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§0 Abstract.

We examine the details of two related methods for the recovery of visual surtaces from sparce
depth data. The methods use the reproducing kernels of Hilbert spaces to construct a spline inter -
polating the data, such that this spling is of minimal norm. We discuss the numerical properties of
the two methods presented, and give example interpolations.
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§1 Introduction.

It has been shown that when presented with sparce depth data (say from random dot stereo
arams) that the human visual system infers smooth surfaces passing through these data pomts.
iGrimson 81] presented a computational model of this process in the hurman visual system, and
suggested an algorithm that could be used to recover the perceived surface from the depth data.
The tdea of visual surface interpolation is to take a sparce set of depth values, and from them,
calculate the surface passing through these points that seems to model the surface that humans infer
from those same data points.

Although it may be fruitful, from a psychological point of view. to develop algonthms that are
physically realizable, it may also increase the computational complexity of the aigorithms
developed. Therefore, in this paper we examine two related methods for the solution of this visual
surface interpolation problem, that may, under the right circumstances, yield more efficient
algorithms. We shall refer to these methods as the methods of reproducing kernels. (The term
reproducing kernel comes from certain properties of the functions that are not important for the
developments in this paper.) The methods use the reproducing kernels of Hilbert and semi-Hilbert
spaces to calulate splines of minimal norm.  The use of surfaces of minimal norm as the visual
surface interpolating the depth data 1s done in spirit of the minimization approach used in
[Grimson 81]. These methods can be used under a wider range of assumptions than the method
pioneered by Grimson, and also have some representational advantages over the grid of denth
values that were used in [Gnmson 811,

In section 2 we derive an precise formulation of the visual surface interpolation problem. In
section 3 we present the general form of two methaods tfor the solution of this problem. [n section 4
we examine the assumption on the information we are going to allow in the recovery of these
surfaces. Section 3 is a discussion of the advantages of splines in functional form as a
representation, and the pros and cons {including time and space complexity issues) of using
reproducing kernels to calculate the splines. In section 6 we present in detail the two methods as
applied to a particular visual surface reconstruction problem, Section 7 gives our conclusions and
discusses future work on this topic.

82 The Problem.

The naive formulation of the problem to be solved 1s
to find “the best approximation™ to any given physical surface using only the
knowledge of 4 number of points thereon, where we require the surface o he
interpolatory, 1.€. to pass through all the given data.

A major difficulty with this formulation of the problem 1s that the problem 1s not well posed.
inasmuch as the given informaton does not uniquely determine the solution. In fact, given anv set
(of zero measure) of points on a surface there are infinitely many surfaces interpolating those
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points. To alleviate this problem, we must somehow restrict the class of allowed surfaces and or
give some method of ranking the “plausibility " of a surface.

Approximation theorists have developed methods of insuring that an interpolation problem has
a unique solution. One of the classical methods (applied to visual surface interpolation in
[Grimson 81] and [Kender, Lee, and Boult 85]) is to use a functional on the surface as a measure
of the “unreasonableness™ of the surface, and to restrict the allowed class of surfaces to make this
functional a norm or semi-norm on the space of allowed surfaces. This type of formulation insures
that there exists a unique solution to the problem of finding a surface from the allowed class which
minimizes the functional {and hence is the most reasonabie). Throughout this paper we shall
assteme that this type of formuldtion is appropriate for the problem of visual surface interpolation.
We shall not investigate which classes of surfaces are most appropriate, nor which functionals may
be good measures of the unreasonableness of a surface.

In what follows we choose to define “best approximation” in terms on minimal error. We
assume that error can measured by a norm with respect to the given class of functions (The
interpolating surface is assumed to be approximating a surface from the given class.). The norm
might be the sup norm (i.e. the maximal difference between the actual surface and the
approximation}, or the L2 norm (integral of the square of the difference at each point}. The error
may be measured in either a relative (e.g. error of 5%) or an absclute sense {e.g. the surfaces never
differ by more than .1 mm) depending on the goals of the user.

