
The Connected Component AlgorIthm
on The NON-VON Supercomputer

HusseIn AH. Ibrahim

Department of Computer Science
Columbia UniverSIty

l'lY, NY 10027

Abstract

CUCS-1l7-34

The NON-VON Supercomputer IS a highly parallel tree-structured computer that
IS bemg Implemented at Columbia UnIverSity. In this paper, we demonstrate that
tree architectures with their favorable characterIstics for VLSI ImplementatIOn, and
fast global broadcast, lend themselves easdy and naturally to the representatIOn and
mampulatlon of Images represented by hierarchical data structures A descrIptIOn of
~ON-VON architecture IS presented With an emphasiS on the speCial architectural
features that will be used m our Image understanding algorIthms \Ve adopt a
vanatlOn of the quadtree data structure, called the binary Image tree, to represent
Images III the NON-VON tree \Ve show how Images are loaded III the r-.;ON-VON
tree, and present the algOrIthm for budding the binary Image trees. An effiCient
ImplementatIOn of the connected component bbellng algOrIthm on ~ON-VON IS
then presented SimulatIOn results are discussed, and we show the fast executIOn
time of the algOrIthm on NON-VON Other algOrithms are also developed, such as
hlstogrammlng, Hough transform, Set operations and Image correlation, and we can
conclude that NON-VON can be used to Implement effiCiently several :mportant
Image understanding tasks

This research was supported in part by the Derense Advanced Research Agency under contract 5-2001
/ :'-:OOO39-82-C-0427.

Table of Contents

1 Introduction
2 The NON-VON Supercomputer Architecture

3 Image RepresentatlOn on NON-VON

3 0 1 Multl-ResolutlOn Pyramids on NON-VON
302 BInary Image Trees on NON-VON

.3 1 ImtlalIzatlOn and Image loading
3 1 1 InltlalIzatlOn Procedure
3 1 2 LoadIng the Image
3 13 BuIlding The BInary Image Tree
31 4 BuddIng The Multl-ResolutlOn Pyramid

4. Connected Component LabelIng on NON-VON

4 1 The Connected Component AlgorIthm
42 SlmulatlOn Results

1

2
5

5
5
7
7
8
9
9

10

10
13

Figure 2-1:
Figure 3-1:
Figure 4-1:
Figure 4-2:

List of Figures

Top Level Orgamzation of NON-VON
Binary Image Trees Block arrangement

Some Sim ulatlOn Results

11

2
6

1.3
14

!

1. Introduction

Image understanding tasks usually involve computations that can be performed
Sim ultaneously on hundreds of thousands of picture elements. Conventional von
Neumann machines, where data elements have to be fetched sequentIally for
processIng, are inadequate to execute such tasks efficiently Thus parallel computers,
wIth processIng and memory elements intermIngled, are hIghly desirable for effIcIent
executIon of Image understanding tasks. Hardware ImplementatIOn of hIghly parallel
computers has been made feasIble by recent advances In very large scale Integrated
(nSI) cIrCUItry. VarIous kInds of parallel architectures have been proposed tn the
lIterature and some of them are In varIOUS stages of Implementation Some
examples are [Brow79J, [Schw80], [HiIl8!]' and [Shaw82].

There have been also several proposals for special-purpose computer archltpctnrf'S
for Image understanding systems. Cellular logic arrays, proposed by Unger [Unge58J
for use as parallel image processors, were the basIS for many later archItectural
proposals. Some examples of these archItectures include CLIP4 [Duff75]' PICAP
[Krus76], SAP [Reev80J, and MPP [pott83]. For more information regarding cellular
arrays the interested reader is referred to [Rose83]. Other architectures proposed for
Image understandIng make use of plpelining as a way of Introducing parallelIsm in
the system [Kush82J, or use a high-bandWIdth interconnectIOn network for
commUnICatIOns between the PE's [Sieg8!j. HierarchIcal archItectures for Image
understandIng systems (referred to In the llterature as hIerarchIcal, cone, or pyramId
machInes) are also proposed for Image understandIng tasks ([Hans78!,
[Uhr72],[Dyer8!J, and [TanI83j), and they are attractIng conSIderable attentIon
because of theIr deSIrable characterIstICS for nSI ImplementatIOn [Mead79j

The NON-VON (non von Neumann) supercomputer [Shaw82j,
butlt at ColumbIa UnIVerSIty, IS such a hIerarchIcal machIne
meludes a large number of small PE's placed at the nodes of a
tree

currently beIng
Its arc hi te ct ure
complete bInary

\Ve have been able to demonstrate that several Important Image understandmg
tasks can be Implemented effiCIently on NON-VON In thIS paper we wdl show
how to Implement the connected component algOrIthm on NON-VON Other
algOrIthms can be found In [Ibra84] In SectIOn Two, we wIll deSCrIbe brIefly the
archItecture of NON-VON, and In SectIOn Three we WIll show how to represent
Images m ItS tree In SectIOn Four, we wIll present the algOrIthm for connected
component labelIng, and we wtll show some sImulatIOn results

2. The NON-VON Supercomputer
Architecture

2

The NON-VON Supercomputer [Shaw 821 is currently being Implemented at
Columbia University Its architecture includes a tree-structured Primary Processing
Subsystem (PPS) based on custom nMOS vl,SI CirCUits, along with a Secondary
Processing Subsystem (SPS) based on a bank of intelligent disk drives Figure
2-1 shows the top level organiZatiOn of the NON-VON machme.

