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ABSTRACT 
 

Regulation of Matrix Metallopeptidase 1 in Breast Cancer Metastasis 
 

Eric Henckels 
 

Matrix Metallopeptidase 1 (MMP-1) expression has repeatedly been correlated to 

tumorigenesis and metastasis.  Yet, MMP-1 regulation in a metastatic context remains 

largely unknown.  Here we confirm differential MMP-1 expression in mammary 

carcinoma cells with varied metastatic potentials and identify a mechanism differentially 

regulating MMP-1.   

We show that MMP-1 expression is regulated by an AP-1 element in its promoter 

in highly metastatic MDA-MB-231 mammary carcinoma cell derivatives.  Fra-1, an AP-1 

family transcription factor, differentially binds this element in highly metastatic 

derivatives compared to low-metastatic cells and is required for MMP1 expression.  Fra-1 

mRNA levels are unchanged in the cell variants, however its protein levels are higher in 

the metastatic cells. There was no change in protein degradation rates, while protein 

synthesis rates of Fra-1 increased. These results suggest that protein translation of Fra-1 

is differentially regulated in these cells.  

Consistent with the importance of Fra-1 for tumor growth, we found that Fra-1 

overexpression is sufficient to increase cell motility and anchorage independent growth.  

These results suggest that Fra-1 regulation is critical for regulation of MMP-1 and 

metastasis. 



	
  

	
  

	
  

i	
  

Table of Contents 

Table	
  of	
  Contents	
  .....................................................................................................................................................	
  i	
  
List	
  of	
  Figures	
  ..........................................................................................................................................................................	
  iv	
  
List	
  of	
  Tables	
  ............................................................................................................................................................................	
  iv	
  

Acknowledgements	
  ................................................................................................................................................	
  v	
  

Dedication	
  ................................................................................................................................................................	
  vi	
  

Preface	
  .....................................................................................................................................................................	
  vii	
  

CHAPTER	
  1	
  ...................................................................................................................	
  1	
  

Introduction	
  ..............................................................................................................................................................	
  2	
  

Breast	
  Cancer	
  ...........................................................................................................................................................	
  3	
  
Morbidity/Mortality	
  ..............................................................................................................................................................	
  3	
  
Classifications	
  ...........................................................................................................................................................................	
  4	
  
Treatment	
  ..................................................................................................................................................................................	
  6	
  

Metastasis	
  ..................................................................................................................................................................	
  8	
  
History	
  .........................................................................................................................................................................................	
  8	
  
Progression	
  ................................................................................................................................................................................	
  9	
  
Metastatic	
  Inefficiency	
  ..........................................................................................................................................................	
  9	
  
Regulation	
  ................................................................................................................................................................................	
  15	
  
MDA-­‐MB-­‐231	
  Cells	
  and	
  Variants	
  ....................................................................................................................................	
  17	
  

MMP-­‐1	
  ......................................................................................................................................................................	
  19	
  
History	
  .......................................................................................................................................................................................	
  19	
  
Family	
  ........................................................................................................................................................................................	
  20	
  
Structure	
  ...................................................................................................................................................................................	
  20	
  
Expression	
  ...............................................................................................................................................................................	
  21	
  
Pathology	
  ..................................................................................................................................................................................	
  22	
  
Mechanism	
  ...............................................................................................................................................................................	
  23	
  
Regulation	
  ................................................................................................................................................................................	
  25	
  

AP-­‐1	
  ..........................................................................................................................................................................	
  26	
  
History	
  .......................................................................................................................................................................................	
  26	
  
Mechanism	
  ...............................................................................................................................................................................	
  28	
  
Structure	
  ...................................................................................................................................................................................	
  28	
  
Regulation	
  ................................................................................................................................................................................	
  29	
  

Fra-­‐1	
  in	
  Cancer	
  ......................................................................................................................................................	
  30	
  

MMP-­‐1	
  in	
  Cancer	
  ..................................................................................................................................................	
  31	
  
Expression	
  ...............................................................................................................................................................................	
  31	
  
Stromal	
  MMP-­‐1	
  ......................................................................................................................................................................	
  33	
  
MMP-­‐1	
  in	
  Tumorigenesis	
  and	
  Metastasis	
  ..................................................................................................................	
  34	
  
Function	
  ....................................................................................................................................................................................	
  36	
  



	
  

	
  

	
  

ii	
  

Concluding	
  Remarks	
  ...........................................................................................................................................	
  37	
  

References	
  ..............................................................................................................................................................	
  38	
  

CHAPTER	
  2	
  .................................................................................................................	
  74	
  

Methods	
  ...................................................................................................................................................................	
  75	
  
Analysis	
  of	
  Microarray	
  Data	
  .............................................................................................................................................	
  75	
  
Cell	
  Culture	
  ..............................................................................................................................................................................	
  75	
  
RNA	
  Purification,	
  cDNA	
  Reverse	
  Transcription,	
  DNase	
  Treatment	
  ................................................................	
  76	
  
Quantitative	
  Reverse	
  Transcription	
  Polymerase	
  Chain	
  Reaction	
  (qRT-­‐PCR)	
  ............................................	
  77	
  
Conservation	
  Mapping	
  ........................................................................................................................................................	
  78	
  
Luciferase	
  Assays	
  ..................................................................................................................................................................	
  78	
  
Immunoblot	
  Analysis	
  ..........................................................................................................................................................	
  81	
  
siRNA	
  treatment	
  ....................................................................................................................................................................	
  82	
  
Electrophoretic	
  Mobility	
  Shift	
  Assays	
  (EMSA)	
  .........................................................................................................	
  83	
  
Chromatin	
  Immunoprecipitation	
  (ChIP)	
  ....................................................................................................................	
  85	
  
Metabolic	
  Labeling	
  ...............................................................................................................................................................	
  86	
  
Soft	
  Agar	
  Assay	
  ......................................................................................................................................................................	
  87	
  
Scratch-­‐Wound	
  Assays	
  .......................................................................................................................................................	
  88	
  

References	
  ..............................................................................................................................................................	
  89	
  

CHAPTER	
  3	
  .................................................................................................................	
  91	
  

Introduction	
  ...........................................................................................................................................................	
  93	
  

Results	
  .....................................................................................................................................................................	
  96	
  
Correlation	
  of	
  MMP-­‐1	
  Expression	
  with	
  Cell	
  Line	
  Metastatic	
  Potential	
  .........................................................	
  96	
  
Mapping	
  of	
  Gene	
  Regulatory	
  Elements	
  .......................................................................................................................	
  97	
  
Characterization	
  of	
  AP-­‐1	
  family	
  members	
  in	
  MDA-­‐MB-­‐231	
  derived	
  cell	
  lines	
  .......................................	
  100	
  

Discussion	
  .............................................................................................................................................................	
  102	
  
Minimal	
  Promoter	
  Region	
  Sufficient	
  for	
  Differential	
  Expression	
  .................................................................	
  103	
  
Role	
  of	
  AP-­‐1	
  in	
  MMP-­‐1	
  Expression	
  and	
  Metastasis	
  ............................................................................................	
  104	
  
Conclusion	
  .............................................................................................................................................................................	
  105	
  

Figure	
  Legends	
  ....................................................................................................................................................	
  106	
  

Figures	
  &	
  Tables	
  .................................................................................................................................................	
  110	
  

References	
  ............................................................................................................................................................	
  120	
  

CHAPTER	
  4	
  ...............................................................................................................	
  124	
  

Introduction	
  .........................................................................................................................................................	
  126	
  

Results	
  ...................................................................................................................................................................	
  128	
  
Fra-­‐1	
  in	
  Scp-­‐2	
  and	
  Scp-­‐21	
  Nuclear	
  Lysates	
  Binds	
  the	
  MMP-­‐1	
  AP-­‐1	
  site	
  In-­‐Vitro	
  ..................................	
  128	
  
Fra-­‐1	
  Binds	
  the	
  AP-­‐1	
  Site	
  of	
  the	
  MMP-­‐1	
  Promoter	
  in	
  Scp-­‐2	
  and	
  Scp-­‐21	
  Cells	
  ........................................	
  129	
  
Fra-­‐1	
  Regulation	
  is	
  Translational	
  ...............................................................................................................................	
  129	
  
Stable	
  Expression	
  of	
  Fra-­‐1	
  in	
  Scp-­‐21	
  Cells	
  Increases	
  MMP-­‐1	
  Expression	
  ................................................	
  130	
  



	
  

	
  

	
  

iii	
  

Stable	
  expression	
  of	
  Fra-­‐1	
  increases	
  motility	
  and	
  anchorage	
  independent	
  growth.	
  ...........................	
  130	
  

Discussion	
  .............................................................................................................................................................	
  132	
  
MMP-­‐1	
  and	
  Fra-­‐1	
  Expression	
  Correlate	
  to	
  Metastatic	
  Potential	
  ...................................................................	
  132	
  
Translational	
  Regulation	
  of	
  Fra-­‐1	
  Regulates	
  MMP-­‐1	
  .........................................................................................	
  133	
  
Stable	
  Expression	
  of	
  Fra-­‐1	
  in	
  Non-­‐Metastatic	
  Cells	
  ............................................................................................	
  134	
  
Potential	
  functions	
  of	
  Fra-­‐1	
  or	
  MMP-­‐1	
  in	
  Invasion	
  and	
  Migration	
  ..............................................................	
  135	
  

Figure	
  Legends	
  ....................................................................................................................................................	
  137	
  

Figures	
  ...................................................................................................................................................................	
  141	
  

References	
  ............................................................................................................................................................	
  149	
  

CHAPTER	
  5	
  ...............................................................................................................	
  155	
  

Conclusions	
  ..........................................................................................................................................................	
  156	
  
MMP-­‐1	
  Upregulation	
  is	
  Common	
  in	
  Organ	
  Specific	
  Metastases	
  ....................................................................	
  156	
  

Future	
  Directions	
  ...............................................................................................................................................	
  157	
  
miRNA	
  Regulation	
  of	
  Fra-­‐1	
  ............................................................................................................................................	
  158	
  
MMP-­‐1	
  Activation	
  of	
  PAR-­‐1	
  ...........................................................................................................................................	
  159	
  
Improved	
  Gene	
  Signatures	
  ............................................................................................................................................	
  159	
  
Improved	
  Treatments	
  ......................................................................................................................................................	
  160	
  
In-­‐Vitro	
  Model	
  of	
  Disseminated	
  Tumor	
  Growth	
  ..................................................................................................	
  162	
  

Concluding	
  Remarks	
  .........................................................................................................................................	
  163	
  

References	
  ............................................................................................................................................................	
  164	
  

Appendix	
  ...............................................................................................................................................................	
  169	
  

  



	
  

	
  

	
  

iv	
  

List of Figures 

Chapter 1 
Figure	
  1–1	
  Structure	
  of	
  MMP-­‐1	
  Domains	
  (adapted	
  from	
  (Iyer	
  et	
  al.,	
  2006;	
  Whittaker,	
  2001)	
  ............	
  21	
  

	
  
Chapter	
  3	
  

Figure	
  3–1	
  Differential	
  expression	
  of	
  MMP-­‐1	
  in	
  Scp-­‐2,	
  Scp-­‐21	
  and	
  MDA-­‐MB-­‐231	
  cells.	
  .......................	
  111	
  
Figure	
  3–2	
  Conservation.	
  ..................................................................................................................................................	
  112	
  
Figure	
  3–3	
  The	
  -­‐174/+71	
  region	
  of	
  the	
  MMP-­‐1	
  promoter	
  is	
  necessary	
  and	
  sufficient	
  for	
  differential	
  

expression	
  in	
  Scp-­‐2	
  and	
  MDA-­‐MB-­‐231	
  cells.	
  ....................................................................................................	
  113	
  
Figure	
  3–4	
  The	
  -­‐94/-­‐27	
  region	
  of	
  the	
  MMP-­‐1	
  promoter	
  is	
  necessary	
  and	
  sufficient	
  for	
  differential	
  

expression	
  in	
  Scp-­‐2	
  and	
  MDA-­‐MB-­‐231	
  cells.	
  ....................................................................................................	
  114	
  
Figure	
  3–5	
  The	
  AP-­‐1	
  site	
  of	
  the	
  MMP-­‐1	
  promoter	
  is	
  necessary	
  for	
  differential	
  expression	
  in	
  Scp-­‐2	
  

and	
  MDA-­‐MB-­‐231	
  cells.	
  .............................................................................................................................................	
  115	
  
Figure	
  3–6	
  The	
  AP-­‐1	
  site	
  of	
  the	
  MMP-­‐1	
  promoter	
  is	
  necessary	
  and	
  sufficient	
  for	
  differential	
  

expression	
  in	
  Scp-­‐2	
  and	
  MDA-­‐MB-­‐231	
  cells.	
  ....................................................................................................	
  116	
  
Figure	
  3–7	
  AP-­‐1	
  mRNA	
  and	
  Protein	
  Expression.	
  ....................................................................................................	
  117	
  
Figure	
  3–8	
  Inhibition	
  of	
  Fra-­‐1	
  decreases	
  MMP-­‐1	
  Expression.	
  ..........................................................................	
  118	
  
Figure	
  3–9	
  Other	
  AP-­‐1	
  family	
  siRNAs	
  have	
  no	
  effect	
  on	
  MMP-­‐1	
  expression.	
  .............................................	
  119	
  

	
  
Chapter	
  4	
  

Figure	
  4–1	
  Fra-­‐1	
  binds	
  the	
  AP-­‐1	
  promoter	
  site	
  of	
  MMP-­‐1.	
  ................................................................................	
  141	
  
Figure	
  4–2	
  Fra-­‐1	
  binding	
  to	
  the	
  MMP-­‐1	
  promoter	
  is	
  greater	
  in	
  Scp-­‐2	
  than	
  Scp-­‐21	
  cells.	
  ....................	
  142	
  
Figure	
  4–3	
  Fra-­‐1	
  protein	
  levels	
  are	
  higher	
  in	
  Scp-­‐2	
  than	
  in	
  Scp-­‐21	
  cells	
  while	
  mRNA	
  expression	
  is	
  

similar.	
  ..............................................................................................................................................................................	
  143	
  
Figure	
  4–4	
  Degradation	
  of	
  Fra-­‐1	
  is	
  similar	
  in	
  Scp-­‐2	
  and	
  Scp-­‐21.	
  ...................................................................	
  144	
  
Figure	
  4–5	
  Translation	
  of	
  Fra-­‐1	
  protein	
  is	
  greater	
  in	
  Scp-­‐2	
  than	
  Scp-­‐21	
  cells.	
  ........................................	
  145	
  
Figure	
  4–6	
  Stable	
  HA-­‐tagged	
  Fra-­‐1	
  expression	
  in	
  Scp-­‐21	
  cells.	
  .......................................................................	
  146	
  
Figure	
  4–7	
  Fra-­‐1	
  expression	
  increases	
  non-­‐metastatic	
  cell	
  line	
  motility.	
  ...................................................	
  147	
  
Figure	
  4–8	
  Fra-­‐1	
  expression	
  increases	
  anchorage	
  independent	
  growth	
  in	
  non-­‐metastatic	
  cells	
  .....	
  148	
  

 

List of Tables 
	
  
Chapter	
  1	
  

Table	
  1-­‐1:	
  Clinical	
  Progression	
  of	
  Breast	
  Cancer	
  .........................................................................................................	
  5	
  
Table	
  1-­‐2:	
  MMP-­‐1	
  Expression	
  in	
  Cancer	
  ........................................................................................................................	
  32	
  

	
  
Chapter	
  3	
  

Table	
  3-­‐1	
  Top	
  Genes	
  Correlated	
  to	
  Metastatic	
  Potential	
  in	
  Bone.	
  ..................................................................	
  110	
  
Table	
  3-­‐2	
  Top	
  Genes	
  Correlated	
  to	
  Metastatic	
  Potential	
  in	
  	
  Lung.	
  .................................................................	
  110	
  

	
  
  



	
  

	
  

	
  

v	
  

Acknowledgements 
 

This work would not be possible without the help and support of many people.  In 

particular, I would like to thank Ron Prywes, my mentor, who showed tremendous 

generosity and patience.  His genuine interest in his lab members’ personal success 

should be acknowledged more than I am capable of writing in this section.  I would like 

to thank the members of the Prywes lab, past and present.  I could not have asked for a 

more pleasant group of peers.   

This research was supported by generous gifts of cells and supplies by Joan 

Massague, Carol Prives, Will Freed-Pastor, and Anthony Barsotti.  Will and Anthony 

were also wonderful labmates for a short period of time, and I would like to thank them 

for their advice. 

The biology department is supported by a capable staff that helps in aspects as 

diverse as ordering supplies, organizing finances, providing computer support, 

maintaining the lab and building, and cleaning labware and the labs we work in.  I would 

like to thank them all for their help, and for being such pleasant colleagues these past 

years. 

I would like to thank Ron Prywes and Kathryn Abele for their help in editing this 

thesis.  I am grateful to have had a brilliant group of classmates and friends.  I would like 

to thank them for their support. 

This work has been supported by funding from the Guzik Foundation.  I would 

like to thank Nahum Guzik for his interest and donation. 

Lastly, I would also like to thank my committee, Carol Prives, Dan Kalderon, 

Audrey Minden, Jan Kitajewski and Ron Prywes, for being so generous with their time.   



	
  

	
  

	
  

vi	
  

Dedication 
 

I would like to dedicate this work to my mother.  My family, like millions of others, was 

devastated by breast cancer. I hope my effort has made some incremental impact in the 

field, and that others continue the work until fewer lives are lost.   

 

I would also like to dedicate this work to my family.  Their time and support saw me 

through. 

 

Lastly, I would like to dedicate any, and all, success to my wife, Kathryn.  Her support, 

patience, motivation, guidance, intelligence, and love have allowed me to persevere.  



	
  

	
  

	
  

vii	
  

Preface 
 

This thesis is divided into five chapters.  The first chapter serves as the 

introduction for the thesis as a whole.  The second chapter details methods for the 

subsequent chapters.  Chapter three is focused on data identifying and confirming a gene 

of interest, which is the basis of this thesis.  Evidence from chapter three is confirmed and 

expanded upon in chapter four.  Lastly, chapter five considers potential conclusions and 

discusses future directions for research.
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Introduction  
	
  

Nearly all breast cancer mortality results from metastasis (Gupta et al., 2006). 

Metastasis is a multistep process, with a rate-limiting step being growth of individual 

tumor cells in secondary organs (Hanahan et al., 2011).  These cells may disseminate 

early in the primary tumor progression and remain dormant for years (Karrison et al., 

1999; Klein et al., 2002).  Current treatments are effective for a large percentage of 

primary tumors, but unfortunately a significant number of metastatic tumors evade 

therapy (Naumov et al., 2003).  Understanding the regulation of metastasis may yield 

opportunities for improved treatments. 

Microarrays are a powerful tool for correlating gene expression to metastatic 

regulation.  Microarrays of mammary carcinoma cell line MDA-MB-231 variants with 

different metastatic potential correlated the expression of several genes to metastasis.  

Highest among them is matrix metallopeptidase-1 (MMP-1) (Bos et al., 2009; Kang et 

al., 2003; Minn et al., 2005).  Inhibition and overexpression of MMP-1 in cancer cell 

lines linked expression to tumorigenesis and metastasis (Balduyck et al., 2000; 

Giambernardi et al., 1998; Kousidou et al., 2004).  Furthermore, MMP-1 expression 

corresponds to tumor progression in patients (Cheng et al., 2008; McGowan et al., 2008; 

Nakopoulou et al., 1999; Poola et al., 2005). 

MMP-1 cleaves collagen, the main structural protein in the extracellular matrix 

(ECM) (Woessner, 1991).  Disruption of the ECM may be critical in tumor invasion, but 

ECM degradation also frees ECM-sequestered growth factors (Bashkin et al., 1989).  In 

addition, MMP-1 has secondary substrates, including angiogenic factors, which may 

cause tumor progression (Mazor et al., 2013; Nguyen et al., 2006). MMP-1 regulation in 
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a metastatic context remains unclear.  Activator protein-1 (AP-1) is a known regulator of 

MMP-1 and may be involved in metastatic regulation of MMP-1, as AP-1 is also 

correlated to cancer (Young et al., 2006). In this study, we confirm that MMP-1 

expression is enhanced in metastatic cell lines and explore the regulatory mechanism 

responsible.	
  	
  

 

 

Breast Cancer  
 

Morbidity/Mortality 
	
  

Breast cancer is the most common cancer among women and the leading cause of 

women’s cancer mortality (Ferlay et al., 2010).  In the developed world, one in 14 

women will be diagnosed before the age of 75—nearly one in four of those will succumb 

to the disease (Jemal et al., 2011). 

These statistics are even more daunting when changes in life expectancy and 

future demographics are considered. Annual breast cancer incidence is expected to 

increase by 75% to over two million cases in 2030 (Jemal et al., 2011).  At that incidence 

level, even if the mortality rate were to drop by 50%, there would only be a marginal 

improvement in the annual deaths.  The hope, and expectation, is that future breast cancer 

treatments will continue to improve. Unfortunately, breast cancer is a problem that 

continues to grow. 
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Classifications 
	
  

Breast cancer is a broad term for a number of diseases.  The World Health 

Organization has 17 distinct classifications, and 89 sub-classifications, for breast cancer 

(Tavassoli et al., 2003).  Each cancer is distinct in its origin, differentiation, gene and 

receptor expression, and progression.  

Histological classifications of breast tumors are dominated by invasive ductal 

carcinoma-not otherwise specified (IDC-NOS) morphologies, comprising 50% – 80% of 

tumors (Tavassoli et al., 2003).  Mammary ductal adenocarcinoma will be the focus of 

this thesis. 

In addition to histopathology, advances in immunohistochemistry correlated 

surface expression of three receptors with tumor progression: estrogen-α (ER), 

progesterone (PR), and Erbb2 (Her2).  There has been significant evidence for the 

prognostic value of the expression of these three receptors (Clark et al., 1984; Fisher et 

al., 1981; McGuire, 1975; Slamon et al., 1987).  In addition, hierarchal clustering of 

microarray data from patients has correlated total gene expression with receptor status 

(Sorlie et al., 2001).  These categories are: A. Luminal A (Her2-, ER+ and/or PR+), B. 