Combining these assumptions the formulation of the problem of visual surface interpoiation
from sparse depth data becomes :

Let Fy be the space of allowed surfaces. Let F; be the elements of Fy restricted to some
finite domain D (we shall only be interested in recovering a finite portion of a2 possibly
infinite surface). Let ®(f); F|—N, be a functional measuring the “unreasonableness” of a
surface (1.e. the more reasonable a surface f, the smaller @(H). Let N(Hh = {z,...2,} =
{f(x |y ). f(xy)} be the allowed information (i.e. the allowed input to solve the
problem 1s k depth values of the surface.) Then the visual surface interpolation problem 18
to tind £* € F,, (using only information N(f}) such that ©@{f*) = min ©(g) .

ge F

IKender, Lee and Boult 85] show (as a special case of work on information based complexity
[Traub and Wozniakowskt &0}, [Traub, Wasilkowski and Wozniakowski 83]) that given above
formulation the surface minimizing the functional ®(f} will also be the mintmal error surface with
respect to the class F, for almost any error norm.



$3 The Method of Reproducing Kernels.
The method of Reproducing kernels calculates a spline function that exactiy solves the
continuous problem of tinding the function from the class F, that minimizes &(1).

For these methods to be appropriate it Is sufficient to have Fy be a seri-Hilbert space and ®(f;
the associated semi-norm with null space [[, ;. (Throughout this paper [1,., is the space of
bivariate polynomial of degree m-1}. To insure uniqueness of the solution we must assume that
the information Ny (f) contains a [T, ; unisolvent subset, i.e. there exists a set J (a subset of the
index set I =1 ..k ) of indices and a set of information points {x;,y;}; ¢ ; and assoctated
information values 2 such that there exists a unique py(x,y) € [I,, satisfying the condition p,(x;.v))
=z Vel

In what follows we examine two separate reproducing kernel based representations of the
solution to this minimization problem, the first pioneered by [Duchon 76, 77] the other by
[Meinguet 7%a, 79b, 83]. The advantages and disadvantages of each method shall follow the
general description of both methods. Later sections of this paper shall give detailed examples ot
each method.

§3.1 Duchon’s Method.
Duchon, extending the work of [Atteia 76] to the case of semi-Hilbert spaces, noted that the

solution to the problem of finding an interpolating function of minimal norm in the semi-Hilbert
setring could be written down in terms of K((x.y).(s.t)), the reproducing kermnel of F|. (These

reproducing kernels need not always exist, and even when they do it may be very difficult to derive
a closed form representation, However, for 2 number of “possibly appropriate” ¢lasses they are
known in closed form.)

Given a reproducing kemnei K((x.y); (s,1)) for F| we can write the interpolatory spline that
minimizes (1) as

Bi qi(x.y)

[ M o

k
(3.1 TOptxy) = X0 KUk (xpy) -
1=1

1

where {q;},9 (d = cardinality of the set J) is a basis for [, ., the null space of @(f). The
coefficients {cg; } and {[;} of the interpolating spline can be determined from the solution of a
(k+d) by (k+d) dense linear sysiem.

Recalling that N(f)y ={z;....z, I = {t{x.y)dixay ) b where (x,v) are the location of the

function (depth) values we can express this linear system as follows:

k

d
oo Ky (xoy) + 2 Biadxuy) = 7z i=1 ...k
1=1 1=]
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Duchon shows that this representation yields a op that minimizes the functional ®(cp) and 1s
unique if the set z; = f(x;,y;), 1 = ..k contains a [1,; unisolvent subset.

$3.2 Meinguet's Method.

Another representation, due to Meinguet, uses that fact thut we can separate the space F) o
Xy ® Iy, where [1 is the null space of ®(), Xp={ge Fi1g(xy)=0,VjeJland @154
(topological) direct sum. (Recall that J is the set of indices of the [T, unisolvent subset of the
information.) Then X, is a Hilbert space with norm (not semi-norm) ©(-). Then given the
reproducing kernel Ky (s,t; x,y) of Xg (Which can be expressed in terms of the reproducing kemel
K((s,t);(x,y)) of F) and the functions q;(x,y)) the interpolating spline is given by :

(3.3) om(xy) = 2 1 Kn((oyh (Gyi) + X 7pq(xy)

iel-] jel
where the coefficients y; can be calculated from the (k-d) by (k-d) (d equals the cardinality of the
set J) dense linear system given by:

(3.4) ) Yo Kmlxoy)s (xpy) =z - p zyqi(x;,y;), Vke I
el jel

$3.3 Discussion of the Two Methods,
The major advantage of the representation given by (3.3) (hereafter referred to as the Oy
representation) is that the system defined by (3.4) 1s always symmetric and positive definite.  This

1s a important property from the numencal analytic point of view, insuring the numerical stability
of certain special algorithms for the solution of the system. The biggest drawbucks to the Gy

representation are the complexity (and therefore the time required for calculation) of the generating
kernel (as compared to the kernel functions for the op representation); and, the need 1o explicitly
calculate a unisolvent set of data, and the functions p;(x,y} interpolating that unisolvent set of datu.