DISK
HEAOS

Figure 2-1:

~'SK(i)
UH~ADSO

Top Level OrganizatiOn of
;";ON-VON

The PPS IS configured as a binary tree of PE's Each PE compnses a small
RA.\1 (32 bytes in the prototype), a modest amount of processing logic, and an
Input/output (I/O) SWitch. The I/O SWitch can be set for global bus commUniCatiOn,
for commUniCatiOn between parents and children (tree neighbor commUniCatiOn), or
to reconfigure the binary tree as a linear array of processors (linear neighbor

3

commUnication). NON-VON uses a hierarchIcal scheme for global broadcast, where
broadcast data are buffered at each tree level and rebroadcast again. The fIrst
verSIOn of NON-VON, called NON-VON1, wIll contain chips wIth only one PE for
the purpose of testIng certaIn electrical and timing characteristIcs. The ChIP has
been tested, and currently a tree containing 128 nodes IS in the phase of
constructIOn. A modIfied verSIon of the ChIP wIth sixteen PE's has been designed,
and IS to serve as the basis of the prototype planned to be Implemented startIng In
the summer of 1984. This prototype IS called NON-VON3. The modIfIed ChIP has
less area per PE, and the InstructIOn set is made more powerful by generallZlng
register-ta-register data transfers and addIng more arIthmetic processIng power. It IS
expected that the tIme needed to broadcast a NON-VON3 instructIOn to all PE's In
a tree of 20 levels (one mIllion PE's) wIll be about 400 nanoseconds.

At the root of the tree IS a speCIal processor called the control processor (CP),
which IS responSIble for coordInatIng dIfferent actIVItIes WIthIn the PPS. The CP IS
capable of broadcastIng InstructIOns to be executed in all actIve PE's SImultaneously
ThIS is referred to in the lIterature as SIngle Instruction stream, multIple data
stream (SIMD) executIOn [Flyn 721 AlgOrIthms that use thIS mode of executIOn are
called SIMD algOrIthms.

A PE actIvely executes the InstructIOns broadcast by the CP as long as ItS
enable bit IS set If the enable bIt IS reset, then the PE WIll be dIsabled and only an
ENABLE InstructIOn wIll actIvate It agaIn. Each PE IS capable of performIng
SImple arIthmetIC and logIcal operatIOns

The NON-VON archItecture Incorporates an SPS based on a number of rotatIng
storage deVIces. AsSOCIated WIth each dIsk head In the SPS IS a separate sense
amplIfier and a small amount of lOgIC capable of dynamIcally eXamInIng the data
passing beneath It IntellIgent Head UnIts (IHU's) would be capable of performIng
general computatIons, and of serVIng as control processors ThIS wIll support parallel
transfer of data between the PPS and SPS WhICh IS necessary to aVOId the I/O
becomIng a bottleneck, and allow NON-VON to functIOn as an Independent
collectIOn of Sllvm machines (thIS executIOn mode has SInce come to be referred to
as multIple SIMD, or MSllvID)

An Instruction called RESOLVE can be used to dIsable all but a SIngle PE
chosen among a speCified set of PE's ThiS IS an example of a hardware multiple

match re8olution scheme, In the termInology of the lIterature of asSOCIatIve
processors (The CP, on executIng a RESOLVE InstructIOn, IS able to determIne
whether the operatIOn resulted In any PE beIng enabled or not) The REPORT
Instruction transfers data from the SIngle chosen PE to the CP USIng the global bus
commUnICatIOn.

4

There are mechanisms by which we are able to enable only leaf PE's, or only
the root PE [Shaw83]. In the folloWIng sectlOns, vanables that are stored In the
tree PE's, will be referred to as local vanables, while global vanables Will refer to
those that are stored in the CPo

5

3. Image Representation on NON-VON

In this section, we will show how two of the hIerarchIcal data structures that
are used frequently in image understanding tasks on sequential machines can be
used to represent image data III the NON-VON tree Also, a procedure for
InltlallZlng the NON-VON tree, loading the image, and butlding the Image
representation wtll be descnbed. Hierarchical data structures are used III Image
understandlllg tasks because they allow many algonthms to be expressed III a form
sUitable for diVide-and-conquer techmques. They are also used by algonthms
employing several levels of resolutIOn dunng their executIOn. Hierarchical data
structures include multi-resolution pyramids, quadtrees, and regular decomposition
Actually these terms are often used inconsIstently In the hterature to refer to each
other. In what follows, we present two of these hierarchical data structures, namely
multi-resolution pyramids and quadtrees, and show how they are used to represent
Images on NON-VON.

3.0 1 Multi-Resolution Pyramids on NON-VON

A multi-resolutIOn pyramid can be defined as a sequence {I(L), I(L-l), ,I(O)}
of Images, each represented as a two dimensIOnal array, where I(L) is the onglnal
Image, and I(m-l) IS a versIOn of I(m) at half the resolution. (This IS the same
definitIOn Tanimoto used in [Tanl80j.) The pyramid prOVides reduced resolution
versions of the Image. A multi-resolutIOn pyramid can also be defined in terms of
trees, where the leaves represent the pixels of the onglllal Image, and subsequent
levels represent different resolutIOns of the image An Image at a speCific level can
be computed from the image at the level below It In the tree III different ways.
TyplcallY,a parent node IS set equal to the average value of ItS four chtldren Note
that the four chIldren represent a 2 X 2 regIOn III the Image In the NON-VON
tree, the leaf level wIll be used to store the onglllal Image, whereas the Internal
levels wtll be used to represent the image at different resolutIOns. Because NON
VON IS a binary tree, the resolution reductIOn from one level to the next up In the
tree IS o~ly a factor of two, and two NON-VON levels are used to have the same
reductIOn as one level in the multi-resolutIOn pyramid. \Ve wtll use thiS Image
representation whenever we deal With grey scale Images In the sectIOn on
InitlahzatlOn and loading we wtll show how thiS can be done In detaIl

