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Abstract

The NON-VON Supercomputer 1s a highly parallel tree-structured computer that
1s being implemented at Columbia University. In this paper, we demonstrate that
tree architectures with their favorable characteristics for VLSI implementation, and
fast global broadcast, lend themselves easily and naturally to the representation and
manipulation of images represented by hierarchical data structures A description of
NON-VON architecture 1s presented with an emphasis on the special architectural
features that will be used i1n our image understanding algorithms. We adopt a
variation of the quadtree data structure called the binary image tree, to represent
images 1n the NON-VON tree. We show how i1mages are loaded in the NON-VON
tree, and present the algonthm for building the binary image trees. An efficlent
implementation of the connected component labeling algorithm on NON-VON 13
then presented  Simulation results are discussed, and we show the fast execution
time of the algorithm on NON-VON Other algonthms are also developed, such as
histogramming, Hough transform, Set operations and image correlation, and we can
conclude that NON-VON can be used to implement efficiently several :mportant
image understanding tasks

This research was supported in part by the Defense Advanced Research Agency under contract 52001
/ N00039-82-C-0427.
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1. Introduction

Image understanding tasks usually involve computations that can be performed
simultaneously on hundreds of thousands of picture elements. Conventional von
Neumann machines, where data elements have to be fetched sequentially for
processing, are inadequate to execute such tasks efficiently. Thus parallel computers,
with processing and memory elements intermingled, are highly desirable for efficient
execution of image understanding tasks. Hardware implementation of highly parallel
computers has been made feasible by recent advances in very large scale integrated
(VLSI) circuitry.  Various kinds of parallel architectures have been proposed in the
literature and some of them are 1n various stages of implementation. Some
examples are [Brow79}, {Schw80], [Hill81], and [Shaw82].

There have been also several proposals for special-purpose computer architectures
for image understanding systems. Cellular logic arrays, proposed by Unger [Unge58]
for use as parallel image processors, were the basis for many later architectural
proposals. Some examples of these architectures include CLIP4 [Duff76], PICAP
[Krus76], BAP [Reev80}, and MPP [Pott83|. For more information regarding cellular
arrays the interested reader is referred to [Rose83]. Other architectures proposed for
image understanding make use of pipelining as a way of introducing parallelism 1n
the system [Kush82], or wuse a high-bandwidth interconnection network for
communications between the PE’s [Sieg81]  Hierarchical architectures for image
understanding systems (referred to in the literature as hierarchical, cone, or pyramid
machines) are also proposed for 1mage understanding tasks ([Hans78],
[Uhr72],[Dyer81], and [Tan83]), and they are attracting considerable attention
because of their desirable characteristics for VLSI implementation [Mead79].

The NON-VON (non von Neumann) supercomputer [Shaw82] currently being
buillt at Columbia University, 1s such a hierarchical machine  Its architecture
includes a large number of small PE’s placed at the nodes of a complete binary
tree

We nave been able to demonstrate that several important image understanding
tasks can be implemented effictently on NON-VON.  In this paper we will show
how to 1mplement the connected component algorithm on NON-VON Other
algorithms can be found in {Ibra84] In Section Two, we will describe briefly the
architecture of NON-VON, and in Section Three we will show how to represent
images 1n 1its tree. In Section Four, we will present the algornithm for connected
component labeling, and we will show some simulation results.



2. The NON-VON Supercomputer
Architecture

The NON-VON Supercomputer [Shaw 82] is currently being implemented at
Columbia Untversity Its architecture includes a tree-structured Primary Processing
Subsystem (PPS) based on custom nMOS VLSI crcuits, along with a Secondary
Processing Subsystem (SPS) based on a bank of intelligent disk drives  Figure
2-1 shows the top level organization of the NON-VON machine.
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Figure 2-1:  Top Level Organization of
NON-VON
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The PPS 1s configured as a binary tree of PE's Each PE comprises a small
RAM (32 bytes 1n the prototype), a modest amount of processing logic, and an
input/output (I/O) switch. The [/O switch can be set for global bus communication,
for communication between parents and children (tree neighbor communication), or
to reconfigure the binary tree as a linear array of processors (linear neighbor