The major advantages of the representation given by (3.1) (hereafter referred to as the op
representation) is the symmetry of the system, and the simplicity (relative to the kernels of the Gy,
representation) of the reproducing kemels. The major disadvantage of the representation is that the
systern generated by (3.2} 1s an indefinite system. ([t fact the system will alwavs have d negauve
eigenvalues, where d 15 the cardinality of the set J). This limits the algoruthms that can be used for
1ts sotution, and also adversly effects the ime complexitv of some of the remaining algorithms,
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We end with a note that although equations {3.1) and (3.3) seem different. if the class of
functions. and the norm are the same, then the resulting splines are exactly the same function! This

follows directly from the uniqueness of the function minimizing the functional ©(-) in the class -,

§4 Allowed Information.

We have not really discussed what type of intormation is available to the aigonthm for the
sotution of the problem of the reconstruction of visual surfaces. The human visual system
definitely has more information than pure depth data, so we must explicitly condider what

information to allow our computer algorithms. For simplicity we shall assume that the only
information about the surface is the function values (depth values) at the k points (x,,y;). 1 = 1.k,
Note that 15 not a restriction of the reproducing kernel methods, in fact they are easily extensible

with respect to the allowed information. (As long as the information is linear, e.g. derivatives or
integrals of the surface. Linearity however rules out someimportant visual clues e.g. texture, most
shading and all perspective clues). )

The complexity of the calculation of the parameters of the splines G and oy can be
substantially lowered if we fix the location of the information samples. That is for all surfaces, we
always sample the data at fixed locations. Itis particularly convenient if these data points form a

regular gnd. Through out the rest of this paper we shall consider three separate cases: sample
locations fixed on a regular grid; sample locations fixed but not on a regular grid; and sample
locations that depend on the surface being approximated.

Fixing the location 15 not a sever limitation, compared with the information used in other
algorithms, in terms of the error of the approximation we can derive. It is a limitation on the
methods which can be emploved in the gathering of data, [n particular tt rules out the use of 4
stereo based algorithm to generate the depth data, but lends itself well to 'industrial uses” with
depth data trom laser rangefinders or projection-triangulation hased methods.

We digress from the reproducing kernel methods to note that although Grimson proves what he
calles the surface consistency constraint (no news s good news) which relates the probability of a
zero crossing in the Laplacian of the Gaussian ( V-G) of the image to the variation of the surface.
his algorithms (nor any other known to this author) make use of this “extra information™ about the
relationship of the zero crossings and the variation of the surface. Instead, Grimson choose to
minimize the total surface varation, not the variation between individual zero crossings. Note that
this implies even if we fix the location of our depth values on a regular grid, 1tis still at least equal
in power to the information used by other algorithms recovering surfuces through minimization of
functionals.



§5 Some Pros and Cons of Reproducing Kernel Splines as a
Representation of Visual Surfaces.

Both of the reproducing kernel methods presented in section 3, represent the final interplatory
surface as 4 spline function, in particular a weighted sum of translated reproducing kernels. We
first discuss the advantages and disadvantages of the choice of a spline (in a functional form) as the
representation. Then we discuss the difficulties of the use of reproducing kernels as the means of
calculating this spline.

Some of the advantages of the spline representation are:

It gives us a functional form for the surface. In particular, we can then symbolically
cornpute functionals on the surface, and using results from the General Theory of Optimal
algorithms, see [Traub, Wozniakowski 80] and [Traub, Wasilkowski, and Wozniakowski
83] we know that the optimal error approximation to any linear functional of the surface s
the desired functional applied to the spline. For example, if we wished to approximate the

first derivatives of the surface at a number of points, we would simply calculate the spline
as above (either op or Oy) and then the minimal error approximations would be given by

do/dx and da/dy. We could just as easily calculate any derivative (as long as the ¢lass F
was sufficiently smooth for the derivative to exist) or integral of the surface.

Because we have a functional form for the surface, we can recover the value of the
surface at any point, and are not limited to points on a regular grid, or points in some
predefined domain (though the error of the approximation grows larger with the distance to
the nearest information point).