302 Binary Image Trees on NON-VON

Quadtree data structures are slmtlar in many aspects to the multi-resolutIOn
pyramids They are used to encode blllary images, and the nodes III a quad tree ~
lllterpreted differently from the nodes in a multi-resolutIOn pyramid tree A good
way to vlsuahze the quadtree is by assumlllg that the Image IS a square whose

6

dimension IS a power of 2 (2 n), the quadtree data structure is butlt by subdividing
the whole image into four square quadrants with dimensions that are half that of
the Image. This process is repeated recursively for each quadrant n times, unttl the
sIngle pixel level is reached. The resultmg data structure can be represented as a
quartic tree or a quadtree. The root of the tree corresponds to the whole Image,
the leaves correspond to the sIngle pixels, and the nodes of the tree correspond to
quadrants of the square represented by their parent node. In the case of blDary
Images, nodes of the quadtree can take one of three values. If the node children are
all black, then the node IS black. If they are all white, then the node IS white
The node Will take the value gra.y If Its chtldren do not have the same value, or If
they all have the value gray. All subtrees rooted with a white, or a black node
can be omitted, thus redUCing significantly the amount of memory reqUired to store
the picture on a sequential machlDe

-.
(

\
.~~

j

Figure 3-1: BlDary Image Trees Block arrangement

BlDary trees represent a data structure t hat IS a vanatlOn of the quad trees, and
that has been proposed recently by Knowlton [Know80] as an encodlDg scheme for
transmitting Gray-Scale and blDary Images Figure 3-1 shows the block arrangement
for this data structure The shape of subdiVISions change from level to level It IS
either a square, or a rectangle With the Width tWice the length One can simply
determlDe the shape of the diVISion at any level by testing to see If the level
number IS odd or even GOIng from one level to the next IDcreases the resolutIOn by
only a factor of two, while ID quadtrees the resolutIOn IS IDcreased by four BlDary

7

Image trees are mapped naturally onto binary tree machines. On NON-YON, the
leaf processors will be used to store the image mformatlOn at the single pixel level,
whIle non-leaf PE's will correspond to rectangles of pixels. A record assoclated- Wlth.
each PE will be used to store informatlOn about the 10catlOn, Size, and adjacency
relatIOn of the part of the image it represents.

3.1 Initialization and Image Loading

The connected component labeling algorIthms on NON-YON, which wlll be
desCrIbed In the follOWing sectIOns, use InfOrmatlOn that are stored inItially in each
PE Each PE corresponds to a rectangle In the OrIgInal lInage On the leaf PE's
level, thiS rectangle corresponds to a. sIngle pixel In the two dimenSIOnal array that
represents the Image. The locatIOn of each rectangle is speCified as the coordinates
of ItS upper leftmost corner pixel We wlll call the hOrIzontal directIOn the x
directlOn, whIle the vertical dlrectlOn wIll be called the y-dlrectlOn The OrIgIn of
the coordinate system (0,0) IS the upper left most pixel in the Image, and it IS
IncreasIng rIght In the x-direction, and down In the y-directlOn. Besides the x
address and y-address, each PE wIll store the Width (x-side), and the length (y-side)
of the rectangle It represents For a 512 X 512 image, four 9-blts are needed to
store the 10catlOn and size Information The root level wIll be labeled the Oth
level, whIle the leaf level IS the nth level. Other InformatIOn is also stored In each
PE, and wIll be desCrIbed later

.3 1 1 InltlalIzatlOn Procedure

The IDitlalIzatlOn procedure Includes assigning to each PE In the tree a rectangle
In the Image, and storIng In that PE the address and size InformatIOn for thiS
rectangle \Ve will deSCrIbe Informally In what follows the algOrIthm for InitialIZIng
the NON-YON tree

1 The IDitlalIzatlOn algOrIthm starts at the root level by storIng zero In ItS
x- and y-address, and 512 (PICSIZE) In ItS X-Side and y-slde varIables

I) Enable only PE's on the next level (up-down directIOn) The locatIOn and
size varIables are asSigned as follows

left-child x-address = parent x-address
left-child y-address = parent y-address
if parent-level is even then
begin
right-child x-address = parent x-address ;
right-child y-address = parent y-address + parent y-side/2;
right-child x-side = left-child x-side = parent x-side;
right-child y-side = left-child y-side = parent y-side/2;
end

else
begin
right-child x-address = parent x-address + parent x-side/2;
right-child y-address = parent-y-address ;
right-child x-side = left-child x-side = parent x-side/2;
right-child y-side = left-child y-side = parent y-side;
end

3. Step number two IS repeated (n tlmes)untll the leaf level PE's are
Imtlahzed

8

The mltlahzatlOn algonthm takes time proportIOnal to the number of levels m
the tree (19 levels m the case of a 512 X 512 Image).

