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Abstract 

\Ve present an architecture for multi-user software development environments, covering gen­
eral, process-centered and rule-based !\H; SDEs. Our architecture is founded on component i­
zation, with particular concern for the capability to replace the synchronization component -
to allow experimentation with novel concurrency control mechanisms - with minimal effects on 
other components while still supporting integration. The architecture has been implemented in 
the MARVEL SDE. 
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1 Introduction 

Software Development Environments (SDEs) emerged in an attempt to address the problems asso­
ciated with developing, maintaining and managing large scale software projects. One of the main 
issues in SDE research is how to construct environments that are integrated, while at the same 
time flexible and extensible. Although there have been numerous proposals for cooperative trans­
action models (see [5] for a survey), little has been achieved regarding flexibility and extensibility of 
such synchronization mechanisms for multi-user SDEs from the system-architecture point of view. 
Throughout the paper we refer to this aspect of an SDE as the "multi-user" property. 

The architectures of process-centered SDEs include process enaction engines, which enable a pro­
grammable approach to defining the behavior of an environment to support a particular software 
development process [32]. The process enaction engine (and the corresponding process modeling 
language) must be extended with a notion of concurrency consistency and corresponding synchro­
nization primitives (such as in [41]) to become multi-user environments, where the process as well 
as the data is shared. Rule Based Development Environments (RBDEs) are a class of process­
centered SDEs, in which the process is defined in terms of rules and enact ion is achieved through 
rule chaining. Examples include eLF [34], Oikos [1] and Merlin [45]. Multi-user RBDEs must 
support synchronization among automated chains of activities as well as activities directly invoked 
by users. In process-centered SDEs and RBDEs, as well as general SDEs, the architecture must 
also support interprocess communication, scheduling and context switching, transaction and lock 
management, and other facilities on which synchronization depends. 

This paper presents an architecture for multi-user SDEs (henceforth MUSDEs) that is intended 
to support the requirements of general, process-centered and rule-based MUSDEs. The emphasis 
is on identification of the system's components and on the interfaces and interrelations among 
them rather than on application of specific synchronization policies. We have implemented the 
architecture for the MARVEL RBDE [28], which was previously a single-user system. This work 
is complementary but orthogonal to the research done by Barghouti and Kaiser on cooperative 
transaction management for RBDEs in general and MARVEL in particular [3,4]. The focus of their 
work has been on modeling coordination and cooperation, whereas here we focus on the architectural 
facilities that enable the implementation of such sophisticated synchronization mechanisms. 

In section 2, we give the necessary requirements that an MUSDE must fulfill, by definition, and 
additional desired properties. Section 3 introduces the architecture, its main characteristics and 
functionality. Section 4 explains the rationale behind the architecture. Section 5 describes the 
implementation for MARVEL and our experience, including changing and tailoring some of the 
components. Section 6 compares to related work. Section 7 briefly evaluates the architecture and 
summarizes our contributions. 

2 Requirements and Desired Properties 

Data-sharing - We distinguish between "product" data and "control" data: the former represents 
the actual data elements under development (i.e ., source files, object files, design documents, etc.), 
while the latter represents the data used by the SDE to manage the project. Examples of control 
data for a source file include its version , compilation status, reservation status, etc. Product data 
may be integrated with control data (e.g., an object is defined as having "control" state attributes 
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· and file attributes that point to "product" items) or may be maintained separately. In general SDEs, 
control data represents the status with respect to a hard-coded policy, whereas in process-centered 
SD Es, control data reflects the state of the specific process in action. 

Data-consistency - An MUSDE synchronizes concurrent access to the SDE's data to maintain its 
consistency, e.g., it prevents data from being garbled by conflicting accesses (such as multiple 
independent updates) to the same or related data items. Product data can be maintained either by 
the SDE or in the file system; however, control data must be maintained by the SDE. But access to 
both must be synchronized, either in a centralized or a distributed fashion, and in the latter case 
can be tightly integrated within each user's workspace or separate in a DBMS. 

Process-sharing and process-consistency- In addition to data-consistency as above, which is required 
for all MUSDEs, process-centered SDEs must maintain process-consistency, as specified in the 
process modeling language. In order to maintain process-consistency, the process-engine must 
maintain a global view of the process. Again, this can be done in either a centralized fashion, or 
in each user's workspace provided that the necessary information is replicated among users. For 
example, consider a constraint taken from the "ISPW problem" [18], where a member of group 
PROGRAMMER cannot make any code changes before some or all members of the Configuration 
Control Board (CCB) have approved it. The MUSDE must ensure that the constraint is applied 
to all involved participants (or at least programmers and CCB members). 

Whereas the above characteristics are required to exist in MUSDEs of the indicated classes - by 
definition - the following represent additional properties that are desired in an MUSDE. These 
properties together form the basis for the rationale behind our architecture. 

