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This paper has two purposes. First is to propose new database language-features for systems used 
in real-time management. These features enable the specification of change-traces, events and 
correlation among events, and they do so 10 a declarative set-oriented fashion. Second is to intro
duce network management as an important and interesting application of active distributed data
bases. 

1. Introduction 

Generally speaking, database systems provide the capability of data definition and data manipulation. 

The data dictionary often provides meta-data concerning the data-definition. However, existing systems do 

not provide meta-data concerning the data-manipulation. An example of such meta-data is the sequence of 

the values of a certain attribute in the past hour. Such a sequence represents the way the data-manipulation 

has changed the value of the attribute. Moreover, currently there is no general language in which the user 

may request monitoring of database-changes. In this paper we propose such a language. Triggers in tradi-

tional database systems serve the purpose of monitoring database changes, but their functionality is limited. 

F or example, our lanauage allows the user to request that whenever the value of a certain attribute changes, 

the old value is appended to a trace. This may be requested for each object in a class, or just for objects 

that satisfy some selection predicate. Furthennore, a separate trace may be requested for each object, or 

several objects (e.g. all the ones with COLOR="ye\1ow") may be monitored in the same trace. Another 

example of a new language feature is event correlation. For example, the user may request a certain action 

when two different changes occur simultaneously, or when one occurs before the other but the events are 

\. This research was supported in part by DARPA research IfIl1t .F·29601·87-C-0074, by the Center for Advanced Technolo· 
iY at Columbia Univenity NYSSTF-CAT(89)'5 and NYSSTF CUOI207901, and by NSF ifIlIt lRl·90·0334\. 
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not more than 50 seconds apart. Furthennore, this requirement may apply to the transaction time, or the 

occurrence time. As we shall demonstrate~ our proposed language features are particularly important in 

database management systems that receive an automatic inflow of data from various sensors, in real-time. 

More precisely, we propose three new language features. They all address temporal monitoring of 

database changes. First, the specification of basic events. An example of a basic event that can be specified 

using the proposed language feature is the following. "There exist tuples that satisfy a certain predicate, 

and this condition persists for a period of 10 minutes". Second, the specification of correlated events. A 

correlated event is triggered by the OCCUrrence of several events that satisfy certain temporal constraints. 

Third, the specification of trace-collections. A trace records the wayan attribute changes over time, and a 

trace-collection is a set of traces, all of which have the same characteristics. 

Our proposal is independent of the underlying data model; it may be object-oriented or relational. 

We demonstrate the use of the proposed features in network management. This is an application of 

active distributed databases for real-time system management. The system in this case is a communication 

network. Network management has recently emerged as a very active area of research and development 

([P88]). It is mainly concerned with functions to handle faults and performance bottlenecks in very large 

(hundreds of thousands of nodes) communication networks ([CDFS88], [889]). Network management, in 

general, consists of two activities: monitoring and controlling the network. Data concerning the real-time 

operation of the network is continuously flowing to the (distributed) network management system. There

fore, often what is being monitored and controlled is a data-model of the network, and the operations on the 

data are translated into operations in the physical network. Monitoring the network means "watching" for 

certain important phenomena, or events, to occur. Network control means the activation of processes that 

change the status of the network. We feel that by incorporating the proposed language features, a 

knowledge-base management system, of the type emerging IL! the next generation database systems ([U89, 

C·89, S90, S·9O]), can serve as a network management system that is more advanced than the existing 

technology in network management. 

The rest of this paper is organized as follows. The next section discusses the components of the net

work management system, namely the network database and the functions for fault and performance 

management. Section 2 is not strictly necessary for the reader interested solely in the new language 
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features proposed in this paper. In section 3 we discuss the specification of basic and correlated events. [n 

section 4 we discuss the specification of traces and trace collections. In network management, traces often 

enable prediction of faults and performance bottlenecks. In section 5 we return to events, and discuss 

events that are data patterns in traces. In section 6 we compare this work to the relevant literature, and in 

section 7 we conclude and discuss future work. 

2. The Network Management Components 

A Network Management System consists of the network database, and a set of management func

tions. The NMS manages the network database the same way a database management system manages the 

data, and additionally it executes management functions, either automatically, or in response to requests by 

human operators. 

