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ABSTRACT 

 
Computational Inferences of Mutations Driving 

Mesenchymal Differentiation in Glioblastoma  
 

James Chen 
 
 

This dissertation reviews the development and implementation of integrative, 

systems biology methods designed to parse driver mutations from high-

throughput array data derived from human patients. The analysis of vast 

amounts of genomic and genetic data in the context of complex human genetic 

diseases such as Glioblastoma is a daunting task. Mutations exist by the 

hundreds, if not thousands, and only an unknown handful will contribute to the 

disease in a significant way. The goal of this project was to develop novel 

computational methods to identify candidate mutations from these data that drive 

the molecular differentiation of glioblastoma into the mesenchymal subtype, the 

most aggressive, poorest-prognosis tumors associated with glioblastoma. 
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CHAPTER 1 – Background of Glioblastoma and Systems Biology 

Approaches 
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Glioblastoma (GBM), the most prevalent brain cancer found in humans[30]][35], is 

an undoubtedly complex genetic disease. Along with other fields of cancer study, 

recent research is beginning to reveal the extent of physiological variability in 

tumors affecting different patients. Although GBM tumors share traits common 

enough to be classified under the same umbrella term (such as basic histological 

markers), there is significant variability in other traits associated with the patient’s 

prognosis; the aggressiveness of the tumor, its metastasis, and its resistance to 

therapeutics are not uniform in GBM. At both genomic and genetic levels, GBM 

tumors are as heterogeneous as their physiology suggests[3][5][32][42]. A GBM 

tumor does not develop solely with the activation of oncogenic driver[48]; although 

this is a necessary and essential step, tumors exhibit the concomitant, large-

scale genomic alterations that result in GBM tumors differentiating into three 

molecularly distinct subtypes: the Mesenchymal, Proneural, and Proliferative 

subtypes. The Mesenchymal subtype earmarks specific physiological behaviors 

of the tumor that exist independently of oncogenic processes and uniquely affect 

the prognosis associated with the disease: mesenchymal GBM are the most 

aggressively growing, poorest prognosis GBM tumors[31][35]. 

 

This finding corroborates the notion that GBM, and cancers by extension, are not 

diseases resulting solely from the activation of oncogenic processes. There are 

other physiological, developmental, and molecular processes that are regulated 

independently of oncogenesis, yet contribute significantly to the overall behavior 

of the disease. It is equally important to the understanding of GBM biology to 
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characterize the genetic regulation of these other processes, and how their co-

occurrence with oncogenic mutations can alter the progression of GBM. This is 

not straightforward when studying a disease characterized by hundreds, if not 

thousands, of genomic mutations co-occurring in a single patient. Mutations 

occur in different patterns that can render every single GBM patient unique from 

another[71].  

 

The goal of this work was to develop a computational framework that 

integrates several sources of high-throughput data and systems biology 

approaches to predict the driver mutations that induce Mesenchymal 

differentiation in Glioblastoma. Molecular perturbations that result in 

mesenchymal differentiation should correlate with the genomic mutations 

that are responsible for their aberrant expression, and these perturbations 

can be used to reverse engineer the genomic-genetic integration. 

 

Glioblastoma and the Mesenchymal Subtype: a Molecular Perspective 

Glioblastoma (GBM) is a subcategory of high-grade gliomas, the most common 

type of brain tumors found in humans. Over 50% of brain tumors in functional 

brain tissue of human patients are classified into this category[35]. There is a 

slightly higher incidence in males, and the average age of onset is >50[31]. Brain 

cancers are pathologically identified as GBM based primarily on the presence of 

necrotic or necrotizing tissue at the core of the tumor, surrounded by anaplastic 

(un- or de-differentiated cells) and typically an extensive vasculature[2][23][57]. 
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These cancers are virtually incurable and highly aggressive. The average post-

diagnosis survival of patients is projected as twelve months with treatment, and 

typically less than four months without treatment[46]. They are extremely difficult 

to detect, and are typically only identified later in the cancer progression due to 

the presentation of secondary symptoms: the tumor develops large enough in 

size to cause increased intracranial pressure, impairment of neural and cognitive 

function, and other generalized symptoms such as chronic headaches, nausea, 

etc. Furthermore, GBM has displayed a robust resistance to standard cancer 

therapeutics in addition to the naturally dangerous risks of treating diseases in 

the brain[46] [51] [53]. Transporting drugs across the blood brain barrier has always 

been a difficult medical procedure, and tumor resections in the brain carry the 

inherent risk of causing irrevocable secondary damage. 

 

At a genetic level, GBM is a disease characterized by significant de novo somatic 

chromosomal copy changes and rearrangements, and there are subsequently no 

known hereditary risk factors[22]. There are also no significant associations of 

brain cancer with specific environmental factors[46]. These tumors typically 

present with genomic alterations in “classic” oncogenic drivers and tumor 

suppressors: amplifications of EGFR[63][68][71] or losses of p16[24] are found in over 

60% of patients, and typically in combination[67][68]. Despite the significant 

mutation rate of oncogenic genes, the variable rates of these mutations 

combined with extensive mutations throughout the genome establish GBM as a 

highly heterogeneous genetic disease. While a large number of patients may 
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bear mutations at the EGFR or p16 loci, each patient exhibits evidence for 

chromosomal alterations affecting hundreds to thousands of other genes in 

unique and unpredictable combinations. This results in a genetically and 

physiologically diverse cancer, which, in combination with the resistance of GBM 

to conventional therapeutics, has led the field to begin refining our definitions of 

GBM in order to improve our understanding of the mechanics and etiology of this 

complex genetic disease.  

 

In the past, the study of cancer in general focused primarily on the identification 

of genetic variants and genomic loci that predispose or induce tumor formation, 

such as EGFR and p16. Genes whose increased expression leads to 

tumorigenesis are called oncogenes, and genes whose loss induces 

tumorigenesis, tumor suppressors. Tumor suppressors and oncogenes are 

typically genes participating in key developmental pathways, such as the Notch 

and Wnt signaling cascades[47][67][70], or metabolic and cellular proliferation 

pathways[79]. Aberrant activation or re-activation of these developmental 

pathways trigger unchecked, accelerated proliferation that could lead to 

formation of tumor masses, differentiation or de-differentiation that could result in 

metastasis, and the co-opting of “normal” biological processes such as 

angiogenesis to provide nutrients for the growing mass.  

 

These genetic elements are typically insufficient individually to induce the full 

development of cancer, but subsequent studies identified that a series of 
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accumulated genetic abnormalities could push cells into tumorigenic behavior. 

Cancer has been shown, along these lines, to be a complex genetic disease 

requiring the input of multiple genetic processes to fully develop into the unique 

pathogenic tumors and metastases. In cancers like GBM, this coincides with the 

diverse genomic mutation architecture observed in patients. However, prior to the 

development of high-throughput genetic and genomic screening, candidate-

based approaches have primarily been used to make sense of how individual 

mutations and biological processes contribute to the disease. 

 

The availability and cost-

effectiveness of gene expression 

profiling has increased 

significantly in recent years, 

allowing for new means of 

defining cancers such as GBM at 

the molecular level. Numerous 

studies have been conducted that 

indicate that cancers that have 

been presumed to be a single 

disease actually segregate into 

distinct molecular 

subtypes[32][42][52][59]. While a great deal of research has been focused on 

understanding the oncogenic drivers and oncogenic and angiogenic properties of 

Figure legend: Unsupervised hierarchical clustering of genes 
whose expression correlated with patient prognosis in GBM 
revealed three distinct, mutually exclusive molecular subtypes. 
The Mesenchymal, Proneural, and Proliferative subtypes were 
coined after the expression of marker genes that canonically 
define mesenchyme, proneural tissue, and cellular proliferation 
processes, respectively. The mesenchymal expression profile 
in particular was associated specifically with poorest patient 
prognosis, and the proneural signature with the best. 
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GBM, it has also become apparent that the heterogeneity of GBM has 

ramifications that extend far beyond the “classic” tumorigenic pathways. The 

umbrella classification of Glioblastoma itself contains an amalgamation of 

molecularly and physiologically distinct brain tumors that bear extensive, yet 

unique, profiles of mutated genes, and equally diverse distributions of unique 

patterns of gene expression. Research on the unique expression patterns of 

various GBM samples has revealed that brain tumors falling under the umbrella 

classification of “Glioblastoma” cosegregate into three distinct subtypes, which 

were coined the Mesenchymal (MES), Proneural (PN), and Proliferative (PRO) 

subtypes[52]. Each subtype was named and defined based upon the expression 

of gene markers primarily expressed in mesenchyme (YKL40, FN1), in tissues of 

neural and proneural origin (OLIG2, BCAN), and upon activation of cellular 

proliferation and angiogenesis (TOP2A, PCNA), respectively. Phillips et al. 

reported that the expression of these three marker panels is mutually exclusive: 

MES samples both express MES markers and show suppression of PN and PRO 

markers. Moreover, GBM subtypes do not show any significant correlation with 

classical oncogenic mutations. 

 

Further analysis revealed that tumors expressing the MES expression signature 

are at maximal risk of being highly aggressive, even more so than other GBM 

tumors, and predictive of the poorest prognosis in the overall patient cohort. It 

was hypothesized that the expression of MES markers contributes to the 

alteration of the tumor’s biology, rendering it highly aggressive and resistant to 
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treatment, though the particular mechanics behind the contribution to poor 

prognosis are unknown. It was proposed that the MES expression pattern is a 

quantitative molecular predictor of the poorest prognosis GBM that warranted 

further study. This profile could also be used as a biological readout for poor 

prognosis tumors in subsequent experiments instead of relying on more noisy, 

indirect, and qualitative measures such as World Health Organization grade and 

prognosis. 

 

Studies such as these have allowed the field to model GBM as a molecular 

disease, rather than a “physiological” one. “GBM tumors” that exhibit behaviors 

across a general spectrum can now be broken down into a series of discrete 

expression profiles. Each set of genes in an expression profile could provide 

insight into the precise genetic pathways that are required to develop a specific 

subtype of GBM. Even more specifically, it was shown that distinct subtypes of 

cancers exist beyond what could medically be distinguished by histology and 

other clinical assays. These molecular subtypes also provided an explanation as 

to why different patients responded drastically differently to both the disease and 

treatments: the diseases being treated as the same were not the same. The 

focus of research for many shifted to understanding how to integrate this 

molecular information into modeling GBM for both an understanding of its 

etiology, and potential development of more focused, effective treatments. 
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Concurrently, The Cancer Genome Atlas (TCGA) had launched a massive 

initiative to gather and catalogue patient-matched clinical, gene expression, 

genomic, and DNA sequencing data on tumor samples obtained from patients 

around the world. The objective was to gather this large-scale data and make it 

publicly available to researches, providing an enormous sample pool of data that 

would be daunting and impractical, if not impossible, for any individual researcher 

to attempt to gather alone[67][68]. We were able to obtain gene expression, gene 

copy number, and clinical annotation data on 252 GBM tumors from human 

patients to complement the work of Phillips et al. This amalgamation of data 

provided a unique opportunity and resource with sufficient power to study the 

molecular and genetic regulation of the differentiation of these three subtypes of 

GBM with systems biology approaches geared towards understanding the 

regulation of large-scale molecular phenotypes. 

 

Systems Biology Approaches and MES Master Regulators  

In order to place my work into the context of a specific systems biology approach, 

it is important to understand how the Califano lab as a whole approaches 

problems such as MES subtype differentiation. We specifically sought to further 

understand the biology of the MES subtype GBM by attempting to identify the 

genetic regulators that drive the activation of the MES marker panel. The more 

traditional bioinformatic approach is to identify key expression patterns in the 

tumor and isolate developmental or metabolic pathways for further 

characterization and study[21][23]. When the expression of angiogenic regulators is 
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discovered amidst a panel of differentially expressed genes when compared to 

“normal” control tissue, research is then geared towards specifically targeting 

aberrant angiogenesis[66]. While this has produced fruitful research, a 

fundamental limitation exists in the approach. It is not designed to elucidate 

novel, important processes or genetic regulators, and only accounts for a 

relatively arbitrary selection of candidate genes with already-known or implied 

functions in a cancer such as GBM. Furthermore, fundamental assumptions are 

made in candidate selection that are not necessarily true. It is assumed that there 

exists one gene, or relatively few genes, that cause the phenotype. It is assumed 

that these genes are differentially expressed at a statistically detectable level, 

and that all other genes that are differentially expressed are either unrelated or 

downstream consequences of the select few drivers. While any of these can be 

true, none can be assumed a priori when doing genome-wide, array-based 

studies for the selection of causal contributors to the disease.  

 

Instead, the Califano lab employed a systems biology approach to understanding 

subtype differentiation in GBM. Rather than selecting candidate genes from a 

panel of differentially expressed genes by their involvement with biological 

processes such as oncogenesis and angiogenesis, we used the entire set of 

differentially expressed genes as a phenotypic readout. This is a systemic 

approach used to identify the genetic regulators of an entire expression profile, 

including all of the biological processes that are altered, to account for the 

tumor’s unique behavior in its entirety. This was accomplished by implementing 
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the ARACNe algorithm in the TCGA GBM dataset, a method of reverse-

engineering context-specific transcriptional networks[3][10][11]. 

 

The ARACNe algorithm developed by the Califano lab uses Mutual Information, a 

measure of probabilistic dependency between variables that is capable of 

measuring non-linear and non-monotonic correlations, and an extension of Data 

Processing Inequality (DPI), to infer genetic regulatory interactions directly from 

data with human origins[39][40]. Targets of transcription factors are identified by 

finding genes whose expression has a high degree of correlation via mutual 

information with the expression of a transcription factor. The non-transcription 

factor genes are presumed to be regulatory targets of the transcription factor, 

based on the hypothesis that transcription factors are more likely to regulate 

multiple targets than that targets are regulated by large numbers of transcription 

factors. The DPI is then used to systematically eliminate likely indirect regulatory 

targets to create transcriptional “regulons,” or sets of genes that are specific 

targets of each transcription factor[39]. Using this methodology we have been able 

to reverse engineer context-specific regulatory networks with up to 70% 

validation in contexts such as B-cell lymphoma and GBM[3][11]. This result is 

essentially a transcriptional map of all genes expressed in the analyzed context, 

complete with all transcription factors that are expressed in the tissue and the 

predicted gene targets that they specifically, and directly, regulate. 
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The transcriptional network can subsequently be interrogated to identify “Master 

Regulators,” or MRs, which are transcription factors whose regulons are enriched 

in a molecular gene expression signature that corresponds to a phenotype of 

interest. In doing so, we essentially identify the fewest number of transcription 

factors that would be necessary to specifically recapitulate the observed 

molecular expression phenotype. Interrogating the GBM network for Master 

Regulators of the mesenchymal GBM gene expression signature identified three 

transcription factors: CEBPB, CEBPD, and STAT3[11]. Our results indicated that 

over 70% of the MES gene expression signature panel defined by Phillips et al. 

could be activated by expressing a combination of only these three transcription 

factors.  

 

The biological importance of these findings was established when we observed 

that shRNA-mediated co-silencing of CEBPB/D and STAT3 was sufficient to 

suppress the expression of mesenchymal markers in MES GBM tumor-derived 

cell lines that were intercranially injected into mice. Tumor cells with the co-

silencing of these master regulators did not proliferate and they develop into solid 

masses, whereas individually silenced and un-silenced cells universally 

developed into tumors that were fatal to the mice. Furthermore, the protein 

expression of these three TFs in independent cohorts of human GBM patients 

stratified with the worst patient prognoses in a similar manner: tumors sections 

staining double-positive for CEBP and STAT3 proteins associated with 
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significantly poorer prognoses than in patients that were negative or singly-

positive for these proteins[11]. 

 

These results validated the computational inferences that predicted the CEBPs 

and STAT3 as master regulators specifically for the activation of the 

mesenchymal subtype behavior in GBM. It had become possible to 

computationally model a complex genetic disease as a gene expression 

signature and to predict the master regulators of that signature, thereby 

predicting the genetic regulators of the disease or phenotype of interest. The 

master regulator modules served as a molecular “bottleneck” through which all 

transcriptional and regulatory processes were integrated to produce a specific 

molecular effect. Any genetic event or change that directly or indirectly perturbed 

the behavior of the CEBPs and STAT3 would be predicted to induce 

mesenchymal transformation in GBM. This provided a novel way of approaching 

the study of genetic disease etiology: identifying or predicting the genes that 

regulate the behavior of master regulators allows for more targeted screening 

methods than using genome-wide approaches. In addition, traditional genomic 

approaches introduce confounding factors such as passenger mutations, 

mutations that contribute to unrelated disease behaviors, and they lose valuable 

power to the correction of large numbers of tested statistical hypotheses.  

 

These results also provide support for the notion that clinically relevant 

physiological traits of GBM are dictated by more than the classical oncogenic 
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signaling pathways. Whether by an addiction mechanism or otherwise, molecular 

programs activated in tandem with the classical oncogenic programs can 

contribute to the progression of disease. Equally important is the implication that 

diseases such as GBM can potentially be treated through more molecular 

avenues than the extensively studied oncogenic and angiogenic signaling 

cascades. Understanding the genetic events that drive the expression of these 

unique gene panels, and how they relate to the progression of the disease, is 

becoming as scientifically important as the genetic events that drive the formation 

of tumors, and evidence is mounting that the plethora of mutations that exist 

along with oncogenic mutations cannot be ignored for contribution to cancers 

such as GBM. 

 

Genomic Mutations and eQTLs: a genomic perspective 

My thesis began as a natural extension of this work, and to ask the question: 

what actually happened in the genome of the patients to induce the 

activation of these master regulators? These master regulators have never 

been specifically associated with classical oncogenic drivers in network or 

biological analyses. They have never even been extensively studied in the 

context of GBM, and their role was completely unknown prior to our application of 

ARACNe to the Phillips classification. In a complex disease characterized by 

extensive alteration of its genome, we hypothesized that other mutations 

originally considered as “background” or “passenger” alterations to the more 

prominent oncogenic drivers must have contributed to the differentiation of the 
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distinct molecular subtypes, and we sought a method to identify and validate 

them in the context of mesenchymal GBM.  

 

This idea serves as the conceptual basis for the now-ubiquitous genome-wide 

association studies. A genomic region demarcated by some combination of 

genetic markers, ranging from balancers to microsatellites to restriction length 

polymorphisms, is tested for association to some phenotype. This phenotype can 

be a disease or higher-level trait, or can be the expression of specific proteins 

and markers. For polygenic and complex traits, this typically results in multiple 

regions of the genome associating with the trait, typically including several 

genes; it is hypothesized that some combination of genes in these associated 

regions provide combinatorial contribution to the overall trait being observed. 

However, a common issue that stymies GWAS is the significant degree of 

identifiable mutations or SNPs that exist in any given individual. The sheer 

number of loci that must be tested for association across a cohort requires 

extensive correction for statistical testing in order to pare down the genomic data 

to an interpretable, testable set of candidates. Furthermore, diseases with 

diverse genetic causes prove difficult to parse because the association signals of 

each cause are diluted when comparing against a cohort of patients that include 

other causal genetic variants.  

 

This issue can be addressed by integrating additional information into the 

analytic framework to shorten the list of candidate loci. The introduction and 
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development of sophisticated gene expression studies has made integrating 

gene expression with gene mutation / genotype a promising choice. The concept 

of linking genetics (gene expression, expression patterns) and genomics 

(chromosomal and mutational data) is not a novel one, and is itself an extension 

of studying Quantitative Trail Loci. Mapping Quantitative Trait Loci (QTLs) in 

model organisms was a natural extension of linkage analyses tracing the 

association of linkage markers and polymorphisms associated with polygenic 

traits[36]. Genomic regions associated with genetic markers (SNPs or 

microsatellites, etc) were correlated with gene expression panels obtained while 

studying “quantitative traits,” or traits that do not have canonical Mendelian 

inheritance patterns. These traits were typically binary and discrete, and 

regulated by a minimal number of genes (yellow vs red, on vs off, etc).  

 

An example of a quantitative trait is a person’s height. Human height exists 

across a continuous spectrum of measurements, and no individual “height” gene 

exists that is solely responsible for the regulation of how tall a person can/will 

develop. While there are undoubtedly environmental and developmental 

considerations to be taken for how tall or short an individual will be, height 

regardless tends to show distinct patterns of heritability. A QTL analysis applied 

to this issue would obtain the genotypes of a cohort of human subjects with 

varied height, and genomic loci whose genotype differences were predictive of 

height difference were identified in combination, based on statistical and 

computational methods. Genomic loci that maximized the prediction of height 
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would subsequently be identified as QTLs, loci that contributed to the quantitative 

trait of height. This methodology was not geared towards identifying causal 

genomic loci via identification of specific mutations, but instead to identify by 

linkage and association the genomic loci that appeared to contribute to a 

quantitative state. 

 

While this methodology was originally designed to analyze “organism-level” traits, 

or physiological traits that were directly observable, the advent of genetic and 

molecular profiling and the development of gene expression studies provided a 

molecular extension for this methodology, much in a manner similar to what was 

discussed for GBM and cancer previously. It had become possible to look at how 

genetic markers segregated with the transcriptional behavior of genes- to directly 

correlate gene expression to genotype, rather than looking at the effects of gene 

expression with reference to the genotype. A trait could be redefined as a 

product of the gene expression that drives the trait, which in turn was presumed 

to be regulated at a genomic level in a manner predicted by the genotype[29]. 

 

The development of the “Systems Biology” perspective was readily compatible 

with these approaches. With the increased understanding of transcriptional 

regulation in molecular systems, eQTLs could be modeled and identified by how 

they affect the behavior of major transcriptional regulators in both cis- and trans-

regulatory interactions.  Genetic variants that associated directly with the coding 

regions of major transcription regulators could be linked to the altered expression 
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of the transcription factor itself and / or the behavior of its targets (cis-regulation) 

by adapting more traditional correlative and statistical metrics integrated with 

transcriptional assays and binding assays. Conversely, trans-regulatory elements 

were defined as genetic variants that, while not falling within the coding region of 

a regulator or gene directly, nonetheless directly associated with the altered 

behavior of the gene’s expression. These variants could affect the behavior of 

other genes in a variety of ways. As an example, a variant could fall in a region of 

another gene that regulates the transcription or activity of the gene being, or alter 

the methylation state of the genomic region resulting in silencing or activation. In 

the context of transcriptional regulation, researchers began improving the 

detection of such genetic variants that altered gene activity by integrating 

additional information to maximize a priori knowledge of the predicted function of 

the genes being studied through several different methods.  

 

One approach was to include transcription factor binding information. 

Transcription factors are proteins that regulate the expression of other genes by 

binding to DNA at a coding region to initiate transcription of mRNAs. Each 

transcription factor recognizes a distinct subset of genes and is able to activate 

(or repress) the transcription specifically of these targets. Multiple transcription 

factors can share the same target, but the overlap is variable. A core binding 

sequence defines the specificity of these regulatory regimes. This motif must be 

present in the promoter regions of a gene in order for a transcription factor to 

recognize, bind, and initiate transcription. Subsequently, any gene that is a target 
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of a given transcription factor will bear a binding motif for that transcription factor 

in its promoter region. These motifs and their specific affinities can be 

computationally predicted using a combination of binding assays and 

thermodynamic models. 

 

The availability of genomic sequencing allowed for the searching of promoter 

regions for these binding motifs, and to predict the binding activity based on the 

sequence similarities found in each specific promoter. Integrating this information 

with gene expression allows for an accurate measure of the activity of a 

transcription factor as a function of its transcriptional targets, identified by binding 

motifs. Differential activity across different genotypes could then be used to 

identify genomic regions that co-segregated with the differential activity of each 

transcription factor, defining genomic regions, or aQTLs,  that associate with the 

differential activity of specific transcription factors[6] . 

 

Identifying Driver Mutations by Integrating Master Regulators 



 20 

Our reverse-engineered networks 

and master regulator analysis 

allow us to add an additional, 

pivotal dimension to these 

approaches: the ability to capitalize 

on our molecular “bottleneck” to 

measure the effect of genomic 

mutations on the transcriptional 

activity of master regulators that 

control a specific gene expression 

set. Identifying the mutations that 

control a gene expression set, by 

proxy, implies that the mutations 

control the phenotype associated 

with the expression set. Rather than asking, “What mutations associate with the 

MES phenotype,” I instead ask, “What mutations perturb the molecular behavior 

of the MES master regulators? What mutations are predicted to induce the 

expression of the MES phenotype?” These questions can be answered using an 

algorithm that incorporates transcriptional networks, genomic profiling, and gene 

expression profiling. I set out to develop this algorithm and perform an analysis 

on the TCGA dataset to identify candidate mutations that could drive the 

expression and differentiation of the Mesenchymal subtype, and biologically 

validate any subsequent results. Candidate mutations were expected to 

Algorithms such as ARACNe and MINDy have 
identified molecular “bottlenecks,” small modules 
of master regulators and modulators that integrate 
signals required to activate the expression of 
gene expression profiles that define and 
potentially drive cancer subtype differentiation. 
We hypothesize that the genomic mutations that 
drive the differentiation, subsequently, must in 
some way interact with the master regulator 
bottleneck- a small number of master regulators 
regulate a large gene panel, and genomic 
mutations that drive the phenotype must interact 
with the master regulators. 
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specifically perturb, directly or indirectly, the molecular behavior of the CEBP and 

STAT3 master regulators. 

 

In my case, GBM was considered the ideal model to develop an algorithm to link 

genomic mutations to regulatory network perturbations (and subsequently gene 

expression profiles) due to the availability of patient-matched data through the 

TCGA. This matched data allowed us to classify GBM samples, reconstruct the 

GBM transcriptional network and interrogate for subtype master regulators, and 

finally attempt to integrate genomic information all in the same patient cohort to 

establish causality between mutations and molecular behaviors within patient 

samples. 

 

This thesis details the development, implementation, and validation of my genetic 

genomic analytic framework in the following steps, broken down by chapter: 

 

Chapter 2: Identifying mesenchymal cohorts in the TCGA dataset and selecting 

optimal parameters for downstream analysis. 

 

Chapter 3: The definition of functional CNVs and parsing them from genomic and 

genetic data. 

 

Chapter 4: Picking candidate driver mutations of the MES subtype using 

conditional association metrics 
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Chapter 5: A manuscript submitted to Nature on the identification and biological 

validation of the candidate MES driver, KLHL9 

 

Chapter 5a: Additional work-in-progress addressing reviewer comments for the 

manuscript 

 

Chapter 6: A discussion of the algorithm and biological results obtained in KLHL9 
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CHAPTER 2 – TCGA ARRAY PROCESSING AND SAMPLE CLASSIFICATION 
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At its core, studying the genomic drivers of differentiation to the MES GBM 

subtype requires the integration of several types of data: gene expression, 

genomic status (mutations, copy number, etc), molecular subtype classification, 

and regulatory networks. The functional genetic-genomics algorithm itself 

requires only CNV and gene expression data, but all of these types must be 

available to complete the downstream analyses associated with the entire 

workflow.  

