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Abstract

Linear adaptive information for approximating a zero
of f is studied where f belongs to the class of poly-
nomials of unbounded degree. A theorem on constrained
approximat&on of smooth functions by polynomials is

established.

Subject Classifications: AMS (MOS) : 65H10,
CR: 5.15.



1. Summary.

For a given positive ¢ we seek a point xX* such that
\x*—ap| < ¢, where ap is a zero of a real polynomial p
in the interval [a,b]. We assume that p belongs to the
class F, of polynomials having a root in [a,b] or to the

1

class F2 of polynomials which are nonpositive at a,
nonnegative at b and have exactly one simple zero in
[a,b]. The information on p consists of n values of
arbitrary linear functionals which are computed adaptively.
The point x* is constructed by means of an algorithm which
is an arbitrary mapping depending on the information on p.
We show that if '¢ { (b-a)/2 then there exists no
information and no algorithm for finding x* for every p

from F no matter how large the value of n. This is a

1’
stronger result than that obtained for smooth functions
in [7].

For the class F2 we can find a point x* for arbitrary
p and ¢¢. An optimal algorithm, i.e., an algorithm with
the smallest error, is the bisection of the smallest known
interval containing a root of p. We also exhibit optimal .

information operators, i.e., the linear functionals for

which the error of an optimal algorithm that uses them is



minimal. It turns out that in the class of nonadaptive
information, i.e., when functionals are given simultaneously,
optimal information consists of the evaluations of a
polynomial at n-equidistant points in [a,b]. This is a
stronger result than that obtained for continuous functions
in [9, p. 166]. 1In the class of adaptive continuous
information, i.e., when the next continuous functional
depends on the values of all previously computed functionals,
optimal information consists of evaluations of a polynomial
at n points generated by the bisection method. This is a
stronger result than that obtained for C_ functions in [6].
To prove this result we establish a theorem on constrained
approximation of smooth functions by polynomials. More
precisely we prove that a smooth function can be arbitrarily
well uniformly approximated by a polynomial which satisfies
constraints given by ﬁ arbitrary continuous linear
functionais.

Our results indicate that the problem of finding an
¢-approximation to a real zero of a real polynomial is
essentially of the same difficulty as the problem of finding
an ¢-approximation to a zero of infinitely differentiable’
function, see [6,7]. This makes the results of [6] and [7]

stronger. We stress that we did not assume the knowledge



of the degree of a polynomial. The problem of finding
an eg-approximation to a zero of a polynomial of known

degree has been studied in many recent papers, e.q.,

(1,2,3,4,8].



2. Basic definitions and results,

L

Loé P = P{a,b] be the set of all real polynomials on
the interval [a,b] in R, let S(p) be the set of all zeros
of p in [a,b] for p € P, and let Cw = Cm[a,b] be the space
of infinitely differentiable functions in [a,b].

Define two subclasses F1 and Fz of P by

(2.1) F,=(peprP:sp #8, [p| <1},

where ||.|| is an arbitrary seminorm in ¢ and

p € P: p(a) £ 0, p(b) > O,

(2.2) F, = S(p) is a singleton and

f'(s(p)) #0
For a given ¢, ¢ > 0, define the set
(2-3) S(p) C) = [X € [a:b]= diSt(X,S(P)) < c}’ VP € P.

The set S(p,¢) is of course not empty for p € Fl U F2.
The problem is to find an e-approximation to a zero of a

polynomial p from Fl or F2, i.e., a point x* such that

(2.4) x* € S(p,e¢).

To find x* satisfying (2.4) we use an information

operator Nn and an algorithm ¢ using Nn' These are defined



as in [9}]. -

Let £ € C and

(2.5) Nn(f) = [Ll(f),Lz(f;yl),...,Ln(f7yl,...,y )]

n-1
where
y; =Ly (Eryy,..y, )
and
df o
(2.6) Ly ¢() = Lyiyyseeuyy g): C > R
is a linear functional, i = 1,2,...,n. 1If Li f(-) = Li(-),
E

Vi, i.e., L. ¢ does not depend on the previously computed

s v
values yl""’yi-l the information operator is called

nonadaptive; otherwise it is called adaptive, The total

number of functional evaluations n 1is called the cardinality

of N .
n

Knowing Nn(p) we approximate x* by an algorithm ®;

which is a mapping
(2.7) ;¢ Nn(Fi) > [a,b], i=1,2.