2.1 The Network Database 

There are two types of data in the network database. One is the configuration data, and the other is 

the history data. The configuration data represents the current status of the network, and is further divided 

into static and dynamic configuration. The static configuration database consists of the representation of 

permanent objects in the network, such as computers, communication links, software layers, groups of 

nodes, local area subnetworks, users; and, obviously, the relationships among these objects. The dynamic 

configuration database consists of the representation of transient objects, such as virtual circl1its, tlser

sessions, delays, routing tables, etc. The configuration database is used for nonnal network operation (such 

as message routing), in addition to its usage for fault management. 

The history d.t.bIIe consists of infonnation about the evolution of the network and its status over 

time (possibly in summary fonn), such as the virtual circuits between a certain pair of processors between 

3pm and Spm, the number of packets transmitted by certain processors in each minute for the last hour, etc. 

This IDformation is generated by statistical tests (see next subsection), is mainly based on the dynamic 

configuration database, and is used for fault and performance management and for capacity planning. 

2.2 The Network Management Functions 
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There are three basic types of management functions: actions, alerts, and inferences. Actions are 

management functions that execute in the real network. Each action is associated with one or more network 

objects. There are two types of actions: interventions and tests. 

An intervention is an action aimed at overcoming a problem, by changing something in the way the 

network, or some of its components, operate. Several examples of interventions are: "Reboot a computer", 

"deactivate the interface between a gateway and a local area network", "call the technician indicating a 

faul ty equipment" , and" change some parameters of a protocol layer" . 

A test is an action that monitors the network. In contrast to an intervention, it is non intrusive, i.e., it 

does not change the operation of the network. There are two types of tests. One is a definitive test, and the 

other is a statistical test. A definitive test, when applied to a network object, say a modem, detennines, 

whether or not the object is functioning properly. A definitive test, usually supplied by the equipment 

manufacturer, may be associated with an intervention; the intervention is invoked if the test detennines 

improper functioning. 

Statistical tests are used when definitive tests are insufficient for problem diagnosis and isolation. A 

statistical test, when applied to an object or a set of objects, generates a trace (a history-database object) 

that can be analyzed for an abnonnal pattern. An example of a statistical test, say MESSAGE_TIME(A, B), 

is one that generates a record for each message from the processor at network address A to the processor at 

network address B; the record specifies how long it took until the message was acknowledged. 

An alert is a management function that indicates an abnonnal condition. In this paper we discuss two 

types of alerts. An alert triggered by a state of the network (as reflected in the database), or an alert trig

gered by one or more teItI. An example of an alert triggered by the network state is OVERLOAD: "the 

delay on 20% of the communication links exceeds 5 seconds-. An example of an alert, called, say, 

SURGE(A, B), that is triggered by the test MESSAGE_TIME(A, B), is the following: "there is an increase 

of more than 10 seconds in the acknowledgement time of two consecutive messages from A to B". Gen

erally, an alert may be triggered by multiple tests, and multiple alerta may be triggered by the same test. 

Therefore, there is a many to many relationship between tests and alerts. 

An inference is a management function which maps one or more alerts to a set of tests, alerts, and 

interventions. For example an inference may map the alert SURGE(A, B) to the set of definitive tests 
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UP _DOWN(l), for each processor Z that is on a path from A to B. Because of space lLmitations we will not 

discuss inferences in this paper, but will just mention that they can be performed using existing 

knowledge-base technology. 

A/ault management state is the collection of tests, interventions, and alerts, that are active in the net

work at some point in time. Fault management is the continuous activity of mapping from the current 

management state to the next, such that faults and performance bottlenecks in the network are either 

predicted and prevented, or, detected, isolated and eliminated. 

3. Events 

Most alerts in network management are simply events. We distinguish between two types of events: 

basic or correlated. A correlated event is a combination of multiple events; it occurs if they all occur 

simultaneously. One of the primary purposes of such grouping is to enable correlation of alerts. So, for 

example, the user may specify that if alerts A and B occur at the same time, and alert C does not occur, 

then alerts A and B are probably related to the same problem-source; the occurrence of A and B, but not C, 

will then be called D, which the inference mechanism may then treat differently than either A or !j. 

In order for an event to occur, I.e., be noticed (otherwise, as far as the network management system 

is concerned, it has not occurred), it must be speCified and its monitoring must be activated. Event moni

toring consumes resources, therefore, monitoring a specified event may be active or inactive. Next we dis

cuss the specification of events. 

3.1 Basic Events 

A basic event iI either. 1. A data-pattern in the network database; or 2. A data manipulation opera

tion, namely a retrieve, add, delete, or update of the network database; or 3. Calendar-time. 