 

While the original subtypes defined by Phillips et al. were defined in a fairly large 

cohort, data generated by TCGA contained independent patient-matched 

genomic and gene expression data across a cohort of >230 patients. This was 

precisely the type and amount of data required for the analyses intended for my 

thesis work, but before any progress could be made in predicting mesenchymal 

drivers, I had to ensure that the TCGA cohort was comparable to the Phillips 

cohort, and that the subtypes could be accurately recapitulated in this 

independent dataset.  

 

Furthermore, none of these resources are standardized to be directly integrated 

into a framework that I had proposed, so prior to actually running and validating 

the analysis, data processing was conducted to ensure that the data made 

available by the TCGA could be formatted and curated to generate biologically 

meaningful results. The details of each step are entailed here. 
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Classifying TCGA GBM Samples 

The first task at hand in analyzing the TCGA dataset was the reclassification of 

patient samples into the MES, PN, and PRO subtypes originally defined by 

Phillips et al. These subtypes exist as user-defined molecular classifications; 

there is no predefined way to directly recapitulate these classifications solely 

from the TCGA data. In order to classify the TCGA samples as closely to the 

original Phillips samples as possible, I opted to build a centroid-based classifier 

that was trained on the Phillips classification and dataset and use this to separate 

the subtypes in the TCGA dataset. This approach allows us to more closely 

match the specific molecular profiles defined by Phillips, instead of attempting a 

new hierarchical classification in the TCGA set alone using the Phillips marker 

panels. 

 

I selected three markers to represent each subtype (nine markers total), which 

were chosen by two criteria: the genes were not transcription factors and had the 

highest coefficient of variation between the samples. The markers selected by 

these criteria were: YKL40, SERPINE1, and TIMP1 for the MES signature; 

BCAN, OLIG2, and KLRC3 for the PN signature; and HMMR, TOP2A, and PCNA 

for the PRO signature. A centroid representing each Phillips subtype was created 

using the nine markers by defining a point in the search space with minimal 

average Euclidean distance between all samples of a single subtype in the 

Phillips dataset. These parameters were then used on the incoming TCGA 

samples for classification. Each TCGA sample was classified as the subtype of 
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the nearest centroid, again measured by Euclidean distance.  I selected markers 

that were not transcription factors to remove the possibility of bias in subsequent 

analyses that are informed by transcription regulatory networks; training a 

classifier on a transcription factor will artificially increase the enrichment of its 

regulon in patient samples when a transcription regulatory network is 

interrogated. Maximizing the coefficients of variation allowed for the selection of 

the minimum number of markers while maximizing their information, ensuring 

that I did not overfit our classification by using excessively large marker panels. 

 

The application of this classifier to the TCGA dataset identified 164 MES 

samples, 64 PN samples, and 24 PRO samples (A list of samples and their 

classifications is enclosed in the appendix [APPEND01]). These samples 

exhibited robust expression of the appropriate panel markers to the exclusion of 

panel markers of the other two subtypes, and clustering the TCGA samples by 

these subtypes correctly reproduced three distinct expression clusters that 

concurred with the Phillips et al panels, as shown below (red indicates increased 

expression, blue indicates decreased expression). 

 

 

 

After classifying the TCGA cohort into subtypes as defined by Phillips et al, hierarchical clustering of the patients 
according to the original classifying panel, when separate by subtype, reveals robust clustering of lineage-specific 
markers to the exclusion of markers of the other classes, as originally reported by Phillips et al.  
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When these samples were then checked for reciprocation of the reported 

separation of prognosis, I found a strong, statistically significant separation of the 

MES and PRO subtypes compared to the PN samples, as originally reported by 

Phillips et al. The p-value associated with the separation of Kaplan-Meier curves 

for the MES and PN samples was 2.99e-4. It should be noted that the TCGA 

dataset does NOT contain data from patients who survived cancer; all patient 

samples in the set have a time of death, which accounts for the discrepancies 

between the KM curves for the PN patients between the Phillips and TCGA 

datasets. 

 

   

 

Gene set enrichment analysis also confirmed that genes in the regulon of our 

predicted MES master regulators were significantly and specifically upregulated 

in TCGA samples classified as MES using this centroid-based classifier, leading 

us to conclude that I had accurately recapitulated the Phillips classification in the 

TCGA dataset. I used this classification scheme for the TCGA dataset as the 

basis for all subsequent analytic work. 

When separated into Phillips subtypes using a nearest-neighbor centroid classifier, TCGA tumor samples 
reciprocate the stratification of patient prognoses reported by Phillips et al: MES being indicative of the poorest 
prognosis, PN being indicative of the best. NOTE: the TCGA patient cohort does NOT include patients that 
survived the cancer; all patients in the set have a time of death, accounting for the discrepancies in the end 
curves.  
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Processing CNV and Gene Expression Arrays 

While Affymetrix SNP arrays are commonly used as a proxy to infer copy number 

alterations, our analysis of the data showed several technical issues that reduced 

their usefulness in searching for functional genomic mutations. Agilent CGH  

(comparative genomic hybridization) arrays are specifically designed to detect 

copy number alterations at gene loci, and they bear oligos that hybridize along 

the coding region of their target genes, as well as probes interspersed throughout 

non-coding regions. This ensures, at minimum, cover of genic regions in the 

genome. The Affymetrix SNP array is not designed with coding information in 

mind, a priori. SNP arrays contain panels of SNPs that have been identified as 

informative to the LD of underlying populations and are scattered throughout the 

genome. The implication of this, and the first issue, is that there are regions in 

the genome with less or inadequate coverage to accurately infer smaller-scale 

CNVs.  

 

As an example, CGH arrays 

successfully identified a focal 

amplification of the CEBPD locus on 

chromosome 8 as highly predictive of 

MES differentiation, even though the 

genomic region surrounding the locus 
Affymetrix SNP arrays sparsely populate numerous gene-
coding regions, preventing the detection of significant 
associations to molecular phenotypes such as the MES 
signature without employing integrative metrics. Even 
using these metrics never generates signals as 
significantly correlated to both expression and subtype 
classification as CGH array segmentation data. 
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was largely devoid of evidence for CNVs. I knew this was likely to be true 

because we have biologically validated CEBPD as a master regulator of MES 

differentiation. Furthermore, amplifications of CEBPD as reported by CGH arrays 

significantly correlated with increased expression of the CEBPD transcript, and 

increased expression of  

the CEBPD regulon. However, when the same region was analyzed using the 

SNP arrays, I found that there were no SNPs in the region that fell directly in the 

coding or promoter regions of CEBPD as shown in the figure provided (red 

hashes indicate SNPs that called an amplification event).  

 

SNPs falling nearest the CEBPD locus 

generated erratic and statistically weak 

associations to the poor prognosis MES 

sample subtype (see peaks 1, 2, and 3). 

Integrating over the region using a sliding 

window did improve the association of the 

region spanning CEBPD to the poor 

prognosis subtype, but ultimately did not 

perform as well as segmentation data 

produced by CGH. I also observed that 

no individual SNP or integration at the 

CEBPD genomic locus was able to 

produce as significant a correlation with 

Segmentation mapping of SNPs in the CEBPD region of 
chromosome 8 reveals that no SNPs in the array existed within 
the coding frame of the CEBPD gene. Because of this lack of 
coverage, no direct call on the CNV status was available, and 
standard GISTIC measures called the region diploid. CGH 
arrays, conversely, identified a focal amplification of the locus. 
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CEBPD transcript as simply using CGH segmentation mapping data: rMAX|SNP 

= 0.148 compared to rMAX|CGH = 0.258 using a simple Spearman correlation. 

 

Additionally, a comparative analysis was 

performed between using Agilent CGH 

segmentation files and GISTIC-processed 

Affymetrix SNP arrays. GISTIC is a data 

pre-processing algorithm designed to 

construct “minimum common regions” of 

genomic alterations by integrating signals 

obtained from adjacent SNPs, similar to a 

sliding window integration algorithm. The 

first issue that occurred was the a 

significant loss of resolution in minimum 

deleted/amplified regions due to a 

combination of the sparseness of SNPs, 

their non-uniform distribution in the 

genome, and GISTIC’s tendency to favor the joining of two mutated fragments 

over keeping separate segments. Shown here is an image of the segmentation 

mapping of the oft-deleted chromosome arm 9.p. This genomic locus bears the 

most common oncogenic suppressor that is deleted in GBM: p16. This 

chromosome arm typically suffers significant deletions and tumors are frequently 

found with this entire arm missing. However, CGH segmentation mapping of the 

Segmentation mapping of CGH probes to genes on 
chr9.p show significant evidence for independent 
deletion frequencies of genes across the TCGA 
sample cohort. GISTIC-processed SNP arrays assign 
this entire region as deleted in all of the included 
patients. Blue hashes denote significant evidence of 
deletion (Dark blue: homozygous deletion, Light blue: 
heterozygous deletion). Greyed area indicates the 
minimum region marked as deleted when applying 
the most lenient GISTIC thresholds. 
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area across a sampling of TCGA patients reveals significant evidence of 

irregular, partial, and nonequivalent alterations specifically of the p16 region, 

including significant probe-based evidence of differential copy number counts 

among genes in the region (while p16 is almost uniformly lost, the probability of 

losing other genes in a patient decreases as the genomic distance from p16 

increases). GISTIC mapping and SNP arrays call the regions equivalent; all are 

called as completely deleted for the entire region, which obscured a candidate 

identified by both the algorithm and MINDy: KLHL9.  

 

For these reasons, I opted to primarily use data obtained on Agilent CGH arrays 

for the CNV portion of the integrative analysis. Furthermore, I chose not to 

employ least common region mapping methods and post-processing such as 

GISTIC. These methodologies, while useful for inferring and mapping large-scale 

genomic alterations, tend to artificially bias against smaller, focal genomic 

changes since the integrations across focal regions will dilute out a true, small 

signal of change with large amounts of true signal of diploid status. This was also 

observed in, but not limited to, the focal amplification of CEBPD: individual 

segmentation mapping of the locus reveals significant evidence for an 

amplification when considering the probes that hybridize directly to the CEBPD 

coding region, but no other gene loci in the area show any evidence for 

alterations in an overwhelming majority of the patients assayed. 
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These analyses produced several results. I successfully established the ideal 

platform and formatting for the genomic CNV data. The CGH arrays provided by 

Agilent platforms proved to have better coverage of coding regions throughout 

the genome, and could most accurately reconstruct locus-specific CNVs without 

the reliance of sliding window integration algorithms such as GISTIC, which tend 

to compromise resolution of the CNV topography in highly-mutated areas and 

bias against the identification of focal genomic changes. Additionally, I have 

shown that the Phillips GBM subtype signatures are robust and extendable to 

independent datasets. In independent datasets, I was able to reproduce the 

subtype classifications using a centroid-based classifier that was trained on the 

Phillips cohort, and this classification successfully and robustly reproduced the 

association of poor patient prognosis to the MES subtype in the TCGA dataset. 

With this data in hand, I moved forward in using the TCGA dataset to identify 

genomic mutations that drive MES differentiation in GBM. 
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CHAPTER 3 – DIGGIn, Part 1: Developing an algorithm to predict Drivers 

Inferred from Genetic-Genomic Interactions 
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Independently of the TCGA subtype classifications and CGH array 

standardizations, I developed an approach to infer causal mutations in GBM 

using the TCGA patient set. The approach required an algorithm capable of 

integrating genomic and gene expression data to assign what we coined 

“Functional” CNVs, which are then integrated with ARACNe and master regulator 

analysis results to produce candidate drivers of a molecular phenotype of 

interest. The general workflow is presented below, where the functional genetic-

genomic analysis occurs naïvely and independently to molecular classifications 

and ARACNe/master regulator analysis and then used in tandem with these data 

to arrive at a consensus for candidates.  Since the ARACNe, master regulator, 

and classification analyses are done independently and methodologies already 

exist to characterize the master regulators and downstream components, I 

focused on development of the DIGGIn algorithm: a pipeline to identify 

“functional” CNVs with the intent of making mesenchymal Drivers Inference from 

Genetic-Genomic Interactions. 

 

As a first step, I sought to develop an approach to pare down the likely candidate 

mutations. CGH array data covers the entire genome, including >20,000 known 

genes and associated regulatory regions; we hypothesized that very few of these 

genes would actually contribute meaningfully to the differentiation of the 

mesenchymal subtype, and testing for all loci would significantly reduce statistical 

power simply by including a majority of these irrelevant loci. Since GBM is a 
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disease primarily defined by chromosomal alterations (compared to point 

mutations), I sought to assign functionality to a genomic alteration by correlating 

it with a change in the transcriptional expression of genes that fell within the 

altered region in a fashion similar to a QTL. I hypothesized that a genomic 

alteration at a gene locus that functionally alters the transcriptional behavior of 

that gene should result in a correlation between the genomic event and 

transcriptional expression across the patient samples. This assumption also 

allows us to firmly attribute a causal direction to the perturbations and 

subsequent transcriptional cascade. An example is provided in the figure below: 

amplifications of the EGFR locus are biologically validated oncogenic drivers that 

are observed in a significant fraction of GBM patients. Concomitantly, patients 
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that bear evidence for EGFR amplifications in tumors also show greater 

transcriptional expression levels of EGFR. The mutation at this locus was the 

type of mutation I wished to uniquely identify.  

 

A natural extension of this methodology is to then infer the indirect molecular 

perturbations associated with a genomic mutation. After establishing that a 

genomic copy number change at a gene locus correlates with a change in 

transcription of that gene, the expression of all other genes expressed in the 

tissue can be tested for association with the genomic mutation. Effectively, this 

approach generates a transcriptional dysregulation network associated with each 

genomic mutation in the same vein as an ARACNe transcriptional network. 

However, I do not apply the Data Processing Inequality because the direct effect 

is already known (the transcription of the gene bearing the alteration), and 

indirect effects are the most informative in establishing how a genomic mutation 

propagates through the molecular network and affects the expression of specific 

gene sets. Through this workflow, I aimed to be able to infer candidate driver 

mutations from genomic mutations that can be predicted to alter the molecular 

behavior of a GBM tumor.  

 

Algorithm Workflow 

DIGGIn is designed to import two matrix files: one corresponding to gene 

expression data across a cohort of patients, and another corresponding to the 

genomic CNV segmentation data of the same cohort. The program is coded to 
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accept matrices that have gene / coding loci as matrix rows, and individual 

samples as the columns. Capitalizing on the computational simplicity of Mutual 

Information (discussed below) the program has been designed to dynamically 

match data between these two matrices using multi-dimensional associative 

arrays. Data is dynamically called from both matrices by their given sample and 

gene IDs, meaning that neither the row orders nor the column orders in the two 

matrices matters, so long as the labels used are the same between the two 

matrices. 

 

From these two files, DIGGIn follows several steps in order to predict functional 

genomic alterations. The details of each step are discussed in the subsequent 

sections. 

 

DIGGIn Phase I: Genetic-genomics analysis 

1. Find optimized kernel for Mutual Information estimation 

2. Build Mutual Information Null Distribution and compute p-value function 

3. Identify functional CNVs 

4. Link differential expression of other genes to functional CNVs (regulons) 

 

While the core of the genetic-genomic analysis identifies the predicted functional 

CNVs that should be considered for further analysis, the assigning of particular f-

CNVs as candidate drivers of any particular phenotype must be done in 

additional analytic steps. 
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DIGGIn Phase 2: Identifying candidate drivers 

5. Identify f-CNV regulons enriched in a gene panel of interest 

6. Identify increased activities in ARACNe-predicted master regulators 

7. Eliminate passenger mutations and identify maximum effect size mutations 

 

The integration with ARACNe and MINDy predictions, as well as statistical tests 

for association to molecular, clinical, and phenotypic outputs occurs at a post-

processing level, which is discussed in chapter 4. A full schematic of the DIGGIn 

architecture is provided below, detailing the inputs and outputs to each of the two 

phases of DIGGIn, and how they integrate with other systems biological methods 

such as ARACNe and MINDy. Solid lines indicate DIGGIn-specific flow that was 

developed specifically in this thesis. Broken lines indicate established 

methodologies such as ARACNe/MINDy and generalized identification of 

biomarker panels utilizing hierarchical clustering and classification metrics. 

 

 

 

 

 

 

 



 39 

 

 

 

 

 

 

 

 

 

 

 

 

The DIGGIn algorithm can be broken into two general phases. Phase I integrates genomic profiling and gene 
expression data to identify a set of CNVs that exist in genes with a concomitant change in gene expression. The 
expression of all other genes in the genome are then compared to these “functional” CNVs to assign indirect 
dysregulation. Phase II of DIGGIn interrogates these functional CNVs for statistical enrichment of gene marker 
panels and/or enriched activation of master regulators and modulators provided by ARACNe/MINDy. Phase II also 
implements several conditional association metrics to identify combinations of mutations for the maximum effect 
size across the available sample space. DIGGIn-specific flow is outlined with solid arrows. Previously available 
methodologies and how they relate to the DIGGIn framework are outlined in broken arrows. 
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Mutual Information  

I opted to measure the dependence of differential gene expression on genomic 

mutation using the information theoretic metric, Mutual Information. This is the 

central metric used by the ARACNe algorithm and it has been shown in several 

models to detect biologically-validated transcriptional interactions between 

transcription factors and their targets to a degree that is missed by more 

traditional statistical tests. Mutual information is a probabilistic measure capable 

of detecting non-monotonic correlations between continuous variables, and has 

several advantages over more traditional statistical methods. It does not require 

arbitrary discretization of data, it has low computational complexity, and does not 

require a priori information or inferences on the distribution or topology of the 

data used. The first point was a particularly important consideration given the use 

of CGH arrays for detecting copy number variants. Traditional copy number 

analysis involves assigning a statistical threshold to reject the null hypothesis, 

locus count = 2. Using these types of methods in an integrative analysis would 

require a statistically dependent discretization of the CGH data, followed by 

another statistically dependent measure of co-information, introducing multiple 

additional hypothesis corrections and results that are highly dependent on the 

original thresholds set. Instead, mutual information allowed us to consider the 

entire range of CGH array values as a vector of continuous random variables and 

tie them to patient-matched expression vectors. 
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Mutual information between a matched pair of continuous random variables, x 

and y, is defined as: 
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MI[x;y] = p(x,y) * log
p(x,y)
p(x)p(y)

" 

# 
$ 

% 

& 
' 

y(Y
)

x(X
)

 

 

wherein p(x) and p(y) are the marginal probability functions for random variables 

in sets X and Y, and p(x,y) is the observed joint probability density function of the 

matched variables.  

 

The mutual information function measures statistical depdence as the ratio of the 

observed probability of two variables co-occurring, p(x,y) to the expected 

probability given statistical independence, p(x)*p(y), weighted by the expected 

probability of p(x,y). If X and Y were conditionally independent (the outcomes of 

X never affect Y and vice versa) then the predicted probability of the two 

variables co-occurring is equal to the product of each event occurring separately, 

p(x,y) = p(x)*p(y). In this instance, the function simplifies to log(1) = 0 information, 

and it can be claimed that they are mutually independent or that no information 

exists between the variables (again, x does not affect y; therefore knowing x tells 

nothing about y). If the events are not mutually independent, p(x,y) > p(x)*p(y), 

and the function produces a non-zero value, providing a quantitative value of the 

information, or correlation, contained between the two variables. 
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For the purposes of inferring interactions between gene expression or between 

genomic-genetic pairings in a rank-sorted dataset, we measure the probability 

density functions for the log ratio using a kernel bandwidth estimator that weights 

neighboring datapoints based on their distance from each tested point (discussed 

below). However, the expected probability of any individual pairing of variables 

(or each individual point), p(x,y), is equal to 1/M, where M is the number of 

samples in the probability space. Thus, the definition of mutual information in our 

context can be reduced to: 

 

 

wherein the remaining term corresponding to the observed p(x,y) is inferred by a 

probability density function created from the sets X and Y. In the case of genetic-

genomics, the X vector would represent a vector of continuous variables 

corresponding to the copy number status of a tested genomic locus, indexed by 

sample. Conversely, the Y vector would represent patient-matched expression 

values of genes being tested for co-information with the mutation status at locus 

in vector X. 

 

Mutual information across continuous random variables can be efficiently 

estimated using a Gaussian kernel estimator to construct non-Normal probability 

density functions for variable sets X and Y, defined: 
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Fitting a Gaussian kernel with an optimized bandwidth estimator, h, as a window 

for measuring variance allows for efficient estimation of MI between variables, 

resulting in the fully developed function for MI estimation: 

 

 

 

While such an estimator is asymptotically unbiased in infinite or large datasets, in 

finite datasets a bias does exist and depends on the kernel width used. Since 

kernel selection is largely heuristic and empirical, this can lead to MI estimates 

whose accuracy varies, based on kernel selection. However, the performance of 

MI in this context is not directly dependent upon the fidelity of the MI estimate to 

the true MI value, but instead depends on the accuracy of MI rank estimates. 

Statistical significance is established by testing MIxy ! MI0, where MI0 is defined 

as the mutual information threshold obtained from the null distribution at a given 

significance[8][9]. In this context, the bias attributable to kernel selection is 

minimized, so long as a kernel that is optimally fitted for the dataset being 

analyzed is held constant across all comparisons and the modeled null 
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distribution. The end results are MI values whose ranks are directly comparable 

to those produced in the null distribution to ascertain a p-value.  

 

As reported by Margolin et al., selecting a variety of kernel bandwidth values did 

not significantly alter the results of the analysis for a majority of the mutated loci, 

as long as the same kernel estimator was used in both the construction of the 

null distribution and the analytics, allowing h optimization to be a largely heuristic 

process. The most significant changes in results involved loci whose mutational 

frequency was low (<5% of patients tested exhibited 

evidence for a locus alteration) and the gene 

expression vector had a low coefficient of variation. 

The ramifications and solutions to this are 

discussed below. Therefore, rather than optimizing 

a kernel for every M2 number of comparisons (an 

extremely resource-intensive process), I instead 

optimize a single kernel width by selecting for the 

kernel value that minimizes the MI between random 

vectors. I take a Monte Carlo model approach and 

compute over 105 iterations the MI from randomly 

paired CNV and gene expression vectors under 

different kernel widths starting from h = 0.9 to 

h=0.01 and select the maximum value h wherein the 90th percentile of the 

recorded pairs falls below MI=0.05. This kernel width is then used for all 

The null distribution for estimating MI 
p-values is made by measuring the 
MI between randomized CNV and 
gene expression vectors over 10e5 
iterations and measuring the 
frequency of each MI value. The 
exponential decay of the function in 
the right tail allows a linear fit to log-
transformed data for the extrapolation 
of arbitrarily small p-values 
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subsequent analysis and the null distribution generated is then used for the 

calculation and extrapolation of p-values, and for all subsequent analytic 

measurements of MI in the dataset. This approach ensures the selection of a 

maximum value h such that the (MI | h) in the null distribution allows for 

maximum dynamic range in detecting non-random co-information between tested 

CNV and gene expression vectors.  

 

The null distribution corresponding to the optimal kernel, h, is used to estimate MI 

to arbitrarily small p-values. 105 randomized iterations allows for the construction 

of a probability density function from which I can assign a p-value, p, to any 

recorded MI value. This distribution is asymptotically distributed on the right tail, 

which allows us to log-transform the empirically determined p-values and fit a 

linear function to the data. From this fit, I can estimate arbitrarily low p-values 

without having to run large numbers of iterations in the MI null distribution. For 

the work with TCGA GBM, the critical MI value for rejecting H0 was set as the MI0 

with an FDR < 0.1. based on 105 iterations. 

 

Results and Analysis 

Following the standardization of the TCGA data, I performed the analysis to infer 

functional genetic mutations. Of the ~9,000 genes expressed in the patient 

samples and full ~20,000 gene loci tested for genomic alterations, only 1489 

genes had alterations that shared significant mutual information with their gene 

expression (a list of these genes is included in its entirety in [APPEND02]). 
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These alterations were subsequently flagged as functional CNV genes (f-

CNVGs), genes whose genomic loci showed evidence of an alteration that 

correlated with a change in transcription levels of the same gene. Any f-CNVG 

could subsequently be considered a candidate causal driver mutation, since the 

genomic event could be definitively linked to a molecular perturbation. Testing 

the performance quality of DIGGIn included two basic tests: reciprocation of 

known ARACNe transcriptional regulons when those TFs were mutated, and the 

successful identification of bona fide oncogenic drivers previously reported in 

GBM.  

 

Successful recapitulation of Transcriptional Regulons 

Among the 1489 identified f-CNVGs were several transcription factors including 

the validated mesenchymal master regulator, CEBPD. I compared the panel of 

genes that showed statistically significant MI with the mutated transcription 

factors against the ARACNe-predicted targets of each transcription factor in GBM 

and the mesenchymal signature as a whole. As expected, there was statistically 

significant overlap between the differential expression panel predicted by the f-

CNVG analysis and the predicted transcriptional regulon: the overlap of 

ARACNe-predicted targets of CEBPD and the genetic-genomic predicted targets 

of CEBPD was highly enriched (p<6.58e-17). The enrichment of mesenchymal 

signature genes associated with the deletion of KLHL9 was also highly significant 

(p<2.00e-9). DIGGIn was able to properly associate the dysregulation of known 

transcriptional targets to the corresponding mutated transcription factors. 
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Successful identification of gold standard Oncogenic Drivers 

As an additional quality control metric, I tested whether DIGGIn was capable of 

identifying common mutations that have already been reported in the literature. 

DIGGin was successfully able to identify several classical oncogenic drivers as f-

CNVGs. Of the 18 classical oncogenic drivers reported[21] as GBM oncogenic 

drivers, the algorithm positively identified 14, including loci such as EGFR, CDK4, 

MYCN, p16, PTEN, RB1, and NF1, for a statistically significant enrichment of 

true-positive mutations (p<1.93e-10). The remaining four were either too rare in 

the TCGA population tested to obtain statistical significance (all candidates 

missed with significant mRNA calls were present in <10 TCGA samples, <5% of 

the set) or were disregarded as potential drivers because the transcript was not 

found in the tissues, implying that changes in expression were not possible and 

were therefore non-perturbing. This latter point was one of the initial goals in 

designing the algorithm; the omission of artificial candidates via the integration of 

additional biological information drastically improved the computational power in 

parsing the data into meaningful mutations. These findings showed that the 

algorithm was able to attribute changes in gene expression levels of oncogenic 

drivers to the mutations that occurred at their genomic loci (a list of these genes 

is provided in [APPEND03]). Based on these results, I concluded that any 
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candidates successfully identified by the algorithm could be expected to be a 

legitimately functional CNV to be included in subsequent analysis. 

