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Introduction. 
It has been shown th:H when prc':Iented with sparce depth data (<;ay from random dot ,,tucu 

:;rams) that the human visual sy~tem infers smooth surfaces passmg through these data pOint:,. 

IGrimson SIJ presented a computational model of thiS process in the human Ylsuai :.ystem. and 

suggested an algorithm that could be used to recover the perceived surface [rorT', the depth data. 

The idea of visual surface mterpolallon is (0 take a sparce set of depth values. and from them, 

calculate the surface passing through these points that seems to mood the :,urface that humans mfer 

from those same data points. 

Although it may be fruitful, from a psychological point of view. to develop aJgorithm~ that are 

physically realizable, it r.1ay also increase the computational complexity of the algrlr1thm~ 

developed. Therefore, in this paper we examine two related methods for the solution of this V1'\U31 

surface interpolation problem, th3t may, under the right circumstances, yield more efficit::nt 

algorithms. We shall refer to these methods as the methods of reproducing kernels. (The term 

reproducing kernel comes from certain properties of the functions that are not important for the 

developments in this paper.) The methods use the reproducmg kernels of Hilbert and semi-Hilbert 

spaces to calulate splines of mmimal norm. The use of surfaces of mimm:::d norm as the visual 

surface interpolating the depth data is done in spirit of the m1n1mlzatlon approach used 10 

lGrimson 81J. These methods can be used under a wider range of assumpt10ns than the meth0d 

pioneered by Grimson, and also have some representational advantages over the grid of derth 

values thell were used in [Grimson g 11. 

In section :2 \-'ie denve an preei~e formuiat1on of the visual surface interpolJtlCl!l pr(lbk:n. h 

section 3 we present the general fonn of two methods for the <,oluti(lO of this problem In ~cc:i(1n .+ 
we examine the assumpllon on the information we are gOlng to allow m the reeo\'er)' pf thc~c 

surfaces. Section 5 is a discussion of the advantages of splines In funct:oJ1.al form as a 

representation, and the pros and cons (including tlme and space complexity Issues) of lJ~lnf:. 

reproducmg kernels to calculate the splines. In section 6 we present in detail the hl/o methods a~ 

applied to a panicular visual sulface reconstruttion problem. Section 7 give:, our c0nclu~lnns and 

di~cusses future work on this topic 

~2 The Problem. 
The naive fonnulation of the problem to be solved]<; : 

to find "the best approximation" to any given phYSical surface u<;lng nnly the 
knowledge 0f a number of pOints thereon, where we reqU1re the surface to ~c 
~nlerpolatory. i.e. to pass through all the gwen data. 

A major difficulty wah this forrnulath)n of the problem IS that the problem 1S no! well posed. 

1nasmllch as the given 1nformation does not uniquely determme the solutlon. In fJCL gl\'cn any set 

(of zero me.1sure) of p01nts on a sur-face there are lOfinttely many surfaces Interpolat1ng tlwse 
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pomts. To allevIate this probkm, we must somehow reSlnc! the class of allowed ~lJrfJcc" and '-'W 

glve some method of rar:.kmg the "plausibllity" of a surface. 

Approximation theorists have developed methods of insunng that an interpolation problem hih 

a Lmique solution. One of the classical methods (applied to visual surface Interpolation in 

[Grimson 81] and lKender, Lee, and Boult 85]) is to use a functional on the surface as a mea~ure 

of the "unreasonableness" of the surface, and to restrict the allowed class of ~urfaces to make {hi" 

functional a nonn or semi-norm on the space of allowed surfaces. This type of formulation imure~ 

that there exists a unique solution to the problem of finding a surface from the allowed class which 

mmimizes the functional (and hence is the most reasonable). Throughout this paper we shall 

assume that this type of formulation is appropriate for the problem of visual surface interpolation 

We shall not investigate which classes of surfaces are mo~t appropriate, nor which functionals may 

be good measures of the unreasonableness of a surface. 

