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Abstract: Optical frequency domain imaging (OFDI) can identify key 
components related to plaque vulnerability but can suffer from artifacts that 
could prevent accurate identification of lipid rich regions. In this paper, we 
present a model of depth resolved spectral analysis of OFDI data for 
improved detection of lipid. A quadratic Discriminant analysis model was 
developed based on phantom compositions known chemical mixtures and 
applied to a tissue phantom of a lipid-rich plaque. We demonstrate that a 
combined spectral and attenuation model can be used to predict the presence 
of lipid in OFDI images. 
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1. Introduction 

1.1 Coronary artery disease (CAD) 

Coronary artery disease (CAD) is a progressive condition where lipid-containing plaques 
build up in the coronary artery wall, potentially leading to myocardial infarction or heart 
attack. In the United States, coronary artery disease is the cause of 1 in 6 deaths [1]. It has 
been shown that a large percentage of plaques that are prone to rupture and cause acute 
coronary syndromes have thin fibrous caps and large necrotic lipid pools, a high density of 
macrophages, and intraplaque hemmorage [2]. In a study to evaluate demographic and 
morphological variables to differentiate culprit versus non-culprit vulnerable plaques, of 
plaques with similar luminal narrowing, cap thickness and lipid-rich necrotic core were the 
only parameters that were significantly different between the culprit and non-culprit groups 
[3]. There is a great need to identify these high-risk plaques to predict which plaques that may 
go on to a myocardial infarction and prevent coronary events from occurring. 

1.2 Optical coherence tomography characterization of plaques 

Optical coherence tomography (OCT) and optical frequency domain imaging (OFDI), also 
known as Frequency Domain OCT (FD-OCT), provide subsurface imaging at depths up to 1-2 
mm in biological tissue with high spatial resolution (10 μm axial resolution). Fiber-based 
OCT systems can be incorporated into catheters to image internal organs. These features have 
made OCT a powerful tool for cardiovascular imaging. Previous studies by our group and 
others have shown that OCT can identify key components related to plaque vulnerability such 
as lipid pools, macrophages [4,5], calcium [6], and cap thickness [7,8]. Currently lipid rich 
plaques are identified within OCT images as a signal poor region with diffuse boundaries [9]. 
The negative contrast for lipid places these OCT diagnoses at risk for misinterpretation due to 
artifacts and other causes of signal loss. A method for independently detecting the presence of 
lipid is therefore highly sought after. 

Attenuation and backscattering analysis of axial scans using the single scattering model 
have been used to quantify the difference between fibro-calcific, fibrous, and lipid rich 
plaques [10–14]. From an ex vivo, histopathologic correlation study conducted by Xu et. al 
regions with lipid had a high attenuation coefficient and high backscattering coefficient. 
Whereas fibrous regions had a low attenuation coefficient and high backscattering coefficient, 
and calcific regions had a low attenuation coefficient and low backscattering coefficient [13]. 
van der Meer et. al conducted a correlative histopathology study of human carotid artery 
segments ex vivo, and measured the attenuation coefficient within the intima, media, lipid-rich 
regions, calcific regions and thrombus [5]. They were able to show significant differences in 
the attenuation coefficient within calcific and lipid-rich regions. However, in comparison to 
Xu et. al, they showed a significant decrease in attenuation coefficient within lipid-rich 
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regions. Van Soest has been recently translated attenuation analysis to catheter-based images 
of atherosclerotic plaques [14]. Stationary OCT images with ECG registration were obtained 
to analyze the effect of catheter and heart motion [14]. In this paper, we build upon this body 
of work by providing spectroscopic information that is complementary to the attenuation 
coefficient for plaque classification. 

1.3 Objective 

Our objective is to develop and validate an algorithm for automatic detection of lipid within 
OFDI images. Analysing the spectral signature of the acquired data can further enhance OCT 
discrimination of atherosclerotic plaques. We will employ spectroscopic OCT (SOCT), a post-
processing technique that uses time-frequency analysis to generate depth resolved spectra 
[15–18]. SOCT has been used to analyze absorption due to oxy-and deoxy-hemoglobin 
[19,20], assess contrast enhancement using near infrared dyes [21] and nano-particles [22], 
and measure scattering dependent spectral modulations to detect precancerous lesions [23]. In 
this paper, we present the use of SOCT for automated classification of lipid through 
morphological and depth resolved spectroscopic analysis of optical frequency domain images. 
To explore the roles contributing to spectral differences, phantoms of increasing complexity 
were used. 