Luminal B (Her2+, ER+ and/or PR+), C. Her2+ (Her2+, ER- or PR-), and D. Basal Like 

(Triple Negative).  

 
Progression 

Common among all breast cancer types is the relationship between progression 

and mortality risk.  Typically clinicians divide patients into five stages (0 – IV) by 

primary tumor size, lymph node progression, and metastatic progression (Table 1-1) 

(Edge et al., 2010).	
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Table 1-1: 
Clinical 
Progression of 
Breast Cancer  

 

 

 

 

Categorizing patients and tumors by histology, receptors, and progression helps 

standardize assessment and treatment options.  However, in a less practical but more 

absolute sense, it is useful to think of actual progression, as opposed to observable 

progression.  There are three categories for actual progression: 

A. Cancer is limited to the primary tumor, or localized invasion. 

B. Cancer has spread beyond the primary tumor to distant organs, but secondary 

tumors have not grown to the point of detection—micrometastases.  

C. Cancer is present in the primary and secondary tumors—metastatic tumors. 

Clinical and ‘true’ categories significantly overlap. Stage 0 is almost always limited to 

the primary tumor, making it the same as category A. Stage 4 progression is the same as 

category C, where metastatic tumors are diagnosed.  There is difficulty in determining 

whether stages 1 – 3 have metastasized to secondary organs.  Recent advances in 

analyzing bone marrow aspirates can find disseminated tumor cells, which affect 

prognosis, but beyond this, detection of micrometastases is not currently possible.  In 

Stage 0: Abnormal cells are contained to local parental tissue 
 Ductal Carcinoma In Situ (DCIS) 

Lobular Carcinoma In Situ (LCIS) 
Paget’s Disease 

Stage I A Tumor is 2 cm or smaller and has not spread to outside of the breast 
B Small (0.2 – 2 mm) clusters of cells are found in lymph nodes, with or 

without a breast tumor 
Stage II A Cancer (>2 mm) is found in 1 – 3 lymph nodes, with tumor less 

than 2 cm 
Or, tumor 2 – 5 cm is found but has not spread to lymph nodes  

B Tumor is 2 – 5 cm with small (0.2 – 2 mm) clusters of cells are 
found in lymph nodes 

Or, cancer (>2mm) is found in 1 – 3 lymph nodes 
Or, tumor is larger than 5 cm 

Stage III A Cancer is found in 4 – 9 lymph nodes 
Or, tumor is larger than 5 cm with cancer is less than 4 lymph nodes 

B Cancer has spread to chest wall or skin 
C Cancer is found in 10 lymph nodes 

Or, cancer is found in collarbone lymph nodes 
Or, cancer is found in both axillary and breast bone lymph nodes 

Stage IV Cancer has spread to other parts of the body 
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general, higher clinical stages are more likely to have progressed past the primary tumor, 

to have a higher incidence of mortality, and to be less responsive to treatments.   

 

Treatment 
	
  

Due to the challenges in determining a patient’s ‘true’ progression, treatment 

regimens are similar among clinical stages I - IV.  Primary tumors are subject to surgical 

resection and local areas to ablation through radiation, ultrasound or laser.  Secondary 

tumors, if present, are treated specifically for their organ location.  Lastly, most patients 

are subject to adjuvant therapies (Harris, 2010). 

Three forms of adjuvant therapy are commonly used in treatment: chemotherapy, 

hormone therapy, and antibody treatment.  Technically, chemotherapy is any treatment of 

a disease with a chemical substance.  Since its widespread use in cancer treatment 

(DeVita et al., 2008), chemotherapy refers to cancer treatment which targets proliferating 

cells.  Modern treatment regimes are combinations of drugs with varying mechanisms.  

Cytoskeletal drugs, such as Docataxel and Paclitaxel stabilize microtubules, decreasing 

free tubulin and inducing apoptosis.  Antimetabolites, such as Methotrexate and 

Fluorouracil inhibit enzymes required for folic acid and thymidine metabolism, 

respectively—each required for DNA synthesis.  Anthracyclines, such as Doxorubicin 

and Epirubicin, intercalate in DNA and inhibit DNA topoisomerase and DNA replication.  

Lastly, Cyclophosphamide is an alkylating agent which crosslinks DNA restricting 

replication.  Administering these drugs in combination reduces resistance.  In women 

under 50 years old, combination therapy reduces the annual breast cancer death rate by 

38%; in women aged 50 – 69 rates are reduced by 20% (Demicheli et al., 1999; Group, 

2005). 
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Hormonal therapies inhibit estrogen receptors, which are expressed in 65% of 

breast cancer (Kohail et al., 1985).  Tamoxifen inhibits estrogen receptors through direct 

binding, reducing reoccurrence after five years by 42% (EBTCB, 1998).  In 

postmenopausal women, Letrozole, an aromatase inhibitor, prevents estrogen synthesis in 

peripheral tissue and has been found to be marginally more effective than Tamoxifen as a 

monotherapy (Group et al., 2009). 

Trastuzamab (Herceptin) is currently the only monoclonal antibody approved for 

breast cancer treatment after Bevacizumab (Avastin) was found to offer little 

improvement in life extension (Woodcock, 2010).  Herceptin targets and interferes with 

the Her2 receptor, and its downstream effects.  When used in conjunction with 

chemotherapy, 57% of patients were shown to be disease-free after twelve months, which 

is a stark improvement considering the poor prognosis of the Her2 positive patients 

(Vogel et al., 2002). 

Unfortunately, as seen in some of the drug efficacy statistics, some patients do not 

benefit from chemotherapy treatment. The first group is comprised of patients who do not 

require treatment beyond the primary tumor sites.  These patients—in category A—are 

cured after the primary tumor and localized spread are removed or ablated. Since current 

diagnostics cannot differentiate between cured patients and patients requiring secondary 

treatment, all patients are treated similarly.  In essence, all patients are treated as though 

their cancer has spread.  Therefore some patients needlessly suffer the side effects of 

adjuvant therapies to help the population of patients that will respond to treatment 

(Dowsett et al., 2007; Kalager et al., 2012).  
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The second group of patients that do no benefit from adjuvant therapy are those 

who are unresponsive or suffer an unresponsive relapse.  Nearly all of these patients have 

metastatic tumors, the exception being the small fraction of patients with severe primary 

tumors that have invaded through the chest wall.  Metastatic breast cancer that is 

unresponsive to treatment is the cause of nearly all breast cancer mortality (Gupta and 

Massague 2006).  Therefore the key to improving breast cancer mortality is to better 

understand and treat metastatic breast cancer. 

 

Metastasis 
 

History 
	
  

In 1829, the French physician Joseph Claude Anthelme Récamier was the first to 

use the Latin-Greek word ‘metastasis’—to transition or migrate—in reference to cancer 

(Morton et al., 1997).  Forty-five years later, British physician Cambell Greig De Morgan 

hypothesized that cancer cells would spread from local invasion to the lymph nodes and 

beyond (Jenner, 1874). 

Metastasis was also the foundation for the ‘seed and soil’ hypothesis set forth by 

Fuchs and Paget. Ernst Fuchs discovered that uveal melanoma cancer had a predilection 

to metastasize to the liver (Fuchs, 1882). While performing autopsies on hundreds of 

breast cancer patients, Steven Paget discovered that metastases to the bone, liver and 

ovary were more common than other organs (Paget, 1889).  Both scientists suggested that 

when primary tumor cells (‘seeds’) are challenged to survive outside of the host organ, 

some metastatic sites (‘soil’) are less demanding than others.  James Ewing later added 
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caveats to the hypothesis describing mechanical forces in anatomical structures (Ewing, 

1922).   

In sum, these early works contributed to the modern paradigm (Langley et al., 

2011): metastatic tumors are derived from primary tumor cells challenged to progress 

through a sequence of distinct steps, as follows. 

 

Progression  
	
  

Progression is generally divided into seven discrete steps (Bross et al., 1975; 

Gupta et al., 2006; Hanahan et al., 2000): 1) Growth beyond the initial tumor site/ local 

invasion, 2) intravasation into the blood or lymphatic systems, 3) survival though the 

vascular system, 4) arrest in a distant organ, 5) extravasation into secondary parenchyma, 

6) micrometastatic survival and 7) proliferation and metastatic tumor growth. 

The overall process and current research for each segment have been well 

reviewed (Hanahan et al., 2011; Talmadge et al., 2010; Weiss, 2000).  Therefore, I will 

focus on specific aspects of this process. 

 

Metastatic Inefficiency 
	
  

Since metastasis is responsible for nearly all breast cancer mortality, it may be 

counterintuitive to consider metastatic tumors as a highly unlikely and inefficient end.  

However, evidence indicates that only a small fraction of breast cancer cells become 

metastatic tumors (Weiss, 1990) and that this process takes several years (Karrison et al., 

1999). 

As previously described, metastasis progresses through a series of steps. Stepwise 

process efficiency is the product of the rate of each step. Experiments examining 
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intravasation demonstrated that rapidly growing xenograft tumors released a large 

number of cells into the bloodstream.  In one study, 36 mg, or roughly 3.6x104 cells, of 

murine fibrosarcoma cells injected into mouse thighs grew eightfold in volume over 

several days (Liotta et al., 1974).  These tumors released approximately 3.8x104 cells per 

day into the bloodstream.  The number of cells released also increased exponentially to 

1.5x105 as the tumor doubled in size.  Similar results were observed with intramuscular 

injection of melanoma or lung cells (Mayhew et al., 1984), murine sarcomas injected 

intraperitoneally or subcutaneously (Nakadate et al., 1979), and murine mammary 

carcinomas isolated in a subcutaneous pouch (Butler et al., 1975).  These experiments 

demonstrate that tumors have a high rate of intravasation. 

After intravasation, tumor cells must survive in the vasculature, arrest in a 

secondary organ and extravasate to form metastases. Early research into circulation of 

cancer cells found that tumor cells could pass the first capillary bed encountered and 

retain the ability to form tumors.  Interestingly, cells which passed through the lung are 

more likely to pass the lung capillary bed a second time if reinjected intravenously	
  

(Zeidman et al., 1952). 

Several labs have tracked the fate of individual cells in vasculature.  Melanoma 

cells injected into the tail vein of a mouse were found to arrest in the first capillary bed 

encountered—the lungs—with a small fraction passing through to other organs. Only 

1.5% of cells injected survived more than 24 hours and after 14 days, less than a tenth of 

those cells became metastases (Fidler, 1970; Mayhew et al., 1984). 

Direct lung injection of melanoma cells found high rates of survival (74%) after 

one day.  After 14 days, 3.5% of cells were survived in a solitary latent state, and 12.7% 
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had formed metastases, mostly on the tumor surface (Cameron et al., 2000).  Similar 

results were found in direct liver injections, where 87.4% extravasated, 36.1% were 

solitary latent cells, and 0.9% became metastases (Luzzi et al., 1998).  More sophisticated 

cell tracking with high-resolution videomicroscopy of GFP-labeled cells injected 

intraperitoneally gave analogous results (Naumov et al., 1999). In mammary 

adenocarcinoma experiments the same pattern was observed (Naumov et al., 2002).  

Although a large number of cells are capable of initially surviving in the stroma, few are 

capable of surviving for an extended period of time. 

In cell lines which are highly metastatic to the brain, intracardiac injection led to 

93.9% of cells extravasating, 4.5% of cells becoming latent, and 1.6% of cells growing 

into metastatic tumors (Heyn et al., 2006).  In comparisons between cell lines with 

varying metastatic potentials, extravasation rates were similar, but survival and 

proliferation was greater in more metastatic cells (Morris et al., 1994).  

Several conclusions can be made about the metastatic process from these 

experiments.  First, dissemination of tumor cells appears to be fairly efficient, with most 

cells leaving the primary tumor surviving in circulation, arresting in secondary organs, 

and extravasating.  The rate-limiting step is survival in the secondary organ.  Only a 

small percentage of cells can survive and among the survivors even fewer can proliferate 

(Wong et al., 2001).  A second conclusion is that a population of cells exists which can 

survive but not proliferate in foreign stroma.  These latent cells are considered ‘dormant’ 

and may be the first step in metastatic progression in patients.  Lastly, the metastatic 

process is overall inefficient. 
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Inefficiency led to the hypothesis that a large number of cells would have to 

disseminate from a primary tumor to overcome the odds and metastasize. Early 

consensus favored this hypothesis, which was supported by findings that the number of 

tumor cells injected intravenously in mice was proportional to the number of metastases 

formed (Zeidman et al., 1950). It was hypothesized that 105 cells would have to 

disseminate from primary tumors to form metastatic tumors (Mayhew et al., 1984; Peters, 

1975).  However, these experiments and the hypothesis they support considered 

metastasis on a short time scale.   

Breast cancer progression occurs over a time period on the order of years.  In two 

studies of breast ductal carcinoma in situ (DCIS) developing into invasive carcinoma, the 

average interval for progression was 9.7 years (Rosen et al., 1980) and 6.7 years (Page et 

al., 1982).  Furthermore, progression from invasive carcinoma to metastatic tumors 

typically takes years.  In a study of 877 patients, metastasis was observed bimodally one 

year and five years after primary tumor diagnosis (Demicheli et al., 1999).  The final 

progression step from metastatic tumor discovery to metastatic tumor growth is 

consistent in timing.  Disconcertingly, each two-year interval after metastatic tumor 

discovery there is a 50% decrease in survival (Engel et al., 2003). 

On this longer time scale, an alternative hypothesis has been proposed.  If primary 

tumors disseminate cells early in progression and if disseminated cells can survive in 

secondary organs for a long period of time, then disseminated cells might adapt and 

progress in parallel with the primary tumor (reviewed by Klein, 2009).  Parallel 

progression would overcome the inefficiency of metastasis observed in the xenograft 

assays with fewer cells that adapt over long periods of time. 
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Dormancy of disseminated cells has been observed in the xenograft studies 

previously described (Cameron et al., 2000; Heyn et al., 2006; Luzzi et al., 1998; 

Naumov et al., 2002; Naumov et al., 1999).  Additionally, in patients with estrogen 

receptor positive and Her2 positive breast tumors, disseminated cells discovered in the 

bone marrow were latent (Pantel et al., 1993).  A high proportion of disseminated cells 

also show ‘stem-cell’ markers CD24 and CD44 (Balic et al., 2006).  Interestingly, latent 

disseminated breast tumor cells derived from murine livers were capable of expansion if 

reinjected into a mammary fat pad (Suzuki et al., 2006).  This demonstrates that 

disseminated cells are capable of growth, but are maintained in a dormant state by the 

secondary organ environment. 

Further supporting the parallel progression hypothesis, tumor cell dissemination 

occurs earlier than previously thought.  Genomic comparisons of disseminated cells and 

primary tumors in patients indicate that tumor cells disseminate before distinct aberrant 

genomic changes in the primary tumor occur (Klein et al., 2002; Kuukasjarvi et al., 1997; 

Schardt et al., 2005; Schmidt-Kittler et al., 2003).  Early dissemination can also be 

assumed in patients with breast cancer metastases in the lymph nodes, but with no 

discernable primary tumor (Holland et al., 1983; Nielsen et al., 1987; Patel et al., 1981).  

In Her2 transgenic mice, premalignant DCIS were capable of disseminating to the lungs 

and bone marrow (Husemann et al., 2008). 

Taken together, these studies describe a process where benign localized cancer is 

slow to progress into an invasive tumor.  Eventually genetic instability and tumor 

heterogeneity allow the tumor to overcome the basement membrane, invade the local 

tissue and disseminate cells into the vasculature and secondary organs.  Few extravasated 
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cells survive; those that do are slow to grow and exist in a dormant state.  

This process challenges modern therapy.  Disseminated cells have been found to 

be heterogeneous (Klein et al., 2002), increasing the likelihood of cells resisting 

treatment.  Also, chemotherapeutics target proliferating cells.  Therefore, dormant cells 

may evade therapy.  In murine mammary cell lines with different metastatic latencies 

(Naumov et al., 2002), doxorubicin treatment was less effective on dormant cells 

(Naumov et al., 2003). 

Patient data corroborates these observations.  Patients treated with chemotherapy 

and surgery had less frequent cancer recurrence in the first 24 months compared with 

patients treated with surgery alone.  After three years, however, chemotherapy has much 

less effect on recurrence (Demicheli et al., 1999).  One explanation for the change in 

efficacy is that dormant disseminated cells were unaffected by chemotherapies targeting 

rapidly dividing cells.  In line with this explanation, the presence of disseminated tumor 

cells in the bone marrow of breast cancer patients after chemotherapy treatment is a 

strongly negative prognostic indicator (Braun et al., 2005). 

Parallel progression and cell dormancy also present treatment opportunities 

(Townson et al., 2006).  For example, the progression process appears to be selective. 

Studies of disseminated cells show a high degree of heterogeneity (Klein et al., 2002), 

while metastatic lesions appear to be clonal (Ding et al., 2010; Talmadge et al., 1982; 

Teixeira et al., 1996; Woelfle et al., 2003).  If the cells that overcome dormancy are more 

homogeneous, they are also less likely to develop resistance to treatment. Also, 

disseminated cells are limited in size, making them more available to drugs in the 

vasculature (Baluk et al., 2005; Naumov et al., 2002). In addition, treatment of dormant 
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disseminated cells does not require that the cells undergo apoptosis or cell death.  Rather, 

treatment only needs to prevent cells from overcoming dormancy (Rinker-Schaeffer et 

al., 2006).  

Understanding metastasis is critical to improving therapeutics and patient 

survival.  As mentioned, selection and dormancy challenge anti-proliferative adjuvant 

therapies, but also present an opportunity to attack an exposed clonal tumor population.  

Understanding metastatic regulation is the first step towards identifying potential 

therapies.  

 

Regulation  
	
  

Metastatic regulation occurs at each step in the progression process. The final 

step, growth from disseminated cells to metastatic tumors, is a rate-limiting step.  

Therefore, inhibiting this growth is highly relevant for treatment.  

Research on disseminated cells is inherently difficult due to the challenges in 

discerning, observing and manipulating single cells in a secondary organ.  As a result, 

less is know about the regulation of this stage of metastasis.  Yet, several mechanisms 

have been elucidated, including extracellular signals, epigenetic and transcriptional 

regulators.  

 Stromal regulation is important in primary tumorigenesis and progression (Tlsty 

et al., 2006). General observations, dating back to the 19th century, show that primary 

tumors spread differentially among organs (Fuchs, 1882; Paget, 1889).  This phenomenon 

was observed again in cell culture, where cell populations from a common culture 

variably hone in on secondary organs (Bos et al., 2009; Kang et al., 2003; Minn et al., 
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2005).  Specific organ dissemination implies that tumor cells are sensitive to different 

extracellular interactions in different organs. 

 Extracellular regulation of disseminated cells has also been observed in a 

landmark study analyzing the effect of primary tumor excision on metastatic progression.  

It was found that primary tumors maintain metastatic tumor angiogenic dormancy 

(Holmgren et al., 1995).  Extracellular inhibition of malignant cells has also been shown 

in injections of tumor cells into blastocysts (Dolberg et al., 1984; Gerschenson et al., 

1986; Mintz et al., 1975).  In vitro, coculture with stem cells dulls aggressive melanoma 

phenotypes in an unknown epigenetic manner (Postovit et al., 2006). 

The advent of systemic approaches to microRNA(miRNA):mRNA research has 

yielded several putative regulatory miRNAs in patient tumors (Luo et al., 2013) and cell 

lines with different metastatic potentials (Tavazoie et al., 2008).  Overexpression of 

several miRNAs regulates malignant cell invasiveness and metastatic potential, 

including: miR-200c, miR-205, miR-375 (Luo et al., 2013), miR-20b (Ma et al., 2007), 

miR-373, miR-520c (Huang et al., 2008), miR-335, miR-206 (Tavazoie et al., 2008), and 

miR-34a (Peurala et al., 2011). 

 Prior to epigenetic study, a large body of work had uncovered transcriptional 

regulation of metastatic progression (Welch et al., 2000; Yoshida et al., 2000).  Systems 

biology approaches have progressed and complemented this work.  The first microarrays 

performed in breast cancer tumors showed distinct clusters and subtypes, which matched 

immunohistochemical categorizations (Perou et al., 2000; Sorlie et al., 2001; Sorlie et al., 

2003).  Since that time, thousands of samples have been deposited in the GEO Database 

(Barrett et al., 2013).  The development of metastatic gene signatures has improved 



	
  

	
  

17	
  

oncologist’s prognostic abilities and yielded a wealth of data for study (Cardoso et al., 

2008; Sparano et al., 2008; van 't Veer et al., 2002).  However, microarray technology is 

challenged by limitations.  Macroscopic samples contain a diversity of tumor cell 

populations, which are considered in aggregate.  Even among disseminated cancer cells, 

individual cells are heterogeneous (Klein et al., 2002) 

Overcoming this limitation requires more sophisticated analysis or segmenting the 

input before analysis.  Flow sorting for nuclei combined with single cell whole genome 

amplification and next generation sequencing is one method for considering single cells 

when analyzing gene copy number (Navin et al., 2011).  Alternatively, the development 

of laser capture microdissection isolates cells of interest (Bonner et al., 1997).  Lastly, 

microarray input can be altered to be less heterogeneous. As will be discussed in the next 

section, homogenization can also increase expression of the genes of interest, improving 

the resolution of microarrays.   

 

MDA-MB-231 Cells and Variants 
	
  

Isaiah Fidler’s early work with melanoma cells determined that culturing cells  

does not abolish metastatic potential (Fidler, 1973).  Cell cultures were derived from 

metastatic lung tumors resulting from intravenous injection of a syngenic melanoma cell 

line.  When these were reinjected into mice they continued to form lung metastases with 

greater efficiency.  In a series of these experiments, ‘generations’ of cell lines were 

developed with greater and greater metastatic potential. 