In what follows we choose to define "best approximation" in terms on minimal error. \\'e 

assume that error can measured by a norm with respect to the given class of functions (The 

interpolating surface is assumed to be approximating a surface from the given class.). The norm 

might be the sup nonn (i.e. the maximal difference between the actual surface and the 

approximatlon), or the L2 norm (integral of the square of the difference at each point). The error 

may be measured in either a relative (e.g. error of 5%) or an absolute sense (e.g. the surfaces never 

differ by more than .1 mm) depending on the goals of the user. 

Combining these assumptiolls the formulation of the problem of visual surface mterpoiallt)1l 

from sparse depth data becomes' 

Let F I be the space of allowed surfaces. Let F2 be the element~ of F I re\tncted t() s()me 

finite domain D (we shall only be interested In recovenng a [imtc portion of a ro~~d)ly 

mfinirc surface). Let G(t): F I---t9\, be a functional mcasuring the "unreasonableness" (If a 

surface (i.e. the more reasonable a surface f, the smaller G(tll. Let r\(f) == {zl ..... zk} == 

U(xl,Yl), ... J(xbYk)} be the allowed information (i.e. the allowed input to sol V\? the 

problem 15 k depth values of the surface.) Then the v1sual surface interpolation problem IS 

to find f'" E F2, (using only information N(O) such that e(r''') = mIn 8(g) 

g E FI 

[KL'nder, Lee and Boult 85] show (as a speCIal case of work on Informilllon baSed c()mplnlly 

]Traub and \Vozniakowski 801, fTraub, Wasllkowski and Wozn1akowski 83]) that gl\"l'tl ab(we 

formulation the surface mlOimwng the functional em \\/111 also be the minimal error ~urfJce \~'llh 

respect to the class F2 for almost any error norm. 



3 

*3 The :Vlcthod of Reproducing Kernels. 
The method of ReproducIng kernels calculates a spimc (unction that exau!\ ~()I\ e~ the 

continuous problem of finding the function from the class Fl that mlnimlze<; 8m. 

For these methods to be appropriate It is sufficient to have F j be a semI-Hilbert space and 8rt', 
the assocIated semi-norm with null space rIm-I" (Throughout thIS paper rI m- l IS the space of 

bivanate polynomlal of degree m-I). To insure umqueness of the solution we must assume that 

the Information Nk(f) contains a rrm-1 unisolvent subset, i.e. there eXlsts a set J (a ..,ub~et of the 

index set I=: 1 ... k) of indices and a set of information points {Xj'YJ}J E J and a<;soclaled 

lnfonn3tion values Zj such that there exists a unique Pj(x,y) E flm-1 satisfying the condition p/x)'Yj! 

=ZjVJEJ. 

Tn what follows we examine two separate reproducmg kernel based representatIons of Ih~ 

solution to this mmimization problem, the first pioneered by [Duchon 76, Pl the other by 

[~1einguet 79a, 79b, 83J. The advantages and disadvantages of each method shall follow the 

general description of both methods. Later sections of thIS paper shall give detailed examples of 

each method. 

§3.1 Duchon's Method. 

Duchon, extending the work of [Atteia 761 to the case of semi-Hilbert spaces, noted that the 

solution to the problem of finding an mterpolating function of mimmal norm in the semI-HIlbert 
setling could be written down in terms of K((x.y);(s,t))' the reproducir;g kernel of Fl' (The~e 

reprodUCIng kernels need not always exist, and even wh~n they do it may be very difficult to derive 

a closed form representation, Hmvever, for a number of "po<islbly appropriate" clJsses they are 

known 111 closed form.) 

Given a reproducing kernel K((x,y); (s,l)) for FI we can \"'Tl!e the Interpolatory srilnc r\1at 

minimizes eU1 as 

k d 

(3.1 ) . (}o(x,y) =0 L a] K((x,y); (Xl'YI)) - L ~i ql(x.yl 
I = I 

where {qlh d (d "" cardinailty of the set 1) IS a basis for no:--._\, the null space of ern T!1C 

coefficients {a l rand {01 r of the interpolatIng spilne can be determmed from the '-;0\I:t10n of :::t 

(k+d) by (k-d) dense linear system. 