 

 

Detection of rare, yet functional mutations via the MINDy algorithm 

One caveat of the use of mutual information is the relatively large data 

requirement to obtain usable MI estimates. It was established that roughly 100 

independent samples was the absolute minimum required for ARACNe to have 

sufficient statistical power to produce robust transcriptional networks[1][8]. While 

the TCGA dataset included over 200 patients, there was an added constraining 

limitation on the power: a non-uniform distribution of mutations across the 

patients. Certain loci, such as EGFR and p16, were altered in over 60% of the 

patients and showed a very dynamic range of gene expression, providing ample 

information across “affected” and “unaffected” patients to generate co-information 

with gene expression. In contrast, copy number changes that were more rare or 

whose gene expression had lower coefficients of variation provided less 

information. Though I did not bin or discretize the data, using continuous 

variables when a rarer mutation is being tested results in highly-clustered points 

in a joint probability density function, diluting the ability to detect information over 

the null distribution without a specifically-optimized kernel. Although it may 

appear conceptually ideal to favor mutations with the highest effect size when 

considering candidate driver mutations, there is always the possibility of a very 

important, yet rare, contributor to the etiology of a highly heterogeneous disease.  
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To address this issue, we also implemented the MINDy (Modulator Inference by 

Network Dynamics) algorithm[2][22][23] to detect and identify a priori candidate 

modulators of the MES master regulators. Implementation of the genetic-

genomic algorithm on the TCGA GBM dataset showed that, while the algorithm 

was highly successful at parsing functional mutations when the mutations were 

present in relatively large portions of the population, it had difficulty detecting 

functional CNVs when they existed in fewer than ~5% of patients overall (<10 

patients) if the variance of gene expression or CNV reads was relatively high. 

The MINDy algorithm provided a complementary approach wherein potential 

modulators of the MES master regulators were predicted a priori from the gene 

expression profiles. These candidates were then cross-referenced with CNV data 

to ascertain whether any patients carried mutations in gene loci of the MINDy-

predicted modulators. This approach does not require any minimum number of 

affected patients, but simultaneously does not provide statistical evidence that 

can be used to predict effect size. However, including the MINDy modulators 

significantly expanded our coverage of reported oncogenic drivers. 

 

For comparison, DIGGIn was modified to use statistics to measure correlation 

between CNVs and gene expression. Both the Mann-Whitney U-test and 

Student’s T-test were used to measure a change in gene expression between 

samples that were binned into “diploid,” “amplified,” or “deleted” groups. This 

methodology requires assigning two statistical thresholds: one to assign 
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significant evidence for copy number change, and another to ascertain significant 

differential expression between samples with vs. without copy number change.  

 

While these approaches were able to reasonably detect functional CNVs at a 

population threshold lower than MI, these approaches did not outperform a 

simple cross-comparison of CNVs at gene loci and MINDy-predicted modulator 

loci, due largely to the dependency on multiple statistical thresholds with 

corrections for multiple hypothesis testing. Related to this, the cross-comparison 

method is a much more intuitive approach, requiring significantly less pre-

processing and fewer variable thresholds. The results of the parametric analyses 

could significantly change based on the thresholds used for differential 

expression, copy number alteration, and minimum effect size considered. Since 

MINDy successfully identified nearly every rare locus that was detected in the 

traditional methods, I opted to use MINDy.  

 

In summary, the DIGGIn algorithm was designed to implement mutual 

information to identify what I refer to as f-CNVs. f-CNVs are genomic copy 

number variations occurring at gene loci that present with a concomitant 

alteration in the transcriptional expression of the genes contained in that CNV. 

This allows for a powerful filtering step to remove a significant amount of probes 

(and therefore hypotheses) to be tested when identifying candidate mutations for 

further study. However, additional processing is required to assign specific f-
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CNVs as driver mutations for specific molecular expression panels like the MES 

gene expression signature, which will be detailed in Chapter 4. 
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CHAPTER 4 – DIGGIn, Part 2: MES-specific candidate drivers are identified 

from f-CNV results based on enrichment analysis and conditional 

association 
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Interrogation for MES Gene Expression and Master Regulator Activity 

The initial steps of DIGGIn are designed to identify functional CNVs. These 

genomic mutations are the mutations that can directly be associated with a 

molecular perturbation of the genes expressed in a tumor. In order to do so, I 

adapted the mutual information function derived for the ARACNe algorithm and 

applied it to the integration of genomic and gene expression array data. Phase I 

of DIGGIn defines genomic loci that have a traceable link between a mutation of 

a gene and differential expression of that gene. It also defines all the genes 

whose expression is affected indirectly by this gene locus. These significant 

functional CNVs, or f-CNVs are defined as a subset of candidate driver loci, 

isolated from a field of hundreds of thousands of candidate loci. 

 

However, CNVs do not fall exactly within single genes at a time. They occupy 

variably large swaths of genomic regions and can manipulate any combination of 

genes expressed in the tumor, which can regulate any number of independent 

biological processes. In order to specifically identify candidate drivers of 

mesenchymal differentiation, I needed to create an algorithm with additional 

metrics to assign likely function to this specific molecular profile. Phase II of 

DIGGIn is a suite of analyses integrating conditional associations, and modeled 

off of classical genetic testing in order to rank and select candidate f-CNVGs that 

are maximally likely to drive the phenotype of interest. 
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I ascertained whether any of these 1500 f-CNVGs could specifically regulate the 

genes in the mesenchymal gene expression panel by conducting an enrichment 

analysis on the f-CNVG’s “regulon,” comprised of all other genes whose mRNA 

expression shared significant information with the genomic perturbation. f-CNVG 

loci were flagged as potential MES differentiation drivers if their regulons were 

statistically enriched in genes in the MES gene expression panel defined by 

Phillips et al. This was subsequently cross-referenced with the results of the 

MINDy algorithm as applied to the TCGA GBM cohort to obtain consensus 

candidates (genes identified by both methods) and potential candidates (genes 

identified by at least one method). This enrichment analysis was conducted using 

the standard GSEA protocol with an FDR < 0.1. The genes that carried 

statistically significant enrichment of differentially expressed MES marker genes 

are included in [APPEND03]. Of the ~1500 f-CNVG loci successfully identified, 

only 41 were significantly enriched specifically in genes that define the MES gene 

expression signature, and identified by both genetic-genomic approaches and 

MINDy as a potential driver, including amplifications in the previously identified 

master regulator, CEBPD. Two genomic loci presented high enrichment in both 

the activation of the MGES and increased activity of all predicted MES master 

regulators: amplifications of CEBPD and deletions of KLHL9.  
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The above figure displays two types analyses that 

DIGGIn is capable of conducting on defined f-

CNVs. In the event that an ARACNe network is not 

available, a more straightforward approach can be 

conducted by testing each f-CNV for increased 

activity of a biomarker panel of interest as a whole, 

pitted against the total size of the f-CNV’s 

dysregulatory hub. This is represented in the figure 

by the blue squares. Alternatively, ARACNe master 

regulators can be integrated into DIGGIn and we 

can instead measure master regulator activity. We 

define activity of a transcription factor in this context 

as the collective change in expression of its 

ARACNe-predicted targets. By measuring the 

coordinated change of a TF’s targets, we have a 

proxy for the TF protein’s activity (more active TFs 

will produce more target transcripts). Using this 

measure, DIGGIn can infer which f-CNVs are predicted to contribute to the 

increased activity of specific master regulators, such as the mesenchymal master 

regulators indicated as yellow squares. This analysis is conducted independently 

of the standard statistical enrichment, but generally produces better results when 

f-CNV hubs become large. 

Of the 41 genomic CNVs that 
had significant MI with MES 
master regulators, the two loci 
with the most significant 
enrichment of both the MES 
signature genes and, 
subsequently, the activity of the 
ARACNe-predicted master 
regulators (yellow squares) 
were amplifications of CEBPD 
and deletions of KLHL9. Master 
regulator activity was measured 
as a function of the differential 
expression of the MR’s 
ARACNe-predicted targets. 
While simple enrichment by 
Fisher’s Exact test of MGES 
genes was significant for these 
two loci, testing for master 
regulator activity provided more 
power in identifying loci. 
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Selecting MES Driver Candidates 

The functional CNVs at CEBPD and KLHL9 were significantly enriched in MES 

genes and MES master regulator activity, and were subsequently considered 

potential driver mutations that could induce mesenchymal differentiation in GBM 

tumors among the 41 candidates. However, there are still two issues that had to 

be addressed before positively stating that KLHL9 and CEBPD were mutated 

master regulators/modulators of MES transformation in GBM: 

  

1) There are an unknown number of causal driver mutations amidst 

hundreds, if not thousands, of mutated loci.  

 

2) CNVs tend to affect large genomic regions; whole chromosomal deletions 

are affected in GBM, which means that any mutated locus that drives the 

differentiation a subtype will usually come with several other neighboring 

loci that are also associated with the subtype, but are biologically 

irrelevant. 

 

To address the first issue, I implemented a recursive greedy search algorithm 

described below:  
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! 

X0 = argmax(m • s)

while(pFET (Xi) < "){
mi = {m \ Xi#1}
si = {s \ Xi#1}
Xi = argmax(mi • si)
}

 

 

The TCGA GBM cohort was classified into MES, PN, and PRO subtypes 

according to the classifier trained from the Phillips work. A vector set, s, was 

defined containing each sample classified as MES or PN. A complementary 

vector set, m, was defined containing the mutation state of each candidate 

genomic locus across all patients in s. A candidate driver f-CNV, X0, was 

selected by finding the maximum the dot product between the candidate f-CNV’s 

vectors m and s. X0 was essentially tested for association specifically to the MES 

subtype compared to the PN subtype and a p-value could be assigned by a 

Fisher’s Exact Test (FET). X0 is subsequently the first candidate driver identified 

and accounts for some portion of samples in the vectors m and s. 

 

Subsequently, the vectors m and s are updated to contain only the set of 

samples that existed in the original vectors that are NOT also contained in the set 

of samples that bear the mutation X0. Using the new sets m1 and s1, the next 

most significant locus associated to the mesenchymal subtype is identified, X1. 



 58 

This analysis is recursively repeated until statistical significance of association 

can no longer be achieved with the remaining samples in each vector. 

 

The use of the argmax function with the Fisher’s Exact Test in a greedy search 

indirectly pushes the algorithm towards selecting candidate f-CNVs that offer the 

maximum effect size detectable by statistical methods, which manifests in the 

selection of two types of candidates. The value to this approach is that it is 

capable of detecting significant associations resulting of both high-frequency 

mutations (more prevalent mutations will provide more statistical power, 

reflecting higher effect size) and rarer but highly specific mutations (mutations 

may be more rare but only occur in specific sets of samples, producing high 

associations) as long as the distribution of mutations are approximately equal.  

 

However, due to the unequal distributions of mutations throughout samples, 

there is a significant risk of the analysis favoring very common mutations (>50% 

of the samples) to the exclusion of very rare ones (<5% of samples) simply due 

to the difference in power associated with limited sample sets; stronger p-values 

are more readily obtainable when the mutation is more prevalent, such that a 

significant driver mutation that occurs in only 5% of samples may be 

overshadowed and placed in a superset with a more common mutation simply 

because the minimum p-value obtainable in this context is an order of magnitude 

higher than other candidates. This can lead to false positive where multiple, 

independent true driver mutations are placed in the superset of another, non-
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causal mutation simply because this mutation is so common that it co-occurs with 

multiple drivers.  

 

To hedge against this occurrence, each subgroup of TCGA patients associated 

to a significant candidate f-CNV was redefined as the entire MES cohort, and the 

recursive analysis was repeated to ensure that there were no viable 

subcategories of sample sets as defined by individual candidate drivers.  

 

As a result of this analysis, we were surprised to find that ~50% of the MES 

samples could be accounted for by bearing a mutation in only one of two loci: 

amplifications of CEBPD (one of the biologically validated master regulators of 

the MGES), and deletions of KLHL9, a previously unreported gene in tight 

linkage disequilibrium with one of the most prevalent mutations in GBM, deletions 

of p16. 

 

To parse out false positives resulting from being in linkage disequilibrium with a 

true driver mutation, I devised a computational algorithm based on the following 

hypothesis: Of all mutations that are statistically associated with each other (co-

occurring), no mutation can be more significantly associated with the MES 

phenotype than a true driver MES differentiation.  

 

This can expressed mathematically by comparing the association of two 

hypothetical associated genes, genex and geney, to the MES subtype compared 
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to the PN subtype. A mutation (mut) at genex can be correctly identified as a 

candidate driver if, when all other co-mutated genes y in superset Y are wildtype 

(WT), it fits the criteria: 

 

 

 

This indicates that any co-information between geney and the MES subtype is 

actually an artifact of information passed to it from genex by statistical 

association. Conversely, any gene for which this does not hold true can be 

identified as a passenger mutation since its association to the mesenchymal 

subtype is conditionally dependent upon the mutation at another locus. If the 

mutation frequencies are such that there are no samples that are mutated at 

genex and wildtype at geney, the complementary association can be taken: 

 

 

 

I constructed associative networks of co-occurring mutations by performing a 

pair-wise Fisher’s Exact test matching all ~1500 f-CNV genes with each other. 

From this map, I extracted all genes that were statistically associated with 

amplifications of CEBPD and deletions of KLHL9. Any of these loci could be a 

true driver of the MES subtype instead of KLHL9 or CEBPD, due to their high co-

occurrence with these genes. Based on our stated hypothesis, I tested the 
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mut | genex
WT )

! 

pFET
y"Y
(PN;genex

WT | geney
mut ) < pFET (PN;geney

WT | genex
mut )



 61 

conditional association of each locus to the MES classification across TCGA 

samples, given that another co-mutated gene was not mutated. If the conditioned 

locus is the true driver, the association of the tested locus should be abrogated 

(no condition, or gene in this case, can be more associated to the effect than the 

cause).  

 

This analysis concurred that the most likely driver genes were CEBPD and 

KLHL9, as conditioning on the absence of these two mutations completely 

removed the association of any other genomic loci that were co-mutated with 

them. Conversely, the associations of KLHL9 and CEBPD to the MES subtype 

were the most robust to conditioning on the absence of other mutations. 

 

In order to identify and biologically validate mesenchymal drivers in this GBM 

patient cohort, a series of experiments were designed to assign both statistical 

association of candidate drivers to the MES subtype and associated poor 

prognosis, and biological validation of the molecular function of these mutations 

alongside a possible mechanism of action.  
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CHAPTER 5 – Deletion of the KLHL9 E3 Ligase Complex Adaptor Protein 

Induces Mesenchymal Signature in High-Grade Glioma 
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DIGGIn was designed to identify candidate genomic mutations that drive the 

activation of distinct molecular expression panels. This is accomplished using a 

two-step analytic process where functional genomic mutations are identified, then 

subsequently interrogated for statistical enrichment of the gene panels of interest 

(in this case, mesenchymal differentiation). The results of the DIGGIn analysis on 

the TCGA cohort identified KLHL9 as a previously unreported candidate driver of 

mesenchymal differentiation in GBM. I followed up this candidate driver with a 

series of statistical analyses on independent human cohorts and biological 

experimentation in cell lines. The full process of implementation of DIGGIn and 

subsequent analysis are detailed in this manuscript. 

This manuscript is currently undergoing revisions for resubmission to Nature and 

contains the implementation of DIGGIn as described in this thesis. It additionally 

details the biological methods and experiments used to validate the identified 

candidate, KLHL9, and the subsequent identification of the mechanism by which 

it interacts with the validated mesenchymal master regulators, CEBPB and 

CEBPD. All figures and figure legends for this manuscript have been attached to 

appendices 5 and 6 ( [APPEND05] and [APPEND06]). Additional experiments 

conducted to address reviewer comments are discussed in the following Chapter 

5a. 
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The most aggressive subtype of human high-grade glioma (HGG) is characterized 
by expression of mesenchymal genes (the “mesenchymal signature”), a 
phenotype driven by aberrant activation of master regulators C/EBP! , C/EBP"  and 
STAT31. Yet, the specific genetic alterations contributing to this tumor subtype 
remain largely unknown, despite availability of large-scale mutational and gene 
copy number alteration datasets2. We hypothesized that the master regulators of 
the mesenchymal subtype represent a natural bottleneck, responsible for 
canalizing aberrant upstream signals from multiple genetic alterations. Confirming 
this, unbiased genome-wide regulatory-network analysis of these genes and of 
their upstream regulators identified focal amplifications of C/EBP! and frequent 
deletions of KLHL9, an adaptor of Cullin3-based E3 ligases, in poorest prognosis 
mesenchymal HGG tumors. Loss of KLHL9 in tumors leads to C/EBP" and 
C/EBP! protein accumulation, while re-expression of the gene triggered ubiquitin-
mediated, proteasome-dependent destruction of these transcription factors, 
abrogated the expression of mesenchymal genes, and promoted cell cycle arrest. 
An independent HGG patient cohort confirmed KLHL9 deletion in 70% of poor 
prognosis cases. Taken together, these data elucidate a previously unidentified 
KLHL9 deletion as the most frequent alteration promoting aggressive 
mesenchymal subtype of HGG and provide a novel, regulatory-network based 
paradigm for the elucidation of driver mutations in cancer. 
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High-Grade Glioma (HGG), including astrocytoma grade III and IV, are the most 

common human brain tumors and are virtually incurable, with an average survival 

of 12 months post diagnosis3. Gene expression profiling of HGG samples from 

large patient cohorts, using a gene subset that optimally correlates with disease 

prognosis, has revealed three subtype-specific signatures, including 

mesenchymal (MGES), proliferative (PGES), and pro-neural (PNGES) markers 

respectively4. Among these, the MGES was found to be associated with the 

worst prognosis, as further confirmed by analysis of additional Glioma datasets1, 

including TCGA5 and Rembrandt6. More recently, co-segregation analysis with 

large-scale gene copy number (GCN) alteration and mutational data5 revealed an 

alternative signature stratification, including Proneural, Neural, Classic, and 

Mesenchymal7, with the Mesenchymal expression signature again associated 

with the worst disease prognosis. This allows us to use the Mesenchymal gene 

expression signature is a quantitative molecular proxy for poor prognosis GBM. 

 

Analysis of the mesenchymal signature, using a regulatory network inferred de 

novo by the ARACNe algorithm, elucidated three Master Regulator (MR) genes – 

the transcription factors (TFs) C/EBP!, C/EBP", and STAT3 – as synergistic 

drivers of the mesenchymal gene expression signature of high-grade 

glioma1_ENREF_3. The C/EBP! and C/EBP" subunits form both homo- and 

heterodimers that regulate the same targets. Co-ectopic expression of C/EBP! 

and STAT3, but not of either gene in isolation, was sufficient to reprogram neural 

stem cells along an aberrant mesenchymal lineage. Conversely, co-silencing of 
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the two genes abrogated the mesenchymal phenotype in short-term cultures of 

human HGG-initiating cells and established glioma cell lines, both in vitro and in 

vivo. Finally, stratification of an independent cohort using C/EBP! and phospho-

STAT3 antibodies revealed that functional co-activation of these TFs was 

associated with the worst prognosis in ~70% of the patients.  

 

Among the relatively large panel of genetic alterations reported by the TCGA 

Consortium5, only NF1 mutations were statistically associated with the MGES, 

accounting however for < 25% of the worst prognosis samples, thus leaving the 

majority of genetic variance associated with worst prognosis unaccounted for. 

Despite the growing availability of data and the identification of clinically relevant 

molecular subtypes within HGG, the genetic alterations contributing to this 

subtype remain virtually unknown and none has been mechanistically elucidated.  

 

Here we introduce and experimentally validate the “bottleneck hypothesis,” i.e. 

the concept that master regulators of a tumor subtype implement functional 

bottlenecks that canalize and integrate aberrant upstream signals from a 

spectrum of driver genetic alterations, thus constituting a central dependency of 

the phenotype (oncogene or non-oncogene addiction8). Specifically, if the co-

activation of C/EBP and STAT3 is both necessary and sufficient to establish an 

MGES subtype, then relevant genetic alterations must be harbored either by the 

master regulators themselves or by their upstream functional regulators. 

Integration of copy number alteration data and regulatory network analysis 
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upstream of these MR genes confirmed this hypothesis, leading to the 

identification and functional validation of the focal amplification of the C/EBP" 

locus and deletion of the KLHL9 locus, which account for the majority of 

mesenchymal and worst prognosis samples in glioblastoma (GBM). Additionally, 

this analysis suggests a possible functional role for NF1 as an upstream post-

translational regulator of STAT3. Indeed, its inactivation by deletion and mutation 

co-segregates with C/EBP" amplifications, consistent with the established 

mechanism of synergistic mesenchymal signature activation in GBM, which 

requires co-activation of C/EBP and STAT3 transcriptional activity (Supplemental 

Figure 9). 

 

RESULTS 

Identifying Functional Copy Number Variations 

To reduce the number of candidate copy number variations (CNV) that may play 

a functional role in dysregulating MRs of the MGES signature, thereby regulating 

a major molecular program associated with poor prognosis in GBM, we defined 

functional CNV Genes (f-CNVGs) as genes within CNV loci whose copy number 

was informative of their expression level by either mutual information analysis or 

t-test statistics, see methods section. The analysis was performed using a set of 

229 TCGA samples for which both gene expression and copy number profiles 

were available from Affymetrix (HU-133) and Agilent (CGH) respectively, with no 

subtype selection. Only genes passing these criteria were subsequently 

considered as candidate MGES-relevant genetic alterations. 
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The analysis identified 1486 f-CNVGs at a p-value p < 0.05 (Bonferroni 

corrected); see Figure 1b. f-CNVGs that frequently co-occur in the same samples 

were grouped into 34 clusters, based on sample co-segregation analysis, see 

methods. As expected, cluster membership was mostly determined by genomic 

proximity, since f-CNVGs at distant loci were relatively independent of each 

other, except for cases where large fragment of a chromosome were recurrently 

deleted or amplified. For instance, f-CNVGs on chromosome 9, which is 

frequently deleted in GBM, were clustered together. However, they were 

statistically independent of f-CNVGs on chromosome 12 (Figure 1a).  

 

Based on this metric, the vast majority of CNVs did not appear to affect 

expression of their corresponding genes (see for instance Supplemental Figure 

2a). We thus tested whether this filtering may be too conservative by checking for 

the successful identification of established oncogenic drivers as f-CNVGs. The 

vast majority of established GBM genetic alterations were preserved by the 

analysis, including 14/18 gene copy number alterations previously identified as 

classical GBM tumorigenesis drivers5, such as EGFR, CDK4, PDGFRA, MDM2, 

MDM4, MET, AKT3, MYCN, PIK3CA, CDKN2A, CDKN2C, RB1, PTEN, and NF1, 

see Supplemental Figure 10. The remaining four genes were not identified as f-

CNVGs due either to insufficient analytical power, because the corresponding 

CNV frequencies were too low for statistical association with the corresponding 

gene expression, or because there was no evidence of differential expression 
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due to the CNV. For example, the CDKN2B locus was omitted as a candidate f-

CNVG, despite a high frequency of deletion and linkage to CDKN2A because 

CDKN2B expression was not detected in these GBM samples. Previous studies 

that lack this selection step would consider this locus as a candidate gene based 

on the genomic array data, despite the fact that the expression array data 

precludes it from functionally altering the molecular behavior of these tumors. 

Supplemental Figure 2b, for instance, shows the strong association between the 

CNV harboring the EGFR gene and its mRNA expression. Additionally, among 

previously identified MGES MR genes (C/EBP!/", STAT3, FOSL2, BHLHB2, and 

RUNX1), only C/EBP" was identified as an f-CNVG by this analysis, based on 

coordinated amplification and overexpression in ~22% of the samples; see 

Figure 1. This suggests that aberrant functional activation of C/EBP and STAT3 

most frequently arise from upstream genetic or epigenetic events rather than 

from direct amplification events. 

 

Identification of f-CNVGs as candidate modulators of MGES  

To identify f-CNVGs that may drive the aberrant activity of MGES MR genes, we 

applied two complementary approaches to the TCGA data. First the MINDy 

algorithm9 was used as a genetic-genetic approach to identify all upstream 

candidate functional modulators of the transcriptional activity of C/EBP!, 

C/EBP", and STAT3. Inferred modulators that were also detected as f-CNVGs or 

that harbored mutations reported in 5 were then selected for further analysis. 

Succinctly, MINDy tests whether the expression of a candidate modulator M may 
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affect the strength of the regulatory relationship between a TF and its targets ti. 

This is accomplished by computing the conditional mutual information 

! 

I = [TF;ti |M] between TF and target, given the modulator availability. MINDy 

was successful in the identification of both known and novel modulators of MYC 

in human B cells, which were experimentally validated9, and in the analysis of 

interactions between all signaling proteins and TFs also in human B cells10.  

 

Concurrently, we used a genetic-genomic approach, inspired by 11, to find 

f-CNVGs whose presence in specific samples would be associated with master 

regulator activity, measured as a function of MES marker expression. This was 

accomplished by computing the mutual information between each f-CNVG and 

the of the established MGES MR genes, including C/EBP!, C/EBP", STAT3, 

FOSL2, BHLHB2, and RUNX1. MR activity in each sample was inferred from the 

expression of their ARACNe-inferred transcriptional targets1, see methods 

section.  The combination of these two analysis identified 184 of the original 1486 

f-CNVGs as candidate modulators of MGES MR genes by either analysis, and 41 

of those 184 were identified by both methods (see Supplementary Table 8). 

These 1486 f-CNVGs were then clustered into co-mutated groups via simple 

pairwise statistical association methods, revealing that the majority of these 

mutations fell into linked regions on various chromosomes (Figure 1a). 

 

Functional amplifications of C/EBP" and deletions of KLHL9 associate with 

MGES subtype 
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The 184 f-CNVGs emerging from the previous analysis were then tested for 

actual association with the MGES molecular subtype. The subtype classification 

was established using a signature-based sample classification, as described in 

1_ENREF_3, see methods section. Specifically, samples were classified as either 

MGES or non-MGES, and the association of samples bearing mutations at each 

f-CNVG to each of the subtypes was assayed. Consistent with MR analysis, all 

but two of these f-CNVGs displayed statistically significant enrichment of the 

expression MGES marker genes.  

 

These loci were further tested to identify the loci with the greatest effect size 

associated with the mesenchymal tumors. A recursive analysis was performed to 

determine the smallest subset of the f-CNVGs that was both maximally 

associated with the MES subtype, and accounted for the maximum number of 

MES tumor samples; see the methods section, Testing for CNV association by 

recursion, for details.  

 

Two f-CNVGs emerged as having both high effect size and statistically 

significance to the MGES subtype by genomic and molecular genetic 

association. These include the single-gene focal amplifications of the C/EBP" 

locus on chromosome 8, in 31 of 144 (22%) MGES samples vs. 1 of 51 non-

MGES (p ! 2.1E-5), and the deletion of the KLHL9 locus on chromosome 9, in 55 

of 144 (38%) MGES samples vs. 3 of 51 non-MGES (p ! 8.14e-7). Of the 144 

MGES samples, 17 (12%) presented genetic alterations at both loci (synopsis in 
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Figure 1b). Overall, this resulted in highly differential distributions, with significant 

independent p-values for C/EBP"amp/KLHL9WT (p ! 9.9E-3) and KLHL9-

/C/EBP"WT (p ). Overall, 69 of 144 MGES samples (48%) presented at least one 

of the two genetic alterations vs. only 4 of 51 non-MGES samples (p ! 1.15e-9). 

This result was based on a highly conservative threshold, normally used for 

genome-wide CNV inference, suggesting that these alterations may be even 

more frequent. 