2. Materials and methods 

Near infrared basis spectra of pure substances related to plaque vulnerability and intravascular 
imaging (Fig. 1) were acquired with the Cary Varian spectrophotometer (Agilent Santa Clara, 
CA). The samples included cholesterol (Sigma, C8667), collagen (Sigma, C9879), calcium 
(Sigma Aldrich 289396), glycerol trioleate (Sigma, T7752), distilled water, omnipaque (GE 
Healthcare) and visipaque (GE Healthcare). For opaque samples, the Diffuse Reflectance 
Accessory with an integrating sphere was used. Within the bandwidth of the light source used 
for OFDI imaging in this study, λc = 1300nm, Δλ = 100nm, water and cholesterol have nearly 
linear absorbance spectra. The water absorbance spectrum increases with wavelength whereas 
the cholesterol absorbance spectrum decreases with increasing wavelength (Figs. 1a, 1b). 
Calcium and collagen has a nearly flat absorbance spectrum over the wavelength region of the 
light source. Omnipaque and visipaque are common contrast agents used to flush the coronary 
artery during in vivo OCT imaging [24] and has similar absorbance spectra to water. 

 

Fig. 1. (a) Near infrared absorbance spectra of pure substances related to plaque vulnerability 
and intravascular OCT imaging. (b) Absorbance spectra over OFDI source bandwidth. The 
wavelength range used within our study was 1250 to 1350 nm. 
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2.1 Cholesterol mixture phantoms 

To evaluate the ability of SOCT to detect lipid, phantoms were created using solutions of 
known chemical compositions. A subset of the compounds shown in Fig. 1 were used to 
create the phantoms. Table 1 shows the compositions of first set of phantoms comprised of 
mixtures of cholesterol (Ch), collagen (Co), calcium (Ca), glycerol trioleate (T), and distilled 
water (W) to approximate the chemical composition of plaque. The phantom compositions 
were guided by a study by Jaross et al measuring chemical compositions within human 
atherosclerotic plaques [25]. To ensure that we were observing differences due to presence of 
cholesterol and not absence of water, compositions with 10, 20, and 30% calcium were also 
imaged. A mortar and pestle was used to prepare the compounds and make them as 
homogeneous as possible. Phantom compositions were placed in a quartz cuvette with a 1 mm 
path length for imaging. 

Table 1. Composition of Phantoms 

Phantom 
Name 

Total Cholesterol 
[%] 

Collagen 
[%] 

Calcium 
[%] 

Trioleate 
[%] 

Water 
[%] 

Sample size 
(images) 

W 0 0 0 0 100 10 

T 0 0 0 2 98 25 

Ch10 10 0 0 2 88 24 

Ch20 20 0 0 2 78 65 

Ch30 30 0 0 2 88 45 

Ca10 0 0 10 2 78 10 

Ca20 0 0 20 2 68 10 

Ca30 0 0 30 2 78 10 

Co 0 8 0 2 68 20 

CoCh10 10 8 0 2 68 35 

CoCh20 20 8 0 2 90 60 

CoCh30 30 8 0 2 80 40 

2.2 Artificial lipid plaques 

The second set of phantoms was designed to give the appearance of a lipid rich plaque within 
OFDI images. Artificial plaques were created by injecting fat emulsions (mayonnaise, Kraft) 
into the tunica media layer of fresh normal swine aorta. Mayonnaise was chosen as a fat 
emulsion for our phantom plaque because it is composed of soybean oil, which has primary 
lipid compositions of C18:2 (linoleic acid), C18:1 (oleic acid) and C16:0 (Palmitic acid) 
[26,27]. This has a similar lipid composition to coronary plaques, where the primary 
cholesterol oleate and cholesterol linoleate account for approximately 75 percent of all 
cholesterol esters [28–30]. In addition, mayonnaise was chosen over butter or oil because it is 
easily injectable and provides a scattering signature (data for butter and oil not shown). This 
will allow the evaluation of detecting a fat emulsion that is localized underneath a scattering 
media. Samples were imaged within 18 hours of sacrificing the animal. Tissue samples were 
placed in phosphate buffered saline. Imaging at room temperature (25° C) occurred directly 
after making the plaque phantoms. 

2.3 Imaging protocol 

All imaging was conducted with a custom built OFDI system, previously described [31]. 
Briefly, the system had a 1300 nm center wavelength, 100 nm bandwidth, and 52kHz axial 
line rate. 5 mm B-scan images were acquired of all samples. After imaging, a subset of the 
aortic phantom samples (n = 16) was placed in neutral buffered formalin for histological 
processing. Frozen cross sectional sections (10µm thickness) were stained Hemotoxylin and 
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Eosin (H&E). H&E sections were taken every 250µm throughout the volume were made for 
each sample. Slides were digitized using a NanoZoomer 2.0-HT slide scanner (Hamamatsu) at 
20X. 