A data-pattern event o<:curs when a certain data-pattern appears in the database; for example, when 

the delay on 20% or more of the communication links exceed! 5 second! (OVERLOAD). A data-pattern 

event is specified using a data-retrieval operation, that supposedly executes continuously. The event occurs 

when the retrieval returns at least one element, and for this reason event of this type is also called a 

nonempty-retrieval event For example, assume that there is a relation LINKS, that has a tuple for each 

communication-link in the network, and that one of the attributes of this relation is DELAY (on the link). 
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The non empty-retrieval event OVERLOAD can be specified by the following data retrieval statement, 

which, for the sake of simplicity, is written in SQL: 

SELECT 
FROM 
WHERE 

X=Yfl 

0.2 $ 

[SELECT Y=COUNT(*) 
FROM LINKS 
WHERE DELAY> 5 ] 

/ 

[SELECT Z=COUNT(*) 
FROM LINKS] 

In the case of retrieval from object classes, an object-oriented retrieval language (e.g., the one \Q 

[CCCTZ90]) can be used for specifying data-pattern events. 

A parameter of a data-pattern event is the following: PERSISTENCE ~ 'integer'. It indicates that 

the event is to occur only if the data-pattern persists in the database for an interval of time that not lower 

than 'integer'. For example, if PERSISTENCE ~ 10minutes is associated with the above data-retrieval 

statement then the resulting event, that we call PERSISTENT-OVERLOAD, will occur when the delay on 

20% or more .of the communication links exceeds 5 seconds, and this condition persists for more than 10 

minutes. Note that it is not required that the percentage of slow links remains constant for 10 minutes, just 

that the percentage exceeds 20% for this duration. The purpose of this parameter is to enable ignoring 

data-patterns that are transient. 

A data-manipulation event occurs when a certain data-manipulation operation is perfonned in the 

system. It is obviously specified by a data-manipulation operation. For example, 

ADD to LINKS, and 

OLD LINKS, WHERE DELAY> 5. 

are two events. The first occurs when some tuples are added to the relation LINKS, the other occurs when 

the tuples of LINKS that have a DELAY> 5 are either replaced or deleted. In general, we adopt the 

definition of an event in [SIGP90] to serve as our data-manipulation event. Thus, a data-manipulation 

event consists of an operation, i.e. ADD, DELETE, REPLACE, RETRIEVE, OLD (DELETE or 

REPLACE) or NEW (ADD or REPLACE), together with an object class or a subset of the class (e.g. 
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LINKS WHERE DELAY> 5). 

A data-pattern event can obviously implemented by a data-manipulation event. For example, 

PERSISTENT-OVERLOAD can be implemented by examining each modification to LINKS, and when the 

20% limit is exceeded, verifYing that the condition persists. However, we feel that often the data-pattern 

event provides a higher level of abstraction (as is the case for PERSISTENT-OVERLOAD). 

The specification of a Calendar-time event consists of a time hierarchy value. Three examples of 

time-hierarchy values are: I min, 3 hours, and 12am January 8. For the first specification, the event occurs 

every minute; for the second, every 3 hours; and for the third, every year on Jan. 8th at 12am. 

With each basic event is associated a transaction time and a valid time. Intuitively, the transaction 

time is the time at which the network management system becomes aware of the event, and the valid-time 

is the time at which the event occurs in the real world. So, for example, the transaction time of OVER

LOAD is the time at which the data-retrieval operation succeeds, and the valid time is the time at which the 

number of links that have a delay greater than 5 seconds exceeds the 20% threshold. When our discussion 

applies to both, the transaction time and the valid time we will refer to the occurrence time of the event. 

Now we will be precise about the transaction and valid times for the different types of basic events. 

For a calendar-time event, the valid time is identical to the transaction time, and is derived from the 

specification. So, for example, assuming that the event specified as 3 hours is activated at I pm, its 

occurrence-times are Ipm, 4pm, 7pm, etc. For a data-pattern event or a data-manipulation event, the tran

saction time is the time at which the data-retrieval succeeds or the data manipUlation event completes, and 

these are obviously available to the database management system. [f PERSISTENCE ~ v is specified for 

the data-pattern event, then the transaction time increases by v. In other words, if the pattern is required to 

persist for at least some time interval, then, assuming that it d~, the transaction time is the time at the end 

of the interval. 