A variation of this experiment was performed to determine if a cell line is 

heterogeneous in its ability to form metastases (Nowell, 1976).  Single cells from a 

‘parental’ cell line were expanded clonally into populations and injected intravenously 
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into mice.  These single cell clones exhibited varying metastatic efficiency, suggesting 

that the initial population was heterogeneous (Fidler et al., 1977). 

At the same time, the MDA-MB-231 mammary adenocarcinoma cell line was 

developed after a series of failures developing solid mammary tumor cell lines.  MDA-

MB-231 cells were derived from the pleural effusion of a patient with breast carcinoma.  

The pleural effusion contained a large number of disseminated tumor cells without the 

“stromal contamination” that had plagued previous studies (Cailleau et al., 1974). 

Also near that same time, nude mice were successfully xenografted with human 

melanoma and cerivical tumor cells intradermally injected into the midback (Giovanella 

et al., 1973).  Tumor cells survived, grew and progressed into metastatic lung lesions.  

Similarly, mouse mammary adenocarcinoma cell line cells were transplanted into 

syngenic mice, which led to metastatic tumors.  Cells cultured from these metastases had 

greater metastatic potential than the parental cell line along with altered gene expression.  

In particular, Fra-1 expression was found to be correlated to metastatic potential, which 

will be discussed in greater detail below (Kustikova et al., 1998; Tkach et al., 2003).   

This process of developing metastatic cell cultures from mouse xenografts was 

repeated with human MDA-MB-231 cells.  The resulting cell lines were organ specific 

metastatic variants.  Among these, brain- or bone- ‘seeking’ MDA-MB-231 cells had 

phenotypic changes to transforming growth factor-β (TGFβ) and Insulin-like Growth 

Factor-1 responses (Yoneda et al., 2001).  Analogous experiments derived MDA-MB-

231 cell line variants from the bone, brain and lung (Bos et al., 2009; Kang et al., 2003; 

Minn et al., 2005).  In parallel, clonal cell cultures from single MDA-MB-231 cells 

displayed different metastatic potentials (Bos et al., 2009; Kang et al., 2003; Minn et al., 
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2005).   

Microarray data using a series of the cell lines described above, resolved input 

heterogeneity issues. The cell lines were derived from clonal expansion of single parental 

cells, MDA-MB-231, and are less heterogeneous by definition. Cell lines that were 

cycled though mouse xenografts endured selection, also reducing heterogeneity.  

Simultaneously, the amplification of metastatic potential in these cells translated into 

amplified expression of specific genes, increasing microarray resolution. 

Using this research as a foundation gene expression profiles that correlate to 

metastasis can be found.  Once metastatic genes are identified, their regulatory 

mechanisms can be elucidated, creating opportunities for novel breast cancer treatments. 

	
  

MMP-1 
 

Collagenase is formally called interstitial collagenase-1. More commonly, it is 

known as matrix metallopeptidase-1 (MMP-1), as well as matrix metalloprotease-1 and 

matrix metalloproteinase-1.  MMP-1 expression is correlated to the metastatic potential 

of MDA-MB-231 variants.  The MMP family of proteins has been described in great 

detail in several reviews (Pardo et al., 2005) and in Jacob Woessner’s book (Woessner, 

1991).  Below, MMP-1 will be discussed broadly, with focus on the data describing its 

role in cancer. 

 

History 

Prior to 1962, researchers had hypothesized that tissue development, growth and 

repair would require enzymes capable of degrading extracellular structural components. 
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Gross and Lapiere used collagen, the most abundant structural protein, as a substrate to 

search for an enzyme capable of breaking down matrix proteins.  Using metamorphic 

tadpole tails, they were the first to find evidence of diffusible vertebrate collagenase 

(Gross et al., 1962).  Collagenase was later purified (Nagai et al., 1966) and eventually 

cloned (Bauer et al., 1970; Goldberg et al., 1986). 	
  

 

Family 
	
  

MMP-1 is the founding member of the matrix metallopeptidase family (Pardo et 

al., 2005).  Among the 23 human MMP family members (Radisky et al., 2010), several 

have been shown to be relevant in cancer and metastasis: MMP-2 (Jezierska et al., 2009), 

MMP-3 (Sternlicht et al., 1999), MMP-7 (Rudolph-Owen et al., 1998), MMP-9 (Sung et 

al., 2012), MMP-11 (Masson et al., 1998) and MMP-13 (D'Armiento et al., 1995). 

However, less is known about the function of MMP-1 in breast cancer progression than 

other MMP family members (McCawley et al., 2000). MMP-1 and its role in metastasis 

will be the focus of this thesis. 

 

Structure 
	
  

MMP-1 is an endopeptidase and the eponymous member of the matrix 

metallopeptidase family.  Metallopeptidases are metzincins, which all share similar zinc 

binding motifs (Bode et al., 1993; Stocker et al., 1995).   

MMP-1 is comprised of five domains (Figure 1-1) (Nagase et al., 1999): 1) the 

predomain, which is hydrophobic and directs the protein to the endoplasmic reticulum.  

The predomain is removed prior to MMP-1 expression outside the cell; 2) the propeptide 

domain, which inactivates the proenzyme through the sulfhydryl group of cysteine-73 to 
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inhibit the catalytic zinc group through a canonical ‘cysteine-switch’ (Springman et al., 

1990); 3) the catalytic domain, which contains the catalytic zinc bound through the triple 

histidine-sequence HELGHXXGXXH (Spurlino et al., 1994); 4) the linker; and 5) the 

hemopexin region, which is a four-beta propeller around a calcium ion.  This region binds  

collagen specifically, directing MMP-1 targeting of its substrate (Murphy et al., 1992). 

 

	
  
Figure 1–1 Structure of MMP-1 Domains (adapted from Iyer et al., 2006; 

Whittaker, 2001) 

These domains were confirmed by several crystal structures (Figure 1-1) (Iyer et 

al., 2006; Jozic et al., 2005; Li et al., 1995; Maskos, 2005).  From these structures it can 

be noted that the triple helix of collagen is too large to enter the active cleavage site of 
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MMP-1. Therefore, MMP-1 must unwind collagen before cleavage takes place (Overall, 

2001). 

	
  

Expression 
	
  

Since the discovery of collagenase in tadpoles, MMP expression has been found 

in all species investigated.  In humans MMPs exist as a cluster of genes on the 11th 

chromosome, which suggests evolutionary gene duplication (Fanjul-Fernandez et al., 

2010).  As a result, sequence homology between species ranges from 55% – 87% among 

human, murine, leporine, bovine and anuaran MMP-1 (Balbin et al., 2001; Fini et al., 

1987; Goldberg et al., 1986; Oofusa et al., 1994; Tamura et al., 1994). 

MMP-1 is expressed during tissue remodeling (Nagase et al., 1999) and stress 

(Shi et al., 2009), but is not at detectable levels in normal tissue (Pardo et al., 2005).  In 

fibroblasts, tuberculosis can induce MMP-1 expression (O'Kane et al., 2010), and in 

stimulated macrophages MMP-1 is induced (Speidl et al., 2011).  MMP-1 expression is 

also required in uterine resorption (Jeffrey et al., 1970) and reproductive function 

(Hulboy et al., 1997). 

 

Pathology 
	
  

MMP-1 is involved in several pathologies, including emphysema (Mercer et al., 

2004), wrinkles (Fisher et al., 1996), hip arthroplasty (Godoy-Santos et al. 2009), implant 

failure (Leite et al. 2008), Alzheimer’s disease (Leake et al., 2000), arthritis (Burrage et 

al., 2006), occlusive peripheral arterial disease (Flex et al. 2007) and coronary artery  
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disease (Horne et al. 2008).  The following pathologies were also described by Parks & 

Mecham: 

Nephritis, neurological disease, breakdown of blood brain barrier, 
periodontal disease, skin ulceration, gastric ulcer, corneal ulceration, liver 
fibrosis, emphysema, fibrotic lung disease (Parks et al., 1998) 

 
Most relevant to this thesis is the role of MMP-1 in breast cancer metastasis, which will 

be discussed in a later section. 

 

Mechanism 
	
  

As a zymogen, MMP-1 is not enzymatically active until the inhibitory propeptide 

domain releases the cysteine switch (Van Wart et al., 1990).  Upon activation, MMP-1 

functions as an endopeptidase capable of cleaving several substrates. Among them, 

collagen is the most common, the best studied and the first discovered.  MMP-1 is 

capable of degrading collagen from its native triple-helical form into gelatin (Nagai  et  

al., 1964;  Gross and  Nagai, 1965;  Kang  et  al.,  1966). 

Collagen has many subforms, but the major fibril forming collagens are I, II III, 

and V (and to a lesser extent XI) (Brodsky et al., 1997; Prockop et al., 1995).  These fibril 

collagens are composed of combinations of different fibrils (α peptides) in a triple helix 

structure (Kolacna et al., 2007).  This structure and the hydroxyl group on the pyrollidine 

ring stabilize the peptide bond.  Collagen is a strong and stable protein and is the main 

component of the extracellular matrix (Holmgren et al., 1998).  MMP-1 cleaves collagen 

fibrils at specific sites—glycine-isoleucine in the α1 chain and glycine-leucine in the α2 

chain.  This cleavage results in an amino terminal ¾ length collagen and a ¼ length 

carboxy terminal collagen that dentures rapidly into gelatin (Gross et al., 1965). 
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In addition to acting as a substrate, the collagen interaction can regulate cell 

migration.  In the case of keratinocytes responding to injury, exposure to collagen 

upregulates MMP-1.  MMP-1 binds α2β1 integrin localizing MMP-1 to promote 

directional migration (Dumin et al., 2001; Pilcher et al., 1997; Stricker et al., 2001). The 

interaction between α2β1 integrin and MMP-1 was also found to be critical in MMP-1 

cytotoxicity in neuronal cultures.  Interestingly, MMP-1 does not appear to effect 

cytotoxicity in these cells by cleavage of a substrate, rather α2β1 integrin interaction 

influences caspase activity through Akt (Conant et al., 2004). 

MMP-1 has several additional interactions and substrates.  In vitro experiments 

with extracellular matrix (ECM) coated plates found that MMP-1 released 80% of 

fibroblast growth factor (FGF) sequestered in the ECM (Bashkin et al., 1989).  Basic-

FGF (bFGF) bound in human endothelial cells is released by murine collagenase, MMP-

1a (Whitelock et al., 1996).  Evidence of bFGF in human ECM has been shown in 

vascular and capillary endothelial cells (Baird et al., 1987).  Together, these experiments 

suggest that MMP-1 releases growth factors from the ECM in vivo and possibly in 

angiogenesis. 

Insulin-like growth factor binding protein-2 and -3 (IGFBP-2/ -3) are also MMP-1 

targets (Fowlkes et al., 1994a; Fowlkes et al., 1994b; Fowlkes et al., 1995; Thrailkill et 

al., 1995).  Cleavage of IGFBP-2/-3 relinquishes insulin-like growth factor, which 

correlates to aggressive prostate cancer (Figueroa et al., 1998).  MMP-1 has several other 

substrates, including serpins (Mast et al., 1991), casein, nidogen, versican and tenascin-C 

(Somerville et al., 2003).   
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The mechanism of MMP-1 is multifaceted.  Varying substrates and indirect 

effects may explain the breadth and variety of pathologies associated with MMP-1.  

 

Regulation 
	
  

MMP-1 is regulated at several levels, from transcription to extracellular inhibition 

(Pardo et al., 2005; Ra et al., 2007).  Epigenetic regulation of MMP-1 has been shown in 

chrondrosarcoma.  Histone deacetylase (HDAC) inhibitors blocked MMP-1 induction 

(Young et al., 2005).  Transcriptionally, MMP-1 is regulated by several elements in a 

context specific manner.  Among these elements, activator protein-1 (AP-1) was the first 

discovered, and will be discussed in more detail in the next section, as it plays a key role 

in MMP-1 regulation in cancer.  A second important promoter site is Ets-1/PEA3.  The 

MMP-1 promoter has a single nucleotide polymorphism (SNP) creating an Ets-1 site in a 

portion of the population (Gutman et al., 1990).  The SNP-created Ets-1 site alters MMP-

1 expression (Rutter et al., 1998) and has an impact on cancer susceptibility (McCready 

et al., 2005). 

Several other promoter elements regulate MMP-1 transcription, including retinoid 

X response element (RXRE) (Pan et al., 1995), Sp-1 (Nelson et al., 2003), TGFβ (White 

et al., 2000), NFκB (Vincenti et al., 2002) and C/EBP-β (Armstrong et al., 2009).  

Bioinformatic study of the MMP-1 promoter also suggests sites for Runx2 and Tcf/Let-1 

(Clark et al., 2008).  Complementing these promoter elements are a series of transcription 

factors that bind them; for example c-Jun and Fra-1 binding to the AP-1 region (Kimura 

et al., 2011).  Several factors bind the promoter and activate transcription through 

alternative site binding, such as Bach-1 (Liang et al., 2012) and p53 (Sun et al., 1999). 



	
  

	
  

26	
  

MMP-1 expression is also induced by receptor pathways.  Receptor tyrosine 

kinases DDR1 and DDR2 upregulate MMP-1 when activated by collagen (Vogel et al., 

1997).  MMP-1 cleaves collagen closing the feedback loop.  In tumors, extracellular 

matrix metallopeptidase inducer (EMMPRIN) has been found to be enriched on the 

surface of tumors where it induces stromal expression of MMP-1 (Biswas et al., 1995; 

Guo et al., 2000; Lim et al., 1998). 

At the protein level, MMP-1 is regulated by the previously described the cysteine 

switch, which inhibits the catalytic zinc in the pro-domain of MMP-1 (Sternlicht et al., 

2001).  MMP-1 is also a target for inhibition.  The first inhibitor was discovered in 

human skin fibroblasts (Bauer et al., 1975).  Eventually, this inhibitor, called tissue 

inhibitor of metallopeptidases (TIMP) was found to inhibit MMP-1 in a similar manner 

as the proprotein domain of the inactive proMMP-1.  The crystal structure of MMP-1 and 

TIMP-1 illustrates TIMP-1 binding to the catalytic zinc in MMP-1 (Maskos, 2005). 

MMP-1 is regulated at several levels by diverse stimuli and interactions.  Many of 

them are relevant to cancer, such as the overexpression of TIMPs abrogating melanoma 

tumorigenic and metastatic ability (Khokha, 1994).  A specific transcriptional regulator 

of MMP-1 is AP-1, further discussed below.	
  

 

AP-1 
 

History 
	
  

Before AP-1 was discovered, tumor viruses, specifically Avian Sarcoma Virus-17 

(ASV-17) (Cavalieri et al., 1985) and Finkel-Biskis-Jinkins—Murine Sarcoma Virus 
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(FBJ-MSV) (Finkel et al., 1966), were found to have oncogenes.  The Vogt group cloned 

the oncogene v-jun (’jun’ being short for ‘ju-nana,’ which is Japanese for seventeen) 

(Maki et al., 1987).  Similar work found the FBJ-MSV virus contained the oncogene v-

Fos (‘Fos’ being an acronym for FBJ-MSV oncogenic specification) (Curran et al., 

1982a; Curran et al., 1982b). 

AP-1 was first described as  a transcription factor for human metallothionein (Lee 

et al., 1987a).  Later it was found that AP-1 is the factor bound to the TPA (12-O-

tetradecanoylphorbol-13-acetate) response element (TRE) (Auble et al., 1991; Wigler et 

al., 1976) of the MMP-1 promoter (Angel et al., 1987; Lee et al., 1987b). 

These paths crossed when endogenous c-Jun and c-Fos were discovered 

(Bohmann et al., 1987; van Straaten et al., 1983).  c-Jun was found to bind the TRE and 

identified as an AP-1 protein (Angel et al., 1988; Bohmann et al., 1987).  Later 

experiments found that the c-Fos dimerizing protein, p39 (Curran et al., 1982c), is c-Jun 

(Chiu et al., 1988; Rauscher et al., 1988a; Sassone-Corsi et al., 1988) and that c-Fos also 

binds AP-1 as an AP-1 protein (Franza et al., 1988; Rauscher et al., 1988b).  Later, the 

remaining AP-1 family members were discovered: JunB (Ryder et al., 1988), JunD (Hirai 

et al., 1989; Nakabeppu et al., 1988), Fra-1 (Cohen et al., 1988), Fra-2 (Foletta et al., 

1994), and FosB (Zerial et al., 1989).  Together, these discoveries elucidated the protein 

dimers of AP-1, which bind the TRE sequence and induce transcription (Chinenov et al., 

2001). 
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Mechanism 
	
  

AP-1 acts as a dimer (Curran et al., 1988) and its consensus sequence, 

TGA(C/G)TCA, is found in a plethora of promoter regions (Zhou et al., 2005).  

Regulation is therefore a product of the expression, regulation, and function of each AP-1 

family member.  Variations among binding partners also creates redundancy, a 

phenomenon seen in mouse knockout experiments of AP-1 family members 

(Fleischmann et al., 2000; Grigoriadis et al., 1994; Hilberg et al., 1993; Johnson et al., 

1992; Johnson et al., 1993; Schorpp-Kistner et al., 1999; Schreiber et al., 2000; Thepot et 

al., 2000; Wang et al., 1992) 

 

Structure 
	
  

Dimerization occurs through a leucine zipper in each of the AP-1 family members 

allowing the formation of homo- and hetero-dimers (Landschulz et al., 1988).  Non-AP-1 

family members with leucine zippers are also capable of forming dimers, but do not bind 

the AP-1 consensus site (Vinson et al., 2002).  Although different AP-1 family dimers 

have variable DNA binding affinities and transcriptional activations (Halazonetis et al., 

1988), sequence comparisons and crystal structures show that key amino acids required 

for dimerization and DNA binding are conserved (Glover et al., 1995).  The crystal 

structure for a c-Jun—c-Fos dimer binding domain shows coiled coil structures that bind 

DNA “like a forcep” through the basic domain.  In the crystal structure, dimers are linked 

through the leucine zipper (Glover et al., 1995).  The leucine zipper is a long α-helix with 

a leucine every seventh amino acid facing the same direction, resulting in a hydrophobic 

surface which aids in binding.   
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Regulation 
	
  

AP-1, like MMP-1, is regulated at several levels.  Growth factor stimulation 

results in modification of histone H3, upregulating c-Fos (Cheung et al., 2000).  

Transcriptionally, a variety of promoter elements and transcription factors regulate AP-1 

expression (Angel et al., 1991).  Several AP-1 members are autoregulated, including c-

Jun (Greenberg et al., 1984) and Fra-1.  The Fra-1 promoter has an AP-1 consensus site 

and two AP-1 like elements (Bergers et al., 1995).  c-Fos is the paradigm for immediate 

early genes and the basis for our understanding of the serum response element (SRE), 

serum response factor (SRF), and ternary complex factor (TCF) (reviewed by (Cen et al., 

2004).  Subsequent work demonstrated that most AP-1 members respond to serum 

(Adiseshaiah et al., 2005; Lazo et al., 1992; Perez-Albuerne et al., 1993; Sonobe et al., 

1995). 

Post-trascriptionally, several pathways modify AP-1 stability (reviewed by 

O'Donnell et al., 2012).  AP-1 has a high turn-over rate, making it inherently transient 

unless stabilized by phosphorylation (Basbous et al., 2007; Fuchs et al., 1996; Greenberg 

et al., 1984; Murphy et al., 2006).  Jun family members are phosphorylated by Jun-N-

terminal kinase (JNK) (Derijard et al., 1994; Pulverer et al., 1993), while Fos family 

members are modified by mitogen activated protein kinase and extracellular signal 

regulated kinases (MAPK/ERK) (Chen et al., 1996; Gruda et al., 1994; Okazaki et al., 

1995).  Inhibition of phosphorylation results in greater Fra-1  and c-Jun degradation 

(Casalino et al., 2003; Talotta et al., 2010).  In addition, dimerization of Fra-1 with c-Jun 

increases stability and inhibits c-Jun degradation (Talotta et al., 2010).  
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The	
  MAPK	
  cascade	
  is	
  one	
  of	
  several	
  canonical	
  pathways	
  regulating	
  AP-­‐1	
  

(Meng	
  et	
  al.,	
  2011).	
  	
  While	
  there	
  are	
  tomes	
  of	
  research	
  defining	
  AP-­‐1	
  regulation,	
  

novel	
  mechanisms	
  are	
  regularly	
  added,	
  particularly	
  in	
  cancer	
  (Eferl	
  et	
  al.,	
  2003).	
  	
  

For	
  example,	
  phosphorylation	
  of	
  c-­‐Jun	
  and	
  Fra-­‐1	
  has	
  been	
  shown	
  to	
  induce	
  MMP-­‐1	
  

expression	
  and	
  increase	
  osteosarcoma	
  cell	
  line	
  invasiveness	
  in	
  collagen	
  (Kimura et 

al., 2011).  AP-1 regulation is a complex mediator of breast cancer tumorigenesis and 

metastasis. 

 

Fra-1 in Cancer 
 

AP-1 promoter elements have been correlated to cancer since it was discovered 

that AP-1 is the TPA-regulating element (Matthews et al., 2007).  Since then, AP-1 

expression has been correlated to many types of tumors (Reviewed by Young et al., 

2006).  In patients with breast pathologies, Fra-1 is expressed at a higher level in 

caricinomas compared with benign breast growths (Chiappetta et al., 2007).   

Fra-1 expression in patient tumor samples is greater in more differentiated cells 

(Bamberger et al., 1999).  Similarly, in a series of breast cancer cell lines, Fra-1 is 

upregulated in more invasive cells (Zajchowski et al., 2001). This pattern can also be 

observed in the metastatic potential of cells, where Fra-1 expression is greater in cells 

more capable of forming metastases (Belguise et al., 2005; Philips et al., 1998). Similar 

to cell lines derived from metastatic tumors, metastatic potential is correlated to Fra-1 

expression (Kustikova et al., 1998; Tkach et al., 2003). 

