View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Columbia University Academic Commons

April 25, 2007

FG 2007:
The 12th conference on Formal
Grammar
Dublin, Ireland
August 4-5, 2007

Organizing Committee: Laura Kallmeyer
Paola Monachesi Gerald Penn
Giorgio Satta

CENTER FOR THE STUDY
OF LANGUAGE
AND INFORMATION

https://core.ac.uk/display/161444936?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

April 25, 2007

1

Solving Unrestricted Dominance Graphs
ALEXANDER KOLLER AND STEFAN THATER

Abstract
We present the first ever algorithm for solving unrestricted dominance graphs. The
algorithm extends existing polynomial solvers for restricted classes of dominance graphs,
which are not sufficient to model newer theories of scope ambiguity. Using the new
solver, these theories now have access to an efficient solver for the first time. The solver
runs in cubic time; for those graph classes that could be solved in the past, the runtime is
reduced to the same quadratic time that the most efficient previous solvers achieved.

1.1 Introduction

Scope underspecification is the standard technique to deal with scope ambi-
guities in computational linguistics. The basic idea behind it is to derive for
a sentence that exhibits a scope ambiguity a compact underspecified repre-
sentation (USR) that describes the set of readings, rather than enumerating
the individual readings directly. Dominance graphs (Althaus et al., 2003, Egg
et al., 2001) offer a particular attractive framework for modelling scope un-
derspecification: they have a clean and simple formal definition, can encode
USRs in other formalisms, and efficient solvers are available (Bodirsky et al.,
2004).

However, the existing efficient solvers are restricted to solving only weakly
normal dominance graphs. This restriction is consistent with the mainstream
theories of scope used in underspecification which go back to (Cooper, 1983,
Hobbs and Shieber, 1987). Put simply, these approaches assume that all per-
mutations of quantifiers that lead to well-formed object language formulas are
actually readings. For instance, (1) below is assumed to have five readings.

(1) Two policemen spy on someone from every city

However, a number of researchers (e.g., Larson, 1985, Sauerland, 2004,

FG-2007.
Organizing Committee:, Laura Kallmeyer, Paola Monachesi, Gerald Penn, Giorgio Satta.
Copyright (© 2007, CSLI Publications.

1

April 25, 2007

April 25, 2007

2 / ALEXANDER KOLLER AND STEFAN THATER

Joshi et al., 2004) have argued that sentences such as (1) have four rather than
five readings because the subject NP quantifier cannot be placed between the
two quantifiers from the object. Kallmeyer and Romero (to appear) provide an
underspecification analysis based on this assumption. Their analysis can be
straightforwardly modelled with dominance graphs, but the resulting graphs
are not weakly normal, so existing algorithms cannot be applied. On the other
hand, naive algorithms for enumerating all scopings from such an USR are
too slow for practical use.

In this paper, we present an algorithm for solving unrestricted dominance
graphs that permit an analysis of (1) as proposed by Kallmeyer and Romero.
The algorithm generalises an earlier algorithm for weakly normal graphs
(Bodirsky et al., 2004). The worst-case runtime for deciding solvability is
cubic in the size of the graph. For the special case of weakly normal graphs,
it runs in quadratic time, just like the earlier solver. We have implemented the
algorithm and will make it available in an open-source implementation.

In Section 1.2, we will define dominance graphs and adapt the notion of
solved forms to the non-weakly-normal setting. In Section 1.3, we will present
the new solver for unrestricted dominance graphs. In Section 1.4, we will
adapt the notion of hypernormally connected dominance graphs to the non-
normal setting, so as to ensure that the solver’s concept of solved forms actu-
ally corresponds to the intuition. Finally, Section 1.5 concludes and points to
future work.

1.2 Dominance graphs

A labelled dominance graph (Althaus et al., 2003) consists of a collection of
tree fragments which are connected by dominance edges (see Fig. 1).

Definition 1 A dominance graph is a directed graph G = (V, E W D) with
two kinds of edges—tree edges E and dominance edges D—such that the
graph (V, E) defines a collection of node disjoint trees. We call the trees
in (V, E) the fragments of G. A node v is called a root if v does not have
incoming tree edges; it is called a leaf if it does not have outgoing tree edges.

