal PE's in the subimage instead of all the leaf
PE’s A cumulative histogram of a gray-scale image 1s a function that
gives for each gray level p the number of pixels that have gray level
values less than or equal to the value p. To compute a cumulative
histogram, we create a new scalar vanable in the CP, initialize 1t to
zero, and add to it the histogram values as they are being reported to
the CP. The accumulated values are then stored in the NON-VON tree.
A pormalized bhistogram can be computed from the accumulated

histogram by dividing 1ts values by the number of pixels in the image

5.2. Thresholding

Thresholding 1s one technique that is used for image segmentation 1n
image understanding applications. Image segmentation 1s concerned with
identifying areas of the image that are homogeneous with respect to one
or more characteristic. Examples of such characteristics include intensity,
continuity, and range. One approach to image segmentation separates
image ‘‘objects” from the ‘‘background” The resulting image is referred
to as an object-background image For a gray-scale image, for example,
this technique picks a threshold value from the image histogram and uses
that value to divide the set of image points into object points
background points [Ball 82] The object points are those pixels which

have a gray level value exceeding the threshold value, all other pixels are
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background pixels. There are ;nany techniques for selecting a threshold
value [Cast 79]. The choice of a certain technique depends on the nature
of the image under consideration. Assume, for example, that the objects
pixels are predominantly dark, while the background pixels are light.
The histogram of such an image might have two peaks , corresponding to

the dark and light regions.

ol

Figure 6-2: A Bimodal Histogram
Such a histogram (Figure 5-2) 1s called a bimodal histogram. One way
to pick a threshold value is to search the histogram and find a minimum

separating the two peaks

The N-PASCAL algonithm for segmenting the image into objects and

background based on a single threshold value follows:



Procedure seg__ by _thresholding(thr: Iinteger),

begin _ -

/* 1 The threshold value thr 1s compared with the vanable
GRAY _ VALUE, which holds the gray level value. If GRAY VALUE s
larger than or equal to thr, then the globally defined local one-bit
vanable BINARY is set to 1 and the point is an object point; otherwise
the point 1s a background point and BINARY 1is set to 0. */

where GRAY _VALUE >= thr do BINARY ‘= true

elsewhere BINARY = {alse,
end,

The algorithm executes a fixed number of instructions, independent of
the number of pixels in the image. The NON-VON 3 code for this
algorithm 1s provided in Appendix B (6 NON-VON 3 instructions). The
time required to execute the algorithm 1s 1.5 usec Figure 5-3 shows the

binary 1i1mage resulting from thresholding the gray-scale image whose

histogram 1s shown 1n Figure 5-1 using the gray intensity value of 80.

Image segmentation based on a single threshold value is useful only in
simple situations [Ball 82] For example, a common problem with the
single threshold method occurs when the image has a background of
varying gray levels. A spatially varying threshold can be used to
segment the image 1n such a case [Ball 82]. In this method, the image s
divided into subimages and a threshold is computed for each subimage
based on the histogram of this subimage as described earlier.  These
subimages typically correspond to separate subtrees The entire image 1s

then segmented by segmenting each subimage using its own computed
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Figure 6-3: The Binary Image After Thresholding
threshold value. The threshold value computed for a subimage is stored
in the root of the subtree corresponding to this subimage. Thresholding
can then be performed by broadcasting the separate threshold values
simultaneously from the roots of all subtrees to all the PE’s in their
respective subtrees. Step 2 of the thresholding algorithm described 1n
this section is then executed. This approach can be thought of as a
MSIMD approach with each subtree representing an 1mage for which
thresholding 1s applied. Other segmentation methods based on

thresholding, such as hierarchical refinement (recursive region splitting),



can be performed in a similar manner [Ball 82].

5.3. Image Correlation

Correlation techniques are widely used in many image understanding
tasks, including simple filtering to detect a particular feature in an image,
edge detection, image registration, motion and stereo analysis, and object
detection by template matching [Ball 82] Image correlation involves
determining the position at which a relatively small template image best
matches the input image. The correlation function reflects how well the
image data match the template image for each possible template location.
Image correlation 1s a representative of a wider class of image operations
‘known as local operations (also referred to as window-based operations).
In local operations, the output value at a specific point 18 a function of
the image values at this point and at a number of points :a 1its
immediate neighborhood. Techniques and algorithms developed in this
section to compute image correlation are applicable to many other local

operations

In what follows, we present several numerical measures of the
correlation function. Let us assume an image array X and a template
array Y, with z and y representing the elements of X and Y respectively.
One correlation measure is the Euclidean distance, d, defined for each

possible relative location of the input image and the template as follows:

&2 =73 (z - v)? (51)



The value of d is zero for an exact match. There are other correlation
measures which are variations of this basic measure. One of these
measures 13 the covariance of the template with a portion of the input

area, which is defined as follows [Sieg 81a:
S,y = Yzy- (323 v)/a (5.2)

where A 1s the area of the template. Large positive covariance values
indicate similarnity between the image and the template, while large
negative values indicate similarity between a positive and a negative
image. Values near zero indicate no similarity.  Another correlatibn

measure 1s a normalized version of S, and is defined as [Sieg 8laj:

Rey = Szy [ (Szz - Syp)'”? - (53)

One way to visualize the computation of the correlation function is to
imagine a template scanning the image at all possible offsets, computing
the correlation at each offset, and.stonng these correlation values for
later computations. On a sequential machine, the time required to
execute such a function 18 O(nm), where n 1s the number of pixels in the

image and m 1s the number of pixels in the template.

A basic operation that 1s performed repeatedly in the parallel image

correlation algonthms described in this section is the image shift



operation In this operation, the whole 1mage stored at the leaf PEs 1s
shifted one or more positions 1n the right, left, up, or down direction
The ifhage shift operation involves the transfer of all the image elements
and is thus communication-intensive, accounting for a high percentage of
the local operation execution time on the present version of NON-VON 3
In the next subsection, we describe two algorithms to perform this
operation for both gray-scale and binary 1mages. In‘the following

subsection, we present the algorithms for image correlatic;’t?\.a“

5.3.1. Image Shift Algorithms

The algorithm for shifting a binary image involves reporting the size
and location information of the black rectangles, one by one, to the CP
using the RESOLVE instruction. For each reported rectangle, the new
location of the rectangle 1s computed using the reported location and the
horizontal and vertical shifting required. The new location information
and the rectangle size are then broadcast to all the PE's in the tree. All
leaf PE's corresponding to pixels falling within the rectangle boundary set
ther BINARY1 vaniable equal to 1  The boolean variable BINARY1 1is
initialized to the value 0 The binary image tree representation of the
shifted image can be then computed as described in Chapter 4. The
algorithm just described does not perform ‘‘image wraparound”. As a
result, parts of the original image, determined by the amount of shift, no
longer exist 1n the shifted image. The algorithm can be modified to

perform 1mage wraparound as follows If the reported rectangle in 1its



new position contains a portion which 1s outside the boundary of the
image, then this portion wraps around. To perform this wraparound, the
rectangle 1n its new location 1s shifted horizontally by a distance equal to
the width of the rectangle, then vertically by a distance equal to the
rectangle length.  Finally, 1t 1s shifted vertically and honzontally a
distance equal to its length and width, respectively. The direction of the
shift 1s opposite to the original shift direction. For example, if the
oniginal shift 1s i1n the east and south directions, then the wraparound
shifts are performed in the west and north directions. If the portion of
the rectangle to be wrapped around totally exists on the east or west
side of the image, then only a horizontal shift i1s needed On the other
hand, if this portion exists only on the north or south sides of the image,

then only a vertical shift 1s needed.

We now describe a non-wraparound N-PASCAL algonithm to shift an
image ¢ places 1n the horizontal direction and ; places 1n the vertical
direction  Positive values of ¢ and j indicate image shifts in the right
and down directions, respectively while negative values indicate shifting

the image in the left and up directions

Procedure bimage _shift(s, ;. integer , kchar),
label 2, 4;
var
t1, j1, k1 Integer,
z, ¥, |, w integer;
vector _var
BINARY1, REPORTED boolean,



begin

/* 1. Imitiahze the vector variables BINARY1 and REPORTED
REPORTED s set equal to 1 only for rectangles to be shifted.  The
character scalar variable k specifies the type of rectangles to be used in
the shift operation. */

it k = B’ then k1= 1

else k1 = 0,

if kI = 1 then BINARY1 = false
else BINARY1 = true,

REPORTED = false,
where FQUAD = k do REPORTED = true,

/* 2 Select a PE corresponding to a rectangle in the binary image
tree representation that has not yet been reported. Report its size and
address information to the CP. I there are no PE’s satisfying this
condition, the shift operation i1s done. */

2
where REPORTED = false do N _Al = true
elsewhere N _Al = false,

/* The function N_RESOLVE selects a single PE among the enabled
PE's It returns 0 if there are no enabled PE's. */

if N _RESOLVE() = 0 then goto 4,
where N _Al = true do
begin
N_REPORTS(XADD, z),
N_REPORTS(YADD, y),
N_REPORTS(XSIDE, w);
N _REPORTY(YSIDE, ),
y =y +J
I =ZI <+
REPORTED = true,
end,

/* 3  Broadcast the new location information, and set the vector



variable BINARY equal to 1 only 1n those leaf PE's corresponding to
pixels falling within the boundary of the rectangle. */

where (XADD >= z) and (XADD < z+w)
and (YADD >= y) and (YADD < y+l{) do
if k1 = 0 then BINARY1 = false
else BINARY1 = true;
goto 2,

4.
end;

The algorithm executes 1n time proportional to the number of black
rectangles 1n the binary image tree representation of the image.
Typically, this number 1s of O(d), where d 1s the diameter of the image
[Dyer 82a], as will be discussed in Chapter 6. Thus, the time required to
execute this operation is typically O(n'/?), where n 1s the image size.
Alternatively, the white rectangles can be used in place of the black
rectangles The only change involves imtializing the BINARY1 variable
to 1 1n Step 1, and setting 1t to 0 1n step 3. If the number of white
and black rectangles 1s known in advance, this decision may be made in
such 2 way as to mimimize number of rectangles to be processed. Note
that the distance to be shifted in both the the horizontal and vertical
positions does not affect the execution time of the algorithm.  The
NON-VON 3 code (Appendix B) executes about 40 instructions per
reported rectangle Thus, shifting a 128 x 128 binary image containing
500 rectangles requires about 5 msec. Figure 5-4 depicts the results of
shifting the binary image of Figure 5-3 three pixels in the right directions

and 5 pixels 1n the up direction. Two cases are shown in the figure; the
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first one, Figure 5-4-3, 1s shiftm(thhout wraparound and the second

case, Figure 5-4-b, shows the wraparound effect.

Next, we describe the algorithm to perform gray-scale image shifting.
For the sake of simplicity, we consider the case of shifting the gray-scale
image one position in the left direction. Slightly modified versions of this

algorithm may be used to shift the gray-scale image in other directions.

Recall that gray-scale images are stored in the leaf PE’s, and that the
leaf PE's of a subtree 1n the NON-VON tree correspond to a block of
the stored image. Figure 5-5 shows two adjacent k x k blocks of the
image and the NON-VON tree representation of these two subimages.
Shifting the image one position in the left direction involves transferring
k 1mage values from subtree number 1 to subtree number 2 through the
common root of the two subtrees (PE3). This operation can be
performed in parallel for all subimages of size ¥ x k, using the PE'’s at

the level corresponding to rectangles of size 2k x k.

The procedure to transform the k elements sends the elements to be
shifted up the tree one by one in a pipelined fashion After a number of
steps equal to the height of the subtree (2 log k), the first element
reaches the root of the source subtree, PE1. This element 1s then
transferred to the root of the destination subtree, PE2, through the

common root of the two subtrees, PE3 At this point, the algorithm
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starts sending the elements as they arrive to PE1 to PE?2 through PE3
Each time an element is transferred to PE2, the algorithm moves the
elements that have arnved to PE2 one level down the destination
subtree. Thus, in time proportional to (k + log k), image elements on
the boundary of k x k subimages are shifted one position left. Shifting
the whole image includes repeating this operation for

k=12 4 . , (n'/?/2

where n 1s the image size. The time required to shift the whole image is
proportional to the sum of 1, 2, 4, ., (n'/?)/2, which is equal to n!/2 - 1.

Thus, the time required to shift the whole image one position left is of

O(n'/2)

The N-PASCAL algorithm to perform the shifting of k elements on the
western boundary of a k x k subimage to the neighboring k£ x &

subimage follows:

Procedure subimage left shift(k, h: integer),

var
i, J. integer,

vector __var
REL_X, REL_Y, SHIFT_VALUE: integer,
SH_LC, SH_RC, SH_P, GRAY2_VALUE. Integer,
LEAF: boolean,

/* The following procedure enables in each subtree the PE
corresponding to element number ¢ among the elements to be shifted and
reads 1ts gray-scale value into the vector variable SHIFT _VALUE.
SHIFT _VALUE 1s set equal to 0 1n all other leaf PE's. */
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Procedure pick _element(n integer),

begin
where LEAF = true do

_begin
SHIFT _VALUE = 0,
where (REL_X = 0) and (REL_Y = n) do

SHIFT _VALUE ‘= GRAY _VALUE;

end,
end,
/* The following procedure sends the elements to be shifted one level

up the tree */

Procedure move_up,
begin
where LEAF = false do
begin
N RECVS(LC, SHIFT VALUE, SH LC),

N_RECVS(RC, SHIFT_ VALUE, SH_RC),
N_ORS(SHIFT _VALUE, SH_LC, SH_RC),

end,

in each subtree

end.
a single PE

/* The f{cllowing procedure enables
corresponding to the destination element ¢ and assigns the value of
*/

SH_P to its GR{\Y?_VALUE vector variable.

Procedure assign _element(n,m. Integer),

begin
where (LEAF = true) and (REL_X = m)
and (REL_Y = n)
do GRAY2 _VALUE = SH_P,

end,
/* The following procedure sends the elements of the vector vaniable

SH _P one level down the tree */

Procedure move_ down;,

begin
N_RECV8(P, SH_P, SH_P),



end,

/* The following procedure assigns to the variable SH_P in the root of
subtree 2 the value of the vanable SHIFT _VALUE in the root of the

subtree 1 */

procedure move__around,

begin
N _RECVS(RC, SHIFT _VALUE, SH_RC);
N SENDS(LC SH RC SH_LC),
SH P = SH_ LC

end,

/* This 1s the main procedure: */

begin

/* 1. Compute the address of each image point relative to the & x k&
block in which 1t exists, and mark leaf PE's. */

REL_X = XADD mod k;
REL_Y = YADD mod k;
mark _leaf(LEAF),

/* Now start calling the various procedures to move the boundary
elements between the two blocks. Note that h is the number of the
level where the roots of the subtrees exist. */

fors = 1to(k+ 2*A)do
begin
If i <= k then pick _element(s - 1)
If i <= k+h then move _up,
if § >= h then move _around,
if ¢ > h then move__down,
ifi >= 2 * h then assign_element(s - 2 * A, k),
end,

end,



The NON-VON 3 code for this procedure 1s included in Appendix
B. To shift the whole gray-scale image one position, this procedure 1s
called-with values of k ranging frqm 1 to n'/?/2  (The cases of k equal
to 1 and 2 can be actually programmed differently as they consist only
of few tree communication steps.) For each element shifted, 48
instructions are executed, requiring 12 psec. The time required to shift
the whole binary image 1s proportional to image side length. For a
128 x 128 gray-scale image, 1 6 msec i1s needed to shift the whole image
one pixel to the left. Shifting the gray-scale image more than one pixel 1s
performed by executing this algorithm a number of times equal to the

number of shifts required.

Adding one-bit mesh connections to the leaf PE’'s of the NON-VON
machine should reduce significantly the time required for gray-scale image
shifting  Such connections allow single-pixel shifts 1n 2 usec for gray-scale
images shifting, and 250 nsec for binary images. Unhke the algorithm
described above to shift binary images, however, this approach would

reqmre additional time for shifts of more than one pixel

5.3.3. Image Correlation Algorithms

In this subsection, we describe two algonthms to perform the cross
correlation operation on the NON-VON machine. The cross correlation

value at a certain position 1n the image is defined as
m

cross _ correlation = Y z,y, (5 4)



where y; :re the template elements, z; are the image elements covered by
the template elements, and m is the number of template elements. The
first algorithm 1s a direct parallel implementation of the standard
sequential machine algorithm  The second one uses the tree structure of
NON-VON to reduce the number of image shifts required to compute the

correlation, thus reducing the time required to execute these operations

The first algonthm starts by imtiahzing the variable CORR_ VAL,
which stores the correlation function value 1n each leaf PE, to zero.
Each leaf PE then computes the correlation function term corresponding
to 1its own pixel value and adds the resulting value to the variable
CORR_VAL To compute the rest of the correlation function terms,
each leaf PE reads the value of image points in 1its neighbor PE's using
the shift operation, as described in the previous section. For each value
read, a term in the correlation function 1s computed by each of the leaf
PE's and 1its value 1s added to the vector variable CORR_VAL
Consequently, the algorithm consists of a repeated sequence of image shift
and compute steps This sequence 1s repeated a number of times
depending on the template size For example, if we have a 3 x 3

template, the sequence 1s repeated eight times (template size - 1).

We now describe the first image correlation algorithm in N-PASCAL.

For simplicity, we assume that the template size 1s 3 x 3 and that the
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correlation function 1s the sum of products of image elements and
template elements. The correlation function value 1s stored in the image

element under the center pixel in the template.

The N-PASCAL algonithm follows:

Procedure image_ corrl,
var
¢ integer;
temp array|0 8] of integer,
vector _var
G _VAL1, CORR_ VAL integer,
LEAF boolean,
begin

/* 1 Imtiahize the vector vannable CORR VAL and compute the first
term of the correlation function. */

CORR _ VAL
CORR_ VAL

0.
CORR _ VAL + temp|0] * GRAY _VALUE ,

/* 2 Compute the rest of the correlation terms  The function
shift _I(X, Y) shifts left the image represented by the vector varable X,
and stores the result image i1n the vector vanable Y. Shift _u, shift _d,
and shift _r are deflined similarly */

shift _(GRAY_VALUE, G_VALL1),
CORR _VAL = CORR VAL + temp(l] * G_VAL1 ,

shift _d(G_VAL1, G_VAL1),
CORR_VAL = CORR_VAL + temp(2] * G_VALI

shift _ (G _VAL1, G_VAL1)
CORR_VAL = CORR_VAL + temp(3] * G_VALL1 ,

shift _r(G_VAL1, G_VAL1);
CORR_VAL = CORR_VAL + templ4] * G_VALI |



shift _r(GRAY _VALUE, G _VALLl),
CORR VAL .= CORR VAL + temp|5] * G_VALL1 ;

shift _u(G_VAL1, G_VALLl),
CORR VAL = CORR _VAL + templ6] * G_VALI ;

shift _}(G_VAL1, G_VAL1),
CORR _VAL = CORR_VAL + temp(7] * G_VAL1 ;

shift _(G_VAL1, G_VAL1),

CORR VAL = CORR _VAL + temp[8] * G_VALL1 ;
end,

Note that the order in which the image shifts are performed depends on
where the value of the operation i1s to be stored. The time required to
execute the function 1s O(m(s+¢)), where m 1s the template size, ¢ is the
time required to compute a term i1n the correlation function, and s is the
execution time of the image shift operation. On the present version of
NON-VON. the image shift time 1s O(n'/?) for typical images, where n s
the image size  Thus, the time required can be expressed in terms of
tmage size as O(m(n'?4¢)) In the N-PASCAL procedure described
above the correlation function term i1s computed by multiplying two 8-bit
integers, and then performing a 32-bit integer add (for a 15-level tree).
This operation takes about 30 usec on the present version of
NONVON 3 The image shift operation for a 128 x 128 image takes
about 16 msec, on the present version of NON-VON, as stated earlier.
Therefore the computation time 1s very small compared to the shift time

For a 3 x 3 template, the correlation function as defined earlier executes
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in 128 msec. On a mesh-connected machine, the image shift operation 1s
performed in constant time, and the computation of image correlation
thus requires only O(me) time. For templates of different sizes, the same
procedure can be adapted to compute the correlation function value
Note that the time required to execute the procedure on the present
version of NON-VON (which lacks mesh connections) is dominated by the

image shift time.

