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Abstract

Background: Arsenic in drinking water was associated with increased risk of all-cause, cancer, and cardiovascular death in
adults. However, the extent to which exposure is related to all-cause and deaths from cancer and cardiovascular condition in
young age is unknown. Therefore, we prospectively assessed whether long-term and recent arsenic exposures are
associated with all-cause and cancer and cardiovascular mortalities in Bangladeshi childhood population.

Methods and Findings: We assembled a cohort of 58406 children aged 5–18 years from the Health and Demographic
Surveillance System of icddrb in Bangladesh and followed during 2003–2010. There were 185 non-accidental deaths
registered in-about 0.4 million person-years of observation. We calculated hazard ratios for cause-specific death in relation
to exposure at baseline (mg/L), time-weighted lifetime average (mg/L) and cumulative concentration (mg-years/L). After
adjusting covariates, hazard ratios (HRs) for all-cause childhood deaths comparing lifetime average exposure 10–50.0, 50.1–
150.0, 150.1–300.0 and $300.1mg/L were 1.37 (95% confidence interval [CI], 0.74–2.57), 1.44 (95% CI, 0.88–2.38), 1.22 (95%
CI, 0.75–1.98) and 1.88 (95% CI, 1.14–3.10) respectively. Significant increased risk was also observed for baseline (P for
trend= 0.023) and cumulative exposure categories (P for trend = 0.036). Girls had higher mortality risk compared to boys (HR
for girls 1.79, 1.21, 1.64, 2.31; HR for boys 0.52, 0.53, 1.14, 0.99) in relation to baseline exposure. For all cancers and
cardiovascular deaths combined, multivariable adjusted HRs amounted to 1.53 (95% CI 0.51–4.57); 1.29 (95% CI 0.43–3.87);
2.18 (95%CI 1.15–4.16) for 10.0–50.0, 50.1–150.0, and $150.1, comparing lowest exposure as reference (P for trend = 0.009).
Adolescents had higher mortality risk compared to children (HRs = 1.53, 95% CI 1.03–2.28 vs. HRs = 1.30, 95% CI 0.78–2.17).

Conclusions: Arsenic exposure was associated with substantial increased risk of deaths at young age from all-cause, and
cancers and cardiovascular conditions. Girls and adolescents (12–18 years) had higher risk compared to boys and child.
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Introduction

Arsenic (As) is a known human carcinogen in adults as defined

by the International Agency for Research on Cancer (IARC) on

the basis of a large body of epidemiological evidence [1]. Indeed,

adverse health effects of As in drinking water are a major public

health concern in Bangladesh and elsewhere where there is

unacceptable levels of As in drinking water. Globally, around 100

million people are exposed, and in Bangladesh the problem has

been described as the greatest mass poisoning in history [2], where

high concentrations of naturally occurring arsenic found in shallow

well water are affecting enormous numbers of people exposed

through drinking water [3].

Arsenic in drinking water is established to be a major cause of

adult mortality [4]. So far, epidemiological studies in Taiwan [5],

Bangladesh [6,7], Chile [8], and Argentina [9,10] have reported

increased adult mortality associated with arsenic exposure. Only

a few studies on childhood mortality have been conducted in

relation to arsenic exposure [11–15]. Therefore, very little is

known about the association of As exposure and risk of childhood

deaths. More recently, research has suggested that early-life

exposure increases adult onset of chronic diseases [16,17]. Arsenic

may have greater impact on children than adults as suggested by

The American Academy of Pediatrics (AAP 2003) for its anti-

metabolic and carcinogenic properties, affecting organogenesis

and organs maturity taking place during childhood.
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Icddr,b Matlab field site established a longitudinal Health and

Demographic Surveillance System (HDSS) since the mid-1960s

covering a large population and subsequently collecting historical

assessment of As exposure for individuals [18], making it an ideal

location to investigate the long-term health effects of arsenic in

drinking water. This is a unique settings in contrast to settings in

other countries (such as Argentina, China, India, Taiwan, and the

United States), where high arsenic exposures come primarily from

wells at population level and not at individual level. Thus, we set

a novel approach to provide reliable estimates of any association

between varying levels of arsenic exposure and the risk of all-cause

childhood mortalities by analyzing data from 58,406 persons aged

5–18 years who were at risk for a total of 0.4 million person-years.

The impact of exposure during childhood is largely unknown.