For a data-pattern event or a data-manipulation event, the valid time refers to an attribute of the data 

being retrieved or manipulated. Presumably the attribute stores the time at which the event occurred in the 

real world, and so it must be specified. for example, suppose that the relation LINKS has a STATUS attri

bute, that indicates 'up' or 'down', and a TIME attribute which indicates when the status became 'np' or 

'down'. Then consider the data-manipulation event: 
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NEW LINKS WHERE STATUS='down'. 

If valid -time = TIME is specified, then the valid time of the event is taken from the attribute TTME of the 

tuple being added or replaced. However, since mUltiple objects may be retrieved or manipulated, then 

some aggregate function (average, minimum, or maximum) of all the attribute values must be specified 

(e.g. valid time = max(TIME)). For a data-pattern event, if PERSISTENCE is specified then the valid time 

is the value of the aggregate function at the end of the time interval. 

3.2 Correlated Events 

Basic events can be grouped into correlated events. For example, a correlated event may occur if the 

basic event OVERLOAD (a data-pattern event) occurs at the same time as the basic event 12am (a 

calendar-time event). Formally, a correlated event is a disjunction of conjunctions of events, and is 

specified using rules. With a correlated event specification, two parameters are specified to capture the tem

poral relationships among the events in the specification. These parameters, namely time order and time 

constraints, will be discussed after the presentation of rules. 

Rules 

An atom is an event symbol (e.g. OVERLOAD), possibly preceded by the symbol"""; if it is, then the atom 

is negative, otherwise it is positive. A rule consists of a positive atom designated as the head, and a set of 

one or more atoms, designated as the body. The body of a rule must contain at least one positive atom. The 

head is the correlated event being defined by the rule, and its symbol must be different than that of a basic 

event. An event in the body of a rule may be basic or correlated. Syntactically, the head and the body of a 

rule are separated, in the Prolog tradition, by the symbol ":-" . A rule has the following semantics. If all the 

positive-atom eventa in the body occur simultaneously, and at that time none of the negative atom events 

occurs, then the correlated event in the head occurs. In practice, simultaneity means a default time-interval 

of some length £>0. 

Consider the following correlated event: 

OVERLOAD-AT-12 :- OVERLOAD, 12am. 

This event occurs if the OVERLOAD event occurs in conjunction with the 12am calendar-time event. 
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If there is another basic event, UNDERUTILIZED which means that 20% of the links are underutil

ized, then the following event: 

OVERLOAD-UNDERUTILIZED:- OVERLOAD-AT-12, UNDERUTILIZED. 

may be specrned. OVERLOAD-UNDERUTILIZED occurs if 20% of the links are overloaded at 12am, 

and the same fraction of the links is underutilized at the same time. 

To demonstrate the use of negative atoms, consider the event 

D-NEG:- OVERLOAD-AT-12, 'UNDERUTILIZED. 

It occurs if 20% of the links are overloaded at 12, but UNDERUTILIZED does not occur then. 

It is possible to define a correlated event consisting of a disjunction of two events, A and B, by hav

ing two rules with identical heads, and with the bodies A and B, respectively. For example, the event 

OVERLOAD-OR-12, that occurs when OVERLOAD occurs, or at 12am, which ever is first, can be 

specified by the following two rules: 

OVERLOAD-OR-12 :- OVERLOAD. 

OVERLOAD-OR-12 :- 12am. 

The transaction (valid) time of a correlated event is the last transaction (valid) time of a positi • .: event in 

the body of the rule. Using the parameter Delay (say, Delay = 5 minutes) the transaction-time of the corre

lated event can be postponed. 

Temporal Order 

The events represented by the positive atoms in the body of the rule may be required to occur in a certain 

temporal order, say G. If so, then this is specified by the keyword order = G associated with the rule. G is 

a directed acyclic graph, which in our case represents the time-precedence requirements for the 

specrncation of the correlated event. The nodes of G are the positive atoms in the body of the rule, and the 

arcs represent the time-precedence requirements. If there is a path from node a to node b, then a is 

required to occur before b; only then the event in the head of the rule can occur. If there is no path from a 

to b, nor from b to a, then there is no requirement as to the order in which these two events occur. 
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For example, consider the rule specifying the event OVERLOAD-UNDERUTILlZED, and assume 

that order = G is appended to the body ofthe rule. Suppose that G is the graph: 

OVERLOAD-AT-12 ~ UNDERUTILlZED 

Then the event OVERLOAD-UNDERUTILIZED occurs only if the event OVERLOAD-AT-12 occurs 

before the event UNDERUTILIZED. If G does not have have any arcs, then OVERLOAD

UNDERUTILIZED occurs if both events in the body occur, regardless of the order. 