Development of a DNA vaccine targeting Fra-1 inhibited the expression of Fra-1 
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in tumors. The vaccine expresses ubiquitinated Fra-1 with immune responsive IL-18 in 

mice to elicit a Fra-1 specific immune response.  After treatment, these mice 

demonstrated significant inhibition of lung metastases in breast carcinoma cells, as well 

as regression of established lung metastases (Luo et al., 2005; Luo et al., 2003). 

These experiments collectively support Fra-1 impacting cancer progression, 

however the specific function and regulation of Fra-1 in these systems is yet to be fully 

elucidated.  For example, phospho-ERK 1/2 was found in patient tumors (Milde-

Langosch, 2005). Phospho-ERK 1/2 stabilizes Fra-1, so this expression would be 

expected to increase Fra-1 levels.  However, there was no observed difference in Fra-1 

levels in tumors compared with normal tissue.  Nevertheless, MMP-1, a downstream 

target of Fra-1, was highly expressed (Milde-Langosch, 2005).  These results show the 

complexity of AP-1 and MMP-1 regulation and the need to determine their mechanisms 

of regulation in cancer. 

 

MMP-1 in Cancer 
 

Expression 
	
  

MMP-1, like Fra-1, is expressed in patient tumors in several forms of cancer (1- 

2).  Population studies of single nucleotide polymorphisms (SNPs) also show that 

increased MMP-1 expression raises the likelihood of contracting several forms of cancer. 

As previously discussed in the MMP-1 regulation subsection, a SNP alters expression of 

MMP-1 in a portion of the population (Rutter et al., 1998).  Consequently, people with 

greater MMP-1 expression are significantly more likely to be diagnosed with ovarian  
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Cancer Reference 
Sarcoma 
Osteosarcoma (Luu et al., 2005) 

(Husmann et al., 2013) 
Giant Cell Tumor (Cowan et al., 2009) 
Chondrosarcoma (Jawad et al., 2010) 

(Berend et al., 1998) 
(Kawashima et al., 1997) 
(Jiang et al., 2003) 
(Yuan et al., 2005) 
(Scully et al., 2000) 

Carcinoma 
Oral Squamous Cell (Gray et al., 1992) 

(Shimizu et al., 2008) 
(Nishizawa et al., 2007) 

Nasopharyngeal (Nasr et al. 2007) 
Squamous-Cell (Head & Neck) (Muller et al., 1991) 

(Polette et al., 1991) 
Esophageal (Murray et al., 1998) 
Gastric (Fujimoto et al., 2008) 

(Kim et al., 2011) 
(Inoue et al., 1999) 
(Kim et al., 2011) 
(Hiraki et al., 2012) 
(Cai et al., 2012) 
(Mizutani et al., 2000) 

Colorectal (Murray et al., 1996) 
(Woo et al. 2007) 

Pancreatic (Ito et al., 1999) 
(Rudroff et al., 2002) 
(Botta et al., 2012) 

Bladder (Gray et al., 1992) 
Melanoma (Weiss et al., 2012) 

(Nikkola et al., 2002) 
(Blackburn et al., 2009) 
(Nikkola et al., 2005) 
(Nierodzik et al., 1998) 
(Even-Ram et al., 2001) 
(Nierodzik et al., 1992) 
(Tellez et al., 2003a) 
(Tellez et al., 2003b) 
(Hazarika et al., 2004) 

Ovarian (Agarwal et al., 2008) 
(Six et al., 2006) 

Breast (McGowan et al., 2008) 
(Kamath et al., 2001) 
(Even-Ram et al., 1998) 
(Korkola et al., 2003) 
(Nakopoulou et al., 1999) 
(Poola et al., 2005) 
(Balduyck et al., 2000) 
(Cheng et al., 2008) 
(Kohrmann et al., 2009) 

Table 1-2: MMP-1 Expression in Cancer  
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cancer (Kanamori et al., 1999), tongue cancer (Shimizu et al., 2008), bladder cancer 

(Tasci et al., 2008), lung cancer (Hu et al., 2013), colorectal cancer (Ghilardi et al., 2001) 

or melanoma (Noll et al., 2001). 

Metastasis correlates to MMP-1 expression, as well.  Gene expression profiling of 

primary tumors with poor metastatic prognosis correlate MMP-1 expression (van 't Veer 

et al., 2002).  Genomic profiles of cell lines with different metastatic potentials had high 

MMP-1 expression in metastatic cell lines compared with non-metastatic cell lines (Bos 

et al., 2009; Kang et al., 2003; Minn et al., 2005).  

	
  

Stromal MMP-1 
	
  

Stromal expression of MMP-1 is increased in the presence of tumor cells, which 

may act to promote cancer progression.  For example, MMP-1 is expressed in human 

dermal fibroblasts when cocultured with MCF-7 breast carcinoma cells (Ito et al., 1995).  

Also, c-ets-1 expression in lung cancer cells increases MMP-1 expression in neighboring 

stromal cells (Westermarck et al., 1999).  

MMP-1 expression in tumor cells activates neighboring human endothelial cells.  

Endothelial cell activation (ECA) increases endothelial cell adhesion with circulating 

cancer cells, marked by increased calcium flux, secretion of IL-8 and secretion of von 

Willenbrand factor (VHF); responses elicited by MMP-1 expression (Goerge et al., 

2006).  In circulating tumor cells, inducing ECA might promote tumor cell arrest and 

extravasation (Enzerink et al., 2011), suggesting that MMP-1 expression is involved in 

successful tumor dissemination.   
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Cancer cell driven MMP-1 expression in stromal cells also affects drug 

sensitivity. MMP-1 expression in tumor associated fibroblast decreases head and neck 

squamous cell carcinoma (HNSCC) susceptibility to cetuximab, an epidermal growth 

factor receptor (EGFR) antagonist (Johansson et al., 2012). 

 

MMP-1 in Tumorigenesis and Metastasis 
	
  

In vitro systems have demonstrated a strong relationship between MMP-1 

expression and tumorigenesis, invasiveness and migration (Brinckerhoff et al., 2000).  In 

breast cancer cell lines, metastatic cells express higher levels of MMP-1 than non-

metastatic cell lines (Balduyck et al., 2000; Bos et al., 2009; Giambernardi et al., 1998; 

Kang et al., 2003; Kousidou et al., 2004; Minn et al., 2005).  In osteosarcoma cells, 

MMP-1 expression is greater in metastatic cell lines than non-metastatic cell lines 

(Kimura et al., 2011).  Similarly, overexpression and inhibition of MMP-1 correlates to 

adhesion and anchorage independent growth—markers for metastatic potential (Husmann 

et al., 2013).  In metastatic breast cancer cell lines, inhibition of MMP-1 represses 

invasiveness (Benbow et al., 1999) 

In vivo models of tumorigenesis and metastasis have also demonstrated MMP-1 

involvement in cancer.  Transgenic mice overexpressing MMP-1 in the skin, lungs and 

liver (D'Armiento et al., 1997) through a haptoglobin promoter driver have a carcinogen-

sensitive phenotype.  When treated with TPA on the skin, MMP-1 expressing mice have 

enhanced tumor progression than their wild type counterparts (Colandrea et al., 2000; 

D'Armiento et al., 1995). 
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In bone surface xenografts of human breast cancer cells, MDA-MB-231, 

inhibition of MMP-1 attenuated invasion, vascularization, and osteolysis, while 

overexpression of MMP-1 promoted bone metastasis (Lu et al., 2009).  Osteoclasts, 

which degrade bone, cultured in collagen are activated by MMP-1 from MDA-MB-231 

media (Eck et al., 2009).  MMP-1 activation of osteolysis in vivo may function through 

similar osteoclast activation (Holliday et al., 1997). MDA-MB-231 cells, in coculture 

with bone marrow fibroblasts, are more adherent and migratory than less metastatic cell 

lines (Saad et al., 2000). Counterintuitively, osteoblasts, which generate bone, are 

induced to produce MMP-1 by media from a human breast cancer line, H31, increasing 

bone resorption.  Interestingly, however, these breast cancer cells showed enhanced 

migration towards collagen degraded by MMP-1, suggesting a mechanism for breast 

cancer cell movement (Ohishi et al., 1995) 

Inhibition of MMP-1 in MDA-MB-231 cells inhibited growth of mammary fat 

pad xenografts (Wyatt et al., 2005).  In melanoma intradermal xenografts, inhibition of 

MMP-1 had no impact on primary tumor growth, but significantly decreased metastases 

(Blackburn et al., 2007). 

In mice, inhibition of the endogenous MMP-1 homologue MMP-1a, which has 

74% homology, repressed invasion and metastatic growth of murine lung cancer and 

melanoma cells (Foley et al., 2012).  The recent development of a knockout MMP-1a 

mouse showed that MMP-1a abolition did not affect growth or fertility.  However, when 

these mice and their wild-type littermates were subjected to intraperotineal injection of 

the carcinogen urethane, MMP-1a-/- mice had significantly smaller tumors (Fanjul-

Fernandez et al., 2013) 
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Function  
	
  

The complex pathologies and regulation of MMP-1 suggest that its involvement 

in cancer may be multifaceted. MMP-1 is critical in degrading interstitial collagen, and 

tumor cells may require that function to invade (Page-McCaw et al., 2007).  However, 

MMP-1 has many substrates.  Among them, protease-activated receptor-1 (PAR-1) has 

been shown to be activated by MMP-1 cleavage in MDA-MB-231 breast cancer cells, 

promoting tumorigenesis and metastasis (Boire et al., 2005).  Similar results were seen in 

mice with homologous MMP-1a and murine PAR-1 (Foley et al., 2012).  Expression of 

PAR-1 is seen in breast cancer patients (Even-Ram et al., 1998) and is correlated to 

invasion in breast cancer cell lines (Kamath et al., 2001). 

PAR-1 is a G-protein-coupled-receptor which is autoactivated after cleavage, 

typically through thrombin during coagulation (Coughlin, 2000).  PAR-1 activation, in 

turn, can activate endothelial cells (Goerge et al., 2006) and angiogenesis (Caunt et al., 

2003).  

Several experiments support PAR-1 increasing angiogenesis in breast cancer.  

PAR-1 activation functions in a feedback loop with tumor stroma where PAR-1 

expression upregulates angiogenic factor Cyr61 (CCN1) in breast cancer cells.  CCN1 

expression, in turn, activates stromal secretion of MMP-1 (Nguyen et al., 2006).  In line 

with this, MMP-1 expression is required in vitro angiogenesis of human endothelial cells 

(Fisher et al., 1994).  Stimulation of endothelial cells with MMP-1 also increases levels 

of VEGFR2 through PAR-1 activation (Mazor et al., 2013).   

Feedback loops, such as the PAR-1/MMP-1/VEGFR2/CCN1 interaction 

described above, are likely to be major component of MMP-1 regulation and 
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tumorigenesis.  Research focused on these interactions is crucial to understanding breast 

cancer and metastasis. 

 

Concluding Remarks  
 

MMP-1 has repeatedly been correlated to tumorigenesis and metastasis.  

Mechanisms for MMP-1 regulation of cancer are beginning to be elucidated.  However, 

less is known about the regulation of MMP-1 in a metastatic context.  The AP-1 family is 

a known regulator of MMP-1.  Specific AP-1 members are also known to be regulated in 

metastasis, and therefore may regulate MMP-1 in that context.  Nevertheless, as 

described above, there are many other transcriptions factors reported to regulate MMP-1, 

so its complex mechanism of regulation during metastasis is far from clear. 

It is critical that, in addition to correlating expression to cancer progression, we 

follow up on leads gathered from genomic profiling.  Our aim here is to confirm the 

function of MMP-1 in cancer and metastasis, detail MMP-1 regulation in a metastatic 

context, and shed light on the regulatory process.  The hope is that better understanding 

of MMP-1 regulation may be an opportunity to find novel treatments to better manage a 

devastating disease.   
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Methods  

	
  

Analysis of Microarray Data 

Microarray gene expression data was available as supplemental data in several 

publications (Bos et al., 2009; Kang et al., 2003; Minn et al., 2005). To parse the data, 

Affymetrix comparison sheets were used with Microsoft Excel Vlookup functions to 

match primer coding with gene name, symbol and reference sequence ID.  Expression 

values from cell lines with high metastatic potential to the bone (1833, Scp-2, Scp-25 and 

Scp-46), to the lung (1834, 3481, 4142, 4173, 4175, 4180, Scp-3 and Scp-28), or with 

low metastatic potential (MDA-MB-231, Scp-6, Scp-21 and Scp-26) were averaged for 

each gene. The ratio of high to low metastatic potential expression levels was calculated 

and ordered by highest ratio. A T-test was used to calculate the p value for the 

significance of the differences between each group. 

 

Cell Culture 

Scp-2, Scp-3, Scp-21, Scp-26, Scp-28, and MDA-MB-231 cell lines were a 

generous gift from Joan Massague (Memorial Sloan Kettering Research Institute)(Minn 

et al., 2005).  Cells were grown in Dulbecco’s modified Eagle’s media (DMEM) 

supplemented with 10% fetal bovine serum.  Phoenix amphotropic helper cells (Pear et 

al., 1993) were grown in DMEM supplemented with 10% Fetal Bovine Serum. 

Cell lines stably expressing Fra-1 or a control vector were made in Scp-21 cells. 

The Fra-1 expression vector, p6599 MSCV-IP N-HAonly FosL1 (White et al., 2012), and 

pBabe-Puro vector (Morgenstern et al., 1990) plasmids were independently transfected 
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into Phoenix amphotropic helper cells (Pear et al., 1993) using Lipfectamine LTX (Life 

Technologies) per manufacturer’s instructions.  The transfection media was changed after 

16 hours to DMEM/10% fetal bovine serum. After 24 hours the media containing virus 

was removed and polybrene was added to 4 µg/mL.  This viral media was filtered with 

0.45 µm polyethersulfone filters (Thermo Scientific) and added to Scp-21 cells.  This 

infection media was removed after 24 hours and selection in puromycin (10  µg/mL; 

Sigma Aldrich) started 24 hours later. These Scp-21 cells expressing Fra-1 or control 

vector were maintained in DMEM supplemented with 10% fetal bovine serum and 5  

µg/mL puromycin. 

 Scp-2 and Scp-21 cells used to measure protein degradation with cycloheximide 

were plated at 2x106 cells in a 6 cm plate overnight.  Plates were then treated with 

cycloheximide (10 µg/mL) for the indicated times. 

 

RNA Purification, cDNA Reverse Transcription, DNase Treatment 

RNA was purified from adherent cells with Trizol Reagent (Life Technologies) 

per the manufacturer’s instructions. RNA was reverse transcribed with the ImProm 

Reverse Transcriptase (Promega) per the manufacturer’s instructions with random 

hexamer primers (Integrated DNA Technologies). 

 In some cases, where signal from contaminating genomic DNA would be 

problematic, samples to be measured by quantitative RT-PCR were treated with DNase I 

(Sigma) per the manufacturer’s instructions. 

  



	
  

	
  

77	
  

Quantitative Reverse Transcription Polymerase Chain Reaction (qRT-PCR) 

qRT-PCR was performed with standard protocols with the StepOne Plus System 

(Life Technologies) with Power SYBR master mix (Life Technologies) per the 

manufacturer’s instructions. Briefly, cDNA samples were combined with master mix and 

primers (final concentration 0.5 µM; shown in table below).  Expression was normalized 

to 18S rRNA expression.  Standard deviations were calculated from three independent 

experiments.  p-values were determined by Student’s two-tailed t-tests with significance 

thresholds as labeled.    

Primers (Integrated DNA Technologies) were designed using Primer Express 

(Life Technologies) with standard parameters.  Primer sequences for the human genes 

were as follows: 

RNA Sequence (5’ – 3’)  

18S F TCGAGGCCCTGTAATTGGAAT 

R CCCTCCAATGGATCCTCGTTA 

MMP-1 F CCTAGTCTATTCATAGCTAATCAAGAGGATGT 

R AGTGGAGGAAAGCTGTGCATAC 

MMP-1 

Pre-mRNA 

F GCTGTGCTGTTACCCTAGTCCCT 

R GGCAGCCAATCCCTTTGTT 

c-Fos F CTGGCGTTGTGAAGACCATGA 

R CCCTTCGGATTCTCCTTTTCTC 

FosB F AGCAGCAGCTAAATGCAGGA 

R TTTTGGAGCTCGGCGATCT 
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Fra-1 F CCGGGCATGTTCCGAGACTT 

R ACTCATGGTGTTGATGCTTGGCAC 

Fra-2 F AACTTTGACACCTCGTCCCG 

R CCAGGCATATCTACCCGGAAT 

c-Jun F AGATGAACTCTTTCTGGCCTGCCT 

R ACACTGGGCAGGATACCCAAACAA 

JunB F AGTCCTTCCACCTCGACGTTTA 

R TGAATCGAGTCTGTTTCCAGCA 

JunD F GACAAGCTTATGGAAACACCCTTCTACGG 

R CCGGGATCCTCAGTACGCGGGCACCTGG 

	
  

Conservation Mapping 

The matrix metallopeptidase-1 (MMP-1) promoter was analyzed with the UCSC 

Genome Browser (Kent et al., 2002). Analysis was performed on the following tracks: 1) 

Base Position, 2) Human mRNAs, 3) Placental Mammal Conservation by PhastCon with 

all 23 species, and 4) Vertebrate Conservation by PhastCon with all 46 species. 

 

Luciferase Assays 

	
   All constructs were made with the pGL3-Basic promoter backbone with inserts at 

the BglII and HindIII sites of the multiple cloning sequence. The MMP-1 promoter 

regions were amplified from human genomic DNA (Bioline).  Amplified inserts spanned 

-819/+71, -514/+71, -174/+71, -810/-174, -172/-27, -115/-27, and -94/-27 bases from the 
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transcription start site. Shorter promoter inserts were annealed from oligonucleotide 

sequences, as follows: 

-107/-57 

F AGCTGTCTATTCATAGCTAATCAAGAGGATGTTATAAAGCATGAGTCAGA

CAGCCT 

R GATCAGGCTGTCTGACTCATGCTTTATAACATCCTCTTGATTAGCTATGAA

TAGAC 

-74/-27 

F AGCTAGCATGAGTCAGACAGCCTCTGGCTTTCTGGAAGGGCAAGGACTCT

CGTACTCAGTCTGTCGGAGACCGAAAGACCT TCCCGTTCCTGAG 

R GATCCTCAGGAACGGGAAGGTCTTTCGGTCTCCGACAGACTGAGTACGAG

AGTCCTTGCCCTTCCAGAAAGCCAGAGGCTGTCTGACTCATGCT 

-59/-27 

F AGCTCCTCTGGCTTTCTGGAAGGGCAAGGACTCTCGTACTCAGTCTGTCGG

AGACCGAAAGACCT TCCCGTTCCTGAG 

R GATCCTCAGGAACGGGAAGGTCTTTCGGTCTCCGACAGACTGAGTACGAG

AGTCCTTGCCCTTCCAGAAAGCCAGAGG 

AP-1 Point Mutant  

F AGCTGTCTATTCATAGCTAATCAAGAGGATGTTATAAAGCATGCCACAG   

ACAGCCT 

R GATCAGGCTGTCTGTGGCATGCTTTATAACATCCTCTTGATTAGCTATGA 

ATAGAC 
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PEA3 Point Mutant 

F AGCTGTCTATTCATAGCTAATCAAGATCTTGTTATAAAGCATGAGTCAGAC

AGCCT 

R GATCAGGCTGTCTGACTCATGCTTTATAACAAGATCTTGATTAGCTATGAA

TAGAC 

HoxA5 Point Mutant 

F AGCTGTCTATTCATAGCATGCCAAGAGGATGTTATAAAGCATGAGTCAGA

CAGCCT 

R GATCAGGCTGTCTGACTCATGCTTTATAACATCCTCTTGGCATGCTATGAA

TAGAC 

3xAP-1 

F AGCTCATGAGTCAGACATGAGTCAGACATGAGTCAGA 

R GATCTCTGACTCATGTCTGACTCATGTCTGACTCATG 

3xPEA3 

F AGCTAATCAAGAGGATGTTAAGCTAATCAAGAGGATGTTAAGCTAATCAA

GAGGATGTTA 

R GATCTAACATCCTCTTGATTAGCTTAACATCCTCTTGATTAGCTTAACATCC

TCTTGATT 

 

The -819/-174, -172/-27, -115/-27, -94/-27, -74/-27, and -59/-27 inserts and 

synthetic promoters were added upstream of a c-Fos minimal promoter insert (Wang et 

al., 2000) in the pGL3-Basic backbone. -819/+71 AP-1 point mutations were made by 

PCR driven overlap extension (Heckman et al., 2007).  pRL-SV40P with the SV40 
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promoter driving Renilla luciferase (Chen et al., 1999) served as an internal control. 

pCMV-Luciferase (Selvaraj et al., 2003) served as a positive control.    

The luciferase plasmids were transfected into cells using Lipofectamine 2000 

(Life Technologies) per the manufacturer’s instructions. Cell were lysed in passive lysis 

buffer (Promega) 16 hours post transfection and analyzed using the Dual-Luciferase 

Reporter Assay System (Promega) per the manufacturer’s instructions with a 20/20 

luminometer (Turner Biosystems) for a 10-second interval measurement.  Mean and 

standard deviation for the ratio of firefly-luciferase to renilla-luciferase signals were 

calculated from three independent experiments.  p-values were determine by Student’s 

two-tailed t-tests, with significance thresholds as indicated.    