Perhaps the most important property from the architectural point of view is flexibility in selection 
and application of synchronization mechanisms. The idea is to be able to replace or modify concur­
rency control policies, both globally (i.e., for all users of the system) and locally (among selected 
groups of users). Some proposed concurrency control models, such as transaction groups [20] , 
support this capability to a limited extent in that the policy for each group can be specified in 
a formalism supplied by the implementation [39]. What we have in mind is more general: The 
architecture should be constructed such that the entire synchronization component can be replaced 
with minimal (preferably no) code changes to other parts of the system. This enables to conduct 
cost-effective ex~ .~ rimentation, which is important in such a novel research area. 

The architecture should support synchronization components whose transaction models range from 
classical atomicity and serializability to long, interactive operations and cooperation. As noted in [8], 
any synchronization mechanism for an MUSDE must take into account that many activities in 
software development are long - conventional atomic and serializable transactions are not suitable, 
and interactive - response time is more important then overall throughput . Cooperation is needed 
to enable sharing and exchange of information during parallel development. 

Extensibility and broad scope of application - An MUSDE should be able to be extended with new 
tools, including integration of tools not specifically developed for the MUSDE [15] . 

High Visibility - An MUSDE implemented on a window-based platform should provide users with 
graphical visualization of at least the control data, and preferably the product data as well. Since 
SDEs often support complex and highly structured data. models, it is especially desirable to be 
able to display the types and relationships of all objects of the environment. This means that an 
MUSDE has to maintain up-to-date information as it is dynamically changed by multiple users. 
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Recovery - Persistence of product data can be provided by the host file system, but persistence 
of control data must be provided by the MUSDE. Recovery is an important aspect that ensures 
consistency of persistent data in case of external and internal failures. We distinguish between con­
currency control, which is required by definition, and recovery, which - although not mandatory -
is a highly desired property for industrial-strength environments. Traditionally, these two functions 
are both carried out by the "transaction manager". 

3 The Architecture 

3.1 Overview 

Two major principles underlie the overall design: componentization and layering. According to the 
componentization principle, a complex system should be built from independent, loosely-coupled 
and replaceable components. These components must have flexible interfaces and support a variety 
of different policies potentially employed by alternative interacting components (I.e., components 
that provide the same services in different ways). Layering is a paradigm in which each component 
provides services only to the next higher layer and receives services only from lower levels. Layering 
lowers complexity by reducing inter-component linkages. 

Componentization is becoming popular in operating systems (e.g., the replaceable pager in Mach [46]) 
and databases [44, 35], and the iayering approach has also been followed in other domains such as 
communication protocols [13] and databases [9]. The combination seems especially promising for 
SDE technology, which is by nature subject to ch~nges [42]. We suggest the potential to revise 
any system component (although with differing degrees of difficulty). Our m<i.jor concern here is to 
be able to modify the synchronization mechanism with minimal effects on task management and 
the remainder of data integration and repository management, which implies that transaction and 
object management should be separate (as in Camelot [17]). 

The generic architecture is depicted in Figure 1, using the terminology of the "toaster" reference 
model [16]. We concentrate in this section on explaining how things work, and defer to section 4 
the discussion on why we chose to design the architecture this way. 

The architecture follows the conventional client-server model. Each active environment with a 
populated objectbase is managed by a single centralized server, and multiple clients are distributed, 
each representing a user session that lasts from invocation to exit. Both the server and each client 
are implemented as individual operating system processes. Each client serves as a front-end to the 
human user and as an activity execution unit. The concept of activity encompasses all operations 
done to product data, such as editing and testing, via internal or external tools; it does not include 
operations on control data (although these might occur as side effects). Clients may spawn child 
processes to execute activities. 

The server provides data integration and repository and task management services. Service requests 
always originate at a client, but most requests that involve access to product and/or control data are 
sent to the server after client preprocessing. The server validates and processes the request before 
returning to the client with the desired information and/or instructions to the client to execute a 
specific activity. The server mediates access to both control and product data, and modifies control 
data according to the environment specifications. 

The architecture distinguishes between normal users and an environment administrator. The ad· 
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ministrator's role resembles that of the Data Base Administrator in DBMSs. The administrator 
uses a privileged client to define the data model (schema) and any integrity constraints on the data; 
the process model, if any; and the programmable aspects of the synchronization policy, if any. 

3.2 The Server 

3.2.1 Task Management 

Translators - Any SDE that allows to define the data model for the control and/or product data 
must have a data definition translator. In process-centered environments, a process model trans­
lator is also needed. MUSDEs with programmable synchronization require yet another translator. 
Translation can be on-line, in which case this component acts as a loader for other interpretive 
components, or off-line, in which case it "compiles" the specifications into internal form and is not 
actively involved at run-time. 

Scheduler (SC) - Schedules requests from clients for services, including context-switching. Before 
a client is serviced, SC makes two contexts active: the client's session-context and the specific 
task-context (see below). 

Session Manager (SEM) - Encapsulates an entire session between a specific client and the server, 
that is, all requests that occur from invocation to exit of the client. SEM can: (1) maintain the 
user-specific environment and operating system parameters for general configuration purposes; and 
(2) store enforcement information that pertains to the entire session (as opposed to task-specific 
information). For example, users of a specific SDE might explicitly "attach" to a specific subprocess 
to perform during that session [2i]. 