Generally, there may be a required order for transaction times, and a required order for valid times. 

Temporal-Constraints 

The events represented by the atoms in the body of the rule are required, by the keyword time-constraints, 

to satisfy certain temporal constraints, C. This is specified as time -constraints = C associated with the rule, 

where C is a set of constraints. Each constraint is represented by a subset, S, of the atoms in the body of the 

rule, and a time hierarchy value, v. S must contain at least one positive atom. The constraint indicates that 

in order for the correlated event to occur, the time-interval of length v starting at the occurrence of the first 

event from S, will contain the occurrence time of all the positive events in S, and will not contain the 

occurrence time of the negative events. For example, consider the definition of OVERLOAD-AT -12. A 

constraint, {OVERLOAD, 12am} = 5 seconds, says that OVERLOAD-AT-12 will occur only if OVER

LOAD and 12am are at most 5 seconds apart. For another example, consider the rule specifying D-NEG. 

A constraint: 

{OVERLOAD-AT-12, "UNDERUTILIZED} = 5 seconds 

associated with the rule says that D-NEG occurs if OVERLOAD-AT -12 occurs, and UNDERUTILIZED 

does not occur within S ICCOnds after the occurrence of OVERLOAD-AT-I 2. The intersection of two con

straints may be nonempty. 

The time-interval of a temporal constraint often cannot be determined a priori. Then a procedure, P, 

may be specmed instead of a time-interval. Then P is invoked at the first occurrence of an event in the 

body of the rule, and it will compute the interval for the constraint (possibly by communicating to the net

work operator). 
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Generally, there may be set of temporal constraints for transaction times, and a set of temporal con

straints for valid times. 

Notice that the two rule parameters; order and time-constraints, are independent of each other. For 

example, the order = G parameter may be specified independently of whether or not time -constraints = C 

is specified. If both are specified, then any set of constraints is consistent, and any combination of values 

for C and G is consistent. By consistency we mean that there are occurrence times for the (positive and 

negative) events in the body, such that the precedence order specified is satisfied, and so are all the time

constraints. This is proven in the appendix. 

Variables 

Each data-pattern and data-manipulation event is associated with a variable that is instantiated when the 

event occurs. The variable is instantiated to the set of tuples whose retrieval or manipulation triggered the 

event. For example, the variable associated with OVERLOAD denotes the percentage of links that have a 

long ( > 5 ) delay. The variable associated with 

ADD LINKS WHERE STATUS='down'. 

is the set of tuples being added. The variables associated with events may be used to further constrain the 

occurrence of composite events to the cases in which the variables associated with the positive events in 

the body of a rule satisfy a certain predicate. For example, suppose that the variable associated with 

UNDER UTILIZED denotes the percentage of links that is underutilized. Then the correlated event defined 

as 

OU :- OVERLOAD(X), UNDERUTILIZED( i), X < Y. 

occurs only if the percentage of underutilized links exceeds the percentage of overloaded links. In general, 

the variables associated with the positive events can be used to construct relational algebra expressions and 

arithmetic expressiona; in turn, these can be combined into predicates using set- and arithmetic- com

parison operators. Then the correlated event occurs only if the relational and arithmetic predicates so con

structed are satisfied. The variable associated with a data-pattern event that has a PERSISTENCE interval 

is instantiated at the end of the time-interval. 
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The correlated event at the head of the rule may also be associated with a variable, e.g. X, as follows: 

OUeX) :- OVERLOAD(X), UNDERUTILIZED(y), X < Y. 

In general, the variable associated with the correlated event in the head of the rule, is some relational alge

bra expression involving the variables associated with the positive events in the body of the rule. 

4. Traces 

We model a statistical test in network management by a trace. A trace is a sequence that tracks the 

changing of an attribute value of an object, and it is part of the history database. Each member of a trace is 

a pair, (t,a), where t defines the position of the member in the trace (may be a time-stamp or an ordinal 

number), and a is a attribute-value. For example, a trace may track the acknowledgement time of messages 

from processor 101 to processor 102. 

Each trace has an identifier, i, that uniquely identifies the trace (e.g. 101,102). i may be an object-id, 

or a relational key. Each trace also has a start and a stop point, each of which is defined by an event. 