The second approach treats the whole image as a number of subimages
stored 1n the leaf PE's of NON-VON subtrees. Each subimage contains
all local i1mage information required to compute the correlation for a
subset of 1ts points The 1mage correlation for these points is computed
for all subimages in parallel Computing the correlation function for
image points on the boundary of subimages requires image information
from neighboring subimages. This 1s the only case in which the image
shifts are required. Figure 5-6 depicts a subimage of size 4 x 4 and a
template of size 3 x 3 There are 4 points in this subimage (points 1 to
4) at which the correlation function can be computed using only the

subimage values

The computation of the correlation function for these four points 1s
performed by storing the template for each position in the leaf PE's, such
that PE's that are not covered by the template have template value zero

This 1s equivalent to scanning the template all over the subimage, and at
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Figure 6-6: Image Correlation Template 1n

a 4 x 4 Subimage
each of the positions where all the subimage elements covered by the
template exist, the correlation function 1s computed. For a 3 x 3
template, four template values must be stored in each PE. This 1s
performed for all PE's in time proportional to the template size. The
correlation function 1s then computed 1n the leaf PE’'s, and the results
are compiled using the tree connections 1n each subtree root. Shifting

the whole image one position to the left enables us to compute the

correlation function for points 5 and 6 Shifting the resulting 1mage one
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position down makes it possible-to compute the function at points 7 and
8 Similarly four shifts enable us to compute the function at points 9
through 16. Note that only six image shifts are required in this
approach instead of eight shifts in the standard algorithm described
earlier in this section. The number of shifts required is given by the

following equation:

number of shifts = (s - k%)/k (55)

where 8 1s the subimage size, and k x k 1s the number of points at
which the correlation function can be computed using the subimage
information. The value of k depends on both the template size and the
subimage size. For example, if the template size 1s 5 x 5 and the
subimage size 1s 8 x 8 then k 1s 4 and the number of shifts required 1s

12 instead of the 24 required by the first approach.

We now present the N-PASCAL algorithm to compute the image
correlation, assuming subimages of size 4 x 4 and a template of size

3 x 3

Proeedure image corr2,
var
i. integer,
temp: array|l. 4,1 16| of integer,
vector _var
G _VALL, G_VAL? Integer,
CORR_ VAL Integer,
TEMP1 array(l 4] of integer,
LEAF boolean,
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Procedure comp __corr(s: integer);
var
J. Integer,
vector _ var
CORR_L, CORR_R, X, Y, NO: integer,
begin

/* 1. Compute the correlation terms at the leaf level. */
X =Y * TEMPI|j,
/* 2. Add the terms together using the tree connections. */

for j =1 to 4 do
begin
N_RECVS(LC, X, CORR_L),
N _RECVS(RC, X CORR_R),
X = CORR_L + CORR_R;
end,

/* 3. Send the result back to the leaf PE's. */

for j =1 to 4 do
N _RECVS(P, X X),

/* 4 Enable only PE's in position 1 1n the subimages and store the
correlation function value in the variable CORR _ VAL */

where NO = 1 do CORR_ VAL = X
end,

begin

/* 1. Compute the correlation function for points at positions 1
through 4 The function comp_ corr(i) computes the correlation function
at position 1. */

fori = 1 to 4 do
comp _ corr(1),



/* 2 Compute the rest of the correlation terms */

shift _(GRAY _VALUE, G_VALLl),
comp _corr(9), comp __corr(6),

shift _d(G_VAL1, G_VAL2),
comp _corr(7); comp __corr(8),

shift _u(G_VAL1, G_VALY2),
comp _corr(15), comp__corr(16),

shift _r(GRAY _VALUE, G_VAL2),
comp _corr(9), comp _corr(10),

shift _u(G_VAL2, G_VALIl),

comp _corr(11), comp _corr(12),
shift _u(G _VAL2 G _VAL1),

comp _corr(13), comp _corr(14);
end,

The above N-PASCAL algorithm executes 1n time proportional to
(j(s + k log a)), where j 1s the number of shifts, s is the shift time, k 1s
the number of correlation function values computed after each shift, and
a 1s the area of the subimage This time 1s again dominated by the time
required to perform the image shifting In the case of 3 x 3 templates,

this time 1s approximately 9 6 msec

The performance figures presented above clearly indicate that if tree
communication 1s used to shift the whole image 1n any direction, then
this time dominates the execution time of local operations on the present

version of NON-VON Adding the capability of fast image shifting to
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NON-VON speeds up these operatxons considerably  There are several
ways to add this capability The simplest and most direct approach 1s
to incorporate a single-bit mesh connections at the leaf level, as 1s in fact
currently planned. A second possible solution would be to add the mesh
connections at an intermediate level, reducing the complexity of the
machine wiring. For example, if the mesh connections are incorporated
at the second level above the leaves, the required number of wires 1s
reduced by half. This, however, will increase the time required for image

shifting.

We are also considering a slight modification to the current PE design,
by adding a second special rotating register, that will result in byte
multiplication being performed 1n about 30 usec instead of 30 usec on
the present version. The fast multiplication will reduce significantly the
execution time in case of adding mesh connections. Based on these two
proposed modifications to the NON-VON hardware, we have computed
the expected execution time for the image correlation operations. Table

5-1 summarizes these projections

<
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Table 6-1:  Execution Time for Some Low-Level Operations
on Parallel Machines

- - - D - T P P D P P D D e A P W D e

ICL DAP MPP §ON-VOE 3 508-Y0W 3

(vithout mesh (vith mesh
connections) connections)

Speed (MIPS) §.0000 10.0000 4.0000 4.0000
Execution time
. Hi-t.ognl (msec) 70.0000 120.0000 4.0000 4.0000
(128 X 128 image, 258 bins)
b. Thresholding -- 2.5000 1.5000 1.5000
(usec)
¢. Binary image
shifting (msec) -- 0.0001 §.0000 0.00028
d. Gray-scale -- 0.0008 1.6000 0.0020

shifting (msec

e. Cross correlatioa
(3 X 3) asec - 0.2000 9.8000 0.0500

7x7 -- 1.0000 27.0000 0.2500




Chapter 6

Geometric Algorithms

Geometric operations usually accept binary images as their input and
produce a symbolic description of the geometric properties of input image
objects as their output. The output of these operations usually results
from combining 1mage data that i1s found in distant parts of the image.
Consequently, these operations can be viewed as global operations
performed on images Examples of these operations include identifying
separate objects in the 1mage and computing different geometric
descriptions of these objects In this chapter, we describe algorithms for
labeling 1mage objects, and for computing some of their geometric
properties, such as area, perimeter, genus, centroid, moments, and
compactness Algorithms to perform set operations on binary images are
also described. We assume throughout this chapter that the binary
image 1s already stored in the tree, and that the binary image tree

representation 1s constructed as described in Chapter 4
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6.1. Connected Component Labeling

Connected component labeling 1s a basic operation in i1mage analysis
that identifies the disjoint regions of a binary image  The connected
component labeling algorithm assigns unique labels to disjoint connected
regions of a binary image as illustrated in Figure 6-1. The disjoint
regions identified by the algorithm may be then analyzed separately using

one label at a time

We assume 1n this chapter that the image objects have been separated
from their background using some segmentation procedure. Thresholding
based on image histogramming, as described in the previous chapter, 1s
an example of such a segmentation procedure. In describing the NON-
VON connected component algcrithm, we assume that only the
foreground components (the black areas) are to be labeled;, but the same
procedure can also be applied to background components (the white

areas)

6.1.1. The Connected Component Labeling Algorithm

There are several algorithms for performing the labeling operation on a
sequential machine depending on the data structure used to represent the
image If for example, a two dimensional array is used, the classical
sequential algorithm scans the binary image from left to right and top to
bottom [Ball 82] For each foreground pixel (pixel with value ‘1’), its left

and top neighbors are examined If they both have no labels assigned to
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(a) The input binary image

00000000000000000000000000000000
00111101111111000001110001110000
00111111111111110011110001111000
00111111111111111001110001110000
00111101111100111100111111100000
00000000011100011110001110000000
00000000011100000000001 110000000
00000000011100000000001 110000000
00000000011100000000001 110000000
0000000001 1100000000001110000000
00000000011100000000001110000000
00000000011100000000001110000000
00000000011100000000001110000000
00000000011100000000001110000000
00000000011100000000001110000000
00000000011100000000001110000000
00000000011100000000001110000000
00000000011100000000001110000000
00000000011100000000001110000000
00000000011100000000001110000000

00000000011100000000001110000000

00000000011 100000000000100000000
00000000011110001111100000000000
00000000011100111111111000000000
00000000000001111000111100000000
00000000000001110000011110000000
00000000000001111000111110000000
00000000000000111111111100000000
00000000000000001111110000000000
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000

(b) The labeled image

00000000000000000000000000000000
0077770777T777000008880008880000
QO77TTTTTTTTTT770088880008888000
007TTTTTTTTTTT777008880008880000
0077T70TTTT700777700888888800000
00000000077700077770008880000000
00000000077700000000008880000000
00000000077700000000008880000000
00000000077700000000008880000000
00000000077700000000008880000000
00000000077700000000008880000000
00000000077700000000008880000000
00000000077700000000008880000000
00000000077700000000008880000000
00000000077700000000008880000000
00000000077700000000008880000000
00000000077700000000008880000000
00000000077700000000008880000000
00000000077700000000008880000000
00000000077700000000008880000000
00000000077700000000008880000000
00000000077700000000000800000000
00000000077770002222200000000000
00000000077700222222222000000000
00000000000002222000222200000000
00000000000002220000022220000000
00000000000002222000222220000000
00000000000000222222222200000000
00000000000000002222220000000000
00000000000000000000000000000000
00000000000000000000000000000000

00000000000000000000000000000000

Figure 6-1: Connected Component Labeling of a Binary Image
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them, then the pixel 1s assigned a new label If only one of them has a
label, or both have the same label, then the examined pixel is assigned
this label. If they have different labels, then the pixel i1s assigned the
smallest of them, and an entry is created in an equivalence table taking
note of the equivalence between the two labels. So, after one scan of the
whole image, each pixel 1s assigned a label, and equivalence relations
between labels are known. A second pass i1s thus required to reassign a
unique label to pixels in the same equivalence class. This algorithm takes
time proportional to the size of the image. For a 512 x 512 image (256K
pixels), this algorithm executes in about 300 seconds on a VAX 11/750
[Lum:i 83] Other variations of the algorithm and their execution times for

different 1mage sizes are described in [Lumi 83]

A second algonithm on sequential machines that uses the quadtree data
structure 1s described .n [Same 8lc] The average execution time of this
algorithm 1s proportional to the sum of the black and white squares in
the quadtree data structure representing the binary image A parallel
algorithm that computes the connected components on an n!/? x n!/?
mesh-connected parallel SIMD computer in O(n!/?), is described 1n

[Nass 80].

The NON-VON algorithm described 1n this thesis scans the rectangles of
the binary image tree representation of the image. The rectangles are

scanned 1n terms of their size, rather than in terms of their location The



RESOLVE instruction 1s used to échieve that, and the reason for that 1s
to eliminate the need for a second pass, as will be clear soon. For each
rectaﬁgle, all neighbor rectangles (rectangles having a common boundary)
are labeled with the same label. If any of the neighboring rectangles has
already been assigned a label, then this equivalence case 1s noted
Equivalence cases are limited by two at each step, and they are treated

after each scanning step.

The algorithm, as implemented on NON-VON, starts by assigning the
label zero to all black rectangles of the binary i1mage tree. The
RESOLVE 1nstruction 1s then used to report to the CP the black
rectangles of the binary image one by one, in order of their sizes This
can be done simply by starting at the root level and enabling only PE’s
holding black rectangles at that level, and then reporting them to the CP
in an order that depends on how the RESOLVE instruction s
implemented  This order 1s not important to our algorithm, since all
rectangles on a specific level have the same size.  After all the black
rectangles on level ¢ level have been reported, we enable the PE's with
black rectangles in the next level i+1 down the tree and repeat the
reporting procedure The algorithm terminates when all black rectangles

in the leaf level have been reported.
-

For each reported rectangle, the CP assigns a new label 1if it has not

already been assigned a label The CP broadcasts instructions to mark
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and label all adjacent rectangles in different directions with the same
label of the reported rectangle If during the adjacency test, any
adjacent rectangle has already been labeled, then this adjacent rectangle
and all rectangles having the same label value will be assigned the label
of the reported rectangle. Another black rectangle is picked as described
above and the labeling procedure is repeated. This procedure guarantees
that all black rectangles are labeled, since all black rectangles are
reported to the CP and are assigned a label if they have not already
have a label. One pass i1s enough because at each step, all rectangles
that have been labeled and are adjacent to each other have the same
label  During the execution of this algorithm, information about the
common boundaries between rectangles will be stored locally at each node
to be used later for computing some geometricﬂ properties of different

components

The algorithm 1s described more rigorously below using N-PASCAL.
The vector variable COMP _LABEL is used to store the region label to
which the rectangle belongs The vector boolean variables TE, TN, TW,
and TS are used to indicate the existence of a common boundary
between a rectangle and its neighbors in the east, north, west and south
directions respectively The algorithm sets the value of these variables,
such that if two rectangles share a common boundary, then this
information 1s stored only in the smaller of the two rectangles. Another

vector variable, REPORTED, 1s used by a rectangle to mark itself as



reported. The scalar variable newlabel 1s used to store a new unassigned
label. While the scalar variable comlabel is used to store the label
assxgn;a to ad)jacent rectangles in adjacency testing respectively  The
scalar variable curlev will be used to refer to the current level from

which the algorithm picks black rectangles.

In what follows, we describe the N-PASCAL algorithm to label the

connected components of a binary image:

Procedure connected _comp(no_levels: INTEGER);
label 3, 6, 8;
var
newlabel, comlabel, curlev: integer;
z, y, z8, ys, | integer,
vector _ var
TEMP, CUR_LEV integer,
TE. TN, TW, TS, TO_BE _LAB boolean;
ANY _Al, REPORTED, EQUIV boolean;
begin

/* 1 Initialize the scalar variables newlabel and curlev to 0 Set the
variable CUR_LEV equal to the level number in all PE's.  The
procedure to perform this i1s very simple and 1s implicitly included in the
code for imtiahzing the NON-VON tree We will not describe this
procedure here */

newlabel = 0, curlev = 0,
TW = false, TE = false,
TN = false; TS = false,
REPORTED = false;

set _level number(CUR _LEV),

/* 2 Enable all PE's corresponding to black rectangles (FQUAD='B').
Set the vector variable COMP _LABEL (dclared 1n the main procedure)
equal to 0 and the variable REPORTED to 1 */
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where FQUAD = ‘B’ do
begin

COMP _LABEL = 0,

REPORTED = true,
end,

/* 3 Enable all PE's corresponding to black rectangles that have not
been reported yet at the current level. If none 1s enabled and the
current level 1s the leaf level, then stop; else if none 1s enabled and the
current level 1s not the leaf level then repeat this step for the next level
From the enabled PE’s, select and enable only one PE. */

3
where (CURLEV = curlev) and (REPORTED = true)
do N_Al = true
elsewhere N__Al = false
ANY Al '= N_RESOLVE(),
if (ANY _Al = false) and (curlev = no__levels) then
goto 8,
If (ANY _Al = true) and (curlev <> no__levels) then
begin
curlev = curlev + 1,
goto 3.

end,

/* 4 Report the address, size, and label information of the enabled PE
to the CP Mark the enabled PE as being reported. If the rectangle
associated with the PE has not been labeled before (COMP _LABEL =
0). then assign to it a new label Set comlabel equal to the label of the
reported rectangle */

where N __Al = true do
begin

N _REPORTS(XADD, z),

N _REPORTS(YADD, y);

N _REPORTS(XSIDE, zs),

N _REPORTS(YSIDE, ys),

N _REPORTS8(COMP _ LABEL, ),
REPORTED = false;

end,



it = 0 then
begin :
newlabel = newlabel + 1,
-1 = newlabel,
end.
comlabel = |,

COMP_LABEL = |,

/* 5. Test for adjacency in the four directions one at a time This s
done by broadcasting for each direction the range in which the location
of the adjacent rectangles should lie. This range i1s computed using the
reported rectangle size and location information. Only rectangles in this
range will be enabled If any of them has a label other than zero, then
its value 1s reported to the CP Only two rectangles at most can have
their labels equal a value other than zero, as will be proven later All
adjacent rectangles labels are set to comlabel. Duning check for
adjacency, information regarding adjacency are stored in PE'’s. */

TO _BE _LAB = faise, EQUIV ‘= false,
where REPORTED = true do
begin
where (XADD = z + zs) and (YADD < y + ys)
and (YADD >= y) do

begin

TW = true,

TO_BE _LAB = true
end,

where (YADD = y + ys) and (XADD < z + zs)
and (XADD >= z) do
begin
TN == true,
TO_BE_LAB = true
end,

where (YADD + YSIDE = y) and (XADD < z + z3)
and (XADD >= z) do

begin
TS == true,
TO_BE_LAB = true,
end,

where (XADD + XSIDE = z) and (YADD < y + ys)
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and (YADD >= y) do

begin
TE = true;
TO_BE_LAB = true,
end;

end,

where TO_BE _LAB = true do

begin
if COMP _LABEL = 0 do
begin
EQUIV = true,
TEMP = COMP _LABEL;
end,
COMP _LABEL = comlabel,
end,

/* 6. This step takes care of the equivalence cases. For each adjacent
rectangle with COMP _ LABEL not equal to zero, broadcast the value of
1ts COMP _LABEL  Set COMP LABEL in all PE's having the same

label value equal to comlabel */

6
where EQUIV = true do N_Al = true
elsewhere N Al = false,
if N _RESOLVE() = 0 then goto 3
else where N _Al = true do
begin
EQUIV = false,
N _REPORTS(TEMP, ),
where (COMP _LABEL = () and (FQUAD = ‘B)
do COMP _LABEL = comlabel,
goto 6,
end,
8,
end,

In Step 5, a crucial part of the algonthm's efficiency 1s due to the fact
that at most two of the adjacent rectangles can have labels other than

zero To prove this, we assume that rectangle 3 has been reported to the
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CP and that without loss of generality we are looking for rectangles
adjacent to it along 1ts eastern boundary, as shown in Figure 6-2
Assume also that rectangle 2 1s adjacent to rectangle 3 in the east
direction as shown in Figure 6-2-a. [f rectangle 2 has been labeled
before, then 1t must be adjacent to a rectangle 1 of size greater than or
equal to rectangle 3 This 1s true because rectangles are reported to the
CP 1n order of their size. Rectangle 2 can share a common boundary
with rectangle 1 1n the east, north, or south direction along the
boundaries of the shaded area shown in Figure 6-2. From the way we
build the binary image tree, we know that if rectangle 1 1s to the east of
rectangle 3 and 1s larger than or equal to it, then the distance separating
them 1s greater than or equal to the width of rectangle 3 (L3) Thus,
we conclude that if rectangle 2 13 adjacent to both 1 and 3, and
rectangle 2 1s smaller than or equal to rectangle 3, then its width (L2) 1s
equal to L3 There 1s only one rectangle that can satisfy this condition,
as shown in Figure 6-2-b, where i1ts two unique posmoris are shown In
addition to rectangle 2 in the previous case, we can have only a second
rectangle 2 that could have been labeled before because it 1s adjacent to
a larger or equal size rectangle in either the north or south direction as
shown 1n Figure 6-2-b Figure 6-2-c shows the third possible case, where
we have two rectangles (not necessarily of the same size) that have been
labeled before, and which are adjacent to rectangle 3, and to larger or

equal size rectangles 1n the north and south direction respectively.
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Figure 6-2: Cases of a Rectangle Adjacent to
Two Rectangles

A similar proof 1s valid for adjacent rectangles in the other directions.