communication). NON-VON uses a hierarchical scheme for global broadcast, where
broadcast data are buffered at each tree level and rebroadcast again. The first
version of NON-VON, called NON-VON1, will contain chips with only one PE for
the purpose of testing certain electrical and timing characteristics. The chip has
been tested, and currently a tree containing 128 nodes 1s in the phase of
construction. A modified version of the chip with sixteen PE’s has been designed,
and 1s to serve as the basis of the prototype planned to be implemented starting 1n
the summer of 1984 This prototype is called NON-VON3. The modified chip has
less area per PE, and the instruction set i1s made more powerful by generalizing
register-to-register data transfers and adding more arithmetic processing power. It 1s
expected that the time needed to broadcast a NON-VONS3 instruction to all PE'’s in
a tree of 20 levels {one million PE’s) will be about 400 nanoseconds.

At the root of the tree 1s a special processor called the control processor (CP),
which 1s responsible for coordinating different activities within the PPS. The CP s
capable of broadcasting instructions to be executed in all active PE’s simultaneously
This i1s referred to in the lterature as single instruction stream, multiple data
stream (SIMD) execution [Flyn 72]. Algorithms that use this mode of execution are
called SIMD algorithms.

A PE actively executes the instructions broadcast by the CP as long as its
enable bit 1s set If the enable bit is reset, then the PE will be disabled and only an
ENABLE instruction will activate 1t again. Each PE 1s capable of performing
simple arithmetic and logical operations.

The NON-VON architecture incorporates an SPS based on a number of rotating
storage devices. Associated with each disk head in the SPS 1s a separate sense
amphfier and a small amount of logic capable of dynamically examining the data
passing beneath 1t  Intelligent Head Units (IHU’s) would be capable of performing
general computations, and of serving as control processors. This will support parallel
transfer of data between the PPS and SPS which 1s necessary to avoird the [/O
becoming a bottleneck, and allow NON-VON to function as an independent
collection of SIMD machines (this execution mode has since come to be referred to
as multiple SIMD, or MSIMD).

An nstruction called RESOLVE can be used to disable all but a single PE
chosen among a specified set of PE’s This 1s an example of a hardware multiple
match resolution scheme, 1n the terminology of the literature of associative
processors. (The CP, on executing a RESOLVE instruction, is able to determine
whether the operation resulted in any PE being enabled or not) The REPORT
instruction transfers data from the single chosen PE to the CP using the global bus
communication.



There are mechanisms by which we are able to enable only leaf PE’s, or only
the root PE [Shaw83]. In the following sections, variables that are stored in the
tree PE’s, will be referred to as local variables, while global variables will refer to
those that are stored in the CP.
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3. Image Representation on NON-VON

In this section, we will show how two of the hierarchical data structures that
are used frequently in image understanding tasks on sequential machines can be
used to represent image data i1n the NON-VON tree Also, a procedure for
initializing the NON-VON tree, loading the 1mage, and bulding the 1mage
representation will be described.  Hierarchical data structures are used i1n image
understanding tasks because they allow many algorithms to be expressed in a form
suitable for divide-and-conquer techniques. They are also used by algonthms
employing several levels of resolution during their execution.  Hierarchical data
structures include multi-resolution pyramids, quadtrees, and regular decomposition.
Actually these terms are often used inconsistently in the literature to refer to each
other. In what follows, we present two of these hierarchical data structures, namely
multi-resolution pyramids and quadtrees, and show how they are used to represent
images on NON-VON.