The error of the algorithm o) in the class Fi is defined by

(2.8) elp;) = sup dist(S(p),e, (N (P))).
peFi

Thus x* = wi(Nn(p)) satisfies (2.4) for every p 1in Fi

iff e(@i) < e¢. Note that (2.8) can be restated as



(2.9) e(p;) = sup e(w;sP)
peFi

where the local error e(wi,p) is given by

(2.10) e(p;,P) = sup{Aist(S(F),o(N_ (P))): P,P € F,:

N (p) = Nn(p)}.

Define the radius of the information-operator Nn (briefly

radius of information) by

(2.11) r(Nn,Fi) = sup ri(Nn,p),
peFi

where the local radius ri(Nn,p) is given by

1 N ~ ol ~
(2.12) r. (N ,p) =7 sup({dist(S(P),S(p)), B,p € F,:

~ ~
N (p) =N (p) = Nn(p)].

Let Qi = Qi(Nn) be the class of all algorithms of the form

(2.7) using the information operator Nn. It is obvious that

(2.13) izf e(mi,P) = ri(Nn,p), Vp € F.
®; €8

and

(2.14) 122 e(mi) = r(Nn,Fi)°
®iT i

We are interested in algorithms for which the error e(wi)

is minimal. An algorithm wg is optimal iff

(2.15) elo) = T(N_,F,).



The radius of information measures the strength of an
information operator. We can solve the problem (2.4) iff
r(Nn,Fi) < e. For a given n we want to find the functionals
in (2.5) such that the radius of information is minimized.
More precisely, let nn be a class of information operators
with cardinality at most n. Then the information operator

0 0 . . .
Nn’ Nn € ﬂn is optimal iff

0 .
(2.16) r(Nn,Fi) = inf r(N,Fi).

Ne
721’1

In this paper, we solve the following problems:

(2.17) In Section 3 we prove that if ¢ < (b-ay2 then
there exist no information and no algorithm for
finding x* for every p from Fl’ no matter how
large the number n of functional evaluations.
This is a stronger result than that obtained for

the class of infinitely differentiable functions

in [6].

(2.18) In Section 4 we prove that the optimal nonadaptive
information for solving (2.4) in the class F2
consists of evaluations of a polynomial at n

equidistant points.in [a,b]. This is a stronger

result than that obtained in [9, p. 166] for



the class of continuous functions changing a

sign at the endpoints of [a,b].

(2.19) In Section 5 we first prove Theorem 5.1 which is
of intrinsic interest. Namely we assume that Nn
of the form (2.5) is continuous, i.e., that
Ly £(9) | < Kgllgll, for 0 S ke < 4=, ¥g,f € C,
i=1,2,...,n, and show that for an arbitrary
function £ € C°° and arbitrary Nn there exists a
polynomial p having the same information as £,
Nn(p) = Nn(f)’ such that ”p—f"m and ”p'-f'"°° are
arbitrarily small. Using Theorem 5.1 we prove
that the optimal adaptive continuous information
for solving (2.4) in the class F2 is the
evaluation of a polynomial at n points generated
by the bisection method (Theorem 5.2). This is
a stronger result than that obtained in [6],
assuming continuity of info;mation. We also
stress that using the same proof technigque as in
the proof of Theorem 5.2 one obtains Theorem 4.1
of [10] for the case of real polynomials and

continuous information.



3. o
Class Fl

In this section we show that there exists no infor-
mation and no algorithm to solve (2.4) in the class Fl
with ¢ < (b-a)/2. A similar result was established in [7]
for the class of infinitely differentiable functions. Here

we present a sketch of the proof, since the idea is similar

to that presented in [7]. Namely we prove

Theorem 3.1:

(3.1) r(Nn,Fl) = (b-a)/2

for arbitrary n and arbitrary adaptive information Nn

of the form (2.5). o

Proof: Setting o(N(p)) = (a+b)/2 we get e(y) < (b-a)/2.
Thus r(Nn,Fl) < (b-a)/2 due to (2.14). To prove the reverse
inequality we construct for every vy, 0 <y < (b-a)/2,
two polynomials S and ; from Fl such that Nn(g) = Nn(;)
and dist(S(E),S(;)) > b-a-2y. Then (3.1) will follow from
(2.11) with y > O.