Recall ing that N (fJ =: {Zj .... z~} =: {fCI( j.y, 1, ... J( "'k'Yk)}' where (x I';,' II arc the loclllOn t~f ,he 

function (depth) \'aILle~ we can express [hl~ 1lJ1ear sy~tem:.ls rollow~: 

k d 

2. a , ' K((xj'Yj); (x"y)l + L ~i qJxj,yj ) 
I = I 1 _I 
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L cx: qJXj,yJ) 
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0, J~l,,,d, 

Duchon shows that this representation yields a (j'D that minimizes the functional (~)(crD) and IS 

unique if the set Zj = f(xi'Yl)' i = 1 ,k contains a fIm-1 umsolvent ~llbset. 

§3.2 Meingilet's Method. 
Another representation, due to Meinguet, uses that fact that we can separate the space FI IntO 

Xo EB 11m_I' where TI m_l is the null space of ec)' Xo == {g E F( g(xj'YJ) = 0, V j E ]} and (8 is a 
(topological) direct sum. (Recall that J is the set of indices of the l1m• 1 uoisolvent subset of the 
information.) Then Xo is a Hilbert space with norm (not semi-norm) BC). Then given the 

reproducing kernel KM(s,t; x,y) of Xo (Which can be expressed in terms of the reproducing kernel 

K«s,t);(x,Y» of F j and the functions q/x,y» the Interpolating sphne is gJVen by: 

(33) "M(X,y) ~ L Ii' KM«x,y); (X,'Yi)) + L 'Jq/x"Y,) 
lEI-1 )E1 

where the coefficients Yi can be calculated from the (k-d) by (k-d) (d equals the card1r1ality of the 

set J) dense linear system given by: 

(34) 
IE 1-1 j El 

§3.3 DISCI/ssion of the Two ""4ethods. 
The major advantage of the representauon given by (3.3) (hereafter referred to as the CJ\1 

representation) is that the system defined by (3.4) is always symmetric and positive definite. ThIs 

IS a Important property from the numencal analytic POInt of vIew. Insuring the numerical stability 
of certam special algorithms for the solution of the system. The biggest drawbacks to the CJ\1 

representation are the complexity (and therefore the time required for calculanonl of the generating 

kernel (as compared to the kernel functions for the aD representation); and, the need [0 exrliCltly 

calculate a unisolvent set of data, and the functions p/x,y) interpolating that unl~olvent set of data. 

The major advantages of {he representatlOn gIven by (3 I) (hereafter referred (Cl as the aD 

representation) IS the symmetry of the system, and [he simpl!clty (relative to the kernels of the 0\1 

representatIOn) of the reproducing kernels. The major disadvantage of the representation is that the 

system generated by (3.2) IS an indefinite system. (It" fact the system WIll J.jways ha\'~ d n~g,H1ve 

eigenvalues, where d is the cardinalIty of the set J). This limIt:. the algonithms that can be l1'icd t0r 

i{~ solution, and J.lso adversly effects the time complexity of some of the remcllnlng <:i1gomilms. 
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\Ve end with a note that al:hough equatIons (3,11 and (3.3) seem different. if the cl:.l'" of 
functions, and the nonn are the <;ame. then the re~ulting splines are exactly the same funC!l()n~ Thl~ 

follows directly from the uniquenes~ of the function mimmlllng the functional 8(·) In the cia:"s F 

q Allowed Information. , 
\Ve have not really discussed what type of informatIOn IS avallable to the algonthm (C'If the 

s0iution of the problem of the reconstruction of VIsual surfaces. The human v\<,ual \y,tc:n 

definitely has more inform::mon than pure depth data, so we must explicitly condldcr what 

information to allow our computer algorithms. for simphclty we shall assume that the only 
information about the surface is the function values (depth values) at the k points (Xj'Yl)' I = I.k. 