Task Controller (TC) - This is the central component of the environment, which provides most of 
the services to the client. A task is defined as any activity initiated by a client together with all the 
derived operations carried out by the environment, such as automation and enforcement actions. 
For example, an SDE might have a constraint that when an interface to a function F is modified, 
all source files that call F must be marked for modification. The modification of F and the marking 
of dependent files is considered one task. In a general MUSDE, TC may degenerate to a command 
interpreter, perhaps with a query processor. In process-centered environments, this component 
includes the process engine, in charge of enacting the process. TC operates in the context of the 
current session, but maintains a task context for each active task in the system. 

3.2.2 Data Integration and Repository Management 

Transaction Manager (TM) - ~laintains the integrity of the data in case of concurrent access and 
failures. In process-centered ~IUSDEs, TM also maintains process-consistency. However, it is not 
responsible for detecting any conflicts due to concurrent access, but only for resolving them. 

A "transaction" can map to a single activity or to a single task, but usually not to a session, since this 
would imply coarse-grained concurrency. There are no specific guidelines for the implementation 
of concurrency control or recovery, except for the restriction to locking-based mechanisms. For 
example, an environment may use a "blocking with deadlock resolution" mechanism or a "non­
blocking with abort" mechanism. or a combination of both. Also, TM may use flat transactions or 
nested transactions [30] that model the nesting of activities and subtasks within a task. 
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Tjlvf- TC interface - The interface between TC and TM is a critical issue as it bridges the border 
between the task level and the data level. It is desirable for T~ to be independent of any specific 
task model and for TC to be independent of any specific transaction model, so that either can be 
replaced with minimal overhead. A predefined set of transaction primitives known to TC must 
be supported by any TM, with the set flexible enough to support many synchroruzation policies. 
However, semantics-based concurrency control [21] inherently requires some knowledge of the task 
level to resolve conflicts that are context-sensitive. This implies that the TC-T~1 interface may 
need to be augmented with a mediator component that reconciles information from both levels. 

Lock Manager (LM) - Usually considered a subcomponent of the transaction manager, LM is treated 
in our architecture as a separate component. Its main role is to detect any potential violations of 
the data-consistency constraints, as defined by a lock-compatibility matrix. LM must permit a 
broad range of lock modes to enable TM the freedom to choose those that meet its needs. But 
the separation of LM, TM and OM makes it impossible to predict what lock set and compatibility 
will be needed. However, viewing LM merely as a "mechanical" conflict-detector enables it to be 
table-driven, with the tables loaded during system initialization. This means customizations of T~1 
affect LM only through the tables. 

An additional property of LM is to be able to hold multiple locks on objects, on insistence from 
TM, even when they violate the defined compatibility. This is useful for implementation of non­
conventional concurrency control policies. For example, transaction groups may allow several trans­
actions in the same group to share transient results. ObServer [25] is a multi-user data server with 
a rich lock set, including communication modes (for notification), which is capable of supporting 
transaction groups. This approach provides flexibility in transaction management but is not ex­
tensible. In contrast, we regard lock management as a mechanism to detect conflicts only, for an 
arbitrary set of lock modes; ObServer's communication modes can be implemented in LM with 
proper support from TM as part of conflict resolution. 

Object Manager (OM) - Implements the data model, provides persistence, and performs all requests 
for access and modification of both control and product data. We assume a generic object-based 
data model with optional class ( "is-a") hierarchy, composition ("is-part-of") hierarchy, and arbi­
trary relationships between objects ("links"). An object may represent purely control data, an 
encapsulation of product data, or a combination. 

OM-LM interface - For componentization to work, it is important that OM provide the upper layers 
with an object abstraction that avoids concern with any internal representation. Further, upper 
layers should not know whether objects are in main or secondary memory [38]. The main difficulty 
with separating OM and LM is that data-consistency specifications may need to be extended 
for a specific data model. For example, composite objects and links among objects may require 
"intention" lock modes for ancestor and Linked objects, respectively. This predefined set of lock 
"extensions" is understood by D.t, allowing a wide variety of object-based and entity-relational 
data models but precluding the possibility of replacing objects/entities with a radically different 
form such as relations (such a change would also seriously affect the upper layers, notably query 
processing in TC, impeding componentization). 

Storage Manager (SM) - Responsible for low-level disk and buffer management for control data. It 
deals with untyped, raw data, and interacts with the underlying operating system. If the product 
data is maintained in ordinary files (as is often the case with SDEs), SM interacts with the File 
~lanager to access "file objects". The separation between storage, object, lock and transaction 
management distinguishes our architecture from most other systems that provide data management . 
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In effect, we take apart ObServer's functionality into SM, LM and TM, and stick in between object 
management functionality such as found in M neme [31]. 

File Manager (FM) - Necessary only when the MUSDE uses file-based tools; otherwise, SM handles 
product as well as control data. However, a control data object may still encapsulate one or more 
files as attributes, in which case objects abstract the file system by providing typing and relationship 
information. FM is responsible for accessing the files requested by the object manager, passing them 
on to the upper layers and eventually to the clients (for a shared file system such as NFS, only 
path names need be passed rather than the actual file contents). 