3 1 2 Loadmg the Image

In tree machmes loading and unloadmg the tree only through the root can be a
bottleneck for algonthms with extensive Input/output operatIOns. To overcome this,
~O~-VON loadmg and unloading IS performed through a number of Intell1gent disk
umts connected to PE's on an intermediate level ThiS helps dlstnbute the
mput!output operatIOns Loading an Image pOint through the root Involves first
broadcastmg ItS x- and y-coordlnates, the PE With the same values for x and y and
on the leaf level wlll be enabled Then the Image pOint value IS broadcast to be
stored In the enabled PE. Four NON-VON instructIOns are reqUired to load one
Image pOint (four microseconds executIOn time) Loading the Image through the root
only wdl take about one second \Vlth disk umts connected to an intermediate
level (for example to the level With 64 PE's), thiS time can be reduced slgmflcantly

The broadcast value IS stored m the Integer vanable TREE In case of gray
Images It wlll take a value depending on how the gray level mtenslty IS bemg
dIgitized (typically, thiS value vanes from 0 for white pomts. to 255 for black
pOints) In case of bmary Images. the mteger vanable TREE IS set to either the
value 1, If the Image pOint IS black, or the value 0 If the Image pomt IS white A
character vanable FQlTAD (only used With binary Images), will be set to 8' If
TREE IS equal to I, and to\V' If TREE IS equal to 0

9

3.1.3 Budding The Binary Image Tree

In building the binary Image tree, the two variables TREE and FQUAD are set
In each PE such that the value of TREE corresponds to the number of black pIxels
In the rectangle represented by the PE, and the value of FQUAD indicates the type
of the rectangle TREE takes the value zero when the rectangle is white, and It IS
equal to the area of the rectangle in the case of black rectangles The ratio of
TREE to the area of the rectangle is proportional to the gray level intenSity of the
rectangle. The vanable FQUAD takes the value 'N' If its PE IS holding a black or
whIte rectangle that IS beIng merged with a similar one to form a larger rectangle
In case of gray rectangles It Will take the value 'G'. The algOrIthm for bUildIng
the bInary Image tree proceeds as follows

1 Enable all PE's In the level above the leaf level.

2. Let all the enabled PE's read the values of TREE and FQUAD In their
chIldren. The value of TREE in the enabled PE's Will be set equal to
the sum of the two varIables TREE in theIr chIldren. FQUAD WIll be
set to 'G' If FQUAD In the two children are dIfferent, or If one of them
IS 'G' If the two varIables FQUAD In the two chIldren are both eIther
'\V' or 'B', then the parent FQUAD WIll be set to the mutual value and
the FQUAD In the two chIldren Will be set to 'N'

3. If the root IS reached, stop; otherwise enable all PE's In the next level In
the up direction and go to step two.

Aiter the above algOrIthm IS executed, the root PE Will have its TREE varIable set
equal to the number of black pIxels In the whole Image, and In general each PE's
TREE variable IS set equal to the number of black pixels in the tree rooted by
that PE Steps two and three are repeated a number of times equal to the number
of levels In the tree. Thus the algOrIthm takes time proportional to the height of
the binary tree Every level In the tree represents the Image WIth a speCifIc
resol utlon, wIth the leaf level haVIng the fInest resolutIon and the root PE
representing the whole image.

3 1 4 BuIlding The MultI-ResolutIOn Pyramid

In the case of gray Images, we can buIld the IT: ':ltI-resolutlon pyramid In the
same way as before by letting the varIable TREE In every PE be the average of
the two values of TREE In ItS two chIldren ThiS averaging process acts as a low
pass fIlter, and the Images we get In the Internal levels Will reflect the gross
characterIstics of the Image, whIle fIne detaIls wIll be lost due to round off errors

10

4. Connected Component Labeling on NON
VON

Connected component labeling IS a basIC operatlOn In Image processing that
IdentIfIes the disjoInt reglOns of an Image. The connected component algorithm wdl
assign different labels to dIsJomt connected reglOns of a bInary Image represented as
a bInary Image tree on NON-VON.

Before applYIng the algorithm the Image objects must be separated from theIr
background. The process of separatmg the objects from background IS called
segmentatlOn, and there are many techmques to perform It One techmque IS to use
a threshold value to separate foreground pomts from background POInts. ThIs
threshold value may be be a predetermmed value based on some experimental
InformatlOn, or may be determmed by gathenng certam statistiCS about the Image
(hi.stogramming).

4.1 The Connected Component Algorithm

In describing the algorithm, we wdl assume that only the foreground components
(black areas) are to be labeled, but the same procedure can also be applted to
background component (white areas) \Ve wlll now descnbe the algorithm
Informally

The algonthm, as Implemented on NON-VON, wdl start by asslgmng the label
zero to all black rectangles of the bmary Image tree The RESOLVE InstructlOn IS
then used to report to the CP the black rectangles of the bInary Image one by one.
In order of their sizes ThIS can be done easlly by startmg at the root level and
enabltng only PE's holding black rectangles at that level and then reportIng them
to the CP In an order that depends on how t he RESOLVE Instruction IS
Implemented ThIS order IS not Important to our algOrithm, as all rectangles on a
specific level have the same size \Vhen all the black rectangles on the chosen level
are reported, we enable the PE's With black rectangles In the next level down the
tree and repeat the reporting procedure \Ve end when all black rectangles In the
leaf level are reported

For each reported rectangle, the CP Will assign a new label If It has not already
been asSigned a label The CP wdl broadcast Instructions to mark and label all
adjacent rectangles In the different dIrectIons With the same label of the reported
rectangle If dUring testIng of adjacency, any adjacent rectangle has already been
labeled, then thiS adjacent rectangle and all rectangles With label equal to ItS label
value wdl be asSigned the label of the reported rectangle Another black rectangle
IS picked as deSCribed above and the labeltng procedure IS repeated The algOrithm