1\ot.: that is not a restriction of the reproducing kernel methods, in fact they are easily cXI(:nslble 

\Vilh respect to the allowed information, (As long as the information is linear, e.g. den\'atlvcS or 

integrals of the surface. Linearity however rules out someimportant visual clue') e.g. texture, most 

shading and all perspectlVe clues). 

The complexity of the calculation of the parameters of the splines af) and aM can be 

substantially lowered if we fix the location of the information samples. That is for all surfaces. we 

always sample the data at fixed locations. It is particularly convenient If these data points form a 

regular grid. Through out the rest of thiS paper we shall consider three separate cases: sample 

locatIOns fixed on a regular grid; sample locations fixed but not on a regular grid; and s:.lmpk 

locations that depend on the surface being approximated. 

Fixing the location is not a sever limitation, compared with the information used in nrh-:r 

alg0rl!hm~, 1n terms of the error of the approximation we can derive. ft is a limItatiOn on lll(: 

methods which can be employed in the gathering of data. In particular it rules our the usc (If a 

'>tereo based algorithm to generate the depth data, bu lends itself well to 'industrial us(:~ With 

d~pth data from laser rangefinders or projection-rnanguiatlon based methods. 

\Ve digress from the reproducing kernel methods to note that although Gnm<;on proves what he 

calles rhe 'iurfacc consistency con::.traint (no news IS gc.od news) which relates the probability of a 

zem crOSSing III the Laplacian of the Gaussian ('V 2G) of the image to the vana!1on of the ~Llrfacc. 

1m algorithms (nor any other known to this author) make use of this "extra information" about the 

relationship of the zero crossings and the variatlon of the surface. In<;tead, Grims()Jl choo'ie t() 

minimize the total surface vanatlon, not the variation between IIldivldual zero crossings. :\'(1[(: that 

tim Implies even If we fix the location of our depth values on a regular grid, l! is <;(111 at least equal 

III power to the infonnation used by other algorithms recovering surfaces through minimization nf 

funct](lnals. 



Some Pros and Cons of Reproducing Kernel Splines as a 
Representation of Visual Surfaces. 
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Both of the reproducing kernel methods presented In section 3, represent the final interplatory 

surface as a spline function, in particular a weighted sum of translated reproducing kernels. We 

first discuss the advantages and disadvantages of the choice of a spline (in a functional fOnTI) as the 

representation. Then we discuss the difficulties of the lise of reproduc Ing kernels as the means of 

calculating this spline. 

Some of the advantages of the spline representation are: 

It gives us a functional form for the surface. In particular, we can then symbolically 

compute functionals on the surface, and using results from the General Theory of Optimal 

algorithms, see [Traub, Wozniakowski 80] and [Traub, Wasilkowski, and Woznlakowskl 

83J we know that the optimal error approximation to any linear functional of the surface IS 

the desired functional applied to the spline. For example, if we wished to approximate the 

first derivatives of the surface at a number of points, we would simply calculate the spline 
as above (either aD or a\1) and then the minimal error approximations would be gIven by 

aa/ax and aalay. We could just as easily calculate any derivative (as long as the clas~ F j 

was sufficiently smooth for the derivative to exist) or integral of the surface. 

Because we have a functional form for the surface, we can recover the value of the 

surface at any point, and are not limited to points on a regular grid, or pOints in some 

predefined domain (though the error of the approximation grows larger with the dIstance to 

the nearest Information point). 

If the number of information points is small compared to the number of recovery 

points. the the spline representation can even be used as an efficient means of storage (on 

the computer) for the surface. The number of operations necessary to recover the surface 

(given that the k parameters are known) is O(n*k) where n IS the number of recovery points 

and k is the number of :nfonnation points. Furthennore, the calculatiom can all be done In 

parallel in a straight fonvard SrMD (a type of panlllel algorithm) fashIon. 

