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ABSTRACT: Reducing atmospheric CO, using a combination of
air capture and offshore geological storage can address technical
and policy concerns with climate mitigation. Because CO, mixes
rapidly in the atmosphere, air capture could operate anywhere and
in principle reduce CO, to preindustrial levels. We investigate the
Kerguelen plateau in the Indian Ocean, which offers steady wind
resources, vast subseafloor storage capacities, and minimal risk of
economic damages or human inconvenience and harm. The
efficiency of humidity swing driven air capture under humid and
windy conditions is tested in the laboratory. Powered by wind, we
estimate ~75 Mt CO,/yr could be collected using air capture and
sequestered below seafloor or partially used for synfuel. Our
analysis suggests that Kerguelen offers a remote and environ-
mentally secure location for CO, sequestration using renewable

sequestering a large fraction of 21st century emissions.

B INTRODUCTION

Strategies for stabilizing atmospheric greenhouse gas concen-
trations will need to consider future CO, emissions from an
enormous resource of worldwide fossil fuel supplies and a
diverse range of mitigation technologies.'* Globally, manmade
sources emit ~30 Gt CO,/yr. If all potential resources of
conventional fossil fuels (oil, gas, and coal) were entirely
combusted, total atmospheric emissions may exceed 5500 Gt
CO, or 1500 Gt C.>° Exploitation of unconventional fossil
fuels (tar sands, methane hydrates) and new extraction
technologies could double this amount.” Even if all emissions
from large fixed sources could be captured, the roughly 30—
50% of global emissions due to transportation and mobile
sources would still be released into the atmosphere. The
likelihood is that fossil fuel emissions will increase for decades,
and thus, not allow for stabilization of atmospheric CO, below
current levels of ~400 ppm.

In this paper, we study a combined and novel approach for
CO, capture and energy production in a remote environ-
ment—on the Kerguelen plateau in the southern Indian
Ocean—where we propose that long-term CO, capture,
sequestration, and energy production infrastructure could be
developed and implemented with minimal risk of postinjection
leakage or environmental damage. One approach for carbon
capture proposes new technologies to remove CO, from
ambient air flowing over chemical sorbents, such as strong alkali
elements, to produce a CO, offstream.® "' Because CO, mixes
rapidly in the atmosphere, such air capture systems may be
sited without regard to their distance from CO, sources,

-4 ACS Publications  © 2013 American Chemical Society

7521

Wind Energy
co

Electricity Captlzlre

W

(T

Fischer-Tropsch

Hydrocarbon Fuel

\ (Diesel)

Basalt Reservoir

energy. Regional reservoirs could hold over 1500 Gt CO,,

avoiding the major technical challenges and risks of transport
and eliminating the requirement of proximity of sources to
potential reservoirs. Air capture could ultimately enable
atmospheric CO, to be reduced below current levels. The
economics of CO, air capture, alternative fuel sources, and geo-
sequestration depend on many independent cost elements,
which may or may not prove to be commercially sustainable
over the long-term or publically acceptable for climate
mitigation. However, the cost of developing new technologies
is often unpreclictable,12 and with the potentially irreversible
and damaging accumulation of CO, in the atmosphere at
current emission levels, the cost of inaction with respect to full
investigation of all feasible mitigation strategies is incalculable.'®
Our primary goal in this paper is to present an approach to
reduce net atmospheric CO, accumulations in a technologically
feasible, environmentally secure, and publically acceptable
manner.

B MATERIALS AND METHODS

Our approach involves combining three colocated method-
ologies to address this goal, each at a different stage of
technological development and commercial maturity. These are
(1) CO, capture from ambient air, (2) energy production from
remote wind resources and in part for synfuel conversion of
CO,, and (3) environmentally secure CO, geo-sequestration in
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Figure 1. Topography and bathymetry®® of Kerguelen Island in the southern Indian Ocean. Contoured region (dashed line) outlines ~2600 km?
with elevation <100 m on the Courbet Peninsula and the adjacent offshore region with <20 m water depth. A representative 1000 km? area (oval)
within this region is considered for potential air capture and wind turbine infrastructure.

oceanic basalt formations. In the following section, we discuss
each of these methods and how they could be combined to
assess the suitability of the Kerguelen plateau as a remote and
self-sustaining location for CO, capture and sequestration.