Children are likely to be especially susceptible since organ

maturation and much functional development takes place during

childhood including many internal organs. We also assessed the

risk associated with combined cancer and cardiovascular specific

deaths in relation to early-life arsenic exposure.

Methods

Ethic Statement
All individuals gave written informed consent to participate. An

icddrb institutional review committee and the icddrb Ethical

Review Committee approved the baseline study. A mitigation

program was initiated in collaboration with Bangladesh Rural

Advancement Committee (BRAC), Bangladesh [19].

Study Area and Design
Matlab, is a typical rural area of Bangladesh which is located 55

kilometres to southeast of the capital Dhaka. Matlab has been

most affected in the country by tubewell water arsenic contam-

ination with established adverse health consequences [20,21].

This prospective study was designed based on a previous study

[18] that assembled the child population aged 5–18 years on

January 1, 2003. We excluded children under 5 years old because

our baseline screening involved persons aged 5 years and older.

We followed this child population through December 31, 2010. All

the childhood deaths prospectively captured by the monthly

Health and Demographic Surveillance System (HDSS) household

visits during January 2003 to December 2010 were included.

Causes of deaths were ascertained by verbal autopsy (VA) [22].

Follow-up time in person-years was calculated as the number of

days between the baselines interview and date of death, out

migration, or report of being alive on December 31, 2010

whichever came first. Participants with an accident-related cause

of death such as road traffic accident, drowning or other accidental

deaths or alive were censored.

Arsenic Exposure Assessment
All well water samples (n = 13286) were analyzed at baseline by

Hydride Generation Atomic Absorption Spectrometry (HG-AAS)

for determination of baseline individual level arsenic exposure.

Historical drinking water sources were also collected. For children,

we interviewed the parents or guardians regarding exposure

histories since birth. Details of study methodology and results have

been published previously [18].

Three exposure categories [baseline, time- weighted lifetime

average (average) and cumulative arsenic exposure] were calcu-

lated for each individual. Baseline means current water exposure

in time of interview. Only 55% people used tube-well water in the

1980s and this increased to 95% in the mid-1990s.On the

otherhand, many people have changed their tube-well

[24,25].Therefore it is needed other drinking exposure sources

for constructing historical exposure that can truly estimate

exposure. Time–weighted lifetime average (average) water expo-

sure was calculated for each participant based on the different

water sources used since their birth. An approximate time-

weighted mean arsenic exposure level (mg/L) was calculated over

the life time of each subject as Sj ((aj cj)/Sjaj,), where aj is the

number of years a well with arsenic concentration cj was used.

Cumulative water arsenic exposure means total concentration one

participants can consume. The cumulative arsenic exposure (mg-
years/L) was calculated as Sj (aj cj), where aj, is the number of

years a well with arsenic concentration cj was used [23,26].

Childhood Mortality Data
All childhood deaths (age 5–18 years) were ascertained for the

period between 1 January 2003 to 31 December 2010. Causes of

deaths were identified from routine VA conducted by specially

trained field staff of HDSS who were unaware of the arsenic

exposure of the household members. A close relative, namely the

mother of the deceased, was interviewed using a structured verbal-

autopsy questionnaire to captures signs and symptoms of diseases/

conditions that were present prior to death and any medical

consultations before death. Two physicians independently re-

viewed the VA questionnaire and assigned the underlying cause of

death. In case of disagreement, a third physician resolved the

cause of death. Assignment of causes of death was done in

accordance with the verbal autopsy standards that have been

developed by the INDEPTH network and the World Health

Organization (WHO) [27]. The cause of death was coded

following the 10th revision of International Classification of

Diseases (ICD-10) of the WHO.

Analyses
Covariates (age, sex, educational attainment, socio-economic

status) were derived from the HDSS database. Asset scores were

calculated through principal component analysis [28] and

categorized into quintiles: lowest as poorest and highest as richest.

Those with missing SES information (N= 1039) were imputed by

the series mean.

The mortality risk of arsenic exposures was estimated by Cox’s

proportional hazard models, adjusting for potential confounders.

First we assessed crude association and then adjusted for

covariates. A covariate was identified as a potential confounder

if associated with exposure and outcome at p#0.10 significance

level. Potential confounders that were found to change the effect

estimates by 5% or more were included in the adjusted

multivariate models. We included sex in the model as a priori

Baseline and time-weighted lifetime average lifetime exposure

were divided into five groups (,10, 10.0–50.0, 50.1–150.0,

150.1–300.0, and more than 300.0 mg/L, respectively). Cumu-

lative arsenic exposure or concentration-time product exposure

to arsenic was divided into four groups ,1000, 1000–4000, and

.4000 mg-yrs/L. Since there were fewer cancer and cardiovas-

cular deaths, baseline exposure was divided into four groups

(,10, 10.0–50.0, 50.1–150.0, and more than 150.0, respectively).