A labelled dominance graph over a ranked signature ¥ is a triple (V, E &
D, L) such that (V, E'W D) is a dominance graph and L : V' ~~ 3 is a partial
labelling function. If L(v) is defined, then the number of tree edges out of v
must be equal to the arity of L(v). L must be defined for all non-leaves, and
every fragment must contain at least one labelled node. Unlabelled leaves are
also called holes.

We will write R(F") for the root of the fragment F', and we will typically
just say “graph” instead of “labelled dominance graph.”

Solved forms. Dominance graphs can be seen as a compact descriptions of
sets of trees trees. These trees can be represented by the (minimal) solved

SOLVING UNRESTRICTED DOMINANCE GRAPHS / 3

every,

N
every, some,
A A A : : two,
city I A
city I person- fm% pol I xe ¢
X o oy " > pol I Nme‘
person-from spy
P AL A,

FIGURE 1 A dominance graph (left) and a minimal solved form (right)

@ () A © A o A © A
0 AA AN AN AN
A A AN AN Ax A
ArAX TR SR AT OA
AN AN AA A
FIGURE 2 The five minimal solved forms of the graph in Fig. 1

forms of the graph.

Definition 2 A dominance graph S is a solved form if it is a forest. A solved
form S is a o-solved form of a graph G iff o is a partial function o : Vg ~~ Vg
such that Vg = 6(V;) and for all nodes u, v € Vg:

1. if (u,v) € Eq, then (6(u),6(v)) € Eg;

2. if L¢ is defined on v, then Lg is defined on 6(v) and Lg(6(v)) =
La(v);

3. if (u,v) € D¢, then there is a (directed) path using tree and dominance
edges from & (u) to 6(v) in S;

4. if u # v and L is defined both on u and v, then 6 (u) # &(v),

where & is the total function from V¢ to Vi that maps a node u to o (u) if this
is defined and to w otherwise. We call o a substitution, and write Go for the
graph obtained from G by replacing each node v by 6(v). If we don’t care
about o, we will also call S simply a solved form of G.

A graph is solvable iff it has a solved form.

Note that a solved form S of a graph G can also be a solved form of another
(less specific) solved form S’ of G. The “is a solved form of” relation is thus
a partial order on the (finite) set of all solved forms of the same graph G. We
call the least specific elements of the order the minimal solved forms of G.

This definition of solved forms generalizes earlier definitions in the litera-
ture in that it allows different nodes of G to be mapped to the same node of
S by 0. Solved forms according to earlier definitions are exactly the ()-solved
forms here.

April 25, 2007

April 25, 2007

4 / ALEXANDER KOLLER AND STEFAN THATER

every, somey two, A
'A‘t:_ 'Aq "A:’ " q‘ "
i g R ! SO
city person—fmn?\‘ ', pol I . : ,%\ oy ¥
. 4 .
X X @& ey PR y A
s f s AT S ,‘/\ﬂ
W p,

=X\, TAA T

FIGURE 3 Kallmeyer and Romero’s analysis of (1) with two of its four solved forms.

dominance edge types solvability

htor rtor rtoh
Thiel (2004) yes no no O(n+m)
Bodirsky et al. (2004) yes yes no O(n(n+m))
present paper yes yes yes O(n(n+m))

FIGURE 4 Complexity of dominance graph problems.

Modelling scope underspecification. An example of a labelled dominance
graph is shown on the left of Fig. 1. Tree edges are drawn as solid arrows,
and dominance edges as dotted ones. The graph can be seen as an USR for
the sentence (1): The tree fragments specify the “semantic material” the indi-
vidual readings are made up of, and the dominance edges restrict the way the
tree fragments can be arranged. In total, the graph has five minimal o-solved
forms (all with 0 = (), which correspond to the five readings of (1). The
solved forms are shown in Fig. 2, where triangles stand for tree fragments;
solved form (e) is also shown on the right of Fig. 1.