3.0 1 Multi-Resolution Pyramids on NON-VON

A multi-resolution pyramid can be defined as a sequence {[[L), AL-1), . 1[0)}
of images, each represented as a two dimensional array, where [{L) is the original
image, and f[m-1) 1s a version of I{m) at half the resolution. (This is the same
definition Tanmmoto used in [Tani80].) The pyramid provides reduced resolution
versions of the 1mage A multi-resolution pyram:id can also be defined in terms of
trees, where the leaves represent the pixels of the original image, and subsequent
levels represent different resolutions of the image An image at a specific level can
be computed from the image at the level below 1t in the tree in different ways.
Typically,a parent node 1s set equal to the average value of its four children Note
that the four children represent a 2 X 2 region in the image In the NON-VON
tree, the leaf level will be used to store the original image, whereas the internal
levels will be used to represent the image at different resolutions Because NON-
VON 1s a binary tree, the resolution reduction from one level to the next up in the
tree 1s only a factor of two, and two NON-VON levels are used to have the same
reduction as one level in the multi-resolution pyramid. ~ We will use this image
representation whenever we deal with grey scale 1mages In the section on
initialization and loading we will show how this can be done in detail

3.0 2 Binary Image Trees on NON-VON

Quadtree data structures are similar 1n many aspects to the multi-resolution
pyramids. They are used to encode binary images, and the nodes 1n a quadtree are_
interpreted differently from the nodes 1n a multi-resolution pyramid tree. A good
way to visualize the quadtree is by assuming that the image is a square whose



dimension 1s a power of 2 (2"), the quadtree data structure is built by subdividing
the whole 1mage into four square quadrants with dimensions that are half that of
the image. This process i1s repeated recursively for each quadrant n times, until the
single pixel level is reached. The resulting data structure can be represented as a
quartic tree or a quadtree. The root of the tree corresponds to the whole 1mage,
the leaves correspond to the single pixels, and the nodes of the tree correspond to
quadrants of the square represented by their parent node. In the case of binary
images, nodes of the quadtree can take one of three values. If the node children are
all black, then the node 1s black If they are all white, then the node 1s white
The node will take the value gray if its children do not have the same value, or if
they all have the value gray.  All subtrees rooted with a white, or a black node
can be omitted, thus reducing significantly the amount of memory required to store
the picture on a sequential machine.

Figure 3-1: Binary Image Trees Block arrangement

Binary trees represent a data structure that is a variation of the quadtrees and
that has been proposed recently by Knowlton [Know80] as an encoding scheme for
transmitting Gray-Scale and binary images Figure 3-1 shows the block arrangement
for this data structure The shape of subdivisions change from level to level It 1s
either a square, or a rectangle with the width twice the length One can simply
determine the shape of the division at any level by testing to see if the level
number 1s odd or even Going from one level to the next increases the resolution by
only a factor of two, while 1n quadtrees the resolution 1s increased by four Binary



image trees are mapped naturally onto binary tree machines. On NON-VON, the
leaf processors will be used to store the image information at the single pixel level,
while non-leaf PE’s will correspond to rectangles of pixels. A record associated- with
each PE will be used to store information about the location, size, and adjacency
relation of the part of the image 1t represents.

3.1 Initialization and Image Loading

The connected component labeling algorithms on NON-VON, which will be
described 1n the following sections, use information that are stored initially in each
PE. Each PE corresponds to a rectangle in the original image On the leaf PE’s
level, this rectangle corresponds to a single pixel in the two dimensional array that
represents the image. The location of each rectangle is specified as the coordinates
of its upper leftmost corner pixel. We will call the horizontal direction the x-
direction, while the vertical direction will be called the y-direction. The origin of
the coordinate system (0,0) i1s the upper left most pixel in the image, and 1t is
increasing right 1n the x-direction, and down in the y-direction. Besides the x-
address and y-address, each PE will store the width (x-side), and the length (y-side)
of the rectangle 1t represents. For a 512 X 512 image, four 9-bits are needed to
store the location and size information. The root level will be labeled the Oth
level, while the leaf level 1s the nth level Other information is also stored in each
PE, and will be described later

311 Initialization Procedure

The initialization procedure includes assigning to each PE in the tree a rectangle
in the i1mage and storing in that PE the address and size information for this
rectangle  We will describe informally in what follows the algorithm for initializing
the NON-VON tree.