2.4 Depth resolved spectral analysis 

The short time Fourier transform (STFT) was used to generate depth resolved spectra. 
Windowed (Hanning) sections of the axial scan were Fourier transformed. There was a 90% 
overlap between successive windows, resulting in a 51μm axial resolution (in tissue) within 
the spectrogram. The spectrograms derived from 64 adjacent axial scans were averaged for 
final analysis. The single scattering model [Eq. (1)] was used to calculate the attenuation 
coefficient (from averaged axial lines) and the attenuation spectra (from averaged 
spectrograms). Within the first few hundred microns below the lumen surface, the axial 
intensity profile can be approximated by a first order model of scattering, where the 
backscatter intensity, I, decreases in an exponential manner as a function of axial depth, r [32]. 
The rate at which the intensity falls is attributed to the attenuation coefficient, µt, which is 
equal to the sum of the scattering and absorption coefficients. This model assumes that the 
region over which the attenuation coefficient is measured is homogeneous. For Fourier 
domain systems, an additional term is included to describe the signal fall off S(r), which is a 
function of the half width of the roll-off function, zw, and position of the center of the scan 
after frequency shifting, zc [14]. 
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Preprocessing was used to reduce the variability due to high frequency oscillations and 
intensity offsets in the attenuation spectra. A Savasky Golay filter, with a 4th order 
polynomial was used to smooth out the spectra and the standard normal variate (SNV) [Eq. 
(2)] reduce intensity differences while maintaining spectral shape [33]. 
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2.5 Spectral parameter extraction and classification model 

The preprocessed attenuation spectra, µ’t(x, z, λ) can be described as a linear combination of 
the principal component spectra, PC(λ), where the fitting coefficients, c(x, z), are weights for 
each principal component spectra [Eq. (3)]. For the subsequent analysis, the first three 
principal component spectra (PC1(λ), PC2(λ), PC3(λ)) were used for model fitting. 
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The image set of phantoms outlined in Table 1 was used to develop a prediction model using 
quadratic discriminant analysis (Fig. 2). Inputs to the model included attenuation coefficient 
and spectral fitting coefficients. Model output was the probability for each pixel being 
assigned to the twelve compositions outlined in Table1 and the final classification (Fig. 3). 
The model was implemented in Matlab R2010b. 

 

Fig. 2. Classification model using quadratic Discriminant analysis. The training data set 
consisted of fitting coefficients for the first three principal component spectra, pc1, pc2, pc3, 

the attenuation coefficient, and the class (composition outlined in Table 1). Quadratic 
Discriminant analysis was conducted discriminant functions to describe each class. 

2.6 Statistical analysis 

Results are presented as mean +/− standard deviation. Analysis of variance (ANOVA) with 
Tukey’s multiple comparison tests was used for the evaluation of the significance of 
individual parameters. P-values less than 0.05 was considered statistically significant. 
McNemar’s test was used to evaluate the outcome of classification models developed with (1) 
μt, (2) c1, c2, c3, and (3) μt, c1, c2, c3 by assessing which cases were misclassified by one model 
and not the other. 

3. Results 

3.1 Cholesterol phantom mixtures 

The mean attenuation spectra of the twelve phantom compositions are shown in Fig. 3. Water 
(W) and 2% trioleate (T) had an increasing attenuation with increasing wavelength, whereas 
cholesterol had a decreasing attenuation with increasing wavelength. Calcium (Ca) phantoms 
had a relatively flat attenuation spectra. Phantoms with collagen (Co) and cholesterol (Ch) 
also exhibited a decrease in attenuation spectra with increasing wavelength. Preprocessing 
reduced high frequency spectral modulations and removed intensity bias (Figs. 4d-4f). 
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Fig. 3. Attenuation spectra measured using time frequency analysis from phantoms imaged 
within 1mm path length cuvette. (a) Attenuation spectra of phantoms composed of distilled 
water and varying concentrations of cholesterol. (b) Attenuation of phantoms composed of 
distilled water and various concentrations of calcium. (c) Attenuation of phantoms composed 
of distilled water, collagen, and various concentrations of cholesterol. (d-f) Preprocessing of 
attenuation spectra using SVN and a Savasky Golay filter corresponding to attenuation spectra 
in a-c. Preprocessing reduced intensity bias and high frequency oscillations to highlight 
spectral shape. The mean is plotted as a solid line with the shaded area representing the 
standard error. 