Kallmeyer and Romero (to appear) model their scope theory, which as-
sumes only four readings for (1), by adding a dominance edge from the root
of fragment 2 to the the right-hand hole of fragment 1 to the graph (their
(37); see Fig. 3). This edge has the effect that whenever fragment 1 domi-
nates fragment 2 in a solved form, the endpoints of the edge must be mapped
to the same node by o. So this graph has four solved forms: the two shown in
Fig. 3, plus Fig. 2 (a) and (d).

Solved forms can still contain dominance edges, but in both examples we
can obtain a concrete semantic representation (or configuration of the graph)
from each solved form by identifying the endpoints of each dominance edge.
We will explore this process further in Section 1.4.

Classes of dominance graphs. For efficiency reasons, previous solvers for
dominance graphs have only been defined on restricted classes of domi-
nance graphs (see Fig. 4). Althaus et al. (2003) introduced normal dominance
graphs, in which all dominance edges must go from holes to roots. Solvabil-
ity of normal dominance graphs is a linear-time problem (Thiel, 2004). Later,
Bodirsky et al. (2004) presented a quadratic algorithm for solving dominance

SOLVING UNRESTRICTED DOMINANCE GRAPHS / 5

graphs that are weakly normal (i.e., all dominance edges go into roots) and
compact (i.e., all tree fragments have height at most one).

The dominance graph in Fig. 3 is not weakly normal because it contains
a dominance edge from a root to a hole. In this paper, we present a cubic
algorithm for solving arbitrary dominance graphs.

1.3 Solving dominance graphs

We will now present our solver for unrestricted dominance graphs in two
steps. First, we will extend Bodirsky et al.’s (2004) solver to non-compact
dominance graphs; this is necessary because even initially compact graphs
can become non-compact during a run of our algorithm. Then we will deal
with edges from roots to holes. Finally, we prove correctness and analyze the
runtime of our algorithm.

To simplify the presentation, we assume that the input graph G has been
preprocessed by (a) replacing each dominance edge (u, v) such that either v
is neither a root nor a hole, or that v is a hole and w is not a root, by the
dominance edge (u,r) where r is the root of v’s fragment; (b) deleting all
dominance edges (u,v) such that v dominates v and they are in the same
fragment; and (c) rejecting G as unsolvable if it contains a dominance edge
(u,v) such that v and v are in the same fragment, and v doesn’t dominate
v. The resulting graph has the same solved forms as G, and it only contains
dominance edges into roots and dominance edges from roots to holes, and
no dominance edges within a fragment. We also assume that GG is weakly
connected, but this restriction can be lifted by running the algorithm on each
connected component and taking the unions of the solved forms for each
component.

1.3.1 Solving non-compact dominance graphs

The main procedure of the solver is shown in Fig. 5. It is a function that ac-
cepts a connected subgraph GG of a dominance graph as its input, and returns
the set of its minimal solved forms. It is a recursive function that computes
the solved forms by building them top-down. Assume for now that the sub-
stitution o in the algorithm is always), that Go = G, and that F'° = F'; we
will change this below.

This function first computes the free fragments of G. A free fragment
is a fragment that can be at the root of a solved form of G. The function
COMPUTE-FREE-FRAGMENTS returns all fragments whose root has no in-
coming dominance edges and in which any two sister nodes are in different
biconnected components of G. It can be shown (along the lines of Bodirsky
et al. (2004)) that this is a necessary and sufficient condition for freeness.

Next, the algorithm iterates over all free fragments F' of G and computes
the split induced by F?. (Ignore the call to MAKE-SUPER-FRAGMENT for

April 25, 2007

April 25, 2007

6 / ALEXANDER KOLLER AND STEFAN THATER

UNRESTRICTED-SOLVER(G)
1 if G is already in solved form
2 thenreturn {G}
380
4 free «— COMPUTE-FREE-FRAGMENTS(G)
5 for each fragment F' in free
6 do o — MAKE-SUPER-FRAGMENT(R(F), G, D)
7
8

if this call did not fail
then (G1 — u1,...,Gn — un) < SPLIT(Go, F7)

9 for i from 1 ton
10 do S; «— UNRESTRICTED-SOLVER(G;)
11 ifS; =0
12 then return ()
13 S — SU {combine(F?,S1,...,5.) | S1 € S1,...,50 € Sn}
14 return S

FIGURE 5 A solver for unrestricted dominance graphs.