1. The mtialization algorithm starts at the root level by storing zero in its
x- and y-address, and 512 (PICSIZE) in 1ts x-side and y-side variables

2 Enable only PE's on the next level (up-down direction) The location and
size variables are assigned as follows:



left-child x-address = parent x-address ;
left-child y-address = parent y-address ;

it parent-level is even then

begin

right-child x-address = parent x-address ;

right-child y-address = parent y-address + parent y-side/2;
right-child x-side = left-child x-side = parent x-side;
right-child y-side = left-child y-side = parent y=-side/2;

en

else

begin

right-child x-address parent x-address + parent x-side/2;
right-child y-address parent sy-address ;

right-child x-side = left-child x-side = parent x-side/2;
right-child y-side = left-child y-side parent y-side;

en

nu

3. Step number two 1s repeated (n timesjuntil the leaf level PE's are
initialized

The initialization algorithm takes time proportional to the number of levels in
the tree (19 levels in the case of a 512 X 512 image).

312 Loading the Image

In tree machines loading and unloading the tree only through the root can be a
bottleneck for algorithms with extensive input/output operations. To overcome this,
NON-VON loading and unloading 1s performed through a number of intelligent disk
units connected to PE's on an intermediate level This helps distribute the
input/output operations. Loading an 1mage point through the root involves first
broadcasting 1its x- and y-coordinates, the PE with the same values for x and y and
on the leaf level will be enabled Then the image point value 1s broadcast to be
stored 1n the enabled PE. Four NON-VON instructions are required to load one
image point (four microseconds execution time) Loading the image through the root
only will take about one second ~ With disk units connected to an intermediate
level (for example to the level with 64 PE's) this time can be reduced sigmficantly

The broadcast value 1s stored in the integer variable TREE In case of gray
images 1t will take a value depending on how the gray level intensity 1s being
digitized (typically, this value vanes from 0 for white points. to 255 for black
points) In case of binary i1mages the integer variable TREE 1s set to either the
value 1, 1f the image point 1s black or the value 0 if the 1mage point s white A
character variable FQUAD (only used with binarv images) will be set to B’ if
TREE 1s equal to 1, and to W' if TREE 1s equal to 0



3.1.3 Building The Binary Image Tree

In building the binary image tree, the two variables TREE and FQUAD are set
in each PE such that the value of TREE corresponds to the number of black pixels
in the rectangle represented by the PE, and the value of FQUAD indicates the type
of the rectangle . TREE takes the value zero when the rectangle is white, and 1t is
equal to the area of the rectangle in the case of black rectangles. The ratio of
TREE to the area of the rectangle is proportional to the gray level intensity of the
rectangle. The variable FQUAD takes the value 'N’ if its PE 1s holding a black or
white rectangle that i1s being merged with a similar one to form a larger rectangle.
In case of gray rectangles 1t will take the value 'G’. The algonthm for building
the binary image tree proceeds as follows:

1. Enable all PE's in the level above the leaf level.

2 Let all the enabled PE’s read the values of TREE and FQUAD 1n their
children. The value of TREE in the enabled PE’s will be set equal to
the sum of the two variables TREE in their children. FQUAD will be
set to ‘G’ if FQUAD 1n the two children are different, or if one of them
1s ‘G’ If the two variables FQUAD 1n the two children are both either
'W’ or 'B’, then the parent FQUAD will be set to the mutual value and
the FQUAD 1n the two children will be set to 'N’

3. If the root 1s reached, stop; otherwise enable all PE’s in the next level 1n
the up direction and go to step two.

After the above algorithm is executed, the root PE will have its TREE variable set
equal to the number of black pixels 1n the whole 1mage, and in general each PE’s
TREE variable 1s set equal to the number of black pixels 1n the tree rooted by
that PE. Steps two and three are repeated a number of times equal to the number
of levels 1n the tree. Thus the algorithm takes time proportional to the height of
the binary tree Every level in the tree represents the 1mage with a specific
resolution, with the leaf level having the finest resolution and the root PE
representing the whole image.

314 Building The Multi-Resolution Pyramid

In the case of gray images, we can build the m<:lti-resolution pyramid in the
same way as before by letting the variable TREE in every PE be the average of
the two values of TREE in its two children This averaging process acts as a low
pass filter, and the 1mages we get in the internal levels will reflect the gross
characteristics of the image, while fine details will be lost due to round off errors.
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4. gf?)n&lected Component Labeling on NON-

Connected component labeling 1s a basic operation In 1image processing that
1dentifies the disjoint regions of an 1mage. The connected component algorithm will
assign different labels to disjoint connected regions of a binary image represented as
a binary 1mage tree on NON-VON.