1. Ambient Air Capture of CO,. Lackner et al® first
suggested direct capture of CO, from ambient air as an
energetically and economically viable climate mitigation
technology. Air capture is akin to flue gas scrubbing in power
plants but because of the low concentration of CO, in air,
sorbents for air capture must be stronger than those for flue
gases. Several approaches for CO, capture have been proposed
that use different collector surfaces to adsorb or absorb
CO, 117 using various methods to regenerate the sorbent
material and collect CO, in continuous cycles. For all
approaches, energy is used in the regeneration of the sorbent
to collect and compress CO, in each cycle. The moisture swing
approach,'®'® in which the evaporative drying of water from a
solid sorbent material provides the energy to drive the cycle,
has particularly low energy consumption. For this study, we
consider whether a moisture swing is feasible under cold and
humid conditions, such as those found in Kerguelen, and
whether the resin can indeed dry in the wind in this
environment. While we focus on the moisture swing approach,
other separation technologies can and should also be
considered for viable air capture methods. Indeed, the high
relative humidity at Kerguelen renders the moisture swing
technology less efficient than it would be under drier ambient
conditions.

We used a sample of resin-based sorbent composed of a
polystyrene backbone with quaternary ammonium ligands
attached to the polymer.'® The quaternary amine groups
carry a permanent positive charge balanced by exchangeable
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CI” anions that for CO, sorption are replaced by carbonate or
hydroxide ions. In the carbonate form the resin captures CO,
with the low binding energy of the carbonate to bicarbonate
reaction but with reaction kinetics faster than that of sodium
hydroxide solutions.'® This process is governed by the
following reaction:

CO;™ + CO, + H,0 < 2HCO;

Wang et al'® show that for this solid-resin sorbent the
Langmuir isotherm equation describes the CO, loading as a
function of the partial pressure of CO,. The isotherm shifts to
much higher CO, pressures in the presence of water, and
therefore, CO, loading of the resin strongly depends on the
partial pressure of H,O in air. Thus, a process cycle with CO,
loaded onto dry resin and then driven off by moisture is
created. Once sufficiently dried, the resin is able to absorb CO,
again. As part of a broader study,'” we have measured CO,
saturation for this resin at low temperatures and high relative
humidity (RH). To simulate the drying of the resin in the wind,
air was blown over the resin in our tests while continuously
monitoring CO, and H,O gas content in a closed chamber with
an infrared gas analyzer (see Supporting Information (SI)).
Once captured by the resin, CO, may be recovered and
collected by a number of different processes (regeneration)'®"’
that all require the use of energy. For Kerguelen, the basic
design of the hypothetical air capture process relies on the
availability of renewable wind energy resources and passive
collectors that stand in the wind and take advantage of the high
air flow for drying wet resin and for letting their CO, load
equilibrate with ambient conditions. In order to achieve a
significant swing in CO, saturation compared to full capacity of
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the resin and at the same time maintain a substantial CO,
pressure over the resin during unloading, we utilize a hybrid
thermal/moisture swing process where moist air is the sweep
gas that carries CO, away. Heat is required to raise the
temperature of the resin to 45°C. Subsequently, the sweep gas
carrying CO, is cooled to condense out water, and further
cooled until CO, precipitates as dry ice. With warming, the
CO, will convert from dry ice to a pressurized liquid of equal
volume. Heat exchange between cooling and warming streams
can provide a large part of the necessary heat transfer, and
electrically driven heat pumps (powered by other energy
sources) will make up any short falls.