Steps 3 through 7 are repeated a number of times equal to the number
of black nodes in the image Each step consists of at most a fixed
number of NON-VON instructions. Thus, the time the algorithm takes is
proportional to the number of rectangles 1n the binary tree O(B) If
prior information about the adjacency for single pixels 1s known (for
example, during the broadcasting of the image), then those rectangles

with adjacencies only 1n one direction do not have to be reported to the

CP once they are labeled.



The information obtained about the common boundaries between
rectangles can be used not only to compute component properties in time
propc;rilonal to the height of the NON-VON tree, but also to mark all
boundary pixels with respect to a black region. This 1s a simple
proce}dure,' and it will not be described in this thesis. It executes i1n a
time proportional to the number of black rectangles in the binary image
tree  Marking boundary pixels can be used in other algorithms, such as

determining adjacency relationships between components.

Note that in the labeling procedure, only binary image tree rectangles
belonging to the connected component are being labeled. If all the image
pixels contained within the connected components are also to be labeled,
then a simple procedure that executes in time proportional to the height
of the NON-VON tree may be used to perform this operation  The
pasic stvep in this procedure 1s to let each PE reads the label of 1its
parent node, and only if this PE corresponds to a non-gray rectangle that
1s not part of the binary image tree (FQUAD 1s equal to ‘N’), then the
read value 1s stored in its LABEL variable This step 1s repeated a
number of times equal to the tree height, after which all leaf PE's will
have theirr LABEL variables set equal to the label value of the connected
component to which they belong  The N-PASCAL for this simple

procedure follows

Procedure spread _labekno _levels INTEGER),
var
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i integer,
vector _var
TEMP integer,
begin
for += 2 to no__levels do
begin
N RECVS8(P, COMP LABEL, TEMP),

where (FQUAD = ° _’) do COMP _LABEL = TEMP,
end;

end;

The NON-VON 3 code for this procedure contains 4 instruction per
1iteration. Thus for a 15-level tree the procedure executes 1n

approximately 16 usec.

6.1.2. Connected Component Labeling Simulation

The algorithm described 1n the previous section has been simulated on
both the functional and instruction-level simulators. Figure 6-3 shows (a)
a 32 x 32 binary image (the same as that of Figure 5-3), that was input
to the functional simulator and (b) the labeled foreground components
The simulator has also been used to label background objects as shown
in part (c¢) of Figure 6-3 The binary image representation of this image
contains 64 black rectangles and 88 white rectangles It took about three
seconds of actual (sequential) CPU time for the simulator to label all

black components.

The NON-VON 3 code for the algorithm executes using at most about

200 NON-VON instructions, per iteration, in case of the existence of two



equivalence cases in all directions.

With- 'a NON-VON 3 instruction cycle of 250 nsec, the algorithm
execution time 1s approximately .05B msec, where B 1s the number of

black components. For an n'? x n!/? binary image the average number

of black rectangles in the binary image tree is O(n'/?) [Dyer 82] Thus

the average case running time for the algorithm is O(n'/?) The average
running time of the algorithm on NON-VON for a 512 x 512 image with
1000 black rectangles 1s about 50 msec. (We can always in a time
proportional to the height of the tree compute the number of black
rectangles 1n the NON-VON tree, and use that number to estimate the
running time of the algorithm ) The simulator was also used to coh‘pute
some components properties based on the information produced by the

connected component algorithm, as will be described in the next section.

8.2. Computing Connected Component Properties

In this section, algonithms that compute various shape properties of
binary 1mages are presented.  This quantitative description of 1mage
shape properties is used to classify objects 1n the image, and 1s usually
fed to high level vision procedures that interpret the image  Area,
perimeter, moments, centroid, compactness, eccentricity, and i1mage genus
are the shape properties discussed in this section. Algonithms for
computing the complement, intersection, and union of binary images are

also described We assume throughout this section that the image objects
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have been labeled by the connected component algorithm as described in
the first section of this chapter, and that the vector variable LABEL

contains the value of the label associated with each rectangle.

Before describing the algorithms, a common function that will be called
by these algorithms i1s presented. The function, add _tree(X), i1s used to
compute the sum of the values of the vector variable X found in all PE's
in the NON-VON tree. The N-PASCAL procedure for evaluating the

add _tree function follows:

Function add _tree(var X Iinteger)integer,
label 2,
var
count, sum. integer;
vector __var
TEMP Integer,
LEAF. TEMP1 boolean;
begin

/* 1 Initiahize count We assume that the number of tree levels A is
imitialized by the calling procedure. Enable only those PE’s in the level
above the leaf level */

count = |,

mark _leal(LEAF),

LEAF = not LEAF ,
N_RECVI(LC, TEMP1, LEAF),
LEAF = not TEMPI,

/®* 2 Using the tree connections, every enabled PE reads the contents
of the variable X in 1ts two children, adds them to the value of 1ts own
variable X, and places the result in its variable X */

2
where LEAF = true do



begin
N _RECVS(LC. TEMP, X),
X = X + TEMP,
N_RECV8(RC, TEMP, X),
X = X + TEMP,

end,

/* 3 If the enabled level i1s the root level, then stop. Otherwise, enable
all the PE’s 1n the level above the currently enabled level Goto step 2

*/

count = count + 1.
If count <> h then
begin

LEAF = not LEAF ,
N _RECVI(LC, TEMP1, LEAF);
LEAF = not TEMP1,
goto 2,
end,
add _tree = read _root(X),
end,

Steps 2 and 3 are executed h times, where A 1s the number of levels in
the tree after which the sum will be reported to the CP  Thus, the
time required to compute the function add_tree(X) 1s O(h). The
NON-VON 3 code for this procedure 1s included in Appendix B. The
time required to execute this procedure assuming, a 32-bit add operation,

1s 10 usec per level For a 128 x 128 image, the time required is thus

015 msec
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6.2.1. Area

The area of a region (connected component) is defined as the total

number of black pixels 1n this region The area of a connected
component can be found by setting the vector integer variable AREA in
all PE's containing rectangles belonging to this component equal to the
area of the rectangle, and setting the same variable equal to zero in all
other PE's Then the function add_tree(AREA) is called, and the value
of the function 1s the area being sought. The same procedure is repeated
for other regions of interest in the image. An N-PASCAL procedure for

implementing this simple algorithm follows:

Procedure conn_area(conn _label integer),
var
area _value 1nteger,
vector _var
AREA integer,
begin

/* 1 Enable all PE’s, and set the local variable AREA equal to zero in
all of them */

AREA = 0,

/* 2. Enable only those PE's with their label equal to the label of the
connected component for which the area 1s to be computed. In all
enabled PE's, multiply the width by length and place the result in
AREA Note that multiplication 1s performed through a series of shift
operations because the x-side and y-side values are all powers of 2. Once
this 1s done, enable all PE's XSIDE and YSIDE are the globally defined
local variables.initialized by the initialization procedure. */

where COW_LEEL = conn__label do
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AREA = XSIDE * YSIDE,

/* 3 Call the function add_tree(AREA) When the function 1s
executed, the area will be reported to the CP.*/

area _value = add_tree(AREA), .
end;

The algorithm executes a fixed number of NON-VON instructions to
compute Steps 1 and 2, independent of the size of the image  The
multiplication 1n Step 2 is computed by a series of shift operations, since
the values of XSIDE and YSIDE are powers of two. Step 3 takes time
proportional to the height, A, of the tree. Thus, the algorithm executes
in O(h) time. The execution time of this algorithm is dominated by the
‘time required to compute the function add _tree, which 1s approximately

015 msec for a 15-level tree, as shown earlier in this section.

6.2.2. Perimeter

The computation of object perimeter 1s a basic operation in image
processing ~ The perimeter of a binary image object, represented by
binary image trees, 18 defined as the total length of object black rectangle
sides that are adjacent to white rectangles The algorithm makes use of
the information stored i1n each PE in the course of executing the
connected component algorithm about the common boundaries of
rectangles The algorithm computes the perimeter of a region by adding

the perimeter of all rectangles in this region, and then subtracting from
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this sum twice the sum of the lengths of all common boundaries The

algorithm proceeds as follows:

-

Procedure conn _perimeter(conn __label integer),
var
perimeler integer,
vector __var
PER, COM: integer;
begin

/* 1 Enable all PE's and imtialize the two variables which store the
lengths of the perimeter and the common boundary of each rectangle */

PER = 0, COM = 0,

/* 2 Enable only PE’s that belong to the region for which the
perimeter 1s to be computed In all enabled PE’s, set the variable PER
equal to the perimeter of the rectangle held by the PE. Compute the
total length of the common boundaries, and store 1t in the variable
COM */

where COMP _LABEL = conn _label do
PER = 2 * (XSIDE + YSIDE)
elsewhere PER = 0,
where COMP _LABEL = conn _label do
begin ‘
where (TN = true) do COM = COM + XSIDE,
where (TS = true) do COM = COM + XSIDE,
where (TE = true) do COM = COM + YSIDE,
where (TW = true) do COM = COM + YSIDE
end,;

/* 3 Enable all PE's and compute the perimeter. */

perimeter = add _tree(PER) - 2 * add _tree(COM),
end.
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Steps 1 and 2 execute 10 NON-VON 3 instructions independent of the
image or tree size. Step 3 executes in time proportional to the running
time of the function add_tree. Thus, the algorithm executes in O(h)
time The execution time of the NON-VON 3 code for this procedures is
dominated by the time to execute the function add _tree, which 1s equal

to -0 3 msec.

6.2.3. Moments

There are many shape descriptors that can be derived from image
moments. The set of moments of a bounded discrete function flz,y) of

two variables z,y 1s defined by

My =Y z'yflzy) (6.1)

The parameter ¢ + j 1s called the order of the moment, where i and j
take on all nonnegative integer values. There 1s an infinite set of
moments for every function.  This infinite set 1s unique for every

function, and s sufficient to specify the function completely [Cast 79].

For a binary image, flz,y) takes the value 1 inside the objects and 0
elsewhere. This function reflects the shape of the object, and i1t has a
unique set of moments. Notice that the zero-order moment corresponds
to the area of the object. The two first order moments, M;q and My,
divided by the area of the object (Mpg) correspond to the coordinates of

the center of gravity (centroid). If an object moment is divided by the



object area, the resulting value is size-invariant.

The central moments Bij of an object are defined by the following

equation:

“ij = Z (20‘2)‘(y°°y)jﬂ2,y) (6 2)

where z, and y, are the center of gravity. The central moments are
position-invariant. If the second central moment s, computed relative to
the coordinate axes X',Y’ 1s equal to zero, then these axes are called the
principal axes Moments computed relative to these axes are rotation-
invariant We can conclude from past definitions that object area-
normalized moments computed relative to the principal axes can be used
to describe uniquely the shape of an object, independent of its size,
translation, or rotation The set of such moments necessary to describe

uniquely an object i1s object-dependent.

To compute the moments of an object in a binary image, the vector
integer vartable MOMENT s 1mtx§hzed to zero i1n all PE's PE’s
associated with pixels belonging to this object are then enabled. The
moment of each of these pixels 1s computed in the enabled PE’s using
the address information stored at each PE (z-address, y-ad&ress), The
computed moment 1s stored in the vector integer variable MOMENT.
The function add _tree(MOMENT) is next called to compute the object

moment To compute central moments, first the coordinates of center of
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gravity are broadcast to all PE's.‘ Each enabled PE computes the central
moment of the pixel held by this PE. The function add _tree is then
used to compute the object central moment. In what follows, we
describe an algorithm that computes the central moment s, of a binary

image, which is defined by:

3 (z-z )y ) 1z.9) (6 3)

i

Procedure moment _1l(conn _label, 20, y0 integer),
var
moment _value: integer,;
vector _var
MOMENT, X0, YO0 integer,
LEAF boolean;
begin

/* 1 Enable all PE's, and set the local variable MOMENT equal to
zero in all of them */

MOMENT = 0,

/* 2 Enable only those leal PE's whose label i1s equal to the label of
the connected component for which the area 1s to be computed
Broadcast the values of the center of gravity (zo, yo). In all enabled
PE's. compute the central moment for the rectangle associated with this

PE */

N _BROADCASTS(z0, X0),

N _BROADCASTS(y0, Y0),

mark _ leaf(LEAF);

where (COMP _LABEL = conn _label) and (LEAF = true) do
MOMENT = ((XADD - X0) * (YADD - Y0)),

/* 3 Call the function add_tree(MOMENT). When the function 1s
executed, the moment will be reported to the CP */
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moment _value = add_tree(MOMENT),
end;

Steps 1 and 2 execute a fixed number of NON-VON instructions, while
the execution time of Step 3 1s proportional to the height of the tree
Thus, the time required to compute 1mage moments 1s proportional to the
tree height (O{h)). As in the case of area and perimeter computation,
the time required to compute the function add__tree dominates the time
required to execute this procedure (approximately 0.15 msec to compute a

moment value)

6.2.4. Centroid

The coordinates of the centroid of an object are defined as the first
order moments of the object divided by its area. To compute the two
first order moments two values are computed in each rectangle belonging
to the region we are interested in  The first, YMOM, is the result of
multiplying the rectangle area by the sum of its x-address and half its x-
stde The second, XMOM, 1s the product of multiplying the rectangle
area by the sum of its y-address and half its y-side The centroid 1s a
pair consisting of add _tree(XMOM) divided by the area of the region,
and add _tree(YMOM) divided by the area of the region The area can
be computed as described earlier in this section. Note that multiplication
can again be performed using a series of simple shifts and additions,

which takes a constant time  Thus, the time required to compute the

113



centroid 1s proportional to the height of the tree, and is approximately

0 30 msec on NON-VON 3

6.2.5. Compactness

The compactness (or circularity) of an object 1s one measure of the
complexity of the shape of its boundary. The most commonly used
measure of compactness 1s perimeterz/area, which 1s a dimensionless
quantity that 1s minimized by a circular area. Perimeter and area are
computed as described before in time proportional to the height of the
tree. Thus this measure of compactness 1s computed in time proportional
to the height of the tree. There are other measures of compactness; the

reader 1s referred to [Cast 79] for more details.

6.2.6. Eccentricity

Eccentricity 1s another characteristic of objects  Also referred to as
rectangularity, 1t measures the elongation of an object There are several
measures of eccentricity One of them 1s the ratio A/B where A 1s the
maximum chord of the object, and B 1s the maximum chord
perpendicular to 1t Another possible measure 1s the ratio of the
principal axes of inertia The principle axes of inertia for an object are
the two orthogonal axes that pass through the center of gravity, such
that one of the values of the two moments u4,, and u,, computed relative
to them is maximum, and the other value 1s minimum. One formula

that approximates this ratio [Ball 82] 1s

11s



E={(sy - #p)"/* + 4, }/area (6 4)

Agaiff the time required to compute E 1s proportional to the time
required to compute the moments in the above equation, which 13 O(h).

This time 1s approximately equal to 0.45 msec on NON-VON 3.

6.2.7. Euler Number

The Euler number (genus) of an image is a topological property that
describes the connectedness of a region. The Euler number of an image
is defined as the number of connected components minus the number of
“holes” i1n the image. If there is only one connected component under
consideration, then one minus the Euler number gives the number of

holes i1n this connected component.

For a binary image, the Euler number may be computed from the

expression

E= V-E+F (6 5)

where V 1s the number of 1l's in the image, E 1s the number of
horizontally or vertically adjacent pairs of 1's, and F 1s the number of
2 x 2 blocks of 1's [Dyer 80b]. Similarly, Dyer [Dyer 80b] has shown
that the Euler number for a binary image represented as a quadtree (the
proof 1s similar for a binary image tree) can be computed from the

expression
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E= B-A+S ' (66)

where B is the number of black rectangles, A i1s the number of adjacent
pairs of black rectangles, and S is the number of triples or quadruples of
black rectangles that surround a point. Figure 6-4-a shows how three
rectangles can surround a node, while Figure 6-4-b show four rectangles

surrounding a point.

PE1

PE2

(a) (b)

(¢)

Figure 8-4: Possible Configurations of Three or
Four Nodes That Intersect a Point

In computing the Euler number, the number of black rectangles B can



be computed by setting a variable TEMP equal to one i1n all PE's
assoclated with black rectangles that are part of the component under
consideration, and zero in all other PE's. The function add _tree(TEMP)
1s then called to compute the value of B. Counting the number of
adjacent rectangles 1s performed in a similar way using the common
boundary information variables (TE, TN, TW, and TS). As described in
Section 61, 1If there are two adjacent rectangles, then only one of them
sets the appropriate common boundary variable equal to 1. The vaniable
TEMP 1s set equal to the number of common boundary variables that
are equal to one 1n each PE representing a rectangle of the component.

Next, the function add _tree(TEMP) is called to compute A.

To compute S, all the points surrounded by three or four black
rectangles are examined, one at a time. These points can be located
using the common boundary information stored at each PE as follows.
By inspecting Figure 6-4-a, if there are three rectangles surrounding a
point. then there are three common boundary variables stored in the
three PE's representing these rectangles Due to the way these variables
are set 1n the labeling procedure, the first PE of the three to report its
rectangle (depending on their sizes) has none of these common boundary
variables set equal to 1  Consequently, one of the other two PE’s has
two of these common boundary variables set (PE 3 in Figure 6-4-a)
Note also that these two common boundaries intersect at one of the

rectangle corners Following a similar argument, 1t 1s easy to show that



in the case of four rectangles surrounding a point, one or two of the
PE's have two common boundary variables set (Figure 6-4-b) It 1s
possible, however, to have three rectangles intersecting at a point without
surrounfilng it, as shown in Figure 6-4-c. To compute S, all PE's with
two common boundary variables set equal to 1, and which correspond to
a corner i1n the rectangle, are examined. The corner point is counted
only 1if 1t 1s surrounded on all sides by black pixels. If there 1s anc;ﬁhér
PE with two common boundary variables that intersect at the same

point, then 1t 1s flagged and not counted.