It is relatively simple to specify a trace, however, often the user will want to define a set of traces, all 

of which have the same characteristics. For example, suppose that the user wants to specify a statistical 

test, that, say, monitors the acknowledgement .time of messages, from each IBM processor to each DEC 

processor. Therefore the topic of the rest of this section is specification ofa trace collection. Intuitively, 

each trace collection is defined with respect to a monitored class, or relation scheme, i.e., a set of objects 

that is being monitored. Each trace records the changes in an attribute of the monitored class called the 

monitored attn·bute. Usually, each trace records the sequence of changes to the monitored-attribute for one 

object in the monitored-clasa, but it can record the sequence of changes to more than one object. For 

example, there may be I trace for the ·yellow" objects and one for the "green" objects, although there may 

be more than one object of the same color. Then the "yellow" trace consists of the values of the yellow 

objects, and if two such objects are changed simultaneously, then the two values are recorded in the trace 

in a nondeterministic order. An object which is neither green nor yellow will not have its monitored attri

bute traced. In other words, the traces (or their identifiers) partition the set of monitored objects. The 

changes to the monitored attribute in each partition are recorded in one trace, and one (possibly empty) par

tition consists of the objects that are not traced at all. 
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A trace collection is specified and (de)activated. Next we formally present the specification parame

ters for a trace collection, and then we shall provide a detailed example. 

Monitored class: The class of objects being monitored. It may be an extensional object class, for example 

the class of nodes in the network, or an intentional (also called virtual, or view) object class. 

Monitored Attribute: This is an attribute name in the monitored class. It identifies the attribute whose 

change is being tracked. 

Trace-identifiers class: The key-word OBJECT-ID, or an intentional or extensional class of trace

identifiers. 

Trace identifier: A subset of the attributes of the monitored class. Should be specified only if the Trace

identifiers class is not OBJECT-ID. 

Sampling event: An basic or correlated event. Upon its occurrence the monitored attribute is sampled. 

Change only: An indication to ignore sampling if the current value of the attribute is identical to the one in 

the previous occurrence of the sampling event. 

Time-stamp: "Yes" or "No". Indicates whether the position of each member in a trace is a time-stamp or 

an ordinal number. 

Start event: An event which detennine3 when the trace begins. 

Stop event: An event which determines when the trace ends. 

Now we discua the above parameten. The operational semantics of the trace-collection 

specification are u follows. At each point in time there is an instance (set of objects), S, of Trace

identifiers. For the example in the beginning of this section, (101, I 02) is a member of the Trace-identifiers 

class. If the Trace-identifiers class is 'OBJECT-ID', then S is the set of object identities of the monitored 

class. Otherwise it is an (extensional or intentional) relation. Whenever the sampling event occurs, each 

object, 0, in the monitored class is examined; if o's Trace identifier ( the attributes {FROM, TO} in the 

message-acknowledgement example) appears in S, then the current value of the monitored attribute is 
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appended to the end of the identified trace. If Change-only is 'on', then appending is done uUli if the 

current value of the attribute is different than the one in the previous occurrence of the sampling event. 

Notice that the instance of the Trace-identifiers class may change over time. For example, the color 

'red' may be added to the class of trace-identifiers. In this case, a trace is started. In general, the addition 

of a trace-identifier to the class starts a trace, and its deletion stops it. Also, if the trace identifier value of 

an object, 0, changes, e.g. from yellow to green, then the monitoring of 0 switches traces. 

For a comprehensive example of a trace-collection specification, consider the problem of tracing the 

acknowledgement time of each message between a DEC and an IBM computer. The example is somewhat 

complicated, to demonstrate various subtleties ofthe trace collection specification. Suppose that there exist 

two extensional object classes: 1. PROCESSOR, having among others, the attributes ID (e.g. 117658), 

NETWORK_ADDR (e.g. AI2), and TYPE (e.g. DEC), and 2. A wrap-around relation MESSAGE, having, 

among others, the attributes SOURCE_ADDR, DEST_ADDR, and ACK_TIME. The relation MESSAGE 

is assigned a fixed amount of storage, and addition of tuples wraps-around. When a message is ack-

nowledged, the elapsed-time is recorded in the attribute ACK_TIME of MESSAGE. Notice therefore, that 

there may be more than one tuple having the same pair of SOURCE_ADDR and DEST_ADDR values. 

The trace-collection, that we call MESSAGE_TIME, is specified as follows. 

Monitored-class: MESSAGE. 

Monitored·attribute: MESSAGE.ACK_ TIME. 