Wang et al'’ show that the partial pressure over the wet
loaded resin at 45°C is 2 kPa, and a saturation swing from 0.8
to 0.5 of the maximum saturation allowed by the stoichiometry
of the resin would reduce the partial pressure below 0.5 kPa.
Using the hybrid swing process between ambient conditions
and 100% relative humidity at 45°C, a significant fraction of the
resin capacity can be regenerated.'® Based on these conditions,
the size of the saturation swing and the partial pressure of CO,
in the outflow largely determine the total energy requirements
of this process.

2. Renewable Wind and Energy Resources. In our
approach, we suggest using renewable sources to meet the
energy requirements for air capture and consider potential
regions around the globe with substantial wind resources. Wind
resources generally vary over time and location,*®*! and in
general, offshore average wind speeds on average are 90%
greater than speeds over land.”' This resource is so large that
offshore wind alone, if captured, could provide a large fraction
of the estimated global electrical energy consumption in
2030.%* In the Kerguelen plateau region, winds are relatively
steady and constant, averaging 4—S Beauforts (~8.1—14 m/s,
18—30 mph) from the west-northwest,”® even with seasonal
changes. Temperature and relative humidity are also relatively
constant throughout the year, ranging between 0 and 10°C and
80—90%, respectively.”

On Kerguelen Island itself, the flatter topography on the
Courbet peninsula and adjoining near-offshore shelf areas may
be the most accessible for wind farms and other infrastructure
(Figure 1). Utilizing the vast wind resources of this region, we
calculate that both ambient air capture and geologic CO,
sequestration (described below) can be sustained with sufficient
energy to potentially produce synthetic fuels from water and
CO, feedstocks. Synfuel production relies on the reduction of
CO, and water to CO by electrolysis and the subsequent
production of long chain hydrocarbons using Fischer—Tropsch
processes.”*~*” The energy for CO, reduction could come from
the carbon-neutral wind resource.

3. Geo-Sequestration in Oceanic Basalt. Geologic
storage of captured CO, is the final step in this combined
approach to reducing net CO, emissions. The effectiveness of
geological CO, sequestration depends strongly on a reservoir’s
storage capacity, stability, and risk for leakage.**” Recent
studies identify igneous rocks as promising sequestration
targets.’* >> Large Igneous Provinces (LIPs) are massive
emplacements of intrusive and extrusive rocks that can extend
100s of km’s from their volcanic sources and occur all over the
globe.** When LIPs are extruded subaerially, they cool rapidly,
forming porous outer rinds with large voids spaces. High
porosity has been measured over thick flow sequences on land,
such as Columbia River Plateau, Deccan Traps, and CAMP
basalts.*>*® Pilot injection projects for CO, sequestration in
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basalt flows are underway in Iceland®® and in the Columbia
River plateau.’® These projects anticipate that CO, injected in
basalt rocks will ultimately be sequestered in the form of
thermodynamically stable and environmentally benign miner-
als. Basalt acts as a natural, in situ weathering reactor both on
land and below the seafloor. Buried over time by impermeable
marine sediments, submarine LIPs are further sealed while such
chemical weathering proceeds.>’ =

The Kerguelen plateau LIP was formed by a series of
Mesozoic volcanic eruptions, creating an elongated basement
high extending over more than 3 X 10° km?® in the southern
Indian Ocean and rising more than 1 km above the surrounding
seafloor, with small subaerial exposures forming the Kerguelen
archipelago and Heard Island.>***~* Kerguelen Island has
~7200 km* of exposed basalt rising in rough topography,
widely eroded into canyons and runoff valleys with the
exception of the high glacial regions in the west and the
Courbet Peninsula in the east (Figure 1). Bathymetry around
the Courbet Peninsula is relatively shallow with flat sediment
cover for 2—3 km offshore.