The principal component spectra used in the model are shown in Fig. 4. The first three 
principal component spectra had eigenvalues of 580.6, 203.5, and 119.6 respectively, which 
together represented 76.90% of the energy within the data sets. The first principal component 
spectrum, PC1, resembles the absorbance spectra of water. Likewise, the second principal 
component spectrum resembles the cholesterol absorbance spectra. Figure 4 shows an 
example preprocessed attenuation spectra, obtained from a 624 µm region, is overlaid with the 
modeled spectra consisting of a linear combination of PC1, PC2, and PC3. 

 

Fig. 4. Modeling attenuation spectra using principal component spectra. (a) Principal 
component spectra derived from principal component (PC) analysis. The first three PC spectra 
were included for modeling. (b) Example of preprocessed cholesterol 30% spectra (solid line). 
Fit is the linear combination of principal component spectra (dashed line). (c) Example of pure 
water preprocessed spectrum (solid line). Fit is the linear combination of principal component 
spectra (dashed line). Residuals of fit within (b) and (c) are shown in grey. 

Figure 5 shows the normalized confusion matrices for the three models for classifying the 
phantoms outlined in Table 1. An ideal model will have ones (white) along the diagonal. As 
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can be seen in Fig. 5a, a large portion of collagen samples were misclassified as 30% 
cholesterol in the Discriminant model based on attenuation coefficient (µt) only. Likewise, the 
Discriminant model based on spectral fitting coefficients alone (Fig. 5b) had low 
discriminating power between samples with calcium and collagen. However, the combined 
algorithm (Fig. 5c), incorporating both attenuation and spectral fitting showed increased 
accuracy compared to models based on attenuation or spectral shape alone. Importantly, the 
magnitude of attenuation has poor correlation coefficients R2 = 0.58, 0.02, 0.05 with spectral 
fitting coefficients c1, c2, and c3 respectively, indicating that this the inclusion of spectroscopic 
data adds useful information. 

 

Fig. 5. Normalized confusion matrices are used to show the results of the Discriminant analysis 
model. (a) Model incorporating attenuation coefficients only. (b) Model incorporating spectral 
fitting coefficients only. (c) Model incorporating both attenuation coefficient and spectral 
fitting parameters. The classification accuracy improves significantly by combining 
information from both the magnitude of the attenuation coefficient and the spectral shape. 
Dashed lines indicate compositions with similar components but varying concentrations. 
Within the model incorporating spectral shape and magnitude of attenuation, we observe a high 
degree of misclassification between groups of similar components. W-water, T-trioleate, Ch-
Cholesterol, Ca-Calcium, Co-Collagen, Co-Ch-Collagen and Cholesterol. 

McNemar’s test was conducted to evaluate if the addition of spectral information 
improved classification accuracy (Table 2) for the models presented in Fig. 5. Pair-wise 
comparisons of classification accuracy between quadratic discriminant analysis models with 
input parameters of attenuation, spectral fitting coefficients, and the combination of 
attenuation and spectral fitting coefficients were compared. The reference chi-squared value 
that for a p-value less than 0.05 and 11 degrees of freedom, χ2

(11,0.95), was 19.675. Table 2 
includes the χ2 values for the pairwise comparisons, where bolded values indicate that models 
have a significantly different accuracy (p<0.05). Within our models for discriminating 12 
different compositions, as outlined in Table 1, a model based on attenuation was not 
significantly different from a model based on spectral fitting coefficients. However, a model 
combining both attenuation and spectral fitting had a significantly improved accuracy than 
either parameter alone. 

Table 2. McNemar’s Values to Compare Discriminant Analysis Models Using 
Attenuation Coefficient and Spectral Fitting Parameters, Where the Output for the 

Model Are the 12 Compositions Described in Table 1* 

Method variables 
(prediction rate) 

Attenuation 
(31.69%) 

Spectral Fitting 
(34.30%) 

Attenuation and 
Spectral Fitting 

(50.29%) 
Attenuation NA 0.48 47.61
Spectral Fitting  NA 37.21
Attenuation and 
Spectral Fitting 

  NA 

*Bolded values indicate that models have a statistically different accuracy. 