The splines are the provably optimal error esllmatlon (unique) for any surface from the 

class fitting the given data, see rKender, Lee, and 80ult 85J 

The splines can in general be incrementally updated with respect to amount of 

information I.e. adding 1 new point does nor reqUires the solution of a new sy~tem nf 

equa!lon~ ; 

Some of the disadvantages of a spline representation are: 



If the number of information samples IS high it em require tremendou<, amOlilm nt
storage (as compared wIth. say generalized cylinders; to store lhe information neces~ary '() 

recover the surface. Reco\'ery requires 3k Units of <;Image (the loc:.lt!on of the k 

infonn,:l!lon '>ampks WhlCh takes 2k numbers and the approximately k "plines coeffiCients 

for the spline ltself). The storage for the system of equatiom that yield the coeffiCients of 

the spline requires"" k::/2; 

The actual parameters of the spline depends heavily on the location of and value of 

every information pomt therefore error In any informatlOn sample Will contaminate the 

entire spline surface; ThIS aho implies that if one data value is changed, every surface 

value must also be updated; 

The time complexity of the reproducing kernel methods for the calculation of the ~pline 

depends on the information. Given that we have the coefficients of the spllne, the tIme 

complexity of recovfry 15 linear in the number of infonnation point~. 
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If the location of the information is allowed to vary from reconstruction to 

reconstruction, the the time complexity of the current methods IS O(k3) ar,d comes from the 

direct solution to one of the hnear systems (3.2) or (3.4). 

If the location is fixed, then we can precomputing the coefficients of the baSIS splmes. 

which involves the solution of the system (let us cal! it A) for k baSI'; vectorS or simply the 

inversion of the system. Total pre computation cost = k 3. From the lnver~e of the system 

we can recover the coefficients of the spline for any glVen set of data. z by taking :\.' z. 

Then the cost to recover the coefficients of the spline IS = k2. 

One of the many topics not addresses in tillS exposition is the chOICe of the aprropnate 

class, and the norm for that class. If the class belong5 to one for which the reproduclI1g 

kernel is already known (for a partIal list see [Boult 85]). the algorlthm'i can be directly 

applied, With the only change being the introduction of a new kernel. ThIS gIves the mellwd 

of reproducmg kernels for the reconstruction ('If Visual 'iurfaces more tlexlbillry thall t:le 

direct minimization methcxis (ala Gnmscml. 

Although not presented here, the method can be easlly extended to all\)\\' rhe 

informatlOn to be other th~.m depth valueS (e g derivatives, andi()r llltegrals l. ~l!ld ti1e,c: 

forms of inforr.1J.tlon may be intermingled. Aho the method is easily modified to allow 

recon:,lruction in more dimc:nslon (e.g. density reconstruction \ll three dimenSl(\ll~ for CAT 

'icans). 



We end with some of the drawbacks of the use of reproducing kernels to recover the 

'iplines. Some of the cons include: the assumptions necessary to allow the use of reproducing 

kernels (smothness of class and the norm): Reproducing kernel<; are currently know for on1y a 

small number of classes and associated norms); the possibly sllb~tantiaJ amount of lime to 

compllle the parameters of the splme, especially if k IS large. The complexity of some of the 

reproducing kernels themselves (e.g. two used by Alteia are infinite senes) and others are very 

complicated formulas. 

6 Example Classes, Kernels and Linear Systems. 
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In thIS section we exhibit 2 families of classes of surfaces, and their assoclated kemeI~ The 

semi-norms associated with these families of classes have as special cases the "quadratiC vanation" 

semi-norm used by [Grimson 811. This semi-norm has the nice physical analogy of measuring the 

bending energy in a thin plate. 