Before applying the algorithm the image objects must be separated from therr
background.  The process of separating the objects from background 1s called
segmentation, and there are many techniques to perform i1t One technique i1s to use
a threshold value to separate foreground points from background points. This
threshold value may be be a predetermined value based on some experimental
information, or may be determined by gathering certain statistics about the image

(histogramming).

4.1 The Connected Component Algorithm

In describing the algorithm, we will assume that only the foreground components
(black areas) are to be labeled, but the same procedure can also be applied to
background component (white areas) We will now describe the algorithm
informally

The algorithm, as implemented on NON-VON, will start by assigning the label
zero to all black rectangles of the binary image tree The RESOLVE instruction 1s
then used to report to the CP the black rectangles of the binary image one by one.
in order of their sizes This can be done easily by starting at the root level and
enabling only PE’'s holding black rectangles at that level and then reporting them
to the CP 1n an order that depends on how the RESOLVE 1nstruction s
implemented  This order 1s not important to our algorithm, as all rectangles on a
specific level have the same size. When all the black rectangles on the chosen level
are reported, we enable the PE's with black rectangles in the next level down the
tree and repeat the reporting procedure. We end when all black rectangles in the
leaf level are reported.

For each reported rectangle, the CP will assign a new label if 1t has not already
been assigned a label The CP will broadcast instructions to mark and label all
adjacent rectangles in the different directions with the same label of the reported
rectangle. If during testing of adjacency, any adjacent rectangle has already been
labeled, then this adjacent rectangle and all rectangles with label equal to its label
value will be assigned the label of the reported rectangle  Another black rectangle
1s picked as described above and the labeling procedure 1s repeated The algorithm
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stops after all black rectangles have been reported to the CP.  During the
execution of this algorithm, information about the common boundaries between
rectangles will be stored locally at each node to be used later for computing some
geometrical properties of different components

We will now describe the variables used by the algorithm. The algonthm uses
a local variable LABEL to store the region label to which the rectangle belongs.
The local bit variables TE, TN, TW, and TS are used to indicate the existence of
a common boundary between a rectangle and its neighbors in the east, north, west
and south directions respectively. Another local variable REPORTED 1is used by a
rectangle to mark 1tself reported. The global variables NEWLABEL and
COMLABEL in the CP, will be used to store a new unassigned label and to store
the label to be assigned to adjacent rectangles in adjaceny testing respectively. The
global variable CURLEV will be used to refer to the current level from which the
algorithm picks black rectangles.

In what follows, we will describe the algorithm to label the connected
components of a binary image:

1. Set the LABEL variable to 0, and the varniable REPORTED to 'N’ 1n all
black rectangles Initialize the global variables NEWLABEL and CURLEV
to 0.

to

. Enable all PE's holding black rectangles at level number CURLEV that
have REPORTED equal to 'N’. If there are no PE’s satisfying this

condition and CURLEV 1s the leaf level then stop, otherwise increment
CURLEV and repeat step 2.

3. Pick up one of the enabled PE’s using the RESOLVE instruction, and
report the location, label, and dimensions of the black rectangle 1t
represents to the CP. These information 1s stored in each PE during
the 1mtializtion procedure.  Set REPORTED 1in the PE holding the
reported rectangle equal to "Y' to mark 1t asa reported rectangle If the
LABEL of the reported rectangle 1s equal to 0, then 1increment
NEWLABEL and assign 1its value to the global variable COMLABEL;
otherwise, set COMLABEL equal to the value LABEL of the reported
rectangle.

4. Test for adjacency i1n the four directions one at a time. This i1s done by
broadcasting for each direction the range in which the location of the
adjacent rectangles should le This range 1s computed using the
reported rectangle size and location information. Only rectangles in this
range will be enabled If any of them has a label other than zero then
1ts value 1s reported to the CP Only two rectangles at most can have
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their labels equal a value other than zero, as will be proven later. All
adjacent rectangles labels are set to COMLABEL. During check for
adjacency, tests are performed to check for image boundary cases.