Trace-identifier: SOURCE_ADDR, DEST _ADDR. 

Trace-identifier cl. IJ a relation, having a tuple for each pair of addresses such that the first is an IBM 

and the second is a DEC. The relation can be defined as a view, using SQL, as follows. 

SELECT SOURCE_ADDR = pl.NETWORK_ADDR, DEST_ADDR = p2.NETWORK_ADDR 
FROM PROCESSOR p I, PROCESSOR p2, 
WHERE pI.TYPE=IBM, p2.TYPE=DEC 

Sampling-event: NEW tuple of MESSAGE. 

Change-only: On. 
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Time-stamp: Yes 

Start-event: OVERLOAD 

Stop-event: OVERLOAD + 1 hr. 

With each trace-collection specification we associate a corresponding object-class, i.e., a class hav

ing the same name as the collection (e.g. MESSAGE_TIME). Each object in this class represents an 

activation ofthe trace-collection. The class has a set-attribute, S, that contains the traces. For example, the 

trace for a pair of addresses, A 23 and B 45, in an activation, say 324, of the trace collection 

MESSAGE_TIME, is denoted MESSAGE_TIME (ID=324, S = (SOURCE_ADDR=A23, 

DEST _ADDR=B45)). 

Next we argue that there is a need for an additional parameter in the trace-collection specification. 

Suppose that the trace-collection MESSAGE_TIME, as defined above, is active. If the type of the proces

sor at address ASS changes from IBM to HP, then each trace in which the surrogate value is A55,x is either 

disabled or erased for the test MESSAGE_TIME. If it is disabled and subsequently the type of the proces

sor at address ASS changes back to [BM, then each disabled trace can be enabled, namely resumed. Other

wise, new traces having the surrogate values A55,x are started. Namely, the trace collection has an addi

tional attribute: 

Status = either 'resume' or 'anew'. 

Each one of these two options may result in a different trace collection. 

This also indicates that an object class corresponding to a trace-collection which is specified with 

Status = 'resume'. should have two set-attributes: S.ENABLED and S.DISABLED. At any point in time, 

S.ENABLED and S.DISABLED are disjoint sets of traces. 

5. True-based Events 

We have mentioned that in network management alerts may be triggered by the evolution of the 

network-configuration instance over time. Now that we have defined trace collections, we can precisely 

explain this statement. Similarly to basic events that are represented by nonempty retrievals from the net

work database, basic events may also be represented by nonempty retrievals from the history database. The 
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history database is the set of active traces, and each trace is simply a relation with two attributes, time point 

(t) and monitored attribute (a). Consequently, nonempty retrievals from traces are not different than any 

other retrieval, and can be defined as basic events. 

For example, consider the trace collection MESSAGE_TIME. Following is the specification of an 

event, called SURGE, that occurs when two messages in a trace, that are acknowledged within 5 seconds 

one from the other, have an increase in the attribute value (acknowledgement time) which is greater than 

17. 

SELECT SOURCE, DEST 
FROM MESSAGE_TIME pI, MESSAGE_TIME p2 
WHERE p 1.ID = p2.ID, and p I.S = p2.S, and p2.t < P l.t + 5, and p2.a > p l.a + 17 

Clearly, more than one data-pattern event can be specified for a trace collection, and such an event 

may be triggered by multiple trace collections. In other words, the relationship between trace collections 

and events is many-to-many. 

·6. Comparison to Relevant Literature 

The work on active databases (e.g. [C*89]), on triggers (e.g. [DB87]), and on rule-languages (e.g. 

[KMS88, S89, SJGP90, WF90, KDM88]) has addressed the specification of events. However, data-pattern 

events and temporal constraints arising in real-time systems have not been discussed in these works. The 

specification of such constraints has been the topic of this paper. As we have seen, even the definition of 

basic events is more complex when one wants to smooth out the effects of transient conditions (as enabled 

by the PERSISTENCE parameter). On the other hand, the work on real-time databases (e.g. [S088, 

KSS90]) concentratea OD concurrency control issues, a topic which is outside the scope of this paper. 

The present propoal of tncea is related to work on temporal databases (e.g. [SS87, SS88, Sn88, 

SG89]). However, the emphasis in that research is on the manipulation of traces, whereas we discussed 

their specification. This work is also related to temporal logic (e.g. [P77]), maintenance of temporal data-

bases in Artificial Intelligence (e.g. [089]), and temporal extensions to the relational model (e.g. [Sn87]). 