From the confusion matrices in Fig. 5 we observe that all models did not have a large 
discrimination power for detecting concentrations. Within the combined model, phantoms 
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with a low concentration of cholesterol were misclassified as having a larger percentage of 
cholesterol. Likewise, phantoms with a low percentage of calcium were misclassified as 
having a large percentage of calcium. When we collapsed the groups Ch10, Ch20, and Ch30 
into Ch, Ca10, Ca20, and Ca30 into Ca, and CoCh10, CoCh20, and CoCh30 into CoCh, we 
found that the overall predication rate for the combined model to 72.6%. The results of the 
quadratic Discriminant analysis models with the new classes are shown as confusion matrices 
in Fig. 6. 

 

Fig. 6. Normalized Confusion matrices are used to show the results of the Discriminant 
analysis model. (a) Model incorporating attenuation coefficient. (b) Model incorporating 
spectral fitting coefficients. (c) A model incorporating both attenuation coefficient and spectral 
fitting parameters. The classification accuracy improves significantly by combining 
information from both the magnitude of the attenuation coefficient and the spectral shape. W-
water, T-trioleate, Ch-Cholesterol, Ca-Calcium, Co-Collagen, Co-Ch-Collagen and 
Cholesterol. 

McNemar’s values for the models with 6 output classes (W-water, T-trioleate, Ch-
Cholesterol, Ca-Calcium, Co-Collagen, Co-Ch-Collagen and Cholesterol) are shown in Table 
3. The chi-squared value for a model with five degrees of freedom for a p-value less than 
0.05, χ2

(5,0.95), was 11.070. Table 3 includes pairwise comparisons of the model outputs, where 
bolded values indicate a significantly different accuracy. Within the model outputs for 6 
classes, the discriminant model based on spectral fitting was more significant that the model 
of attenuation. Furthermore, the combined model of attenuation and spectral fitting had a 
significantly improved accuracy compared to models of attenuation or spectral fitting. 

Table 3. McNemar’s Values to Compare Discriminant Analysis Models of 6 Classes (W, 
T, Ch, Ca, Co, Co-Ch) Using Attenuation Coefficient and Spectral Fitting Parameters* 

Method variables 
(prediction rate) 

Attenuation 
(38.98%) 

Spectral Fitting 
(60.45%) 

Attenuation and 
Spectral Fitting 

(72.60%) 
Attenuation NA 34.72 91.01
Spectral Fitting  NA 23.52
Attenuation and 
Spectral Fitting 

  NA 

*Bolded values indicate that models have a significantly different accuracy. 

3.2 Lipid plaque phantoms 

Since the cuvette based phantom models do not accurately model the attenuation 
characteristics of arterial tissue, the classification model using spectral fitting coefficients 
(Fig. 6b) was used for classification of tissue phantom plaques. Figure 7 is of a representative 
area of normal swine aorta. Cross sectional images within the volume (7b,7f) are shown with 
corresponding probability of cholesterol (7c,7g). A hue, saturation, value visualization method 
was used to display the full output of the model, encoding classification in hue and probability 
associated with the classification in saturation and value. Within our results, cholesterol is 
shown in yellow and collagen shown in red. As seen in panels 7d and 7h, the normal aorta had 
no pixels classified as cholesterol. This is further shown in the depth integrated probability 
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maps of cholesterol, 7i, and collagen, 7j. Within the data set of normal aorta, there was a low 
and probability of pixels classified as cholesterol and a high probability of pixels classified as 
collagen. 

 

Fig. 7. Representative classification of normal swine aorta. Two sites within volumetric data set 
are shown in (a-d) and (e-h). H&E (a,e) of normal sites are shown for corresponding OFDI 
images (b,f). (c,g) Corresponding depth resolved probability maps for cholesterol are shown for 
OFDI images, with a model output of nearly no probability of cholesterol within images. (b,f). 
High probability of cholesterol appears yellow and low probability of cholesterol appears 
black. (d, h) Model output images incorporating classification and probability associate with 
the classification, where hue is dedicated as the class and probability associated with that 
classification encoded as value and saturation. Cholesterol – Yellow, Other – Red. (i) depth 
integration of cholesterol probability within volumetric OFDI data set showing low probability 
over volume of normal aorta. Low probability of lipid was coded as black and high probability 
of lipid was coded as bright yellow. (j) Depth integration of cholesterol probability within 
volumetric OFDI data set showing high probability over volume. Low probability of collagen 
was coded as black and high probability of collagen was coded as bright red. Scale bar 1mm. 

To further evaluate the classification model, we developed phantoms to mimic the 
qualitative appearance of lipid rich plaques. An example of the lipid plaque is shown in panel 
8b. Regions with the fat emulsion show a signal poor region with diffuse boundaries, 
consistent with the published qualitative description of lipid plaques [9]. This model allowed 
for a controlled evaluation of the classification model in the presence of both scattering and 
absorption. 