The first example is based on the work of [Duchon 76]' and we include the parameterized class 

definition, parameterized form 0f the reproducing kernel, a particular example kernel, and the hnear 

system (for calculation of the parameters of the sphne 0D with the particular kernel) for information 

points on a 4 by 4 unit spaced grid. The second example IS based on the work of r\1emguet 79a,b, 

801. Here we only include a parameterized family of classes, the associated paramercnzed 

generating kernels, and one example of a particular kernel for information pomts on a -+-4 unit 

grid. 

For the first family of classes we define D-mHs, for s < 1,10 be the space of funClion~ w:l1ch 

have all derivatlves of order m In Hs, where Hs is Ihe Hilbert space of functions such that I)-]e:r 

tempered distributions \l on 91:2 having Fourier transform!:. that samfy 

<00 

Let F j = D-mHs be equipped with the semi-nonTI given by 

Jm If I D~ dy til 
':}\2 

\Vhere DLJ is ()!flaxi and DL/ IS (llf:[)yl. (Note that the null space of this seminonn, n'l1-j- IS the 

space of bIvariate polynomIals of (IOtal) degree :s; m-J ) /Duchon 761 showed that if \\ e requIre 

[hat s < 1 and s > I -m we have rhe rcpn.lducIng kernels: 
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K 0 (( x.y 1.( S, t) ) ((x-s)' T(y-t)')lm.,-I) . Ln ['.)((x-s)' - (y-t)'))] 

If 2(m+~-1) is an even PO<,ltl\'C Integer 

and 
Ko((x,y),(s,t» = ((x-s)2 ~(y-t)2im-'>.1) otherwise. 

Tn particular. if we choose m = 2 (this makes the norm the surface vanatlon norm u~ed by 
GrimsonJ and 'i = l/~, we have the reproducing kernel K )(x.y).(s,t) =: ((x-S)2 -,- (y_t)2):<:. Then 

we the coefficients of the spllne Go are given by the solution of the linear system, An. An 

example of this system is given in Figure t, where the the locations of the information sample<; arc 

fixed at (i,j) 1=1 . .4, j = 1 . .4. the associated depth values are ZI,j and where for breVity we write x

in place of x i3;'2). Figures 2-7 contain example projections of surfaces from this space generated 

from either 16 or 100 infonnation points, 

~ote the block toeplitz nature of the upper left comer of the matrix. We can take advantage of 
this very regular structure in the solution of AD' Algorithms exists for the inversion of Block 

toeplitz systems in O(k 3/2 ), where k is the number of data points, (e.g. [Akaike 73J and r\Vat~()n 
73]). Given the mverse of the block toeplitz portion of AD, one can effiClentiy (in O(k~) llme) 

precompute the basis splines, i.e. invert AD' Then one can recover the coefficients for a panicular 
set of data in O(k2) time by computing AD-j . [Zj, ... zd T. Recent work by Lee [Lee R5 j, gives an 

algorithm that saves a block toeplitz system on time O(k2 ]og k), WIthout inverting the matrix. 

This toeplitz structure will occur only when the location of the mfonnatlon samples form J 

regular grid. However. the system i<; ahvays symmetnc. Cnfortunately, It i~ ahvays mdefinlte lin 

fact i~ alway.;; has (m~l)'m / 2 negative eigenvalues). This may dfect the chOICe uf algonthm for 

the solutIon of the system. In fact the two block toephtz Inversion Jlgomi1ms mentioned J00\C 

maybe unstable for this system, because it is lndefimte (They have not been sho\l.:n unstable. but 

related algorithms for pointwise toeplitz. systems are provably unstable for Indefinite system~l 

Another important property of a 1ll1ear system 1S the conditlon number. This effects the 

accuracy to which an: .. ; compttteralgorithm can solve the system, The larger the condltion number, 

the less accurate a computer calculated solution to the system must be. The condltlOn number of 

the matnx for the calculation of the sphne coeffiCIents depends on m, s. k. Furthermore for 

information samples on a regular gnd, the condition number also depends on h, the Sep~lfa110n 

between grid points, Inttial results for the case s=0,m=2, and h appropriately chosen y](~ld that the 

condition n(lmber of the system is approximately 3k2, where k IS the number of information 
~amples, and for the the case S=li?, m = 2 and h appropriately chosen, Cond(A D) = 19k:. Both 

("l1matlons from calculated values of the condition number for grid sized from 2::' to 10: pOints. 

and h values taken from the range 1.1 ,1.01. 
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Fi~ure I The matrix for the coefficients of the spline 0"0 for infonnation on a 4 by 4 grid. 