@ (b) © (d) A
A AA
OB an AN AN
AAAA A AKXA A A NN
FIGURE 6 Computation of solved form Fig. 2b

now.) A split consists of the weakly connected components (wces) Gy, ..., Gy,
of the graph Go — F'?, and records for each GG; the lowest node u; in F' out
of which a dominance edge goes into G;.

Finally, the algorithm calls itself recursively on each G; and records the set
of solved forms in S;. If all the GG; were found to be solvable by the recursive
calls, the algorithm constructs the set of solved forms for G by combining the
solved forms of the subgraphs. For each (S51,...,5,) € S1 X ... x S,, the
function combine builds a new graph S = (Vs, Es W Dg) such that Vs and
FEg are the unions of the node sets and tree edge sets, respectively, of F'* and
all the S;, and

Dg :=Dg, U...UDg, U{(u;,7;) | r;isrootnode of S;, 1 <i<mn}

In other words, combine merges the free fragment with the solved forms of
the subgraphs by adding dominance edges to the root of each sub-solved form
S, from the dominating node w; recorded in the split.

Fig. 6 shows an example computation. The input graph is shown in (a). The
algorithm chooses 1 as free fragment and removes it from the graph, which
splits the graph in two wcces in (b). Then it recursively computes a solved form
for each wcc; we only show one particular solved form for each wcce in (c).
Finally, fragment 1 and the two solved forms are combined into a complete

SOLVING UNRESTRICTED DOMINANCE GRAPHS / 7

MAKE-SUPER-FRAGMENT(u, G, A)
visited «— {u} U visited
oc—0
for h a hole of the fragment with root u
do P «— DOM-PARENTS(h, G, A)
if|P|>1
then fail
if|P|=1
then r < the unique element of P
if r € visited
then fail
o1 < {h — r} U MAKE-SUPER-FRAGMENT(r, G, {u} U A)
o<«—oUoq

0NN R W=

—_ e —
W= O 0

return o

FIGURE 7 Computing super-fragments.

solved form in (d).

1.3.2 Solving unrestricted graphs

The algorithm up to this point will solve non-compact weakly normal dom-
inance graphs. We now extend it to deal with cross edges i.e., dominance
edges from roots to holes as in Fig. 3.

The key challenge about cross edges is that a dominance edge (u,v) of
this kind expresses that either &(v) dominates the root of & (u)’s fragment, or
&(u) = &(v). In other words, it gives us a way to require equality of nodes,
which is not possible in weakly normal graphs. For instance, if 1 should be
at the root of a o-solved form of the example graph in Fig. 3, then the right-
hand hole of 1 and the root of 2 must be mapped to the same node by o. More
generally, whenever a fragment F' has a hole A with an incoming dominance
edge (r, h), o must identify h and r, as well as the endpoints of any cross
edges into holes below 7, etc.

Effectively, once we choose a free fragment F', we must compute a larger,
possibly non-compact super-fragment which must be at the root of any solved
form that has F' at the root. This computation can be done by the function
MAKE-SUPER-FRAGMENT shown in Fig. 7. The algorithm assumes that the
fragment I’ with root u should be used as the root fragment for a solved form
of G. It computes a substitution ¢ that maps holes to roots, in such a way that
the fragment with root v in Go is the super-fragment of F'in Go; it fails if it is
not such possible to construct such a super-fragment (or it is not tree-shaped).
We denote the super-fragment of F' under the substitution o by F*7.