We assess the storage potential of geological reservoirs on
the Kerguelen plateau for injection and sequestration of CO,.
Three criteria are used in this assessment: (1) the presence of a
basalt flow with enhanced pore space as a geo-sequestration
reservoir; (2) sediment thickness of >200 m covering
subseafloor basalt; and (3) water depths between 600 and
3000 m. These criteria ensure the physical trapping of injected
CO, and allow for estimation of the total reservoir capacity.*
The overlying sediment acts as an impermeable cap to isolate
reservoirs from potential upward leakage of injected CO,. The
600 m minimum water depth ensures sufficient hydrostatic
pressure of ocean and sediments to support injection of CO, in
supercritical state. The 3000 m maximum depth meets the
practical limit of deep-water drilling technology and generally
falls <500 km from Kerguelen Island. Using data from drilling
studies, we interpret the occurrence of pore space and interflow
voids within basalt layers on the northern Kerguelen plateau
(see SI) and apply the above criteria to assess its potential
reservoir storage capacity.

B RESULTS

In the following section, we present the results of bench-scale
laboratory experiments on capture resin drying at high relative
humidity, low temperature, and high wind speed—typical
atmospheric conditions in Kerguelen. We also present wind and
energy production estimates, basic process models and
thermodynamic calculations, and geological analysis of storage
capacity on the Kerguelen plateau. Together, these results
demonstrate the feasibility of our combined approach to reduce
net atmospheric CO, concentration with their colocation in a
remote oceanic location.

Laboratory Experiments. Our laboratory experiments
show that a sufficient moisture swing is possible for the solid-
resin sorbent under high RH conditions and that high winds
dry the resin effectively. Wang et al'® have conducted a larger
thermodynamic study of the equilibrium CO, loading of the
resin as a function of temperature and relative humidity. Figure
2 shows the equilibrium CO, loading of the resin at ambient
CO, concentrations for 0 and 10°C as a function of relative
humidity. Between 0 and 10°C and at RH = ~80%, the
maximum achievable resin load (saturation) is reduced by
about 22% relative to the loading achievable at RH = ~40% and
25% relative to fully saturated resin.
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Figure 2. Change in resin CO, saturation versus relative humidity for
T = 0°C (squares) and 10°C (circles), illustrating a 22% reduction at
RH = 80% relative to RH = 40% and a 25% reduction relative to
complete saturation. Curves represent exponential equation fits to the
data in the form y = A, exp(—«/7,) + y,.

Drying experiments were conducted at T = 0, 10, and 25°C,
and at relative humidity RH = 60 to 90%, and nominal wind
speeds of 5 m/s, 10 m/s, and 15 m/s. Results are shown in the
SI. At low wind speeds (5 m/s), 60 min of drying in air with
RH = 90% and T = 0°C can remove ~77% of the moisture
added by wetting dry resin. As wind speed increases, more
water is removed. At 1S m/s under the same RH and T
conditions, ~87% of the moisture is removed. Somewhat
surprisingly, less moisture is removed from the resin under
higher temperature but otherwise similar conditions. A resin
tested at 25°C dried less completely within the same time. As a
result, the resin capture capacity is greater at lower temper-
atures. The drying experiments show that even at high RH and
low temperature, high wind speed allows a wet sorbent that has
released its CO, to dry to the point that it can again equilibrate
to the CO, at ambient partial pressure.