Mapping our architecture to the toaster model, data integration and repository management ser­
vices are in the server, and user interface services are in the clients, as expected. The interesting 
mapping is that of task management. We divide this between the client and the server, where the 
client is responsible for "task execution" and the server for the rest. 

3.3 The Client 

User Interface and Objectbase Display Afanager (UI) - Provides the human user interface to all envi­
ronment services, including a display of the entire object base (subsets can be viewed via browsing). 
This feature introduces the challenge of keeping the display up-to-date, since the object base is 
dynamically changed by multiple users, including modifying, adding and deleting objects and/or 
relationships between objects. A compromise is made, where clients maintain a cache of the struc­
ture of the object base, mainly for reference purposes in selecting arguments to commands, but not 
the actual contents of objects. An example is shown in Figure 2. 

Activity Executor (A E) - Interacts with tools in an environment-specific manner. This might include 
interaction with the operating system for spawning child processes with suitable command lines and 
transforming data to/from object base and tool formats. There mayor may not be communication 
between the AE and the activity and between the AE and the server during activity execution. 

Command Preprocessor (epp) - Tills component is open-ended. It includes formatting of requests 
for services so that they conform to the interface specifications of the various service providers in 
the server (fronted by TC), and executes local services that do not affect other users or the software 
development process. An example of the former is an ad-hoc query parser that performs syntax 
checking and passes to the server a parsed query. An example of the latter is the "help" facility. 
CPP has no significant impact on the overall architecture. 

lvfessage Server (MS) - Transfers information between the client and the server over the commu­
nication medium. An important functionality is the capability to linearize and delinearize the 
object base structure when the image is updated at the client. MS must preserve the object ab­
straction so that both ends can refer to objects identically. 

3.4 An Example 

Joe, a programmer, wants to change a source file to fix a bug. There are other active users working 
simultaneously on the same project. He logs into the SDE by invoking a client. The client initiates 
a connection with the server. passing along session variables. On the server side, S E~1 initiates a 
new session context. The client then receives a visual display of the object base for the user's screen. 
and Joe can then start to work. 
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He proceeds with a request Rl to edit a file Fl, represented by an object 01. After preprocessing 
to check whether 01 exists and is unambiguous, the client sends the request to the server. When 
Rl is scheduled, SC updates SEM to point to the appropriate client's session and task contexts, 
and passes Rl to TC. TC tells T~f to begin a transaction, which might be a subtransaction of 
some in-progress nested transaction when Rl is part of some on-going task. TC handles any task­
related constraints or triggers for Rl, and then issues requests toTM to access the objects required, 
directly by the activity (tool) or indirectly by TC. TM requests the appropriate locks from LM for 
these objects. LM performs the lock requests by inspecting its previously placed locks and lock 
tables. If the request is denied due to a conflict detected by LM, TM resolves the conflict (e.g., by 
aborting or suspending some offending transactions, or by allowing apparently conflicting requests 
and insisting LM place the locks anyway, depending on the synchronization policy). If the locks 
are granted, LM then requests OM to access the objects. This may involve interaction with SM 
and FM. If all goes well, the relevant information propagates back up to this client, and SC selects 
the next client request. 

AE then executes at the client in an environment-specific manner, for example, by spawning a child 
process to invoke a tool, pass input from the server, accept output and status code after the tool 
terminates, and report these to the server. After SC restores the client's contexts, TC handles any 
task-related constraints or triggers for Rl (Le., there may be task-related operations both before 
and after execution of each activity). This mode of interaction continues until there are no more 
activities to execute or until an exception occurs (e.g., a task is aborted due to intervention of 
concurrency control or a failure), and the task is terminated. Notice that while a client is executing 
an activity, the server is not bound in any way to that client and can serve other clients. 

4 Alternatives, Decisions and Justifications 

4.1 Client-Server Separation 

The first issue to consider is the degree of distribution of the MUSD E. The two obvious alternatives 
are to fully centralize services or to fully distribute them among clients. In the first case there would 
still be minimal clients, at least operating system shells, to allow multiple users to communicate 
with the environment; but all control and product operations would take place in the server. In 
the second case there would be no dedicated server at all, but only clients, with all control and 
product operations executed in a client and shared only via communication directly among clients. 

We chose a hybrid approach, in which clients are responsible for long duration activities and the 
server is responsible for relatively short term task control and synchronization. Maintaining data­
and process-consistency internal to the server reduces communication overhead, while farming 
out interactive and/or computation-intensive activities to the relevant clients keeps computation 
overhead low and response time high. This division of labor seems to best exploit today's high 
performance workstations and high capacity server machines. 