The MAKE-SUPER-FRAGMENT algorithm proceeds as follows. It main-
tains a global variable visited that contains all fragment roots that have been
visited during the computation, and maintains the invariant that it is never
called on an w that was already visited. In addition, it accepts as third argu-

April 25, 2007

April 25, 2007

8 / ALEXANDER KOLLER AND STEFAN THATER

(a) (b) (©)

, Ai
A A A AN
ANA AN AN A LN A

FIGURE 8 Computation of the right solved form of Fig. 3

ment A the set of all fragment roots that dominate u in the super-fragment
(w’s ancestors). The algorithm iterates over all holes of the fragment with
root u. For each hole h, it computes the set P of all nodes from which there
is a (cross) dominance edge into &, such that P only contains nodes in GG, and
P contains no ancestors of . If there is more than one such parent, then the
algorithm fails, as this would require us to identify the hole with two differ-
ent roots. However, it is acceptable to have incoming dominance edges from
ancestors, as these are implicitly realized by the superfragment anyway. If the
hole has a single incoming dominance edge (from r), the algorithm checks
whether r (which must be a root) has been visited before. If yes, it fails: This
means that r has already been placed in the super-fragment in a position that
is disjoint from u, so the dominance edge can’t be satisfied. Otherwise the
algorithm calls itself recursively on 7 (adding u to r’s ancestors), and adds
the substitution computed by the recursive call, together with a substitution
of r for h, to the current substitution.

Let’s consider the example graph in Fig. 3 again. If we call MAKE-SUPER-
FRAGMENT on the fragment 1 in this graph, it will compute the partial func-
tion 0 = {h1a > ra}, where hqs is the second hole of 1 and r5 the root of 2.
This corresponds to constructing the super-fragment at the root of the second
solved form in Fig. 3. On the other hand, if we call it for the fragment 2, it
will return the empty substitution, (), leading to the solved form in Fig. 2a.
This is because by the time the algorithm reaches the cross edge, its source
has been stored as an ancestor, and so it is trivially satisfied at this point.

Now we can go back to the solver in Fig. 5 in more detail, without the
assumption that o must be (). We have already seen that the solver iterates
over all fragments F' that are free in G. But now G is allowed to contain cross
edges, so we call MAKE-SUPER-FRAGMENT to compute the substitution o
that induces the super-fragment F'? of F'. The algorithm calls itself recur-
sively on the connected components of Go — F'?, and combines their solved
forms with F'? in the way described above.

Fig. 8 shows an example computation. The input graph is shown in (a). The
algorithm chooses 1 as free fragment. It then computes the super-fragment for
1 (fragments 1 and 2), and removes it from the graph. This splits the graph into
three wecs in (b). All three wcces are in solved form, and the recursive call to

April 25, 2007

SOLVING UNRESTRICTED DOMINANCE GRAPHS /9

UNRESTRICTED-SOLVER returns immediately. Finally, the super-fragment
and the wccs in (b) are combined into a complete solved form in (c).

1.3.3 Correctness of the algorithm

We claim that the algorithm computes exactly the minimal solved forms of a
dominance graph. The key lemma in this proof is as follows.

Lemma 1 Let F be a fragment in a solvable graph G, and let o = MAKE-SUPER-FRAGMENT(R(F), G,)
not be failure. Then the following statements are equivalent:

1. R(F) has no incoming dominance edges in G, and any two nodes u
and v that are sisters in F' are in different biconnected components of

G.

2. Go has a solved form at whose root is F°.

Proof. 1 = 2. Assume that (1) is true. Then it can be shown by induction over
the number of cross edges traversed by MAKE-SUPER-FRAGMENT that F'7
has the same properties in Go. By adapting Corollary 8.1 of Bodirsky et al.
(2004), (2) follows.

2 = 1. Let Go have a solved form with root . Then by adapting Lemma
7.1 of Bodirsky et al. (2004), we can prove that the root of F'“ has no incom-
ing dominance edges in Go, and all sisters are in different BCCs. But this
means that these conditions are also satisfied for F' in G. g

In other words, a fragment of a subgraph G’ of G is processed in lines
8—13 of the algorithm if and only if its super-fragment can be at the root of a
solved form of G’. This insight can be completed to a proof of the following
correctness statement, which we can’t show here for lack of space.