Where x'" represents x3/Z, and z,J IS the infonnation at gnd pom! (l.j). 

These comments on the indefimteness of the system, and the fate of gro\,,.:th of the condition 

number reinforce the point that this method is currently only practical for sparse data. 

:\ family of classes very closely related to that above was studied In [:-vlcmguet 7()a, 7%J. Tim 

family of classes (8eppo Levi spaces) is defined as follows: 

(\Vhere D is the space of all Schwatrz distributions!O )\2, and the partial derivatives are In the 

dlstnbullonal sense). Intultivly these spaces consist of those functions for whIch all parllal 

derivatives up 10 (total) order m are square inlegrable. The mlh Sobolev semi-norm is aho the 
semi-nann for Ihis family of spaces. Furthermore, Ihe space Xm i fI m-1 is a HIlbert space, wllh 



1 1 

the mth Sobolev semi-norm ilS a tfue norm .. The reproducmg kerneL E((x,y), (<;.tJl a~~OL'J[ed 

with X is "iven bv m:: • 

~ '} O.(m-lll 
E( (x,Y), (v,t)) ~ C' (!H)' ,(y-tn 

where c,= ( 22m-l '11" '(m-I)!' (m - I)! )-1, 

, 
(y-ti ) 

:--.Jaw if we define Pi to be the unique basis of TIm_! sllch that PI (Xj,Yj) = Oil for all I.J EO J (the 

set of indices of the unisolvent subset of the mfonnation). Then we can express the reproducing 
kernel of Xm / T1m_1 as 

KM((x,y), (s,t)) ~ (_I)m, ( El(x,v), (s,t)) - I p; (x,y) , EI(x;,y,), (S,tI) 

iEJ 

iei iE J i E J 

We now present a example in more detai1. For concreteness we shall assume that :he 
information samples fixed at (I,J) i=O .. 3, j = 0 .. 3, and the associated depth values arc zi '" \Ve shall , 

aho chose rn = 2, therefore our semi-norm is "quadratic variation". Since we must assume that 
that the information contams a unisolvent subset, we choose thIS subset to be at (0,0) ro.l) and 

(1,0) (and Jet the associates indice<; be 1,2,5 respectively). The associated pJx.y) being given by 

Pl(x,y) = 1.0 - (x+y), P2(x,y) = y, and P3(x,y) = x. Then the reproducing kemd for this class and 

distnbution of information IS given by 

K,( (\,V), (s,t) ) "{ E( Ix,y), (U) ) 

- (I-x-y)' E«(O,O), (v,t)) - (I-H)' E((x,y),(O,O)) ) 

- Y' EIIO,I), (S,t)) - t· E!(.x,y),(O,I)) 
- x . EI(l,O), (S,t)) - V' E((x,y),( 1,0)) 

" (l-x-y) ,t 'E!(O,O),(O,!)) "()-x-yt· s· E((O,ll), 11,011 

+ y' (1-t-v)' EIIO,I), (0,0))· X' II-t-51' EI!UII. (OJ))) 

+ y' S' EllO,I), (1,0)) + X' t· EI(Ult!a,l)t} 

Let us adopt the notation At-,l(m,k) to stand for the system ot equatlons generated by (:, :,) f()J" 

the reproducmg kemel for Xm ;' n m. j' and k = nUIT,ber of information ~amrks. which :.ue located 

on a regular grid (cek on a side.) 
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First we nore that this system is always positive definite, and symmetric Furthennore it" we 
correctly order the variable we can insure that the Cholsky decompmltlon, written JS LkLi<; T -= 