Locating task control in the server does not preclude the possibility of different "views" for different 
clients [6]: they can be managed by the server as part of the session context. Further, the server­
client separation does not prevent distribution of the server itself into multiple server processes. 
with communication among themselves to handle decentralized data, process and synchronization. 
Our intent is to instead make an inherent distinction between the roles of clients and server(s). 
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4.2 Separation of Transaction and Lock Management 

The main reason for decoupling TM and LM is to distinguish conflict-detection from conflict­
resolution, where the former is a mechanical procedure that reports any violations of the defined 
consistency and the latter is an elaborate procedure that decides how to resolve a conflict when it 
arises. This separation enables to modify and/or replace synchronization policies without affecting 
the underlying conflict detection. Furthermore, the fact that LM has no knowledge of the semantics 
of the various lock modes (since it does not have to resolve conflicts) enables to implement LM in 
a way that it can be reconfigured externally via tables, without any code changes. The decoupling 
of transaction management from lower levels also brings TM closer to task management, enabling 
semantic-based concurrency-control without concern for low-level data management . This separa­
tion contributes perhaps more then anything else to the flexibility of the system with respect to 
concurrency control. Examples that demonstrate this flexibility are given in section S. 

4.3 Tunable Lock Management 

The alternatives are: (1) a non-locking policy, where concurrency control is optimistic (as in 
NSE [24]); (2) a hard-coded lock set and lock-compatibility matrix; and (3) a dynamic lock set 
and lock-compatibility matrix. We addressed hard-coding versus externally-defined lock tables in 
section 3.2. Optimistic concurrency control may be useful when conflicts are known to be rare, 
provided that the "resolution" is done by "merging" changes of conflicting operations , since rolling 
back long operations would be unacceptable in most situations. However, an effective merging 
procedure for source code is still beyond the state of the art (as evidenced by [26]), and sometimes 
impossible, e.g., there is no general way to merge two versions of a data file created by conflict­
ing operations (although [19] gives some hope of advances). In addition, rolling back interactive 
operations is generally unacceptable. 

4.4 Objectbase Visibility 

The two obvious alternatives are to keep an entire replica of the object base at each client, or to 
display only those objects that are actually used by a client. Note that in any case control data 
manipulation is done at the server, so the issue is not where to modify the data, but rather how 
to display it. Therefore, we can treat anything displayed at the client as a read-only replica. The 
main problem with keeping an entire replica is that it is very expensive and unnecessary. Objects 
in a MUSDE can be very large (e .g., large files) and may change frequently, causing tremendous 
communication overhead. On the other hand, displaying only objects that are used does not fulfill 
the "high visibility" property. 

We chose a hybrid approach, in which the structure of the object base is maintained, but not its 
contents. For each object, we maintain a cache of its name, type, unique ID and relationships to 
other objects. This is sufficient to be able to view the entire object base, while still compact in 
volume for transmission by ~IS. 

Another consideration is how frequently the display should be updated. The alternatives are to: (1 ) 
Broadcast every change to all active clients; (2) Refresh periodically; and (3) Refresh "on-demand". 
as determined by the server. The third alternative is preferred as it saves communication overhead 
while keeping information reasonably up to date. This is easily implemented by maintaining a 
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timestamp in the client's session-context and "piggybacking" a refreshed object base image on the 
response to each client's next request. An explicit "refresh" command is also provided for the user 
who wants to ensure his/her image is up-to-date. 

5 Implementation for Marvel 

The MARVEL 3.x architecture is illustrated in Figure 3. It can be viewed as a rule-based instance 
of the generic MUSDE architecture of Figure 1. The client structure is essentially the same. 
The server reflects TC in three sub-components: query processor (QP), command processor for 
built-in commands (CP), and rule processor (RP) responsible for process enaction. It also adds a 
Coordination Manager (CM) as a mediator between TM and TC. MARVEL'S translation and loading 
component is collectively called Loader. Tool envelopes and data, process and coordination models 
are written (by the administrator) in various notations and loaded (again by the administrator) 
using a privileged client, tailoring the environment's behavior according to these specifications. The 
MARVEL daemon, not shown, automatically starts a server on the appropriate objectbase when its 
first client logs in, and kills the server after the last client has exited. 

5.1 Process Modeling and Enaction 

The process is defined in terms of rules, each representing a single activity. Each rule consists of 
a name; a list of typed parameters; a condition that represents the properties that must hold on 
actual parameters and other objects bound in the condition for the rule to fire; an activity that 
specifies a "product" activity and its arguments; and a set of mutually exclusive effects consisting 
of assertions to the object base that reflect the result of executing the activity. Rules are implicitly 
related to each other through a match between a predicate in the condition of one rule and an 
assertion in the effect of another rule. 

Process enaction in RP is done through chaining. When an activity is requested, the condition of 
the corresponding rule is evaluated. If not satisfied, RP attempts to satisfy it by backward chaining 
to other rules whose effects may satisfy the user-invoked rule. This is done recursively, until the 
condition is satisfied or all possibilities are exhausted, in which case the activity cannot be executed. 
When the activity returns from the client (assuming the rule's condition was satisfied), RP asserts 
the effect indicated by the status code returned from AE and then recursively forwards chains to 
all rules whose conditions have become satisfied. MARVEL distinguishes between consistency and 
automation chains, which are specified by annotations on condition predicates and effect assertions 
in the rules. Consistency chains propagate changes and are by definition mandatory and atomic. 
Automation chains automate activities and are by definition optional; they may be terminated at 
any point or "turned off" entirely. The details are outside the scope of this paper; see [6]. 