11

stops after all black rectangles have been reported to the CPo During the
execution of this algorithm, information about the common boundanes between
rectangles will be stored locally at each node to be used later for computlOg some
geometrical properties of different components

We wdl now descnbe the vanables used by the algorithm The algorithm uses
a local vanable LABEL to store the region label to which the rectangle belongs.
The local bit vanables TE, TN, TW, and TS are used to IOdicate the eXIstence of
a common boundary between a rectangle and its neIghbors In the east, north, west
and south directIOns respectively. Another local variable REPORTED is used by a
rectangle to mark Itself reported. The global variables NEWLABEL and
COMLABEL In the CP, wlll be used to store a new unasSIgned label and to store
the label to be assIgned to adjacent rectangles in adjaceny testIng respectIvely. The
global vanable CURLEV wIll be used to refer to the current level from which the
algOrIthm picks black rectangles.

In what follows, we wdl descnbe the algOrIthm to label the connected
components of a binary Image

1 Set the LABEL variable to 0, and the variable REPORTED to 'N' In all
black rectangles. InItialIze the global varIables NEWLABEL and ClJRLEV
to 0

2 Enable all PE's holding black rectangles at level number CURLEV that
have REPORTED equal to 'N' If there are no PE's satIsfYing thIS
condItIon and CURLEV IS the leaf level, then stop, otherWIse Increment
CURLEV and repeat step 2.

3. Pick up one of the enabled PE's USIng the RESOLVE instructIOn, and
report the location, label, and dImenSIons of the black rectangle It
represents to the CPo These informatIOn IS stored In each PE dUrIng
the InltlalIztIOn procedure Set REPORTED In the PE holding the
reported rectangle equal to 'Y' to mark It asa reported rectangle If the
LABEL of the reported rectangle IS equal to 0, then Increment
NEWLABEL and assign ItS value to the global varIable CO~fLABEL;

otherwise, set COMLABEL equal to the value LABEL of the reported
rectangle.

4. Test for adjacency In the four dIrections one at a time. ThiS is done by
broadcasting for each directIOn the range In which the locatIOn of the
adjacent rectangles should lie ThiS range IS computed uSing the
reported rectangle size and locatIOn informatIOn. Only rectangles 10 thIS
range WIll be enabled. If any of them has a label other than zero then
Its value IS reported to the CPo Only two rectangles at most can have

their labels equal a value other than zero, as wIll be proven later. All
adjacent rectangles labels are set to COMLABEL. Dunng check for
adjacency, tests are performed to check for Image boundary cases.

5. For each adjacent rectangle wIth LABEL value other than zero, we
broadcast thIS value throughout the tree, and set the LABEL varIable In

all PE's holding rectangles wIth the same LABEL value equal to
COMLABEL

6 Goto step two

12

In step four a crUCIal part of the algorIthm's effIciency IS the claim that at most
two of the adjacent rectangles can have labels other than zero. To prove that,
assume rectangle 3 was reported to the CP and we are lookIng for adJ acent
rectangles to It along Its eastern boundaries. Assume also that rectangle 2 IS
adJ acent to rectangle 3 10 the east dIrectIOn as shown 10 fIgure 4-1-30. If rectangle
2 has been labeled before, then It must be adjacent to a rectangle 1 of bIgger or
equal size to rectangle 3 ThIS IS because rectangles are reported to the CP In order
of their size Rectangle 2 can share a common boundary WIth rectangle 1 10 the
east, north, or south directIOn along the boundarIes of the shad'ed area shown In
the figure. From the way we budd the bInary Image tree, we know that If
rectangle 1 IS to the east of rectangle 3 and IS larger or equal to It. then the
dIstance separatIng them IS equal to or larger than the Width of rectangle .3 (L3)
Thus we conclude that If rectangle 2 IS adjacent to both 1 and 3 and rectangle 2 IS
smaller or equal to rectangle ,3, then ItS WIdth (L2) IS equal to L3 There IS only
one rectangle that can satisfy thIS conditIOn as shown In FIg 4-1-b, where Its two
unIque POSItIons are shown In addItIOn to rectangle 2 In the prevIOUS ca.se we can
have only a second rectangle 2' that could have been labeled before because It IS
adjacent to a larger or equal sIze rectangle In eIther the north or south directIOn as
shown In hgure 4-1-b FIgure 4-1-c shows the thIrd pOSSIble case, where we have
two rectangles that have been labeled before and whIch are adjacent to rectangle 3.
and to larger or equal SIze rectangles In the north and south dIrectIon respectIvely

The same proof IS valId for adJ acent rectangles In the other dIrectIOns

Steps two through SIX are repeated a number of tImes equal to the number of
black nodes 10 the Image Because of the proof, each step consists of a. tightly
bound number of ~00i-VON instructIOns Thus the time the algOrIthm takes IS
proportIOnal to the n um ber of rectangles In the binary tree (O(B)) If prIor
InformatIon about the a.dJacency for Single pixels were known (for example dUrIng
the broadcasting of the Image), then those rectangles WIth adpcencles only In one
dIrectIOn, have not to be reported to the CP, once they are labeled

13

3 (a)

3 3 (b)

3 (c)

Ftgure 4-1:

The informatIOn obtained about the common boundanes between rectangles can
be used not only to compute components' propertIes In a tIme proportIonal to the
heIght of the NON-VON tree, but also to mark all boundary pIxels and use these
InformatIon to determine adjacency relatIOnshIp between components See [Ibra84]
for more informatIOn.