If the number of information points is small compared to the number of recovery
points, the the spline representation can even be used as an efficient means of storage (on
the computer) for the surface. The number of operations necessary to recover the surface
(given that the k parameters are known) is O(n*k) where n is the number of recovery points
and k 1s the number of information points. Furthermore, the calculations can all be done in
parallel in a straight forward STMD (a type of parallel algorithm) fushion.

The splines are the provably optimal error estimation (unique) for any surfuce from the
class fitting the given data, see [Kender, Lee, and Boult 85]

The splines can in general be incrementally updated with respect o amount of
information 1.e. adding 1 new point does not requires the solution of a new svstem of
equations ;

Some of the disadvantages of a spline representation are:
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[t the number of intormation samples is high 1t can require tremendous amounts ot
storage (as compared with, say generalized cylinders; to store the information necessary to
recover the surface. Recovery requires 3k units of storage (the location of the k
information samples which takes 2k numbers and the approximately Kk splines coetticients
for the spline itself), The storage for the system of equations that yield the coefficients of
the spline requires = k~/2;

The actual parameters of the spline depends heavily on the location of and value of
every information point therefore error in any information sample will contaminate the
entire spline surface; This also implies that if one data value is changed, every surface
value must also be updated :

The time compiexity of the reproducing kemel methods for the calculation of the spline
depends on the information. Given that we have the coefficients of the spline, the time
complexity of recovery 1s linear in the number of information points.

If the location of the information is allowed to vary from reconstruction to
reconstruction, the the time complexity of the current methods is O(k?) and comes from the
direct solution to one of the linear systems (3.2) or {3.4).

If the location is fixed, then we can precomputing the coefficients of the basis splines,
which involves the solution of the system (let us call it A) for k basis vectors or simply the
inversion of the system. Total precomputation cost = k3. From the inverse of the system
we can recover the coefficients of the spline for any given set of data, z by taking A~*- z.
Then the cost to recover the coefficients of the spline is = k-,

One of the many topics not addresses in this exposition i1s the choice of the appropriate
class, and the norm for that class. If the class belongs to one for which the reproducing
kernel is already known (for a partial list see [Boult 83]), the algorithms can be directly
applied, with the only change being the introduction of a new kernel. This gives the method
of reproducing kemels for the reconstruction of visual surfaces more {lexibility than the
direct minimization methods (ala Gnimson),

Although not presented here, the method can be easily extended to allow the
mformation to be other thun depth values (e.g dertvatuves, and/or integrals), and these
forms of information may be intermingled. Also the method is easily modified to allow
reconstruction in more dimension (e.g. density reconstruction in three dimensions tor CAT
scans).



We end with some of the drawbacks of the use of reproducing kernels to recover the
spiines. Some of the cons include: the assumptions necessary to allow the use of reproducing
kernels (smothness of class and the norm): Reproducing kernels are currently know for only a
small number of classes and associated norms}; the possibly substantial amount of time to
compute the parameters of the spline, especially if k is large. The complexity of some of the
reproducing kermels themselves (e.g. two used by Atteia are infinite series) and others are very
complicated formulas.

6 Example Classes, Kernels and Linear Systems.

In this section we exhibit 2 families of classes of surr‘aceé, and their associated kemnels. The
semi-norms associated with these families of classes have as special cases the “quadratic variation™
semi-norm used by [Grimson 811. This semi-norm has the nice physical analogy of measuring the
bending energy in a thin plate.

The first example is based on the work of [Duchon 76], and we include the parameterized class
definition, parameterized form of the reproducing kemel, a particular exampie kemel, and the linear
system (for calculation of the parameters of the spline 6 with the patticular kernel) for information
points on a 4 by 4 unit spaced grid. The second example is based on the work of [Meinguet 79a.b,
80]. Here we only include a parameterized family of classes, the associated parameterized
generating kernels, and one example of a particular kernel for information points on a 4—4 unit

grid.

For the first family of classes we define D'MHS, for s < I, to be the space of functions which
have all derivatives of order m in H¥, where HS is the Hilbert space of functions such that thetr
tempered distributions v on 2 having Fourier transform v that satisfy

25 2
[T] v {(T)] dt <« oo
2
K

LetF) = >™mHs be equipped with the semi-norm given by

¥o(f) = > J‘JID;Djy r‘lzl

1+]=m

I
k.\-.