Computation of Energy Balance. To provide energy for
CO, capture, we consider the wind energy potential on
Kerguelen Island utilizing 1000 km? of its flatter topography on
the Courbet Peninsula and near-offshore shelf in relatively
shallow (<20 m) water to install wind turbines (see Figure 1).
Absent a detailed site-specific study and localized wind
assessment, we estimate the wind potential on Ker%uelen by
using a simple Raleigh distribution of wind speed”’ with an
average speed V.., = 10 m/s and air density p = 1.2 kg/m’.
With these assumptions, the average kinetic energy flux™ per
unit area is given by J = p /2 - 6/ - vy, or 1.1 kW/m?.
Windmill spacing conventionally ranges from four rotor
diameters in the wind-facing direction and seven rotor
diameters in the wind direction (ie, 6 per km* for 77 m
rotors)?! to as high as 10—1S rotor diameters in the wind
direction, to minimize boundary layer disturbances and
optimize physical limitations and costs.*’ Assuming larger
turbines with 4 X 12 diameter spacing, we compute the total
wind power potential for the mean wind speed in the study area
(1000 km?) to be ~18 GW, which is independent of the
windmill rotor diameter. Aerodynamics limits the conversion of
wind energy flux to mechanical energy (Betz limit).** Hence,
the net capacity of each turbine is assumed to be about 37%,
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including the Betz limitation, interferences between wind mills,
and transmission losses.*® All other things being equal however,
steady winds and higher average wind speed yield more energy.
Operating with 80% turbine availability (accounting for
maintenance downtime, low/peak cutout times, and more
limited turbine accessibility), the annual wind potential of the
study area is about 47 TWh. Expanding a greater number of
turbines across a larger area around Kerguelen, and optimizing
the wind farm density, could reasonably triple wind energy
output in the region.

To predict the energy required for CO, capture from
colocated air collectors, we consider that the CO, capture
potential will be reduced in this high humidity environment.
We assume the resin properties are those of the material tested
and that practical trade-offs will reduce the maximum available
CO, partial pressure in the regeneration chamber (<2 kPa) and
the size of the saturation swing (<0.3) for the sorbent. Figure 3
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Figure 3. Energy consumption per mol CO, (kJ/mol) as function of
the CO, partial pressure in a combined thermal/moisture swing
process for resin regeneration. Reasonable swings (0.2—0.3 in
saturation) can be maintained at 100 kJ/mol (dashed line),
corresponding to ~75 Mt CO, capture per year for an installed
power capacity of 47 TWh/yr.

shows the calculated energy consumption per mole of CO, as a
function of these two parameters. As shown in Table 1, the
total energy consumption for CO, collection can reasonably be
maintained <100 kJ/mol CO, (630 kWh/ton CO,) with this
process. Translating 47 TWh of available wind energy into a
nominal annual capture capacity, Kerguelen could support
capturing 75 Mt of CO, or more per year (Figure 3).

To estimate the net efficiency of the hybrid thermal/
moisture swing process outlined above, we assume that the
fraction of the heat recovered in the heat exchange between
warming and cooling streams is . A coefficient of performance
(COP) of a refrigeration unit or a heat pump can then be
estimated following Cheng et al*’ if we assume that the
mechanical work applied is a fraction # of its electric input and
that the hot and cold sides are indeed hotter and colder than
their adjoining reservoirs by a temperature differential 6. The
resulting coefficients of performance for heating (COP,) and
cooling (COP,) are given by
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Table 1. Total Energy Requirements for Resin Regeneration
Utilizing the Hybrid Thermal/Moisture Swing Process and
Thermodynamic Assumptions®

heat electric
enthalpy  thermal enthalpy  pump input
(kJ/mol)  recovery input COP (kJ/mol)
wet resin 855 0.8 171 7.5 23
heating
sweep air 82 0.8 16 7.5 2
heating
water added to 263 0.8 S3 4.7 11
sweep air
desorbing CO, 32 0 32 4.7 7
sweep gas 236 0.8 47 1.9 25
refrigeration
freezing CO, 25 0 25 0.8 32
total electricity 99

consumption

“Thermodynamic assumptions as follows: Make-up water and resin
enter the cycle at 0°C, on the Regenerator side; sweep gas, sorbent,
and water are heated to 45°C. The recovered gas and sorbent are
subsequently cooled to 0°C and water condenses out, recovering as
much heat as possible. A heat recovery efficiency, # = 0.8, is assumed.
Gas is then cryogenically cooled to precipitate CO, as dry ice (Typjim =
~130°C). Heat pumps and refrigeration units operate with electrical
efficiency, 7. In order to transfer heat, we assume a temperature
differential of 6 = S K, decreasing the efficiency of the heat pump.
Additional assumptions for this calculation include: water loading of
the resin (swing between wet and dry), W = 0.7 kg/kg; Heat
capacities: Cy, = 1 J/8/K, Cregn = 1.1J/8/K, Cyer = 4.2 J/g/K; Heat of
evaporation, He,, = 40.7 kJ/mol; Maximum loading of the resin per
swing, as fraction of the stoichiometric maximum, S, = 0.8; Size of
the saturation swing, S = 0.25; Cationic charge on the resin, E ., = 1.7
mol/kg; Partial pressure of CO, released, pCO, = 1.6 kPa.