5.2 Task Management 

MARVEL'S scheduler implements a simple non-preemptive scheduling policy (FCFS). However, Non­
preemptive scheduling does not imply that an entire session, or even an entire task, is handled by 
the server atomically. Instead, we exploit the natural "breaks" within and among tasks, at which 
point the server performs context switch and turns to the next client request. That request might 
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resume an in-progress task or initiate a new task. 

RP is the heart of task management. A task consists of all rules executed during backward chaining, 
followed by the user-invoked rule (which caused the backward chain), followed by all rules executed 
during forward chaining. RP operates in a specific task context, consisting of information necessary 
for maintaining the state of the task. The main data structure is the rule stack, one per task. Since 
backward chaining is multiply-recursive and generates an AND/OR tree, (Le., in some cases a rule's 
condition may be satisfiable only by application of a set of rules, and in other cases by anyone of 
many possible rules), the rule stack is implemented as a multi-level stack, where each level consists 
of an ordered set of rules that correspond only to the first rule in the previous level, and are not 
related to other rules in the previous level. The same stack is used for forward chaining, although 
here a standard stack mechanism is sufficient. 

One problem of multi-tasking rule processing is that multiple instances of the same rule may be 
fired concurrently by the same or different clients, and since they all fire in the context of one RP 
(i.e., one address space), rules cannot contain any private data. Trus problem is solved by making 
rules reentrant. Each invocation entails creation of a rule-frame, wruch consists of a pointer to the 
(read-only) rule and a dynamically allocated data section, which it retains throughout the entire 
life cycle of a rule chain. 

5.3 Data Integration and Repository Management 

TM supports a nested transaction model in which a task is modeled as a top-level transaction, each 
consistency chain is a sub transaction consisting of a further level of subtransactions corresponding 
to individual rules, whereas each rule in an automa'tion chain is an independent subtransaction on 
its own. By definition, an entire consistency chain is executed to completion or rolled back as if 
it never started, while the latest rule in an automation chain can be aborted without affecting the 
rest of the chain. In MARVEL 3.1, C~l will serve as a mediator between data and task management; 
CM/RP and CM/TM interfaces have already been partially implemented. 

MARVEL's composition hierarchy is based on ORION [29], using intention locks for ancestors. When 
object 01 is locked, all 01 's ancestors are locked in the corresponding intention mode. Intention 
locks are generally weaker than the corresponding descendant locks, and their goal is to protect 
objects from being affected by an operation on an ancestor. For example, when object D is locked 
in L mode, IL locks are placed on all its ancestor, where IL is compatible with any operation that 
would not affect D. In particular, it is compatible with another IL lock. This idea can be extended 
to linked objects as well as ancestors, but this is not supported in MARVEL. 

LM reads three tables when initialized: compatibility matrix, ancestor table and power matrix. The 
compatibility matrix defines the set of lock modes and the compatibility of any two locks modes. 
The ancestor table indicates which lock to apply to the ancestors of the object being locked in a 
certain mode. The power matrix determines which lock has precedence given two locks requested 
by the same transaction. 

SM uses the Unix dbm package .. \lthough more sophisticated data management strategies can be 
supported by dbm, SM loads the entire object base (but not files objects) into memory at server 
startup. FM is implemented by a. collection of system calls that map the object name-space to the 
file system name-space, and perform operations on a "hidden" file system rooted at a directory 
representing a populated object base of an environment. MS uses Internet sockets. 
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5.4 MARVEL Client and Loader 

UI includes both graphical and command line interfaces with the former providing full object base 
browsing capability (conceptually communicating with OM directly) and the latter supporting 
batch processing scripts as well as dumb terminals. CPP includes an ad-hoc query parser (available 
now in 3.0.1 but not in 3.0). AE is the most complex component of the client. It is in charge 
of spawning child processes for executing envelopes, basically shell scripts, for the various tools 
defined in the environment. AE communicates with envelopes through pipes in a "black-box" 
fashion: inputs are provided at the beginning of activity execution, and output and a status code 
are collected at the end. The details are beyond the scope of this paper; see [22]. 

The Loader generates a static rule network from the process model, which is used at runtime to 
determine chaining. This network is loaded into RP, to define process-consistency. The data and 
process models are tied in the sense that rule parameters and local bindings in the condition of 
rules are typed according to classes. The data model is used by OM and QP. The various lock 
tables (a degenerate coordination model) are loaded into LM, to specify data-consistency. A full 
coordination model using the Control Rule Language syntax described by Barghouti [3] can already 
be loaded, but was not included in the current release. 