 

Immunoblot Analysis 

Whole cell lysates were prepared with RIPA buffer (50 mM Tris, 150 mM NaCl, 

0.1% SDS, 0.5% sodium deoxycholate, 1% Triton-100, 1 mM DTT, 1 mM PMSF, 

Protease Inhibitor Cocktail III [1:200; Calbiochem], pH 7.6). After 10 minutes at 4°C, the 

lysates were centrifuged at 20,000 g for 15 minutes at 4°C, and lysate supernatants were 

normalized for protein levels with BCA Assays (Pierce) per the manufacturer’s 

instructions.  Normalized lysates were separated by SDS-polyacrylamide gel 

electrophoresis (PAGE), transferred onto Trans-Blot transfer medium (Bio-Rad), and 

immunoblotted with primary antibody at 4°C for 16 hours.  Antibodies used were against 

Fra-1 (sc-605X), MMP-1 (sc-12348), JunD (sc-74X), c-Jun (sc-1694X), HSP-90 (sc-

101494) and Actin (sc-1616) from Santa Cruz Biotechnology. Generally 1:1000 dilutions 

were used. Membranes were then washed three times with Tris-buffered saline (TBS) and 
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incubated with secondary antibody at a 1:10,000 dilution for one hour.  Secondary 

antibodies used were: Goat anti-Rabbit IRDye 800CW, Goat anti-Rabbit IRDye 680LT, 

and Donkey anti-Goat IRDye 800CW from LiCor.  Membranes were then washed three 

times with TBS.  Membranes were measured for fluorescence with an Odyssey infrared 

imager (LiCor).  Means and standard deviations were calculated from Odyssey 

quantitation of specific band intensities in three independent experiments.  p-values were 

determined by Student’s two-tailed t-tests with significance thresholds as indicated.    

 

siRNA treatment 

Double stranded siRNA duplexes (Integrated DNA Technologies, Sigma-

Aldrich), as indicated below, were transfected with RNAiMax Lipofectamine transfection 

reagent (Life Technologies) per the manufacturers instructions. Duplexes were designed 

as follows: 

Name Catalog Number Manufacturer 

Control DS NC1 Integrated DNA Technologies 

CGUUAAUCGCGUAUAAUACGCGU 

AUACGCGUAUUAUACGCGAUUAACGAC 

dsiRNA-Fra-1 A HSC.RNAI.N005438.12.1 Integrated DNA Technologies 

GGCGGAGACUGACAAACUGGAAGAT 

GUCCGCCUCUGACUGUUUGACCUUCUA 

dsiRNA-Fra-1 B HSC.RNAI.N005438.12.2 Integrated DNA Technologies 

CCACUUUACCCACCUAGAACACUAA 
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ACGGUGAAAUGGGUGGAUCUUGUGAUU 

dsiRNA-JunD A HSC.RNAI.N005354.12.1 Integrated DNA Technologies 

CGAGUCCACAUUCCUGUUUGUAATC 

AUGCUCAGGUGUAAGGACAAACAUUAG 

dsiRNA-JunD B HSC.RNAI.N005354.12.3 Integrated DNA Technologies 

GCCGACGAGGCUCACAGUUCCUCUAC 

UGCGGCUGCUCGAGUGUCAAGGAGAUG 

dsiRNA-c-Jun A SAS_Hs02_00333461 Sigma-Aldrich 

dsiRNA-c-Jun B SAS_Hs01_00150279 Sigma-Aldrich 

 

Electrophoretic Mobility Shift Assays (EMSA) 

 Nuclear extracts were made from 4x107 cells grown on four 15 cm plates.  Cells 

were washed with cold PBS, and scraped into 3 mL of phosphate buffered saline (PBS).  

Samples were centrifuged at 400 g for 1 minute at 4°C in a J6B centrifuge (Beckman).  

The cell pellets were resuspended in 4 mL of Buffer A (10 mM Tris, 1.5 mM MgCl2, 

10mM KCl, 0.4 mM DTT, .04 mM PMSF, pH 7.9) and incubated for 10 minutes at 4°C.  

Samples were dounced 50 times with a type B 15 mL glass douncer (Kontes Glassware 

Co.).  Dounced samples were centrifuged at 400 g for 10 minutes at 4°C in the J6B 

centrifuge. The nuclear pellets were resuspended in 300 µl Buffer C (20 mM Tris, 0.3 M 

KCl, 1.5 mM MgCl2, 25% Glycerol, 0.2 mM EDTA, 0.5 mM DTT, 0.5 mM PMSF, pH 

7.9) and rotated at 4°C for 30 minutes.  Samples were centrifuged at 20,000 g for 15 

minutes at 4°C.  Nuclear extract supernatants were then removed, normalized for total 

protein levels by BCA Assays (Pierce) and used for DNA binding reactions. 
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Probes and competitors for DNA binding assays were made with annealed 

complementary oligonucleotides (Integrated DNA Technologies), as listed below: 

MMP-1 Probe (with AP-1 consensus site) 

F AGCTGTCTATTCATAGCTAATCAAGAGGATGTTATAAAGCATGAGTCAGA

CAGCCT 

R GATCAGGCTGTCTGACTCATGCTTTATAACATCCTCTTGATTAGCTATGAA

TAGAC 

Non-specific Competitor: 

F TGTCGAATGCAAGCCACTAGAA 

R TTCTAGTGGCTTGCATTCGACA 

Probe with Mutant AP-1 Site: 

F AGCTGTCTATTCATAGCTAATCAAGAGGATGTTATAAAGCATGCCACAG   

ACAGCCT 

R GATCAGGCTGTCTGTGGCATGCTTTATAACATCCTCTTGATTAGCTATGA 

ATAGAC 

 

The annealed probes were end-labeled with γ-32P-ATP (Perkin Elmer) and poly 

nucleotide kinase (New England Biolabs), per the manufacturer’s instructions, to a final 

concentration of 1 ng/ul. 

DNA binding reactions contained 5 µl nuclear extract (approximately 10 µg),1 ng 

of 32P-labeled probe, 50 ng poly dI-dC, 250 ng of competitor (as indicated), and 2 µg 

antibody (in supershift experiments) for 30 minutes at room temperature with binding 

buffer (final concentration: 10 mM Tris HCl (pH 8.0), 50 mM KCl, 0.5 mM EDTA, 0.1% 
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Triton-X 100, 12.5% Glycerol, 0.2 mM DTT). Samples were then loaded on a 5% 

polyacrylamide gel in 1/4x TBE, and run for 2.5 hours at 100 V with 1x TBE running 

buffer.  The gel was then dried and exposed to x-ray film (Kodak) for 16 hours. 

 

Chromatin Immunoprecipitation (ChIP) 

ChIP was performed as described (Beckerman et al., 2009), with minor 

modifications.  Briefly, 4x107 cells were crosslinked with 1% formaldehyde for 15 

minutes at 25°C and quenched with 125 mM glycine.  Crosslinked plates were lysed in 

RIPA buffer (as described in immunoblot methods above), sonicate with a Sonicator 

3000 (Misonix) for 1 minute total, in 5 seconds on – 15 seconds off intervals, and 

centrifuged at 20,000 g for 15 minutes at 4°C.  Lysates were normalized by BCA Assay 

(Pierce), per the manufacturer’s instructions, and immunoprecipitated with 2 µg of anti-

Fra-1 antibody (Santa Cruz Biotechnology; Catalog #: sc-605) overnight rotating at 4°C.  

Protein-A agarose beads (7.5 µL)(Santa Cruz Biotechnology) diluted with 22.5 µL RIPA 

were added to purify immunoprecipitated protein for 90 minutes rotating at 4°C.  The 

beads were washed three times in RIPA buffer and reconstituted in 200 µL elution buffer 

(70 mM Tris HCl pH 8.0, 1 mM EDTA, 1.5% SDS) for 10 minutes at 65°C.  Beads were 

centrifuged at 1700 g for 1 minute at room temperature.  The salt of the transferred 

supernatant was adjusted to a concentration of 200 mM NaCl and incubated for 5 hours at 

65°C to reverse the crosslinks.  DNA from ChIP samples was then purified with Qiaquik 

PCR Purification Kits (Qiagen) per the manufacturer’s instructions.  

 Purified DNA was measured by qPCR (as previously described in qRT-PCR 

method) with primers, as follows: 
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MMP-1 

AP-1 F TCTGCTAGGAGTCACCATTTCT 

R ATAGAGTCCTTGCCCTTCCAG 

Control F AGTGACTACCGCTCTGCTGTGT 

R GTTCCGTCAGTCCTCATGGTT 

IL-6 

AP-1 F CTTCGTGCATGACTTCAGCTTT 

R AGCGCTAAGAAGCAGAACCACT 

Control F ATAGACGGATCACAGTGCACG 

R GCAACGTAGACACTCCTGAACC 

 

Samples were normalized to input DNA purified from reversed cross-linked input 

samples and measured through qPCR. Mean and standard deviations were calculated from three 

independent experiments. p-values were determine by Student’s two-tailed t-tests, with 

significance thresholds as indicated. 

 

Metabolic Labeling 

Cells (1x105) were plated in 6 cm plates for labeling.  After 16 hours, cells were 

washed twice with warm PBS and starved for 30 minutes at 37°C with 4 mL methionine 

and cysteine free DMEM (Life Technologies).  Media was changed to 2 mL 35S-

Translabel metabolic labeling reagent (100 µCi/mL; MP Biomedicals) in methionine and 

cysteine free DMEM and incubated at 37°C  for the indicated times.  Plates were washed 

twice with cold PBS, lysed in ice cold RIPA buffer, centrifuged at 20,000 g for 15 

minutes at 4°C, and immunopreciptated with 2 µg of anti-Fra-1 antibody (Santa Cruz 
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Biotechnology; #sc-605) overnight rotating at 4°C.  Protein-A agarose beads (Santa Cruz 

Biotechnology) were used to purify immunoprecipitated protein by incubation for 90 

minutes at 4°C.  Washed beads were reconstituted in SDS-PAGE sample buffer 

(described above) and boiled for 5 minutes. Boiled samples were centrifuged at 1700 g 

for 1 minute at 4°C, and resolved on 12% SDS-PAGE for 2.5 hours at 150 V.  The gel 

was placed in fixative (50% Methanol/10% Acetic Acid) for 30 minutes rocking at 25°C.  

The gel was then enhanced with Amplify Fluorographic Reagent (GE) for 30 minutes 

rocking at 25°C.  After enhancement, the gel was dried and exposed to film (Kodak) for 5 

days.  Autoradiographs were quantitated by ImageJ software analysis.  Means and 

standard deviations were calculated from three independent experiments. p-values were 

determine by Student’s two-tailed t-tests with significance thresholds as indicated. 

 

Soft Agar Assay 

Soft agar plating of the cell lines was performed as described (Freed-Pastor et al., 

2012), with minor modifications.  Briefly, 35-mm plates were coated with 1.5 mL 0.6% 

agar in DMEM. Cells (5x103) were reconstituted in 1.5 mL 0.3% agar in DMEM, and 

plated on top of the 0.6% agar layer.  Agar layers were then covered with 1.5 mL 

DMEM/10% Fetal Bovine Serum.  Cells were grown for 21 days with the media being 

changed every 5 days.  Colonies were stained with 0.005% Crystal Violet in water for 

one hour and counted.  Mean colony number and standard deviation were calculated from 

three independent experiments.  p-values were determined by Student’s two tailed t-tests 

with significance thresholds as indicated.   
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Scratch-Wound Assays 

 Cells were grown to confluency and the monolayer was scratched and monitored 

by phase contrast microscopy.  Triplicate images at each time point were used to count 

the number of cells that passed the scratch threshold.  Mean and standard deviation were 

calculated from three independent experiments. p-values were determined by Student’s 

two-tailed t-tests, with significance thresholds as indicated. 
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Introduction  
 

 Breast cancer will affect one in eight women in the United States (Siegel et al., 

2012).  Unfortunately for many patients, after the primary tumor is excised or ablated, 

cancer can remain in secondary organs as micrometastases.  Compounding this issue, 

micrometastases often exist in a nonproliferative state (Braun et al., 2005; Pantel et al., 

1993), making them less sensitive to adjuvant therapies targeting proliferating cells.  

Nearly all breast cancer mortality is the result of tumor cells metastasizing to vital organs 

(Gupta et al., 2006). Therefore, understanding breast cancer metastasis is critical to 

improving treatment and prognoses. 

Genomic expression technology has yielded a tremendous amount of data for 

breast cancer.  Several metastatic gene profiles have been discovered (van 't Veer et al., 

2002).  Some profiles have also been commercialized and are used for diagnostic 

purposes in the clinic (Ross et al., 2008).  However, genomic expression technology also 

presents limitations and challenges. For example, microarray data may uncover a 

correlation between gene expression and a metastatic phenotype, yet how these genes are 

regulated and what role their expression has in cancer must still be determined using 

other approaches.   

To further complicate diagnosis and treatment, cancer, while clonal in origin, 

often exists as heterogeneous tumors (Ding et al., 2010; Farabegoli et al., 2001; Navin et 

al., 2011; Shipitsin et al., 2007; Teixeira et al., 1996).  Statistically, this heterogeneity can 

obscure microarray signals and increase background noise.  Physiologically, relevant cell 

populations or gene expression patterns may be lost in the aggregate.   
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Two methods were used to increase the homogeneity and robustness of the tumor 

phenotype. In the first method, tumor heterogeneity was reduced by the development of 

clonal cultures from single B16 melanoma cells, each with a distinct metastatic potential 

in syngenic mouse intravenous injections (Fidler et al., 1977).  In a second set of 

experiments, metastatic B16 cell populations were selected using syngenic mouse 

injections.  After injection, cells were cultured from the resulting metastatic lung tumors.  

These derivative B16 cell lines exhibited greater metastatic potential when reinjected into 

mice.  Repeating this process led to a series of cell lines with increasing metastatic 

potential and greater homogeneity (Fidler, 1973). 

The Massague group developed a similar system for breast cancer xenografts. The 

parental cell line, MDA-MB-231, is a breast adenocarcinoma derived from a pleural 

effusion. These cells cause a low level of metastasis when injected into the mammary 

pads of immunocompromised mice. Metastatic cells from these xenografts had  higher 

metastatic potential and subsequent reinjection of these secondary xenografts resulted in 

cells with even higher metastatic potential. Alternatively, MDA-MB-231 cells were 

cloned into single cell populations (Scp cell lines). The Scp cell lines were found to have 

varied metastatic potential (Minn et al., 2005). The metastatic potential to specific tissues 

also varied. Cells derived from metastatic tumors in the lung or the bone were more likely 

to metastasize to same organ if reinjected in mouse xenografts (Kang et al., 2003; Minn 

et al., 2005).   Microarrays on these cell lines of varying metastatic potential1 provide an 
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  in	
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  (Minn	
  et	
  al,	
  2005)	
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  ‘metastatic	
  
potential.’	
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  in	
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  potential,	
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opportunity to discover genes correlated to, and potentially causative of, breast cancer 

metastasis (Bos et al., 2009; Kang et al., 2003; Minn et al., 2005). In addition, 

comparison of these cells provides a well-controlled system to understand the 

mechanisms that alter gene expression and lead to higher metastatic potential. 

 We have analyzed microarray gene expression data from the MDA-MB-231 

derived cell lines with varied metastatic potential and focused on the expression of matrix 

metallopeptidase-1 (MMP-1), which correlated strongly with high metastasis to both the 

bone and the lung. We show that MMP-1 expression is differentially regulated by an AP-

1 element in its promoter and the transcription factor Fra-1.  

	
    

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
metastatic	
  potential,	
  will	
  be	
  called	
  ‘low-­‐metastatic.’	
  	
  Scp-­‐21	
  cells,	
  which	
  were	
  in	
  the	
  
bottom	
  quintile	
  of	
  metastatic	
  potential,	
  will	
  be	
  called	
  ‘non-­‐metastatic.’	
  
	
   Low-­‐metastatic	
  MDA-­‐MB-­‐231	
  cells	
  were	
  derived	
  from	
  breast	
  cancer	
  
carcinoma	
  cells	
  collected	
  from	
  the	
  pleura	
  of	
  the	
  lung,	
  and	
  are	
  therefore	
  metastatic	
  
by	
  definition.	
  	
  The	
  focus	
  of	
  this	
  research	
  is	
  to	
  determine	
  the	
  regulators	
  of	
  metastasis	
  
and	
  therefore	
  a	
  higher	
  threshold	
  for	
  metastatic	
  potential	
  will	
  be	
  used.	
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Results  
 

Correlation of MMP-1 Expression with Cell Line Metastatic Potential 

	
   We analyzed publicly available microarray gene expression data from a set of 

breast carcinoma cell lines with well-characterized metastatic potential (Minn et al., 

2005) for a correlation between gene expression and metastasis.  To identify genes that 

were specifically upregulated in cells with high bone or lung metastatic potential, we 

grouped cell lines as either highly metastatic to the bone, to the lung, or neither (i.e. with 

low metastatic potential) (Minn et al., 2005). We determined the ratio of average 

expression in highly metastatic cell lines (bone or lung) to the low metastatic cells 

(Tables 3-1 and 3-2; Appendix 1). Microarray data from four highly metastatic bone lines 

were used, eight lung metastatic lines and four low or non-metastatic lines. The highest 

differential expression was found for the MMP-1 gene.  MMP-1 was expressed nearly an 

average of 100 fold more in bone metastatic cells than non-metastatic cells. Expression 

was also strongly higher in lung metastatic cells (27 fold), albeit with a weaker p value 

(0.056).  

We confirmed the microarray data for MMP-1 by measuring expression by 

quantitative RT-PCR in three cell lines with varying metastatic potential: Scp-2 (highly 

metastatic), Scp-21 (non-metastatic) and MDA-231 (low-metastatic).  As was shown by 

the microarray data, MMP-1 mRNA expression was 90 fold higher in Scp-2 cells than in 

Scp-21 cells and 17 fold higher than in MDA-MB-231 cells (Figure 3-1A). Immunoblot 

analysis confirmed that MMP-1 protein levels were commensurate with mRNA 

expression (Figures 3-1C and D).  These data indicate that MMP-1 is differentially 

regulated in cells with different metastatic potentials.   
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In order to test whether differential mRNA expression of MMP-1 is 

transcriptionally regulated, we used qRT-PCR to measure the relative amounts of MMP-1 

pre-mRNA.  Pre-mRNA levels preceding splicing is a more direct indicator of 

transcription.  Pre-mRNA levels of MMP-1 were also greatly elevated in Scp-2 

metastatic cells compared to the non-metastatic Scp-21 cells, suggesting that this 

difference is due to changes in transcription (Figure 3-1B). 

 

Mapping of Gene Regulatory Elements 

We examined the human MMP-1 promoter for sequence conservation and found 

blocks of conserved elements in the proximal promoter region (Figure 3-2). These 

conserved regions overlap some consensus transcription factor binding sites that have 

previously been identified for the MMP-1 promoter (Overall, 2001; Pardo et al., 2005; Ra 

et al., 2007). 

To determine if the MMP-1 promoter is sufficient to reproduce differential 

transcription in reporter assays, we inserted sections of the MMP-1 promoter in luciferase 

reporter constructs (Figure 3-3A) and measured luciferase expression in Scp-2 and MDA-

MB-231 cells (high and low metastatic cells, respectively).  The MMP-1 promoter region 

from -819 to +71 was sufficient for five fold greater expression in the highly metastatic 

Scp-2 cells (Figure 3-3B). 

In order to determine which region of the MMP-1 promoter was required for 

differential transcription of MMP-1 in Scp-2, Scp-21 and MDA-MB-231 cells,   

5’ and 3’ deletions were made (Figure 3-3A). Both -514/+71 and -174/+71 constructs 

were sufficient to drive significant differential expression, similar to -819/+71 (Figure 3-
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3B).  As a control, we used a CMV promoter-luciferase construct that gave similar 

expression in the two cell lines. These results suggest that key regulatory elements for 

differential expression are in the -174/+71 promoter region. 

To demonstrate that the -174/+71 region is required for differential expression, we 

designed a 3’ deletion -819/-174 construct. The -819/-174 MMP-1 region was inserted 

into a luciferase plasmid upstream of the c-Fos minimal promoter.  The c-Fos minimal 

promoter includes the TATA box and transcription start site to give baseline expression.  

The -819/-174 construct was not able to drive significant expression (Figure 3-3B). 

Together, the 5’ and 3’ deletion constructs identified the -174/+70 MMP-1 promoter 

region as necessary and sufficient for MMP-1 transcriptional regulation. 

We also used the c-Fos minimal promoter with a series of 5’ MMP-1 promoter 

deletions to -27, to further isolate the region required for expression in -174/+70 (Figure 

3-4A).  We found that the -94/-27 region was the minimal region required for differential 

expression between Scp-2 and MDA-MB-231 cells, with little differential expression 

seen with the -74 construct (Figure 3-4B).  However, while the ratio of expression 

between Scp-2 and MDA-MB-231 was consistent among -172/-27, -115/-27 and -94/-27, 

overall expression was significantly lower in -94/-27 and -115/-27 compared to -172/-27, 

suggesting that there are positively acting regulatory elements between -74 and -172.  

These constructs showed that the -94 to -27 region was sufficient for differential 

expression by the MMP1 promoter. 

Having isolated a small regulatory region of the MMP-1 promoter, we sought to 

determine the specific transcription factor binding sites involved.  Previous findings and 

conservation mapping pointed to several potential regulators in the -94/-27 region of the 
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MMP-1 promoter: HoxA5, PEA3, and AP-1 (Auble et al., 1991; Gutman et al., 

1990)(Figure 3-2). To determine which, if any, of these sites are required for regulation, 

synthetic promoters were made with the region that contains the three consensus sites,  

-107 to -59, upstream of the c-Fos minimal promoter (Figure 3-5A). The -107/-59 region 

drove significantly higher expression in Scp-2 than in MDA-MB-231 cells (Figure 3-5B).  

Point mutations were made to each of the three conserved consensus regions (Figure 3-

5A).  Among them, only the AP-1 site mutation significantly decreased expression and 

decreased differential expression.  While Scp-2 cells did have greater luciferase 

expression than MDA-MB-231 cells for the AP1 mutant, this low level was variable and 

the difference was not statistically significant (Figure 3-5B). 