For example, if a rectangle has a common boundary along its north and
west boundaries (that 1s, if both TW and are TN are set), the point at
the north western corner of this rectangle is surrounded by two

rectangles. as shown in Figure 6-5.

The examined

pixel

Figure 68-6: Testing for S Points

1253



This corner point 1s examined to check whether there are other rectangles
surrounding 1t. The check 1s performed by examining the neighboring
image” point 1n the north western direction. If this point is black, then
we increment the value of § The corner of the rectangle containing this

point s flagged so that it will not be examined later by the algorithm

The N-PASCAL algonthm follows:

var

r, y, 3, ys integer,
Procedure conn _euler(conn __label Integer),
var

b, a, s, euler _no Integer,
vector _var

TEMP' integer,

NW,  NE, SW, SE, LEAF boolean,
begin

/* 1 Compute the value of B in the Euler number formula by setting
the variable TEMP equal to 1 1n all PE's associated with rectangles of
the component, and then counting the number of 1's. */

TEMP = 0. :
where COMP _LABEL = conn__label do TEMP = 1,
b = add_tree(TEMP),

/* 2. Compute the value of A in the Euler number equation as in Step
1 This time, set the variable TEMP equal to the number of common
boundary variables equal to 1 in the component PE's */

TEMP = 0,
where COMP _LABEL = conn__label do
begin
if TE = true then TEMP = TEMP + 1,
if TN = true then TEMP = TEMP + 1,
if TW = true then TEMP = TEMP + 1,
if TS = true then TEMP = TEMP + 1,
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end.
a = add _tree(TEMP),

/* 3. Set the variables corresponding to rectangle corner pixels
surrounded by triples or quadruples of rectangles. Mark all leaf PE's
corresponding to black pixels.*/

NW = false; NE = false;
SW = false; SE = false;
TEMP =0,
where (TN = true) and (TW = true)
and (COMP _LABEL = conn__label)
do NW ‘= true,
where (TN = true) and (TE = true)
and (COMP _LABEL = conn _label)
do NE = true,
where (TW = true) and (TS = true)
and (COMP _LABEL = conn__label)
do SW = true,
where (TE = true) and (TS = true)
and (COMP _LABEL = conn _label)
do SE = true,
mark _leaf(LEAF),
LEAF = LEAF and BINARY,

/* 4 For each corner, report the size and address information of the
rectangle containing 1t  The function check _euler(D) checks for any PE
with the boolean vanable D set equal to 1 if there exists a black pixel
which surrounds the corner from the only left direction. If none exists,
then. a zero value 1s returned, otherwise a single PE with D equal to 1 is
enabled, and 1ts address and size information are reported.  Also, this
step checks to determine whether a black pixel exists diagonally across

the corner being examined */

TEMP = 0,
while check _euler(NW) <> 0 do
begin
where (XADD + XSIDE = z) and (YADD + YSIDE = y)
do SE = false,
where (XADD = z - 1) and (YADD =y - 1)
and (LEAF = true) do TEMP = |,
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end,

while check _euler(NE) <> 0 do
begin
where (XADD = z + zs) and (YADD + YSIDE = y)
do SW = false;
where (XADD = z + zs) and (YADD = y - 1)
and (LEAF = true) do TEMP = 1;
end,

while check _euler(SW) <> 0 do
begin
where (XADD + XSIDE = z) and (YADD = y + ys)
do SE = false,
where (XADD = z - 1) and (YADD = y + ys)
and (LEAF = true) do TEMP = |
end,

while check _euler(SE) <> 0 do
begin
where (XADD = z + zs) and (YADD
do SE = false
where (XADD = z + z3) and (YADD = y - ys)
and (LEAF = true) do TEMP =1,

y + ys)

end.

s = add _tree(TEMP),
/* 3> Compute the Euler number for the connected component. */

culer _no = b-a + s,
end

/* The following procedure checks to see whether there are any PE's
with the boolean variable D equal to 1 [f so, one such PE 1s enabled
and the address and size information associated with the rectangle 1t
represents are reported to the CP If there are no PE's with D equal to
1, then the function returns 0 */

function check _euler(var D boolean) integer,
label 1,
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begin
where D = true do N__Al = true

elsewhere N Al = false,
if N_RESOLVE(N _Al) = 0 then
check _euler = 0
else
begin
where N_Al = true do
begin

N_REPORTS(XADD, z),
N_REPORTS(YADD, y),
N_REPORTS(XSIDE, zs);
N _REPORTS(YSIDE, ys);

D = false,
check _euler = 1,
end,
end,
end;

Steps 1 and 2 of this algorithm execute 1n time proportional to the
height of the tree Step 4 executes in time proportional to the number
of points of intersection of three or four rectangles. This number 1s
always less than the number of black rectangles. Thus, 1n the worst
case, the algorithm executes in O(h+b), where A is the height of the tree
and b 1s the number of black rectangles. Simulation results for some
simple binary 1mages show that the value of S on the average 1s

approximately equal to half the number of black rectangles.
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68.2.8. Connected Component Properties Simulation

The algorithms described 1n the previous section have been tested using

the functional simulator. Six geometric properties have been computed
for each component in the binary image. The output of the simulator
resulting from computing these properties of the connected components of

Figure 6-3 follows.

Computing some geometric properties for the labeled foreground objects:

label{0]= 9 , area[0]= 67 , perimeter[0]= 62
x-center[0]= 432 , y-center{0]= 24.10 , No. of holes[0]= 1
compactness[0]= 57 37 , elongation[0j]= 8.30

label[l]= 2 , area[l]= 5 , perimeterflj= 10
x-center[l]J= 090 , y-center[l]= -0.50 , No. of holes[l]= 0
compactness[l]= 20 00 , elongation|[l]= -0.48

label[2]= 4 . area2]= 49 , perimeter2]= 48
x-center{2]= 21 66 . y-center[2]= 707 , No. of holes[2]= 0
compactness[2]= 47 02 . elongation[2]= 13.78

label[3]= 7 . area[3]= 20 , perimeter[3|= 24
x-center[3]= 930 . y-center[3]= 1805 , No of holes[3]= 0
compactness[3]= 28 80 , elongation{3]= 519

label[4]=10 , area[4]= 2 , perimeter{4]= 6
x-center{4]= 050 , y-center[d]= 1600 , No of holes[4]= 0
compactness(4|= 18 00 , elongation{4|= 000

Computing some geometric properties for the labeled background objects:

label[0]=3 . area[0]= 874 , perimeter[0]= 232
x-center[0]= 16 93 , y-center[0]= 767 , No of holes[0]= 3
compactness[0]= 61 58 , elongation[0}= 46 27



label[l]=3 |, area[]l]= 4 , perimeter[l]= 8
x-center[l]= 500 , y-center[l]= 2500 , No of holes[l]= 0
compactness[l]= 16 00 , elongation{lj= 0.00
label[2]=6 , area[2]= 3 , perimeter[2]= 8

x-center[2]= 750 , y-center[2]= 26.50 , No. of holes[2]= 0
compactness[2]= 2133 , elongation[2]= 047

Note that the perimeter of components containing holes includes the
perimeter of these holes  The existence of holes also increases the
compactness measure of objects, since 1t increases the length of the object
perimeter Performance comparison with other highly parallel machines 1s
not possible, since performance data for geometric algorithms on these
machines are not available as of the time of wrting this thesis. It is
expected that NON-VON's performance for computing the geometric
properties 1s an order of magnitude better than the mesh-connected

-machines because of the hierarchical nature of NON-VON.

6.3. Set Operations

Set operations on i1mages involve the computation of a new image based
on one or more existing images. For example, locating common objects
between two images in the same relative position involves intersecting the
two 1mages point by point and determining which points are common to
both of them In the following subsections, we will present NON-VON
algorithms for computing the complement intersection, and union of

binary images Other set operations can be expressed as a combination
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of these three set operations. We assume that the binary images have
already been loaded in the leaf PE's of the NON-VON tree, and that the
binary 'image representation has been built. [In this representation, the
character vector variable FQUAD contains the type of the rectangle
assoctated with the PE, and the vector integer variable TREE indicates
how many black pixels exist in this rectangle. Also, the vector boolean

variable BINARY stores the value of the pixel in a binary image.

6.3.1. Complement

Computing the complement of a binary image involves changing the
black pixels into white and the white pixels into black. The most obvious
manner 1n which the complement operation 1nvolves computing the
complement of all pixels of the original binary image stored in the leaf
PE's This operation 1s executed concurrently i1n all leaf PE’'s, and
involves reading the pixel value and then complementing it. If the binary
image tree representation of the complement 1s required for subsequent
processing stages, the algornithm for building the binary 1mage tree
reprelsentatnon described 1n Chapter 4 can be executed This algorithm
executes 1n O(A) time A more effictent method to build the binary
image tree representation of the complement image uses the binary image
tree representation of the original image This method can compute the
binary image tree representation of the complement in constant time.
The algorithm for complementing an image and constructing its binary

image tree follows
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Procedure set _comp,
vector _var
TREEL: integer,
FQUADI1 char,
begin

/* 1 The FQUAD vanable i1s checked. If it 1s equal to ‘B’, then 1t 1s
changed to ‘W' and vice versa. If the value 1s ‘G’ it remains as 1t 1s
FQUADI1 and TREE1 are the image complement variables. FQUAD and
TREE are globally defined */ -

if FQUAD = ‘B’ then FQUAD1 = ‘W'

else if FQUAD = ‘W’ then FQUAD1 = 'B’
else if FQUAD = ‘G’ then FQUAD1 = ‘G’
else FQUAD1 = ‘N’

/* 2 The vanable TREE (denoting the number of black pixels in the
rectangle) 1s set equal to the size of the rectangle minus its old value. */

TREE1 = XSIDE * YSIDE - TREE,
end,

Steps 1 and 2 take a fixed number of NON-VON instructions (about 32
NON-VON 3 instructions) regardless of the NON-VON tree size, so the

algorithm will be executed 1n a constant time (8 usec on NON-VON 3)

6.3.2. Intersection

The intersection of two binary 1mages involves a pixel-wise logical
conjunction of the two images. We assume that the two binary images
are stored 1n the NON-VON tree. BINARY,, TREE, and FQUAD,
represent the first image, while BINARY,, TREE, and FQUAD,

represent the second image. The two images in their finest resolution (the
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pixel level) are stored in the leal PE's. The intersection algorithm follows

Procedure set_int;
vector _var
FQUAD3: char,
LEAF, BINARY3: boolean;

begin

/* 1 Enable all leaf PE’s. Compare the two vaniables BINARY, and
BINARY,, and if they are both equal to 1, set the vaniable BINARY,
equal to 1; otherwise set BINARY, equal to 0. This comparison reduces
to logical conjunction. BINARY1 and BINARY?2 are globally defined. */

mark _leaf(LEAF);
where LEAF = true do BINARY3 = BINARY1 and BINARY?:

/* 2 In the case of binary image tree representation i1s needed, set the
variable FQUAD; to either the value ‘B’ or the value ‘W’, depending on
the value of BINARY;  Call the procedure build _bit() to build the
binary image tree representation for the result image */

where BINARY3 = true do FQUAD3 = ‘B’
elsewhere FQUAD3 = ‘W'
build _binimg(h),
end.
Execution of the intersection algorithm on the two original images takes
a lixed number of instructions, independent of image size Building the

binary image tree takes time proportional to the height of the tree as

described 1n Chapter 4

Image intersection can also be defined for gray-scale images Gray-scale
intersection is performed by comparing each pixel in the first image with

the corresponding pixel in the second image [f the intensities are equal,



the corresponding pixel in the result image 1s set to the common value,

otherwise 1t 1s set to zero

6.3.3. Union

Computation of the union of two binary images involves the pixel-wise
disjunction of the two input images The algonithm for the union of two
binary images 1s analogous to the one for intersection. The difference 1s
that the logical operation performed in Step 1 of the algorithm 1s the
disjunction of the two pixels instead of the conjunction. The N-PASCAL

procedure to perform the union of two binary images follows:

Procedure set__ union,
vector _ var

FQUAD3 char,

LEAF BINARY3 boolean,
begin

e,

/* 1 Enable all leaf PE's Compare the two variables BINARY; and
BINARY,, and if one of them 1s equal to 1, set the variable BINARY,4
equal to 1, otherwise set BINARY; equal to 0. This comparison reduces
to logical disjunction. BINARY1 and BINARY?2 are globally defined. */

mark _leaf(LEAF),
where LEAF = true do BINARY3 = BINARY1 or BINARY?,

/* 2. To build the binary image tree representation, set the vaniable
FQUADg to either the value ‘B’ or the value ‘W’ depending on the
value of BINARY,; Call the procedure build_bit() to build the binary
image tree representation for the result image */

where BINARY3 = true do FQUAD3 = ‘B’
elsewhere FQUAD3 = ‘W’
bulld _bimimg(h),
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end,

The_time analysis for the union algorithm 1s therefore similar to that of

the intersection algorithm.



Chapter 7
The Hough Transform

The Hough transform method is used frequently in image understanding
tasks for among other uses to detect the shape of object boundaries
described by parametric curves. This method 1s based on the dualty
between points on a curve and the parameters of that curve. In his
initial work, Hough [Houg 62] described a method for detecting straight
lines 1n an 1mage using the slope-intercept parameterization of the line.

According to this parameterization, the line equation i1s expressed as

y=mz + ¢ (71)

Suppose that we have a set of image ponts {(z,y,), .. ., (z,y,)} that
have a likelihood of being on linear boundaries. In this paper, we refer to
these points as boundary points. The Hough transform method organizes
the boundary points into a set of straight lines as follows. Consider a
boundary point (z,y,) in the image plane. The parameters of all lines

passing through this point must satisfy the equation:

y' = mz.' + c
This equation corresponds to a straight line in the m-c space (the

parameter space). Tbus, the set of boundary points in the image plane
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corresponds to a set of lines in the m-¢ plane If two boundary points are
on a line AB in the image plane with parameters m, and ¢, then the
two l;n)es corresponding to these two points in the m-c plane intersect at
the point (m,.c). In fact, all boundary points in the image plane on the
same line AB map to lines in the m-c plane that intersect at the point
(m,.c,) Thus, the problem of finding the set of lines in the image plane
1s reduced to that of finding common points of intersection of lines in the
parameter space. A better parameterization of a straight line is suggested
by Duda [Duda 72], in which the parameters ¢ and » are used, where 4 1s
the angle of the line normal and p 1s the algebraic distance from the
origin The advantage of this parameterization is that the values of ¢ and
p are bounded, while in the case of m-¢ parameterization the values are
not bounded The Hough transform can be extended to detect other
curves of analytical parameters [Ball 73], or to detect general curve
shapes using edge orientation at the image points and a reference point
(Ball 81] A memory efficient implementation of the Hough transform on
sequential machines 1s described in [Brow 84] A parallel algorithm based

on the Hough transform for detecting a general curve with specific

orientation has been developed by Merlin et al {Merl 75|

The implementation of the Hough transform for detecting straight lines
on a sequential machine involves a quantization of the parameter plane
into a quadruled grid The grid size i1s determined by the acceptable

errors 1n the parameter values, and the quantization is confined to a
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specific region of the parameter plane determined by the range of
parameter values A two-dimensional array (the accumulator array) is
then used to represent the parameter plane grid, where each array entry
corresponds to a grid cell. For each boundary point, the algorithm on a
sequential machine increments the counts i1n all accumulator array entries
that correspond to grid cells along the straight line in the parameter
plane  After this step, gnd cells corresponding to the accumulator array
entries where the count exceeds a certain threshold value are selected as
the set of parameters for the image straight lines being sought The
increment of accumulator array counts can be thought of as a process of
“voting” by the boundary points for the parameter values of possible
curves passing thfough these points The time required to execute this
algorithm on a seq;xentlal machine 1s proportional to the size s of the
grid. plus the number m of boundary points times the number of votes v
of each point (O(s+mv)) Memory space required is proportional to the

size of the gnd

In what follows, we describe two parallel algorithms to implement the
Hough transform on NON-VON The first one is a direct parallel
implementation of the standard sequential algorithm  The disadvantages
of this approach are preséhted, and we describe a second approach that
solves these problems We assume that the boundary points have been
detected by some other procedures and that the PE’s holding them are

marked using a special flag.  Without loss of generality, we also assume
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that the curves being sought are straight lines whose equations are

expressed using the slope and intercept parameters.

7.1. The Hough Transform Algorithm - A Direct
Approach

In the sequential machine implementation of the Hough transform, each
boundary point casts 1ts votes in the accumulator array by incrementing
all the entries corresponding to grid cells along the parameter space curve
assoctated with this point. This process 1s repeated for all 1mage
boundary points  Next, accumulator array entries whose count exceeds a
specified threshold value are selected We now describe how this

algorithm s implemented on NON-VON.

Each NON-VON PE s associated with a grid cell in the parameter
space  The procedure to perform this i1s very simple, and 1t executes in
time proportional to the tree height The first step 1s to enumerate the
NON-VON tree PE's using the 1norder enumeration described 1n
[Knut 74] (Figure 3-3 1llustrates such an ordering) The number
assigned to each PE 1s stored in the vector integer variable ADDR. If
the parameter space 1s m by ¢, then the address of the grid cell held by
each PE 1s the pair (M, C) resulting from computing the remainder and
the quotient of dividing ADDR by m  The N-PASCAL procedure to

perform this follows

Procedure para_space(no__levels: integer),
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var
i. Integer;
vector__var
M, C, ADDR: integer;
LC, RC, ROOT: boolean,
begin
/* 1 Enumerate the PE’s using the inorder enumeration. We assume
that left and right children are marked and that the marking result 1s
stored 1n the LC and RC variables, respectively. Also ROOT is assumed

to be true only in the root of the tree. z__side i1s the length of the

image side */

ADDR = (z_side * z_side) div 2,

for 1+ = 2 to no_levels do
where ROOT = false do
begin

N_RECVE(P, ADDR, ADDR),
where LC = true do
ADDR = ADDR div 2,
where RC = true do
ADDR = ADDR + (ADDR div 2),

end,

/* 2 M and C are now computed. */

M = ADDR mod m;,
C = ADDR div m,

end,

This procedures executes in time proportional to the tree height. Note

also that dividing by 2 in this procedure is equivalent to shifting the



binary representation of the number one position to the left.

A vector integer variable COUNT 1is initialized to zero in all PE’s
before starting the algorithm. The coordinates of boundary points are
then reported to the CP one point at a time using the RESOLVE
instruction. The coordinates of each reported point are then broadcast to
all PE's and all those PE's holding a grid cell across the curve in the
parameter space corresponding to the reported point increment the vector
variable COUNT by one. This step 1s performed by substituting the
broadcast values in the parameter space curve equation and if it satisfies
the equation then COUNT 1s incremented. Each PE whose COUNT
variable exceeds the threshold value 1s marked, and the value of the gnid
cell associated with 1t s reported to the CP using the RESOLVE and
REPORT nstructions A vector character variable HT 1s used to flag
these boundary points that have not voted yet. The NON-VON

PASCAL algorithm that describes the procedure follows .