COP(t, t,) = h+ o
A Ry
t,— 6
COPR(t, t,) = n—2——
2(1; 2) ”tl—t2+25

During heating the upper temperature increases steadily and in
refrigeration the lower temperature decreases. With this
assumption, we calculate average COPs for T, and T,, the
upper and lower temperature limits, respectively.

11 /T1 dt
(COP) T, -1, Jr, COR(t, )
11 /T1 dt
(COP) T, —T, Jr, COR(T,, t)
Table 1 accounts for the energy requirements for these

process steps, assuming the heat exchange efficiency between
heating and cooling streams is # = 0.8. The effective efficiency
assumed here is comparable to those obtained for other heat
pump designs.*® This calculation does not optimize the system
but provides reasonable estimates of energy consumption that
could be achieved with this hybrid process.

Computation of Reservoir Capacity. To determine how
much captured CO, could be sequestered in this location, we
use the known bathymetric,”® sediment thickness and geo-
logical data® in the northern, central, and Elan Bank regions of
the largely submarine Kerguelan plateau LIP and calculate a
potential reservoir area covering as much as ~1.6 X 10° km?.
Drilling studies across the northern Kerguelen plateau LIP
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identified a series of thin high;)porosity basalt layers, totalling
10-20 m in net thickness.>® They are characterized by
fractured intervals with porosity values of 7—12% separated
by lower porosity layers. These higher porosity intervals are
analogous to subaerial basalt flow tops and provide injection
reservoirs similar to continental basalt flows.*>** The existence
of such high-porosity layers at different locations across the
Kerguelen plateau LIP, emplaced over a period of more than 30
Ma, suggests that they are pervasive and recurring over its
volcanic history, but not synchronous. Porous flows are thus
unlikely to be contiguous across the entire plateau, even though
flow tops may be continuous for 100s km distance from their
volcanic source.’’ Nevertheless, total reservoir volume can be
estimated for representative flows observed at existing drill sites
and at different depths (see SI). Because drilling data and
observations are sparse, we use conservative values for a net 10
m thick basalt reservoir with average porosity of 10% that could
be available for CO, injection, albeit at different depths across
the northern, central and Elan Bank regions of the Kerguelen
plateau LIP (Figure 4). Assuming that liquefied CO, (CO,
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Figure 4. Map of Kerguelen plateau LIP in the southern Indian Ocean,
with seafloor bathymetry and location of drill sites. Hatched outline
shows potentially suitable regions for CO, sequestration using
methodology from Goldberg and Slagle43 in the northern, central
and Elan Bank regions.

density ~1 g/cm®) is injected to fill these reservoirs, we
estimate a potential storage capacity of ~1500 Gt CO,. Even
with low or moderate permeability, injection could be
accomplished with multiple wells and using current lateral
drilling technology® to accommodate ~75 Mt CO, per year.
This is an enormous volume even with conservative
assumptions about the reservoir characteristics (i.e., thickness,
porosity, and injectability). With our estimated CO, collection
rates from ambient air around Kerguelen Island, even 1% of this
reservoir volume would be sufficient for hundreds of years of
CO, injection and storage.
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Figure S. Schematic of potential wind energy resource use on Kerguelen. With ambient air capture, sufficient energy could be collected to sequester
75 Mt of CO, or more in subseafloor basalt reservoirs or produce ~770 million gal of diesel fuel annually using electrolysis and Fischer—Tropsch

processes.