 

One additional test was implemented to ensure that KLHL9 and C/EBP" were 

the most likely drivers among the mutations that they co-occur with in patients. In 

particular, KLHL9 is located in a frequently deleted chromosomal region that 

includes CDKN2A (p16), one of the most frequently deleted tumor suppressors in 

GBM. It is thus legitimate to ask whether the identification of KLHL9 as an 

association with the MGES subtype may be an artifact due to its proximity to 

CDKN2A. To address this issue, all mutations that statistically tended to co-occur 

with these two mutations in patients (obtained from Figure 1a, shown in Figure 

2a) were tested for association to the MES subtype given the absence of another 

co-occurring gene. This procedure is explained in greater detail in the Methods 

section: Testing for candidate f-CNVGs among co-mutated clusters. Figures 2b 

and 2c synopse the results of the analysis. This analysis revealed that, of all the 

tested f-CNVGs, only those for C/EBP" and KLHL9 could abrogate the MGES 

association of every other cluster f-CNVGs, while still showing significant 

conditional association across virtually all tests. Indeed, no other f-CNVG was 
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statistically significant after conditioning the analysis on these two alterations. 

These results suggested that the two genetic alterations were the most likely 

causal ones among those considered in the analysis. We conclude from this that 

the mutations of KLHL9 and C/EBP" are in fact the most likely drivers of the 

MES phenotype based on a consensus of genetic, genomic, and associative 

analysis. 

 

This analysis was also conducted on genes selected by chromosomal proximity 

to the C/EBP" and KLHL9 loci. Supplementary Figure 8 shows that statistical 

association of the KLHL9 deletion to the MGES subtype is substantially 

increased when only CDKN2A deleted samples are considered (Supplementary 

Figure 8b, blue line), while the statistical association of CDKN2A deletions with 

the MGES subtype is completely abrogated when conditioned on the absence of 

KLHL9 deletions (Supplementary Figure 8b, red line). This suggests that KLHL9 

deletions rather than CDKN2A deletions account for the association of this 

genomic region with the MGES.  

 

Interestingly, deletions and mutations of the NF1 gene were also associated with 

MGES samples. However, these events tended to co-occur with C/EBP" 

amplification and were not statistically significant following conditional association 

analysis. Since NF1 was inferred by MINDy as a STAT3 modulator and since 

activation of both C/EBP and STAT3 is necessary for reprogramming along the 

mesenchymal lineage, this suggests that these two events may cooperate, i.e. 
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that MGES samples harboring the C/EBP" amplification may also harbor STAT3 

activating alterations, including NF1 deletions and mutations7.  

 

Using a stringent threshold for their identification, C/EBP"+ and KLHL9- 

alterations account for 48% of the MGES samples in the TCGA dataset, with 

deletions/mutations at the NF1 locus covering an additional 8% independently of 

C/EBP" amplifications or KLHL9 deletions7, suggesting that these may constitute 

the most common alterations associated with the MGES subtype of GBM, 

especially since many mutated samples may be missed duet to the conservative 

threshold selection to minimize false positives.  

 

Alterations of C/EBP" and KLHL9 predict poor prognosis independently of 

molecular classification 

Since alterations of C/EBP" and KLHL9 were both associated to and predicted to 

regulate the mesenchymal signature, the molecular predictor of poor prognosis 

GBM, we tested whether or not these mutations are sufficient to predict poor 

prognosis. We obtained an independent set of genomic DNA from 63 primary 

GBM tumor samples provided by Ken Aldape and assayed them for deletions of 

KLHL9. We used Kaplan-Meier statistics on the original TCGA dataset to test 

whether alterations in C/EBP" and KLHL9 were also good predictors of poor 

patient prognosis, independently of prior molecular classification, as originally 

observed. The Kaplan-Meier survival curve of samples with mutations in either of 

these loci differed significantly from the survival curve of “good” prognosis GBM 
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patients (Figure 3a, p ! 3.46e-4). Additionally it was statistically significantly 

distinct from a cohort of all samples that are diploid at these two loci, regardless 

of molecular- or prognosis-based classification (Figure 3a, p ! 0.0319).  

 

The C/EBP" gene codes for one of the master regulators that induce direct 

activation of MGES genes1. Thus the mechanistic relevance of its amplification in 

mesenchymal samples is obvious. Conversely, the mechanism by which deletion 

of KLHL9 drives expression of mesenchymal genes in glioma is unknown. Thus, 

we set out to determine the functional significance of KLHL9 deletions for 

mesenchymal transformation of HGG. 

 

KLHL9 deletions are enriched in an independent cohort of poor prognosis 

patients and predict elevated CEBP protein levels 

We asked whether KLHL9 deletions might be frequently found in an independent 

cohort of poor-prognosis glioma samples, compared to good prognosis ones. We 

analyzed the status of the KLHL9 genomic locus by quantitative genomic PCR 

(qgPCR) from a set of 63 formalin-fixed, paraffin-embedded (FFPE) primary 

glioma samples collected at the MD Anderson Cancer Center from two separate 

cohorts. These included 10 poor-prognosis (<35 weeks survival) and 9 good-

prognosis (>130 weeks survival) samples. The other primary samples were 

samples obtained from the TCGA that were not part of our original analytical set, 

also classified into good and poor prognosis. qgPCR analysis revealed a 

significantly higher frequency of KLHL9 homozygous deletions in poor-prognosis 
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samples (21/40) compared to good prognosis samples (4/23) (Figure 3a, b), 

resulting in a very significant p-value (p < 5.6e-3 by FET), see Figure 3b. This 

suggests that KLHL9 may be frequently deleted (>50%) in poor prognosis 

samples, above the frequency determined by a stringent cutoff in TCGA CNV 

data analysis (38%). Genomic DNA sequencing of the samples lacking deletion 

of KLHL9 failed to reveal the presence of mutations in the coding sequence of 

KLHL9. 

 

Concurrently, we performed IHC assays to check the protein levels of the master 

regulators CEBP" and C/EBP#. We observed that, as shown before, MES GBM 

tumors are characterized by unique expression of these two proteins. We were 

subsequently able to show that KLHL9 deletions strongly predict the presence of 

mesenchymal levels of CEBP" and C/EBP# (odds ratio 12.25, p=0.0283) on a 

cohort of 20 primary samples tested, shown in Figure 3d. 

 

Re-expression of KLHL9 in KLHL9-/-; CDKN2A-/- human glioma depletes C/EBP! 

and C/EBP" proteins. 

To assess whether KLHL9 deletions activate the function of the previously 

validated MRs of the MGES subtype (C/EBP!, C/EBP", and STAT3), we asked 

whether restoring the expression of KLHL9 in cells carrying homozygous deletion 

of the endogenous KLHL9 gene may affect expression of their mRNAs and/or 

proteins. From the genomic analysis of KLHL9, CDKN2A, C/EBP" and EGFR 

genes in eight human glioma cell lines we found that the SF210 cell line harbors 
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homozygous deletion of both KLHL9 and CDKN2A whereas all the glioma cell 

lines were diploid at the C/EBP" locus (Supplemental Figure 4). Thus, the SF210 

line provides an ideal cellular system to investigate the functional consequences 

of KLHL9 restoration in KLHL9 and CDKN2A double-deleted glioma. 

 

We used a lentiviral vector to transduce SF210 with a doxycycline inducible full-

length KLHL9 gene. We selected two SF210 stable clones showing (DOX)-

induced expression of KLHL9 mRNA 48 hours after induction this effect was 

sustained for at least 96 hours (Figures 4a). Consistently, KLHL9 protein levels 

were stably detected by western blot, up to 96 hours post induction (Figure 4c). 

An inducible GFP clone was also validated and used as a control in all 

subsequent experiments. 

 

RNAseq experiments on these cells revealed that 48 hours of restored KLHL9 

expression coincided with a significant shift in expression of CEBP-predicted 

transcriptional targets (Figure 4b) compared to GFP mock transfected cells. 

Furthermore, the mesenchymal marker genes predicted to be regulated by either 

CEBP shifted to suppressed expression, despite no significant changes in the 

expression levels of either C/EBP! and C/EBP" (inset 4b), including genes such 

as YKL40 and FN1.  

 

While their mRNA levels remained unchanged, KLHL9 expression coincided with 

markedly decreased protein levels of master regulators C/EBP! and C/EBP" but 
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not of STAT3 (Figure 4c). Additionally, ectopic KLHL9 expression triggered 

similar down-regulation of the positive control AuroraB protein, which is known to 

be destabilized and degraded by a KLHL9-containing, cullin3-based E3 ubiquitin 

ligase complex12,13. No equivalent protein changes were detected when the GFP 

control SF210 cells were treated with DOX. Taken together, these results 

indicate that re-expression of KLHL9 induces the suppression of MGES marker 

genes via the loss of the two MGES master regulators C/EBP! and C/EBP" at 

the protein level. 

 

Furthermore, the suppression of C/EBP!/" protein levels was observed in a 

CDKN2A null background, thus confirming that CDKN2A deletion in isolation is 

not sufficient to maintain high protein expression of the master regulators. This 

suggests that deletion of KLHL9 is sufficient to activate the two previously 

validated master regulators of the MGES, thus significantly contributing to the 

induction of mesenchymal transformation in GBM, independently of CDKN2A 

expression. 

 

KLHL9 promotes poly-ubiquitylation and proteasomal-mediated degradation of 

C/EBP! and C/EBP"  

Given that KLHL9 is an adaptor of cullin 3-based E3 ligases13, and the 

observation that C/EBP!/" proteins decrease without change in their mRNA 

levels following KLHL9 expression, we tested whether ectopic expression of 

KLHL9 in glioma cells may trigger ubiquitylation-dependent, proteasome-
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mediated degradation of C/EBP TFs. To test this hypothesis, we measured the 

half-life of C/EBP! and C/EBP" proteins in the presence or absence of KLHL9 in 

SF210 cells treated with the proteasome inhibitor MG-132 versus controls. The 

proteins’ half-life was measured while protein synthesis had been abrogated by 

the translational inhibitor cyclohexamide (CHX). These experiments revealed that 

the half-life of C/EBP!/" was markedly reduced from >4 hours in control SF210 

cells, lacking KLHL9 (GFP-expressing clones in the presence of DOX and 

KLHL9-inducible clones in the absence of DOX), to  ~1-2 hours in the SF210 

cells in which KLHL9 had been restored by treatment with DOX. Inhibition of the 

proteasome by MG-132 restored accumulation of the C/EBP proteins in the 

presence of KLHL9 (Figure 5a). The results indicate that re-expression of KLHL9 

in glioma cells triggers proteasome-mediated degradation of the C/EBP TFs. 

Furthermore, an interaction was detected between the CEBP proteins and the 

KLHL9 protein, as assayed by a co-immunoprecipitation using KLHL9 to pull 

down the CEBPs (Figure 5b). 

 

To test whether proteasome-mediated degradation of C/EBP!/" proteins by 

KLHL9 was also ubiquitylation-dependent, we prepared cell lysates in the 

presence of MG-132, with and without KLHL9 expression, and tested for 

ubiquitylation of immunoprecipitated C/EBP! and C/EBP" by western blot. 

Following expression of KLHL9 and proteasomal inhibition, poly-ubiquitylated 

C/EBP! and C/EBP" were significantly increased in comparison to uninduced 
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controls, see Figure 5c, thus confirming that KLHL9 promotes both poly-

ubiquitylation and proteasome-dependent degradation of C/EBP TFs.  

 

Rescuing with a mutant KLHL9 protein suppresses ubiquitylation of CEBPs 

Finally we cloned a KLHL9 protein bearing a 70 aa deletion in the N-terminal end 

of the protein corresponding to the cullin-interacting BTB domain of the protein 

(Figure 6a). This domain is responsible for bringing the ligase/target complex to 

the cullin scaffold, which also brings in an E2 adaptor bearing ubiquitin, 

mediating the transfer of the ubiquitin to the target. Upon exogenous rescue with 

this mutant construct, we successfully abrogated both the detection of 

ubiquitylated CEBP species upon immunoprecipitation (Figure 6b) to levels that 

match a GFP-transfected, KLHL9 null molecular behavior, as well as the 

suppression of CEBP proteins 48 hours post expression (Figure 6c).  

 

KLHL9 expression suppresses the proliferation of glioma cells 

Expression of C/EBP TFs and presentation of a mesenchymal phenotype are 

hallmarks of aggressiveness in HGG. We thus assayed the effects of KLHL9 

expression on cellular growth over 96 hours in the DOX-dependent, KLHL9-

expressing SF210 clones.  

 

Immunofluorescence microscopy, following KLHL9 induction, revealed the 

emergence of large, extensively spread cells with enlarged nuclei that failed to 

incorporate EdU (red signal), compared to uninduced controls (Figure 7a), 
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suggesting that KLHL9 expression may suppress mesenchymal glioma cell 

proliferation. These large cells appeared only upon induction of KLHL9 and 

accounted for 38% of the cell population. Less than 5% of these large cells had 

any detectable EdU signal, compared to 70% incorporation frequency observed 

in the GFP control cells. To further quantify this effect, we measured BrdU 

incorporation via flow cytometry. Cells expressing KLHL9 for 48 hours (Figure 7b, 

red series) showed a significant reduction in BrdU incorporation relative to 

uninduced controls (Figure 7b, black series) following a 24-hour BrdU pulse, 

based on integrations of the area under the BrdU-positive and -negative peaks. 

To corroborate this observation, we also measured cell growth by normalized cell 

counts of DOX-induced clones versus DOX induced GFP clones and uninduced 

controls over a 96-hour timecourse. DOX treatment of GFP controls did not 

significantly alter the growth of the cells, whereas expression of KLHL9 

correlated with a significant decrease in cell growth that was detectable at 72 

hours post-induction, and was maintained through at least 96 hours (Figure 7c). 

 

DISCUSSION 

Analysis of large CNV and mutation datasets is providing an extraordinary 

window over the genetic events that underlie tumorigenesis and tumor 

progression. Unfortunately, the number of genetic alterations that are statistically 

associated with most solid tumors tends to be very high, due also to recurrent 

large-scale genomic rearrangements. As a result, an increasing challenge of 

cancer research is to be able to separate driver mutations from passenger ones. 
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Equally importantly, extensive knowledge on established oncogenes and tumor 

suppressors usually hampers elucidation of genes located in their chromosomal 

proximity as viable candidate driver mutations. For instance, even though we 

showed that KLHL9 is frequently mutated in the MGES subtype of glioblastoma, 

its proximity to CDKN2A prevented it (as well as many other genes in that region) 

from being previously considered as independent contributions to the subtype 

etiology.  

 

In contrast, regulatory network based analysis established KLHL9 as an ideal 

candidate for functional validation, independent of its proximity to CDKN2A, 

because of its computationally inferred role as a strong modulator of MGES MR 

activity. Not only could we elucidate the specific mechanism by which KLHL9 

modulates turnover of C/EBP TFs, by poly-ubiquitylation dependent proteasomal 

degradation, but analysis of an independent cohort of poor versus good 

prognosis GBM patients revealed this gene as even more frequently deleted than 

originally suspected from TCGA data analysis (>70% versus 38%). This suggests 

that current thresholds for mutational analysis may be over-conservative, likely to 

minimize false positives detection in genome-wide studies, and that more 

realistic threshold could be used if the number of candidate genes could be 

reduced via regulatory network based approaches, as shown in this study.  

 

Recently, integration of regulatory network based approaches with GWAS data 

has been successful in identifying a handful of phenotype-relevant genetic 
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alterations14. However, this analysis has always proceeded in a genome wide 

fashion, thus requiring highly conservative thresholds for evaluation of statistical 

significance.  In this manuscript, we presented and validated the “bottleneck 

hypothesis,” i.e., that some cancers are characterized by functional bottlenecks, 

implemented by master regulator TFs, which integrate aberrant signals 

originating from a spectrum of genetic and epigenetic alterations in their 

upstream regulators. Under such assumption, analysis of genetic alterations in 

the master regulators and in their upstream regulators can elucidate key genetic 

alterations that would have otherwise been missed.  Interestingly, master 

regulator bottlenecks may fail to harbor genetic alterations, making their 

identification difficult by conventional mutational analysis approaches. For 

instance, using gene candidate approaches, we have previously elucidated Nf-$B 

as a master integrator of aberrant events in its upstream pathways within the 

ABC subtype of Diffuse Large B Cell Lymphoma even though it is never itself 

mutated15. Similarly, of the three MGES master regulators in GBM, only C/EBP" 

was significantly amplified. Thus, despite their critical functional role, none of 

these key genes could have been identified by traditional mutational or copy 

number variation analysis.  

 

A first corollary of the bottleneck hypothesis is that regulatory network based 

analysis of genes that are upstream functional regulators or modulators of master 

regulators of a tumor subtype may be much more effective in providing 

candidates driver mutations than unconstrained GWAS. Importantly, as shown, 
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the collapse in the number of candidate mutations made possible by regulatory 

network analysis allows efficient use conditional association methods to separate 

driver from passenger mutations. This approach would be completely implausible 

if it had to be performed on all mutations that are statistically associated with a 

phenotype of interest.  

 

A second corollary of the bottleneck hypothesis, especially when combined with 

the results of 1, is that individual genetic events, such as C/EBP" amplifications 

or KLHL9 deletions, may be too rare or unlikely to provide appropriate targets for 

pharmacological intervention. Conversely, by integrating an entire spectrum of 

aberrant signals from upstream genetic alterations, functional bottlenecks 

implemented by master regulators may constitute more universal biomarkers and 

pharmacological targets (i.e., universal oncogene or non-oncogene addition 

points of the cancer subtype) because of their ability to integrate the effect of 

many low-frequency mutations.  

 

A final corollary is that the bottleneck hypothesis may help identify key genetic 

alterations that are either not focal or are harbored by genes located in close 

chromosomal proximity to well-established oncogenes and tumor suppressors. In 

the past, the approach has been to simply ignore such genes to reduce false 

positives. Yet, there is no functional reason why genes within large, frequently 

deleted or amplified regions or in close proximity to established oncogenes 

should be less likely to be drivers of the phenotype. Indeed, regulatory network 
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based analysis was successful in identifying the role of KLHL9 deletions, which 

are both non-focal and in close proximity to CDKN2A, one of the most frequently 

deleted genes in GBM. 

 

KLHL9 deletions in HGG result in mesenchymal transformation because of 

aberrant stabilization of the master regulator C\EBP TFs. At least two other 

genes coding for E3 ubiquitin ligases undergo loss-of-function genetic alterations 

in HGG. The first gene codes for Fbw7, an F-box protein of the SCF complex that 

is mutated in several forms of human cancer including HGG16. Fbw7 mutations 

stabilize the oncoprotein substrates cyclin E, Myc and Notch17. The second gene 

coding for an E3 ligase, which can be deleted in HGG, is Huwe1, a Hect-domain 

ubiquitin ligase that normally triggers initiation of differentiation and loss of self-

renewal in the developing brain by targeting the N-Myc oncoprotein for ubiquitin-

mediated degradation by the proteasome18. Our findings indicate that loss-of-

function events targeting E3 ubiquitin ligases in human cancer not only promote 

aberrant stabilization of classical oncoproteins thus contributing to cancer 

development but they can also trigger accumulation of key TFs responsible for 

specific tumor signatures and aggressive phenotypes.  

 

Clearly, the ability to identify both cancer bottlenecks and their candidate 

upstream functional regulators depends critically on the availability of accurate 

and comprehensive repertoires of cell-context specific molecular interactions 

(interactomes). While the assembly of integrated transcriptional, post-
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transcriptional, and post-translational interactomes is still in its infancy, the 

genome-wide integration of experimental and computational approaches appears 

to be providing increasingly descriptive and biologically relevant models, 

suggesting that network based biology may be an increasingly valuable tool in 

our repertoire of approaches to elucidate the mechanism of key physiological and 

disease related processes.   
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METHODS 

TCGA data processing 

Somatic copy number variation (Agilent) and gene expression data for 229 TCGA 

tumor samples were downloaded from the TCGA Data Portal. Clinical data for a 

subset of these patients was also acquired from the Data Portal. The gene 

expression arrays were GCRMA-normalized, and the copy number variation log 

ratios were extracted from the CNV array data.  

 

Agilent CGH arrays were used instead of the also available Affymetrix SNP array 

data because probe coverage of key loci was sparse in the latter; For instance, 

the C/EBP" locus had no probes within the coding region of the gene, and 

associations that were detected in the CGH arrays were not detectable in the 

Affymetrix data without using more sophisticated, sliding-window integration 

methods across probes in the region (Supplemental Figure 5). Additionally, 

overall stronger CNV – gene-expression dependencies were detected using the 

Agilent CGH array data. For instance, Affymetrix probes proximal to the C/EBP" 

locus showed no correlation with C/EBP" expression, without sliding window 

integration, and were overall less correlated than those reported by CGH arrays 

(Supplemental Figure 6). 

 

Inference of Functional CNV Genes (f-CNVG) 

f-CNVGs were identified by integrating gene expression and copy number 

variation using a statistical test based on the Mutual Information (MI), 
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! 

IF = I[CNVi;mRNAi] To allow identification of low-frequency genetic alterations, 

genes lacking significant MI between their CNV and their expression were also 

tested for differential expression conditional on copy number changes, using a by 

T-test for all alterations with >1 prevalence and a Z-test for single-occurrence 

mutations. 

 

The dependency between CNV at a locus x and a gene y at the same locus was 

measured based on the pair-wise mutual information between the vector of gene 

expression values of y across all samples, and the vector of CNV log ratios of x 

across the same samples: MI[x;y]="x"ylog(p(xy) / p(x)p(y)), using a Gaussian 

kernel estimator. Values of MI[x;y] that were statistically significant at a p-value 

p < 0.05, Bonferroni corrected for the total number of tested pairs, were used to 

identify candidate f-CNVGs. The statistical threshold for MI significance was 

determined from a null distribution built by computing the MI between 10,000 

randomly paired CNV and gene expression vectors (Supplemental Figure 3). 

 

This approach offers two advantages. First, it can detect statistical dependencies 

originating from non-linear relationships between the two vectors that may be 

missed by other measures of statistical independence, such as Pearson 

correlation. It also removes the need for three independent statistical significance 

tests per gene: one to detect significant gene differential expression, one to 

detect a significant CNV, and one to assess significant correlation between the 

two. This allows for increased statistical power (Supplemental Figure 2c). 
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f-CNVG clustering 

All f-CNVGs identified by the previous test were then clustered based on same-

sample co-segregation. This was done using Fisher’s Exact Test on the number 

of overlapping samples presenting the alteration, at a p < 0.05 statistical 

significance threshold, Bonferroni corrected for the number of multiple tests. All f-

CNVG pairs that showed significant correlation are connected by an edge in 

Figure 1b. Clusters of co-mutated f-CNVGs were identified by higher association 

scores between genes in the cluster than between those genes and genes 

outside of the cluster; genes that had a much higher probability of being co-

mutated clustered together when using the association p-value as a metric. 

 

For each inferred cluster of co-segregating f-CNVGs, we computed the mutual 

information between the corresponding f-CNVGs and the activity of each of the 

mesenchymal master regulators, C/EBP!/", STAT3, FOSL2, BHLHB2, and 

RUNX1 originally identified as MRs of the MGES signature. The mutual 

information was computed and tested as discussed for the CNV – gene-

expression case, using testing for statistical enrichment of each MR’s targets, as 

identified from the ARACNe-inferred transcriptional networks19,20 rather than 

gene expression (Supplemental Figure 2a).  
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Network-Based Association Study: Testing for f-CNVG association by recursion 

Following classification of the TCGA GBM tumors into poor- and good-prognosis, 

the candidate mutations identified previously enriched in differential expression of 

the MES genes were tested for association to the MGES and poor-prognosis 

phenotype recursively. Across all available samples, each f-CNVG was tested for 

association to the MES subtype. The f-CNVG with the highest association across 

all comparisons was identified, and all patient samples bearing that f-CNVG were 

removed from the dataset. This association analysis was then repeated to 

identify the next highest-association f-CNVG until no additional significant 

associations could be identified.  

 

Network-Based Association Study: Testing for candidate f-CNVGs among co-

mutated clusters 

 

Once a candidate f-CNVG for the MES subtype was identified, it was subjected 

to an additional analysis to account for the possibility that its association is an 

artifact of another mutation that co-occurs with it in patients. In order to test this 

an analysis was designed under the following hypothesis: among all co-mutated 

genes, only the true, causal mutation will remain associated to the molecular 

subtype across various genetic backgrounds. Therefore, all of the mutations that 

were found to statistically co-occur with a candidate driver (obtained from the 

association map in Figure 1A) were conditionally tested for association to the 

MES subtype, given that another gene in the co-mutated cluster was not 
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mutated. This pair-wise analysis was performed for every pairing of genes in the 

co-mutated cluster, searching for a mutation that, when removed from the 

background, caused the association of all other genes in the cluster to become 

insignificant. 

 

Classification of TCGA GBM tumors 

TCGA tumor samples were reclassified into poor-prognosis and good-prognosis 

phenotypes based on the activity of master regulators originally reported as 

drivers of the most aggressive subtypes of GBM: the C/EBP!/", STAT3, FOSL2, 

BHLHB2, and RUNX1 (Supplemental Figure 1a). Molecular classification by the 

activity of these genes via a centroid-based, nearest-neighbor classifier produced 

two groups separable by prognosis at a statistically significant level 

(Supplemental Figure 1b), and served as the basis for subsequent associative 

analyses. Clustering TCGA tumor samples by prognosis and testing for 

differential activity of both MGES master regulators and signature genes 

recapitulates the finding that these genes are accurate predictors of poor 

prognosis. See figure 1b). 

 

Genomic KLHL9 copy number characterization in an independent HGG cohort  

Genomic DNA was extracted from ten poor-prognosis (post-diagnosis survival 

<35 weeks) and nine better-prognosis (>135 weeks) paraffin-embedded HGG 

obtained from the MD Anderson Cancer Center and tested for copy number 

changes of relevant genes by quantitative genomic qPCR. The copy-number 
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status of the KLHL9 gene was analyzed by quantitative amplification of two 200-

bp amplicons, at the 5’ and 3’ ends of the KLHL9 coding sequence respectively, 

according to the methods discussed in the qRT-PCR Methods section. The entire 

coding sequence of the KLHL9 locus was also sequenced to scan for possible 

mutations from samples that showed successful amplification. 

 

Plasmid constructs 

Bacterial cultures were grown on agar plates with appropriate selection at 28C. 

Transformations into DH5% cells (Invitrogen) were performed using the 

recommended protocol.  

 

The coding region of the KLHL9 locus was amplified from genomic DNA obtained 

from 293T cells using the following primers: KLHL9-BsshII-F (5’-

GGCAGCGCGCatgaaagtgcccttggtaacg-3’) and KLHL9-XhoI-R (5’-

GCGCTCGAGctaagaatgatctgaaggtgctga-3’) with the AccuPrime TAQ system 

(Invitrogen). This PCR product was digested with BssHII and XhoI and ligated 

into the pEN_TTmcs inducible expression vector with the Rapid DNA Ligation Kit 

(Roche) according to the kit’s protocol.  