Procedure houghl(thresh integer),
label 2, 4, 5,

var
r. y, m, c: integer

vector__var
COUNT. X' Y integer.
PARAMETER boolean,

begin

/* 1 Imtiaize the vector variable COUNT in all PE's. The other
vector variables M, C, and HT are assumed to be defined and initialized
by the calling procedure */



COUNT = 0,
PARAMETER = false,

/* 2 Enable all PE's in which the boundary points have not been
repcrted yet  Report the coordinates of a single boundary point using
the RESOLVE instruction, and mark this point as reported. I none s
enabled then all the boundary points have been reported. In this case
start computing the parameter values using the threshold value */

2
where HT = true do N_ Al = true
elsewhere N _Al = false,
if N_RESOLVE(N _Al) = 0 then
goto 4,
where N Al = true do
begin
HT = false,
N _REPORTS(XADD, z),
N _REPORTS(YADD, y),
end,

/* 3 Enable all PE's holding the grid cells. Broadcast the reported
image point value Substitute this value in the equation of the parameter
space curve Increment COUNT 1n all PE’s in which the equation 1s
satisfied Now loop to select another boundary point. */

X =1

Y =y,

ifY=(M"*X + C) then
COUNT = COUNT + 1,

goto 2

/* 4. Broadcast the threshold value thresh. Mark all PE's in which the
count exceeds the threshold value Alternatively, the wuser can be
prompted to input the threshold value */

4 where COUNT > thresh do
PARAMETER = true;
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/* 5. Report the grid cell values held by these enabled PE's one by
one using the RESOLVE instruction. */

-~

5
where PARAMETER = true do
N Al = true

elsewhere N _Al = false,
if N_RESOLVE(N _Al) <> 0 then
begin
where N _Al = true do
begin

PARAMETER = false,
N _REPORTS8M, m),
N _REPORTS(C, ¢);
goto 5,
end;
end;
end,

Steps 2 through 4 are executed a number of times equal to the number
of boundary points b Step 5 executes a number of times equal to the
number of curves found, which is less than & Thus, the algorithm takes
time proportional to the number of image boundary points (O(b)). The
NON-VON 3 code for this procedure ([Ibra 84c| executes about 200
instriuctions for Steps 2 through 4 (50 usec at 4 Mhz) Of these 200
NON-VON 3 instructions, approximately 160 instructions implement the
evaluation of the straight line equation (This number can be reduced
significantly by implementing the hardware modification proposed 1n
Chapter 5) Step 5 executes about 12 NON-VON 3 instructions for each

set of parameter values found Thus, if the image contains 1000 boundary

points, the execution time of the algorithm is approximately 53 msec
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The number of PE's required by this approach is equal to the number of
grid points If the the gnd size s larger than the machine size by a
factor of k, then the parameter space 1s divided into k parts The above
procedure 1s then executed for each of these parts. The time required to

execute the algorithm in this case i1s O(kb).

One disadvantage of this approach 1s that 1t requires a NON-VON
machine of size comparable to the grid size, despite the fact that many
of the PE's will never get their COUNT incremented. Note also that
each time a boundary point 1s broadcast the curve equation has to be
evaluated in each PE, which 1s a time consuming operation as clear from
the numbers cited earlierr The second approach we describe below solves
these problems. It uses a number of PE's equal to the number of votes
cast by the boundary points rather than the grid size, and the curve

equation 1s evaluated only once

7.2. The Hough Transform Algorithm - A MSIMD
Approach

In our improved approach, the NON-VON tree 1s treated as .if it were
an independent set of subtrees, and each boundary point casts its votes
one by one in one of these subtrees. This voting process is performed
concurrently 1n all the subtrees. Thus, 1n time proportional to the
number of votes cast by each boundary point, all votes are cast and

stored throughout the tree. The problem of finding the parameter values



which exceed the threshold value 1s equivalent to that of finding the local
peaks of a two-dimensional histogram in the m-c example. Because of
the way the votes are cast i1n this second approach, we refer to this

algorithm as a multiple-SIMD (MSIMD) algorithm.

The size of these subtrees is determined by the number of votes cast by
each boundary point. For example, if each boundary point casts 60 votes
then the subtree size required 1s at least 60 (A subtree of six levels will
suffice) Boundary points are stored in the roots of these subtrees. This
can be performed by more than one method. The simplest one is to
report the boundary points to the CP one by one using the RESOLVE
instruction, and then to broadcast them to be stored in the roots of the

subtrees

The PE’s in these subtrees are enumerated 1n such a way that each PE
tn 3 subtree 1s assigned a unique address (stored in the vector vanable
ADDRESS) in the range [0, maz__num_votea], where maz_num __votes
1s the value of the maximum number of votes casted by each point. The
enumeration 1s performed in such a way that all PE's in the same
relative position within these subtrees have the same address.  This
enumeration procedure i1s similar to the enumeration procedure described
in the previous section, except that the number assigned to each PE is
the remainder of the computed address divided by the subtree size. The

remainder operation actually can be performed by extracting the nght
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least significant number of bits from the address computed by the
enumeration procedure. Time required by this procedure 1s proportional
to the height of the subtree. We now describe the algorithm for storing

the votes 1n the NON-VON tree.

We assume that the boundary points reside i1n the roots of the subtrees,
with the PE’'s being enumerated as described earlier. We also assume
that the parameter space 1s a two-dimensional one. The vector integer
variables X and Y are used to store the value of the boundary points,
while the vector variables M1 and M2 are used to store the parameter
values voted for by the boundary points. A scalar vanable g_m1 stores
the value of parameter M1 to be broadcast, and the scalar constant
delta_m1 1s the increment used to change the value of ¢ mi1  The
scalar constant h _subtree 1s the height of the subtree. The N-PASCAL

voting procedure follows

Procedure bough?2,

label 3,
var

i, J, g_ml: Integer,
vector _var

Ml M2, X Y integer,
begin

/* 1. Imtialize the scalar variables. The scalar variables A _asubtree,
delta_ml, maz_num _votes are imtiahized by the calling procedure. */

i =0,
g_ml =0



3 Enable all PE’s that are not the root of some voting subtree. The

ble SUBTREE ROOT 1s assumed to be set by the calling
dure Set X and Y in each child equal to X and Y in 1its parent

it this step h__subtree times. */

re SUBTREE _ROOT = false do
1in
v_RECV8(P, XADD, X),
v RECVS8(P, YADD, Y),
o;_j = 1 to h__subtree-1 do
begin
N_RECV8(P, X, X)
N _RECVS(P, Y, Y)
end;
L

 Enable the PE's with ADDRESS equal to ¢ in voting subtrees. In
> enabled PE’s store the new value of the parameter M1. */

are ADDRESS = 1 do
1 =9 mi

Increment ¢_mi by delta_ml1, and increment s by 1. If all the
of M1 have been stored in the voting PE's, then proceed to
ite the value of M2 in those PE’s, otherwise repeat step 3. */

=1 + |l

ml = g_ml + delta _ml,

t < mar _num _votes then
goto 3.

Enable all PE's Using the values of X, Y, and M1, compute M2
he curve equation */

= compute_m2(X , Y , Ml),
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Step 2 1s executed a number of times equal to the subtree height (log
v), where v 1s equal to the number of votes cast by each point Steps 3
and 4 are executed a number of times equal to v. Thus, the procedure to
store the votes 1n the subtree takes time of O(v). Note that step 5, the
evaluation of the curve equation, 1s executed only one time If the
evaluation of the curve equation results 1n more than one M2 value for
each value of M1, then each PE stores more than one parameter set
values This case depends on the parameter s:i)ace curve, and should
result 1n a slightly modified version of the algorithm to compute the local
peaks of the parameter histogram described later. If substituting the
known values in the curve equation results in a non-solvable equation in
the parameter being sought, then one possible way to overcome this
problem 1s by keeping a table of the parameter values and corresponding
function values 1n the CP  The CP broadcasts these pairs of parameter
and function values for all PE's and only PE’s holding similar function
values (maybe within a small range) set the value of their parameter
variable equal to the broadcast parameter value. This process takes time
proportional to the length of the table, but 1t 1s executed only one time

in this second approach to Hough transform method.

The NON-VON 3 code for this procedure executes approximately (10v
+ 160) NON-VON 3 instructions. For v equal to 100, the time required
to cast the votes 1n the tree is thus about 0.3 msec. If there are more

votes than the NON-VON tree size, each PE stores more than one vote

47



In this case, if each PE stores k values, then the time required to
execute the above procedure 1s O(kv), where k 1s the ratio between the

total number of votes and the NON-VON tree size.

Next, we describe how to find the parameter values that have votes
exceeding the threshold value These values occur at the the local peaks
of the two dimensional histogram of the votes for M1 and M2  We
assume in the following discussion that there are few of these local peaks
This 1s a reahstic assumption, as the number of curves being sought 1s

usually small
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Figure 7-1: The Two-Dimensional
Histogram of Parameter Values

Figure 7-1 shows such a histogram  In this example, there are a [ew
areas of voting activity (local peaks) A direct approach to the

identification of these local peaks involves dividing the two dimensional
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histogram space into grid cells. For each grid cell, all PE's with M1 and
M2 values falling within this grid cell are then marked and counted. The
time required to execute this simple procedure is O(sh), where s is the
grid size and h 1s the NON-VON tree height. Counts that exceed the
threshold value are the parameter values being sought. A large percentage
of the time 1in this procedure 1s spent counting votes i1n grid cells

corresponding to areas that contain few votes.

A different approach, in which areas of non voting activity are not
considered 1n locating the local peaks of the two-dimensional histogram, 1s
described now The procedure first computes a one-dimensional histogram
of the parameter M2, as shown i1n Figure 7-1. (A pipelined-SIMD
algorithm to compute the one-dimensional histogram 1s described 1n
Chapter 5) A small number of local peaks corresponding to regions of
the two-dimensional histogram where most of the votes occur, appear in
the one-dimensional histogram. Only votes 1n those regions are then
marked A second one-dimensional histogram of the parameter M1 1s
then computed for the marked votes only.  The local peaks of this
histogram are the values of M1, for which there are local peaks in the
two-dimensional histogram. The values of M1 and M2 for which exist
local peaks of the two one-dimensional histograms mark the regions of
activity 1n the two-dimensional histogram. These regions of active voting
are then checked for exact vote counts. Round off errors 1n computing

the parameter values can result in peaks that are relatively flat. For
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this reason, a small window around the regions of voting activity should
1':0 be checked when counting the exact votes. This second approach
execu{eé in time of O(m!1 + m2 4+ Ah), where ml and m2 are the
number of bins in the two one-dimensional histograms. The computation
of a 64 bins one-dimensional histogram requires about one msec. The
algorithm for locating the local peaks in the two-dimensional histogram of
the parameter values as described earlier executes in about 5 msec. The
total execution time of the second approach i1s thus about 5.3 msec,
which 1s considerably less than the time required by the first approach

(30 msec for 1000 boundary points).

The algorithms described here can be extended using slight modifications
to deal with parameter spaces of higher dimensions. For example, in the
first approach if we have an n-dimensional parameter space, then each
PE will correspond to a n-dimensional grid cell 1n this space. In the
second approach, the subtree size will correspond to that of
(n-1)-dimensional area of the parameter space, and each PE will store
parameter values that represent cells 1n this sub-parameter space A
second approach to extend the Hough transform to parameter spaces of
higher dimensions involves applying the current algorithms to two-

dimensional cross sections of the multi-dimensional parameter space



7.3. Simulation Results

The two algorithms described in this chapter have been tested using the
functional simulator  Boundary points representing straight lines in a
32 x 32 binary image, as shown in Figure 7-2, have been input to the
simulator. The parameter space grid 1s a 32 x 64 gnd, with m taking
the values -15 to 16 and ¢ assuming the values -10 to 53. Appendix C
includes the Hough transform simulation as performed on the functional
simulator  Nine lLnes, each consisting of five or more points, have been
found using the first approach. The two-dimensional accumulator array

of these lines are shown in Figure 7-3-a.

In the second 'approach, 16 votes are cast i1n each subtree with m
varying from -7 to 8 Figure 7-3-b depicts the two-dimensional histogram
of the votes stored in the tree Appendix C contains the values of the
two one-dimensional histograms computed for the stored votes.  The
second approach has computed the same set of straight lines found by

the [irst approach.
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Figure 7-3: Some Hough Transform Simulation Results
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Chapter 8
Moving Light Displays

In this chapter, we describe a NON-VON algorithm that implements the
tracking step in systems that interpret the motion of jointed objects from
a sequence of binary images representing points lying on the moving
objects The term moving light display (MLD) 1s used to refer to this
kind of image motion [Rash 80]. An MLD system uses only information
about the position and velocity of its points for the perception of motion,
and a sequence of such binary images (frames) are required for the
interpretation of the object motion  The objects in these frames are
represented by a relatively small number of points (typically less than one
hundred) Rashid [Rash 80] has implemented a system, which he calls
Lights. that interprets simple MLD's The input to this system 1s a set
of coordinate pairs corresponding to the points of the MLD In this
chapter, we present an algorithm that implements the “tracking” step in

Rashid's algonthm

The tracking problem 1s concerned with determining the correspondence
of points from one frame to the next The only information known 1s

the position of frameé points depicting parts in relative motion, and the
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average velocity of these points based on previous frame information A
fundamental assumption 1s that the velocity of MLD points vary
“smoothly” from one frame to the next This assumption can be used to
predict the position of the MLD points in the next frame The tracking
algorithm computes the correspondence that minimizes the sum of
differences between the expected position of each point and the actual
position of the corresponding point in the next frame. Assume that the
first frame contains m points and the next frame contains n points
(Note that m and n may differ, since different points may be occluded in
the two frames) One approach is to try all the possible matches
between the two frames. There are O(m") such possible matches; this
approach 1s thus Aprohxbitlvely time-consuming. Rashid has proposed a
second approach based on the observation that the actual corresponding
point 1s usually one of the ones which are found relatively near the

predicted position in the case of images produced by real physical objects.

We describe 1n the following section a NON-VON implementation of the

tracking step, which 1s based on this heuristic.

8.1. The Tracking Algorithm

The NON-VON algorithm starts by computing a good approximate
solution based on the heuristic mentioned earlier This is performed by
calculating for each point 1n the first frame, the point.rclosest. to 1ts

predicted position among the points that have not been selected yet 1n
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the second frame  (This approach to compute the initial solution 1s
basically a greedy algorithm, where the best local match among the

available ones 1s selected.)

This solution 1s then stored as an m-vector 1n the root PE of the
NON-VON tree. If the number of the points in the first frame is larger
than the number of the second frame points (some points in the second
frame are occluded), then one approach to handle the inequality 1s to
mark the correspondences of the extra points in the first frame with a
special character and they are not considered in computing the sum of
differences. However, for the sake of simplicity and to demonstrate how
the actual computation is being performed, we assume in this chapter

that the number of points in both frames is equal.

The points of the first frame are ordered such that points near to each
other in the image are also near to each other in the ordered set. This
ordering i1s important to our algorithm, as will be explained later 1n this
section. It should be noted however that in general such a perfect
ordering 18 not possible, since we are ordering points in a two-dimensional
space 1nto a one-dimensional vector that 1s supposed to keep the spatial
relationships of the points in the two-dimensional space. One possible
way to solve this problem 1s by constructing an array of m lists, with
each list corresponding to a point in the first frame and containing the

nearest k elements to this point. In the case that there are two points
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that are near each other in the two-dimensional frame, as indicated by
the array of lLists, but they are far from each other in the initial vector,
then an additional imtial solution i1s computed by moving one of the two
points 1n the 1mtial vector and inserting 1t near the other point
Computing these extra initial solutions involves searching the k-element
adjacency lists. If an MLD point 1s found in the adjacency hst of
another point that 1s far from the first point 1n the imtial solution
vector, then an additional imitial solution, considering these two points 1s
computed as described earlier. The procedure described in the next
section 1s then applied for each of the computed initial solutions. To
demonstrate the basic principals of the algorithm, we assume that the
frame points can be ordered, without the need to create more than one
initial vector, as 1s often the case of MLD'’s representing physical objects

in non degenerate positions

The basic 1dea of the algonthm 1is to quickly enumerate possible
solutions of the correspondence problem and store these solutions in the
leaf PE's The set of possible solutions contains permutations of the
imitial solution, such that only points near to each other in the first
frame are permuted. The sum of differences for these solutions can then
be computed in parallel in all leaf PE's. The tree connections are then
used to compute the matching that minimizes the computed sums
(requiring O(h) time) The match corresponding to the selected mimimum

value 1s the solution being sought We now show how to compute the
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permutations of the imtial solution. For the sake of simphaty, we
assume that only permutations of clusters of initial solution points are to
be performed  Each cluster consists of three consecutive points in the
initial solution vector, with clusters overlapping. We describe now how

possible solutions containing all permutations of the first three elements

can be computed.

The 1nitial solution in the root PE is passed to its two children. The
left child keeps the parent’s solution, while the right child performs a
permutation on this solution by swapping the first two correspondences,

as shown 1n Figure 8-1

et
3]
w

12 213.

123 132 213 231

123. 321 132 231 213 312 231 132

Figure 8-1: Permutations of the Initial Solution
First Three Elements

Again the solution 1s passed to the next level PE's The right children

swap the second and third elements in their solution When the solution
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1s passed to the following level, right children swap the first and third
elements At this point solutions containing all possible permutations of
the first three elements are found at the fourth level down the tree
Note that at the fourth level we have two solutions that are duplicated
This will not affect the procedure, but 1t will result in less efficient use
of the PE's This, however, can be avoided by replacing the duphlicate
solutions with other permutations of elements that are more than two
elements apart i1n the solution vector The ﬂsame procedure 1s now
repeated for the element three through five. This process continues until

the leaf level 1s reached At this point we have O(2*) possible solutions

stored 1n the leaf PE's of the NON-VON tree.

The set of permutations of the initial solution may be computed in
other ways One possible method 1s to compute for each of the predicted
points of the first frame their best match in the second frame (This can
be performed i1n time proportional to the number of points in the second
frame) If a point in the second frame has been selected as the best
match for more than a single first frame point, then these points are
reported to the CP. Permutations of this set of points are computed as

part of the possible solutions to be stored in the leaf PE's.

We argue that the selected solution using this algorithm 1s near the
optimal match, if not equal to it. The rationale for this is two-fold.

First, the imtial solution is presumably a good approximation of the
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desired solution, based on the heuristic assumption used 1n computing it

Second, as much as possible the permutations on the initial solution are

-~

performed between points that are near to each other in the image
frame. That 1n turn insures that if there i1s a conflict resulting from two
points in the first frame selecting the same correspondence in the second

frame, then alternatives including both selections will be among the set of

possible solutions.

The N-PASCAL procedure describing this algorithm for frames

containing at most 16 points follows:

Procedure mid2,
var

i. J, k. delta, dist _sqr integer,

sol. . y, 2, y2 zp. yp array|l.16] of integer,
vector _var

X1 Y1 U V X2 Y2 integer,

XP. YP LEVEL_NO integer,

NUM, DIST, TEMP integer,

S array|l 16] of integer,

RIGHTC. ROOT, F1, F2, N boolean,

/° The [ollowing function finds the minimum value of the vector
variable passed to it as an argument It looks for the minimum value
among the vector variable stored in enabled leaf PE's */

function min _lesflvar MIN integer)integer,
var
] integer,
vector _var
TEMP integer,
begin

for j = 2 to no_levels do
begin
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N _RECVS(LC, MIN, MIN),
N_RECVS(RC, MIN, TEMP),
if TEMP < MIN then MIN = TEMP
cud:
N_RECVS(LC, MIN, MIN),

/* At this point the mimimum value is stored in the CP register GG8
*/
min_leaf = N _GGS,

end.