Construction of the polynomials 5 and ? is
similar to the construction of functions f and T from

[7, section 2]. Define the functions hi’ i=1,2,...,n+l

as in [7], i.e.,
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exp(16 ((n+1) /y) ) exp -1/ ((x=x,_ ) ¥ (x-x)%))
hi(x) _: if x € [xi-l’xi]

0 otherwise,

where x, = a + iy/(n+l), i = 0,1,...,n+l, and y is an
arbitrary number, 0 < y < (b-a)/2.

Let P; be the polynomials such that

max |pi(x)—hi(x)| < 10-2/(n+l).
x€([a,b]

Let d = max(|1l]], max ”pi”), and take a positive § such

1<i<n+1
that
1/(4(n+l)4d) ifada>o,
8 <
+00 ifd = 0.

Applying Nn to the constant polynomial g(x) = g we get

the information operator Nn , See (2.6)

’

Nn’é(p) = [Ll,s(p),-.-,Ln,s(p)]-

Let ¢ = [cl”"’cn+l] be a nonzero solution of the homo-

geneous system

n+1l .
i=1 ciLj,é(pi) = 0, j =1,2,...,n.
Let |c l = max |c,|. Define the polynomial p* by
k . i
1<i<n+1
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-2 1
P* = 8/|c |/ (14107 /(n+1))Z]1 ) <P,

Then for c € ((l+lO_2/(n+l))/(1-10-2/(n+l)),3] let
& + cp* if c, < 0,

k

& — cCp* if Sy > 0.

If d =0 then HpC” = 0. Ifd > 0 then
Ip.l < s3] + cJE] < 1]/ (@ (n+1)a) + 35(relid < 1.
Observe that
-2 -2
pc(xi) > 8 - 3(n+l)10 /(n+l)g = §(1-3-10 ) > O
and
p((X _1#%)/2)< & = cs(1-10 2/ (n+1)) < &(1-(1+10 >/ (n+1)) < O.

Thus P, has a zero in [a,b]. The definition of P, implies

that S(pc) < [a,a+y]. The polynomial 5 is defined as
S = pc for some ¢ as above.
To construct ; we proceed as above with X, replaced by
xt = b - iy/(n+l), i = 0,1,...,n, compare [7]. a

Theorem 3.1 states that the error of any algorithm is
at least (b-a)/2. Thus if ¢ £ (b-a)/2 then there exists no

algorithm using linear information to solve the problem (2.4).
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4. Class Fz- Optimal Nonadaptive Information.

In this section we prove that the optimal nonadaptive
information for solving (2.4) in the class F2 consists of
evaluations of a polynomial at n equidistant points in
[a,b]. This is a stronger result than that established
in [9, p. 166] for the class of continuous functions.

Let rﬁon be the class of all nonadaptive information

operators of the form (2.5) with cardinality at most n.

Let

N_(P) = [P(x)),...,P(x )],

where x, =a + i(b-a)/(n+l), i = 1,2,...,n. Let p be

an arbitrary polynomial from F2 and j = j(Nn(p)) be the

index such that'p(xj) < 0 and p(xj+l) > 0 where xo = a,

X i1 ° b. Then it is clear that a zero of p 1lies in

[xj,xj+l]»and zeros of all polynomials P having the same

information as p lie in [xj,xj+1]. Thus (2.11) and (2.12)
imply that

0 b-a
(4.1) r(Nn,Fz) < 2 (n+1) °

Then we prove

0 A ,
Theorem 4.1: The information Nn is optimal in the class

non i.e
7‘)1'1 b e €.y
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. _ 0 _ _b-a
infon T Fy) = T(NLE)) = S e O
Nnenn

Proof: For arbitrarily small g§ > O and information

non
€N ; we construct two
n

Nn(') = [Ll(°),---,Ln(')], N,

polynomials Py and P, from F, such that Nn(pl) = Nn(pz)

2
and dist(S(pl),S(pz)) > (b-a)/(n+l) - §. Then Theorem 4.1
will follow from (2.11), (2.12) and (4.1l) with g > O,

Let a = [a ..,an] be a non-zero solution of the

0’
homogeneous system of n linear equations with n + 1

unknowns:

Define the polynomial
n
p(x) = Zi= aix .