4.2 Simulation Results

The algOrIthm descrIbed In the prevIOUS sectIon was sImulated on a VA .. 'G 1/750
USIng the C programming language FIgure 4-2 shows (a) a .32 X 32 black and
whIte Image that was Input to the sImulator and Ib) the labeled foreground
components. The sImulator was also used to label background objects as shown In
part (c) of fIgure 4-2 The bInary Image representatIon of thIS Image contaInS 112
black rectangles, and 146 whIte rectangles It took about eIght seconds for the
SIm ulator to label all black components

The 0:001-VON3 code for the algOrIthm executes USIng about 180 ['.;ON-VO~
instructIons, per IteratIon. \VIth a NON-VON3 instructIon cycle of 05 mIcrosecond,
the algOrIthm executIOn time IS approXImately 2B mseconds, where B IS the number
of black components. For a n X n binary Image the average number of black

14

rectangles m the binary Ima.ge tree
for the a.lgorIthm IS O(n). runnIng

for the
time
algorithm for

IS [Dyer82]. Thus the O(n)
The average

about
runnmg time

(We

average case
on NON-VON

a 512 X 512 Image IS
height of the
tree, and use

a time proportional to the
rectangles m the NON-VON
time of the algorIthm)

'J

v
.J

o
o
<)

o
'J

,)

<)

'J
'J
'J

"

.)

o
(\

v

II
o
v
<)

o
<)

o
v
'J
V

'J

" ,)

(\

" u
II
o
o
<)

o

o
o
'J
I)

" o
'J

,)

U
\)

v
')

U

u
o
o
(\

" o
'J
co
,)

I)

I)

o
o
0)

.)

'J
\) i)

1) I) ~

o 0 0 ,
o tJ 0 ~
\) n f) ~ ,.
(J I) ,

(J I)

U (.I I) ,

t.) tJ I) ,

o 0 1I ~
,) U ,

tree
that

~

~ l>

~ co
~ .)

~ ~ 0
, , u
~ , 0
~ , 0
~ ~ 0
~ 0 , , ()

~ , 0
~ , 0
~ , 0
, , 0
, , 0
, ~ 0

can
number

always In

of black
one second,
compute the

number to estimate the runnIng

I) 0 0 0
o 0 0 0
~ , I) I)
, , , I)

! , , ~

n , , ,

o 0 t) i.)

o 0 f) 0
\) \) 0 0
f) 0 0 0
o 0 0 0
r'l 0 0 0

o 0 0 0
\) (.) 0 0
II <) 0 II
o II 0 0

o 0 II 0
o 000
o I) 0 II

o
,)

b

" ,)

<)

6
Ii
8
6
'J

o
6
Ii
8
6
<)

u
f)

o
<)

o
o
,)

o
<)

,)

o
.J

'J

,J

6
ti
6
6

,)

"
II
.J
o
o

'J
(,

o
o
o
v
,)

.J

6 ..
6
6

,)

o
'J
'J
<)

o
'J

" II
o

<)

ti
<)

o
<)

<)

u
o
<)

<)

o
<)

o
,)

'J
o
.J

o
o

o
I)

<)

o
o
o
o
fJ

o
o
o
o
o

o .,
.J
.)

" r)

.)

: III 1111111
11::: II:: 11:::

: II
1111

1 ! 1

,)

OJ
,)

" o

,j

,)

<)

I)

,)

v
o
<)

II
o
<)

(I

o

o
I)

o
<)

,)

o
o
o
II
o
o

o () " ,
(l 0 0 ~

o I)'

, 0
~ ~ II
~ ~ ~

v
o
II
o
o
o
I)

o
o
o
o
o
0)

I)

o
o
o
<)

8
e
8
o
u

o II II <)

II <) 0 0
o 0 0 0

II
<)

,)

o
o
o
o
o
o
o
o
o
II
'J
o
o
8
8

o
&
6
6
o
<)

o
<)

I)

o
o
o
o
v
o
o
o
o
o
o
o
o
8
8
<)

<)

o
8
I
o
o
o

o
o
o
n
o
o
'J
'l
o
'l
o
o
u
o
o
o
8
8
8

u
o
o
o
o
'J
u
o
o

<)

~

6
6
~

6
6
6
6
6
6
6
6
6
6
6
6
6
U
,)

v
<)

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6

o
6
6
6
~

6
6
6
6
6
6
6
6
6
6
6
6
6
,)

o
o

v
II
o
<)

o
o
<)

<)

o
o
u
o
o
o

o
6
,;
6
.J
<)

<)

I)

o
o
o
o
o
.)

<)

o
II
0)

o
'J
II
I)

o
o

,)

,)

" I)

o
o
o
o

o
o
o
o
v
'l
o
o
I)

o
o
o
o
'J

o
o
.)

I)

I)

o
o
o
o
,)

.J

'J
o
I)

o
<)

,j

1 1 : : 1 1 1 1 1 ! 1 ! 1 ~ ~
... ...

1111

III
111
111
III
111
1 11
III
111
::1
:11
III
,II
III
III
111
III
1111
III

1111

11111

III
III
: : 1
: 11
: : 1
11:
:11
III
III
: II
: 11
III
111
III
I II
111

111111 II 1
1111 11 I I
III 1111
1111 III!:

1111: I I , I 1
111111

(a) Input Black and Whl~ Image

.)

.)

'J

u
,)

'J
,j

o

,)

<)

I)

<)

o
o
v

o
v
o
o
o
()

o
o
o

" 'J
II
II
o
II
o

"

'J
o
o
o
'J
o
o
o

'J

o

" o
o

,)

I) (J I) ,

u 'J

" I)
I) \) I} 0
o 0 I) 0
o 0 I) 0
001) I)

I) I) I) I)

I} 0 1.)