Procedure swap _sol(s, ; integer),
vector __var
TEMP: integer,

begin
where RIGHTC = true do
begin
TEMP = S[j],
S5l = Sk,
Sl{] = TEMP,
end,
end,
begin

/* 1 Mark the right children, mark the root PE, and store the level
number of each PE in the vector vanable LEVEL NO. The first frame
points (X1,Yl) are assumed to be stored in the NON-VON leaf PE’s,
with the corresponding velocity components U and V. F1 1s set to 1 in
these PE's. The same 1s true for the second frame points (X2,Y2) The
time lapse between two frames 1s stored in the variable delta */

‘? .
YP
mark _re(RIGHTC),

mark _root(ROOT),

set _level number(LEVEL _NO),

0,
0,

/* 2 Compute the imitial solution (points nearest to the predicted



solution). The points of the first frame are stored in the NON-VON
tree, one per PE. X1 and Y1 are the coordinates of each of these
points. XP and YP are the computed predicted values for the location
of eaelr point in the next frame. NUM holds the number of the point in
the frame  The second frame 1s assumed to contain n points, while the
first frame has m points. */

where F1 = true do
begin
XP
YP
end;
N = F?2
1t = I
while (i <= m) do
begin
where (NUM = i) and (F1 = true) do
begin
N _REPORTS(XP, zpli]),
N _REPORTS(YP, ypli]),
end;
DIST = o,
where N = true do
DIST = (zpli} - X2) * (zpli] - X2)
+ (yplil - Y2) * (ypls] - Y2),
dist _sqr = mun _leaf(DIST),
where (N = true) and (DIST = dist _sqr) do
begin
N = (alse,
N _REPORTS(NUM, solls)),
end,
t =1 4+ 1;
end,;

X + U * delta;
Y + V * delta,

/* 3 Store the imtial correspondence in the root PE */

where ROOT = true do
for j = 1 to m do S[;] = sollj],

/* 4 Perform the permutations on the imtial solution and store these
possible solutions in the leaf PE's We will not deal with the duplicate
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cases 1n this procedure */

j=2 i =2
while j <= no__levels do
begin
where LEVEL_NO = ; do
begin
for k = 0 to m do
N _RECVS(P, S[k], S[k}),
swap _sol(s, (¢-1)),
end,
) =7+1
where LEVEL _NO = ; do
begin
for k =0 to m do
N _RECVS(P, S[k], S[k]),
swap _sol(r, (1+1)),
end,
J=71+1
where LEVEL _NO = ; do
begin
for k = 0 to m do
N _RECVS8(P, S|k}, S[k});
swap _sol((s-1), (s+1)),

/* 5 Compute the sum of differences for each possible solution. */

DIST = 0,
for j =1 tomdo
begin

for k =1 ton do
where S[j] = k do

begin
XP = z2(K,
YP = y2[k,
end,

DIST = DIST + (XP - zplj})) * (XP - zpj])
+ (YP - yplil) * (YP - yplil).

end,



/* 6. find the value of the mimimum sum of differences. */

dist _sqr = mun_leaf(DIST);

/* 7 At this point the CP contains the value of the minimum sum of
position  differences between the predicted positions and therr
correspondence.  Enable only the PE holding the solution with this
minimum value, and report the solution to the CP. */

where DIST = dist_sqr do
for j = 0 to m do
N _REPORTS(S[;], solij});
end;
Steps 2 and 4 of the algorithm execute 1n time proportional to the
product of the number of points in the first frame and the tree height
(O(mh) On the other hand, Step 5 of the algorithm takes time

proportional to the product of the number of points of the two frames

(O(mn)) Thus. the algorithm executes in O(Max(h, n)m) time.

The functional simulator session for testing the algorithm described in
this chapter is included in Appendix C The first frame points have been
used instead of their predicted positions  They have been ordered by
starting at an arbitrary point and finding the nearest point to it This
greedy algorithm 1s continued until all points have been ordered. Frames
with up to six points have been tested on a tree of 10 levels, and good

solutions have been computed using the described algonithm.



The occlusion of some points tn MLD f{rames, and the inability to
perfectly order two-dimensional points in a one-dimensional vector are two
problems that can cause the algorithm to compute solutions that are far
from the optimal solution. However, it should be remembered that this
algorithm has been intended to demonstrate the feasibility of solving such
problems on tree machines, and not necessanly to show efficient ways of

solving these problems



Chapter 9

Conclusion and Directions
for Further Research

In this research, we have addressed the problem of how fine-grained
tree-structured SIMD machines can be used for high-speed execution of a
wide range of image understanding tasks. Parallel algorithms have been
developed for several image understanding tasks on the NON-VON
machine, a highly parallel tree-structured SIMD machine. The image
analysis applications considered 1n this thesis were selected to span

different levels of computer vision tasks.

More specifically, we have developed and analyzed parallel algorithms
for {ast image correlation and quasi-parallel connected component labeling.
A fast distributed algorithm that uses the NON-VON PE's space
effictently has been developed to implement the Hough transform method
for detecting object boundaries We have also developed a parallel
algonthm that quickly enumerates possible solutions for the
correspondence problem in the moving light display application. Other
fast algorithms have also been developed, including 1mage histogramming,

set operations, and the computation of the geometric properties of
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objects.

The developed algonthms incorporate novel approaches to exploit the
tree organization of the machine, and to reduce the effects of
communication bottleneck usually associated with tree architectures. One
technique we have ﬁsed to this end involves partitioning the problem into
a number of smaller problems that fit within a set of independent
subtrees, in which communication is performed locally. Communication
between these subproblems is less than would be required if the problem
were not distributed among the subtrees. One example of this approach 1s
the second image correlation algorithm described in Chapter 5 Another
technique uses NON-VON'’s special hardware features to perform the
communication for certain problems, as in the connected component

labeling algorithm.

Issues related to the representation of images in tree machines have
been addressed in this research. We have demonstrated how hierarchical
data structures can be modified to represent images in the NON-VON
tree. Fast image 1/O 1s another important operation that affects the
efficient implementation of vision algorithms. [In this thesis, we have
described different methods to perform such [/O efficiently in tree

machines.

NON-VON's performance for different image algorithms has been
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analyzed and compared with that of other highly parallel image
understanding architectures. Two simulators have been used to simulate
the Ir;1;age analysis algorithms. A functional simulator has been
implemented using the C programming language on a VAX 11/750
augmented with a Grinnell image processor. We have used this simulator
to validate all of the algornithms described in this thesiss A LISP-based
machine instruction-level simulator that has been developed for the NON-
VON machine has been used to execute some of the image algorithms,
and to provide accurate measures of the execution time of the machine-
coded versions of our algorithms. Based on this comparison, NON-VON's
execution time for several algorithms has been shown to be considerably
less‘ than that of other highly parallel vision architectures. We have
identified the limitations of tree machines 1n the execution of certain

image analysis tasks, and have proposed particular modifications to the

NON-VON hardware for the rapid execution of these tasks.

This work can be extended in several possible directions. One possible
avenue of further research would involve the investigation of other
parallel algorithms for low- and intermediate-level vision application A
second involves the implementation of symbolic high-level vision tasks on
the present version of the machine In this regard, it i1s worth noting
that the NON-VON architecture supports the efficient execution of
operations arising in relational database management and expert systems

applications The relevance of algorithms in these two areas to high-level
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vision applications would suggest such effort might prove fruitful

Another interesting research problem 1nvolves the manner in which
currently proposed architectural additions to the machine (NON-VON 4)
might be used to expand the set of vision tasks, which may be executed
at very high speed. The MIMD, SIMD, and MSIMD capabilities of the
proposed architecture and the avallability of fine- and medium-grained
PE’s should prove useful in implementing systems that perform well on

all levels of computer vision tasks.
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Appendix A
The NON-VON 3 Instruction Set

The semantics of each NON-VON 3 instruction are described below

along with the set of permissable operands, where appropriate?,

18STROCTION SDIARTICS

MOVS <byte reg 1> <byte reg <byte reg 2> <- <byte reg 1>
<byte reg> = (A8, B8, C8, MAR, I08)

MOVL <dit reg 1> <bit reg > <dit reg 2> <- <bit reg 1>
<dbit reg> = (A1, Bi, Ci, EN1, IO1)

The MOVS and MOV instructions transfer are used to transfer data

between bit and byte registers within the PE.

READRAMS <byte reg> <byte reg> <- RAMS (IMAR)
TRITERANS <bdyte reg> RANS (MAR) <- <byte reg>
<byte reg> = (A8, B8, C8 or 108)

READRANT <bit reg® <dit reg> <- RAM1 (IMAR)
TRITERANL <bit reg® RAMS (MAR) <- <bit reg>
<dit reg> = (A1, N1, C1 or 101}

IBCREMERTY MAR <- MAR + 1

2The material presented in this appendix is from the paper .
“An_Eight-Processor Chip for a Massively Parallel Machine”, Technical Report
by David Elliot Shaw and Theodore M. Sabety

Is2



The READRAM and WRITERAM instructions are used to transfer data
between a register and the RAM location whose address 1s stored in the
increrienting memory address register’, IMAR. The INCREMENT

instruction adds one to the address stored in the IMAR.

ADD <byte reg> C8 <- (<byte reg> + A8 + C1);
Ci ¢~ carry
SUB «b reg> C8 <- (A8 - <b reg> - Ct):
yte reg ¢1 <- bo yle reg
COMPARE <byte reg> if <dyte > = A8 thea Al ¢- 1
else Al ¢- 0;
if <byte reg> > AS thea Bl <- 1
else Bl <- 0

<byte reg> = {BS, 108, MAR, or RA¥)

The ADD, SUB and COMPARE instructions may be used to perform
arithmetic and comparison operations on two 8-bit operands The carry
bit must be cleared before these instructions are initiated The results of

a COMPARE are stored 1n the Al and Bl flags

ROTRB Rotate B right { bdit
ROTLB Rotate B left 1 bit

The B8 and Bl registers contain logic enabling them to function

together as a 9-bit circular shift register

LOGICALS <operatics> C8 <- (AS <operation> BS)
LOGICALY <operatios> C1 <- (A1 <operstion> B1)

where <operation> 1s a four-bit code specifying one of the sixteen
possible boolean functions of two variables. ~LOGICALS applies the

specified operation 1n a bitwise fashion to all eight bits of its operands
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Special cases of the LOGICAL! instruction include SET, CLEAR
NEGATE, AND, OR, XOR, EQU, NAND, NOR and NOP LOGICAL1
may Te used to combine the results of a COMPARE instruction to test
all six possible arithmetic relational predicates (EQ, NE, GT, LT, GE and

LE) on two 8-bit operands.

SEID8 <PD <byte reg> 108 (<PD>) <- <hyte reg>
SEID1 <D <bit reg> 101 (<PD>) <- <hit reg>
RECYS <PD <byte reg> <byte reg> <- 108 (<PD>)
RECVI  <PD <bit reg> <dit reg> <- 101 (<PD>)

<byte reg> = (A8, BS, C8, MAR)
<bit reg> = (A1, B1, C1, ENt)

<PE> = {LC, RC, LB, RE)} for SEND iastructioas
(L_c. RC, LB, RE, PMR) for RECY iastractioas

The SEND anleECV instructions are used to transfer data in parallel
not only between PE's that are physically adjacent within the PPS, but
also between two PE's that are adjacent in a particular linear sequence
defined by an inorder traversal of the nodes of the PPS tree In both
cases, data 1s transferred between some register in the PE in which the
instruction 1s executed and the IO register within some neighboring PE
It 1s always possible to RECV data from a PE, regardless of whether 1t
15 enabled, but an attempt to SEND data to a disabled PE will not

result 1n a transfer of data

BROADCASTS <byte reg> <byte> <dyte reg> <~ <byte>

BROADCAST1 <bit reg> <bit> <dit reg> <- <bit)

REPORTS <dyte reg> logical reg. GG8 (ia CP) <- <byte rep>
REPORTH <hit reg> logical reg. GGi (ia CP) <- <bit reg>

<dyte reg> = (A8, BS, C3, MAR, 108)



<bit reg> = (A1, B1, Ci, EN1, IO1}

The BROADCAST instructions are used to transfer a single data value
from the control processor 1nto a specified destination register within all
enabled PE's simultaneously. The REPORT instructions, on the other
hand, are defined only when exactly one PE 1s enabled, and result in the
transfer of data from the specified register within that PE to a particular

logical register” within the control processor, which is called GG.

RESOLVE A1 <= 0 in all PE’s except
°first® PE vhere Al = §;
if no PE has Al = 1 thea
logical register R1 (ia CP) <- 0
else Ry ¢- 1

Alter execution of a RESOLVE, the Al register is reset to zero in all
PE's except the one that occurs first 1n inorder traversal order.  The
RESOLVE instruction 1s frequently used in conjunction with REPORT to

read data into the control processor from each one of a set of PE's in

turn

ENABLE E§: <- 1 13 all PE's, including
those previously disabled

ENABLE 1s the only instruction that is executed by all PE's, whether
or not they are already enabled It 1s used to set all of the the ENI1
registers to 1, thus awakening” all PE's in the PPS after some subset

have been disabled.

STRIBGBROADCAST <leagth> <striag> The semaatics of these three
operations are descridbed bdelov
STRIBGREPORT <leagth? .



STRIBGCOMPARE <leagth> <striag>

The- three string operations use the auto-increment capability of the
MAR to perform highly efficient loading, unloading, and matching
operaixons on successive locations in RAM. The STRINGBROADCAST
instruction transfers a common string from the control processor into the
local RAM's of all enabled PE's, starting at the location specified by
their respective MAR's. STRINGREPORT functions in a similar manner,
but 1s used to transfer a string into the control processor from a single
enabled PE =~ STRINGCOMPARE compares a string broadcast by the
control processor tn parallel against those stored in all enabled PE's. At
the end 'of the STRINGCOMPARE instruction, only those PE's

containing a matching string are left enabled.



Appendix B

NON-VON 3 Code for Selected
Algorithms

B.1. NON-VON Tree Initialization

(comment ‘“This program initializes the NON-VON tree for vision
algorithms. The program will store at each node in the tree 4 values in
memory locations 0-3 representing the x-side, y-side, x-address, and y-
address of each rectangle in the binary image tree. The globally defined
variable no-levels 1s the number of levels in the tree”)

(fluid '(no-levels x y 1))
(setq no-levels 7)

(de tnit-vision ()
(prog ()

€5 Store 1 in the variables x-side and y-side in all PE's.

(N-ENABLE)
(N-BROADCASTS MAR 0)
(N-BROADCASTS A8 1)
(N-WRITERAMS AS8)
(N-INCREMENT MAR)
(N-WRITERAMS AS8)

(comment “Set 101 equal to 0 in leaf PE's, and equal to 1 in all other
PE's Then enable only leal PE's.”) '

(N-CLEAR1)
(N-MOV1 C1 I01)
(N-RECV1 Al RC)
(N-SET1)
(N-MOV1 C1 101)

s’



(N-MOV1 Al EN1)

(N-CLEAR1)

{N-MOV1 C1 IO1)

(comment ‘‘The f[ollowing 1s a CP code that initializes x, and y global
variables, and start the loop for computing 1n each PE the length and
width of the rectangle 1t represents”)

(setq x 1)

(setq y 1)

(do ((1 1 (14 1))
((= 1 no-levels))

© (N-ENABLE)
% Enable only PE’s on the next level up the tree.

(N-RECV1 Al RC)
(N-MOV1 Al IO1)
(N-NEGATEAL)

(N-MOV1’ C1 EN1)

(comment “This 1s a CP code that computes the rectangle dimensions on
the current level ’),

(cond ((eq 1 (times (quotient 1 2) 2)} (setq y (times y 2)))
(t (setq x (times x 2))))

C%¢ Store the x-side and y-side values in the enabled PE's.

(N-BROADCASTS MAR 0)
(N-BROADCASTS A8 x)
(N-WRITERAMS AS8)
(N-INCREMENT MAR)
(N-BROADCASTS A8 y)
(N-WRITERAMS AS8)

) ¢ END OF THE LOOP

(comment At this point only the root PE is enabled with x=y=2**(n0-
levels/2), and 10l set equal to 0 in the root PE, and to 1 in all other

PE's Store 0,0 i1n locations 2.3 in the root PE.”)

(N-BROADCASTS A8 0)

5]



(N-BROADCASTS MAR 2)
(N-WRITERAMS A8)
(N-INCREMENT MAR)
(N-WRITERAMS A8)

(comment ‘“The following 1s a CP code to initialize the and start the
loop for storing addresses.”)

(do (1 1 (14 1))
((= 1 no-levels))

5 Read x-side into the B8 register.

(N-BROADCAST8 MAR 2)
(N-READRAMS BS)

(comment “This 1s a CP code to check 1if the current level number 1s
odd or even.”)

(cond ((eq 1 (times (quotient 1 2) 2))
(setq x (quotient x 2))

(comment ‘‘Compute the x-address and y-address of the nght-child 1n
addresses 14,15 ")

(N-BROADCASTS A8 x)
(N-CLEAR1)

(N-ADD BS)
(N-BROADCASTS MAR 14)
(N-WRITERAMS C8)
(N-BROADCASTS8 MAR 3)
(N-READRAMS AS8)
(N-BROADCASTS MAR 15)
(N-WRITERAMS AS8)

)

Co The else part.
(t (setq y (quotient y 2))

(N-BROADCASTS MAR 14)
(N-WRITERAMS BS)
(N-BROADCASTS A8 y)
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(N-BROADCAST8 MAR 3)
(N-READRAMS BS)
(N-CLEAR1)

(N-ADD BS)
(N-BROADCASTS MAR 15)
(N-WRITERAMS C8)

)

o7 Enable PE's on the next level down the tree

(N-ENABLE)

(N-MOV1 101 Bl)
(N-BROADCASTS MAR 2)
(N-READRAMS AS8)
(N-SENDS A8 LC)
(N-MOVS 108 BS)

(N-INCREMENT MAR)
(N-READRAMS AS)
(N-SEND8 A8 LC)
(N-MOVS8 108 C8)

(N-BROADCASTS MAR 15)
(N-READRAMS AS8)
(N-SEND8 A8 RC)
(N-MOVS8 [08 C8)

(N-BROADCASTS MAR 14)
(N-READRAMS AS8)
(N-SEND8 A8 RC)

¢o Enable only RC's.

(N-SET1)

(N-MOV1 C1 Al)
(N-CLEARI)
(N-MOV1 C1 101)
(N-SEND1 Al RC)
(N-MOV1 I01 EN1)

(N-MOV8 108 BS)

€7 Enable next level down the tree



(N-ENABLE)
/N-MOV1 BI1 I01)
(N-RECV1 Al P)
(N-MOV1 Al IO1)
(N-NEGATEAL1)
(N-MOV1 C1 EN1)

(N-BROADCASTS MAR 2)
(N-WRITERAMS BS)
(N-INCREMENT MAR)
(N-WRITERAMS C8)

))

B.2. Image I/O

¢ global variables declaration
(fhad (1 )

(de load-imgl (x-side y-side)
(prog ()

(N-ENABLE)

“¢c B8 and C8 are used to hold the x-address and y-address respectively.