Since p 1is of degree not larger than n there exists a
subinterval [c¢,d] of the interval [a,b], a < ¢, d < b,
such that d - ¢ > (b-a)/(n+l) - & and p 1is of a constant
sign in [c,d]. Without loss of generality suppose that p

is positive in [c,d], see Fig. 4.1.
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1
t(x):;;:itm(g(x))

Fig. 4.1

Then take a normed Chebyschev polynomial t(x) = 2-m+le(g(x)),

see Fig. 4.1, where g 1is a linear transformation of [c,d]

dfcx - Zfz, m is sufficiently

onto [-1,1], i.e., g(x) =
large odd integer and n is sufficiently small positive

number, such that the following inequalities hold:

"™ ¢ nin p(x)
x€[c,d]
t(x) < -|p(x)| x € [a,c-n)
(4.2) t(x) > |p(x) | X € (d+mn,b]
£ (x) > |p' (%)) x € [c-n,c] y [d,d+n]

c-n > a and d+n < b.



The numbers ;ﬂ‘ and m exist due to well known properties

of chebyachév polynomials. Define

pl(x) t(x) + p(x),

(4.3)

.pz(X) E(x) - p(x).

Then Nn(pl) = Nn(t) = Nn(pz) and pi(a) < 0, pi(b) > 0,

i 1,2, Moreover each of Py and P, has a single and

simple zero. S(pl) c [c=n,c], S(pz) < [d,d+n]. Thus

p. € F Yi. Since

i 2’

dist(S(pl),S(pz)) > d-c ;;% -8

the proof is completed.

15
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5. Class Fz- Optimal Continuous Adaptive Information.

In this section we prove that the bisection information
Niis, defined as in [6], is optimal in the class of all
adaptive continuous information N This is a stronger
result than that obtained in (6], assuming the class of

continuous information operators.

we first prove

Theorem 5.1: For every function f € Cm[a,b], information

Nn € nc and § > 0, y > 0, there exists a polynomial

w € P{a,b] such that

(5.1) lw-£ll, < 8 flw-£], < v,
and
- O
(5.2) Nn(w) = Nn(f).
Proof: Recall that Nn’f(«) = [Ll’f(»),.i.,Ln,f(-)], see
(2.6). Consider the functionals L*,...,Li which form
n

the maximal set of linearly independent functionals among

s L . Since L*

N . .
n, £ 1,...,Lk are linearly lndependent‘

n
and continuous on Cw[a,b], then they are linearly independent

£

Ll’f,.o.

on P[a,b]. Therefore there exist polynomials pI, i= l,...,kn,

p; € Pla,b], such that



17

* = i 3
LE(P}) = 8 5 Vi,j.

Cconsider a sequence of polynomials [wm}:_l such that

£ = wllp > 0O
(5.3) as m > o,

€= wille > O

m!loo
Since Lg are continuous, then
(5.4) L;(f-wm) > 0asm->o, j =1,...,k,

and also L, f(f—wm) - 0asm~-»> o, j=1,...,n. For each

2

wo define a polynomial P by

k

(3.5) p_= L.

n
m J=

* - . D*
1 Lj(f wm) pj.

* - * - 1
Then Lj(Pm) Lj(f wm): VJ’

k k
Ip_lly € Too |LE(E=w ) |- %l < max [lp*| T.D, |L*(£-w )|
* =173 LA R : Jhe™3=11"3 m
1<i<k

and

k
' n
Iprll, £ max [IpX Iz, |Lx(E-w ).
gk 2 T
Conditions (5.3) and (5.4) imply that there exists an

index m_ such that for every m > m_ the following inequal-

0
ities hold:

0



k
~ max |pA|l T, IL*(f-w )| <3,
1k 2 T 2
. ‘ kn y
max ||p} ﬂw o Lr(f-w )| <3,
41sxkn 3 o Bemt 3
e - v ll, <4,
I£ - will, < ¥
.

Define the polynomial w* by

(5.6) w* = w +p

13

* - * Ny = =
Then Lj(w*) Lj(f), 3 l,...,kn and also Lj,f(w*) Lj,f(f)’

j =1,...,n, which means that Nn(w*) = Nn(f).

Ior=£l, < o ll + I ~£], <
0 0

and

x' ' x' ] ' [
W =£'ly S [w =wl |+ flwe £ <y
0 0
which means that w* satisfies (5.1) and (5.2).