For all analyses, lowest exposure category was used as reference.

Adjusting for sex, SES, education, and baseline age, we plotted

cumulative hazard functions for each exposure category. Each

analysis was performed separately for each exposure (baseline,

time-weighted lifetime average and cumulative). All analyses were

conducted in SPSS 15.0 (SPSS Inc, Chicago, Illinois).

Arsenic and Childhood Mortality
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Results

There were 166,934 individuals of age 4 years and above were

interviewed and examined by the field staff during the arsenic

baseline study (2002–2003) who were available and met the AsMat

criteria. Of them, a total of 58,406 participants were assembled in

our cohort who met our eligibility criteria (age 5–18 years) from

the previous baseline study. During 2003–2010, 283 deaths were

ascertained and 23,429 individuals were lost to follow-up mainly

due to migration-out for new job, marriage, or education.

The mean baseline age was 11.763.5 years. There was no age

difference between boys and girls (11.663.5 vs. 11.7863.5). The

total follow-up time was 381,101 person-years. Table 1 shows the

distribution of demographic and exposure characteristics for the

baseline cohort and deceased individuals. Girls had slightly higher

mortality than boys (4.7 vs. 5.0 per 10000 person-years, ) and

adolescents had double the death rate of younger children (6 vs.

4 per 10000 person-years, P,0.001). The crude death rate was

much higher among the ‘‘no-education’’ group compared to

‘‘education’’ groups’’ (P,0.001).

Arsenic exposures (baseline, time-weighted lifetime average and

cumulative exposure) were associated with increased all-cause

childhood mortality (Table 2). The average arsenic exposure was
associated with all-cause childhood deaths in a dose-dependent

manner with an adjusted HR 1.88 (95% CI, 1.14–3.10) for the

highest average exposure category. However, dose-dependent

relationship was not monotonic. The risk of death due to all-cause

and to cancer, cardiovascular diseases, increased with increasing

exposure (Figure 1).
Similar significant risk of trend was observed in baseline (P for

trend= 0.054) and cumulative exposure categories (P for

trend= 0.034). Stratifying by gender, girls had higher risk of

death comparing to boys (Figure S1, Figure 2). Multivariable

adjusted HRs for girls were 2.31 (95% CI 1.35–3.95); for boys 1.00

(95% CI 0.54–1.80) compared to baseline arsenic exposure

categories .300 mg/L, respectively. Similar significant risk was

observed in baseline and cumulative exposure categories for

gender differences and overall all mortalities (P for trend= 0.0001).

The mortality pattern from childhood mortalities in relation to

baseline arsenic concentration is shown in Table 3 (Table S1).
Considering small numbers, the two highest exposure categories

were merged. The crude death rate per 100,000 was 8.5, 11.9,

10.8, and 18.9 for exposure categories, ,10, 10–50, 51–150, and

.150, respectively. For all cancer and cardiovascular deaths, the

increased risk was pronounced in relation to baseline arsenic

concentration (Table 3, Table S2). There was a steep increase in

crude death rate from the 3 lower categories to the highest

exposure category, and the overall crude death rate was 12 per

100,000 individuals. The risk of childhood cancer and cardiovas-

cular deaths was significant. Multivariable adjusted HRs

amounted to 2.49 (95% CI 1.13–5.16) comparing $150.1,

respectively (P for trend= 0.023) (data not shown). Although the

numbers are very small, the wide confidence intervals included

unity confirming that the relationship may become significant at

all levels if the numbers are increased or expected latency period

occurs.

Discussion

In this large population-based prospective study of rural

Bangladeshi children, we observed increased childhood mortality

associated with increased As exposure via contaminated well

water.