AM(m,k), has the property that Lk IS the upper right h,lI1d corner of Lk~l' for all I > 4, ~ce 

[.V1einguer 79bl for a proof of this property. ThIS implles that if \ve calculate the Chok~k: 

decomposition for a larger square grid, we automatically have the dccompo<;1l10n for al) 5maller 

square grids. (In fact thiS can be used to define a recursive algorithm for the solution of the 
system, time cost", 0(1/6n3)). Given the decomposition, the actual coefficients for the spline C~lrl 

be recovered (in 0(n2) time) using simple (and numerically stable) back-substltutlon. 

The condition number of the systems A M(m,k) does not depend on the spacing of the pOI"nt\. 

and Initial experiments indicate that Cond(A M(2,k) "" .95 k2.5. 111is estimatIon based on calculation 

of the condition number for square grids of 16, 25, 36,49,64,81, and ]00 points. 

7 Conclusions and Future Work. 
This method seems particularly well suited to the problem if the user IS interested in particularly 

smooth surfaces, and the initial infonnation is sparse (in some sense the sparser the beuer). There 

IS an added time and space savings if the location of the information samples can be fixed ahead of 

time, particularly in a regular structure. 

Some of the work yet to be done includes: 

Implementation of the (un-ent algonthm for more classes, and for non-fixed information 
samples; 

Enhancements to the current implementatIOn to allow Infonnation other than depth \·;t!llCS: 

Some justification (hopefully on psychological or psychophysical grounds) for the chOICe of 
classes; 

Estimation of the condition number for more classes: 

Full analysis of the numerical properties of the algonthm; 

Through comparison of this method With existing melhoos; 

An analysis of the approximation error of the algonlhm. 
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Figure 2: Interpolation of parabolic sheet. Reconstructed by evaluating surface at 
48x48 points, and plotting tringular patches between the values. Input data 
taken at 16 points on a 4x4 square grid. 

Figure 3: Data used for Figures 4 and 5. The input was on a lOxIO gnd (lower left is 
( 1 , 1)). 

9 9 9 6 6 6 3 3 3 0 

9 9 9 6 6 6 3 3 3 0 

9 9 9 6 6 6 3 3 3 0 

6 6 6 6 6 6 3 3 3 0 

6 6 6 6 6 6 3 3 3 0 

6 6 6 6 6 6 3 3 3 0 

3 3 3 3 3 3 3 3 3 0 

3 3 3 3 3 3 3 3 3 0 

3 3 3 3 3 3 3 3 3 0 

0 0 0 0 0 0 0 0 0 0 



• 

Figure 4: 

• 

Fi~ure 5: 

Interpolation of 114 weading cake frontal view. Reconstructed by evaluating 
sUlface at 48x48 points, and plotting tringular patches between the values. 
Input data given in Figure 3 . 

Another view of surface 1n Figure 4. highlighting lhe effect ncar edge:.. 



Figure 6: Input data for Figure 7. The data is Intended to suggesll:Hee plane,> nUcl1:n~ 
10 the air. r\"ote that such a surface would not be 10 the class of surface, tlut 
the algorithm, assumes, hence the papering over of the edges. There arc 

100 data points, laid out on a lOx 10 square grid. 

0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 
0 0 5 5 5 5 5 5 0 0 
0 0 5 5 5 5 5 5 0 0 
0 0 5 5 10 10 5 5 0 0 
0 0 5 5 !O !O 5 5 0 0 
0 0 5 5 5 5 5 5 0 0 

0 0 5 5 5 5 5 5 0 0 

0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 

[nterpolation of a "wedding cake" surface. Reconstructed bv evaluating 
surface at 48x48 points, and plotting tringu\ar patches betwee-n the values~ 
Input data glven in figure 6. ., 

• 