 

After sequencing for mutations, the KLHL9 locus insert was introduced to the 

lentiviral packaging vector pSLIK via Gateway cloning (Invitrogen). A GFP-

pEN_TTmcs was also cloned to a pSLIK vector and included as a negative 

control for all subsequent cell culture work.  
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Cell lines/Cell culture 

SF210 and 239T-FT cells were grown in DMEM +10%Fetal Bovine Serum 

(Gibco,BRL), incubated at 37C with 5% CO2.  

 

Stable, inducible KLHL9 and GFP-SF210 cells were generated by transfecting 

the appropriate pSLIK vectors and supplementing plasmids into 239T-FT cells 

with JetPEI Transfection Reagent (Polypus Transfection). 24 hours post-

transfection, the virus-bearing medium was aspirated off, vacuum-filtered, and 

placed over pre-confluent SF210 cells. After 48 hours of infection, SF210 cells 

were placed under G418 selection at 1 mg/ml for 7 days.  

 

KLHL9-infected SF210 cells were then cloned via dilution limit to obtain 

monoclonal cell populations. GFP-control transfected cells were left as a 

polyclonal population. Cells were then checked for KLHL9 or GFP expression by 

induction with 2ug/ml doxycycline (Sigma) for 24 hours. GFP production in GFP 

controls was verified by fluorescent microscopy, and KLHL9 expression was 

verified by qRT-PCR at 24 hours, and Western Blotting at 72 hours. Isolated 

clones were maintained with 200ug/ml G418 while growing for subsequent 

experiments. 
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qRT-PCR 

Total RNA was prepared from cells using the Cells-to-cDNA kit (Ambion), and 

reverse-transcribed to cDNA via first-strand cDNA synthesis using the qScript 

cDNA kit (Quanta Biosciences) according to manufacturer protocols. Real-time 

PCR was performed using SYBR Green PCR Master Mix (Applied Biosystems). 

DNA samples were run in biological triplicates and technical duplicates. 

Comparative fold changes were computed using the ##CT method normalized to 

internal controls of GAPDH expression. 

 

RNAseq experiments 

Total RNA from six samples (3 each of KLHL9-rescued and mock-rescued) were 

prepared via TriZOL precipitation and purified using Qiagen RNeasy columns. 

Samples were tested for integrity via Bioanalyzer and submitted to the Columbia 

Sequencing center. 

 

Differential analysis was performed using a t-test. These p-values were used as 

the ranking for a subsequent gene set enrichment analysis (GSEA) to ascertain 

whether specific biomarker sets were differentially expressed when KLHL9 was 

rescued or not. 

 

Western Blotting 

Cell lysates were prepared from SF210-KLHL9 and SF210-GFP cells after 72 

hours of either doxycycline treatment or control medium by lysing them in RIPA 
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buffer (Sigma Aldrich) with Complete MINI EDTA-free protease inhibitors 

(Roche). Lysates were quantified using the BCA Protein Assay (Pierce) following 

manufacturer protocol. 

 

The antibodies were used at 1:500 (KLHL9), 1:10,000 (B-actin), 1:1000 (C/EBP!, 

C/EBP", STAT3, Ubiquitin), 1:10,000 (AURKB, goat-anti-mouse), and 1:20,000 

(goat-anti-rabbit). Blocking and antibody incubations were done in SuperBlock 

T20 TBS Blocking Buffer (ThermoScientific). All antibodies were obtained from 

Santa Cruz. 

 

Protein half-life time courses 

KLHL9-4 (SF210 cells transfected with KLHL9) and GFP control (SF210 

transfected with GFP) cells were grown to pre-confluence in 10cm plates. Plates 

were then split into 6-well plates in DMEM-10%FBS with 2ug/ml doxycycline and 

left for 24 hours. 30 minutes prior to the start of cyclohexamide treatment, one 

KLHL9-4 series was treated with 10uM MG-132 while the others were treated 

with DMSO (the MG-132 solution used was dissolved in DMSO). After 30 

minutes, all cells were treated with a DMEM-10%FBS cocktail of doxycycline 

(2ug/ml) and cyclohexamide (20uM), and additionally with MG-132 (10uM) where 

appropriate. 

 

At the end of the time course, cells were washed with ice-cold PBS and scraped 

from the plates, and lysed in RIPA buffer with protease inhibitors. Lysates were 
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quantified using the BCA Protein Assay Kit (Thermo Scientific), and separated by 

SDS-PAGE and immunoblotted as previously described. 

 

Densiometric analysis was done using the ImageJ software suite. 

 

Immunoprecipitation 

Whole lysates were prepared in either RIPA buffer (ubiquitin IP experiments) or 

Cell Lysis Buffer from Cell Signaling (Co-IP) from KLHL9-induced and -

uninduced clones subjected to 24 hours of doxycycline (2ug/ml) treatment. IPs 

for ubiquitylated protein species were additionally treated with the proteasome 

inhibitor MG-132 for 4 hours after doxycycline treatment (10uM). C/EBP!/" 

proteins were immunoprecipitated using antibodies from Santa Cruz and the 

DynaBeads G Immunoprecipitation kit (Invitrogen) following manufacturer 

protocols. Eluted C/EBP!/" proteins were separated by SDS-PAGE and 

transferred to nitrocellulose membranes according to standard Western blotting 

protocols and probed for ubiquitin, and C/EBP!/" (Santa Cruz). 

 

Generating KLHL9 mutants  

The deletion of the BTB domain in KLHL9 was generated using PCR fusion. 

Primers were designed for the 5’ and 3’ so to generate a full length KLHL9. 

These primers were then paired with 50-bp primers that were designed to be 

homologous to the 25 base pairs immediately before and after the BTB domain. 

After amplifying two separate DNA products corresponding to the KLHL9 
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fragments before and after the BTB domain, bearing 25-bp homologous ends, 

these two products were combined into a third PCR amplification reaction with 

the original full-length product primers. This final PCR reaction fuses the two 

fragments together, producing in frame KLHL9 DNA without the BTB domain. 

 

This construct was then cloned into the expression vector pLCPX for 

transfection, alongside clones containing the wild type KLHL9 and the empty 

pLCPX parent vector for controls. 

 

Cell growth time courses 

For an initial time point, and each desired time point, a 6-well plate was prepared 

by seeding ~500 SF210-KLHL9 or SF210-GFP cells into the wells. Induced wells 

were plated with 100ul of DMEM 10% FBS and a final concentration of 2ug/ml 

doxycycline, while the remaining three received 100ul DMEM 10% FBS. Cell 

counts for seeding were determined using a Countess automated cell counter 

(Invitrogen). Cells were seeded in biological triplicates. 

 

At each time point, cell growth per well was quantified by counting the cells on 

the plate using the Countess cell counter. Growth curves were built by 

normalizing cell counts at each time point to the counts obtained from the 

appropriate initial time point. 
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BrdU Flow Cytometry 

SF210; KLHL9-4 clones were grown for 96 hours with or without induction via 

doxycycline according to the methods already provided. After 96 hours, BrdU 

(Calbiochem) was introduced to the cells at a 1:2000 concentration for 24 hours 

as instructed by manufacturer protocols. 

 

The following day the cells were fixed in BD Cytofix/Cytoperm reagent (BD 

Biosciences) and stained with fluorescent anti-BrdU (BD biosciences) according 

to the manufacturer’s protocols. These cells were then analyzed via flow 

cytometry (20,000 cells per treatment recorded) and analyzed with the FlowJo 

software suite. The upper/lower limit for left/right peak intervals was defined 

using the negative control distribution; all events exceeding the 99th percentile 

BrdU measure in the negative control distribution were considered BrdU-positive, 

and the remainder BrdU negative (demarcated by the dotted line). The integrals 

for these peaks were computed and displayed as [left peak : right peak] 

percentage ratios. 

 

EdU Immunofluorescent Microscopy 

Visualization of EdU incorporation was performed using the Click-It EdU HCS 

Assay Kit (Alexa 647) from Invitrogen. Cells were seeded at 500, 1000, 2000, 

and 4000 cells per well in a 96-well plate, in biological triplicates for each 

treatment (induced and uninduced). Cells were left to grow for 72 hours. After 72 

hours, all subsequently exposed to EdU at a 1:2000 concentration for 24 hours. 
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Cells were then fixed in 4% paraformaldehyde, and both staining and 

visualization were then carried out according to manufacturer protocols. 

 

Raw grayscale images generated by the microscopy analysis were then colored 

and composites were created using the ImageJ software suite. All image 

processing was conducted simultaneously on paired experiment-controls. 
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CHAPTER 5a – Supplemental Information to Manuscript / Work in Progress 
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During the review process for our manuscript, I continued to work on improving 

the biological validations of the KLHL9 master regulator. I received a fresh 

selection of huGBM cell lines from the University of California, San Francisco 

after they performed quality control experiments to ensure that the aliquots 

matched data generated when they were first isolated. Of the panel of five 

aliquots was one vial of low-passage SF210, and an additional cell line that was 

validated as bearing a homozygous co-deletion of KLHL9 and p16: SF763. 

Verification was conducted using the same genomic qPCR methods described 

previously, with results shown in [Figure 5a.1]. These validated aliquots were 

selected to allay issues that may arise from unknown maintenance and 

accumulated mutations that may 

have occurred in the original 

aliquots we received and worked 

with. The KLHL9 gene was 

additionally cloned into the 

lentiviral expression vector pLOC 

and validated by sequencing to 

provide an independent vector with 

a more active constitutive promoter 

for validation. 

 

 

 

Two validated cell lines obtained from UCSF were 
verified as bearing homozygous deletions for KLHL9 
and CDKN2a (p16): SF210 and SF763 
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These cells were subsequently amplified and used for repeat validation 

experiments in the rescue of KLHL9. Both cell lines reciprocated the reported 

increased protein turnover of the CEBPB and CEBPD proteins, detectable as 

early as 48-hours post transfection. Transfection of KLHL9 into both SF210 and 

SF763 also revealed a more robust growth phenotype than those we were able 

to obtain from the original SF210 cell line. Transient transfection of the lenti-

KLHL9 construct for 24 hours resulted in almost complete cell growth arrest and 

extensive cell death in both SF210 and SF763 48 hours post-transfection. 

 

 

 

 

 

 

 

 

Exogenous expression of KLHL9 in two new aliquots of human-derived 
GBM cell lines (the original SF210 and a newly verified line SF763) 
provided by UCSF results in the loss of CEBPB and CEBPD proteins 
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Additionally, our collaborator Michael 

Berens provided access to a series of 

huGBM primary tumors that were 

passaged as xenografts in mice. 

These tumors were grown in a much 

more in vivo biological context than 

immortalized cell lines maintained in 

petri dishes without feeder cells, and 

provided an ideal model to address 

reviewer requests of in vivo experiments. 

Through qPCR of both cDNA transcripts 

and genomic DNA, we successfully identified two primary tumor grafts that 

exhibited evidence for a homozygous deletion of KLHL9, designated GBM64 and 

HF2354. 

 

Lentiviral infection of our KLHL9 construct and subsequent selection via 

Blasticidin in these contexts mirrored our observations in cell lines SF210 and 

SF763. Michael Berens’s group reported complete arrest following Blasticidin 

selection of both tumors when KLHL9 was introduced, but not when the RFP 

control vector was stably integrated. This work is currently ongoing and no data 

has been made available at the writing of this thesis. 

 

 

Transient transfection of a constitutive 
KLHL9 for 48 hours in both cell lines, SF210 
and SF763, resulted in a marked decrease in 
cellular prolifleration and increased number 
of dead or dying cells 
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CHAPTER 6 – Discussion of Results both Computational and Biological, 

and DIGGIn functionality  
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The technological advancements in generating human-derived, genome-wide 

panels of quantitative data have provided an extraordinary window into the 

complex genetic events that underlie the development and progression of 

cancers such as GBM. The ability to generate these comprehensive datasets 

across hundreds of patients is rapidly becoming a feasible, efficient means of 

acquiring data for analysis of human diseases, which immediately attaches 

translational relevance to experimental findings. However, the large, systemic 

genomic arrangements associated with cancers such GBM result in thousands of 

detectable genomic mutations or rearrangements, any combination of which 

could contribute to multiple biological and metabolic processes in a highly 

complex disease. An increasing challenge in the field of cancer research vis à vis 

the increase in high-throughput data acquisition is the development of methods 

to extract meaningful information from this sea of data. Furthermore, the already 

extensive knowledge of oncogenes and tumor suppressors has the unfortunate 

corollary of biasing research towards these well-known, well-characterized 

processes. While it has been reliably shown that multiple cancers share the 

same oncogenic pathways, this a priori selection bias inherently selects against 

the discovery of mutations that drive physiological behaviors independent of 

oncogenesis, which may nonetheless be vital to the understanding of the tumor. 

 

Instead, by creating and implementing a regulatory network approach we were 

able to identify two master regulators of the mesenchymal differentiation of GBM, 
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despite the fact that neither of these loci has ever been implicated in GBM 

before. Even further, our approaches were able to detect KLHL9 as a contributor 

specifically to mesenchymal differentiation despite the fact that it is highly linked 

to the most common oncogenic mutation in GBM: deletions of p16. We were able 

to accomplish this by integrating multiple genomic datasets and dynamically 

interrogating them directly for genes that were predicted to regulate the unique 

gene panel identifying mesenchymal GBM. 

 

DIGGIn is capable of highly accurate detection of functional genomic alterations. 

We successfully detected 14/18 bona fide oncogenes and tumor suppressors 

from a list of ~20,000 genomic loci at a statistically significant enrichment of 

p<1.93e-10. The number of genomic loci successfully identified as f-CNVs was 

only ~1500, or about 7.5% of the available loci. This result was surprising in the 

context of a disease with changes in whole chromosome arms, but coincides with 

the hypothesis that very few mutations would meaningfully contribute to the 

behavior of any given biological context. A relatively few number of genes are 

expressed in any tissue at a given time [ref], and genomic mutations affecting loci 

whose transcripts are not expressed should not be considered relevant to the 

disease. This was one of the primary purposes of devising DIGGIn: the 

elimination of gene loci from consideration based on biological evidence that they 

would be unrelated to the disease. This circumvents a prime limitation of 

genome-wide statistical studies: multiple hypothesis testing. Conversely, 
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biological relevance can be directly assigned to any genomic locus that passes 

the DIGGIn’s criteria. 

 

DIGGIn, ARACNe, and MINDy: fully parsing regulatory interactions 

When placed into the greater context of the systems biology methodologies 

developed in the Califano lab, DIGGIn occupies a complementary, but unique, 

niche in the full analytic framework. ARACNe and MINDy are algorithms 

designed to reverse-engineer a complete, comprehensive molecular network of 

transcriptional (ARACNe) and post-translational (MINDy) interactions.  From 

these networks, master regulators and modulators of master regulators can be 

inferred for a phenotype of interest, and this enriched set of genes can be 

subsequently interrogated for mutations. This approach adds an additional filter 

to circumvent the statistical power limitations that have traditionally stymied 

GWAS and other genome-wide analytics. Whereas these other methods must 

correct for multiple hypothesis testing on every gene expressed in the genome, 

or every gene tested for a mutation, ARACNe/MINDy-informed analysis is only 

concerned with a relatively small subset of genes that are computationally 

inferred to directly affect the phenotype being studied. 

 

DIGGIn, on the other hand, is designed specifically to identify genomic mutations 

and assign to them molecular perturbations, which may or may not be placed into 

the context of an interaction network. Rather than reconstructing a genome-wide 

interaction network and identifying master regulators to search for mutations, 
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DIGGIn identifies mutations and checks to see if they are candidate master 

regulators based on their perturbations. As a corollary, transcriptional and activity 

dependencies on candidate master regulators/drivers are made directly by using 

genomic reads rather than transcriptional reads of each candidate regulator. 

These intuitively minor distinctions have two major ramifications for the analysis 

that render DIGGIn unique from ARACNe/MINDy.  

 

First, DIGGIn is designed to identify regulators in the context of genomic 

mutations present in the samples, not molecular regulators of a reconstructed,  

“general” context network. This means that the DIGGIn algorithm is primarily 

designed to identify genomic mutations that modulate the expression of target 

biomarker panels – the primary concern is to identify mutations that induce a 

phenotype measured by a biomaker panel, not to define a comprehensive master 

regulator list.  The mutations will be mutations of master regulators or 

modulators, but again, defining a comprehensive set master regulators is not the 

goal of DIGGIn. DIGGIn can subsequently be informed by ARACNe and MINDy 

network analysis to verify the results, as has been implemented in this thesis. As 

a corollary, although DIGGIn may be unable to comprehensively identify master 

regulators, any mutations in master regulators will be immediately identifiable as 

significant regulators, even if they were undetectable by ARACNe/MINDy and 

have no a priori information that would imply an important role in the phenotype 

being studied. 
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Secondly, as a direct corollary of the first difference, the use of genomic data in 

one dimension of the mutual information analysis drastically alters the underlying 

map of the probability surface used in estimating mutual information. Gold 

standard and validated genomic loci that bear CNVs show excellent correlation 

with gene expression. This shows that genomic CNVs are excellent predictors of 

differential expression, and in these cases will produce similar estimates of 

mutual information regardless of whether genomic or gene expression data is 

used as long as the kernels are properly selected. The difference in 

performance of DIGGIn in these contexts is not an increase or decrease of 

the estimates of MI for a given gene-gene pair, but rather in the ranking of 

the MI estimate. As defined in the DIGGIn chapters, the null distribution of 

mutual information is defined by randomized pairing of genomic and gene 

expression vectors. This is done to generate a simulated set in which genomic 

mutations and genetic expression are entirely independent. When using 

exclusively gene expression data, there is a significant range of background 

noise generated by artificial correlations or indirect effects of expression. It is 

very likely that a significant set of genes that have no common regulator will be 

correlated with each other. This generates a null distribution with a relatively 

significant level of background noise, and can lead to complications with the 

application of DPI, or in the detection of modulating interactions that are real, but 

perhaps not distinguishable statistically from background noise. 
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Conversely, the variance in genomic reads when samples are not mutated is 

extremely low. Any potentially real interaction between a genomic locus and 

gene expression will be immediately and significantly ranked above any genomic 

loci that do not bear mutations at all, simply because the coefficient of variance is 

significantly greater when mutations in the patient cohort exist. This immediately 

removes any possibility of genomic variance clouding real signals. The primary 

concern of DIGGIn then becomes parsing true signals out of LD blocks, which is 

detailed extensively in DIGGIn, part II. 

 

Combined, these two differences allow DIGGIn to detect biologically 

relevant regulators and modulators from genomic data. The gene KLHL9 

was not identified as a master regulator for GBM mesenchymal induction by the 

ARACNe algorithm, nor did was MINDy immediately able to identify it as a post-

translational modulator. Initial analysis with ARACNe yielded no information on 

KLHL9 because KLHL9 is not a transcription factor, and subsequent analysis on 

a subset of signal transduction molecules including KLHL9 failed to identify it as 

a significant master regulator. MINDy, on the other hand, was able to identify 

KLHL9 as a modulator locus only after we explicitly searched for KLHL9 as a 

candidate modulator. Even then, the locus would not have come up as a 

significant modulator of the CEBP master regulators in a blind, genomic analysis 

based, again, on enrichment ranks or p-value. The locus, while statistically 

significant, would not have appeared as a significant candidate modulator among 

the hundreds of modulators that are identified by MINDy. Yet, KLHL9 is clearly 
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an important modulator of the activities of CEBPB and CEBPD, as evidenced by 

my biological experiments with the gene. The deletion is significantly enriched in 

differential expression of the MES marker panel as a whole, and the activities of 

the master regulators CEBPB and D are significantly increased when KLHL9 is 

deleted (as inferred by the enrichment of each of the master regulator’s predicted 

regulons in the KLHL9 genomic-genetic hub). 

 

DIGGIn is able to detect these loci explicitly because its regulatory inferences are 

drawn from genomic-genetic data compared to genetic-genetic data.  

 

Conversely, DIGGIn’s primary weakness is the strength of ARACNe and MINDy. 

DIGGIn cannot detect master regulators or modulators if their respective 

genomic loci do not bear mutations. It is strictly designed to identify the driver 

mutations that both affect master regulators and modulators and exist in the 

samples being studied. What this means is that DIGGIn cannot detect or predict 

interactions between genes contributing to the development of a phenotype that 

do not bear mutations. ARACNe and MINDy interactomes provide interaction 

maps of hundreds of genes. These interactions can be detected across a swath 

of samples regardless of whether or not the genes involved bear mutations. 

These interactions can subsequently be used to explore the full extent and 

breadth of potential interactions for the development of treatments, predicting key 

mutations, and general abstractions of how a given disease is regulated. DIGGIn 

is designed to identify the functional mutations that exist in patients, 
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ARACNe/MINDy is designed to identify all genes that could affect the patients if 

they were to be mutated. 

 

The end result is that DIGGIn provides a valuable complementary perspective to 

ARACNe/MINDy. The use of genomic information as a proxy for one dimension 

of transcriptional information can be used to identify both mutations that directly 

exist in patients that affect a molecular phenotype, and master regulators or 

modulators that are not detectable by ARACNe and MINDy due to technical 

limitations specific to using transcription-only inferences.  

 

Modularity of DIGGIn and Application to Other Models 

As an analytic algorithm, the genetic-genomic analysis was implemented 

specifically with modularity in mind. GBM was selected as a prototype model for 

the development of these approaches primarily because of the availability of 

patient-matched datasets made available by the TCGA. However, these methods 

are applicable to the study of any genetic disease in which stable molecular gene 

expression profiles and accurate regulatory networks can be generated. This 

approach is directly applicable to any biological context in which the following 

criteria are met: The traits being studied are primarily caused by genetic 

contributions, genomic and gene expression arrays are obtainable, and the 

biological context in question exists in a relatively stable, homogeneous 

molecular state. 
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The algorithm is also set up in a framework that allows for the inclusion of 

additional metrics to define copy-neutral genomic alterations and assign to them 

functional molecular changes. Although they have not been implemented, 

analytic modules can be added to the framework to account for genomic and 

epigenetic events such as methylation and point mutations – any genomic event 

that can be detected by experimental methods on a genome-wide scale could 

theoretically be integrated into this analysis. For GBM, these extra metrics were 

deemed unnecessary to the scope of this thesis work because GBM is 

characterized primarily by copy number alterations, and because deep 

sequencing and methylation data was not available in format or in quantifies to 

allow for useful analysis.  

 

The identification of f-CNVs in these contexts are possible with as little as 80-100 

samples, although this presents the bare minimum required to achieve the 

needed statistical power. If these results are to be integrated with regulatory 

networks generated by methods such as ARACNe and MINDy, additional 

samples will be required to ensure accurate reconstruction of these regulatory 

networks, as outlined in [Margolin et al.]. However, the genetic-genomic analyses 

can be supplemented with any post-processing methods to add additional 

biological context to the results. 

 

Biological Relevance of Computational Findings 
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Using this integrative genetic-genomic approach, we were able to positively 

identify two candidate master regulators of the mesenchymal subtype without 

any a priori information of the molecular classification of the tumors. Of the two, 

CEBPD had already been validated as a mesenchymal master regulator, and we 

subsequently identified KLHL9 as a post-translational regulator of the CEBP 

master regulators of MES transformation. We were able to identify a post-

translational regulator of MES transformation in tight linkage disequilibrium with a 

common oncogene using only genomic and transcriptional data. In addition, we 

were able to positively identify almost the entirety of field-accepted bona fide 

tumor suppressors and oncogenes as f-CNVs; the only loci that were missed 

were ones that either were so rare that statistical power could not be reached 

(and indeed, these loci would not have been found by traditional methods in this 

dataset had they not already been established as oncogenes), or they were 

actively disregarded as functional because, although they may have been shown 

to induce oncogenesis in general, there was no evidence that these genes are 

expressed or functional in the context of GBM. 

 

These results demonstrate that the genetic-genomic approach is capable of the 

statistically enriched identification of biologically relevant genomic loci from a 

pool of tens of thousands of candidate mutated genomic loci, and thousands of 

genes expressed in GBM. Additionally, DIGGIn is capable of detecting the 

presence of multiple independent driver mutations that contribute to the etiology 

of a disease. This stands in contrast to traditional genomic approaches, which 
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are extensively limited in their detection power due to extensive hypothesis 

correcting, and due to the lack of dynamic partitioning. The accuracy of raw 

ANOVA or other statistic methods in a biological context deteriorates as the 

number of underlying genetic causes in a cohort increases, due to the presence 

of other causal genes polluting the association signal of any individual locus 

being tested. Whereas traditional statistical approaches are actively stymied by 

heterogeneity, DIGGIn was tailor-made with such biological contexts in mind and 

is actively designed to both circumvent and capitalize on the heterogeneity of the 

patient cohort.  

 

Implications of Biological Results (KLHL9) in GBM 

In the context of GBM specifically, this work provides significant evidence for the 

value of studying GBM, and cancers in general, not only in the context of 

oncogenesis and tumor progression, but also in a context that elucidates 

metabolic and physiological nuances that render tumors unique from patient to 

patient. This work and an increasing amount of gene expression studies in 

cancer show that the umbrella categories of cancer that have been traditionally 

assigned to tumors do not capture the diversity of the disease, even in relatively 

specific contexts such as glioblastoma, or astrocytoma[14][16][21]. Tumors under 

most of these classifications are still separable into distinct molecular subtypes 

based on their gene expression profiles, and it is possible to use these 

methodologies to elucidate molecular programs that associate with behaviors 

unique to specific subtypes. These unique molecular programs are functionally 
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distinct, but occur in tandem with the molecular changes associated with tumor 

development and progression, the classical field of cancer study. Subsequent 

application of regulatory networks allowed us to further identify that the entire 

signature could be regulated via a relatively small number of master regulators 

and showed that manipulation of these other molecular programs independent of 

classical oncogenic pathways could be sufficient to inhibit tumor growth. 

 

This work adds a complementary approach to the identification of master 

regulators by identifying the actual mutations that occur in tumor samples to alter 

the behavior of the master regulators, rather than inferring them from gene 

expression data. Based on the observation that large molecular panels can be 

manipulated by a small number of regulators, we were able to devise a 

computational framework to identify genomic events that showed evidence for 

perturbing the master regulators, instead of searching on a candidate-by-

candidate basis for involvement in classical cancer pathways or by a genome-

wide statistical study. This work allowed us to specifically target and identify the 

regulators of a specific molecular behavior in GBM with clinically relevant effects. 