, ~ I)

II
I.l l,)

U 0 V
o 0 I)

o 0 0
<) 0 0
V c" I)

" co

o 0 8 8
e 8 8 8
e B 8 <)

e 8 <) 0
8 8 8 0
8 8 8 8

o 8 8
o 0 0 I)

I) 0 V
<) 0

,)

u
<)

8
II
o
o
'J

8
8
I
o
o

" 8
B
e
8
8
8
o
o
,)

8
e
e
B
B
...
,)

"

(b) La~led Fore&round Componenu

'J

" e
B
8
8
o
o

v

'J

<)

v
B
B
o
I)

o
o
o

" o

,)

o
o
o
o
o
o

,)

'J
o
o
o
o
o
,)

'J
,)

.J
'J
U
,)

,)

'J
,)

o
o
o
o
~

o
o
o

" <)

o

"
o
.)

<)

o
o
,)

<)

'J
.j

IS I!! I!! 19 19 19 19 19 19 19 19 19 19 19 19 11 I!! 19 19 I!! 19 19 19 19 19 19 19 19 19 19 19 19
,S 19 ~ ~ 19 , , ~ ~ 5 5 ~ 19 19 19 I!! 19 i i 6 19 19 19 i 6 & 19 19 19 19
19 19 ~ ~ 19 19 i illS 19 19 19 S 6 ii i 11 11 19
19 I!! ~ ~, ~ , I!! I!! 8 8 8 19 19 19 6 i 6 19 11 II 19
19 I!! 19 ~ ,~ 19 19 ~" 19 19 6 6 6 6 6 S 6 19 19 II II II
19 19 19 19 19 19 19 19 19' 19 19 19 ~ , , '19 19 19 6 6 6 IS 19 19 19 II 11 19
19 19 19 19 19 19 19 19 19' 19 19 19 19 19 19 19 19 19 19 6 6 6 19 19 19 19 19 IS 19
IJ 19 19 19 19 19 19 19 19 ~ 19 19 19 19 19 19 19 19 19 19 6 6 6 19 19 19 19 19 19 19
19 19 19 IS 19 19 19 19 19 ~ 5 19 19 19 19 19 19 19 19 19 19 6 6 6 19 19 19 19 19 19 :9
19 19 19 IS 19 19 19 19 19 '5 19 IS 19 IS 19 19 19 19 19 19 6 6 19 19 19 19 19 19 19
19 19 19 19 19 19 19 19 19 ~ ~ 5 19 19 19 19 19 19 19 19 19 19 6 6 6 IS 19 19 19 19 19 19
19 111 19 19 19 19 19 18 19 , ~ ~ 19 19 19 19 19 19 19 19 19 IS 6 6 6 19 19 19 19 19 19 19
19 19 IS 19 19 19 19 19 19 ~ ~ ~ 19 19 19 19 19 19 19 19 19 19 6 6 6 19 19 19 19 19 19 13
IS IS 19 19 19 19 19 19 19 ~ ~ 5 19 19 19 19 19 19 19 19 19 19 6 6 6 IS :9 19 ,3 IS IS 13
19 19 19 19 19 19 19 19 19 ~ 19 19 19 19 19 19 19 19 19 19 6 19 19 19 :9 .9 13 :9
.~ 19 IIJ I') ::3 :'J ::1 .~ :9 c [9 :9 19 19 19 :9 19 19 19 19 0 19 19 :9 19 19 ,9 '3
19 19 19 :9 19 tJ 19 19 19 :9 :9 19 19 19 19 19 19 19 19 Ii 6 19 19 19 19 19 ,9 :9
19 19 19 19 19 19 19 19 19 5 5 19 19 !9 19 19 19 19 19 19 19 6 .; 19 19 19 19 :9 19 19
lQ 19 19 19 19 19 19 19 19 '5 '5 19 19 19 19 19 19 19 19 19 19 6 t:I 6 19 !9 19 19 19 19 i'3
19 19 19 19 19 19 19 19 19 ~ 19 19 19 19 19 19 19 is 19 19 6 IS 19 19 19 19 19 19
19 is 19 IS 19 19 19 19 19 ~ 19 19 IS 19 19 19 19 :9 19 19 6 6 .; IS 19 19 19 19 19 :3
19 19 19 IS 19 19 19 19 19 ~ 19 19 19 19 19 19 19 19 19 19 19 6 19 19 IS is 19 19 19 :3
19 19 .9 IS 19 19 19 19 19 , ~ 19 19 19 8 8 8 8 19 19 19 :9 19 19 19 19 19 19 19
IS 19 19 19 19 19 19 19 19 5 19 19 B 8 8 8 8 8 8 B 19 19 19 19 19 19 19 19 :9
19 19 ,9 19 19 IS 19 19 is 19 19 19 19 8 B 8 B 17 17 17 8 8 B 8 '" 19 ,9 19 19 19 19 13
19 19 19 19 19 IS 19 19 19 19 19 19 19 8 8 8 17 17 17 17 17 8 e e e :9 19 19 13 19 19 19
19191919191919191919191S19 e 8 8 8171717 8 8 B 61919· Q :91919'3
19 19 19 19 19 19 19 19 19 19 19 19 19 19 8 8 8 II 8 8 a 8 8 e 19 19 19 ,9 :9 19 19 19
19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 8 8 a 8 8 a 19 19 19 19 IS IS :3 :3 13 :3
19 19 l!t 19 19 19 19 19 19 18 11 19 19 19 19 19 19 19 19 19 19 11 19 19 is 19 IS 19 :3 19 :9 :9
19 19 19 19 19 19 19 19 19 1!1 19 19 19 19 19 19 19 19 18 19 19 19 Ig 19 19 19 19 19 :9 :3 ,9 19
19 19 19 19 19 '9 19 19 19 19 19 is 19 19 19 19 19 19 18 19 19 19 19 19 .9 :9 19 19 13 19 ,3 .3

(C') Labeled Foreground and background Components

Figure 4-2: Some SimulatIOn Results

15

The sImulator was also used to compute some components properties based on the
InfOrmatIOn produced by the connected component algorIthm (See [Ibr84J.)