Few previous studies have focused on childhood cancer in low

exposure settings but those studies used ecologic exposure

assessment, and there was possibility of misclassification of

outcome data [12,13]. The issue of As exposure and childhood

mortality has not been studied in any arsenic exposed areas as such

Bangladesh. The results available from previous studies cannot be

used to infer any causal relationship due to their ecologic design,

rather they may be considered as hypothesis generating, and

therefore merits further study to seek more definitive answer to

confirm or refute. Thus, this is a first prospective cohort study with

individual level As exposure exploring causal association. Earlier

we reported excess adult deaths in Matlab population [6], whereby

Matlab provides a unique opportunity to investigate these arsenic

health effects, considering individual exposure assessments. Con-

sidering the magnitude of HR we identified, along with the

consistency of findings in all exposure categories suggest that these

findings are true, not due to chance or bias, although the number

of overall childhood death cases was relatively very small contrary

to the large exposed population. Furthermore, we also demon-

strated that arsenic-induced epigenetic modifications in utero may

potentially influence disease outcomes in later life [29]. Thus this is

a biologically significant risk that merits public concern.

More importantly, we observed a gender difference on the effect

of all-cause childhood deaths. Girls had higher risk of deaths

compared to boys in all exposure categories. Nearly all epidemi-

ological studies concluded that men have higher risk of developing

all arsenic-induced negative effects [1,4,30–34] including our

previous skin lesion study [18], except one [35]. Earlier we

demonstrated in the Matlab population that arsenic readily crosses

the placenta, therefore a positive correlation occurred between

maternal and cord blood arsenic [36].

Secondly, the magnitude of the effect estimates we observed

were large in relation to baseline exposure categories comparing

relatively small number of childhood cancers and cardiovascular

deaths that have been identified in this cohort. There has been

some interest on the association of As exposure and childhood

cancer mortalities in recent years using group-level aggregated

exposure data, but we found a sharp increased risk of liver and

leukemia cancer mortalities in this study, which could also be due

to the increased fatality of cancers related to arsenic based on the

evidence that arsenic causes increased mortality from many

cancers including lung, liver, kidney, and bladder cancers and not

just due to increased incidence alone [1]. This is also true in case of

mortality from pulmonary TB as reported by Smith et al, 2011

[37]. Higher multivariable adjusted HRs were found for

adolescents (HR=2.46, 95% CI, 1.03–5.88) than children

(HR=1.31, 95% CI 0.42–4.09) (data not shown). The plausibility

of a causal association between exposure and disease is enhanced if

experimental treatment can produce a similar condition.

Strictly speaking, there have been only five childhood cancer

studies [11–15] to compare with our results. All are ecologic in

nature, and no study showed childhood cardiovascular or all-cause

death risks. A non-significant relative risk 1.39 (CI: 0.7–2.76) for

lymphoblastic leukemia was reported from a Canadian case-

control study [14]. Another non-significant relative risk was

reported for all cancer combined 1.25 (CI 0.91–1.69), and for

leukemia 1.37 (CI: 0.92–1.83) in Nevada [13]. Similar results were

observed in Chile for all cancers combined [12], except liver

cancer mortality was markedly increased (RR=10.6, 95% CI 2.9–

39.2, P,0.001). Ecologic bias may have occurred in those studies

based on aggregated group level exposure data causing measure-

ment error. As such those studies may not be used as inferring

a causal relationship rather used as hypothesis generating. Truly

this is the first study that enabling us to analyze childhood

mortalities. Major studies focused on adult carcinogenic risks,

evidencing multisite carcinogenetic role and therefore its carcino-
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genicity among children remained uninvestigated. But the overall

carcinogenicity process is still undiscovered, and theoretically

arsenic causes aberrant cell proliferation including alteration in

apoptosis. In combination of disrupt cell proliferation, genetic

mutation, chromosomal breakage and genetic damage may

enhance carcinogenesis in children [38–40]. However, children

and adults may have differences in carcinogenic risks reflecting

differences in their tissue dosages and thereby differences in

sensitivity.

The major strength of our study included larger sample size,

individual exposure data, assessment of different exposures by

outcomes, and independent outcome data were collected pro-

spectively from the HDSS databases. The mortality data set

included relatively larger childhood mortality data over an

extended follow-up time (over 185 deaths during more than 0.4

million person-years at risks). Without a death registry, proper case

ascertainment may be uncertain in a developing country, but,

standardized approaches from widely validated verbal autopsy

methods attributed to the strength of the study. VA is a well-

known instrument ascertaining the cause of death based on

information obtained from close relatives through systematic

retrospective questioning [41]. Moreover, it is stemmed from

findings of earlier ecologic studies [11–15] that indicated increased

childhood deaths due to arsenic exposure. Another strength of our

study is that any biases were minimized by combining individual

outcome data from the regular HDSS monthly surveillance at the

household level and exposure data at the individual level.