The combination of network analysis and genetic-genomics allows for an 

approach that capitalizes on the information density of these large scale datasets 

without being hampered by statistical threshold limitations, and allows a focused 

approach to studying genome-wide molecular behavior using a small number of 

regulatory hubs.  
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The identification of KLHL9 as a completely novel post-translational regulator of 

mesenchymal differentiation in GBM came directly as a computational prediction 

from exclusively human-derived data, which we subsequently validated with 

biological experimentation. Our integrative methods were able to identify this 

locus as a candidate master regulator despite it being deleted in “only” ~30% of 

mesenchymal tumors in our TCGA cohort, and despite it being in close proximity 

to the oncogene, p16. DIGGIn in its current implementation is not capable of 

detecting focal (promoter deletions), copy neutral (point mutations / frameshifts), 

or epigenetic (methylation) changes. We hypothesize that it is very likely that the 

remaining mesenchymal samples bear these undetected mutations in KLHL9, 

the master regulators themselves, or other upstream components that regulate 

the master regulators. Additionally, most genomic loci proximal to classical 

oncogenes are actively disregarded as contributory to tumor etiology in any way 

because they are assumed to be an artifact of association to those oncogenes. 

We were, instead, able to provide evidence that the high frequency of 

Mesenchymal tumors, which consist of over 50% of tumors obtained from the 

TCGA, is due to the high likelihood of obtaining losses of chromosome 9 that 

would span both p16 and KLHL9. This mutation would be sufficient to induce 

both tumorigenesis and mesenchymal transformation, and the development of 

mesenchymal GBM comes as a result of the simultaneous activation of at least 

two distinct molecular programs: oncogenesis and mesenchymal transformation. 
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As the rapid advances in biotechnology continue to produce vast amounts of 

genetic and genomic data at decreasing cost, a primary concern and field of 

research is the development of computational methods to meaningfully process 

this data in a biological context. Systems biological approaches have provided a 

novel perspective on the modeling of complex genetic traits and diseases, 

capitalizing on the availability of genomic data. The ability to infer regulatory 

networks has allowed us to integrate years of genetic research into a framework 

to understanding how large, modular molecular programs are regulated in cell-

specific contexts. 

 

Concurrently, it is becoming increasingly apparent that diseases as complex as 

cancer should not and cannot be addressed simply as a function of oncogenic 

behavior. Individual tumors can acquire multiple mutations in addition to 

oncogenic drivers that nonetheless can drastically alter the physiology of the 

tumor with very real clinical ramifications. These other mutations and their effects 

cannot be simply dismissed in the interest of studying oncogenesis or 

angiogenesis. The difference between mesenchymal and proneural GBM is a 

significantly shorter prognosis - mesenchymal patients in the TCGA cohort do not 

survive beyond 36 months post-diagnosis, while even proneural patients who 

succumb to the disease can still survive beyond 60-80 months (surviving patients 

are predominantly patients with proneural tumors and were not included in the 

TCGA cohort). The characterization of how these mutations affect the behavior of 

the tumor via their individual molecular programs not only broadens our 
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understanding of the disease, but also opens up new avenues of research for 

treatment. Conventional therapeutics that prove ineffective for certain cancers 

could potentially be replaced by more targeted agents that select against 

physiological behaviors unique to the cancer subtype, and increasing diagnostic 

panels to include cancer subtyping can grant valuable insight into improving the 

diagnosing of the disease. 

 

The goal of this work was to bridge the gap between these two rising issues and 

elucidate the genetic architecture of mesenchymal tumors in Glioblastoma 

multiforme. We have successfully created the computational methodology, 

DIGGIn, to predict driver mutations for individual molecular programs directly 

from human data. We were able to parse out and identify KLHL9, a novel, highly 

prominent post-translational regulator of mesenchymal differentiation in GBM. 

We were able to identify deletions of this gene as a functional genomic 

perturbation without any a priori information as to its relevance to GBM, and were 

subsequently able to predict its functionality in subtype differentiation out of 

hundreds of thousands of candidate loci, and to biologically identify its 

mechanism of action experimentally. Furthermore, the analytic rational and 

software architecture are readily applicable to any biological context that is 

appropriately addressed with systems biological methods. 
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APPEND01 – Classification of TCGA samples 

TCGA-02-0001-01 MES 
TCGA-02-0002-01 MES 
TCGA-02-0003-01 PN 
TCGA-02-0004-01 MES 
TCGA-02-0006-01 MES 
TCGA-02-0007-01 PRO 
TCGA-02-0009-01 MES 
TCGA-02-0010-01 PN 
TCGA-02-0011-01 PN 
TCGA-02-0014-01 PN 
TCGA-02-0015-01 MES 
TCGA-02-0016-01 PRO 
TCGA-02-0021-01 PRO 
TCGA-02-0023-01 MES 
TCGA-02-0024-01 PN 
TCGA-02-0025-01 MES 
TCGA-02-0026-01 PN 
TCGA-02-0027-01 MES 
TCGA-02-0028-01 PN 
TCGA-02-0033-01 MES 
TCGA-02-0034-01 MES 
TCGA-02-0037-01 MES 
TCGA-02-0038-01 MES 
TCGA-02-0039-01 MES 
TCGA-02-0043-01 MES 
TCGA-02-0046-01 PN 
TCGA-02-0047-01 PN 
TCGA-02-0048-01 PN 
TCGA-02-0051-01 MES 
TCGA-02-0052-01 MES 
TCGA-02-0054-01 MES 
TCGA-02-0055-01 MES 
TCGA-02-0057-01 MES 
TCGA-02-0058-01 PN 
TCGA-02-0059-01 MES 
TCGA-02-0060-01 PN 
TCGA-02-0064-01 MES 
TCGA-02-0068-01 MES 
TCGA-02-0070-01 MES 
TCGA-02-0071-01 MES 
TCGA-02-0074-01 PN 
TCGA-02-0075-01 MES 

TCGA-02-0079-01 MES 
TCGA-02-0080-01 PN 
TCGA-02-0083-01 MES 
TCGA-02-0084-01 PN 
TCGA-02-0085-01 MES 
TCGA-02-0086-01 MES 
TCGA-02-0087-01 PN 
TCGA-02-0089-01 MES 
TCGA-02-0099-01 MES 
TCGA-02-0102-01 MES 
TCGA-02-0104-01 PN 
TCGA-02-0106-01 MES 
TCGA-02-0107-01 MES 
TCGA-02-0111-01 MES 
TCGA-02-0113-01 MES 
TCGA-02-0114-01 PN 
TCGA-02-0115-01 MES 
TCGA-02-0116-01 MES 
TCGA-02-0117-01 MES 
TCGA-02-0258-01 PN 
TCGA-02-0260-01 MES 
TCGA-02-0266-01 MES 
TCGA-02-0269-01 MES 
TCGA-02-0271-01 MES 
TCGA-02-0281-01 PN 
TCGA-02-0285-01 MES 
TCGA-02-0289-01 PRO 
TCGA-02-0290-01 MES 
TCGA-02-0317-01 MES 
TCGA-02-0321-01 MES 
TCGA-02-0324-01 MES 
TCGA-02-0325-01 PRO 
TCGA-02-0326-01 MES 
TCGA-02-0330-01 PRO 
TCGA-02-0332-01 PN 
TCGA-02-0333-01 MES 
TCGA-02-0337-01 MES 
TCGA-02-0338-01 PN 
TCGA-02-0339-01 PN 
TCGA-02-0422-01 MES 
TCGA-02-0430-01 MES 
TCGA-02-0432-01 PN 
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TCGA-02-0439-01 PRO 
TCGA-02-0440-01 PN 
TCGA-02-0446-01 PRO 
TCGA-02-0451-01 MES 
TCGA-02-0456-01 MES 
TCGA-06-0122-01 MES 
TCGA-06-0124-01 MES 
TCGA-06-0125-01 MES 
TCGA-06-0126-01 PN 
TCGA-06-0127-01 MES 
TCGA-06-0128-01 PN 
TCGA-06-0129-01 PN 
TCGA-06-0130-01 MES 
TCGA-06-0132-01 MES 
TCGA-06-0133-01 PRO 
TCGA-06-0137-01 MES 
TCGA-06-0137-01 MES 
TCGA-06-0137-01 MES 
TCGA-06-0137-01 MES 
TCGA-06-0138-01 PRO 
TCGA-06-0139-01 MES 
TCGA-06-0140-01 MES 
TCGA-06-0141-01 MES 
TCGA-06-0142-01 PN 
TCGA-06-0143-01 MES 
TCGA-06-0145-01 MES 
TCGA-06-0145-01 MES 
TCGA-06-0145-01 MES 
TCGA-06-0145-01 MES 
TCGA-06-0146-01 PN 
TCGA-06-0147-01 MES 
TCGA-06-0148-01 MES 
TCGA-06-0148-01 MES 
TCGA-06-0148-01 MES 
TCGA-06-0148-01 MES 
TCGA-06-0149-01 MES 
TCGA-06-0152-01 MES 
TCGA-06-0154-01 MES 
TCGA-06-0154-01 MES 
TCGA-06-0156-01 MES 
TCGA-06-0156-01 PN 
TCGA-06-0156-01 PN 
TCGA-06-0157-01 PN 
TCGA-06-0158-01 MES 
TCGA-06-0160-01 PN 
TCGA-06-0162-01 PRO 

TCGA-06-0164-01 MES 
TCGA-06-0166-01 MES 
TCGA-06-0167-01 PN 
TCGA-06-0168-01 MES 
TCGA-06-0169-01 MES 
TCGA-06-0171-01 PN 
TCGA-06-0173-01 MES 
TCGA-06-0174-01 PN 
TCGA-06-0175-01 MES 
TCGA-06-0176-01 MES 
TCGA-06-0177-01 MES 
TCGA-06-0178-01 PN 
TCGA-06-0179-01 MES 
TCGA-06-0182-01 PRO 
TCGA-06-0184-01 MES 
TCGA-06-0185-01 MES 
TCGA-06-0187-01 MES 
TCGA-06-0188-01 PN 
TCGA-06-0189-01 MES 
TCGA-06-0190-01 MES 
TCGA-06-0192-01 MES 
TCGA-06-0194-01 MES 
TCGA-06-0195-01 PN 
TCGA-06-0197-01 MES 
TCGA-06-0201-01 MES 
TCGA-06-0206-01 MES 
TCGA-06-0208-01 PN 
TCGA-06-0210-01 MES 
TCGA-06-0211-01 MES 
TCGA-06-0211-01 PRO 
TCGA-06-0213-01 MES 
TCGA-06-0214-01 PRO 
TCGA-06-0216-01 PN 
TCGA-06-0216-01 PRO 
TCGA-06-0221-01 PN 
TCGA-06-0237-01 PN 
TCGA-06-0238-01 PN 
TCGA-06-0240-01 PN 
TCGA-06-0241-01 PN 
TCGA-06-0394-01 MES 
TCGA-06-0397-01 MES 
TCGA-06-0402-01 MES 
TCGA-06-0409-01 MES 
TCGA-06-0410-01 PN 
TCGA-06-0412-01 MES 
TCGA-06-0413-01 PN 
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TCGA-06-0414-01 PN 
TCGA-06-0644-01 MES 
TCGA-06-0645-01 MES 
TCGA-06-0646-01 PRO 
TCGA-06-0648-01 PN 
TCGA-06-0649-01 MES 
TCGA-06-0673-11 PN 
TCGA-06-0676-11 PN 
TCGA-06-0678-11 MES 
TCGA-06-0680-11 PN 
TCGA-06-0681-11 PN 
TCGA-06-0686-01 PN 
TCGA-06-0743-01 PRO 
TCGA-06-0744-01 PRO 
TCGA-06-0745-01 PN 
TCGA-06-0747-01 MES 
TCGA-06-0749-01 MES 
TCGA-06-0750-01 MES 
TCGA-07-0249-20 MES 
TCGA-08-0244-01 MES 
TCGA-08-0246-01 MES 
TCGA-08-0344-01 PN 
TCGA-08-0345-01 MES 
TCGA-08-0346-01 MES 
TCGA-08-0347-01 PRO 
TCGA-08-0348-01 PRO 
TCGA-08-0349-01 PRO 
TCGA-08-0350-01 PN 
TCGA-08-0351-01 PN 
TCGA-08-0352-01 MES 
TCGA-08-0353-01 PN 
TCGA-08-0354-01 MES 
TCGA-08-0355-01 PRO 
TCGA-08-0356-01 MES 
TCGA-08-0357-01 MES 
TCGA-08-0358-01 PN 
TCGA-08-0359-01 MES 
TCGA-08-0360-01 MES 
TCGA-08-0373-01 MES 
TCGA-08-0375-01 PRO 
TCGA-08-0380-01 PRO 
TCGA-08-0385-01 PN 

TCGA-08-0386-01 MES 
TCGA-08-0389-01 PN 
TCGA-08-0390-01 MES 
TCGA-08-0392-01 MES 
TCGA-08-0509-01 MES 
TCGA-08-0510-01 MES 
TCGA-08-0511-01 MES 
TCGA-08-0512-01 MES 
TCGA-08-0514-01 MES 
TCGA-08-0516-01 MES 
TCGA-08-0517-01 PN 
TCGA-08-0518-01 MES 
TCGA-08-0520-01 MES 
TCGA-08-0521-01 MES 
TCGA-08-0522-01 MES 
TCGA-08-0524-01 PN 
TCGA-08-0525-01 MES 
TCGA-08-0529-01 MES 
TCGA-08-0531-01 MES 
TCGA-08-0623-11 PN 
TCGA-08-0626-11 PN 
TCGA-08-0627-11 PN 
TCGA-12-0616-01 PN 
TCGA-12-0618-01 PN 
TCGA-12-0619-01 MES 
TCGA-12-0620-01 MES 
TCGA-12-0653-01 MES 
TCGA-12-0654-01 MES 
TCGA-12-0656-01 MES 
TCGA-12-0657-01 MES 
TCGA-12-0688-01 MES 
TCGA-12-0692-01 MES 
TCGA-12-0703-01 MES 
TCGA-12-0707-01 MES 
TCGA-12-0772-01 MES 
TCGA-12-0773-01 MES 
TCGA-12-0775-01 MES 
TCGA-12-0776-01 MES 
TCGA-12-0778-01 MES 
TCGA-12-0780-01 MES 
TCGA-15-0742-01 MES 
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APPEND02 – List of GBM f-CNVs 

AAAS 
AARS 
ABCC4 
ABCD3 
ABCD4 
ABCF2 
ABHD11 
ABHD14A 
ABHD4 
ABHD5 
ABI1 
ABLIM3 
ACN9 
ACOT7 
ACSL1 
ACSL5 
ACTL6A 
ACTN4 
ACTR1A 
ACTR5 
ACVR2A 
ADCK2 
ADCY6 
ADIPOR1 
ADNP 
ADORA2A 
ADRA2A 
ADRM1 
ADSL 
ADSS 
AES 
AGPAT4 
AHCYL1 
AHNAK 
AHSA1 
AKAP6 
AKAP8 
AKR1C2 
AKR7A2 
AKT1 
ALDH18A1 
ALDH1A3 
ALDH1B1 
ALG12 

ALMS1 
ALPK3 
AMD1 
ANAPC10 
ANAPC13 
ANKMY2 
ANKRD11 
ANKRD17 
ANP32B 
ANXA11 
ANXA7 
AOX1 
AP1B1 
AP1M2 
AP2A2 
AP2S1 
AP3D1 
APITD1 
APOBEC3C 
APOE 
APOL3 
APP 
APTX 
ARCN1 
ARF3 
ARF5 
ARFGAP3 
ARFIP2 
ARHGAP22 
ARHGEF10L 
ARHGEF12 
ARID4A 
ARIH1 
ARL1 
ARL3 
ARMC1 
ARPC1A 
ASB6 
ASF1A 
ATF5 
ATG3 
ATG5 
ATP10D 
ATP12A 

ATP2B4 
ATP5C1 
ATP5F1 
ATP5S 
ATP6V0A1 
ATP6V0D1 
ATP6V1D 
ATP6V1E1 
ATP6V1F 
ATRN 
ATRNL1 
ATXN10 
ATXN3 
AUTS2 
AVEN 
AVIL 
AVPI1 
B4GALNT1 
B4GALT1 
B4GALT5 
BAG3 
BAG5 
BAHD1 
BAZ1A 
BAZ1B 
BAZ2A 
BCAR3 
BCAS2 
BCAT2 
BCKDHA 
BCL2L2 
BCL6 
BCL7B 
BCMO1 
BCR 
BDH1 
BECN1 
BIRC2 
BLNK 
BNC2 
BPGM 
BRP44 
BRP44L 
BSN 
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BST2 
BTBD1 
BTN2A2 
BXDC5 
BYSL 
C10orf119 
C10orf72 
C10orf76 
C11orf48 
C11orf60 
C11orf63 
C11orf68 
C12orf4 
C12orf41 
C13orf1 
C13orf18 
C13orf23 
C14orf1 
C14orf101 
C14orf135 
C14orf147 
C14orf156 
C14orf166 
C15orf44 
C16orf61 
C17orf48 
C17orf75 
C19orf22 
C1D 
C1GALT1 
C1orf174 
C1orf25 
C1QTNF3 
C1R 
C20orf11 
C20orf24 
C20orf29 
C20orf4 
C21orf2 
C22orf9 
C3orf18 
C5 
C5AR1 
C5orf15 
C5orf22 
C6orf64 

C6orf66 
C7orf10 
C7orf26 
C8orf33 
C9orf46 
C9orf82 
CACNA1D 
CACNA2D3 
CACNB2 
CACNG3 
CALU 
CAMK1D 
CAMK2G 
CAMK2N1 
CAMTA1 
CAND1 
CAPZA2 
CARHSP1 
CASD1 
CBARA1 
CBR4 
CC2D1A 
CCDC101 
CCDC106 
CCDC25 
CCDC56 
CCDC6 
CCDC69 
CCDC94 
CCND3 
CCNG2 
CCT2 
CCT6A 
CCT7 
CD164 
CD2 
CD24 
CD2BP2 
CD63 
CD93 
CDC14B 
CDC16 
CDC2L5 
CDC2L6 
CDC37 
CDC40 

CDC42 
CDH10 
CDH6 
CDK3 
CDK4 
CDK5 
CDK5RAP2 
CDK9 
CDKN2A 
CDKN2C 
CDS2 
CEBPD 
CEP135 
CERK 
CFI 
CGRRF1 
CH25H 
CHAC1 
CHCHD3 
CHD8 
CHIC2 
CHMP4A 
CHMP5 
CHST12 
CHST3 
CIB1 
CIRBP 
CIZ1 
CLCF1 
CLDN10 
CLEC11A 
CLMN 
CLN5 
CLOCK 
CLPTM1 
CLU 
CNOT3 
CNOT4 
CNOT7 
CNR1 
COG2 
COG5 
COL13A1 
COL2A1 
COL5A1 
COMMD4 
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COMMD9 
COMT 
COPA 
COPE 
COPS2 
COPS6 
COQ7 
COQ9 
COX15 
COX4NB 
COX6B1 
CPEB3 
CPM 
CPNE1 
CRB1 
CREB3 
CREB3L2 
CRELD2 
CRISPLD2 
CRKL 
CROT 
CRTAM 
CRYBB2 
CRYL1 
CSDA 
CSDE1 
CSF2RB 
CSNK1A1 
CSNK1G2 
CSPG5 
CSTF1 
CTDSP2 
CTNNB1 
CTNNBIP1 
CTNNBL1 
CUGBP2 
CUL1 
CUL2 
CUL4A 
CUL5 
CUTC 
CWF19L1 
CXCL12 
CYCS 
CYorf15B 
CYP27B1 

CYP51A1 
DAG1 
DBI 
DCLRE1C 
DCTN2 
DCTN3 
DCTN5 
DCTN6 
DCUN1D4 
DDIT3 
DDIT4 
DDO 
DDX17 
DDX21 
DDX27 
DDX31 
DDX39 
DDX3X 
DDX41 
DDX50 
DDX56 
DDX58 
DEAF1 
DENND2A 
DENND2D 
DEPDC6 
DERA 
DFFA 
DGCR2 
DGKA 
DGKI 
DHDDS 
DHRS7 
DHX32 
DHX38 
DIO2 
DKK1 
DLC1 
DLG1 
DLGAP1 
DLGAP4 
DMPK 
DNAJA1 
DNAJB5 
DNAJB6 
DNAJC12 

DNAJC17 
DNAJC3 
DNAL4 
DNTTIP2 
DOCK1 
DPAGT1 
DPEP2 
DPY19L4 
DRAP1 
DRG1 
DTX3 
DUS4L 
DUSP12 
DUSP6 
DYNLT1 
E2F3 
EBNA1BP2 
ECD 
ECHDC1 
ECHDC3 
ECHS1 
EDNRB 
EED 
EFCAB2 
EFNB2 
EGFR 
EHD4 
EIF1AX 
EIF1AY 
EIF2AK1 
EIF2AK3 
EIF4EBP1 
EIF4EBP2 
EIF4G2 
EIF5 
ELAVL2 
ELMO2 
ELN 
EMP3 
ENG 
ENTPD5 
ENTPD6 
EPHB3 
EPOR 
EPS15 
EPS15L1 



 

 

138 

EPS8L2 
ERCC1 
ERCC2 
ERCC5 
ESRRA 
ETNK1 
ETNK2 
EWSR1 
EXOC1 
EXOC3 
EXOC7 
EXOSC7 
EXOSC8 
EXPH5 
EYA2 
EZH2 
F13A1 
F3 
FAF1 
FAM105A 
FAM35A 
FAM45A 
FAM46A 
FAM53B 
FAM5C 
FAM65A 
FAM69A 
FAM82B 
FANCC 
FANCG 
FARP1 
FBN1 
FBXO28 
FBXO34 
FBXO38 
FBXO7 
FCER2 
FDFT1 
FDX1 
FECH 
FEM1B 
FER1L3 
FHOD1 
FIBP 
FIP1L1 
FIS1 

FKBP14 
FKBP1A 
FKBP3 
FKBP5 
FLJ10357 
FLJ20323 
FMOD 
FNDC3A 
FNTA 
FNTB 
FOXJ2 
FPGT 
FRAT1 
FRMD4A 
FUCA1 
FXR1 
FXYD1 
FYCO1 
G3BP2 
GALC 
GALK2 
GALNAC4S-6ST 
GARNL1 
GARS 
GAS7 
GAS8 
GATAD1 
GATAD2A 
GBAS 
GCA 
GCC1 
GCH1 
GCLM 
GDI2 
GFAP 
GFOD2 
GFPT1 
GFRA1 
GFRA2 
GGA1 
GHITM 
GINS1 
GLI1 
GLTSCR1 
GLUD1 
GMEB1 

GMFB 
GMPR2 
GNA11 
GNA12 
GNAI1 
GNAI2 
GNAI3 
GNB5 
GNG7 
GNL3 
GNPTAB 
GOLGA1 
GOLGA2 
GPHN 
GPR6 
GPR65 
GPSM2 
GPX4 
GRHPR 
GSN 
GSTO1 
GSTT1 
GSTZ1 
GTF2B 
GTF2F2 
GTF2H5 
GTF3C1 
GTF3C2 
GTF3C4 
GTF3C5 
GTPBP1 
GTPBP2 
GTPBP4 
GUF1 
GUSB 
GYS1 
GZMB 
H1F0 
H2AFV 
HABP4 
HADHB 
HBEGF 
HBS1L 
HBXIP 
HDAC2 
HDAC9 
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HDHD1A 
HERC1 
HIC2 
HIF1A 
HIP1 
HISPPD2A 
HIST1H1C 
HIVEP2 
HK1 
HLA-DQA1 
HLCS 
HMG20B 
HMGCL 
HMGN3 
HOXA10 
HOXC10 
HOXC13 
HOXC4 
HOXC8 
HP1BP3 
HPR 
HPRT1 
HPS6 
HRAS 
HSBP1 
HSD17B12 
HSF2 
HSP90AB1 
HSPB1 
HSPH1 
HUS1 
ICMT 
IDI1 
IFI35 
IFI6 
IFIH1 
IFIT2 
IFIT3 
IFRD1 
IFT74 
IL15RA 
IL6 
IL6ST 
IMPDH2 
INHBE 
INPP5A 

INPP5E 
INPP5F 
INTS5 
INTS6 
INVS 
IQCE 
IRGQ 
ISLR 
ISOC2 
ITCH 
ITGA8 
ITGB1 
ITIH2 
ITM2B 
ITPA 
IVD 
JARID1A 
JMJD2C 
JRK 
KARS 
KBTBD2 
KCNA3 
KCNH2 
KCNMA1 
KCNMB2 
KCNMB4 
KCTD12 
KCTD15 
KDELR2 
KIAA0247 
KIAA0284 
KIAA0355 
KIAA0391 
KIAA0415 
KIAA0495 
KIAA0562 
KIAA0564 
KIAA0649 
KIAA0892 
KIAA1128 
KIAA1279 
KIAA1539 
KIAA1598 
KIAA1704 
KIAA1797 
KIF5A 

KIF5B 
KIN 
KIT 
KLF11 
KLF9 
KLHDC2 
KLHDC4 
KLHL12 
KLHL20 
KLHL24 
KLHL9 
KLRK1 
KPNA3 
KRT18 
KTN1 
LAMA5 
LANCL2 
LAPTM4A 
LARP5 
LCMT1 
LDB3 
LEMD3 
LEPROTL1 
LETM1 
LGALS3 
LGR4 
LHFP 
LIAS 
LILRB4 
LIMK2 
LIN7C 
LIPA 
LMO2 
LMO4 
LOC90379 
LPIN2 
LRIG2 
LRP3 
LRP5 
LRRC15 
LRRC8D 
LSM3 
LSM7 
LSM8 
LUC7L2 
LY6H 
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LZTFL1 
M6PRBP1 
MAD1L1 
MAD2L1BP 
MAGI2 
MAN1A1 
MAN1A2 
MANSC1 
MAP3K7IP2 
MAP4 
MAP7 
MAPK1 
MAPK14 
MAPK6 
MAPKAP1 
MAPKBP1 
MAPRE1 
MARS 
MAT2B 
MAX 
MBD6 
MBIP 
MBTPS1 
MCF2 
MDH2 
MDM1 
MDM2 
ME1 
ME3 
MED4 
MED6 
MEN1 
MEOX2 
MET 
METTL3 
METTL4 
MFGE8 
MFN1 
MFN2 
MGAT1 
MGAT3 
MGC2752 
MICAL1 
MINPP1 
MIZF 
MKL1 

MKRN1 
MLC1 
MLL 
MLLT10 
MLLT3 
MN1 
MOXD1 
MPDZ 
MPHOSPH6 
MPI 
MPP5 
MRPL17 
MRPL18 
MRPL19 
MRPL24 
MRPL39 
MRPL4 
MRPL40 
MRPS17 
MRPS2 
MRPS22 
MRPS31 
MSRB2 
MTAP 
MTERF 
MTHFD1 
MTIF2 
MTMR3 
MTRF1 
MUM1 
MYH9 
MYL6 
MYO9B 
MYRIP 
NADK 
NAGA 
NANOS1 
NARS2 
NCBP2 
NCL 
NCOA1 
NCOA6 
NDEL1 
NDFIP1 
NDUFA2 
NDUFA3 