Where D f is difdx! and D f is g'f:dy*. (Note that the null space of this seminorm, 1, 1. 1s the

space of bivariate polynomials of (totaly degree £ m-1.) [Duchon 76] showed that if we require
that s < I and s > [-m we have the reproducing kemels :



Kp((xy)is,t) = ((x-5)% +(y-phm+s-D Ln [N((x-5)2 « (y-t)2))]
1f 2{m+s-1) IS an even positive ineger
and
Kp((x,¥)(8,1)) = ((x-5)% ~(y-t)=)(m=s-1) otherwise.

In particular, it we choose m = 2 (this makes the norm the surface variation norm used by
Grimson) and s = !/,, we have the reproducing kemnel K [(x.,y).(s,1)) = ((x-$)2 + (y-1)?)¥2. Then
we the coefficients of the spline Op are given by the solution of the linear system, Ap. An
example of this system is given in Figure [, where the the locations of the information samples dare
fixed at (1,j) 1=1..4, )= 1..4, the associated depth values are Z; and where for brevity we write X~
in place of x{32)- Figures 2-7 contain example projections of surfaces from this space generated
from either 16 or 100 information points,

Note the block toeplitz nature of the upper left comner of the matrix. We can take advantage of
this very regular structure in the solution of Ap. Algorithms exists for the inversion of Block
toeplitz systems in O(k32), where k is the number of data points, (e.g. [Akaike 73] and [Watson
73]). Given the inverse of the block toeplitz portion of Ap, one can efficientiy (in O(k?) time)
precompute the basis splines, 1.2. invert Ap. Then one can recover the coefficients for a particular
set of data in O(k?) time by computing Ayl - [z),...z,] 7. Recent work by Lee [Lee 85], gives an

algorithm that soves a block toeplitz system on time O(k? log k), without inverting the matrix,

This toeplitz structure will occur only when the location of the information samples form
regular grid. However, the system is always symmetiic. Unfortunately, it is always indefinite fin
fact is always has (m~1)-m / 2 negative eigenvalues). This may effect the choice of alyorithm for
the solution of the system. In fact the two block weplitz inversion algorithms mentioned above
maybe unstable for this system, because it is indefinite (They have not been shown unstable, but
related algorithms for pointwise toeplitz systems are provably unstable for indefinite svstems).

Another tmportant property of a linear system 1s the condition number. This effects the
accuracy to which anv computer algorithm can solve the system. The larger the condition number,
the less accurate a computer calculated solution to the system must be. The condition number of
the matrix for the calculation of the spline coetficients depends on m, s, k. Furthermore for
information samples on a regular grid, the condition number also depends on h, the separation
between grid points, Inminial results for the case s=0.m=2, and h appropriately chosen yield that the
condition number of the system is approximately 3k2, where k is the number of information
samples, and for the the case s=l/>, m = 2 and h appropriately chosen, Cond(Ap) = 19k2. Both
estimations from calculated values of the condition number for grid sized from 2% to 107 points,
and h values taken from the range .1 ,1.0].
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Figure |  The matrix for the coefficients of the spline o, for information on a 4 by 4 grid.
Where x* represents x¥2, and z; is the information at gnd point (i.j).

These comments on the indefiniteness of the system, and the rate of growth of the condition
number reinforce the point that this method is currently only practical for sparse data,

A family of classes very closely related to that above was studied in [Meinguet 79a, 79b]. This
family of classes (Beppo Levi spaces) is defined as follows:

sz{ fe D:D; .D, fel for i . iye 1‘1,2_]}

] m

(Where D is the space of all Schwatrz distributions in %2, and the partial derivatives are in the
distributional sense). Intuitivly these spaces consist of those functions for which all partial

derivatives up to (total) order m are square integrable. The m'™ Sobolev semi-norm is also the
semi-norm for this famuly of spaces. Furthermore, the space X, / [1,,.; is a Hilbert space. with
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the m Sobolev semi-norm as a true norm.. The reproducing kerel. E{(x,v}, {$.1)} associuted
with X 15 given by

2(m-1)) 3 i
EC(xyL(s,))=¢C* ((x s) -~ (y- [)) 'Ln(\/{'?s) + {y-1) )

where ¢ = ( 22mi.r(m-1)!-(m- 1) )L

Now if we define p; 10 be the unique basis of [T, such that p; (x;,y;) = &;; forallije Jithe

set of indices of the unisolvent subset of the information). Then we can express the reproducing
kernel of X, / 1, as