Despite major strengths, limitations can be attributed to some

unmeasured or imprecisely measured potential confounding

factors. A major weakness of this study is lack of exposure history

between 2003 to 2010. Change of drinking water sources of the

cohort during this period is quite natural. Well water arsenic

Table 1. Variation in arsenic exposure and mortality for selected characteristics of childhood participants.

Average As in well water (mg/
L)

Baseline As in well water
(mg/L)

Baseline Cohort
(n =58406) Death (n =185) Rate *

Mean SD Mean SD N % N %

Sex (x2 = 0.2,1 P = 0.64)

Male 177.66 152.27 119.08 172.88 28756 49.23 88 47.57 4.68

Female 178.10 147.65 114.57 168.69 29650 50.77 97 52.43 5.03

Age in years (x2 = 4.8, P = 0.017)

5–11 175.42 153.92 117.81 169.91 27730 47.48 73 39.46 3.67

12–18 180.12 146.22 115.86 171.56 30676 52.52 112 60.54 6.15

Education category (x2 = 209.0, P = 0.000)

0 167.06 150.40 118.39 179.10 7970 13.65 92 49.73 20.28

1–5 178.78 150.87 118.65 170.38 31102 53.25 68 36.76 3.21

6+ 180.90 148.04 113.14 167.84 19334 33.10 25 13.51 2.02

SES (x2 = 16.2, P = 0.003)

1 poorest) 167.59 149.95 121.54 181.75 10014 17.15 45 24.32 6.97

2 (poor) 175.01 150.77 118.54 169.29 11655 19.96 42 22.70 5.52

3 180.71 151.11 120.50 170.52 13312 22.79 48 25.95 5.72

4 (rich) 189.54 151.11 118.15 168.52 12510 21.42 22 11.89 2.63

5 (richest) 173.60 145.26 104.48 164.20 10915 18.69 28 15.14 3.84

Baseline arsenic exposure in well water (x2 = 5.9, P = 0.20)

,10 123.98 133.87 1.42 2.04 28901 49.48 83 44.86 4.39

10–49 128.09 131.75 24.84 11.13 5092 8.72 15 8.11 4.47

50–149 148.26 93.18 99.91 29.52 5634 9.65 13 7.03 3.52

150–299 216.77 81.93 222.10 41.58 10329 17.68 39 21.08 5.77

300+ 364.49 144.79 449.34 154.44 8450 14.47 35 18.92 6.48

Time-weighted lifetime average arsenic exposure (x2 = 3.8, P = 0.43)

,10 1.46 2.41 2.44 11.03 8527 14.60 24 12.97 4.21

10–49 28.93 12.04 21.27 56.38 5648 9.67 17 9.19 4.61

50–149 101.08 29.61 59.73 91.45 13357 22.87 44 23.78 5.03

150–299 216.80 41.73 142.85 139.98 19946 34.15 56 30.27 4.33

300+ 415.38 117.02 277.56 249.35 10928 18.71 44 23.78 6.27

Cumulative arsenic exposure (x2 = 6.46, P = 0.04)

,1000 30.60 35.92 19.60 53.92 19274 33.00 54 29.19 4.16

1000–40000 201.55 82.80 132.41 145.86 29558 50.61 88 47.57 4.53

.4000 401.34 134.37 264.23 254.73 9574 16.39 43 23.24 7.54

Crude death rate per 10000 person-years.
doi:10.1371/journal.pone.0055014.t001
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exposure is the only exposure parameter considered no other

sources of exposure have been estimate.The unaccounted changes

of As sources across the observational time is a weakness.

Therefore, findings are to be interpreted under the assumption

of constant source of As as measure in 2003 and that the impact of

possible changes is unknown. Secondly 39% individuals were lost

Figure 1. Cumulative survival function of all-cause, cancer and cardiovascular mortality plotted against time for baseline arsenic
exposure categories.
doi:10.1371/journal.pone.0055014.g001

Table 2. Hazard ratio (HR) for all-cause mortality in childhood participants in relation to baseline, cumulative and time-weighted
lifetime average arsenic exposure.