B DISCUSSION

The reduction of atmospheric CO, concentrations by ambient
air capture combined with geo-sequestration in subseafloor
formations offers a powerful tool for carbon management.
Potential sites differ in terms of formation characteristics,
technical capacity, and economic potential, as well as human
impact, but this option can focus decision-making on
optimizing storage locations with respect to renewable energy
resources, human and environmental risks, and public accept-
ance. Ambient air capture also offers a mechanism to measure
and quantify output volumes of CO,.

An important consideration for implementation of this
approach is the cost of establishing and operating colocated
infrastructure at remote sites. In any scenario, the costs for
carbon capture and storage are very large.* Infrastructure costs
would be considerable in the case of Kerguelen. Although there
is limited existing infrastructure at the present, large industrial
activities have been staged there in the past. Kerguelen
produced and exported seal oil for most of the 19th century
under British authority®* and the island has since been used for
French military and scientific activities.’* For the proposed
activities, however, major infrastructural requirements would
include wind turbine farms, transmission lines, power stations
and substations for which installed capital costs are
>$190/MWh,46 totalling $9—10B for the scale of operations
proposed here. Additionally, drilling, pipeline, and storage
infrastructure could easily reach $100—200M per well>> for
multiple offshore platforms, totalling again to ~$10B or greater
levels of investment.

The operating costs of the proposed system are perhaps most
important in assessing its viability, but also the most difficult to
estimate. The cost of various air capture approaches, in
particular, has been quantified to be as high as $600—1000 per
tCO,>*>7 or as low as $25—30 per tCO,."* Lackner et al.'* and
others argue that such long-term costs are often difficult to
estimate at the early stages of new technology development,
and in Kerguelen, the net cost and efficiency of local renewable
electricity will in large part determine the operating cost of air
capture. Thus, if air capture efficiency could be achieved for 100
kJ/mol CO, (i.e., Table 1) at a net cost of $50/tCO, or less
(electricity cost <$0.08/kWh), then the ~75Mt CO,/year
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captured would cost ~$3.5B per annum of operation. This is
equivalent to the amount of CO, produced by twenty-five 500
MW coal-fired power plants and would relieve the build-up of
that amount of atmospheric CO,. The operating costs for
sequestration, including gas compression, pipeline costs, and
injection have been estimated to be $1-9/ tCO,.">*® The
volume produced by air capture in Kerguelen would therefore
cost an additional $0.5—0.7B per annum to sequester, assuming
the higher cost range for offshore and remote operations.
Greeshem et al.>” note that sequestration costs could double in
some (continental) locations due to the difficulty and expense
of obtaining rights to subsurface pore space, making long
pipeline transport economical. The cost penalties for remote
operations and maintenance in Kerguelen must be reconciled
with its infrastructure costs, but air capture and offshore storage
would likely avoid such large add-ons.

One potential advantage of the proximity of colocating
renewable wind resources and captured CO, on Kerguelen is
that they could also be used as chemical feedstock to produce
long chain synthetic hydrocarbon fuels, such as methanol and
diesel. Using electrolysis and Fischer—Tropsch processes,”* ™’
we estimate that the available 47 TWh of wind energy could be
converted annually into ~770 million gallons of diesel using ~8
Mt of collected CO,. This amounts to only 10% utilization of
the installed air capture capacity, assuming all of the wind
energy is used for fuel production. Synfuel could offer a
substitute commodity for sequestered CO, in the event of
economic fluctuations, or be used as a resource to support the
local infrastructure. If all of the captured CO, were indeed
converted, the commercial value of 770 M gal of produced
fuel® would be on the order of $3B, similar to the annual cost
of air capture if realized at $50/tCO,. Balancing this net value
for potential synfuel production with the cost of air captured
CO, is perhaps a practical and objective measure of when this
approach could become economically feasible and justified. The
proportion of energy used for CO, collection and sequestration
versus fuel production could be scaled to balance the fuel needs
and short-term economics of the proposed operation. Over the
long-term, wind resources could be increased across the region
to allow for greater energy production or a different product
balance. Even without synfuel production, our primary goal
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remains to provide an environmentally secure and sustainable
location for CO, sequestration using renewable energy in
Kerguelen. With the combined use of wind resources, CO, air
capture, and geo-sequestration with synfuel production,
Kerguelen could indeed function as an energetically self-
sustainable carbon collection point (Figure S).