However, the emphasis in such research is OD the inference of temporal knowledge, rather than tbe 

specification of temporal constraints. 
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7. Conclusion and Future Work 

We considered database managemen~ systems that receive an automatic inflow of data from various 

sensors, in real-time. We argued that for such appl'ications new database-language features are necessary, 

for specification of treatment of such data (e.g. create traces) and actions to be taken upon certain arising 

conditions (events). We proposed language features for specifying basic events, correlated events and 

trace collections. The emphasis ofthe proposal is on the specification of temporal constraints that pertain to 

data· manipulation operations. We demonstrated the applicability of these language features using network 

management. We feel that this is an emerging important application of knowledge-base and active database 

technologies. 

We showed how statistical-tests, alerts, and correlation among alerts, can be represented as trace coHec-

tions, events, and correlated events, respectively. 

In the future we intend to extend the proposed language into a complete event-trace model, in which 

the basic building blocks are events and traces, as schemas and tuples are in the relational model. The 

work in [SS87, SS88] can serve as a starting point for a language to manipulate events and traces. We will 

study the processing of such a language, particularly in a distributed environment. We will also study the 

static analysis of an event-trace specification to answer questions such as: can this correlated event occur, 

or, what is the maximum time between the OCCUrrence of two correlated events, or, what is the minimum 

length of a trace that guarantees that no events based on the trace will be lost 
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APPENDIX 

We will prove that any set of temporal constraints is consistent with any order graph. Let A be the set of 

atoms appearing in the body of an instantiated rule (a rule in which all variables are replaced by constants). 

OVERLOAD and "OVERLOAD(O.3) are examples of atoms. We assume that an event and its negation do 

not both appear in the body of the rule. The occurrence time is a function that maps each atom:; E A to a 

nonnegative real number, o(a). Intuitively, the occurrence time ofa negative atom is the occurrence of the 
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positive event. Denote by P ~ A the subset of positive atoms. Let E be a set of ordered pairs, each of 

which has two members of P. The pair (P,E) is an order graph if it is acyclic. A constraint, c, is a pair 

(s,b), where s is a subset of A which contains at least one positive atom, and b is a positive real number. b 

is called the interval of the constraint. The next proposition states that for any given set constraints and for 

any order-graph, there is an assignment of occurrence times that satisfies the constraints and the order. 

Proposition: Let C be a set of constraints, and G =(P, E) an order graph. Then there exists an occurrence

time function, 0, such that: (1) For any pair of positive atoms, e and!, and for any constraint c = (s,b) of 

C such that e and j are in s, 10 (e )-0 (f) I ~ b ; and (2) For any negative atom, e, and for any constraint 

c = (s,b) ofC such that e is in in s, there is a positive atom,jEs, such that o (e)-o (f) > b; and (3) For 

any pair of positive atoms, e and!, if(e,!) E E, then o(e) < a(/). 

Proof: The proof is constructive, demonstrating an occurrence time function with the desired properties. 

Intuitively, we "squeeze" all the positive atoms in the smallest interval, that starts from 0, and postpone all 

the negative atoms until very late. F onna\1y, let us first assign occurrence time to the positive atoms. Let 

b, be the sma\1est bound of a constraint in C. For an atom, a E P, that does not have any predecessors in G, 

a (a) is O. For the other positive atoms we assign occurrence times as follows. Let a be an atom for which 

all the immediate predC(:essors in G, have been assigned occurrence times; assume that m is the maximum 

occurrence time of such a predC(:essor. Then we assign 0 (a) = m + £ where 0 < £ < b, -m. Since G is acy

clic, after at most IPI iterations, all the positive atoms are assigned occurrence times. Let b2 be the big

gest bound of a constraint in C. All the negative atoms of A are assigned the occurrence time 2·b 2• 

Now it is easy to see th.tt our occurrence time function satisfies the three requirements of the proposi

tion. The first requirement is satisfied since all occurrence times of the positive atoms are within the smal

lest interval. The second requirement is satisfied since the occurrence time of a positive atom is smaller 

than b " and 2'b 1 - b, ~ b1. The third requirement is satisfied by the way the occurrence-time function, 0, 

was defined. [] 

If the occurrence time of an atom must be a natural (rather than real) number, then the above proposition 

does not hold. For example, if G is the graph a-+b-+c-+d, then the single constraint 0 (d)-o (a) < 2 can

not be satisfied. 