(N-BROADCASTS MAR 2)
(N-READRAMS BS)
(N-INCREMENT MAR)
(N-READRAMS C8)

€5 Set MAR equal to 14 1n all PE’s
(N-BROADCASTS MAR 14)

€S Loop to send bytes one bye one.

(do ({1 0 (addl 1)))
((= 1 x-side))



(comment “Store 1 in IOl only in PE's with XADD equal to 1, and set
MAR equal to 07)

(N-ENABLE)
(N-BROADCASTS AS 1)
(N-COMPARE BS)
(N-MOV1 Al IO1)
(N-BROADCASTS MAR 0)

(do (() 0 (addl j)))
((= ) y-side))

¢% Enable PE's 1n row 1.

(N-MOV1 [01 EN1)
(N-MOVS MAR A8)
(N-COMPARE C8)
(N-MOV'1 Al EN1)
(N-BROADCASTS 108 ))
(N-ENABLE)
(N-INCREMENT MAR)

)

o Enable only leaf PE's
(mark _leaf)

¢ Store the gray level value.

{N-BROADCASTS8 MAR 4)
(N-WRITERAMS [08)

)

(de load-img2 (bside imside)
( prog ()

(N-ENABLE)

€5 'bside’ 1s the length of the block side.
€5 imside’ 1s the image side size

€6 Set Cl equal to 1 only in the intermediate level PE'’s.



(N-CLEAR1)
(N-CLEARS)

(N-MOV8 C8 MAR)

(N-READRAMS AS8) % A8 <-- XSIDE
(N-BROADCASTS B8 bside)

(N-COMPARE BS8)

(N-MOV8 Al EN1)

(N-INCREMENT MAR)

(N-READRAMS AS)

(N-COMPARE BS8)

(N-MOV8 Al C1)

(N-ENABLE)

¢ B8 and C8 are used to hold the x-address and y-addresses.

(N-BROADCASTS MAR 2)
(N-READRAMS BS)
(N-INCREMENT MAR)
(N-READRAMS C8)

%% Loop to,send blocks of bytes.

(setq n (quotient imside bside))
(do ((1 0 (addl 1)))
((=1n))
(do {() 0 (addl })))

({(= ) n))
(N-ENABLE)
(N-MOV1 C1 EN1)
(N-BROADCASTS A8 (times 1 4))
(N-COMPARE BS)
(N-MOV1 Al ENI1)
(N-BROADCASTS A8 (times | 4))
(N-COMPARE C8)
(N-MOV1 Al ENI1)
(N-BROADCASTS MAR 15)

3 Store the block of 16 pixels

(N-STRING-BROADCASTS ‘(A
L



(comment ‘‘Loading of blocks finished. Now in parallel load the leaf
PE's. Relative address are stored in B8 and C8”)

(N.ENABLE)
(N-MOV8 C8 108)
(N-BROADCASTS AS 3)
(N-ANDS)
(N-MOVS 108 BS)
(N-MOV8 C8 108)
(:
(:

V-MOVS [08 BS)

%% Store 15 in intermediate level PE’'s MAR.
(N-BROADCASTS MAR 15)

(do ({3 0 (addl j)))
(= 4))

(N-MOV1- C1 EN1)
(N-INCREMENT MAR)
(N-READRAMS [08)
(N-ENABLE)
(N-RECV8 A8 P)
(N-MOV3 A8 108)

)

(N-ENABLE)
(N-MOV1 C1 Bi)
(N-CLEAR1)

(N-MOV1 C1 I01)
(N-RECV1 Al RC)
(N-MOV1 Al IO1)
(N-MOV1 Bl C1)
(N-MOV1 101 EN1)
(N-BROADCASTS MAR 1)

(do ((; 0 (addl }}))
((= ) bside})
(do ((1 0 (addl 1)))
{{(= 1 bside))

Dt



(N-ENABLE)
{N-MOV1 [01 EN1)
(N-BROADCASTS AS 1)
(N-COMPARE BS)
(N-MOV1 Al ENI)
(N-BROADCASTS AS8 )
(N-COMPARE C8)
(N-MOV1 Al EN1)
(N-WRITERAMS 108)

(N-ENABLE)
(N-MOV1 C1 EN1)
(N-INCREMENT MAR)
(N-READRAMS 108)
(N-ENABLE)
(N-RECV8 A8 P)
(N-MOVS A8 108)

)
)

(comment “The following function enables leaf PE’s only,
and set Al equal to 1 only in leaf PE’s”)

(de mark _leal()
(N-ENABLE)
(N-CLEAR1)
(N-MOV1 C1 [01)
(N-RECV1 Al RC)
(N-MOV1 Al EN1)

)

(comment “The following function prints the contents of one of RAM
location in leal PE's.”)

(de show-img (x-side y-side ram k)
(N-ENABLE)
¢ 108 holds the value to be printed

(N-BROADCASTS8 MAR ram)
(cond ((= k 1) (N-READRAMS 108))

9



(t (N-CLEARS)
(N-MOV8 C8 BS)
(N-READRAM1 B1)
(N-ROTLB)
(N-MOVS B8 108)

t

)

(N-BROADCASTS MAR 2)
(N-READRAMS BS)
(N-INCREMENT MAR)
(N-READRAMS C8)

% Loop to report bytes one bye one.

(do ((y 0 (addl y)))
(=) y-side))

(terpn) _
(princ "column number ")

(princ j)
(princ ” ")

€¢ Store 1 1n 101 only in leaf PE's with YADD equal to j

(N-ENABLE)
(N-CLEAR1)

(N-MOV1 C1 101)
(N-RECV1 Al LC)
(N-MOV1 Al 101)
(N-BROADCASTS A8 ))
(N-COMPARE Cs8)
(N-MOV1 IOl B1)
(N-AND1)

(N-MOV1 C1 [01)
(N-BROADCASTS MAR 0)

(do {(+ 0 (addl 1))
((= 1 x-side))

(N-MOV1 101 EN1) % Enable PE's 1n row 1
(N-MOVS8 MAR AS8)

s
T



(N-COMPARE BS)
(N-MOV1 Al ENI1)
(N-REPORTS 108)
(princ (N-GET-GGS))
(prmc 7
(N-ENABLE)
(N-INCREMENT MAR)
)

)

B.3. Binary Image Tree Building

(comment “This function building the binary image tree representation of
a binary image stored in the RAMI1 location 4.”)

(de build-binimg ()

(prog ()

(N-ENABLE)

(N-BROADCASTS A8 71) % 71 1s the code for ‘G’
(N-BROAPCASTS8 MAR 5) 9% RAMS location 5 is FQUAD.

(N-WRITERAMS AS8) % Store ‘G’ i1n all PE's FQUAD
(N-CLEAR1)
(N-MOV1 C1 101) % 101 <-- 0

(comment ‘‘Current level 1s 0 Store 1 1n RAMI location 14 (X1) and 0
in RAMI1 location 15 (Y1) only 1n current level PE’s.”)

(N-RECV1 Al RC)
(N-BROADCASTS MAR 14)
(N-WRITERAM1 Al)

(

N-MOV1 Al EN1) % Enable leaf PE’s only.
(N-BROADCASTS MAR 4) % Read BINARY value into.
(N-READRAM1 B1) % B1

(N-MOV1 B1 C1)

(N-BROADCASTS A8 87)

(N-INCREMENT MAR)

(N-WRITERAMS AS8) % RAMS 5 <-- ‘W'
(N-CLEARS) % Store TREE in RAMS 6
(N-MOVS8 C8 BS)

(N-ROTLB)

(N-INCREMENT MAR)

(N-WRITERAMS BS) % RAMS 6 <- TREE.



(N-MOV1 C1 EN1) % Enable leaf black pixels
(N-BROADCASTS A8 66) 9% Store ‘B’ in those PE's
(N-BROADCASTS MAR 5)

(N-WRITERAMS AS8)

(N-ENABLE)

(N-BROADCASTS MAR 14)

(N-READRAM1 Al) % Al 1s 1 only in leaf PE's
(N-NEGATEALI) %Cl sO0 7 » 7 ”
(N-INCREMENT MAR)

(N-WRITERAM]1 C1) % RAM1 151s0” 7 ”

€5 Loop to build the binary image tree.

(do ({1 1 (addl 1))
((= 1 no-levels))

¢o Read the value of TREE 1nto [0S

(N-ENABLE)
(N-BROADCASTS MAR 6)
(N-READRAMS 108)

¢ Enable next level up the tree
(N-BROADCASTS8 MAR 15)
(N-READRAM1 [01)
(N-RECV1 Al RCQ)
(N-WRITERAM1 Al)
(N-NEGATEAL)

(N-MOV1 C1 EN1)

“c Receive gray values from your two children

(N-RECV8 B8 LC)

(N-RECV8 A8 RC)

(N-CLEAR1) €5 Add the two gray values
(N-ADD BS)

(N-BROADCASTS MAR 6) % and store the resulting
(N-WRITERAMS C8) % TREE in RAMS 6.

€o Store the value of FQUAD 1n IO8 1n previous level.

(N-ENABLE)



(N-BROADCASTS MAR 5)
(N-READRAMS [08)

€5 Enable current level again.

(N-BROADCASTS MAR 15)
(N-READRAM1 Al)
(N-NEGATEAL)

(N-MOV1 C1 EN1)
(N-RECV8 B8 LC)
(N-RECV8 A8 RC)

¢ Compare the FQUAD 1n the two children.

N-COMPARE BS)

N-MOV1 Al IO1) % Enable only PE’s where the two
N-MOV1 Al EN1) ¢ FQUAD’s are the same
N-BROADCASTS MAR 5)

(N-WRITERAMS AS8) ¢ FQUAD 1n the result PE 1s set.
(N-BROADCASTS A8 71) % A8 <-- ‘G’

(N-COMPARE BS)
(
(

—— — o,

N-NEGATEALI)
N-MOV1 C1 101) €5 101 1s 1 where the two FQUAD
€5 are equal but not Gray.

(N-ENABLE)

(N-BROADCASTS MAR 14)

(N-READRAM]1 Al) €5 Enable only PE'’s on previous level.
(

N-MOV1 Al EN1)

(N-RECV1 EN1 P) % Enable PE's with FQUAD to change to ‘N’
(N-BROADCASTS A8 78) % A8 <-- 'N’

{N-BROADCASTS MAR 5)

(N-WRITERAMS AS8)

(N-ENABLE)

(N-BROADCASTS8 MAR 15)% Set RAMS8 14 equal to 1 only
(N-READRAM1 Al) %% 1n current level

(N-NEGATEA1)

(N-BROADCASTS MAR 14)

(N-WRITERAM1 C1)

))
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B.4. Gray-Scale Tmage Histogram and
Thresholdiix

(comment ‘‘This program computes the histogram of a gray-scale image

stored i1n the leaf PE's PE's of the NON-VON tree The gray level level
value 1s stored 1n memory location 4 at each of these PE's ")

(flud '(x y count nums bwid nbins no-levels level-1))
(setq no-levels 7)

(de image-histo ()
(prog ()

(N-ENABLE)

(comment ‘“Enable only leaf PE's and set IO1 equal to 1 in leaf PE's
and equal to 0 elsewhere ")

(N-CLEAR1)

(N-MOV1 C1 I01)
(N-RECV1 Al RC)
(N-MOV1 Al 101)

(comment “Store the address 4 in MAR, and initialize global variables
(step 1)7)

(N-BROADCASTS MAR 4)

(setq x 0) % x 1s the min. value 1n bin range

(setq y 13) % y 13 the max. value 1n bin range

(setq count 0) %% count 1s how many match operations.

(setq nums 0) % number of reported histogram values.

(setq nbins 16) % number of bins.

(setq bwid 16) % bin width

(setq level-l1 6) % no of levels above leaf level.
5 Marking steps (steps 2.3)

step2

(N-MOV1 101 EN1)
(N-READRAMS AS)
(N-BROADCASTS 108 0)
(N-BROADCASTS BS x)
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N-COMPARE BS8) G Al <-- 1 if gray value = x.

(

(N-NEGATEBI) 6 Bl <-- 11f gray < «x

(N-MOV1 C1 EN1) %o Enable only leaf PE's with gray >= «x
(N-BROADCASTS B8 y)

(N-COMPARE BS) % Al <-- 1 f gray value = y

(N-OR1) % Bl <-- 1 gray <y

(N-MOV1 C1 ENI1) %% Enable PE’s with gray <=y
(N-BROADCASTS 108 1)

€% The counting step (step 4).

step4

(N-ENABLE)
(N-RECVS B8 LC)
(N-RECVS8 A8 RC)
(N-CLEAR1)
(N-ADD BS8)
(N-MOVS C8 108)

€C Steps 5.6

(setq count (plus count 1))
(cond ((and (= count nbins)(ge count level-1))(go step7))
(t (setq x (plus x bwid))(setq y (plus y bwid))
(cond ((and (< count level-1)(< count nbins))(go step2))

)
(cond ((and (< count level-1)(ge count nbins))(go stepd))
)

)

(comment ‘“‘Steps 7.8 For simplicity the histogram value is not stored
back in the tree Enable root only and report the value in 1ts 108.7)

step?7

(N-ENABLE)

(N-MOV1 101 B1)

(N-put-ggl 1) % ggl <-- 1

(N-CLEAR1)

(N-MOV1 C1 I01)

(N-RECV1 Al P) % Al is 1 only in the root PE
(N-MOV1 Al EN1) S Al 1s 1 only in the root PE.
(N-REPORTS 108)



(setq nums (plus nums 1))

(princ "The value of bin histogram number ”)
(princ nums)

{pring .” 1s equal to ")

(princ GGS8)

(terpri)

(N-ENABLE)
(N-MOV1 B1 I01)

(cond ((= nums nbins)(go end))
(t (cond ((< count nbins)(go step?2))

(t (go stepd)))))
end

))

(de image-thresh (thresh)

(prog ()

(N-ENABLE)

(N-BROADCASTS MAR 4)

(N-READRAMS BS) %% Read the gray value in BS.
(N-BROADCASTS A8 thresh) % Broadcast the threshold value.
(N-COMPARE BS) % Compare (Bl <-- 1 if gray > thresh)
(N-WRITERAM1 B1) % Write value i1n RAM 1-bit location 4.

))

(comment “This function creates a random gray-scale image in the leaf
PE's ")

(de random-gray-image (rand-vall rand-val2)
( prog ()

“c Enable root oaly

(N-ENABLE)

(N-BROADCASTS A8 rand-val2)
(N-BROADCASTS MAR 14)
(N-WRITERAMS AS8)

(N-PUT-GG1 0) % ggl <-- 0

(N-SET1)

(N-MOV1 C1 I01)

(N-RECV1 Al P) . % Al 1s 0 only in the root PE



(N-NEGATEAL) %% Al 1s 1 only 1n the root PE.
(N-MOV1 C1 101) % 101 1s 1 only in the root PE.
(N-MOV1 C1 ENl) % Enable the root PE only.
(N-BROADCASTS B8 rand-vall)

(N-BROADCASTS MAR 4)

(N-WRITERAMS BS)

(do ((1 1 (14 1))

((== 1 no-levels))

(N-ADD B8)
(N-MOVS C8 108)
(N-ROTRB)

(N-ROTRB)
(
(

N-MOVS 108 AS8)
€% Enable PE’s on the next level.

(N-ENABLE)

(N-SEND& C8 LC)
(N-SENDS A8 RC)
(N-MOVS 108 BS)

¢o Enable PE's on the next level down the tree.

(N-RECV1 Al P)

(N-MOV1 Al IO1)
(N-MOV1 Al ENI1)
(N-BROADCASTS MAR 14)
(N-READRAMS AS8)
(N-BROADCASTS MAR 4)
(N-WRITERAMS BS)

)
)



B.5. Binary Image Shifting

% Global variables Jeclaration.

(fluid ’(xadd yadd w 1 k1l no-levels))
(setq no-levels 7)

(de binimg-shift(r ) k)

%% 1,) shift distances, k=0 use white rectangles,
% k=1 use black ones.

(prog ()
(N-ENABLE)

(cond ((= k 0)(setq k1l 87))
(t (setq k1 66)))

(comment ''The B8 and [O8 registers are used to store XADD and
YADD, IO1 for the shifted image, and C1 for REPORTED ”)

(cond ((= k O0)(N-SET1))

(t (N-CLEAR1)))
- (N-MOV1 C1 101) % I01 <-0or1l
(N-BROADCASTS MAR 5)
(N-READRAMS BS) % read FQUAD into B8
(N-BROADCASTS A8 k1) % A8 <-- ‘B' or ‘W’
(N-COMPARE BS) % Al 1s 1 only in
€% rectangles to be shifted
{N-CLEARS) % C8 <-- 0
(N-MOV3 C8 MAR)
(N-READRAMS AS) % A8 <-- XSIDE
(N-INCREMENT MAR)
(N-READRAMS C8) €5 C8 <-- YSIDE

> Read XADD, YADD into B8, 108

(N-INCREMENT MAR)
(N-READRAMS BS) % B8 <-- XADD
(N-INCREMENT MAR)
(N-READRAMS 108) % 108 <-- YADD
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(N-BROADCASTS8 MAR 14) 5 MAR <-- 14
(N.WRITERAM1 Al) % RAM1 14 <-- REPORTED
‘\.WRITERAMS A8) % RAMS 14 <-- XSIDE

repeat
(N-READRAM1 Al)
(N-RESOLVE)

(cond ((= (N-GET-R1) 0)(go fin1))
(t (N-MOV1 Al EN1)

(N-CLEAR1) % REPORTED <-- 'Y’
(N-WRITERAM1 C1)
(N-REPORTS BS) %report XADD

(setq xadd (N-GET-GGS))
(N-REPORTS 108) %report YADD
(setq yadd (N-GET-GGS8))

(N-READRAMS AS8)
(N-REPORTS AS) %report XSIDE

~ (setq w (N-GET-GG8))
(N-REPORTS C8) %report YSIDE

(setq 1 (N-GET-GGS))
(setq xadd (plus xadd 1))
(setq yadd (plus yadd )))

(N-ENABLE) % Enable all PE's
(N-BROADCASTS A8 xadd)

(N-COMPARE BS)

(N-OR1)

(N-MOV1 C1 EN1)

(setq xadd (plus xadd w))
(N-BROADCASTS A8 xadd)

(N-COMPARE BS)
(N-NOR1)



20%

(N-MOV1 C1 EN1)
(N-BROADCASTS A8 yadd)
(N-COMPARE 108)

-~ (N-ORIl)

(N-MOV1 C1 EN1)

(setq yadd (plus yadd 1))

(N-BROADCASTS A8 yadd)
(N-COMPARE 108)
(N-NOR1)
(N-MOV1 C1 EN1)
(N-MOV1 IOl Al)
(N-NEGATEAL)
(N-MOV1 C1 I01)
(N-ENABLE)

(go repeat)

.

fin1

¢S This 1s the case of non wraparound and

€5 white rectangles

(cond {(= k 0)
¢ Enable area to be set to 0's

(cond ({(> 1 0)(setq xadd 0)(setq w 1))
(t (setq w 8)(setq xadd (minus 8 1))))

(N-ENABLE) % Enable all PE's
(N-BROADCASTS A8 xadd)
(N-COMPARE BS)

(N-OR1)

(N-MOV1 C1 EN1)
(N-BROADCASTS A8 w)
(N-COMPARE BS)
(N-NOR1)

(N-MOV1 C1 EN1)
(N-CLEAR1)

(N-MOV1 C1 101



(N-ENABLE)

(cond ((> ) O){setq yadd 0)(setq | 1))
(t (setq | 8)(setq yadd (minus 8 j))))

(N-BROADCASTS8 A8 yadd)
(N-COMPARE 108)
(N-OR1)
(N-MOV1 C1 EN1)
(N-BROADCASTS A8 I)
(N-COMPARE 108)
(N-
(N- MOVI Cl ENI1)
(N-CLEAR1)
(N-MOV1 C1 I01)

))
(N-ENABLE)
(N-BROADCASTS MAR 20)
(N-WRITERAM1 [01)

})

B.68. Gray-Scale Image Shifting

(de pick element (n)

(N-ENABLE)
(N-MOV1 IO1 El) %5 mark leaf PE’s
(N-CLEARS)

(N-MOVS C8 108)

(N-MOVS C8 AS8)

(N-BROADCAST8 MAR 14) % read relative x __address
(N-READRAMS BS)

(N-COMPARE BS)

(N-MOV1 Al ENI1)

(N-INCREMENT MAR)

(N-BROADCASTS AS8 n)

(N-READRAMS BS)

(N-COMPARE BS)

(N-MOV1 Al EN1)

(N-BROADCASTS MAR 4) % read gray _ value
(N-READRAMS 108)
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(de move _up()

(N-ENABLE)

(N-MOV1 IOl Al)

(N-NEGATEAL1)

(N-MOV1 Al EN1) % mark non-leaf PE's
(N-RECV8 A8 LC)

(N-RECVS8 B8 RC)
(N-ORS)

(N-MOV8 C8 108)
)

(de assign _element (n m)

(N-ENABLE)

(N-MOV1 [O1 El) €5 Enable leaf PE's
(N-BROADCASTS MAR 14) % read relative x address
(N-BROADCASTS A8 m)

(N-COMPARE BS)

(N-MOV1 Al EN1)

(N-INCREMENT MAR)

(N-BROADCASTS A8 n)

(N-READRAMS BS)

(N-COMPARE BS)

(N-MOV1 Al EN1)

(N-BROADCASTS8 MAR 12) 6 read SH_P
(N-READRAMS AS8)

(N-INCREMENT MAR)

(N-WRITERAMS AS) % store 1t 1n GRAY2 _VALUE
)

(de move down ()

(N-ENABLE)

(N-MOVS [08 BS)

(N-BROADCASTS MAR 12) €5 read SH_P
(N-READRAMS 108)

(N-RECVS A8 P)

(N-WRITERAMS AS8)

(N-MOVS B8 108)

) .