To confirm that the AP-1 site is required for expression in the context of the fuller 

promoter, we created a -819/+71 MMP-1 promoter construct with point mutations in the 

AP-1 consensus site (Figure 3-6A).  These point mutations were sufficient to completely 

abrogate luciferase expression in both Scp-2 and MDA-MB-231 cells (Figure 3-6B). The 

AP1 site alone was not sufficient to drive expression in Scp-2 cells as the site is present 

in the -74/-27 construct that was not expressed (Figure 3-4). To determine whether 

multiple copies of the AP1 site were sufficient, we made a synthetic promoter construct 

with a triple MMP-1 AP-1 consensus site and found that it gave a robust signal with 

significant differences between Scp-2 and MDA-MB-231 (Figure 3-6A and B).  The 

ratios of luciferase expression in Scp-2 versus MDA-MB-231 cells were similar with the 

triple AP-1 synthetic promoter and the -819/+71 region of MMP-1 (Figure 3-6B).  In 

contrast, a triple PEA3 site did not drive luciferase expression, suggesting that it is not 

sufficient for differential expression (Figure 3-6B). Together these experiments 
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demonstrated that the AP-1 region of the promoter is both necessary and sufficient for 

differential transcriptional regulation of MMP-1 in Scp-2 and MDA-231 cell lines.  

 

Characterization of AP-1 family members in MDA-MB-231 derived cell lines 

The AP-1 consensus site is bound by a dimer of AP-1 family members (reviewed 

in (Ozanne et al., 2007). There are seven AP-1 family genes: three Jun genes (c-Jun, 

JunB and JunD) and four Fos related genes (c-Fos, Fra-1, Fra-2, and FosB).  Dimers are 

comprised of at least one Jun family member, but can be homo- or hetero-dimers 

(Halazonetis et al., 1988; Verde et al., 2007).  To determine which AP-1 family members 

were expressed in Scp-2, Scp-21 and MDA-MB-231 cells, and would therefore be 

candidates for MMP-1 regulation, we performed qRT-PCR in each of the cell lines.  Fra-

1, Fra-2 and JunD had the highest expression levels, with lower levels of c-Jun and nearly 

undetectable JunB, FosB and c-Fos (Figure 3-7A).  However, unlike the differential 

mRNA expression seen for MMP-1 (Figure 3-1A), all the detectable AP-1 family 

members had comparable mRNA expression among the different cell lines (Figure 3-7A). 

To explore whether AP-1 family member protein expression is consistent with 

their mRNA expression, we performed immunoblots.  Specifically, we looked at Fra-1, 

Fra-2, c-Jun and JunD in Scp-2, Scp-21 and MDA-MB-231 cell lines.  The remaining 

AP-1 family members, c-Fos, FosB and JunB, that were not expressed at the mRNA level 

were not considered further.  Interestingly, contrary to Fra-1 mRNA expression levels, 

Fra-1 protein levels were significantly higher in Scp-2 cells than Scp-21 and MDA-MB-

231 cells (Figure 3-7B).  However, there was no significant change in protein expression 

levels of the Fra-2, JunD or c-Jun.  These results suggest the possibility that differences 
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in Fra-1 protein expression in Scp-2, Scp-21 and MDA-MB-231 cell lines are responsible 

for regulation of MMP-1 transcription. 

To test the hypothesis that Fra-1 regulates MMP-1, we inhibited expression of 

Fra-1 with short interfering RNAs (siRNA). Two siRNA duplexes decreased Fra-1 

mRNA expression by over 80% (Figure 3-8A) and Fra-1 protein levels by about 70% 

(Figures 3-8B and C).  This inhibition greatly reduced MMP-1 mRNA expression (Figure 

3-8D), supporting Fra-1’s role in MMP-1 regulation.  

Though other AP-1 family members were not differentially expressed in the Scp-

2, Scp-21 and MDA-MB-231 cell lines, we sought to determine which other AP-1 family 

members were required for MMP-1 expression.  As JunD is the most strongly expressed 

Jun family member in these cells, we first inhibited its mRNA expression with siRNA 

duplexes (Fig. 9A and B). However, despite efficient reduction in JunD levels, this 

inhibition did not have an effect on MMP-1 mRNA expression (Figure 3-9C).  

We had difficulty efficiently depleting Fra-2 and c-Jun with siRNAs, perhaps 

because mRNA expression of these genes was relatively low.  As such, partial inhibition 

c-Jun and Fra-2 had no statistically significant impact on MMP-1 (data not shown). 

Therefore, it was not possible for us to assess whether c-Jun or c-Jun acting redundantly 

with JunD were required for MMP-1 expression. Nevertheless, the requirement of the 

AP-1 site in the MMP1 promoter and depletion of Fra-1 clearly show that this factor is 

required for expression of MMP1 in the metastatic MDA-MB-231 derived cells. The 

differential expression of Fra-1 protein levels suggests that this mechanism may at least 

partially account for differences in MMP1 expression. 
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Discussion  
 

Genomic expression technology has yielded a tremendous amount of data 

regarding altered gene expression in cancer cell lines and patient tumors (Atlas, 2012).  

Expression patterns have identified expression “signatures” and advanced diagnostic 

tools (Ross et al., 2008; van 't Veer et al., 2002), but how these varying expression 

patterns are achieved is often unknown.  With the abundance of correlation data 

available, we sought to explore the regulatory mechanism of expression in metastasis.   

As described in the introduction, analysis of microarray studies poses major 

challenges partially because the samples are often heterogeneous, which can dilute the 

expression signal from cells of interest and increase the background noise from other 

irrelevant cells. In metastatic studies of tumors, only a fraction of the cell population may 

be capable of metastasizing.  Among this metastatic cell population there may be 

expression variation due to varied mechanisms, such as degree of metastatic potential or 

preference for metastasis to specific organs. In addition, in cases where samples come 

from different individuals, there can be variability due to uncontrolled differences in 

genetic background. 

The solution to this challenge is to use a well defined system to limit the 

heterogeneity of the samples and to correlate expression with defined and selected 

changes in metastatic potential. The MDA-MB-231 metastasis system defined by 

Massague and colleagues provides a large number of closely related cell lines with 

variable metastatic potential (Minn et al., 2005). The cell lines are all derived from 

MDA-MB-231 breast carcinoma cells, either by selection of metastatic clones in mouse 

xenograft or by analysis of single cell clones (the Scp lines). The result that the Scp cell 
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clones have vastly different, but reproducible, metastatic potentials suggests that the cells 

with these properties were pre-existing in the MDA-MB-231 cultures (Kang et al., 2003; 

Minn et al., 2005).  

MDA-MB-231 cell variants provided us with an opportunity to understand how 

the changes translated to altered gene expression. The generations of xenografted 

metastatic tumor cell lines, together with the Scp cell lines, yielded a list of genes 

correlated to metastatic potential.  We have found that among these genes, MMP-1 

expression is strongly correlated to metastatic potential in cells and that this expression is 

transcriptionally regulated by Fra-1 interaction with the AP-1 site of the MMP-1 

promoter.   

 

Minimal Promoter Region Sufficient for Differential Expression 

Luciferase data confirmed that AP-1 was required for differential expression 

between highly metastatic and non-metastatic cell lines (Figure 3-6B).  However, while 

the synthetic triplicate AP-1 site promoter construct was sufficient for differential 

expression, the -74/-27 MMP-1 promoter fragment with the c-Fos minimal promoter was 

not.  Therefore, although required, the single AP-1 consensus site in the -74/-27 region 

was insufficient for differential expression without the neighboring upstream sequence (-

96/-74).  Initial studies of phorbol ester induction of the MMP-1 promoter in fibroblasts 

had a similar result (Auble et al., 1991).  Therefore, it is likely that additional factor 

binding to the -96/-74 region is also required.  However, transcription factors with known 

binding sites in that region, HoxA5 and PEA3, were not required (Figure 3-5B).   
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In addition, differential expression was significantly greater with the -172/-27 

region compared to the -115/-27 region.  While this region is not required for differential 

expression, it is likely that an additional factor binding in this region increases expression 

(Figure 3-4B). 

 

Role of AP-1 in MMP-1 Expression and Metastasis 

In line with our findings, AP-1 regulation of MMP-1 has been well studied in 

several systems (Angel et al., 1987; Lee et al., 1987; Vincenti et al., 1996) and AP-1 

expression has been implicated in tumorigenesis (Bamberger et al., 1999; Milde-

Langosch, 2005; Song et al., 2006).  In particular, expression of Fra-1 has been shown to 

be correlated to plastic proliferative breast disorders (Chiappetta et al., 2007) and 

aggressive breast cancer cells (Zajchowski et al., 2001). 

We have shown that Fra-1 is required for MMP-1 expression in the MDA-MB-

231 derivatives.  However, Fra-1 binds to the AP-1 consensus sequence as a heterodimer 

with a Jun protein (Cohen et al., 1989).  Therefore, a Jun protein should also be required 

for MMP-1 expression.  However, depletion of the most highly expressed Jun protein, 

JunD, had no effect on MMP-1 expression. JunB could not be detected by 

immunoblotting and showed very low expression by qRT-PCR.  The final Jun protein, c-

Jun, was detected by immunoblot and qRT-PCR.  However, five siRNA duplexes were 

unable to significantly reduce c-Jun expression (data not shown). Challenges inhibiting c-

Jun expression may be due to its low levels or, alternatively, to a cell requirement for c-

Jun expression—making c-Jun inhibition toxic to the cell. Due to the inability to strongly 

deplete c-Jun levels, we cannot determine whether it is required for MMP-1 expression or 
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whether it fulfills a redundant requirement with JunD. It is also possible that there is a 

novel partner for Fra-1 in these cells. 

 

Conclusion 

In summary, we correlated MMP-1 expression to the metastatic expression of 

MDA-MB-231 cell line variants.  We found that MMP-1 expression is regulated in these 

cells by the AP-1 consensus site on the promoter and that the AP-1 family member, Fra-

1, is required for MMP-1 expression. AP-1 binding and regulation will be described 

further in the chapter four. 
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Figure Legends 
 

Figure 3-1 

Differential expression of MMP-1 in MDA-MB-231 derivative cell lines.  A. qRT-PCR 

of MMP-1 in Scp-2 (high metastatic potential), Scp-21 (non-metastatic) and MDA-MB-

231 (low metastatic) cells. B. qRT-PCR of MMP-1 mRNA and pre-mRNA in Scp-2 and 

Scp-21 cells.  Mean relative values +/- standard deviation from three independent 

experiments. C. Immunoblot with anti-MMP-1 antibody of whole cell lysates from Scp-2, 

Scp-21, and MDA-MB-231 cells. Anti-actin antibody served as a loading control. D. 

Mean MMP-1 protein band intensity +/- standard deviation from three independent 

experiments. **, p < 0.005 for two-tailed t-tests.  

 

Figure 3-2 

Schematic of conservation and consensus regions of the MMP-1 promoter.  Genome 

Browser (Kent et al., 2002) analysis of placental mammalian and vertebrate conservation 

by PhastCon.  Regions of conservation were compared to known transcription factor 

consensus sequences (shown in gray, with unmatched bases in red); numbers represent 

base position in reference to MMP-1’s transcription start site.   

 

Figure 3-3 

The MMP-1 promoter region from -174 to +71 bases from the site of transcription start is 

necessary and sufficient for differential expression in Scp-2 and Scp-21 cells.  A. 

Schematic of MMP-1 promoter region sequence inserts in a pGL3-luciferase backbone.  

B.  Luciferase signal from Scp-2 and MDA-MB-231 cells transfected with the indicated 
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reporter constructs. The signal was normalized to the Renilla luciferase levels from the 

co-transfected pRL-SV40P.  The pCMV-luciferase construct was included as a control 

and its values were normalized to 1.0 for the Scp-2 cells. Its expression is approximately 

10 times stronger than the MMP-1 luciferase reporters. The data shown represent mean 

+/- standard deviation for three independent experiments.  *, p < 0.05 for two-tailed t-

tests. 

 

Figure 3-4 

The minimum MMP-1 promoter region for differential expression in Scp-2 and Scp-21 

cells is -94 to -27 bases from transcription start.  A. Schematic of MMP-1 promoter 

region sequence inserts in a pGL3-luciferase backbone.  B.  Luciferase signal from Scp-2 

and MDA-MB-231 cells transfected with the indicated reporter constructs. The signal 

was normalized to the Renilla luciferase levels from the co-transfected pRL-SV40P. The 

data shown represent mean +/- standard deviation for three independent experiments.  **, 

p < 0.005 for two-tailed t-tests. 

 

Figure 3-5 

The AP-1 site of the MMP-1 promoter is necessary for differential expression in Scp-2 

and Scp-21 cells.  A. Schematic of MMP-1 promoter region sequence inserts in a pGL3-

luciferase backbone.  B.  Luciferase signal from Scp-2 and MDA-MB-231 cells 

transfected with the indicated reporter constructs. The signal was normalized to the 

Renilla luciferase levels from the co-transfected pRL-SV40P. The data shown represent 
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mean +/- standard deviation for three independent experiments.  *, p < 0.05; **, p < 

0.005 for two-tailed t-tests. 

 

Figure 3-6 

The AP-1 site of the MMP-1 promoter is necessary and sufficient for differential 

expression in Scp-2 and Scp-21 cells.  A. Schematic of MMP-1 promoter region 

sequence inserts in a pGL3-luciferase backbone.  B.  Luciferase signal from Scp-2 and 

MDA-MB-231 cells transfected with the indicated reporter constructs. The signal was 

normalized to the Renilla luciferase levels from the co-transfected pRL-SV40P.  The 3x 

AP-1 construct values were normalized to 1.0 for the Scp-2 cells. Its expression is 

approximately three times stronger than the MMP-1 luciferase reporter. The data shown 

represent mean +/- standard deviation for three independent experiments. **, p < 0.005 

for two-tailed t-tests.  

 

Figure 3-7 

AP-1 family mRNA and protein expression.  A. qRT-PCR of AP-1 family members  in 

Scp-2, Scp-21 and MDA-MB-231 cells.  Mean relative values +/- standard deviation 

from three independent experiments. **, p < 0.005 for two-tailed t-tests.  B. Immunoblots 

with anti-AP-1 antibodies of whole cell lysates from Scp-2, Scp-21, and MDA-MB-231 

cells. Anti-MMP-1 is included for comparison and anti-actin antibody served as a loading 

control.  
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Figure 3-8 

Fra-1 depletion with siRNAs decreases MMP-1 mRNA expression.  A. qRT-PCR of Fra-

1 in Scp-2 cells transfected with control or siRNA duplexes for Fra-1. Mean relative 

values +/- standard deviation from three independent experiments are shown. B. 

Immunoblot with anti-Fra-1 antibodies of Scp-2 cells transfected with control or siRNA 

duplexes for Fra-1. Anti-actin antibody serves as a loading control.  C. Mean Fra-1 band 

intensity +/- standard deviation for immunoblots from three independent experiments. D. 

qRT-PCR of MMP-1 and GAPDH control expression of Scp-2 cells transfected with 

control or double-stranded siRNA duplexes for Fra-1. Mean relative values are +/- 

standard deviation from three independent experiments. *, p < 0.05; **, p < 0.005 for 

two-tailed t-tests.    

 

Figure 3-9 

JunD depletion with siRNAs has no effect on MMP-1 mRNA expression.  A. 

Immunoblot with anti-JunD antibody of Scp-2 cells transfected with control or siRNA 

duplexes for JunD.  B. Mean JunD band intensity +/- standard deviation for immunoblots 

from three independent experiments. C. qRT-PCR of JunD, MMP-1 and Fra-1 in Scp-2 

cells transfected with control or siRNA duplexes for JunD. Mean relative values are +/- 

standard deviation from three independent experiments. **, p < 0.005 for two-tailed t-

tests.   
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Figures & Tables 

	
  
Table 3-1 Top Genes Correlated to Metastatic Potential in Bone. 

 

Table 3-2 Top Genes Correlated to Metastatic Potential in  Lung. 

 

Tables 3-1 & 3-2 

Top five genes with greatest expression differential in genes of high metastatic potential 

and low metastatic potential in bone and lung.  High bone metastatic cell lines are: 1833, 

Scp-2, Scp-25 and Scp-46.  High lung metastatic cell lines are: 1834, 3481, 4142, 4173, 

4175, 4180, Scp-3 and Scp-28.  Low metastatic cells lines are: MDA-MB-231, Scp-6, 

Scp-21 and Scp-26. Standard deviations for each were calculated and used in a two-tailed 

t-test to calculate relative p-value.  Genes with p-values over 0.06 were not included.   
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Figure 3–1 Differential expression of MMP-1 in Scp-2, Scp-21 and MDA-MB-231 
cells.  
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Figure 3–2 Conservation. 
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Figure 3–3 The -174/+71 region of the MMP-1 promoter is necessary and sufficient 
for differential expression in Scp-2 and MDA-MB-231 cells.  

  



	
  

	
  

114	
  

 

Figure 3–4 The -94/-27 region of the MMP-1 promoter is necessary and sufficient 
for differential expression in Scp-2 and MDA-MB-231 cells.  
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Figure 3–5 The AP-1 site of the MMP-1 promoter is necessary for differential 
expression in Scp-2 and MDA-MB-231 cells.  
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Figure 3–6 The AP-1 site of the MMP-1 promoter is necessary and sufficient for 
differential expression in Scp-2 and MDA-MB-231 cells. 
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Figure 3–7 AP-1 mRNA and Protein Expression. 
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Figure 3–8 Inhibition of Fra-1 decreases MMP-1 Expression. 
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Figure 3–9 Other AP-1 family siRNAs have no effect on MMP-1 expression. 

  



	
  

	
  

120	
  

References 
 
Angel, P., Baumann, I., Stein, B., Delius, H., Rahmsdorf, H. J., & Herrlich, P. (1987). 12-

O-tetradecanoyl-phorbol-13-acetate induction of the human collagenase gene is 
mediated by an inducible enhancer element located in the 5'-flanking region. Mol 
Cell Biol, 7(6), 2256-2266.  

Atlas, Cancer Genome. (2012). Comprehensive molecular portraits of human breast 
tumours. Nature, 490(7418), 61-70. doi: 10.1038/nature11412 

Auble, D. T., & Brinckerhoff, C. E. (1991). The AP-1 sequence is necessary but not 
sufficient for phorbol induction of collagenase in fibroblasts. Biochemistry, 
30(18), 4629-4635.  

Bamberger, A. M., Methner, C., Lisboa, B. W., Stadtler, C., Schulte, H. M., Loning, T., 
& Milde-Langosch, K. (1999). Expression pattern of the AP-1 family in breast 
cancer: association of fosB expression with a well-differentiated, receptor-
positive tumor phenotype. Int J Cancer, 84(5), 533-538.  

Bos, P. D., Zhang, X. H., Nadal, C., Shu, W., Gomis, R. R., Nguyen, D. X., . . . 
Massague, J. (2009). Genes that mediate breast cancer metastasis to the brain. 
Nature, 459(7249), 1005-1009. doi: 10.1038/nature08021 

Braun, S., Vogl, F. D., Naume, B., Janni, W., Osborne, M. P., Coombes, R. C., . . . 
Pantel, K. (2005). A pooled analysis of bone marrow micrometastasis in breast 
cancer. N Engl J Med, 353(8), 793-802. doi: 10.1056/NEJMoa050434 

Chiappetta, G., Ferraro, A., Botti, G., Monaco, M., Pasquinelli, R., Vuttariello, E., . . . 
Fusco, A. (2007). FRA-1 protein overexpression is a feature of hyperplastic and 
neoplastic breast disorders. BMC Cancer, 7, 17. doi: 10.1186/1471-2407-7-17 

Cohen, D. R., Ferreira, P. C., Gentz, R., Franza, B. R., Jr., & Curran, T. (1989). The 
product of a fos-related gene, fra-1, binds cooperatively to the AP-1 site with Jun: 
transcription factor AP-1 is comprised of multiple protein complexes. Genes Dev, 
3(2), 173-184.  

Ding, L., Ellis, M. J., Li, S., Larson, D. E., Chen, K., Wallis, J. W., . . . Mardis, E. R. 
(2010). Genome remodelling in a basal-like breast cancer metastasis and 
xenograft. Nature, 464(7291), 999-1005. doi: 10.1038/nature08989 



	
  

	
  

121	
  

Farabegoli, F., Santini, D., Ceccarelli, C., Taffurelli, M., Marrano, D., & Baldini, N. 
(2001). Clone heterogeneity in diploid and aneuploid breast carcinomas as 
detected by FISH. Cytometry, 46(1), 50-56.  

Fidler, I. J. (1973). Selection of successive tumour lines for metastasis. Nat New Biol, 
242(118), 148-149.  

Fidler, I. J., & Kripke, M. L. (1977). Metastasis results from preexisting variant cells 
within a malignant tumor. Science, 197(4306), 893-895.  

Gupta, G. P., & Massague, J. (2006). Cancer metastasis: building a framework. Cell, 
127(4), 679-695. doi: 10.1016/j.cell.2006.11.001 

Gutman, A., & Wasylyk, B. (1990). The collagenase gene promoter contains a TPA and 
oncogene-responsive unit encompassing the PEA3 and AP-1 binding sites. EMBO 
J, 9(7), 2241-2246.  

Halazonetis, T. D., Georgopoulos, K., Greenberg, M. E., & Leder, P. (1988). c-Jun 
dimerizes with itself and with c-Fos, forming complexes of different DNA 
binding affinities. Cell, 55(5), 917-924.  

Kang, Y., Siegel, P. M., Shu, W., Drobnjak, M., Kakonen, S. M., Cordon-Cardo, C., . . . 
Massague, J. (2003). A multigenic program mediating breast cancer metastasis to 
bone. Cancer Cell, 3(6), 537-549.  

Kent, W. J., Sugnet, C. W., Furey, T. S., Roskin, K. M., Pringle, T. H., Zahler, A. M., & 
Haussler, D. (2002). The human genome browser at UCSC. Genome Res, 12(6), 
996-1006. doi: 10.1101/gr.229102. Article published online before print in May 
2002 

Lee, W., Mitchell, P., & Tjian, R. (1987). Purified transcription factor AP-1 interacts with 
TPA-inducible enhancer elements. Cell, 49(6), 741-752.  