Proposition 2 For any dominance graph G, UNRESTRICTED-SOLVER(G)
returns the set of minimal solved forms of G.

This means that UNRESTRICTED-SOLVER is a solver for unrestricted
dominance graphs.

1.3.4 Runtime analysis

Now let’s analyze the runtime of the new solver. Every recursive call of the
algorithm spends time O(m + n) on computing the set of free fragments
by computing the biconnected components of G. Next, the algorithm iterates
over O(n) free fragments. For each of these, it computes the induced super-
fragment in time O(n) (MAKE-SUPER-FRAGMENT may have to visit every
node in the graph once), and it computes the weakly connected components
of Go— F? in time O(m+mn). Finally, it calls itself recursively and combines
the sub-solved forms.

Our solver shares the property of the Bodirsky algorithm that if any choice
of a free fragment for which MAKE-SUPER-FRAGMENT doesn’t fail leads to

April 25, 2007

10 / ALEXANDER KOLLER AND STEFAN THATER

the discovery of a solved form, then every choice will. This means that like
them, we only need to pursue a single choice in each iteration to decide solv-
ability, i.e. we only need to make O(n) recursive calls throughout the entire
run of the algorithm. In total, this means that our algorithm decides solvability
in time O(n?(m+n)). This is slower than the O(n(m-+n)) that the Bodirsky
solver takes; the difference is due to the fact that a fragment that passes the
freeness test in our line 4 may still make MAKE-SUPER-FRAGMENT fail, and
detecting this failure may take linear time. However, their solver is restricted
to weakly normal graphs. For such graphs, MAKE-SUPER-FRAGMENT will
never fail, and so our algorithm will automatically decide solvability in time
O(n(m 4+ n)) as well.

In order to enumerate all minimal solved forms, our algorithm can be im-
plemented as a chart solver (Koller and Thater, 2005) to make sure that no
recursive call is made twice. In this version of the algorithm, the iteration
over the free fragments is actually carried out, and the runtime for each it-
eration step is dominated by the linear-time computation of the connected
components. This means that our solver can be used to compute a chart in
asymptotically exactly the same runtime as the Koller & Thater solver.

1.4 Downward connected graphs

Our solver computes the minimal solved forms of a dom- £
inance graph. However, in the application to underspecifi- I
cation we are not really interested in the solved forms of a S0

. . . a e . b
graph; we want its configurations, i.e. all arrangements of

the fragments into a tree that contains no more dominance edges and that
obeys the dominance requirements. Not all graphs in solved form have con-
figurations: The solved form to the right contains a hole with two outgoing
dominance edges, so we would have to “plug” a hole with two different roots
to get a configuration.

However, if a solved form is simple — i.e., all their dominance edges go
from holes to roots, and every hole has exactly one outgoing dominance edge
—, it is straightforward to construct a configuration from the solved form by
identifying the endpoints of each dominance edge. Conversely, every configu-
ration can be constructed from some solved form. So if we have a subclass of
dominance graphs for which we can prove beforehand that all minimal solved
forms are simple, we can use the above solver to compute the configurations.

For normal dominance graphs, it has been shown that all solved forms
of dominance graphs that are leaf-labelled and hypernormally connected are
simple (Koller et al., 2003). These graph classes have somewhat technical
definitions, but it has been shown (Flickinger et al., 2005) that they are ex-
tremely natural and seem to encompass all USRs that are used in practice.

SOLVING UNRESTRICTED DOMINANCE GRAPHS / 11

Definition 3 A hypernormal path (Althaus et al., 2003) in a normal graph G
is a path in the undirected version of G that does not use two dominance edges
that are incident to the same node. G is hypernormally connected iff all nodes
in G are pairwise connected by simple hypernormal paths. G is leaf-labelled
if all holes have outgoing dominance edges.

This result is not necessarily true for graphs that are not normal. However,
we will now show that the analogous notion of downward connected domi-
nance graphs is sufficient to guarantee the simplicity of all solved forms in
the general case.

Definition 4 Let G be a dominance graph. The normal backbone of G is the
result of removing all dominance edges that do not go from holes to roots in
G. A dominance graph is called downward connected iff its normal backbone
is hypernormally connected.