We can conclude that the NON-VON supercomputer can be used efficIently to
Implement several important Image understanding tasks.

Acknow ledgments
I wIsh to acknowledge the excellent criticism and valuable suggestions of my

adVisors John Kender, and Da.vid Sha.w.

[Brow 79]

[Dubl 81j

[Duff 761

[Dyer 811

[Dyer 821

[Flyn 721

[Hans 80]

[Hlli 81j

[Ibra 83)

16

References

Browning, S.
ComputatIOns on a Tree of Processors.
In The Proceed.ings of The First Caltech Conference on VLSf January,

1979

Dubltzkl, TsvI, Wu, A. Y, and Rosenfeld, A.
Parallel RegIOn Property Computation By Active Quadtree

Networks.
IEEE Transactions on Pattern Analysis and '\1achine Intelligence 3(6),

November, 1981.

Duff, M. J B.
A Large Scale Integrated CircUIt Array Parallel Processor.
In IEEE Conference on Pattern Recognition and Image Processing,

pages 728-733. 1976.

Dyer, C R
A VLSI Pyramid Machine for Hierarchical Parallel Image

Processing
In IEEE Conference on Pattern Recognition and Image Processing,

pages 381-386 1981.

Dyer, C R
The Space Efficiency of Quadtrees.
Computer Graphics and Image Processing 19335-348, 1982.

Flynn, \1 1
Some Computer OrganIZatlOns and Their Effectiveness
IEEE Transactions on Computers 21(9), September, 1972

Hanson, A R, and Riseman, E M
Processing Cones A ComputatlOnal Structure for Image Analysts
In TanImoto, S, and Klinger, A. (editor), Structured Computer

Vision AcademiC Press, 1980

Hillts, \V D
The Connection Machine
Techmcal ~1emo, MIT ArtifiCial Inteillgence La.b , Septem ber,

1981

Ibrahim. H A. H
Tree .\fachines: Architecture and Algorithms
Technical Report, Columbia UnIversity, June, 1983

[Ibra 84]

[Know 801

[Kruse 76]

[Kush 821

[Mead 791

[Pott 831

[Reev 81]

[Rose 831

[Same 811

[Schw 80J

[Shaw 821

Ibrahim, H A. H.
Image Understanding Algorithms on The NON-VON Supercomputer
Techmcal Report, Columbia University, March, 1984

Knowlton.
Progressive Transmission of Grey-Scale and Binary Pictures by

Simple, Efficient, and Lossless Encoding Schemes.
Proceedings oj the IEEE 68(7), July, 1980.

Kruse, B.
The PICAP PIcture Processing Laboratory
In IEEE ConJerence on Pattern Recognition and Image Processing,

pages 875-881. 1976.

Kushner, T, \Vu, A. V, and Rosenfeld, A.
Image ProcessIng on ZMOB.
IEEE Tran8actions on Computers 31(10), October, 1982.

Mead, C and Conway, L.
Introduction to VLSI Systems.
AddIson Wesley, 1979.

Potter, 1. L.
Image Processing on the MasSIvely Parallel Processor.
IEEE Computer Magazine 16(1), January, 1983

Reeves, A. P
Parallel Computer ArchItectures for Image ProcessIng
In IEEE Parallel Processing, pages 199-206 1981

Rosenfeld, A.
Parallel Image Processing USing Cellular Arrays
IEEE Computer Magazine 16(1), January, 1983

Samet, H
Connected Component Labeling L'slng Quadtrees
Journal oj the ACM 28(3), July, 1981

Schwartz, J T
Ultracom puters
ACAf Tran.sact~·ons on Programming Language.s and System.s 2, 1980

Shaw, D E
The NON-'VON Supercomputer
TechnIcal Report, Columbia UnIversIty, August, 1982

17

[Sleg 81]

[TanI 80]

[TanI 83]

[Chr 78]

[Cnge 58]

Siegel, H J, Siegel, L. J, Kemmerer, F C, ~fueller, P T,
Smalley, H. E., and Smith, S D
P ASM A Partltlonable SL\ID jML\ID System for Image ProcPsslng

and Pattern Recognition.
IEEE Tran.sactions on Computer.s 30(12), Decem ber, 1981

Tanimoto, S
Image Data Structures
In TanImoto, S, and KlInger, A (editor), Structured Computer

Vision AcademiC Press, 1980

Tanimoto, S L
A. Pyramidal Approach to Parallel Processing

Document, UniversIty of WashIngton, January, 1983

Uhr, L
RecognItIOn Cones, and Some Test Results
In Hanson, A R, and Rlseman, E. M. (editor), Computer \'Islon

Systems AcademiC Press, 1978

Unger S H.
A Computer Oriented towards Spatial Problems
In Proceedings of IRE, pages 1744 1958

18