NDUFA6 
NDUFA8 
NDUFAB1 
NDUFAF1 
NDUFB5 
NDUFB6 
NDUFB7 
NDUFB8 
NDUFS6 
NEDD8 
NEK1 
NEK3 
NELL1 
NF2 
NFASC 
NFE2L2 
NFKBIA 
NFX1 
NIPA2 
NIPSNAP1 
NLGN4X 
NMT2 
NMU 
NNMT 
NOL6 
NOL7 
NOLC1 
NOSIP 
NPC2 
NPEPPS 
NPM1 
NPM3 
NPR2 
NPTN 
NPTX2 
NR2F6 
NRBF2 
NRD1 
NRP1 
NSFL1C 
NT5C2 
NTRK3 
NUAK2 
NUDCD3 
NUDT1 
NUDT15 
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NUFIP1 
NUP107 
NUP133 
NUP205 
NUP214 
NUP37 
NUP43 
NUP50 
NUP85 
NXT1 
OAZ1 
OBFC1 
OGDH 
OGFOD1 
OIP5 
OLFML1 
OPA1 
OPRS1 
OPTN 
ORC3L 
ORC5L 
OS9 
OSBPL10 
OSBPL2 
OSBPL9 
OSTM1 
OVGP1 
OXA1L 
OXSR1 
PAICS 
PAK2 
PAK4 
PAK6 
PANK2 
PANK4 
PAOX 
PAPD1 
PAPOLA 
PARD3 
PARK7 
PARVA 
PARVB 
PAXIP1 
PCBD1 
PCCA 
PCDH21 

PCDH7 
PCDH9 
PCID2 
PCMT1 
PCMTD2 
PCNA 
PDAP1 
PDCD11 
PDCD4 
PDGFRA 
PDLIM7 
PDSS2 
PEF1 
PELI2 
PER3 
PES1 
PEX1 
PEX3 
PEX5 
PEX7 
PFKP 
PFTK1 
PGAP1 
PGLS 
PGM3 
PGPEP1 
PHACTR2 
PHB2 
PHF10 
PHF11 
PHIP 
PHKG1 
PHLDA2 
PHTF2 
PHYH 
PIGB 
PIGK 
PIGN 
PIGO 
PIGV 
PIK3C2B 
PIN4 
PINK1 
PLAA 
PLAGL1 
PLAUR 

PLEKHA1 
PLEKHA4 
PLEKHA6 
PLEKHF1 
PLK4 
PLXNB1 
PMM1 
PMPCB 
PMVK 
PNKP 
PNMT 
PODXL2 
POFUT1 
POFUT2 
POLDIP3 
POLH 
POLR1E 
POLR2B 
POLR2F 
POSTN 
PPAT 
PPFIBP2 
PPM1A 
PPM1F 
PPME1 
PPP1R13L 
PPP1R15A 
PPP1R8 
PPP2R5C 
PPP2R5E 
PPP3CA 
PPP3CB 
PPP3CC 
PPP6C 
PQLC1 
PRC1 
PRDX3 
PREB 
PRG3 
PRIM1 
PRKAB2 
PRKACB 
PRKCDBP 
PRKCQ 
PRKG1 
PRKRIP1 
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PRKY 
PRMT1 
PRMT5 
PROSC 
PROX1 
PSAP 
PSD 
PSEN1 
PSMA4 
PSMB4 
PSMC6 
PSMD1 
PSMD13 
PSMD14 
PSMD4 
PSMD5 
PSME1 
PTBP2 
PTCD1 
PTDSS2 
PTGES3 
PTMS 
PTOV1 
PTP4A1 
PTPN21 
PTPRA 
PTPRD 
PTPRK 
PUS7L 
PVRL2 
PXMP4 
PYGB 
PYGL 
QRICH1 
RAB11A 
RAB11FIP2 
RAB14 
RAB27A 
RAB5B 
RABAC1 
RABGGTB 
RABIF 
RABL4 
RAC1 
RAD23B 
RAE1 

RAF1 
RAI14 
RALA 
RALGDS 
RALGPS1 
RAP2A 
RARRES2 
RARRES3 
RARS 
RASL11B 
RASSF2 
RB1 
RBBP5 
RBBP9 
RBM16 
RBM28 
RBM5 
RBP4 
RBX1 
RCBTB1 
RCBTB2 
RCP9 
RDH11 
RER1 
RERE 
REXO4 
RFC2 
RFK 
RGS10 
RGS16 
RGS17 
RGS6 
RHOA 
RHOBTB1 
RHOC 
RIC8A 
RIN1 
RINT1 
RIPK5 
RNF11 
RNF111 
RNF128 
RNF141 
RNF31 
RNF6 
RNF7 

RNF8 
RNH1 
RPL11 
RPL22 
RPL28 
RPP30 
RPS21 
RPS23 
RPS24 
RPS25 
RPS27L 
RPS9 
RRAGA 
RRAGD 
RSU1 
RTF1 
RUVBL2 
RWDD1 
RWDD3 
RXRA 
SACM1L 
SACS 
SAE1 
SAFB2 
SAMM50 
SAP18 
SAPS2 
SAPS3 
SAR1A 
SARS 
SASH1 
SC5DL 
SCAMP2 
SCAMP3 
SCAMP4 
SCARA3 
SCFD1 
SCRG1 
SCUBE2 
SCYL3 
SDCCAG1 
SDCCAG8 
SDF2L1 
SEC24C 
SEC61B 
SEC61G 
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SEC63 
SEL1L 
SEMA6D 
SENP2 
SERINC1 
SETD2 
SETX 
SEZ6L 
SF3B3 
SF3B5 
SF4 
SFRS14 
SFRS2IP 
SGCB 
SGPL1 
SGPP1 
SGTA 
SH3GLB2 
SH3PXD2A 
SHARPIN 
SHB 
SHOC2 
SIAH1 
SIGLEC7 
SIN3B 
SIP1 
SIPA1L1 
SKI 
SLC10A2 
SLC16A1 
SLC1A1 
SLC1A4 
SLC24A1 
SLC25A17 
SLC25A20 
SLC25A22 
SLC25A28 
SLC26A10 
SLC29A3 
SLC2A5 
SLC30A9 
SLC33A1 
SLC35A1 
SLC35E3 
SLC38A1 
SLC4A2 

SLC6A3 
SLC7A8 
SLC7A9 
SLC9A1 
SLK 
SMAP1 
SMARCA2 
SMARCD3 
SMO 
SMU1 
SMURF1 
SNAP23 
SNAP29 
SNAPC2 
SNAPC3 
SNAPC4 
SNCG 
SNRPD3 
SNRPF 
SNTB1 
SNW1 
SNX13 
SNX3 
SNX5 
SNX6 
SOCS6 
SOD1 
SORCS3 
SOS2 
SOX13 
SPAG6 
SPATA5L1 
SPCS2 
SPG20 
SPG7 
SPHK2 
SRGAP2 
SRP54 
SRP72 
SRPK1 
SRPK2 
SRPR 
SRPRB 
SS18L1 
SS18L2 
SSBP1 

SSNA1 
SSR1 
SSX2IP 
ST13 
ST3GAL4 
ST6GALNAC4 
ST7 
STAM 
STAT3 
STIM1 
STK16 
STK24 
STK32B 
STOML2 
STS 
STX16 
SUCLA2 
SUPT16H 
SUPV3L1 
SURF1 
SUZ12 
SYF2 
SYNJ2 
SYT13 
TACC3 
TADA3L 
TAF10 
TAF2 
TANK 
TASP1 
TAX1BP1 
TBC1D2 
TBCC 
TBL1XR1 
TBL2 
TBP 
TBPL1 
TCEA1 
TCEB3 
TCF20 
TCF4 
TDRD3 
TDRD7 
TEAD1 
TEK 
TERF2 
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TEX10 
TFAM 
TFB1M 
TFDP1 
TFR2 
TFRC 
THBS1 
THNSL1 
THOC5 
THPO 
THY1 
TIAM1 
TIMM23 
TIMM44 
TIMM9 
TINF2 
TJP1 
TKT 
TM2D1 
TM9SF1 
TM9SF2 
TMED10 
TMED2 
TMED3 
TMEM106B 
TMEM115 
TMEM135 
TMEM147 
TMEM30A 
TMEM39A 
TMEM5 
TMEM62 
TMEM8 
TMEM80 
TMEM87A 
TMEM9B 
TNKS2 
TNPO3 
TOMM22 
TOPORS 
TOR1A 
TP53 
TP53BP1 
TPD52L2 
TPP2 
TPST2 

TRA2A 
TRIM22 
TRIM24 
TRIM8 
TRIP13 
TRPM2 
TRPM4 
TRRAP 
TSEN34 
TSFM 
TSG101 
TSPAN13 
TSPAN31 
TSPYL4 
TTC26 
TTF1 
TTK 
TTLL12 
TUBB2B 
TUBG2 
TUBGCP2 
TUBGCP5 
TXNL4A 
TXNRD2 
TYRO3 
TYRP1 
UBAP1 
UBAP2 
UBE2A 
UBE2D1 
UBE2D4 
UBE2H 
UBE2L3 
UBE2L6 
UBE2Q1 
UBE3C 
UBIAD1 
UBL3 
UBTD1 
UCHL3 
UFD1L 
UFM1 
UGCGL2 
UNC50 
UPF3A 
UPP1 

UQCR 
USF2 
USP10 
USP13 
USP14 
USP2 
USP4 
USP46 
USP9X 
USPL1 
UTP14C 
UTX 
VAMP3 
VAPA 
VCP 
VGF 
VISA 
VLDLR 
VPS13C 
VPS13D 
VPS26A 
VPS37B 
VPS37C 
VPS39 
VPS41 
VPS4A 
VRK3 
WAC 
WAPAL 
WASL 
WBP4 
WBSCR22 
WDR18 
WDR3 
WDR32 
WDR37 
WDR42A 
WDR48 
WDR7 
WDR77 
WDR8 
WEE1 
WIPI2 
WTAP 
XPOT 
XRCC5 
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YARS2 
YEATS2 
YEATS4 
YES1 
YKT6 
YME1L1 
YTHDC1 
YTHDF1 
ZBED4 
ZBTB1 
ZBTB24 
ZC3H7B 
ZCCHC14 
ZCWPW1 
ZDHHC4 
ZDHHC7 
ZFHX4 
ZFP106 
ZFP30 
ZFX 

ZFYVE26 
ZHX3 
ZMYM5 
ZNF131 
ZNF132 
ZNF134 
ZNF14 
ZNF180 
ZNF212 
ZNF214 
ZNF223 
ZNF226 
ZNF227 
ZNF23 
ZNF238 
ZNF248 
ZNF250 
ZNF264 
ZNF277 
ZNF281 

ZNF282 
ZNF3 
ZNF324 
ZNF337 
ZNF394 
ZNF419 
ZNF43 
ZNF44 
ZNF468 
ZNF473 
ZNF544 
ZNF551 
ZNF576 
ZNF586 
ZNF587 
ZNF671 
ZNF74 
ZNF8 
ZNF83 
ZNF85
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APPEND03 – Candidate MES fCNVs 

KLHL9  
ABI1 
TSFM 
GHITM 
TOPORS 
CEBPD  
CLOCK 
ST7 
STAM 
MDM4 
BLNK 
DDIT3 
TFR2 
AKT1 
MARS 
PFKP 
CDK4 
CAMK2N1 
DDX56 
GTPBP4 
IRGQ 
MLC1 
MET 
ECD 
CTDSP2 
CCDC6 
IFT74 
DTX3 
PDGFRA 
RSU1 
NPTX2 
NFKBIA 
SOX13 
CUTC 
CAPZA2 
KIF5B 
CARHSP1 
FRMD4A 
TSPAN31 
NUP107 
NRBF2 
CYorf15B 
SAR1A 
GLI1 

DCLRE1C 
ECHDC3  
CLEC11A 
ITGB1 
TEK 
ATP5C1 
RPL28 
LANCL2 
MAX 
ITGA8 
ARL3 
SEC61G 
KIAA1797 
RBBP5 
GSTT1 
VGF 
NMT2 
ZNF134 
MLLT3 
ZCWPW1 
USP9X 
MDH2 
USP2 
FAM53B 
LY6H 
ETNK2 
CDKN2A 
KIN 
ELAVL2 
HLA-DQA1 
METTL1 
KCNH2 
PAPD1 
AVIL 
SPAG6 
CBARA1 
BCAT2 
DUS4L 
CUL2 
PIN4 
PRC1 
MTAP 
IL15RA 
PRKCQ 

HP1BP3 
GFAP 
KCTD15 
TAX1BP1 
PIK3C2B 
SERINC1 
CDK5 
EIF4G2 
THNSL1 
PRKG1 
PHYH 
FIP1L1 
NRP1 
PRKY 
SNX13 
SLC25A22 
CHIC2 
WDR37 
OPTN 
PDAP1 
ZNF586 
CYP27B1 
PDLIM7 
EIF1AX 
ITIH2 
C7orf26 
VPS26A 
STS 
PPP3CB 
IL6 
UPP1 
MINPP1 
PHKG1 
KIF5A 
CCT6A 
MEOX2 
PLEKHA6 
DDX21 
CCDC106 
GLUD1 
DDX3X 
TMEM8 
AP3D1 
OBFC1 
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RPS24 
MBD6 
AKR1C2 
EIF1AY 
HOXA10 
RPP30 
WIPI2 
MRPS17 
DIO2 
MDM2 
CAMK2G 
C9orf82 
B4GALNT1 
SCRG1 
DDX50 
ANXA7 
NDUFA3 

CH25H 
EGFR 
DCTN2 
RHOBTB1 
CPM 
UBE2D1 
PANK4 
GBAS 
ANXA11 
MSRB2 
OS9 
KIT 
KIAA1128 
ZNF132 
GNA12 
UBAP1 
GNAI1 

PSPH 
ZNF14 
SLC35E3 
HDAC9 
SMARCD3  
EMP3 
SLC26A10 
INHBE 
KDELR2 
C10orf72 
CUGBP2 
ZNF671 
SNAPC2 
GAS7 
SLC25A28 
GDI2 
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APPEND04 - SCRIPTS 
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SCRIPTS: EUCLIDEAN DISTANCE SUBTYPE CLASSIFIER 
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#!usr/bin/perl -w 
 
$count=0; 
 
open(IN,"/Users/SupernerdMkII/Desktop/EUC classifier data/classifiers3.tab") or die; 
while(<IN>){ 
 chomp $_; 
  
 @array=split/\t/,$_; 
  
 $vector{$array[0]}=$_; 
} 
close IN; 
 
@hubs=keys(%vector); 
 
$count=0; 
 
open(IN,"list3.tab") or die; 
#open(IN,"/Users/SupernerdMkII/Desktop/whole tumor expression 
sets/rembrant_data.exp") or die; 
while(<IN>){ 
 chomp $_; 
 @array=split/\t/,$_; 
 @distances=(); 
  
 if($count==0){$count++;next;} 
  
# print $array[0]."\n"; 
  
 foreach $hub(@hubs){ 
  chomp $hub; 
  @hub=split/\t/,$vector{$hub}; 
  $vector="vector"; 
  $distance{$hub}=EUCDIST(\@array,$vector{$hub}); 
  push(@distances, $distance{$hub}); 
   
  print "$hub\t$distance{$hub}\t"; 
 } 
  
# print "$array[0]\t@distances\n"; 
  
 @distances = sort {$a<=>$b} @distances; 
 $min=$distances[0]; 
  
 foreach $hub(@hubs){ 
  if($distance{$hub}==$min){$classy=$hub;} 
 } 
  
 print "$array[0]\t$classy\n"; 
} 
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sub EUCDIST{ 
 my($arrayref,$coord)=@_; 
  
 my @array1=@$arrayref; 
 my @array2=split/\t/,$coord; 
  
 my $eucd=0; 
  
 foreach $i(1..scalar(@array1)-1){ 
  $eucd+=($array1[$i]-$array2[$i])**2 
 } 
  
 $eucd=sqrt($eucd); 
 return $eucd; 
} 
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SCRIPTS: CO-MUTATION NETWORK BUILDER 
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#!usr/bin/perl -w 
 
$thresh=0.168; #threshold of CNV reads to call amp or del 
 
open(IN,"<list1.tab") or die; 
while(<IN>){ 
 chomp $_; 
 $candidates{$_}=1; #defined as hash to extract exact CNV vectors from later 
arrays 
 $defined{$_}=0;  #defined to mark genes whose comparisons have 
been done to avoid redundant operations 
} 
close IN; 
 
@candidatekeys=keys(%candidates); #defined for the actual pairwise checking 
 
print "Candidates read.\n"; 
 
open(IN, "<wholeCNVsgenesonly.tab") or die; #cnv matrix file 
while(<IN>){ 
 chomp $_; 
 @array=split/\t/,$_; 
  
 if(defined($candidates{$array[0]})){ 
  $candidates{$array[0]}=$_; 
 } 
} 
close IN; 
 
print "CNV vectors read.\n"; 
 
open(OUT, ">pairwise CNV results2.tab") or die; 
 
foreach $gene(@candidatekeys){ 
 print "$gene START\n"; 
  
 foreach $gene2(@candidatekeys){ 
   
  ## do not compare a gene against itself, and do not repeat comparisons 
that have already been done 
  next if($gene eq $gene2); 
  next if($defined{$gene2}==1); 
 
  ## define/reset counters 
  $Aamp=0; 
  $Bamp=0; 
  $Camp=0; 
  $Damp=0; 
   
  $Adel=0; 
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  $Bdel=0; 
  $Cdel=0; 
  $Ddel=0; 
   
  @array1=split/\t/,$candidates{$gene}; 
  @array2=split/\t/,$candidates{$gene2};   
 
  foreach $i(1..scalar(@array1)-1){ 
   #check AMP 
   if($array1[$i]<=-$thresh and $array2[$i]<=-$thresh){ $Aamp++; } 
   elsif($array1[$i]<=-$thresh and $array2[$i]>-$thresh){ $Bamp++; } 
   elsif($array1[$i]>-$thresh and $array2[$i]<=-$thresh){ $Camp++; } 
   elsif($array1[$i]>-$thresh and $array2[$i]>-$thresh){ $Damp++; } 
   
   #check DEL 
   if($array1[$i]>=$thresh and $array2[$i]>=$thresh){ $Adel++; } 
   elsif($array1[$i]>=$thresh and $array2[$i]<$thresh){ $Bdel++; } 
   elsif($array1[$i]<$thresh and $array2[$i]>=$thresh){ $Cdel++; } 
   elsif($array1[$i]<$thresh and $array2[$i]<$thresh){ $Ddel++; } 
 
  } 
   
  $pamp=PValue($Aamp,$Bamp,$Camp,$Damp); 
  $pdel=PValue($Adel,$Bdel,$Cdel,$Ddel); 
   
#  if($gene eq "ECHDC3"){ print 
"$gene2\t$Adel\t$Bdel\t$Cdel\t$Ddel\n"; } 
   
  print OUT "$gene\t$gene2\tAMP:\t$pamp\tDEL:\t$pdel\n";  
 } 
  
 $defined{$gene}=1; 
} 
 
 
############## 
#LNFACTORIAL 
############### 
sub LnFactorial{ 
 my $n=shift; 
 $lnn=0; 
  
 while($n>=1){ 
  $lnn+=log($n); 
  $n--; 
 } 
  
 return $lnn; 
} 
 
############## 
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#Probability of one table 
############### 
sub ProbTable{ 
 my ($a , $b , $c, $d) = @_; 
 my $n = $a + $b + $c + $d; 
 my $LnNumerator     = LnFactorial($a+$b)+ 
                        LnFactorial($c+$d)+ 
                        LnFactorial($a+$c)+ 
                        LnFactorial($b+$d); 
 
 my $LnDenominator   = LnFactorial($a) + 
                        LnFactorial($b) + 
                        LnFactorial($c) + 
                        LnFactorial($d) + 
                        LnFactorial($n); 
 
  my $LnP = $LnNumerator - $LnDenominator; 
  return exp($LnP); 
} 
 
############## 
#p-value calculator 
############### 
sub PValue{ 
 my ($a, $b, $c, $d) = @_; 
  
 my $n = $a + $b + $c + $d; 
 
 my $p = 0; 
  
 my $min; 
  
 $p+=ProbTable($a,$b,$c,$d); 
  
# if($a*$d >= $b*$c){ 
  $min = ($c < $b) ? $c : $b; 
  $i=0; 
   
  while($i<=$min){ 
   $a++; 
   $b--; 
   $c--; 
   $d++; 
       
   $p+=ProbTable($a,$b,$c,$d); 
   $i++; 
  }  
  if($p>1){$p=1;} 
   
  return $p; 
} 
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SCRIPTS: GENETIC-GENOMIC ALGORITHM 
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#!/usr/bin/perl -w 
 
($exp,$cnv,$out,$m,$b, $FDR)=@ARGV; #input filepaths 
chomp $exp; #gene expression matrix 
chomp $cnv; #CNV matrix 
chomp $out; #base name of results file (statistics such as the kernel used will be 
appended to this) 
chomp $m; #slope of linear fit of function -log(p) null distribution 
chomp $b; #intercept of linear fit of function -log(p) null distribution 
chomp $FDR; #desired FDR threshold 
 
# parameters for NBL p-value estimation: derived from linear fit of -log(pnull) 
# $m = 12.22 
# $b = 0.4545 
 
# new NBL set 
# $m = 20.654 
# $b = 0.3035 
 
#$kernel=0.12297;  
 
$kernel=0.852; 
 
$first=0; 
 
################################################################## 
######################## ACQUIRE DATA ######################### 
################################################################## 
 
## NOTE ## 
## This script is hardcoded to accept tab-delimited files with the first row 
## and column corresponding to the gene names and patient IDs, respectively. 
## These IDs must match in formatting across the exp and cnv files, but do NOT 
## have to be matched in order. 
 
## This stage of the script indexes all of the information contained in both the 
## CNV and expression files using a multi-dimensional hash. From here in, all data 
## for the analysis can be dynamically called from the hashes stored in memory, 
allowing 
## for maximum computational efficiency 
 
## input a file with <geneID> <expression vector> 
open(IN, "<$exp") or die; 
while(<IN>){ 
 chomp $_; 
 @array=split/\t/,$_; 
  
 if($first==0){ 
  foreach $i(1..scalar(@array)-1){ 
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   $expressionnameposition{$array[$i]}=$i-1; #first entry will not be in 
the vectors 
  } 
  $first++; 
 } 
  
 else{ 
  $string=join("\t",@array[1..scalar(@array)-1]); 
  $geneexpressionvector{$array[0]}=$string; 
 } 
  
} 
close IN; 
 
$first=0; 
 
print "Expression array finished.\n"; 
 
## input a CNV file <genename> <CNVvector> 
open(IN,"<$cnv") or die; 
while(<IN>){ 
 chomp $_; 
 @array=split/\t/,$_; 
  
 if($first==0){ 
  foreach $i(1..scalar(@array)-1){ 
   $cnvnameposition{$array[$i]}=$i-1; #first entry will not be in the 
vectors 
  } 
   
  $first++; 
 } 
  
 else{ 
  $string=join("\t",@array[1..scalar(@array)-1]); 
  $geneCNVvector{$array[0]}=$string; 
  push(@genes,$array[0]); 
 
 } 
} 
close IN; 
 
print "CNV array finished.\n"; 
 
 
################################################ 
############ BEGIN IDENTIFICATION ############# 
################################################ 
 
 
################################ define fCNVGs 
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## This stage of the script is the active analysis of identifying functional f-CNVs 
## Each gene locus's cnv and expression vectors are retrieved and the MI between 
these 
## is computed. If the MI value passes the specified FDR, it is flagged as an f-CNV, 
## but no second-degree analysis is conducted yet. This module will output a list of 
## f-CNVs. The user can then allow the script to proceed or break this output list into 
## smaller lists and parallel process to minimize the time needed to complete the 
analysis 
 
 
@pvalues=(); 
 
print "***Defining fCNVGs***\n"; 
 
foreach $gene(@genes){ 
 chomp $gene; 
   
 next if(defined($geneexpressionvector{$gene})==0); 
  
 @CNVvector=split/\t/,$geneCNVvector{$gene}; 
 @EXPvector=split/\t/,$geneexpressionvector{$gene}; 
  
 $MI=MI(\@CNVvector,\@EXPvector,\%cnvnameposition,\%expressionnameposit
ion,$kernel); 
  
 $p= 10**-($m*$MI+$b); 
  
 push(@pvalues,$p); 
  
 $fCNVtest{$gene}=$p; 
  
 print "$gene\t$MI\t$p\n"; #output to screen or dumpfile so users can actively 
track progress 
} 
 
$q=QTHRESH(\@pvalues,$FDR); 
 
@keys=keys(%fCNVtest); 
 
foreach $gene(@keys){ 
 if($fCNVtest{$gene}<=$q){  
  $fCNVG{$gene}=$fCNVtest{$gene}."\t";  
 } 
} 
 
@FCNVGs=keys(%fCNVG);  #now contains all CNVs passing FDR specified for 
f-CNVG 
@genes=keys(%geneexpressionvector); 
 
open (OUT, ">$out"."_k_".$kernel."_FDR_".$FDR."_uncharacterized.tab") or die; 
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foreach $gene(@FCNVGs){ print OUT "$gene\t$fCNVtest{$gene}\n"; } 
close OUT; 
 
print "***".scalar(@FCNVGs)." fCNVGs defined. Characterizing.***\n"; 
 
 
################################ characterize fCNVGs 
 
## This stage of the script takes the results from the previous analysis and recurses, 
## measuring the MI between the CNV vector of the fCNV locus and the expression of 
## every gene in the genome. 
## This results in the linking of genes whose expression shows significant correlation by 
MI 
## to the mutational state of the fCNV, and is therefore potentially regulated by the fCNV 
 
 
open(OUT, ">$out"."_k_".$kernel."_FDR_".$FDR.".tab") or die; 
 
select((select(OUT),$|=1)[0]); #flush writing to OUT so that log can be checked 
 
foreach $gene(@FCNVGs){ 
 chomp $gene; 
  
 $string="$gene\t$fCNVG{$gene}"; 
 @pvalues=(); 
 @CNVvector=split/\t/,$geneCNVvector{$gene}; 
  
 foreach $gene2(@genes){ 
  chomp $gene2; 
  next if($gene eq $gene2); 
   
  @EXPvector=split/\t/,$geneexpressionvector{$gene2}; 
   
 
 $MI=MI(\@CNVvector,\@EXPvector,\%cnvnameposition,\%expressionnameposit
ion,$kernel); 
   
  $p= 10**-($m*$MI+$b); 
   
  push(@pvalues,$p); 
   
  $target{$gene2}=$p; 
 } 
  
 $q=QTHRESH(\@pvalues,$FDR); 
  
 @keys=keys(%target); 
  
 foreach $temp(@keys){ 
  if($target{$temp}<=$q){  
   $string=$string.$temp."\t".$target{$temp}."\t";  
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  } 
 } 
 
 print OUT "$string\n"; 
} 
 
close OUT; 
 