Proposition 3 All solved forms of a leaf-labelled, downward connected dom-
inance graph G are simple.

Proof. Consider the normal backbone G’ of G. G’ is normal, hypernormally
connected and leaf-labelled, hence all minimal solved forms S7,..., S} of
G’ are simple. G’ is a subgraph of G, so every solved form S of G must be a
o-solved form of some S, (1 < i < k). It is easy to see that a o-solved form
of a simple solved form must be simple. O

Corollary 4 The configurability problem of downward connected dominance
graphs is in O(n?(m +n)).

1.5 Conclusion

In this paper, we have presented the first polynomial solver for unrestricted
dominance graphs. The algorithm decides the solvability problem of dom-
inance graphs in cubic time and solvability of weakly normal graphs in
quadratic time. So far, no polynomial solver for unrestricted dominance
graphs existed, and the practically most efficient solvers for weakly nor-
mal graphs ran in quadratic time as well. The main technical problem that we
had to overcome was the ability of cross edges to express node equalities.
The existence of the new solver has the immediate effect that recent the-
ories of scope ambiguity, which predict four rather than five readings for the
three-quantifier sentence (1), now have access to an underspecification for-
malism with an efficient solver. This will facilitate the experimentation with
such scope theories and approaches to semantics construction based on them.
We have implemented our solver and will make it available as an open-
source project. In the future, the most obvious extension of our work would be
to investigate whether our algorithm can be improved to worst-case quadratic

April 25, 2007

April 25, 2007

12 / ALEXANDER KOLLER AND STEFAN THATER

runtime. This would involve computing all free fragments that can be ex-
tended to super-fragments in linear time.

References

Althaus, E., D. Duchier, A. Koller, K. Mehlhorn, J. Niehren, and S. Thiel. 2003. An
efficient graph algorithm for dominance constraints. J. Algorithms 48:194-219.

Bodirsky, M., D. Duchier, J. Niehren, and S. Miele. 2004. An efficient algorithm
for weakly normal dominance constraints. In ACM-SIAM Symposium on Discrete
Algorithms. The ACM Press.

Cooper, R. 1983. Quantification and Syntactic Theory. Dordrecht: Reidel.

Egg, M., A. Koller, and J. Niehren. 2001. The Constraint Language for Lambda Struc-
tures. Logic, Language, and Information 10:457-485.

Flickinger, D., A. Koller, and S. Thater. 2005. A new well-formedness criterion for
semantics debugging. In Proceedings of the 12th HPSG Conference. Lisbon.

Hobbs, J. and S. Shieber. 1987. An algorithm for generating quantifier scopings.
Computational Linguistics 13(1-2):47-63.

Joshi, A. K., L. Kallmeyer, and M. Romero. 2004. Flexible Composition in LTAG:
Quantifier Scope and Inverse Linking. In R. Muskens and H. Bunt, eds., Computing
Meaning, Volume 3. Kluwer. To appear.

Kallmeyer, L. and M. Romero. to appear. Scope and situation binding in
Itag using semantic unification. Research on Language and Computation
Available at http://www.sfb441l.uni-tuebingen.de/~1k/papers/
KallmRomROLCO7.pdf.

Koller, A., J. Niehren, and S. Thater. 2003. Bridging the gap between underspecifica-
tion formalisms: Hole semantics as dominance constraints. In Proceedings of the
10th EACL. Budapest.

Koller, A. and S. Thater. 2005. The evolution of dominance constraint solvers. In
Proceedings of the ACL-05 Workshop on Software.

Larson, R. K. 1985. Quantifying into NP. Unpublished manuscript, available at
http://semlab5.sbs.sunysb.edu/~rlarson/gnp.pdf.

Sauerland, U. 2004. DP is not a scope island. Linguistic Inquiry 36:303-314.

Thiel, S. 2004. Efficient Algorithms for Constraint Propagation and for Processing
Tree Descriptions. Ph.D. thesis, Computer Science, Saarland University.