5.5 Experience 

We started with the standard shared and exclusive locks, and intention locks (see Figure 4-a), 
but then modified the lock tables several times. The final change added two new lock modes and 
removed one, and changed the compatibility of old modes. The purpose was to provide semantics­
based locking by distinguishing between operations that affect only a single object (e.g., write 
on a simple attribute) and operations that might affect related objects (e.g., the delete operation 
removes an object and all its children). Strong Exclusive (SX) and Strong Shared (SS) locks were 
added, and X and S became compatible with any intention lock (see Figure 4- b). The ancestor 
table was modified to include intention locks for the new modes. This required no code changes to 
LM and only minor changes to TM to replace requests for locks according to the new semantics. 
Even these changes would not have been needed for MARVEL 3.1, where the specific lock modes 
to use for particular arguments of activities and rules will be specified as part of the coordination 
model. Thus, a dramatic change in conflict detection can be achieved with very small overhead. 

We also started with a fiat transaction model, in which an entire chain executed as a single transac­
tion. This made it impossible to treat different subsets of a task differently. For example, we could 
not abort an automation sub chain without rolling back consistency sub chains descended from the 
same user-invoked rule. \Ve replaced T.M with nested transactions. Each rule triggered during an 
automation chain, together with any consistency sub chains emanating from it, is a subtransaction 
that can be aborted without affecting the top-level transaction or other subtransactions. Again, 
this major change had no impact whatsoever on L~l, and required only trivial changes to RP. 

C~1 is being developed to support programmable conflict resolution. In MARVEL 3.1, the adminis­
trator will be able to define an optional set of control rules to specify scenarios when the default 
policy above may be relaxed, and prescribe appropriate actions in each such case. 'rVe have already 
built a facility whereby C~I accesses RP's rule stacks, since control rule scenarios require inspec­
tion of conflicting rule chains. T~I already requests C~1 to try to match its control rules, before 
proceeding to the default conflict resolution policy, and C~I can select the closest match of a set of 

15 



S Shand 
X E.1cllJll .... 
IS In.nDCII ShaNd. 
IX In.nClon E1c1U11 ... 
SIX SlIaJod IlMOn,OII El<IIUlV. 

S Shand 
X E~h.rv. 
IS In .. ..,.,. Shand 
IX: In.noon E1clt ..... 
SS Scrons Shand 
SX Scrons El<11UlVO 

IS IX S X SS SX 

IS IX S SIX X IS Y. Y .. Y. Y. Y. No 

IS Y. Y .. Y .. Y. No IX Y •• Y .. Y. Y .. No No 

IX Y. Y. "" No No S Y. Y. Y. No Y. No 

S Y .. No Y .. No No ' X Y. Y .. "" No No No 

SIX Y .. "" So "" "" SS Y. No Y. No Y. No 

X No No "" No No SX No "" "" "" No No 

4-. 4-b 

Figure 4: Initial and Revised Compatibility Matrices 

control rules. But we are still investigating the desirable operations for the actions, so the semantics 
of a non-empty control rule base are undefined. We will have to add to TM a "marking" phase, 
to annotate objects left temporarily inconsistent by control rule actions that suspend or terminate 
in-progress consistency chains, and an "unmarking" phase to attempt to restore consistency when 
access to such objects is requested. We anticipate no other changes to TM, small if any to RP, and 
none to other components. 

The current release provides only one active task per client, but MARVEL 3.1 will allow manual 
switching among multiple in-progress tasks within a single client. This requires substantial changes 
to .\E, and some to CPP, but only very minor changes to the server, mainly in the MS component 
(much of the purpose is to support the actions of the new CM, e.g., to suspend or abort in-progress 
activities). AE has already been enhanced, for release in 3.1, to add "gray-box" integration for 
extensible tools. This interface allows repeated input and output while an activity is in progress. 
For example, a multi- buffer editor (such as emacs) makes it feasible for the user to request multiple 
files for editing incrementally, but our current "black-box" approach requires all inputs/outputs to 
be requested up front. Again, while major new functionality was added to the client, very minor 
changes were required in the server. 

5.6 Status 

~lARVEL 3.x is implemented in C and runs on Sun4s (SunOS 4.1.1) and DecStations (Ultrix 4.2). 
using XllR4 windows. User, administrator and implementor manuals are provided. MARVEL 3.0 
was released for educational institutions and industrial sponsors in November 1991. It included 
all the features presented in previous sections, except where noted, and has been licensed to ten 
external sites. "In-progress" variants had been previously demonstrated at several conferences. 
and in one case released to sponsors. Version 3.0.1, available for licensing since March 1992, is 
the first version to be fully developed and maintained using C/MARVEL, a MARVEL process for 
C development: the source code is available only in a MARVEL object base. \Ve are also using 
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C/MARVEL to develop MARVEL 3.1, which is planned for release in September 1992. In addition 
to the enhancements explained above, this will include: A new user interface based on XView: 
automatic evolution of existing object bases for additions of attributes and to the class hierarchy; 
and the replacement of built-in commands, currently supported by the command processor, by 
built-in operations executable from rules, which will make the system fully rule-based. 

6 Related Work 

SMS (aka Gypsy) [12, 37J is basically an extension of version control-based systems (e.g., RCS, 
SCCS [36]) tightly integrated with an extended operating system. Synchronization is manual, and 
users work in isolation, each in his/her own "workspace". Although SMS provides a mechanism for 
multiple users to access data objects concurrently by specifying a list of users that can attach to a 
workspace, it provides no means for coordinating their access. 