In [6] the class of infinitely differentiable funct-
ions with simple zeros is studied. We use here the same

notation as in [6] and assume that the reader is familiar

Moreover

with the proof technique presented there. Now we are ready

to prove

. . . . bis
Theorem 5.2: The bisection information an

is optimal in
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the class nc’ i.e.,

. _ bis _ b-a a
(5.7) inf r(Nn’FZ) = r(Nn ,Fz) = ol

2

Proof: For every g, 0 < ¢ < (b-a)/(2nn), and every
information Nn € nc we construct two polynomials w1 and

W, from F2 such that Nn(wl) = Nn(wz) and

dist(S(w)),S(wy)) > 2 - ne.
2

Then the proof of Theorem 5.2 will follow from (2.11) and
(2.12) with ¢ tending to zero.
Consider the function fn constructed by induction in

Lemma 2.2 of [6] with £, in the proof replaced by

1
—exp(-(x-a-/2) %) x € [a,a¥d],
— _.£
(5.8) £,(x) = 0 x € [a+§,xl 51,
(e -2 -
exp (- (x xl+e-/2) ) X € [xl 5> ].

Then as in the proof of Optimality Theorem of [6], construct
£+ and f£xx, £%,£%% € C [a,b], such that N_(£*) = N_(£%%),
each of f*, f** has exactly one, simple zero a* = S(f*),
a** = S(f**) and a** - a* > (b-a)/2" - ne. The choice (5.8)
of £, guarantees that fn(a) < 0 and fn(b) > 0, which yields

1
that f£f*(a) < 0, £*(b) > 0 and f**(a) < 0, f**(b) > 0. Let
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§ = min(£*' (a*),f*+' (a**) ],

The number § is positive, since f* and f** are strictly

increasing in neighborhoodsa
I* = (x; - G/Z,X;) and I** = (x;*,x;* + ¢/2)

of their zeros.
Define U* = (ul,uz) and U** =(vl,v2), U* < I*,

U** —~ I** to be neighborhoods of a* and a** such that

£x' (x) > ¥/2 for X € U*
and

fx*'(x) > y/2  for X € Urx,
Let y = ;/4 and

) . .
8 =3 min min | £* (%) |, min |f**(x)\},
x€[a,u,1ulu,,b] xe€la, v Julv,,b]

The definition of f£*,f** U* and U** implies that § is
positive. Applying Theorem 5.1 with the above s and vy
to the functions f* and f** we obtain two polynomials:
vy and Yo each of them having exactly one simple zero,
distance between these zeros not less than (b-a)/2n - ng

= * = ¥ % = 1
and Nn(wl) Nn(f ) Nn(f ) Nn(w2)‘ This c§mplet¢s the

proof of Theorem 5.2. d



21

Acknowledgements

I am indebted to J.F. Traub and H. WoZniakowski for their

valuable comments on the manuscript and to T. Boult for the

remarks on the proof of theorem 5.2.

References.

[1] Kuhn, H.W., Finding Roots of Polynomials by
Pivoting, in Fixed Points: Algorithms and Applications,
S. Karamardian (ed.), Academic Press, 1977.

[2] Kuhn, H.W., Wang, Zeke, Xu, Senlin, On the Cost
of Computing Roots of Polynomials, submitted for
publication, 1983.

[3] Murota, K., Global Convergence of a Modified
Newton Iteration for Algebraic Equations, SIAM J.
Numer. Anal. 19, 1982, 793-799.

(4] Renegar, J., On the Cost of Approximating all
Roots of a Complex Polynomial, submitted for publica-
tion, 1983.

[5] Shub, M., Smale, S., On the Average Cost of

Sclving Polynomial Equations, to appear in the Proceed-
ings of the 1982 Rio Conference on Dynamical Systems.

[6] Sikorski, K., Bisection is Optimal, Num. Math.,
40, 1982, 111-117.

[7] Sikorski, K., Wo%niakowski, H., For which Error
Criteria Can We Solve Nonlinear Equations, Dept. Comp.
Science, Columbia University Report, 1983, submitted
for publication.

[8] Smale, S., The Fundamental Theorem of Algebra
and Complexity Theory, Bulletin of the American
Mathematical Society 4, 1981, 1-36.



(9]

[10]

22

Traub, J.F., WOkniakowski, H., A General Theory
of Optimal Algorithms, Academic Press, 1980.

wWasilkowski, G., Any Iteration for Polynomial
Equations Using Linear Informaticn has Infinite
Complexity, Theoretical Computer Science, 22, 1983,
195-208.