Milde-Langosch, K. (2005). The Fos family of transcription factors and their role in 
tumourigenesis. Eur J Cancer, 41(16), 2449-2461. doi: 
10.1016/j.ejca.2005.08.008 



	
  

	
  

122	
  

Minn, A. J., Gupta, G. P., Siegel, P. M., Bos, P. D., Shu, W., Giri, D. D., . . . Massague, J. 
(2005). Genes that mediate breast cancer metastasis to lung. Nature, 436(7050), 
518-524. doi: 10.1038/nature03799 

Navin, N., Kendall, J., Troge, J., Andrews, P., Rodgers, L., McIndoo, J., . . . Wigler, M. 
(2011). Tumour evolution inferred by single-cell sequencing. Nature, 472(7341), 
90-94. doi: 10.1038/nature09807 

Overall, C. M. (2001). Matrix metalloproteinase substrate binding domains, modules and 
exosites. Overview and experimental strategies. Methods Mol Biol, 151, 79-120.  

Ozanne, B. W., Spence, H. J., McGarry, L. C., & Hennigan, R. F. (2007). Transcription 
factors control invasion: AP-1 the first among equals. Oncogene, 26(1), 1-10. doi: 
10.1038/sj.onc.1209759 

Pantel, K., Schlimok, G., Braun, S., Kutter, D., Lindemann, F., Schaller, G., . . . 
Riethmuller, G. (1993). Differential expression of proliferation-associated 
molecules in individual micrometastatic carcinoma cells. J Natl Cancer Inst, 
85(17), 1419-1424.  

Pardo, A., & Selman, M. (2005). MMP-1: the elder of the family. Int J Biochem Cell 
Biol, 37(2), 283-288. doi: 10.1016/j.biocel.2004.06.017 

Ra, H. J., & Parks, W. C. (2007). Control of matrix metalloproteinase catalytic activity. 
Matrix Biol, 26(8), 587-596. doi: 10.1016/j.matbio.2007.07.001 

Ross, J. S., Hatzis, C., Symmans, W. F., Pusztai, L., & Hortobagyi, G. N. (2008). 
Commercialized multigene predictors of clinical outcome for breast cancer. 
Oncologist, 13(5), 477-493. doi: 10.1634/theoncologist.2007-0248 

Shipitsin, M., Campbell, L. L., Argani, P., Weremowicz, S., Bloushtain-Qimron, N., Yao, 
J., . . . Polyak, K. (2007). Molecular definition of breast tumor heterogeneity. 
Cancer Cell, 11(3), 259-273. doi: 10.1016/j.ccr.2007.01.013 

Siegel, R., Naishadham, D., & Jemal, A. (2012). Cancer statistics, 2012. CA Cancer J 
Clin, 62(1), 10-29. doi: 10.3322/caac.20138 



	
  

	
  

123	
  

Song, Y., Song, S., Zhang, D., Zhang, Y., Chen, L., Qian, L., . . . Guo, N. (2006). An 
association of a simultaneous nuclear and cytoplasmic localization of Fra-1 with 
breast malignancy. BMC Cancer, 6, 298. doi: 10.1186/1471-2407-6-298 

Teixeira, M. R., Pandis, N., Bardi, G., Andersen, J. A., & Heim, S. (1996). Karyotypic 
comparisons of multiple tumorous and macroscopically normal surrounding tissue 
samples from patients with breast cancer. Cancer Res, 56(4), 855-859.  

van 't Veer, L. J., Dai, H., van de Vijver, M. J., He, Y. D., Hart, A. A., Mao, M., . . . 
Friend, S. H. (2002). Gene expression profiling predicts clinical outcome of breast 
cancer. Nature, 415(6871), 530-536. doi: 10.1038/415530a 

Verde, P., Casalino, L., Talotta, F., Yaniv, M., & Weitzman, J. B. (2007). Deciphering 
AP-1 function in tumorigenesis: fra-ternizing on target promoters. Cell Cycle, 
6(21), 2633-2639.  

Vincenti, M. P., White, L. A., Schroen, D. J., Benbow, U., & Brinckerhoff, C. E. (1996). 
Regulating expression of the gene for matrix metalloproteinase-1 (collagenase): 
mechanisms that control enzyme activity, transcription, and mRNA stability. Crit 
Rev Eukaryot Gene Expr, 6(4), 391-411.  

Zajchowski, D. A., Bartholdi, M. F., Gong, Y., Webster, L., Liu, H. L., Munishkin, A., . . 
. Johnson, P. H. (2001). Identification of gene expression profiles that predict the 
aggressive behavior of breast cancer cells. Cancer Res, 61(13), 5168-5178.  

 
 



	
  

	
  

124	
  

	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  

Chapter 4  
  



	
  

	
  

125	
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Translational Regulation of Fos-Like Protein-1 (Fra-1) Regulates MMP-1 in 
MDA-MB-231 Cell Line Variants 

 
Eric Henckels and Ron Prywes 

 
Department of Biological Sciences 

Columbia University 
New York, NY 10027 

  



	
  

	
  

126	
  

Introduction  
 

 Matrix metallopeptidase-1 (MMP-1) expression is highly correlated to several 

forms of cancer (Table 1-2). In breast cancer patients, MMP-1 expression has been 

correlated to primary tumor progression, metastatic potential, and survival (Cheng et al., 

2008; McGowan et al., 2008; Nakopoulou et al., 1999; Poola et al., 2005).  In addition, 

expression in tissue paired from the same patient showed significantly higher MMP-1 

expression in tumors than in normal breast tissue (Kohrmann et al., 2009). Further, in 

glioblastoma, melanoma and breast cancer, higher incidence has been associated with a 

single nucleotide polymorphism in an Ets-binding site which increases MMP-1 

expression (McCready et al., 2005; Rutter et al., 1998). 

 Outside the clinic, MMP-1 expression has been measured in a variety of breast 

cancer cell lines.  In general, expression is greater in cells with higher metastatic potential 

(e.g. MDA-MB-231) when compared to cells of low metastatic potential (e.g. MCF-7) 

(Balduyck et al., 2000; Giambernardi et al., 1998; Kousidou et al., 2004).  Data 

comparing MCF-7 and MDA-MB-231 is similar to results with MDA-MB-231 cell 

variants discussed in Chapter 3 (Bos et al., 2009; Kang et al., 2003; Minn et al., 2005).   

 MMP-1 regulation has been well studied in HeLa and other cell culture systems 

(Brinckerhoff et al., 2002).  However, less is known about how MMP-1 is regulated in 

metastasis. Recent studies have identified several promoter regions and transcription 

factors that may play a role in MMP-1 regulation. For example, in melanoma cells, Twist 

binding to the MMP-1 promoter was found to increase expression of MMP-1 (Weiss et 

al., 2012). In MCF-7 cells, Her2, which is upregulated in 15% – 20% of breast tumors 
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and associated with poor prognosis, was found to upregulate MMP-1 through the ERK1/2 

pathway (Kim et al., 2012).  

 The AP-1 consensus site is the archetype for tumor associated gene expression. It 

was discovered in the MMP-1 promoter as being activated by tumor promoting phorbol 

esters (Angel et al., 1987a; Angel et al., 1987b).  Since its discovery, the role of AP-1 in 

tumorigenesis has been further substantiated (Young et al., 2006).  Tissue 

immunohistochemistry reveals that Fra-1, an AP-1 family member, expression correlates 

to breast cancer malignancy (Chiappetta et al., 2007; Song et al., 2006). As discussed in 

the previous chapter, we have shown that Fra-1 is required for MMP-1 expression in 

metastatic MDA-MB-231 cell line variants. In line with this work, Fra-1 expression has 

been shown to be higher in MDA-MB-231 cells when compared to less metastatic cells 

(Zajchowski et al., 2001).  

 In this study, we show that greater protein expression of Fra-1 in metastatic versus 

non-metastatic MDA-MB-231 variants correlates with its greater binding to the AP-1 site 

in the MMP-1 promoter.  We also found that Fra-1 regulation is post-transcriptional and 

independent of the rate of protein degradation, suggesting that Fra-1 is regulated by 

increased translation in highly metastatic cells. Consistent with Fra-1’s importance for 

tumor growth, we found that Fra-1 overexpression is sufficient to increase cell motility 

and anchorage independent growth. 	
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Results  
 

Fra-1 in Scp-2 and Scp-21 Nuclear Lysates Binds the MMP-1 AP-1 site In Vitro 

	
   Previous experiments supported Fra-1 being required for MMP-1 expression.  We 

confirmed protein binding of the MMP-1 AP-1 site in the highly metastatic Scp-2 and 

non-metastatic Scp-21 cells using electrophoretic mobility shift assays (EMSA).  The -

107 to -57 region of the MMP-1 promoter, containing the AP-1 consensus sequence, was 

used as a probe for binding with nuclear extracts from Scp-2 and Scp-21 cells.  Specific 

binding was observed which was competed by excess non-labeled competitor (Figure 4-

1). Mutations in the AP-1 binding site abolished this competition, suggesting that the 

band is indeed AP-1.  

 Interestingly, a stronger AP-1 complex was detected in the highly metastatic Scp-

2 cells compared with the low metastatic Scp-21 cells (Figure 4-1, compare lanes 1 and 2, 

and 5 and 6). This is consistent with higher Fra-1 protein expression in Scp-2 cells  and 

higher expression of MMP1 (Chapter 3).  

 To determine which proteins in the nuclear extracts were present in the bound 

band, we used antibodies specific for AP-1 family members. Anti-Fra-1 antibody 

supershifted the band (Figure 4-1, lane 7), indicating that Fra-1 is a major component of 

the bound complex. In contrast, Fra-2 antibodies had little effect (lane 8). Antibodies to 

c-Jun strongly shifted the complex into multiple bands, suggesting that it too is in the 

complex. We did not observe a shift with antibodies to JunD, however the antibodies may 

be ineffective for supershifts (data not shown). These EMSA experiments support the 

conclusion that Fra-1 and c-Jun are the predominant members of the AP-1 complex 

bound to the MMP-1 site.  
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Fra-1 Binds the AP-1 Site of the MMP-1 Promoter in Scp-2 and Scp-21 Cells 

 To confirm Fra-1 binding and regulation of the MMP-1 promoter in vivo, we 

performed chromatin immunoprecipitation (ChIP) in Scp-2 and Scp-21 cells.  Antibodies 

to Fra-1 demonstrated higher binding to the MMP-1 promoter in Scp-2 cells than Scp-21, 

consistent with the relative MMP-1 expression in these cells (Figure 4-2). A similar, 

though slightly weaker, difference was seen at a known AP-1 binding site in the IL-6 

gene. Background signal was seen at distal control sites in the MMP-1 and IL-6 genes or 

with a non-specific control antibody.  

 

Fra-1 Regulation is Translational 

 Since Fra-1 is required for MMP-1 expression and binds preferentially to the 

MMP-1 promoter in Scp-2 cells, we analyzed Fra-1 regulation.  As shown Chapter 3, and 

again in Figure 4-3, Fra-1 mRNA levels did not vary significantly among the metastatic 

variant cell lines, while Fra-1 protein levels were higher in Scp-2 cells. To better 

understand the post-transcriptional regulation of Fra-1, we analyzed Fra-1 protein 

degradation and translation.   

	
   We	
  first	
  measured	
  the	
  degradation	
  rate	
  using	
  the	
  protein	
  synthesis	
  inhibitor	
  

cycloheximide.  By measuring protein levels over time, without de-novo translation, we 

could compare degradation rates of Fra-1 in Scp-2 and Scp-21 cells. We found that Fra-1 

protein was more abundant in Scp-2 than Scp-21 cells, as previously seen (Figure 4-4A).  

However, over 6 to 24 hours, when normalized for initial protein levels, the degradation 

rates of Fra-1 showed no significant difference in Scp-2 and Scp-21 cells (Figure 4-4B). 
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Comparisons at shorter time points also showed no significant difference (Figure 4-4 A & 

B). 

	
   With no difference in Fra-1 degradation, we focused on measuring Fra-1 

translation rates. Scp-2 and Scp-21 cells were labeled with 35S-labeled amino acids to 

measure amino acid incorporation into proteins over a one-hour interval. Fra-1 protein 

was purified by immunoprecipitation, separated by SDS-PAGE and visualized by 

autoradiography. Interestingly, more Fra-1 was labeled over a one-hour interval in Scp-2 

cells than Scp-21 cells, suggesting that the rate of Fra-1 translation is higher in Scp-2 than 

Scp-21 cells (Figures 4-5A and B). There was no significant difference in general protein 

synthesis (Appendix 3). 

 

Stable Expression of Fra-1 in Scp-21 Cells Increases MMP-1 Expression 

	
   To determine the effect of Fra-1 expression in non-metastatic cells, we created 

Scp-21 cells that stably express Fra-1. Control Scp-21 cells that stably express a control 

vector, have low Fra-1 protein expression, while the cells infected with a Fra-1 retrovirus 

expressed high levels, several fold higher than that in Scp-2 cells (Figure 4-6).  We also 

found that MMP1 expression was elevated in the Fra-1 expressing cells, suggesting that 

higher levels of Fra-1 are sufficient for increased MMP1 expression (Figure 4-6). 

 

Stable expression of Fra-1 increases motility and anchorage independent growth. 

Since increased Fra-1 protein expression correlated with increased MMP-1 

expression and metastasis, we tested whether it is sufficient to drive properties of 

metastatic cells, in particular cell motility and anchorage independent growth. A scratch 
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assay, or wound healing assay, can be used to measure cell motility. We found that Scp-2 

had greater motility than Scp-21 cells, and Scp-21 cells expressing Fra-1 had 

significantly greater motility than vector control Scp-21 cells (Figure 4-7).  Surprisingly, 

Scp-21 cells expressing Fra-1 had even greater motility than highly metastatic Scp-2 

cells.  Therefore, Fra-1 expression increases motility. 

 Non-metastatic cells are unable to grow in soft agar, while metastatic cells often 

display anchorage independent growth (Hamburger et al., 1977; Yoneda et al., 2001).  

Similar to the pattern seen in motility assays, Scp-2 showed significantly greater potential 

to grow in soft agar than Scp-21 cells (Figure 4-8, Appendix 2). Interestingly, Scp-21 

cells expressing Fra-1 greatly increased the growth of the cells in soft agar, similar to the 

Scp-2 levels. These results indicate that increased Fra-1 expression in Scp-21 cells was 

sufficient to gain anchorage independent growth. 
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Discussion 
	
  

MMP-1 and Fra-1 Expression Correlate to Metastatic Potential 

 MMP-1 expression is strongly elevated in a series of breast carcinoma cell 

variants with high metastatic potential compared to variants with low metastatic potential 

(Bos et al., 2009; Kang et al., 2003; Minn et al., 2005 and Chapter 3). This is consistent 

with studies showing elevated MMP-1 expression in metastatic breast carcinomas (as 

reviewed in Table 1-2). In addition, several studies have found higher MMP-1 expression 

in estrogen receptor (ER) negative cell lines with high metastatic potential, such as 

MDA-MB-231, compared to cell lines with lower metastatic potential (Balduyck et al., 

2000; Giambernardi et al., 1998; Kousidou et al., 2004). The MDA-MB-231 variants we 

describe here have the advantage that they are more closely controlled, having been 

derived from a single cell population, compared to disparate cell lines from different 

people.  

Our analysis of the MMP-1 promoter has revealed that its expression is regulated 

by an AP-1 site in MDA-MB-231 cells and requires the AP-1 family member Fra-1. We 

did not detect altered Fra-1 mRNA expression in the MDA-MB-231 cell variants, 

however higher mRNA expression has been observed in more metastatic ER negative cell 

lines when compared to less metastatic cells (Belguise et al., 2005; Philips et al., 1998).  

Differences in Fra-1 expression were also observed in breast cancer patients, where 

expression was higher in carcinomas compared with benign tumors (Chiappetta et al., 

2007).  
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Translational Regulation of Fra-1 Regulates MMP-1 

While Fra-1 mRNA levels were not significantly regulated in the MDA-MB-231 

cell variants, immunoblots, EMSAs and chromatin immunoprecipitations show that the 

metastatic variant Scp-2 has higher Fra-1 protein expression and higher DNA binding in 

vitro and in vivo to the MMP-1 AP-1 site. As Fra-1 was the only AP-1 family factor that 

varied in the metastatic variants, we propose that it is responsible for the difference in 

MMP-1 expression. The EMSAs show clearly that Fra-1 is the predominant factor in the 

AP-1 complex in these cells, while c-Jun also appears to be in the complex. We could not 

detect JunD, but this may be due to limitations of the antibodies.   

 We found that Fra-1 protein levels were regulated by altered translation rates. 

There were little differences in the rates of protein degradation. However, short metabolic 

labeling showed increased synthesis of Fra-1 in the metastatic cell variant. Several 

studies have demonstrated that phosphorylation of Fra-1 by ERK1/2 increases its protein 

stability (Basbous et al., 2007; Casalino et al., 2003; Gruda et al., 1994; Vial et al., 

2003a). However, this mechanism does not appear to be functioning in the MDA-MB-

231 cells, since we did not detect a change in degradation rates.  

	
   Recently, data from human cancer cell lines pointed to evidence of miRNA-34a 

regulation Fra-1 and MMP-1 (Wu et al., 2012; Yang et al., 2012). In breast cancers, 

miRNA-34a was inversely correlated to the metastatic potential of cell lines and tumor 

samples, but was not found to be different in paired tumor and normal breast tissue 

samples (Yang et al., 2012).  Strikingly, expression of miRNA-34a in MDA-MB-231 

cells reduced Fra-1 expression, matrigel invasion, and tumors in mouse xenografts. 

Further, coexpression of Fra-1 and miRNA-34a in MDA-MB-231 cells rescued migration 
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and invasion (Yang et al., 2012). While miRNA-34a regulation of Fra-1 is a strong 

hypothesis for MMP-1 regulation in MDA-MB-231 variants, a major difference is that 

we did not observe changes in Fra-1 mRNA expression as reported with miRNA-34a 

(Wu et al., 2012; Yang et al., 2012). Separately, miRNA-143 was also found to target 

Fra-1 mRNA, suggesting that this and other miRNAs are also candidates for Fra-1 

regulation (Horita et al. 2012). 

Despite initial work supporting miRNA translational regulation without impact on 

mRNA levels (Olsen et al., 1999), more recent evidence supports miRNA regulation of 

both protein and mRNA expression (Eulalio et al., 2008; Filipowicz et al., 2008). As our 

experiments only show translational regulation, it is possible that Fra-1 is a case where 

miRNA regulation is entirely translational. There are several examples of other genes 

being regulated by miRNA without discernable differences in mRNA levels 

(Bhattacharyya et al., 2006; Cimmino et al., 2005; Fazi et al., 2005; Poy et al., 2004). 

Alternatively, it is possible that Fra-1 translation is regulated by a mechanism other than 

miRNA.  

 

Stable Expression of Fra-1 in Non-Metastatic Cells 

Stable expression of Fra-1 in non-metastatic MDA-MB-231 derivative cells led to 

greater MMP-1 expression, motility and anchorage-independent growth. This supports 

Fra-1 as an upstream regulator of MMP-1 and potentially of other genes required for 

increased metastatic properties. These results are in line with previous colon cancer data 

correlating Fra-1 expression with escape from anoikis (Vial et al., 2003a) and motility 

(Vial et al., 2003b). In spontaneous murine mammary adenocarcima variants with 
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different metastatic potential, Fra-1 expression also correlated to invasiveness (Kustikova 

et al., 1998). Transient transfections of Fra-1 in MDA-MB-231 and MCF-7 similarly 

increased matrigel cell invasion (Milde-Langosch, 2005).  Contrary to our findings, this 

overexpression had no impact on MMP-1 expression. In other experiments, however, 

overexpression of Fra-1 in MCF-7 cells increased cell invasion and MMP-1 expression 

(Belguise et al., 2005) 

 

Potential functions of Fra-1 or MMP-1 in Invasion and Migration 

 Fra-1 has many direct and indirect targets (Chinenov et al., 2001).  Fra-1 

depletion in a highly metastatic MDA-MB-231 variant line altered the expression of 

1,234 genes (Desmet et al., 2013). Among these, E-cadherin has an inverse correlation 

with Fra-1, confirming previous results (Zajchowski et al., 2001).  Fra-1 expression has 

also been previously shown to alter morphology and invasiveness (Kustikova et al., 1998) 

in a manner similar to the epithelial to mesenchymal transition (EMT).  As such, Fra-1 

regulation may function as a keystone regulator, impacting several aspects of 

tumorigenesis and metastasis (Fleischmann et al., 2000).  

 How MMP-1 function is coopted by tumor cells is an open question.  MMP-1 is 

critical in degrading interstitial collagen, and tumor cells may require that function to 

invade (Brinckerhoff et al., 2002; Page-McCaw et al., 2007).  However, MMP-1 function 

is also more diverse and complex. MMP-1 has been shown to be required for migration 

and xenograft tumor formation by MDA-MB-231 cells through cleavage and activation 

of protein activated receptor-1 (PAR-1) (Boire et al., 2005).  Previously, PAR-1 

expression was found to be greater in MDA-MB-231 than MCF-7 cells (Kamath et al., 
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2001).  Interestingly, MMP-1 expression was found to be insufficient in MDA-MB-231 

conditioned media to promote cell migration (Boire et al., 2005).  It is possible that the 

higher MMP-1 expression in highly metastatic MDA-MB-231 variants is high enough to 

induce and activate PAR-1 and subsequent signaling pathways.	
  

In summary, we have shown that MMP-1 regulation by Fra-1 is greatly enhanced 

in highly metastatic variants of MDA-MB-231 cells. This is mediated by greater 

translation of Fra-1which results in its higher occupancy of the AP-1 site in the MMP-1 

promoter.  Increased Fra-1 expression in non-metastatic cells increased cell motility and 

anchorage independent growth, suggesting these cells would be metastatic.  
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Figure Legends 
	
  
 
Figure 4-1 

Fra-1 binds the AP-1 promoter site of MMP-1 in vitro.  Electrophoretic mobility shift 

assay with the MMP-1 AP-1 site.  Scp-2 and Scp-21 nuclear extracts were bound to a  

32P-end labeled MMP-1 promoter double-stranded oligonucleotide probe spanning the 

AP-1 consensus site (-107 to -57 bases relative to the transcription start site).  