Figure 8 depicts images from a representative lipid plaque phantom. Panels 8a-8d are of a 
region at the center of the plaque. Although the cap thickness is 0.79mm at the center, 
cholesterol is still detected within the depth resolved probability map of lipid (Fig. 8c) and 
classification image (Fig. 8d). Whereas, when the cap was 1.17mm thick at the edge of the 
injected emulsion (Figs. 8e-8h), cholesterol was not observable within the depth resolved 
probability image (Fig. 8g) or the classification image (Fig. 8h). This is important, as both 
OFDI images look similar (Figs. 8b,8f). Chemograms are shown in panels (i) and (j), depth-
wise integrating the probability maps for cholesterol and collagen within the volume. The 
location of the injected fat emulsion is shown as a circular area with increased cholesterol 
probability (Fig. 8i) and decreased collagen probability (Fig. 8j). 
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Fig. 8. Representative classification of lipid plaque phantom. Two sites within volumetric data 
set are shown in (a-d) and (e-h). (a,e) Histology taken through two cross sections within 
phantom plaque, showing void created by injection of fat emulsion. Corresponding H&E and 
oil-red-o stains respectively showing void created by the injection of a fat emulsion within 
center of plaque. (b, f) OFDI image of phantom lipid plaque corresponding to histology shown 
in panels a and e respectively. OFDI image shown in panel b is taken through the center of the 
artificial plaque whereas panel f is taken from the edge of the plaque. (c,g) Probability of 
cholesterol image derived from the output of the classification algorithm. A high probability of 
cholesterol is measured from the OFDI image taken through the center of the plaque. A low 
probability of cholesterol is measured through the edge of the plaque. (d, h) Classification and 
probability image utilizing a HSV convention where hue encodes class (red-other, yellow-
cholesterol) and saturation and value encode probability. (i) Depth resolved integration of 
cholesterol probability. (j) Depth resolved integration of collagen probability. Within 
chemograms, lipid plaque can be seen as a circular region with increased cholesterol (i) and 
decreased collagen probability (j). Low probability of lipid was coded as black and high 
probability of lipid was coded as bright yellow. Low probability of collagen was coded as black 
and high probability of collagen was coded as bright red. Scale bar = 1mm. 

The phantom plaques made by injecting fat emulsions had a cap thickness of 0.42mm ± 
−0.15mm (mean ± standard deviation) as measured by histology through the center of the 
plaque and lipid thickness 1.19mm ± −0.35mm (mean ± standard deviation) within the 
phantom plaque was measured as the void within the H&E frozen section analysis. Figure 9 
shows regression analysis of fractions of pixels within the volume classified as collagen or 
cholesterol versus lipid thickness and cap thickness. Panel 9-A shows lipid thickness versus 
proportion of pixels classified as cholesterol. Regression analysis shows increased pixels 
classified as cholesterol with increasing lipid thickness. The relationship was significant, with 
p-value of 0.0158. In addition, normal areas with no lipid, had nearly zero pixels classified as 
cholesterol. Likewise, as the “cap” thickness increased, the proportion of pixels classified as 
cholesterol decreased, p = 0.0138. As lipid thickness increased, proportion of pixels classified 
as collagen decreased, p = 0.0339. However, collagen classified and cap thickness did not 
have a significant relationship. As shown in Fig. 9, proportion of pixels classified as 
cholesterol were significantly related to lipid thickness and cap thickness measured from 
histology slides, where cap was defined as the amount of tunica media overlying the lipid 
injection. 
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Fig. 9. Comparison of histology to classification of OFDI images by depth resolved spectral 
analysis. Lipid and cap thickness measured from histology slides versus fraction of pixels 
classified as cholesterol or collagen. Each point on the graph represents a separate sample. (a) 
Comparison of fraction of pixels classified as cholesterol to total pixels within volume versus 
lipid thickness measured from frozen histology slides at center of lipid plaque. Importantly, for 
three dimensional image sets of normal areas, nearly 0% of pixels were classified as 
cholesterol. (b) Comparison of fraction of pixels classified as cholesterol to total pixels with 
thickness of cap measured from frozen sections. We observed a significant negative trend, as 
cap thickness increases, the fraction of pixels classified as cholesterol decreases. We also 
observed a significant increase in pixels classified as cholesterol with increasing lipid thinness. 
(c) Comparison of the fraction of pixels classified as collagen versus lipid thickness has a 
significant negative trend, also observed within chemogram shown in 8i.(d) Comparison o 
fraction of pixels classified as collagen versus measured cap thickness did not have a 
significant correlation. Normal areas: red – squares, lipid plaques: black circles. 