Exposure variables Baseline participant Person-years Deaths Crude HR (95% CI) Adjusted HR{ (95% CI)

Baseline arsenic in well water

,10 28901 189047 83 1.0 1.0

10–50 5092 33549 15 1.02 (0.59–1.76) 1.13 (0.65–1.96)

51–150 5634 36918 13 0.80 (0.45–1.44) 0.81 (0.45–1.46)

151–300 10329 67591 39 1.31 (0.90–1.92) 1.35 (0.92–1.97)

.300 8450 53995 35 1.48 (0.99–2.19) 1.51 (1.01–2.23)

P for trend, P,0.05
Time-weighted lifetime average arsenic in well water

,10 8527 57073 24 1.0 1.0

10–50 5648 36883 17 1.09 (0.59–2.04) 1.37 (0.74–2.57)

51–150 13357 87520 44 1.19 (0.73–1.96) 1.44 (0.88–2.38)

151–300 19946 129469 56 1.03 (0.64–1.66) 1.22 (0.75–1.98)

.300 10928 70155 44 1.49 (0.91–2.45) 1.88 (1.14–3.10)

P for trend, P,0.5
Cumulative arsenic in well water

,1000 19274 129798 54 1.0 1.0

1000–4000 29558 194283 88 1.09 (0.78–1.53) 1.17 (0.84–1.65)

.4000 9574 57020 43 1.80 (1.21–2.69) 1.90 (1.25–2.89)

P for trend, P,0.05

{Adjusted with baseline age, educational attainment, SES.
doi:10.1371/journal.pone.0055014.t002
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during the study period. Majority moved out (taking new job

35.4%, married 17.7%, education 12.3%, children follow parents

12.7%, others 37.4%). Moreover, lost to follow-up is a problem

regardless of any possible assuring comparisons. We simply do not

know how they could have affected HRs if they were not lost.

However, there were no significant difference in exposure

distribution between included or excluded persons of this cohort

(Table S3). Thirdly, drinking water was the reported primary

source of exposure estimates. Arsenic exposure may also be

contributed by food and other water sources [30,42]. A study from

Bangladesh has shown that rice often contains more than 100 mg/
kg of arsenic in arsenic affected areas [43] and rice alone may

contribute about 50 mg arsenic per day. However, recent study

from Bangladesh demonstrated that it is often adequate to estimate

an individual’s past arsenic exposure based on the reported main

sources of drinking water and the influence of neighbouring water

sources was limited [44]. Fourthly, we did not have pathological

reports for case ascertainment, and we have no information on

SES among 1039 individuals (3.9% of total cohort). We do not

believe our study findings would differ much with exclusion of

these factors. Moreover, there are no reasons to believe that

misclassification of cause of death is associated with arsenic

exposure levels. Not knowing the level of arsenic exposure

indicates no bias while assigning cause of childhood deaths.

We also found marked increase in all cause childhood mortality

(HRs= 1.53, 95% 1.03–2.28) among adolescents (age range 12–

18) as well as liver cancer and leukemia deaths having relatively

short latency. In addition, girls were at increased risk compared to

boys. There have been many studies of effects of arsenic exposure

in adults, but very little attention has been given to potential effects

resulting from exposure to infants and children. It has become

clear that the long-term effects of toxic substances in children need

to be investigated and understood to protect children’s health, and

later their health as adults.

Despite some limitation, this study was feasible because of the

uniqueness of the Matlab population, which includes individual

level As exposure data and the independent prospective de-

mographic surveillance system covering 0.2 million population for

Figure 2. Age, education attainment, SES adjusted Hazard ratios for male and female by baseline, time-weighted lifetime average
and cumulative exposure categories.
doi:10.1371/journal.pone.0055014.g002

Table 3. Hazard ratio (HR) for cancer and cardiovascular related mortality in childhood participants in relation to baseline arsenic
exposure.

Exposure
variables

Baseline
participant Person-years Deaths Rate* HR (95% CI)

Baseline arsenic in well water Unadjusted Adjusted{

,10 28853 189047 16 8.5 1.0 1.0

10–50 5083 33549 4 11.9 1.41 (0.47–4.21) 1.53 (0.51–4.57)

51–150 5629 36918 4 10.8 1.28 (0.43–3.83) 1.29 (0.43–3.87)

.150 18743 121586 22 18.9 2.14 (1.12–4.07) 2.18 (1.15–4.16)

Test for Trend, P,0.05,
*Mortality rates per 100,000 person-years,
{Adjusted with baseline age, sex education attainment and socioeconomic status.
doi:10.1371/journal.pone.0055014.t003
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about five decades. Further studies are needed with a longer follow

up period to investigate if the risk is further enhanced.
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cancer and cardiovascular related mortality in child-
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up cases.
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