Kagl(x9), (5.0) = () - ( i) (0) = D, By (6y) - ElGxyy), (5.0

iel

SN ps EOGn, () 0, DO By %) - By (.0 By, (x,y, )

1] ielie ]

We now present a example in more detal. For concreteness we shall assume  that the
information samples fixed at (1,]) i=0..3, = 0..3, and the associated depth values are z;,. We shall

also chose m = 2, therefore our semi-norm is “quadratic variation”. Since we must assume that
that the information contains a unisolvent subset, we choose this subset to be at (0,0} (0.1) and
(1,0} (and let the associates indices be 1,2,5 respectively). The associated p (x.y) being given by
p(x.y) = L.O- (x+¥), pa{x,y) = ¥, and p3(x,¥) = x. Then the reproducing kernet for this class and

distribution of information is given by

Ka( (xy). (5.0 ={ EC (x.¥), (s.0)
- (1-x-y) - E((0,0), (s.0)) - (1-s-0) - E{(x,¥),{0,0)) )
-y - EQO, D), (s,0) -t E((y).(0.1)
- X - E((I,O). (s.t)) -s E((xy).(1.0M
+ (1-x-y) - £ - E¢(0,0). {0, 1)) (]-x—y‘J s - EQOO (100
+v - (1-t-s) - E((0.1), (0,00) - x - (1-t-8) * E((1.Oy, (0.0n
+y s B0 L), (10)) + x - t+ E((1L.OWO, 10}

Let us adopt the notation Ag(mXk) to stand for the system of equations generated by (3.3) for
the reproducing kernel for X/ [1,,.|. and k = number of information samples. which ure locured

on 4 regular grid (cek on a side.)
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First we note that this system is always positive definite, and symmetric. Furthermore if we
correctly order the variable we can insure that the Choisky decomposition, written us L L, T =

Ay(m,k), has the property that Ly is the upper right hand corner of L, _,, for all 1 > 4, sce
[Meinguet 79b] for a proof of this property. This implies that if we calculate the Cholesky

decompositon for a larger square grid, we automatically have the decomposition for all smaller

square grids. (In fact this can be used to define a recursive algorithm for the solution of the
system, time cost = O(/gn3)). Given the decomposition, the actual coefficients for the spline can

be recovered (in O(n?) time) using simple (and numerically stable) back-substitution.

The condition number of the systems A yy(mk) does not depend on the spacing of the points.
and Initial experiments indicate that Cond(Ay(2 k) = .95 k23, This estimation based on calculation
of the condition number for square grids of 16, 25, 36, 49, 64, 81, and 100 points.

7  Conclusions and Future Work.

This method seems particularly well suited to the problem if the user is interested in particularly
smooth surfaces, and the initial information is sparse (in some sense the sparser the better). There
is an added time and space savings if the location of the information samples can be fixed ahead of
time, particularly in a regular structure.

Some of the work yet to be done includes:

Implementation of the current algorithm for more classes, and for non-fixed information
samples;

Enhancements to the current implementation to allow information other than depth values:

Some justification (hopefully on psychological or psychophysical grounds) for the choice of
classes;

Estimation of the condition number for more classes;
Full analysis of the numerical properties of the algorithm.
Through comparison of this method with existing methods;

An analysis of the approximation error of the algonthm.
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Figure 2:  Interpolation of parabolic sheet. Reconstructed by evaluating surface at

48x48 points, and plotting tringular patches between the values. Input data
taken at 16 points on a 4x4 square grid.

Figure 3:  Data used for Figures 4 and 5. The input was on a 10x10 gnd (lower left is
(1,1)).
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Interpolation of 1/4 weading cake frontal view. Reconstructed by evaluating
surface at 48x48 points, and plotting tringular patches between the values.
Input data given in Figure 3.

Figure 4:

Figure 5: Another vi surface in Figure 4. highlighti ‘
¢ ther view of surface 1n Figure 4. highlighting the effect near edges,



Figure 6:  Inputdata for Figure 7. The data is intended 1o suggest three planes floating
in the air. Note that such a surface would not be in the class of surfaces that
the algorithm, assumes, hence the papering over of the edges. There ar¢
100 data points, laid out on a 10x 10 square arid.
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Figure 7: Interpolation of a “wedding cake” surface, Reconstructed by evaluating

surface at 48x48 points, and plotting tringular patches between the values,
Input data given in figure 6.