4. Discussion and conclusion 

In this paper we have shown that a combined spectral and attenuation model, derived from the 
OCT data, can be used to accurately predict the presence of chemicals and molecules, 
including lipid, collagen, and calcium, in the OCT signal. Attenuation and backscattering 
analysis of axial scans using the single scattering model have been previously used to quantify 
the difference between fibro-calcific, fibrous, and lipid rich plaques. We have found that the 
combined model has significantly better accuracy than either spectral attenuation or 
magnitude of attenuation alone. 

The model was validated both for chemical mixtures in a cuvette and a plaque phantom 
model based on injecting fat emulsions in the artery wall. To explore the roles contributing to 
spectral differences, phantoms of known with known chemical compositions and artificial 
lipid phantoms were imaged with an OFDI system. Cuvette based phantoms allowed us to 
evaluate the contributions for each component. Water has a linear increasing absorbance 
within our bandwidth, which is recapitulated using SOCT. Phantoms of just collagen and 
water have a relatively flat attenuation spectral slope. Our analytical phantom included the 
largest components within atherosclerotic plaques [25]. The phantom can be further expanded 
to include compositions with elastin, calcium carbonate, and cholesterol esters [25,34]. The 
analytical phantom model produced attenuation coefficients in the range of coronary arteries, 
but not as high as atherosclerotic plaques [14]. This may be due to the lower percentage of 
collagen used within our phantoms. 
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Using the analytical phantom model we demonstrated that the addition of spectral shape 
adds information to standard attenuation coefficient analysis. When combined the 
classification accuracy increased. However, our model was not able to reliably measure 
concentration of cholesterol or calcium and we therefore simplified the algorithm to assess the 
presence of each component. 

To ensure that we were detecting spectral differences due to the presence of cholesterol 
and not just the reduce percentage of water, we imaged phantom compositions with mixtures 
of calcium. As shown in the confusion matrices in Fig. 5, the models have a low percentage of 
misclassification between cholesterol and calcium based phantoms. As shown in Jaross et al 
[25], the range of total cholesterol within a plaque was measured to be two to twenty-three 
percent, the range of water fifty four to seventy five percent, and collagen three to twenty one 
percent. Therefore our analytical model closely represents plaque composition. 

Atherosclerotic plaques are heterogeneous, with components ranging from fibrin, red 
blood cells, smooth muscle cells [35], calcium, elastin [34], and infiltrates of macrophages 
[4]. In addition, these components are heterogeneous spatially and in composition. These 
features were not present within our lipid plaque phantom. Previous studies using image 
analysis has been conducted to detect the presence of macrophages [4] and calcium [36] and 
polarization sensitive OCT to discriminate collagen [37]. Therefore, our plaque addresses an 
important limitation within OCT imaging to reduce the ambiguity in detecting lipid within 
plaques. 

Our classification model built upon previous studies that have shown that the attenuation 
coefficient is different between fibrous, lipid-rich, and calcific plaques [10–14]. Using time-
frequency analysis to obtain depth resolved attenuation spectra. We added spectral shape as an 
additional parameter to improve classification of lipid. The STFT has a time-frequency trade-
off. As applied to OCT images, that means there is a trade-off between spectral resolution and 
axial resolution. We choose to have increased spectral resolution at the expense of axial 
resolution. This is shown in the depth resolved probability maps in Figs. 7 and 8. Adjacent 
axial lines were averaged to increase the SNR of the spectrograms. Once the algorithm is 
translated to classification of human plaques with spatial heterogeneity and motion, averaging 
as many lines will not be feasible without blurring features. 

Our tissue phantoms provided a simple way to create lipid plaques to test our algorithms. 
This allowed for analysis as to the limits of spectral analysis to measure the depth of a lipid 
pool and thickness of a fibrous cap. We conducted additional experiments with phantom 
plaques created with melted butter and vegetable oil (data not shown). Plaques created with 
the mayonnaise as the injectable fat emulsion was chosen because the scattering properties of 
mayonnaise aided in creating the qualitative appearance of a lipid plaque, which appears as 
diffuse borders within OCT images. In addition, compositions described in Table 1 were not 
viscous and could not be injected. The plaque model provided a test bed to analyze the 
algorithm in the setting of a known plaque composition. However, our plaque was created to 
feature only the lipid component of plaques. Within our model we were not able to create 
phantom plaques with cap thicknesses less than 100μm. The average plaque cap thickness 
created was 0.42mm ± −0.15mm (mean ± standard deviation). This limited our ability to 
further assess our algorithm with a thin-cap plaque model. In addition, due to the limited 
penetration depth of OFDI in the lipid phantom, the algorithm cannot quantify the volume of 
lipid. By analyzing the results from our phantom plaques, we were able to identify the limits 
to where the algorithm could accurately identify the presence of lipid/cholesterol. The SNR to 
which the algorithm failed was 24.98dB ± 7.7dB (mean ± STD). 