(de move _around ()
(N-ENABLE)
(N-RECVS A8 RC)
(N-MOVS 108 BS8) -



(N-SENDS A8 LC)
(N-BROADCASTS MAR 12)
(N-WRITERAMS 108)
(N-MOVS B8 [08)

)

(de subimage _left _shift (k h)
(N-ENABLE)

(N-CLEAR1)

(N-MOV1 C1 I01)

(N-RECV1 Al RC)

(N-MOV1 Al IO1) % set LEAF

(N-BROADCASTS MAR 2)
(N-READRAMS BS)
(N-BROADCASTS8 A8 (minus k 1))
(N-ANDS)

(\ MOVS8 C8 108)

(N-INCREMENT MAR)

(N-READRAMS BS)

(N-ANDS)

(N-BROADCASTS MAR 14)
(N-WRITERAMS 108)

(N-INCREMENT MAR)

(N-WRITERAMS8 C8)

¢ The main program loop starts at this point

)

B.7. Connected Component Labeling

(comment ‘“‘This function labels the black or white rectangles of a binary
image  The label 1s stored 1n RAMS8 location 7 while the common
boundary information are stored in RAMS8 location 8 RAMS location 9

is the level number ”)

¢z global variables declaration

(fluid (x y xs ys | k1 xxs yys newlabel no-levl))
(fluid '(comlabel curlev no-levels tw ts te tn))

(setq no-levels 7)



(de conn-comp(k)

o

= 1 --> latel foreground components.
= 0 --> label background components.

o k
% k

1

o

(prog ()
(N-ENABLE)

(comment ‘‘Step 1: The following function stores in RAMS location 9 the
tree level number.”

(number-levels no-levels)
¢S Initialize global variables

(cond ((= k O)(setq k1 87))
(t (setq k1l 66)))

(setq newlabel 0)

(setq curlev 0)

(setq no-levl 6)

(setq tw 1)

(setq tn 4)

(setq te 16)

(setq ts 64)

<o Inttialize the common boundary variable.
(N-BROADC \ST8 MAR 8)

{N-CLEARS;

(N-WRITERAMS C8)

<5 Initialize the REPORTED variable (IO1)

(N-CLEAR1)
(N-MOV1 C1 [01)

(comment ‘“‘Step 2 IOl is set only in rectangles of type kl  RAMI

location 5 1s set 1n only PE's with rectangles to be labeled ")

{(N-BROADCASTS MAR 5)
(N-READRAMS BS)
(N-BROADCASTS A8 ki)
(N-COMPARE B8)



(N-MOV1 Al I01)
(N-WRITERAM1 Al)

€6 Set LABEL equal to 0 in rectangles to be labeled.

(N-MOV1 Al ENI)
(N-BROADCASTS MAR 7)
(N-CLEARS)
(N-WRITERAMS CS8)

(comment ““Step 3 in the labeling algorithm. Report the rectangles one
by one 1n order of their sizes.”)

step3 (N-ENABLE)
(N-BROADCASTS A8 curlev)
(N-BROADCASTS MAR 9)
(N-READRAMS BS)
(N-COMPARE BS)
(N-MOV1 IO1 B1)
(N-AND1)
(N-MOV1 C1 A1)
(N- RESOLVE)

(cond ((= (N-GET-R1) 0)
(cond ((= curlev no-levl)(go fim))
(t (setq curlev (plus curlev 1))(go step3))))

(comment "Step 4 Report the information of the selected rectangle, and
mark i1t as reported ”)

(t (N-MOV1 Al ENIl)
)
(N-CLEAR1)
(N-MOV1 C1 101) % REPORTED = 'Y’
(N-CLEARS)
(N-MOVS8 C8 MAR)
(N-READRAMS AS8)
(N-REPORTS A8) % Report XSIDE

(setq xs (N-GET-GGS))

(N-INCREMENT MAR)
(N-READRAMS AS8)



(N-REPORTS8 A8) % Report YSIDE
(setq ys (N-GET-GGS8))

(N-INCREMENT MAR)
(N-READRAMS AS8)
(N-REPORTS A8) % Report XADD

(setq x (N-GET-GGS))

(N-INCREMENT MAR)
(N-READRAMS AS)
(N-REPORTS A8) %% Report YADD

(setq y (N-GET-GGS))

(N-BROADCASTS MAR 7)
(N-READRAMS AS)
(N-REPORTS A8) % Report LABEL

(setq | (N-GET-GGS8))

(cond ((= | 0)(setq newlabel (plus newlabel 1))
(setq | newlabel))

)

(setq comlabel 1)

(N-BROADCASTS AS 1)
(N-WRITERAMS AS8)

€ Step 5 Test for adjacency in 4 directions.
(N-ENABLE)
€ Store 101 (REPORTED) i1n RAM1 location 9

(N-BROADCASTS MAR 9)
(N-WRITERAM]1 01)

(N-CLEAR1)

(N-MOV1 C1 [01)

(N-BROADCASTS MAR 2)
(N-READRAMS B8) % B8 <-- XADD
(N-INCREMENT MAR)

(N-READRAMS 108) % 108 <-- YADD

"o

[ )
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(setq yys (plus y ys))
(setq xxs (plus x xs))

(N-BROADCASTS MAR 9)
(N-READRAM1 Al)
(N-MOV1 Al EN1)

5 Check 1n the east direction.

(N-BROADCASTS A8 xxs)
(N-COMPARE BS)
(N-MOV1 Al EN1)
(N-BROADCASTS A8 yys)
(N-COMPARE 108) % B 1s set if yys < YADD
(N-NOR1)

(N-MOV1 C1 EN1)
(N-BROADCASTS A8 y)
(N-COMPARE 108) % B1 1s set if y < YADD
(N-OR1)

(N-MOV1 C1 ENI1)
(N- SETl)
(N-MOV1 C1 101)
(com-boundary tw)

(N-ENABLE)
(N-BROADCASTS MAR 9)
(N-READRAM]1 Al)
(N-MOV1 Al EN1)

€5 Check 1n the south direction.

(N-BROADCASTS A8 yys)

(N-COMPARE 108)

(N-MOV1 Al ENI1)

(N-BROADCASTS A8 xxs)

(N-COMPARE B8) % B 1s set if yys < YADD
(N-NOR1)

(N-MOV1 C1 ENI)

(N-BROADCASTS A8 x)

(N-COMPARE B8) % Bl 1s set if y < YADD
(N-OR1)

(N-MOV1 C1 EN1)
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(N-SETI!
(N-MOV1 C1 I01)
(com-boundary tn)

(N-ENABLE)
(N-BROADCASTS MAR 9)
(N-READRAM1 Al)
(N-MOV1 Al EN1)

€% Check 1n the west direction.
(N-BROADCASTS MAR 0)
(N-READRAMS AS8)
(N-CLEAR1)
(N-ADD BS)
(N-MOVS BS AS8)
(N-MOVS8 C8 BS8)
(N-MOVS A8 C8)
(N-BROADCASTS AS x)
(N-COMPARE BS)
(N-MOVS8 C8 BS)
(N-MOV1 Al ENI1)
(N-BROADCASTS AS8 yys)
(N-COMPARE [08) %% B 1s set if yys < YADD
(N-NOR1)
(N-MOV1 C1 EN1)
(N-BROADCASTS AS8 y)
(N-COMPARE 108) % B1 1s set if y < YADD
(N-OR1)
(N-MOV1 C1 EN1)
(N-SET1)
(N-MOV1 C1 101)
(com-boundary te)

(N-ENABLE)
(N-BROADCASTS MAR 9)
(N-READRAM! Al)
(N-MOV1 Al EN1)

€5 Check i1n the north direction
(N-BROADCAST MAR 1)

(N-READRAMS AS8)
(N-CLEAR1)



(setq yys (plus y ¥s))
(setq xxs (plus x xs))

(N-BROADCASTS MAR 9)
(N-READRAM]1 Al)
(N-MOV1 Al ENI)

%% Check in the east direction.

(N-BROADCASTS A8 xxs)

(N-COMPARE BS)

(N-MOV1 Al ENI1)

(N-BROADCASTS AS yys)

(N-COMPARE 108) % B is set if yys < YADD
(N-NOR1)

(N-MOV1 C1 EN1)

(N-BROADCASTS A8 y)

(N-COMPARE 108) % Bl 1s set if y < YADD
(N-OR1)
(N-MOV1 C1 ENI1)
(N-SET1)
(N-MOV1 C1 I01)
(com-boundary tw)

(N-ENABLE)
(N-BROADCASTS MAR 9)
(N-READRAM1 Al)
(N-MOV1 Al EN1)

€% Check 1n the south direction.

(N-BROADCASTS AS8 yys)

(N-COMPARE 108)

(N-MOV1 Al EN1)

(N-BROADCASTS A8 xxs)

(N-COMPARE BS8) % B 1s set if yys < YADD
(N-NOR1)

(N-MOV1 C1 ENI)

(N-BROADCASTS A8 x)

(N-COMPARE BS8) % B1 1s set if y < YADD
(N-OR1)

(N-MOV1 C1 ENIl1)



% Step 5-

(N-ADD 108)
(N-BROADCASTS A8 y)
(N-MOVS C8 108)

(N-COMPARE 108)

(N-MOV1 Al EN1)

(N-BROADCASTS A8 XXS)

(N-COMPARE BS8) % B 1s set if yys < YADD
(N-NOR1)

(N-MOV1 C1 EN1)

(N-BROADCASTS A8 x)

(N-COMPARE BS8) % Bl 1s set if y < YADD
(N-OR1)

(N-MOV1 C1 EN1)

(N-SET1)

(N-MOV1 C1 I01)

(com-boundary ts)

b Mark equivalence labels.

(N-ENABLE)

(N-BROADCASTS MAR 7)

(N-CLEAR1)

(N-WRITERAM]1 Cl)

(N-MOV1 [01 EN1) %% Only rectangles to be labeled
€5 are enabled.

(N-CLEARS)

(N-MOVS8 C8 AS8)

(N-COMPARE RAMS)

(N-NEGATEALI)

(N-MOV1 C1 ENI1)

(N-WRITERAM1 C1) % RAM1 7 <-- EQUIV

(N-READRAMS C8) % C8 <- LABEL

9% Set the label in all blocks

€5 Step 6

(N-ENABLE)

(N-MOV1 I01 EN1)
(N-BROADCASTS A8 comlabel)
(N-WRITERAMS AS8)

(N-ENABLE)



(N-CLEAR1)

(N-MOV1 C1 [01)

(N-READRAMS 108)

steps (N-ENABLE)

(N-BROADCASTS MAR 7)

(N-READRAM]1 Al)

(N-RESOLVE)

(cond ((= (N-GET-R1) 0)
(N-ENABLE)
N-MOV1 01 EN1)

N-BROADCASTS A8 comlabel)

(

(
(N-WRITERAMS AS)
(N-ENABLE)
(N-BROADCASTS MAR 9)
(N-READRAM1 101)

(go step3d)

(t (N-MOV1 Al EN1)
(N-CLEAR1)
(N-WRITERAM1 C1)
(N-REPORTS C8)

(setq 1 (N-GET-GGS8))
(N-ENABLE)
(N-BROADCASTS MAR 5)
(N-READRAM1 Al)
(N-MOV1 Al ENI)
(N-BROADCASTS A8 |)
(N-COMPARE 108)
(N-MOV1 Al ENI)
(N-MOV1 Al 101)

(go step6)
: )
fim (N-ENABLE)
(terpri)
(prinec ” THE END")
(terpri)
(princ * e ")

))

(de com-boundary (1)
(N-BROADCASTS8 MAR 8)
(N-READRAMS AS8)



(N-MOV8 B8 MAR)
(N-BROADCASTS 8% 1)
(N-ORS)

(N-MOV8 MAR BS)
(N-BROADCASTS MAR 8)
(N-WRITERAMS CS8)

)

(comment ‘“This routine stores the level number in RAMS8 location 97)

(de number-levels (n)
(N-ENABLE)
(N-BROADCASTS MAR 9)

(n-put-ggl 1)
% Enable the root only.

(N-CLEAR1)
(N-MOV1 C1 101)
(N-RECV1 Al P)
(n-put-ggl 0)

(do ((1 0 (addl 1)))
((=1n))

(N-MOV1 Al EN1)
(N-BROADCASTS A8 1)
(N-WRITERAMS AS8)
(N-ENABLE)

(N-MOV1 Al IO1)
(N-RECV1 Al P)



Appendix C

Some Functional Simulator Results

C.1. Hough Transform

Input subroutine number? (0 to 11) <0> 6

Input boundary points file name <> p1c32_4

Do you want the.hrst or second method used (1 or 2): (1 to 2) <1>
The first HT method.

.[-).c;-;;t.x";-a.r-x.t"to print the accumulator array on the screen? <no>

How many points constitute a line? (3 to 32) <5>

The solution

count= 6, parl= 1, par2= -1
count= 8, parl= 2 par2= 1
count= 6, parl= 1, par2= 6
counts= 7, parl= 1, par2= 11
counta= 7, parl= 0, par2= 19
count== 5, parl= 1. par2= 19
count= 8, parl= 0, par2= 23
count= 9, parl= 0, par2= 28
count= 6, parl= -1, par2= 33



Input subroutine number? (0 to 11) <0> 6
Input boundary points file name <> pi1c32_4
Do you want the first or second method used (1 or 2) (1 to 2) <1> 2

The second HT method;

Do you want to print the 2-dimensional histogram on the screen” <no>

The first histogram values (par2).

5 6,8 6 510 8 71014, 410, 6, 8 6, 810, 8 6, 8 711,
710, 7, 4,7, 6,515 4,5 6,8 3 6,6 712, 5,5, 4 3,7,
6,9, 3 85 6,2 83 9,5 35, 6,6 6 5 6 3 5

? t + ¥ ] i '

Input the threshold value for the first histogram: (1 to 200) <5> 7
-8-5-4-2-1, 1, 3,5 6,7, 9111319,23,283537,41,43

The second histogram values (parl):
3,225 9121831363121,10, 7, 2, 1, 2

Input the threshold value for the second histogram: (1 to 200) <10>

Possible values of parl are
-2-1,0, 1,2 3

How many points constitute a line? (3 to 32) <5>

The' solution

parl== 0, par2= 23
parl== 0, par2= 28
parl= 1, par2= -1
parl= 1, par2= 6
parl= 1, par2= 11
parl= 1, par2= 19
parl= 2 par2= 1



C.2. Moving Light Displays

% vision

How many levels in the tree? (2 to 12) <10>
Do you intend to use the Grinnell ? <yes> n

Subroutines Menu
0  load an image
1 Build the Binary Image Tree
[or the multi-resolution pyramidj
- Label forground/background objects
- Geometric properties of forground/background objects
- Computing a gray image histogram
- The gray image thresholding/Enhancement
Executing the Hough Transform
Display a multi-resolution pyramid tree level
- Image shifting
Image correlation
100 Moving hight displays
11 Qut

WO 0 O U N

Input subroutine number? (0 to 11) <0> 10
Input first frame points file name <> framel
Input first frame points file name <> framel
Do you want to print the first frame points on the screen? <no>

The 1nput first {rame points

— — p—— — p— p—
O b = W o
on
A
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Input the following frame points file name <>

frame?2

Do you want to print the second frame points on the screen® <no> y

The input second frame points

(
(
(
(
(1
(

QW = O =~ U Q

'
'
'
'

Srxrn®e

1

Do you want to print the initial solution on the screen?

The 1nitial solution

0.1 2 35 4

Do you want to print the final solution on the screen?

The final solution

Input subroutine number? (0 to 11) <0> 10

Input first frame points file name

<> planel

<no> y

<no> y

t—
-



Do you want to print the first frame points on the screen” <no> vy

The 1nput first frame points

D = e

~ o

— i~ — — — p—

©

Input the following frame points file name

5)
7)
9)
7)
)
)

~3

<> plane?2

Do you want to print the second frame points on the screen? <no> y

The input second frame points

6)
6)
8)
8)
8)

Do you want to print the tnitial solution on the screen?

The 1nitial solution

.................. -

0.25 31,4

Do you want to print the final solution on the screen’

The final solution

<no> y

<no> y



Is there another frame? <no> vy

Input the following frame points file name <> planel

Do you want to print the second frame points on the screen? <no> y

The 1nput second frame points

(15
(7.9
(1,7)
(5 7)
(9, 7)
(29

Do you want to print the initial solution on the screen? <no> vy

The nit1al solution

0,5 2 31, 4
Do you want to print the [inal solution on the screen? <no> y

The final solution

..................

[s there another frame? <no>

Input subroutine number? (0 to 11) <0> 11
< D