For each adjacent rectangle with LABEL value other than zero, we
broadcast this value throughout the tree, and set the LABEL variable in
all PE’'s holding rectangles with the same LABEL value equal to
COMLABEL.

($2)

6. Goto step two.

In step four a crucial part of the algorithm’s efficiency 1s the claim that at most
two of the adjacent rectangles can have labels other than zero. To prove that,
assume rectangle 3 was reported to the CP and we are looking for adjacent
rectangles to 1t along its eastern boundaries. Assume also that rectangle 2 1s
adjacent to rectangle 3 1n the east direction as shown in figure 4-1-a. If rectangle
2 has been labeled before, then 1t must be adjacent to a rectangle 1 of bigger or
equal size to rectangle 3 This 1s because rectangles are reported to the CP 1n order
of their size. Rectangle 2 can share a common boundary with rectangle 1 1n the
east, north, or south direction along the boundaries of the shaded area shown 1n
the figure. From the way we buld the binary image tree, we know that if
rectangle 1 1s to the east of rectangle 3 and 1s larger or equal to it. then the
distance separating them 1s equal to or larger than the width of rectangle 3 (L3)
Thus we conclude that 1f rectangle 2 1s adjacent to both 1 and 3 and rectangle 2 1s
smaller or equal to rectangle 3, then its width (L2) 1s equal to L3 There 15 only
one rectangle that can satisfy this condition as shown in Fig 4-1-b, where 1ts two
unique positions are shown In addition to rectangle 2 in the previous case we can
have only a second rectangle 2’ that could have been labeled before because 1t 1s
adjacent to a larger or equal size rectangle in either the north or south direction as
shown 1n figure 4-1-b Figure 4-1-c shows the third possible case, where we have
two rectangles that have been labeled before and which are adjacent to rectangle 3
and to larger or equal size rectangles in the north and south direction respectively

The same proof 1s valid for adjacent rectangles in the other directions

Steps two through six are repeated a number of times equal to the number of
black nodes 1n the image Because of the proof each step consists of a tightly
bound number of NON-VON instructions. Thus the time the algorithm takes s
proportional to the number of rectangles in the binary tree {O(B)) [f prior
information about the adjacency for single pixels were known (for example during
the broadcasting of the image) then those rectangles with adjacencies only in one
direction, have not to be reported to the CP, once they are labeled
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Figure 4-1:

The 1information obtained about the common boundaries between rectangles can
be used not only to compute components’ properties in a time proportional to the
height of the NON-VON tree, but also to mark all boundary pixels and use these
information to determine adjacency relationship between components. See [Ibra84]
for more information.

4.2 Simulation Results

The algorithm described in the previous section was simulated on a VAXI11/750
using the C programming language  Figure 4-2 shows {a) a 32 X 32 black and
white 1mage that was 1nput to the simulator and (b) the labeled foreground
components. The simulator was also used to label background objects as shown in
part {(c) of figure 4-2. The binary image representation of this image contains 112
black rectangles, and 146 white rectangles It took about eight seconds for the
simulator to label all black components.

The NON-VON3 code for the algorithm executes using about 180 NON-VON
instructions, per iteration. With a NON-VONS3 instruction cycle of 05 microsecond,
the algorithm execution time 1s approximately 2B mseconds, where B 1s the number
of black components. For a n X n binary image the average number of black



rectangles 10 the binary image tree 1s O(n) [Dyer82).

running time for the algorithm 1s O(n).

14

Thus the average case

for the algorithm for a 512 X 512 image 1s about one second.
a time proportional to the height of the tree compute the number of black
rectangles in the NON-VON tree, and use that number to estimate the running

time of the algonthm )
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The simulator was also used to compute some components properties based on the
information produced by the connected component algorithm (See [Ibr84])

We can conclude that the NON-VON supercomputer can be used efficiently to
implement several important image understanding tasks.
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