Within the plaque phantom model we were able to assess detection of lipid below varying 
depths of medial tissue. Using a model based solely on the spectral fitting coefficients, we 
showed a significant increase in pixels classified as cholesterol with increasing lipid thickness 
as measured by frozen section histology analysis. Importantly, we showed that within aorta 
without the injection there were nearly no pixels classified as cholesterol (Fig. 9). Frozen 
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section analysis with H&E and ORO were able to show the dimensions of the plaque created, 
and within ORO stain the presence of lipid. 

We developed a discriminant analysis model where we assumed that the samples imaged 
had a composition consisting of cholesterol, collagen, trioleate, and water. The model uses the 
spectral attenuation (scattering and absorption) of the samples to determine the probability 
that the sample is one of the compositions in Table 1. The lipid absorption is 0.02mm−1 and 
water 0.1mm−1 at our center wavelength of 1310 nm [38]. However, the water absorption 
increases to 0.3mm−1 at 1350nm [38], resulting in 30% absorption over 1mm. Therefore for 
water we will see a spectral dependent increase in water as shown in Fig. 4c. The spectral 
lipid absorption is 0.03mm−1 at 1250nm [38]. Taken together with the fact that scattering also 
decreases with increasing wavelength, within lipid/cholesterol we have a decreasing 
attenuation with increasing wavelength (Fig. 4b). It may be possible to further increase the 
accuracy of the technique if we increase the bandwidth of the light source. Within this study, 
we have shown that we can identify the presence of cholesterol. However, another metric for 
assessing vulnerability is to determine the proportion of types of cholesterol within a plaque. 
Cholesterol and cholesterol oleate have an absorption peak and slightly different spectral 
shapes around 1200 and 1700nm (Fig. 1). The utilization of a light source with a spectrum 
that overlaps the 1210 nm lipid absorption peak could enable easier identification of lipid and 
possibly even differentiation of types of cholesterols esters. A broader bandwidth light source 
that incorporates the 1200nm peak (Fig. 1a) will further improve extraction and possibly 
allow separation of scattering and absorption from the measured attenuation spectra [39,40]. 
This will enable easier identification of lipid absorption and enable differentiation of types of 
cholesterols esters. 

The wavelength range of our existing OFDI source does not capture the peak of 
cholesterol absorption at 1200nm, we are sensitive to the tail portion. Within our current light 
source bandwidth, the absorbance for cholesterol decreases, whereas, water, which is a large 
component of fibrous tissue, has increased absorption at the end of our bandwidth. Although 
our bandwidth is not optimal for spectral analysis of cholesterol/lipid, the strength of this 
work is that we are operating at the wavelength range of current clinical intravascular imaging 
systems. 

Scattering has two wavelength dependent features. First, scattering decreases nearly 
linearly with increasing wavelength. Secondly, scattering produces wavelength dependent 
modulations that corresponds to the scatter size and scatter density [41]. Within our analysis, 
we suppressed the second effect with preprocessing using the Salvosky Galoy polynomial 
filter. In the future, the modulation frequency can be used to identify additional features of 
plaque vulnerability such as macrophages. 

Further validation of this method will make it possible to obtain chemical/molecular 
information from existing intracoronary OCT systems. An algorithm for automated 
classification of cholesterol plaques will enable easier and more accurate interpretation of 
intravascular OCT data sets by identifying depth resolved location of lipid. Our next step to 
accomplish this goal is to conduct a histological validation study of ex vivo atherosclerotic 
plaques in comparison with our classification model combining attenuation coefficient and 
spectral shape. 

We demonstrated that the addition of spectral information, via spectroscopic OCT, can 
improve the accuracy of detecting cholesterol. This has important implications for depth 
localization of lipid and necrotic cores within coronary plaques. Importantly, with one system 
we incorporated both morphological and spectral analysis. The addition of spectral shape 
provided complementary information. By using models combining spectral shape with 
attenuation coefficient, we can reduce ambiguity when analyzing intravascular images. This 
may have important applications in a variety of applications where there is endogenous 
absorption contrast within the light source bandwidth. 
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