NSE [24J supports parallel and distributed development through an optimistic concurrency control 
mechanism, which allows multiple users to access objects concurrently without locking them. When 
multiple users modify the same file, a merge process aids in merging the multiple versions. File 
management is based on the concept of environment, a separate workspace with its own copy of the 
file system. Environments can be arbitrarily nested. This hard-coded policy dictates a methodology 
for software development, in which developers work primarily in isolation and conflicts are rare. 

Arcadia [43, 33J is a process-programming environment based on the extensive research in SDE 
technology underway by the Arcadia consortium. Like our architecture, it is constructed out 
of layered components that are intended to be replaceable. However, although process-consistency 
from the process-programming point of view is addressed extensively by Sutton [40], an independent 
synchronization component is conspicuously absent from the architecture. We guess that multi-user 
synchronization is provided by the object management system. 

Melmac [14J is a process-centered environment that distinguishes between application-level and 
intermediate-level representations of the process. Unlike our architecture, Melmac's server is pri­
marily concerned with data management and provides a simple transaction mechanism, whereas 
the clients are responsible for process enaction. One shortcoming evidenced by the examples given 
in [23J is that since process management is detached from the server, it seems that rule chains cannot 
be interleaved even during activity execution, which might degrade response time significantly. 

Oikos [1J is a rule-based MUSDE that supports concurrency using a hierarchy of blackboards that 
resemble Linda's tuple spaces [10J. Oikos enables to specify a wide range of services as part of 
process enactment, including database schemas and transactions. However, while concurrency is 
an inherent aspect in the Oikos architecture, concurrency control is not, and it is not clear what 
range of synchronization policies can be supported, nor is it clear how these might be supported . 

CLF is a rule-based MUSDE that distinguishes between consistency and automation, but through 
separate classes of rules rather than annotations on rule predicates as in MARVEL. CLF employs 
a form of optimistic concurrency control based on merging, with consistency tolerated by automat­
ically placing guards on inconsistent data [2], similar to our notion of "marking". Changes are 
grouped into evolution steps, which can be undone or redone [11J. 

Merlin is the closest system to ~1ARVEL. From the process modeling viewpoint, the main difference 
may be that Merlin distinguishes forward and backward chaining styles of rules while MARVEL has 
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a single rule base and a symmetric chaining model. There are substantial architectural differences , 
however: Merlin employs a simple checkin/checkout model, using an object's state as determined 
by the rules as a lock; there is no support for multiple locking modes; and the object base display 
is limited to each user's working context (although there is a refresh mechanism). It appears that 
chaining operates in each user's working context (client) as opposed to a centralized server. 

7 Evaluation and Contributions 

The drawbacks of our architecture include: 

• Semantics-based concurrency control and componentization are, in some sense, conflicting 
goals: how can the transaction manager be semantics-based when the semantics are hidden 
in the task controller? For example, in our work towards MARVEL 3.1's programmable con­
currency control, we had to develop a richer interface between the rule processor and the 
coordination manager than was previously needed for the transaction manager. It seems 
unlikely that a sufficiently rich general interface - without a sophisticated mediator - can be 
developed between the task controller and the transaction manager to allow replacement of 
either without affecting the other . 

• Our architecture provides no direct interface between clients and the synchronization com­
ponents. However, users will need to place explicit requests for notification, if not other 
purposes; such an enhancement is being contemplated for MARVEL 3.1, where available com­
mands can be defined in the coordination model. We anticipate changes would be required 
for the command preprocessor as well as the coordination and/or transaction managers. 

But there are many advantages of our architecture. At the user interface level, the structural 
display facility provides for high visibility without the overhead of maintaining complete replicas 
at the clients. At the task management level, the separation between activity execution and task 
control provides for process sharing while enabling local execution of tools. 

At the data management level, we have made several architectural decisions we believe are unique 
as well as fruitful: (1) The separation between transaction and lock management allows definition 
and monitoring of data-consistency independent of the synchronization policy, with minimal over­
head. Moreover, this enables to implement sophisticated coordination models, with little effect on 
other components. (2) A table-driven lock manager allows to modify data-consistency policies with 
no code changes. (3) The decision to separate transaction management from object management 
emphasizes our view of support for advanced synchronization models. Essentially, we moved syn­
chronization away from low-level data integration and closer to the semantic, task level. We do not 
know of any other MUSDE with such functionality. 

However, the single centralized server does not scale up to very large numbers of clients. As more 
clients are added and the object base grows, the likelihood of noticeable waits increases. In the short 
term, improvements can be made by incremental refresh of the object base image and preemptive 
scheduling of tasks. For the longer term, we have sketched a proposal for distributing the server 
into a hierarchy of local servers, each attached to a group of closely cooperating clients [7]. We 
anticipate that the clients will not change much and there will be few changes to the basic structure 
of the server architecture, although several of the components will have to be replaced . 
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