Nonspecific competitor, unlabeled, and point mutant AP-1 site oligonucleotides were 

added in 250 fold excess of the probe.  The final three lanes included anti-AP-1 family 

member antibodies.   

 

Figure 4-2 

Fra-1 binding to the MMP-1 promoter is greater in Scp-2 than Scp-21 cells.  Chromatin 

immunoprecipitation with Scp-2 and Scp-21 cells immunoprecipated with anti-Fra-1 

antibody or mock antibody control.  The immunoprecipitated DNA from the samples was 

measured by qRT-PCR for binding of Fra-1 to the MMP-1 AP-1 promoter sites, an 

upstream non-AP-1 control MMP-1 site, the IL-6 AP-1 site, or an upstream non-AP-1 

control IL-6 site. The data shown represent the mean fold over control DNA values +/- 

standard deviation for three indendent experiments.  **, p < 0.005 for two-tailed t-tests.  
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Figure 4-3 

Fra-1 protein levels are higher in Scp-2 than in Scp-21 cells while mRNA expression is 

unchanged.  A. Quantitative RT-PCR of Fra-1 in Scp-2, Scp-21 and MDA-231 cells.  

Data represents the mean +/- the standard deviation of three independent experiments.  B. 

Scp-2, Scp-21 and MDA-MB-231 cell lysates were immunobloted with anti-Fra-1 

antibody.  Anti-actin immunoblotting is included as a loading control.  C. The mean 

relative Fra-1 band intensity +/- standard deviation for three independent immunoblotting 

experiments.  **, p < 0.005 for two-tailed t-tests. 

 

Figure 4-4 

The degradation rates of Fra-1 is similar in Scp-2 and Scp-21 cells.  Scp-2 and Scp-21 

cells were treated with cycloheximide and whole cell lysates collected at the indicated 

times post-treatment.  A.  Immunoblot with anti-Fra-1 of a representative experiment. B.  

The mean relative Fra-1 band intensity +/- standard deviation for three independent 

experiments.   

 

Figure 4-5 

Translation of Fra-1 protein is greater in Scp-2 than Scp-21 cells.  A. 35S-metabolic 

labeling of Fra-1. Cells were depleted of cysteine and methionine for 30 minutes and 

labeled with 35S-cysteine and -methionine for the indicated times and 

immunoprecipitated.  B. Fra-1 protein levels were quantitated and normalized to total 

protein labeling.  Data represents the mean band intensity +/- standard deviation for three 

independent experiments.  **, p < 5x10-5 for two-tailed t-tests.  
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Figure 4-6 

Stable HA-tagged Fra-1 expression in Scp-21 cells.  A. qRT-PCR of MMP-1 in Scp-2, 

Scp-21, Scp-21 control vector (Puro), and Scp-21 stably expressing Fra-1 Mean relative 

values are +/- standard deviation from three independent experiments. **, p < 0.005 for 

two-tailed t-tests.   B.  Scp-2, Scp-21, Scp-21 control vector (Puro), and Scp-21 stably 

expressing Fra-1 cells were immunoblotted with anti-MMP-1, anti-Fra-1 and anti-HA 

antibodies.  Anti-HSP-90 served as a loading control. 

 

Figure 4-7 

Fra-1 expression increases cell motility of the non-metastatic Scp-21 cells.  A. Scratch-

wound assay of Scp-2, Scp-21 cells and Scp-21 cells stably expressing vector (Puro) or 

Fra-1 was performed with motility measured 0 and 18 hours after the scratch.  Cells were 

grown to 95% confluency and scratched with a pipette tip. B. Quantitation of the number 

of cells crossing the initial scratch threshold at 18 hours. Data represents the mean of 

three fields in three independent experiments +/- standard deviation.  *, p < 0.05. **, p < 

0.005 for two-tailed t-tests. 

 

Figure 4-8 

Fra-1 expression increases anchorage independent growth in non-metastatic Scp-21 cells. 

Scp-2, Scp-21, and Scp-21 cells stably expressing Fra-1 or vector (puro) were grown in 

soft agar for 21 days. Data represent the mean +/- standard deviation of the relative 

number of cells which formed colonies in three independent experiments.  *, p < 0.05. **, 

p < 0.005 for two-tailed t-tests. 
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Figures  

 

Figure 4–1 Fra-1 binds the AP-1 promoter site of MMP-1. 
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Figure 4–2 Fra-1 binding to the MMP-1 promoter is greater in Scp-2 than Scp-21 
cells. 

  



	
  

	
  

143	
  

 

Figure 4–3 Fra-1 protein levels are higher in Scp-2 than in Scp-21 cells while mRNA 
expression is similar.   
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Figure 4–4 Degradation of Fra-1 is similar in Scp-2 and Scp-21.   
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Figure 4–5 Translation of Fra-1 protein is greater in Scp-2 than Scp-21 cells.   
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Figure 4–6 Stable HA-tagged Fra-1 expression in Scp-21 cells.   
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Figure 4–7 Fra-1 expression increases non-metastatic cell line motility.   

  



	
  

	
  

148	
  

 

Figure 4–8 Fra-1 expression increases anchorage independent growth in non-
metastatic cells 
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Conclusions 
 

MMP-1 Upregulation is Common among Organ Specific Metastases  
	
  

Evidence from our experiments have shown that Fra-1 regulation of MMP-1 is 

highly correlated to metastatic potential. Since MMP-1 expression has been linked to 

bone formation and osteosclerosis (Jochum et al., 2000), it might have been expected that 

Fra-1 regulation of MMP-1 is specific to bone metastases.  However, in mouse xenograft 

models MMP-1 is highly correlated to the metastatic potential of cell lines regardless of 

the metastatic organ site (Bos et al., 2009; Kang et al., 2003; Minn et al., 2005).  Since 

very few genes are implicated across organ metastases, MMP-1 expression is likely to be 

important to metastasis independent of organ site.   

Two hypotheses can be drawn from the expression of MMP-1 in different organ 

metastases.  First, MMP-1 is critical for the early stages of metastasis that are common to 

all metatastic tumors, independent of organ site.  For example, primary tumor invasion, 

intravasation, or survival in the circulation.   

An alternative hypothesis is that MMP-1 is required for a common mechanism in 

late stage metastatic progression in different organs.  For example, in various foreign 

tissue, MMP-1 expression may allow cells to arrest in the vasculature, extravasate, 

survive in new parenchyma, or overcome dormancy and proliferate.   

MMP-1 functions in primary tumor growth and angiogenesis in xenografts of 

highly metastatic variants of MDA-MB-231 (Gupta et al., 2007).  Simultaneous 

inhibition of four genes—EREG, Cox2, MMP-1 and MMP-2—was sufficient to reduce 

tumor size and vascularization. Inhibition of MMP-1 alone was unable to reduce the 
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metastatic potential of these highly metastatic cells.  However, the 30% residual MMP-1 

expression in the highly metastatic cell lines was twenty-fold higher than normal MDA-

MB-231 cell expression.  Therefore, the residual MMP-1 may have been sufficient for 

elevated metastasis (Gupta et al., 2007).  Later work demonstrated that more complete 

inhibition of MMP-1 expression was sufficient to reduce the number of bone metastases 

after intracardiac injection of highly bone metastatic MDA-MB-231 variants (Lu et al., 

2009). 

MMP-1 might function after tumor cells have arrested in various organs, but serve 

some purpose common to brain, lung and bone metastatic mammary tumors. For 

example, we could speculate that MMP-1 expression might foster interactions with 

foreign stroma.  Several studies have shown that upon reaching secondary organs, 

disseminated tumor cells become dormant (Aguirre-Ghiso, 2007).   Preliminary evidence 

points to the possibility of MMP-1 degradation of the extracellular matrix (ECM) 

releasing growth factors (Mazor et al., 2013).  Fibroblast growth factor (FGF) and 

vascular endothelial growth factor (VEGF) have been shown to have a strong angiogenic 

response (Baeriswyl et al., 2009).   One hypothesis is that MMP-1 allows disseminated 

tumor cells to overcome dormancy in an unconditioned stromal environment with limited 

growth signaling. 

 

Future Directions 
 

Several conclusions were made from the sum of the work described, such as the 

role of MMP-1 and Fra-1 in causing elevated metastasis in MDA-MB-231 mammary 

carcinoma cells. Potential directions for this research are discussed below.  
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miRNA Regulation of Fra-1 
 

Fra-1 is translationally regulated and this may be due to the presence of a 

regulatory miRNA.  To determine if this hypothesis is correct, several experiments could 

be performed.   

First, luciferase expression constructs with the Fra-1 3’ UTR together with a 

constitutively active promoter might show evidence of repression through the UTR 

sequence.  Truncations and mutation in the UTR might abolish repression and yield a 

specific miRNA binding site sequence, which could be matched to a miRNA.  Also, 

repression might be differential in highly metastatic and non-metastatic cell lines. 

Second, sequencing of UTR regions of Fra-1 in metastatic and non-metastatic cells would 

eliminate the possibility of a novel mutation causing differential repression.  Third, Fra-1 

and MMP-1 expression can be compared in cells with individual miRNAs inhibited or 

overexpressed.  Overexpression can be performed by transfection of miR-mimics and 

inhibition by transfection of LNA-antimirs.  LNA-antimirs are RNA analogs modified to 

bind with higher affinity than endogenous RNA, resulting in improved miRNA inhibition 

(Elmen et al., 2008).   

Mimics and antimirs are limited by the total number of known miRNAs.  There 

are too many to audit the impact of each one, therefore a limited set must be selected.  

The first strategy for this selection is to use evidence from previous studies. As described 

in the previous chapter, miR-34a regulates breast cancer through Fra-1 (Yang et al., 

2012) making it an ideal candidate.  Other candidates include miRNA-146a, which 

regulates MMP-1 in breast cancer metastasis, and several miRNAs broadly correlated to 

cancer (Lu et al., 2005).  A second strategy is to use bioinformatics to analyze the Fra-1 
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sequence for miRNA target sites and any corresponding miRNAs (Lewis et al., 2003; 

Sethupathy et al., 2006).  Lastly, miRNA sites implicated in previously described 

luciferase experiments would be high priority candidates. 

 

MMP-1 Activation of PAR-1 
 

MMP-1 cleaves protease-activated receptor-1 (PAR-1), promoting tumorigenesis 

and metastasis (Boire et al., 2005; Foley et al., 2012).  PAR-1 is also aberrantly expressed 

in patient tumors (Even-Ram et al., 1998; Kamath et al., 2001).  

As previously discussed, PAR-1 may also play a role in angiogenesis through 

angiogenic factors like cysteine-rich angiogenic inducer-61 (CCN1), which upregulates 

MMP-1 in tumor associated stromal cells (Nguyen et al., 2006).  Simlarly, endothelaial 

cells stimulated with MMP-1-activated PAR-1 express vascular endothelial growth factor 

receptor (VEGFR), another angiogenic factor (Mazor et al., 2013). PAR-1 and MMP-1 

have both been previously associated with angiogenesis (Caunt et al., 2003; Fisher et al., 

1994).  An interesting line of study would test the hypothesis that MMP-1 activation of 

PAR-1 promotes breast cancer metastasis through increased angiogenesis.   

 

Improved Gene Signatures 
 

Recent work has demonstrated the value of novel gene signatures in metastasis 

based on confirmed regulatory factors.  Fra-1 was poorly correlated with metastatic 

potential in microarrays, yet targets of Fra-1 (the Fra-1 transcriptome) are highly 

correlated.  The Fra-1 transcriptome is a better prognostic indicator of patient hazard than 
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several published and commercialized gene signatures (Desmet et al., 2013).  This work 

can be expanded upon with MMP-1.  If confirmed, the role of miRNAs and PAR-1 might 

yield novel transcriptomes with new targets for study and treatment.   

 

Improved Treatments 
 

Based upon our work and previous findings (Balduyck et al., 2000; Giambernardi 

et al., 1998; Kousidou et al., 2004), MMP-1 and Fra-1 increase tumorigenesis and 

metastasis.  Therefore, both are also targets for breast cancer treatment.  While 

developing novel therapies is a difficult task, from our work there are opportunities to 

evaluate the efficacy of novel treatment combinations.  

To date, inhibition of the Fra-1/MMP-1 pathway has been unsuccessful in clinical 

trials. Small molecule inhibition of Fra-1 has not been possible (Desmet et al., 2013).  

However, exciting work in DNA vaccines showed promise in mouse studies (Reisfeld et 

al., 2004).  Tumor cells overexpressing Fra-1 present ubiquitinated Fra-1 (Ub-Fra-1) 

antigens.  In mice treated with the vaccine, cytotoxic T-cells are activated to respond to 

the Ub-Fra-1, which prevented and reduced metastatic tumors.  Unfortunately, the 

vaccine has not progressed in clinical trials (Luo et al., 2005; Luo et al., 2003).  This lack 

of clinical progress is particularly frustrating, as inhibition of Fra-1 has been shown to 

inhibit breast cancer (Liu et al., 2002).   

Small molecule inhibition of MMP-1 has also been unsuccessful in clinical trials 

(Chaudhary et al., 2013).  Several inhibitors showed promise, including Batimastat (Lee 

et al., 2001).  In mice, mesenateric intravenous injection of murine melanoma cells 

resulted in liver metastases, which when treated with Batimastat tumors were smaller and 
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less vacularized than tumors in untreated mice (Wylie et al., 1999).  Unfortunately, 

because of Batimastat’s poor water solubility it did not progress past phase II clinical 

trials (Chaudhary et al., 2013).  Other MMP-1 inhibitor treatments had prohibitive side 

effects, including Marimastat with severe inflammatory polyarthritis (Tierney et al., 

1999), Salimastat with musculoskeletal pain (Wall et al., 2004), and MMI-270-B with 

cutaneous rash and arthralgia (Levitt et al., 2001).  It is possible that more effective and 

specific MMP-1 inhibitors might avoid these side effects. 

Naturally occurring MMP-1 inhibitors are also potential treatments, but none have 

reached clinical trials.  Neovastat, from shark cartilage, inhibited xenografts of MDA-

MB-231 cell metastases (Weber et al., 2002).  Berberine, a component of the herbal 

medicine Goldenseal, has been shown to reduce MMP-1 expression in carcinogen-

induced mammary carcinoma cells, MCF-7 (Kim et al., 2012).  Similar examples include 

the chinese herbal medicine běi qí (Hong et al., 2013), decursin from herbal dang gui 

(Hwang et al., 2013), and nobiliten from citrus peel (Sato et al., 2002). 

PAR-1, a downstream MMP-1 effector, also presents a target for therapy.   PAR-1 

inhibitor, P1pal-7 pepducin, together with Docetaxel, a chemotherapeutic, reduced 

metastasis in murine MDA-MB-231 xenografts (Yang et al., 2009).  Similarly, 

downstream targets of Fra-1 have been identified as potential treatment targets.  In 

synthetic lethal small molecule screens, Fra-1 inhibition in MDA-MB-231 cells increases 

toxicity when treated with adenosine receptor A2B (ADORA2B) antagonists.  Treatment 

with theophylline, an adenosine receptor inhibitor, together with Docetaxel reduced 

metastatic tumor burden significantly (Desmet et al., 2013).   
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P1pal-7 and theophylline demonstrate that treatments can be ineffective alone but 

synergistically efficacious. An interesting direction for future research would be to study 

if combinations of Fra-1/MMP-1 pathway inhibitors and current breast cancer treatments 

are effective in inhibiting breast cancer. 

 

In-Vitro Model of Disseminated Tumor Growth 
 

We have developed a pilot model of disseminated cell growth in secondary organs 

that might be suitable for high-throughput screens.  As previously discussed, inhibiting 

disseminated tumor growth in the secondary tumor environment is an important point of 

regulation and treatment.  Unfortunately, this stage is also difficult to imitate in in vitro 

assays, particularly in models capable of being used in high-throughput screening.  One 

solution to better emulate tumor cells in secondary organs is co-culture with secondary 

organ fibroblasts. 

Preliminary experiments show that a low volume of metastatic breast cancer cells 

will proliferate on lung fibroblast monolayers, while non-metastatic cells do not survive.  

Fluorescent labeling of tumor and fibroblast cells would allow for this model system to 

be used in high-throughput siRNA and small molecule screens, where tumor and 

fibroblast cells can be measured by fluorescent signal.  If successful, this model could 

potentially be expanded to other tumor cell lines, fibroblast cells, and culture systems, 

including 3D cultures.  Similar work in high volume coculture experiments with 

luciferase expression have yielded interesting results (McMillin et al., 2010).  Future 

research might confirm these preliminary experiments and further develop this system. 
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Concluding Remarks 
 

Our work, and the work of others, have clearly demonstrated Fra-1 and MMP-1 

involvement in cancer.  In breast cancer, Fra-1 is translationally upregulated in metastatic 

cells, perhaps through the loss or inhibition of a miRNA.  Increased Fra-1 protein binds 

the AP-1 site of the MMP-1 promoter, increasing MMP-1 transcription and translation.  

Ectopic expression of Fra-1 in non-metastatic cells drives a metastatic phenotype, 

perhaps through MMP-1 and PAR-1. 

From these data we can begin to hypothesize a pathway in metastasis.  Fra-1 

upregulates MMP-1, which is known to further cleave PAR-1, rendering the tumor cells 

more aggressively metastatic through stromal invasion and increased angiogenesis. In 

metastasis, Fra-1 could potentially be upregulated by the loss of a specific miRNA 

inhibition.  More research will be necessary to further support the links in this pathway, 

which will be an interesting research direction for the future.   

 

 

 

 

 

 

On a personal note, this thesis has been written in the context of improving breast cancer 

treatment, which has also been the purpose for the work itself.  My hope is that the work 

during my tenure has made some incremental impact on reducing the impact of a 

devastating disease.  
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Appendices 
 

Appendix 1: Top genes with greatest expression differential in genes of high metastatic 

potential and low metastatic potential in bone and lung.  High bone metastatic cell lines 

are: 1833, Scp-2, Scp-25 and Scp-46.  High lung metastatic cell lines are: 1834, 3481, 

4142, 4173, 4175, 4180, Scp-3 and Scp-28.  Low metastatic cells lines are: MDA-MB-

231, Scp-6, Scp-21 and Scp-26. Standard deviations for each were calculated and used in 

a two-tailed t-test to calculate relative p-value.  Genes are over two fold greater in bone 

and lung with p-values less than 0.06. Data sourced from (Minn et al., 2005) 

Gene  
Bone 
(High/Low) p-Value 

Lung 
(High/Low) p-Value 

MMP1 98.28 0.00024 26.63 0.05619 
SPANXA1/A2/B1/B2/C  18.23 0.00681 22.04 0.00570 
SPANXC 14.59 0.00334 14.92 0.00756 
ROBO1 13.99 0.00012 10.00 0.00013 
SPANXB1B2 12.82 0.01742 15.82 0.00875 
FOXA2 11.27 0.00233 9.69 0.00025 
RGS2 8.32 0.00176 7.68 0.00014 
NLRP3 8.24 0.00075 3.28 0.00775 
CFH /// CFHR1 6.66 0.01548 5.75 0.00003 
PTGS2 6.26 0.00840 5.54 0.00272 
KCNK1 5.27 0.04210 3.73 0.00265 
ANK3 5.05 0.02726 3.23 0.00995 
KYNU 4.98 0.02145 10.12 0.01040 
NR2F1 4.87 0.00088 5.36 0.00001 
HAS2 4.83 0.00083 3.11 0.05186 
LGR5 4.82 0.04688 3.82 0.00197 
SOX4 4.67 0.03847 11.39 0.00391 
RBM5 4.52 0.01639 2.13 0.05365 
MOCS1 4.41 0.00053 2.36 0.00509 
PRSS3 4.41 0.00751 3.21 0.00091 
KHDRBS3 4.08 0.00183 2.59 0.00181 
MEF2C 4.05 0.00620 2.49 0.00892 
GPR37 3.99 0.02415 2.44 0.00030 
ARHGDIB 3.95 0.00194 4.14 0.00001 
MUSK 3.88 0.01237 3.03 0.02432 
ZDHHC17 3.86 0.04522 2.49 0.05806 
ODZ3 3.82 0.00299 3.61 0.00101 
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Gene  
Bone 

(High/Low) p-Value 
Lung 

(High/Low) p-Value 
ENPP4 3.75 0.00026 2.88 0.00073 
SULT1C2 3.74 0.00065 3.59 0.00021 
MMP16 3.73 0.02076 2.15 0.04840 
KCNK1 3.69 0.02844 3.01 0.00000 
SLCO1B3 3.64 0.00058 2.63 0.00636 
PLCE1 3.64 0.00065 2.41 0.01816 
FOXA2 3.60 0.00241 3.11 0.00022 
PELO 3.54 0.04780 3.28 0.02047 
LPXN 3.45 0.00108 3.05 0.00005 
NSBP1 3.43 0.05792 2.95 0.01074 
CASP1 3.34 0.01960 2.32 0.04582 
PRSS3 3.34 0.02957 2.43 0.00078 
TSPAN13 3.28 0.01774 2.55 0.00022 
MAGEH1 3.25 0.04480 2.03 0.03014 
ANGPTL4 3.19 0.04369 3.68 0.00043 
NR3C2 3.12 0.00236 2.18 0.01802 
FLJ20489 3.07 0.02672 2.76 0.05765 
SERPINI1 3.07 0.02671 2.87 0.00013 

 
 
 
Reference: 

 
Minn, A. J., Gupta, G. P., Siegel, P. M., Bos, P. D., Shu, W., Giri, D. D., . . . Massague, J. 

(2005). Genes that mediate breast cancer metastasis to lung. Nature, 436(7050), 
518-524. doi: 10.1038/nature03799 
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Appendix 2: Images for Figure 4-8, Soft Agar Colony Staining 
 
Photographs of representative soft agar plates.  Cell colonies are outlined in red, yellow 

inset is a magnification of colonies without outline. 
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Appendix 3: Supplemental Image for Figure 4-4 
 
Autoradiograph of total protein from cells depleted of cysteine and methionine for 30 

minutes and labeled with 35S-cysteine and -methionine for the indicated times. 
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