Numerous studies have explored the technical and environ-
mental risks and public issues involved with geological CO,
sequestration.’"®> Specifically, risks associated with leakage,
groundwater safety, land access, storage permanence, and long-
term liability remain outstanding issues of major concern for
on—land CO, sequestration. Locating CO, storage reservoirs in
the subseafloor setting, however, offers long-term risk benefits
such as permanent and safe sequestration, minimal environ-
mental risks from leakage, distance from populated areas, and
negligible expected damages.®®> Offshore sequestration mitigates
risk of damages from induced earthquakes and concerns of
harm from produced/expelled fluids for potable aquifers after
CO, injectior1.64’65 Below 100 m water depth in the ocean, CO,
dissolved in seawater will remain in solution due to the
confining hydrostatic pressure (>700 patm) except where
pCO, levels are anomalously high in ocean upwelling zones.®®
Thus, if porous flow of injected CO, were to migrate through a
basalt reservoir, through low-permeability sediment caprock
and into the ocean, deep seawater will ultimately provide a
secure reservoir with virtually infinite storage capacity. Flow
through porous rock is unlikely to be abrupt®” and seawater
displaced by CO, injection will be benign in the ocean. Also,
because subseafloor basalts are laterally extensive and saturated
with seawater, the consequences of small pressure increases due
to injection are unlikely to cause faulting.

In the absence of such risks and concerns, the regulations
governing sequestration in a remote offshore location may be
simplified and implemented with minimal human inconven-
ience. Kerguelen Island and surrounding seas are indeed remote
and uninhabited, but remain a territory of France. Implement-
ing the activities proposed here would certainly require
appropriate access agreements, international monitoring
protocols, and more fully developed regulations for carbon
sequestration. Collective regulation could be most effective
through public-private partnerships, including energy, resource,
environmental, and intergovernmental expertise.

In summary, the potential benefits of long-term carbon
management at a remote ocean site such as Kerguelen are large.
Choosing offshore sites for CO, air capture using carbon-
neutral energy sources and in close proximity to large and
secure reservoirs for sequestration allows for optimization of
the energy resources, minimum human and environmental
risks, measurable CO, mitigation, and a greater likelihood for
public acceptance. Specific challenges for CO, capture in the
Kerguelen environment are its constant high humidity, low
temperatures, and remote location. Other locations with
carbon-neutral energy sources and in close proximity to large
and secure reservoirs for geological sequestration of captured
CO, may be viable as well. Some other possible locations with
large wind resources”' and potential basalt reservoirs* include
Iceland and Greenland in the north Atlantic, and Chile and
Argentina in the south Atlantic oceans. Mobilizing the
industrial infrastructure in these areas would be costly, but
could ultimately provide sufficient air capture and sequestration
capacity for the reduction of atmospheric carbon to
preindustrial levels. A cost/benefit analysis of such remote
installations must incorporate all technical and societal factors,
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although many costs remain difficult to estimate at the present
time. Nevertheless, CO, is accumulating daily in the
atmosphere and new scientific research, geophysical and
hydrological surveying, technological site assessment, and
economic evaluation should be energized in order to explore
and evaluate the feasibility of air capture and sequestration in
remote locations as soon as possible. Considering remote
locations for global CO, management is clearly one possible
solution that will require considerable investment and long-
term commitments to research. Site-specific studies must be
conducted at any potential target location. Establishment of a
viable pilot program in the next few years would allow
assessment of scaling up these technologies and sustaining
combined solutions that address the global climate change issue
for the long-term.
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