################################ 
######## FUNCTIONS ############# 
################################ 
 
sub MI{ 
 my($CNVref,$expref,$CNVnames,$expnames,$kernel2)=@_; 
 my @CNV=@$CNVref; 
 my @exp=@$expref; 
  
 my @samplekey=keys(%{$expnames}); 
  
 my $xo; 
 my $yo; 
  
 my $top; 
 my $bottom; 
  
 my $MI=0; 
 my $topsum=0; 
 my $bottomsum1=0; 
 my $bottomsum2=0; 
 my $bottomtotal=0; 
  
 my $M=0; 
  
 foreach $sample(@samplekey){ 
  next if(defined(${$CNVnames}{$sample})==0); 
  $xo=$CNV[${$CNVnames}{$sample}]; 
  $yo=$exp[${$expnames}{$sample}]; 
  $topsum=0; 
  $bottomsum1=0; 
  $bottomsum2=0; 
     
  $M=0; 
   
  foreach $sample2(@samplekey){ 
   next if(defined(${$CNVnames}{$sample2})==0); 
   next if($sample2 eq $sample); 
   $M++; 
       
  
 $top=JOINT($xo,$CNV[${$CNVnames}{$sample2}],$yo,$exp[${$expnames}{$sa
mple2}],$kernel2); 
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   $bottom1=MARG($xo, $CNV[${$CNVnames}{$sample2}] , 
$kernel2 ); 
   $bottom2=MARG($yo, $exp[${$expnames}{$sample2}] , $kernel2 
); 
       
   $topsum+=$top; 
   $bottomsum1+=$bottom1; 
   $bottomsum2+=$bottom2; 
 
  } 
    
  $topsum*=(1/$M)*((1/(2*3.14159*$kernel2**2))); 
  $bottomsum1*=(1/$M)*((1/(sqrt(2*3.14159*$kernel2)))); 
  $bottomsum2*=(1/$M)*((1/(sqrt(2*3.14159*$kernel2)))); 
   
  $bottomtotal=$bottomsum1*$bottomsum2; 
   
  # The following condition was added as a failsafe in the event that a zero 
value 
  # is somehow obtained from the bottom marginal functions (resulting in 
division by zero) 
  if($bottomtotal==0){ $bottomtotal=0.0000001; } 
   
  #calculate MI here 
  $MI+=(log($topsum/$bottomtotal)/log(10)); 
   
 } 
   
 $MI*=(1/$M); 
  
 return $MI; 
} 
 
 
#join probability density function of 2 variables using Gaussian kernel 
sub JOINT{ 
 my($xo, $xi, $yo, $yi, $h)=@_; 
  
 my $joint = exp(-((($xo-$xi)**2+($yo-$yi)**2)/(2*$h**2))); 
  
 return $joint; 
} 
 
#marginal probability density function of a variable using Gaussian kernel 
sub MARG{ 
 my($xo, $xi, $h)=@_; 
  
 my $marg= exp(-((($xo-$xi)**2)/(2*$h**2))); 
  
 return $marg; 
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} 
 
#compute qscore for FDR signficance 
sub QTHRESH{ 
 my($arrayname,$threshold)=@_; 
  
 my $q=0; 
 my @scores = sort {$a<=>$b} @$arrayname; 
 my $m=scalar(@scores); 
  
 foreach $i(0..scalar(@scores)-1){ 
  my $k=$i+1; 
   
  if($scores[$i]<=(($k/$m)*$threshold)){ $q=$scores[$i]; } 
 } 
  
 return $q; 
} 
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SCRIPTS: NULLDISTRIBUTION / KERNEL OPTIMIZER 
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#!usr/bin/perl -w 
 
($exp,$cnv,$out)=@ARGV; #input filepaths 
chomp $exp; 
chomp $cnv; 
chomp $out; 
 
#$kernel=0.0164; 
$kernel=0.852;  
 
$first=0; 
 
######################################################################
#### 
######################## ACQUIRE DATA 
#################################### 
######################################################################
#### 
 
open(IN, "<$exp") or die; 
while(<IN>){ 
 chomp $_; 
 @array=split/\t/,$_; 
  
 if($first==0){ 
  foreach $i(1..scalar(@array)-1){ 
   $expressionnameposition{$array[$i]}=$i-1; #first two entries will 
not be in the vectors 
  } 
  $first++; 
 } 
  
 else{ 
  $string=join("\t",@array[1..scalar(@array)-1]); 
  $geneexpressionvector{$array[0]}=$string; 
  push(@genes,$array[0]); 
 } 
  
} 
close IN; 
 
$first=0; 
 
print "Expression array finished.\n"; 
 
open(IN,"<$cnv") or die; 
while(<IN>){ 
 chomp $_; 
 @array=split/\t/,$_; 
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 if($first==0){ 
  foreach $i(1..scalar(@array)-1){ 
   $CNVnameposition{$array[$i]}=$i-1; #first entry will not be in the 
vectors 
  } 
   
  $first++; 
 } 
  
 else{ 
  $string=join("\t",@array[1..scalar(@array)-1]); 
  $geneCNVvector{$array[0]}=$string; 
 } 
} 
close IN; 
 
print "CNV array finished.\n"; 
 
############################################################ 
#################### NULLDISTRIBUTION #################### 
############################################################ 
 
print "Computing Null Distribution.\n"; 
 
$i=0; 
 
open(OUT,">$out") or die; 
 
while($i<=10000){ 
 $int=int(rand(scalar(@genes)-1)); 
 next if(defined($geneCNVvector{$genes[$int]})==0); 
 @CNVs=split/\t/,$geneCNVvector{$genes[$int]};  
  
  
 $int=int(rand(scalar(@genes)-1)); 
 @expression=split/\t/,$geneexpressionvector{$genes[$int]};  
  
 $information=MI(\@CNVs, \@expression, \%expressionnameposition, 
\%CNVnameposition, $kernel); 
  
  
 print $information."\n"; 
 print OUT $information."\n"; 
   
 $i++; 
} 
 
close OUT; 
 
################################################ 
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################ SUBROUTINES ################ 
################################################ 
 
sub MI{ 
 my($CNVref,$expref,$CNVnames,$expnames,$kernel2)=@_; 
 my @CNV=@$CNVref; 
 my @exp=@$expref; 
  
 my @samplekey=keys(%{$expnames}); 
  
 my $xo; 
 my $yo; 
  
 my $top; 
 my $bottom; 
  
 my $MI=0; 
 my $topsum=0; 
 my $bottomsum1=0; 
 my $bottomsum2=0; 
 my $bottomtotal=0; 
  
 my $M=0; 
  
 foreach $sample(@samplekey){ 
  next if(defined(${$CNVnames}{$sample})==0); 
  $xo=$CNV[${$CNVnames}{$sample}]; 
  $yo=$exp[${$expnames}{$sample}]; 
  $topsum=0; 
  $bottomsum1=0; 
  $bottomsum2=0; 
     
  $M=0; 
   
  foreach $sample2(@samplekey){ 
   next if(defined(${$CNVnames}{$sample2})==0); 
   next if($sample2 eq $sample); 
   $M++; 
       
   $top=JOINT($xo , $CNV[${$CNVnames}{$sample2}] , $yo , 
$exp[${$expnames}{$sample2}] , $kernel2); 
   $bottom1=MARG($xo, $CNV[${$CNVnames}{$sample2}] , 
$kernel2 ); 
   $bottom2=MARG($yo, $exp[${$expnames}{$sample2}] , $kernel2 
); 
       
   $topsum+=$top; 
   $bottomsum1+=$bottom1; 
   $bottomsum2+=$bottom2; 
 
  } 
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  $topsum*=(1/$M)*((1/(2*3.14159*$kernel2**2))); 
  $bottomsum1*=(1/$M)*((1/(sqrt(2*3.14159*$kernel2)))); 
  $bottomsum2*=(1/$M)*((1/(sqrt(2*3.14159*$kernel2)))); 
   
  if($topsum ==0) { $topsum=0.0000001; } 
   
  $bottomtotal=$bottomsum1*$bottomsum2; 
   
  if($bottomtotal==0){ $bottomtotal=0.0000001; } 
   
  #calculate MI here 
  $MI+=(log($topsum/$bottomtotal)/log(10)); 
   
 } 
   
 $MI*=(1/$M); 
  
 return $MI; 
} 
 
 
#join probability density function of 2 variables using Gaussian kernel 
sub JOINT{ 
 my($xo, $xi, $yo, $yi, $h)=@_; 
  
 my $joint = exp(-((($xo-$xi)**2+($yo-$yi)**2)/(2*$h**2))); 
  
 return $joint; 
} 
 
#marginal probability density function of a variable using Gaussian kernel 
sub MARG{ 
 my($xo, $xi, $h)=@_; 
  
 my $marg= exp(-((($xo-$xi)**2)/(2*$h**2))); 
  
 return $marg; 
  
} 
 
 

 

 

 

 



 

 

169 

SCRIPTS: GENETIC-GENOMICS BY U-TEST (REPLACED w/ MI) 
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#!usr/bin/perl -w 
 
$initial=0; 
$CNVthreshold=0.168; 
 
open(IN, "<wholeCNVsgenesonly.tab") or die; 
while(<IN>){ 
 chomp $_; 
 @array=split/\t/,$_; 
 
 #hash tcga sample labels (sample name as keys, position as variable)  
 if($initial==0){ 
  foreach $i(1..scalar(@array)-1){ 
   $CNVaddress{$array[$i]}=$i; 
  } 
  $initial++; 
 } 
 
 
 #hash CNV vectors (gene name as key, entire string as variable)  
 else{ 
  $CNVvector{$array[0]}=$_; 
 } 
} 
close IN; 
 
#CNVaddress hash = addresses 
#CNVvector hash = values 
 
#reset initializer 
$initial=0; 
 
open(IN, "<gene_in_network_expression.exp") or die; 
while(<IN>){ 
 chomp $_; 
 @array=split/\t/,$_; 
  
 #hash tcga sample labels again (sample positions as keys, labels as variable 
 if($initial==0){ 
  foreach $i(2..scalar(@array)-1){ 
   $EXPaddress{$i}=$array[$i]; 
  } 
  $initial++; 
 } 
  
 else{ 
  @expression2=(); 
 
  next if(exists($CNVvector{$array[1]})==0); 
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  #for each gene, push expression into an array and hash the expression 
(key) to the sample (address)  
  foreach $i(2..scalar(@array)-1){ 
   push(@expression2, $array[$i]); 
   $EXPvector{$array[$i]}=$i; 
  } 
   
  #call and array CNV vector of same gene 
  @CNVrefarray=split/\t/,$CNVvector{$array[1]}; 
     
  for ($i=scalar(@expression2)-1; $i>=0; $i--){ 
  
 if(defined($CNVaddress{$EXPaddress{$EXPvector{$expression2[$i]}}})==0){ 
    splice(@expression2,$i,1); 
   } 
  } 
     
  #reorder expression array ascending  
  @expression=sort {$a <=> $b} @expression2; 
     
  #define 3 variables: amp del norm, initialize to zero  
  $amp=0; 
  $del=0; 
   
  $ampcount=0; 
  $delcount=0; 
  $normcount=0; 
   
  @amparray=(); 
  @delarray=(); 
   
  foreach $i(0..scalar(@expression)-1){    
  
 $CNVvalue=$CNVrefarray[$CNVaddress{$EXPaddress{$EXPvector{$expressio
n[$i]}}}]; 
       
   if($CNVvalue >= $CNVthreshold){  
    push(@delarray,$expression[$i]); 
   } 
    
   elsif($CNVvalue <= -$CNVthreshold){      
    push(@amparray,$expression[$i]); 
   } 
    
   else{ 
    push(@delarray,$expression[$i]); 
    push(@amparray,$expression[$i]); 
    $normcount++; 
   } 
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  } 
   
  foreach $i(0..scalar(@amparray)-1){ 
  
 $CNVvalue=$CNVrefarray[$CNVaddress{$EXPaddress{$EXPvector{$expressio
n[$i]}}}]; 
    
   if($CNVvalue <= -$CNVthreshold){$amp+=($i+1); $ampcount++;} 
  } 
   
  foreach $i(0..scalar(@delarray)-1){ 
  
 $CNVvalue=$CNVrefarray[$CNVaddress{$EXPaddress{$EXPvector{$expressio
n[$i]}}}]; 
    
   if($CNVvalue >= $CNVthreshold){$del+=($i+1); $delcount++;} 
  } 
   
  $UscoreAMP=$amp - ($ampcount * ($ampcount+1))/2 ; 
  $UscoreDEL=$del - ($delcount * ($delcount+1))/2 ; 
   
  $Uampmax=$ampcount*$normcount; 
  $Udelmax=$delcount*$normcount; 
   
  if($UscoreAMP < $Uampmax/2){ $UscoreAMP=$Uampmax-
$UscoreAMP; } 
   
  $zAMP=NullDist($ampcount,$normcount, $UscoreAMP); 
   
  print "$array[1]\t$ampcount\t$zAMP\n"; 
 }    
} 
close IN; 
 
 
 
 
 
sub NullDist{ 
 my($n1,$n2,$Ufound)=@_; 
 my $total=$n1+$n2; 
 my @Uray=(); 
 my @n1=(); 
  
 #print "$n1\t$n2\t$U\n"; 
 my $trials=5000; 
 #$count=0; 
  
 foreach $i(1..$trials){ 
  my $temp=$total; 
  my @n2=(0..$total); 



 

 

173 

  #print "entering first loop\n"; 
  while(scalar(@n1) <= $n1){ 
   my $int=int(rand($temp-1))+1; 
    
   push(@n1,$n2[$int]); 
   splice(@n2,$int,1); 
   $temp--; 
  } 
  
  my $sum=0; 
  
  foreach $entry(@n1){ 
   $sum+=$entry; 
  } 
  
  $U=$sum-(scalar(@n1) * (scalar(@n1)+1)/2); 
  
  if($U < $n1 * $n2 - $U){ $U = $n1 * $n2 - $U;} 
  
  push(@Uray,$U); 
  @n1=(); 
 } 
 
 my $average=0; 
 
 foreach $entry(@Uray){ 
  $average+=$entry; 
 } 
 
 $average=$average/scalar(@Uray); 
 
 my $stdev=0; 
 
 foreach $entry(@Uray){ 
  $stdev+=($entry-$average)**2; 
 } 
 
 $stdev=sqrt($stdev/(scalar(@Uray)-1)); 
  
 #print "$n1\t$n2\t$average\t$stdev\n"; 
  
 my $z=($Ufound-$average)/$stdev; 
 @Uray=(); 
 return $z; 
} 
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APPEND05 – Manuscript Figures and Figure Legends 

Figure1.  
(a) 1 Network map showing co-mutated f-CNVG loci as a function of the 
statistical associations of genes harboring amplifications (blue nodes) or 
deletions (red nodes). Edges denote a statistically significant association 
between connected f-CNVGs ascertained by Fisher Exact’s Test (FET) (p < 0.05 
Bonferroni corrected). The connected nodes’ clustering distance is also based on 
strength of association i.e. juxtaposed nodes are more significantly associated to 
each other than distantly connected nodes. Chromosome location for the larger 
clusters, and the location of the C/EBP" and KLHL9 nodes are provided. (b) 483 
loci were identified as bearing functional CNV genes (f-CNVG). Presented is a 
statistical summary of associations of the f-CNVGs passing these criteria to the 
poor-prognosis subtype versus the good-prognosis subtype, including “classical” 
oncogenesis f-CNVGs. Marks indicate amplifications (+) deletions (-) and diploid 
(WT) for each gene.   
 
Figure2. 
(a) The f-CNVGs statistically co-occurring with amplifications of C/EBP" or 
deletions of KLHL9, and associated with the poor prognosis phenotype across all 
TCGA samples were retrieved from the f-CNVG association network from Figure 
1a (amplifications as blue nodes, deletions as red nodes, edges denoting 
significant association). Each f-CNVG in the cluster for C/EBP" (b) or KLHL9 (c) 
was then conditionally tested in pair-wise fashion for association to the poor 
prognosis subtype; color grading corresponds to the -log(p) of the association 
(white cells indicate p > 0.1) of the tested locus (rows) to the poor prognosis 
phenotype upon conditioning for the absence of the indicated, conditioned locus 
(columns). I.e., conditioning on KLHL9 abrogates the association of all other f-
CNVGs in its cluster to the poor-prognosis phenotype (white column), while only 
one locus can abrogate association of KLHL9 (red row). Only KLHL9 and 
C/EBP" (indicated in bold and boxed in) remove all associations across their 
respective co-mutated clusters when conditioned for, yet remained robust to 
conditioning on the other genes in the cluster. The average -log(p) value 
associated with each conditioned locus across all tested loci is provided in the 
last row of each heatmap. 
 
Figure3. 
(a) Genomic q-PCR analysis of an independent cohort of 63 patients reveals a 
high enrichment of KLHL9 deletions in patients with poor prognosis. y-axis is 
reported in CT values with the cutoff for statistically significant evidence of a 
deletion presented as a red line; all CT values above the red line indicate 
evidence of deletion. CT values are reported as mean ±SEM (b) Statistical 
analysis of the results presented in Figure 3b shows a highly significant 
association of samples bearing a KLHL9 deletion to the poor prognosis cohorts. 
(c) Kaplan-Meier curves of patients based on their genotype at the KLHL9 and 
CEBPD loci. x-axis represents post-diagnostic survival in months, y-axis the 
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percentage of patients surviving at measured time points. The presence of 
C/EBP" amplifications and KLHL9 deletions in patient samples (red line) is 
sufficient to separate poor prognosis from good prognosis patients in GBM TCGA 
samples, as defined by expression of PN signature markers (black line), and 
even compared to pooled Good and Poor prognosis samples lacking those 
mutations (blue line) at a statistically significant level (p1 = red vs. blue, p2 = red 
vs black, alpha=0.05). Distribution of prognoses of individual patients with tumors 
bearing the C/EBP" amplification (C/EBP"+) and KLHL9 deletions (KLHL9-) are 
indicated as hashes in the labeled boxes below the graph. Hashes note the time 
of death after diagnosis of each patient bearing the corresponding mutation 
across all samples. (d) IHC probing for CEBPB and CEBPD proteins in these 
primary tissue samples reveals a strong correlation between elevated CEBP 
expression in GBM tumors and the MES subtype, as well as a significant 
association to KLHL9 deletions. 
 
Figure4. 
Effect of KHLH9 expression on C/EBP!/" and YKL40 mRNA and protein levels 
96 hours post-induction. (a) KHLH9 mRNA expression levels by qPCR in the two 
inducible KHLH9 clones and GFP control cells. (b) RNAseq analysis of these 
cells after 48 hours of induction reveals significant dysregulation in ARACNE-
predicted transcriptional targets of C/EBP!, C/EBP", and a significant 
reprogramming away from the canonical MES subtype. Benchmark 
mesenchymal markers are indicated on the barcodes for reference. No 
significant change in C/EBP! or C/EBP" expession levels were observed (c) 
KHLH9, C/EBP!, C/EBP", and STAT3 protein levels 72h after Dox-mediated 
induction of KHLH9 expression. B-actin was using as housekeeping control 
gene. 
 
Figure5. 
Protein half-life time course for C/EBP!/" conditioned on KLHL9 expression. 
Abbreviations: DOX = doxycycline, MG132 = proteasome inhibitor. (a) A 4-hr 
exponential time courses conducted for protein half-life in KLHL9-induced , 
KLHL9-induced-proteasome-inhibited, and GFP-induced SF210 cells with 
cyclohexamide treatment. Cells expressing KLHL9 in the presence of 
cyclohexamide showed a protein half-life of ~1hr for C/EBP!/" proteins that was 
not observed in GFP controls (>2hr half life). Addition of MG132 to KLHL9-
expressing cells restored the half-life of the CEBP proteins to those observed in 
the KLHL9-null GFP controls. (b) Co-immunoprecipitation of KLHL9 shows an 
interaction between KLHL9 and CEBP proteins (c) Immunoprecipitation of 
C/EBP! and C/EBP" proteins and probing for ubiquitylation reveals increased 
concentrations of poly-ubiquitylated CEBP proteins only when KLHL9 is 
expressed; conversely, precipitating ubiquitylated species and probing for CEBPs 
corroborates this observation. These IPs (in Figure 5c) were performed under the 
presence of MG132. 
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Figure6. 
(a) A basic representation of the KLHL9 protein showing key functional domains, 
and the structure of the mutant KLHL9-#BTB. (b) Ubiquitin IPs of the three 
constructs following 24 hours of expression and 4 hours of MG-132 treatment 
shows suppression of ubiquitylated CEBP species when a mutant, inactive form 
of KLHL9 is used for rescue. (c) Western blotting of whole cell lysates after 48 
hours of exogenous expression of either KLHL9, KLHL9-#BTB, or NT.  
 
Figure7. 
(a) Induction of KLHL9 is followed by the appearance of large, circular cells with 
large nuclei, visualized by blue nuclear stain. These cells also do not incorporate 
EdU (red) when exposed to it over 24 hours, unlike the normal, fibroblast-like 
counterparts. Cells that do not incorporate EdU (and are therefore considered 
non-proliferative) have nuclei that appear blue in the composite image; arrows 
demarcate the nuclei of these cells. (b) Flow cytometry of BrdU incorporation by 
KLHL9-induced (red) and uninduced cells (black) after 24 hours of BrdU 
exposure is presented as histograms internally normalized to the highest peak. A 
BrdU negative control is provided (gray). Color-coded integrations for the area 
under the defined peaks are provided as left-peak : right-peak percentage ratios. 
(c) Cell viability measured as a function of ATP activity in KLHL9-expressing vs 
KLHL9-nonexpressing cells and GFP controls. Closed datapoints represent 
normalized cell proliferation in DOX-induced samples and open datapoints 
represent DOX-negative cells. Data is presented as the mean ± SEM.  
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APPEND06 – Manuscript Supplemental Figures and Figure Legends 

SuppFigure1.  
(1a) Five hierarchically self-regulating transcription factors (C/EBP!/", STAT3, 
FOSL2, BHLHB2, and RUNX1) were identified as the master regulators of 
aggressive, poor prognosis GBM by the ARACNE algorithm. (1b) TCGA samples 
classified into “good” and “poor” prognosis using the activity of these five 
transcription factors in TCGA data shows a statistically significant separation in 
survival curves (p<0.05). 
 
SuppFigure2.  
Functional copy number variation genes (f-CNVGs) are defined as copy number 
variations in gene loci where differential expression of the gene is detected in 
correlation with the observed CNV. (2a) Nonfunctional CNVs will show no 
differential expression of host genes between amplified (red) and diploid (blue) 
samples. (2b) Functional CNVs show a measurable differential expression 
between amplified (red) and normal (samples). (2c) Measuring statistical 
dependencies between CNVs and gene expression via traditional statistical tests 
yields little statistical power, producing only 51 functional CNVs (U-test). In 
constrast, information theoretic approaches (Mutual Information) more than 
double the amount (124 total) of detectable dependencies at the tested 
significance threshold, and include all those detectable by traditional statistical 
methods. 
 
SuppFigure3.  
The null distribution for measuring mutual information is empirically-determined 
by randomly pairing 10,000 CNV and gene expression vectors and measuring 
the mutual information between them, representing the mutual information 
obtained under the null hypothesis of random pairing (no correlation). A 
regression function is then fit to this distribution that is used to estimate the p-
values of mutual information measured in the analysis that is no longer bound by 
sampling size. 
 
SuppFigure4. 
Eight huGBM-derived cell lines assayed for deletions in the KLHL9 or CDKN2A 
CDS locus. y-axis represents normalized CTs; positive CTs indicate less 
genomic DNA present, and each CT represents a fold change of 2 relative to the 
control GAPDH levels, set at 0 CT. CT values are reported as mean ±SEM. Red 
line indicates threshold for statistically-significant evidence for genomic deletions. 
 
SuppFigure5. 
(5a) Probe mapping of the Affymetrix SNP arrays reveals lack of coverage of the 
C/EBP" gene locus (red hashes denote probes across different samples) and 
sparse coverage of the genomic region compared to CGH arrays. (5b) Probe-
wise association mapping of the chromosome 8 locus using Affy SNP arrays 
does not reveal significant association of the gene locus with poor prognosis as 
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reported by the CGH arrays. (5c) Using a sliding window integration, significant 
association of the C/EBP! locus is detected using Affymetrix arrays, though not 
as significantly as reported by CGH arrays. X-axes represent chromosome 
position in megabases, y-axis depicts odds ratios of association. 
 
SuppFigure6. 
Probes available in Affymetrix SNP arrays do not recapitulate the CNV;gene 
expression correlations observed when integrating the CGH arrays with gene 
expression profiles. The three maximally associated probes in the region, labeled 
as peaks -1,0, and +1, were each individually tested for correlation to the mRNA 
expression of C/EBP!; those probes were unable to predict mRNA levels with 
any significance. Integration of probes using a sliding window reveals a 
correlation with C/EBP! mRNA, but still with less information than the probes 
provided by the CGH arrays. 
 
SuppFigure7. 
Segmentation maps pre-GISTIC processing of the CEBPD and KLHL9 genomic 
loci were used to deconvolve the mutational topography for genetical-genomics 
analysis. GISTIC processing removes the CEBPD locus entirely as a false signal 
and renders deletions at the KLHL9 and CDKN2A loci as mutually inclusive and 
equivalent across all samples bearing deletions at CDKN2A. 
 
SuppFigure8. 
Association scores presented as –log10(p) on the y-axes. X-axes plot the location 
of each locus by megabase along the chromosomes. Gene names in red indicate 
genes harboring functional CNVs. Bolded gene names indicate genes expressed 
in the TCGA GBM tumors, and plain text indicate genes that are not expressed in 
TCGA GBM. Gene locations are indicated as diamonds. (7a) Probe-wise 
association mapping across the locus on chromosome 8 harboring C/EBPd 
reveals a focal amplification that associates with the poor-prognosis subtype (red 
line). When samples bearing C/EBP! amplifications are removed, the association 
across the region is also removed (blue line). Gene locations are indicated 
(diamonds). (7b) Probe-wise association mapping across the locus on 
chromosome 9 harboring KLHL9 reveals a deletion that associates with the MES 
subtype versus PN/PRO (red line) spanning ~21MB-22MB, including KLHL9 and 
CDKN2A. When samples bearing C/EBPd amplifications are removed, the 
association across the region is also removed (blue line).  (7c) At the KLHL9 
locus, removing all samples carrying a deletion of the CDKN2A locus but diploid 
at the KLHL9 locus enhances the association of the KLHL9 locus to the poor-
prognosis phenotype (blue line) compared to the complete set (red line). 
 
SuppFigure9. 
Transcriptional cross-talk experiments using siRNAs reveals regulatory 
interactions between the MES master regulators CEBPD and STAT3. STAT3 
silencing induces a reduction in transcription of CEBPD, placing CEBPD and 
CEBPB as the most downstream regulators of the three 
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SuppFigure10. 
Gene lists of genes bearing CNVs functionally correlating with MGES behavior (f-
CNVGs) are listed by their methods of identification: genetical genomics and 
MINDy modulator analysis. In addition, a list of commonly-used “classical” CNV 
markers of GBM oncogenesis are listed, and the genes whose CNVs were 
identified as f-CNVs by our genetical genomic analysis are represented in bold. 
All classical CNVs that were not identified appeared in fewer than 10 samples in 
the total TCGA set (<5% of samples). 
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